1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// ignore-lexer-test FIXME #15679

//! String manipulation
//!
//! For more details, see std::str

#![doc(primitive = "str")]

use self::Searcher::{Naive, TwoWay, TwoWayLong};

use clone::Clone;
use cmp::{self, Eq};
use default::Default;
use error::Error;
use fmt;
use iter::ExactSizeIterator;
use iter::{Map, Iterator, IteratorExt, DoubleEndedIterator};
use marker::Sized;
use mem;
use num::Int;
use ops::{Fn, FnMut};
use option::Option::{self, None, Some};
use ptr::PtrExt;
use raw::{Repr, Slice};
use result::Result::{self, Ok, Err};
use slice::{self, SliceExt};
use usize;

macro_rules! delegate_iter {
    (exact $te:ty : $ti:ty) => {
        delegate_iter!{$te : $ti}
        impl<'a> ExactSizeIterator for $ti {
            #[inline]
            fn len(&self) -> usize {
                self.0.len()
            }
        }
    };
    ($te:ty : $ti:ty) => {
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<'a> Iterator for $ti {
            type Item = $te;

            #[inline]
            fn next(&mut self) -> Option<$te> {
                self.0.next()
            }
            #[inline]
            fn size_hint(&self) -> (usize, Option<usize>) {
                self.0.size_hint()
            }
        }
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<'a> DoubleEndedIterator for $ti {
            #[inline]
            fn next_back(&mut self) -> Option<$te> {
                self.0.next_back()
            }
        }
    };
    (pattern $te:ty : $ti:ty) => {
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<'a, P: CharEq> Iterator for $ti {
            type Item = $te;

            #[inline]
            fn next(&mut self) -> Option<$te> {
                self.0.next()
            }
            #[inline]
            fn size_hint(&self) -> (usize, Option<usize>) {
                self.0.size_hint()
            }
        }
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<'a, P: CharEq> DoubleEndedIterator for $ti {
            #[inline]
            fn next_back(&mut self) -> Option<$te> {
                self.0.next_back()
            }
        }
    };
    (pattern forward $te:ty : $ti:ty) => {
        #[stable(feature = "rust1", since = "1.0.0")]
        impl<'a, P: CharEq> Iterator for $ti {
            type Item = $te;

            #[inline]
            fn next(&mut self) -> Option<$te> {
                self.0.next()
            }
            #[inline]
            fn size_hint(&self) -> (usize, Option<usize>) {
                self.0.size_hint()
            }
        }
    }
}

/// A trait to abstract the idea of creating a new instance of a type from a
/// string.
#[stable(feature = "rust1", since = "1.0.0")]
pub trait FromStr {
    /// The associated error which can be returned from parsing.
    #[stable(feature = "rust1", since = "1.0.0")]
    type Err;

    /// Parses a string `s` to return an optional value of this type. If the
    /// string is ill-formatted, the None is returned.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn from_str(s: &str) -> Result<Self, Self::Err>;
}

#[stable(feature = "rust1", since = "1.0.0")]
impl FromStr for bool {
    type Err = ParseBoolError;

    /// Parse a `bool` from a string.
    ///
    /// Yields an `Option<bool>`, because `s` may or may not actually be
    /// parseable.
    ///
    /// # Examples
    ///
    /// ```rust
    /// assert_eq!("true".parse(), Ok(true));
    /// assert_eq!("false".parse(), Ok(false));
    /// assert!("not even a boolean".parse::<bool>().is_err());
    /// ```
    #[inline]
    fn from_str(s: &str) -> Result<bool, ParseBoolError> {
        match s {
            "true"  => Ok(true),
            "false" => Ok(false),
            _       => Err(ParseBoolError { _priv: () }),
        }
    }
}

/// An error returned when parsing a `bool` from a string fails.
#[derive(Debug, Clone, PartialEq)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct ParseBoolError { _priv: () }

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for ParseBoolError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        "provided string was not `true` or `false`".fmt(f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Error for ParseBoolError {
    fn description(&self) -> &str { "failed to parse bool" }
}

/*
Section: Creating a string
*/

/// Errors which can occur when attempting to interpret a byte slice as a `str`.
#[derive(Copy, Eq, PartialEq, Clone, Debug)]
#[unstable(feature = "core",
           reason = "error enumeration recently added and definitions may be refined")]
pub enum Utf8Error {
    /// An invalid byte was detected at the byte offset given.
    ///
    /// The offset is guaranteed to be in bounds of the slice in question, and
    /// the byte at the specified offset was the first invalid byte in the
    /// sequence detected.
    InvalidByte(usize),

    /// The byte slice was invalid because more bytes were needed but no more
    /// bytes were available.
    TooShort,
}

/// Converts a slice of bytes to a string slice without performing any
/// allocations.
///
/// Once the slice has been validated as utf-8, it is transmuted in-place and
/// returned as a '&str' instead of a '&[u8]'
///
/// # Failure
///
/// Returns `Err` if the slice is not utf-8 with a description as to why the
/// provided slice is not utf-8.
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
    try!(run_utf8_validation_iterator(&mut v.iter()));
    Ok(unsafe { from_utf8_unchecked(v) })
}

/// Converts a slice of bytes to a string slice without checking
/// that the string contains valid UTF-8.
#[stable(feature = "rust1", since = "1.0.0")]
pub unsafe fn from_utf8_unchecked<'a>(v: &'a [u8]) -> &'a str {
    mem::transmute(v)
}

/// Constructs a static string slice from a given raw pointer.
///
/// This function will read memory starting at `s` until it finds a 0, and then
/// transmute the memory up to that point as a string slice, returning the
/// corresponding `&'static str` value.
///
/// This function is unsafe because the caller must ensure the C string itself
/// has the static lifetime and that the memory `s` is valid up to and including
/// the first null byte.
///
/// # Panics
///
/// This function will panic if the string pointed to by `s` is not valid UTF-8.
#[unstable(feature = "core")]
#[deprecated(since = "1.0.0",
             reason = "use std::ffi::c_str_to_bytes + str::from_utf8")]
pub unsafe fn from_c_str(s: *const i8) -> &'static str {
    let s = s as *const u8;
    let mut len = 0;
    while *s.offset(len as isize) != 0 {
        len += 1;
    }
    let v: &'static [u8] = ::mem::transmute(Slice { data: s, len: len });
    from_utf8(v).ok().expect("from_c_str passed invalid utf-8 data")
}

/// Something that can be used to compare against a character
#[unstable(feature = "core",
           reason = "definition may change as pattern-related methods are stabilized")]
pub trait CharEq {
    /// Determine if the splitter should split at the given character
    fn matches(&mut self, char) -> bool;
    /// Indicate if this is only concerned about ASCII characters,
    /// which can allow for a faster implementation.
    fn only_ascii(&self) -> bool;
}

impl CharEq for char {
    #[inline]
    fn matches(&mut self, c: char) -> bool { *self == c }

    #[inline]
    fn only_ascii(&self) -> bool { (*self as u32) < 128 }
}

impl<F> CharEq for F where F: FnMut(char) -> bool {
    #[inline]
    fn matches(&mut self, c: char) -> bool { (*self)(c) }

    #[inline]
    fn only_ascii(&self) -> bool { false }
}

impl<'a> CharEq for &'a [char] {
    #[inline]
    fn matches(&mut self, c: char) -> bool {
        self.iter().any(|&m| { let mut m = m; m.matches(c) })
    }

    #[inline]
    fn only_ascii(&self) -> bool {
        self.iter().all(|m| m.only_ascii())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Error for Utf8Error {
    fn description(&self) -> &str {
        match *self {
            Utf8Error::TooShort => "invalid utf-8: not enough bytes",
            Utf8Error::InvalidByte(..) => "invalid utf-8: corrupt contents",
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for Utf8Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Utf8Error::InvalidByte(n) => {
                write!(f, "invalid utf-8: invalid byte at index {}", n)
            }
            Utf8Error::TooShort => {
                write!(f, "invalid utf-8: byte slice too short")
            }
        }
    }
}

/*
Section: Iterators
*/

/// Iterator for the char (representing *Unicode Scalar Values*) of a string
///
/// Created with the method `.chars()`.
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Chars<'a> {
    iter: slice::Iter<'a, u8>
}

// Return the initial codepoint accumulator for the first byte.
// The first byte is special, only want bottom 5 bits for width 2, 4 bits
// for width 3, and 3 bits for width 4
macro_rules! utf8_first_byte {
    ($byte:expr, $width:expr) => (($byte & (0x7F >> $width)) as u32)
}

// return the value of $ch updated with continuation byte $byte
macro_rules! utf8_acc_cont_byte {
    ($ch:expr, $byte:expr) => (($ch << 6) | ($byte & CONT_MASK) as u32)
}

macro_rules! utf8_is_cont_byte {
    ($byte:expr) => (($byte & !CONT_MASK) == TAG_CONT_U8)
}

#[inline]
fn unwrap_or_0(opt: Option<&u8>) -> u8 {
    match opt {
        Some(&byte) => byte,
        None => 0,
    }
}

/// Reads the next code point out of a byte iterator (assuming a
/// UTF-8-like encoding).
#[unstable(feature = "core")]
pub fn next_code_point(bytes: &mut slice::Iter<u8>) -> Option<u32> {
    // Decode UTF-8
    let x = match bytes.next() {
        None => return None,
        Some(&next_byte) if next_byte < 128 => return Some(next_byte as u32),
        Some(&next_byte) => next_byte,
    };

    // Multibyte case follows
    // Decode from a byte combination out of: [[[x y] z] w]
    // NOTE: Performance is sensitive to the exact formulation here
    let init = utf8_first_byte!(x, 2);
    let y = unwrap_or_0(bytes.next());
    let mut ch = utf8_acc_cont_byte!(init, y);
    if x >= 0xE0 {
        // [[x y z] w] case
        // 5th bit in 0xE0 .. 0xEF is always clear, so `init` is still valid
        let z = unwrap_or_0(bytes.next());
        let y_z = utf8_acc_cont_byte!((y & CONT_MASK) as u32, z);
        ch = init << 12 | y_z;
        if x >= 0xF0 {
            // [x y z w] case
            // use only the lower 3 bits of `init`
            let w = unwrap_or_0(bytes.next());
            ch = (init & 7) << 18 | utf8_acc_cont_byte!(y_z, w);
        }
    }

    Some(ch)
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Iterator for Chars<'a> {
    type Item = char;

    #[inline]
    fn next(&mut self) -> Option<char> {
        next_code_point(&mut self.iter).map(|ch| {
            // str invariant says `ch` is a valid Unicode Scalar Value
            unsafe {
                mem::transmute(ch)
            }
        })
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let (len, _) = self.iter.size_hint();
        (len.saturating_add(3) / 4, Some(len))
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> DoubleEndedIterator for Chars<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<char> {
        let w = match self.iter.next_back() {
            None => return None,
            Some(&back_byte) if back_byte < 128 => return Some(back_byte as char),
            Some(&back_byte) => back_byte,
        };

        // Multibyte case follows
        // Decode from a byte combination out of: [x [y [z w]]]
        let mut ch;
        let z = unwrap_or_0(self.iter.next_back());
        ch = utf8_first_byte!(z, 2);
        if utf8_is_cont_byte!(z) {
            let y = unwrap_or_0(self.iter.next_back());
            ch = utf8_first_byte!(y, 3);
            if utf8_is_cont_byte!(y) {
                let x = unwrap_or_0(self.iter.next_back());
                ch = utf8_first_byte!(x, 4);
                ch = utf8_acc_cont_byte!(ch, y);
            }
            ch = utf8_acc_cont_byte!(ch, z);
        }
        ch = utf8_acc_cont_byte!(ch, w);

        // str invariant says `ch` is a valid Unicode Scalar Value
        unsafe {
            Some(mem::transmute(ch))
        }
    }
}

/// External iterator for a string's characters and their byte offsets.
/// Use with the `std::iter` module.
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct CharIndices<'a> {
    front_offset: usize,
    iter: Chars<'a>,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Iterator for CharIndices<'a> {
    type Item = (usize, char);

    #[inline]
    fn next(&mut self) -> Option<(usize, char)> {
        let (pre_len, _) = self.iter.iter.size_hint();
        match self.iter.next() {
            None => None,
            Some(ch) => {
                let index = self.front_offset;
                let (len, _) = self.iter.iter.size_hint();
                self.front_offset += pre_len - len;
                Some((index, ch))
            }
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> DoubleEndedIterator for CharIndices<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<(usize, char)> {
        match self.iter.next_back() {
            None => None,
            Some(ch) => {
                let (len, _) = self.iter.iter.size_hint();
                let index = self.front_offset + len;
                Some((index, ch))
            }
        }
    }
}

/// External iterator for a string's bytes.
/// Use with the `std::iter` module.
///
/// Created with `StrExt::bytes`
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone)]
pub struct Bytes<'a>(Map<slice::Iter<'a, u8>, BytesDeref>);
delegate_iter!{exact u8 : Bytes<'a>}

/// A temporary fn new type that ensures that the `Bytes` iterator
/// is cloneable.
#[derive(Copy, Clone)]
struct BytesDeref;

impl<'a> Fn<(&'a u8,)> for BytesDeref {
    type Output = u8;

    #[inline]
    extern "rust-call" fn call(&self, (ptr,): (&'a u8,)) -> u8 {
        *ptr
    }
}

/// An iterator over the substrings of a string, separated by `sep`.
#[derive(Clone)]
struct CharSplits<'a, Sep> {
    /// The slice remaining to be iterated
    string: &'a str,
    sep: Sep,
    /// Whether an empty string at the end is allowed
    allow_trailing_empty: bool,
    only_ascii: bool,
    finished: bool,
}

/// An iterator over the substrings of a string, separated by `sep`,
/// splitting at most `count` times.
#[derive(Clone)]
struct CharSplitsN<'a, Sep> {
    iter: CharSplits<'a, Sep>,
    /// The number of splits remaining
    count: usize,
    invert: bool,
}

/// An iterator over the lines of a string, separated by `\n`.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Lines<'a> {
    inner: CharSplits<'a, char>,
}

/// An iterator over the lines of a string, separated by either `\n` or (`\r\n`).
#[stable(feature = "rust1", since = "1.0.0")]
pub struct LinesAny<'a> {
    inner: Map<Lines<'a>, fn(&str) -> &str>,
}

impl<'a, Sep> CharSplits<'a, Sep> {
    #[inline]
    fn get_end(&mut self) -> Option<&'a str> {
        if !self.finished && (self.allow_trailing_empty || self.string.len() > 0) {
            self.finished = true;
            Some(self.string)
        } else {
            None
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, Sep: CharEq> Iterator for CharSplits<'a, Sep> {
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        if self.finished { return None }

        let mut next_split = None;
        if self.only_ascii {
            for (idx, byte) in self.string.bytes().enumerate() {
                if self.sep.matches(byte as char) && byte < 128u8 {
                    next_split = Some((idx, idx + 1));
                    break;
                }
            }
        } else {
            for (idx, ch) in self.string.char_indices() {
                if self.sep.matches(ch) {
                    next_split = Some((idx, self.string.char_range_at(idx).next));
                    break;
                }
            }
        }
        match next_split {
            Some((a, b)) => unsafe {
                let elt = self.string.slice_unchecked(0, a);
                self.string = self.string.slice_unchecked(b, self.string.len());
                Some(elt)
            },
            None => self.get_end(),
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, Sep: CharEq> DoubleEndedIterator for CharSplits<'a, Sep> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a str> {
        if self.finished { return None }

        if !self.allow_trailing_empty {
            self.allow_trailing_empty = true;
            match self.next_back() {
                Some(elt) if !elt.is_empty() => return Some(elt),
                _ => if self.finished { return None }
            }
        }
        let len = self.string.len();
        let mut next_split = None;

        if self.only_ascii {
            for (idx, byte) in self.string.bytes().enumerate().rev() {
                if self.sep.matches(byte as char) && byte < 128u8 {
                    next_split = Some((idx, idx + 1));
                    break;
                }
            }
        } else {
            for (idx, ch) in self.string.char_indices().rev() {
                if self.sep.matches(ch) {
                    next_split = Some((idx, self.string.char_range_at(idx).next));
                    break;
                }
            }
        }
        match next_split {
            Some((a, b)) => unsafe {
                let elt = self.string.slice_unchecked(b, len);
                self.string = self.string.slice_unchecked(0, a);
                Some(elt)
            },
            None => { self.finished = true; Some(self.string) }
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, Sep: CharEq> Iterator for CharSplitsN<'a, Sep> {
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        if self.count != 0 {
            self.count -= 1;
            if self.invert { self.iter.next_back() } else { self.iter.next() }
        } else {
            self.iter.get_end()
        }
    }
}

/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using naive search
#[derive(Clone)]
struct NaiveSearcher {
    position: usize
}

impl NaiveSearcher {
    fn new() -> NaiveSearcher {
        NaiveSearcher { position: 0 }
    }

    fn next(&mut self, haystack: &[u8], needle: &[u8]) -> Option<(usize, usize)> {
        while self.position + needle.len() <= haystack.len() {
            if &haystack[self.position .. self.position + needle.len()] == needle {
                let match_pos = self.position;
                self.position += needle.len(); // add 1 for all matches
                return Some((match_pos, match_pos + needle.len()));
            } else {
                self.position += 1;
            }
        }
        None
    }
}

/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using two-way search
#[derive(Clone)]
struct TwoWaySearcher {
    // constants
    crit_pos: usize,
    period: usize,
    byteset: u64,

    // variables
    position: usize,
    memory: usize
}

/*
    This is the Two-Way search algorithm, which was introduced in the paper:
    Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675.

    Here's some background information.

    A *word* is a string of symbols. The *length* of a word should be a familiar
    notion, and here we denote it for any word x by |x|.
    (We also allow for the possibility of the *empty word*, a word of length zero).

    If x is any non-empty word, then an integer p with 0 < p <= |x| is said to be a
    *period* for x iff for all i with 0 <= i <= |x| - p - 1, we have x[i] == x[i+p].
    For example, both 1 and 2 are periods for the string "aa". As another example,
    the only period of the string "abcd" is 4.

    We denote by period(x) the *smallest* period of x (provided that x is non-empty).
    This is always well-defined since every non-empty word x has at least one period,
    |x|. We sometimes call this *the period* of x.

    If u, v and x are words such that x = uv, where uv is the concatenation of u and
    v, then we say that (u, v) is a *factorization* of x.

    Let (u, v) be a factorization for a word x. Then if w is a non-empty word such
    that both of the following hold

      - either w is a suffix of u or u is a suffix of w
      - either w is a prefix of v or v is a prefix of w

    then w is said to be a *repetition* for the factorization (u, v).

    Just to unpack this, there are four possibilities here. Let w = "abc". Then we
    might have:

      - w is a suffix of u and w is a prefix of v. ex: ("lolabc", "abcde")
      - w is a suffix of u and v is a prefix of w. ex: ("lolabc", "ab")
      - u is a suffix of w and w is a prefix of v. ex: ("bc", "abchi")
      - u is a suffix of w and v is a prefix of w. ex: ("bc", "a")

    Note that the word vu is a repetition for any factorization (u,v) of x = uv,
    so every factorization has at least one repetition.

    If x is a string and (u, v) is a factorization for x, then a *local period* for
    (u, v) is an integer r such that there is some word w such that |w| = r and w is
    a repetition for (u, v).

    We denote by local_period(u, v) the smallest local period of (u, v). We sometimes
    call this *the local period* of (u, v). Provided that x = uv is non-empty, this
    is well-defined (because each non-empty word has at least one factorization, as
    noted above).

    It can be proven that the following is an equivalent definition of a local period
    for a factorization (u, v): any positive integer r such that x[i] == x[i+r] for
    all i such that |u| - r <= i <= |u| - 1 and such that both x[i] and x[i+r] are
    defined. (i.e. i > 0 and i + r < |x|).

    Using the above reformulation, it is easy to prove that

        1 <= local_period(u, v) <= period(uv)

    A factorization (u, v) of x such that local_period(u,v) = period(x) is called a
    *critical factorization*.

    The algorithm hinges on the following theorem, which is stated without proof:

    **Critical Factorization Theorem** Any word x has at least one critical
    factorization (u, v) such that |u| < period(x).

    The purpose of maximal_suffix is to find such a critical factorization.

*/
impl TwoWaySearcher {
    fn new(needle: &[u8]) -> TwoWaySearcher {
        let (crit_pos_false, period_false) = TwoWaySearcher::maximal_suffix(needle, false);
        let (crit_pos_true, period_true) = TwoWaySearcher::maximal_suffix(needle, true);

        let (crit_pos, period) =
            if crit_pos_false > crit_pos_true {
                (crit_pos_false, period_false)
            } else {
                (crit_pos_true, period_true)
            };

        // This isn't in the original algorithm, as far as I'm aware.
        let byteset = needle.iter()
                            .fold(0, |a, &b| (1 << ((b & 0x3f) as usize)) | a);

        // A particularly readable explanation of what's going on here can be found
        // in Crochemore and Rytter's book "Text Algorithms", ch 13. Specifically
        // see the code for "Algorithm CP" on p. 323.
        //
        // What's going on is we have some critical factorization (u, v) of the
        // needle, and we want to determine whether u is a suffix of
        // &v[..period]. If it is, we use "Algorithm CP1". Otherwise we use
        // "Algorithm CP2", which is optimized for when the period of the needle
        // is large.
        if &needle[..crit_pos] == &needle[period.. period + crit_pos] {
            TwoWaySearcher {
                crit_pos: crit_pos,
                period: period,
                byteset: byteset,

                position: 0,
                memory: 0
            }
        } else {
            TwoWaySearcher {
                crit_pos: crit_pos,
                period: cmp::max(crit_pos, needle.len() - crit_pos) + 1,
                byteset: byteset,

                position: 0,
                memory: usize::MAX // Dummy value to signify that the period is long
            }
        }
    }

    // One of the main ideas of Two-Way is that we factorize the needle into
    // two halves, (u, v), and begin trying to find v in the haystack by scanning
    // left to right. If v matches, we try to match u by scanning right to left.
    // How far we can jump when we encounter a mismatch is all based on the fact
    // that (u, v) is a critical factorization for the needle.
    #[inline]
    fn next(&mut self, haystack: &[u8], needle: &[u8], long_period: bool)
            -> Option<(usize, usize)> {
        'search: loop {
            // Check that we have room to search in
            if self.position + needle.len() > haystack.len() {
                return None;
            }

            // Quickly skip by large portions unrelated to our substring
            if (self.byteset >>
                    ((haystack[self.position + needle.len() - 1] & 0x3f)
                     as usize)) & 1 == 0 {
                self.position += needle.len();
                if !long_period {
                    self.memory = 0;
                }
                continue 'search;
            }

            // See if the right part of the needle matches
            let start = if long_period { self.crit_pos }
                        else { cmp::max(self.crit_pos, self.memory) };
            for i in start..needle.len() {
                if needle[i] != haystack[self.position + i] {
                    self.position += i - self.crit_pos + 1;
                    if !long_period {
                        self.memory = 0;
                    }
                    continue 'search;
                }
            }

            // See if the left part of the needle matches
            let start = if long_period { 0 } else { self.memory };
            for i in (start..self.crit_pos).rev() {
                if needle[i] != haystack[self.position + i] {
                    self.position += self.period;
                    if !long_period {
                        self.memory = needle.len() - self.period;
                    }
                    continue 'search;
                }
            }

            // We have found a match!
            let match_pos = self.position;
            self.position += needle.len(); // add self.period for all matches
            if !long_period {
                self.memory = 0; // set to needle.len() - self.period for all matches
            }
            return Some((match_pos, match_pos + needle.len()));
        }
    }

    // Computes a critical factorization (u, v) of `arr`.
    // Specifically, returns (i, p), where i is the starting index of v in some
    // critical factorization (u, v) and p = period(v)
    #[inline]
    fn maximal_suffix(arr: &[u8], reversed: bool) -> (usize, usize) {
        let mut left = -1; // Corresponds to i in the paper
        let mut right = 0; // Corresponds to j in the paper
        let mut offset = 1; // Corresponds to k in the paper
        let mut period = 1; // Corresponds to p in the paper

        while right + offset < arr.len() {
            let a;
            let b;
            if reversed {
                a = arr[left + offset];
                b = arr[right + offset];
            } else {
                a = arr[right + offset];
                b = arr[left + offset];
            }
            if a < b {
                // Suffix is smaller, period is entire prefix so far.
                right += offset;
                offset = 1;
                period = right - left;
            } else if a == b {
                // Advance through repetition of the current period.
                if offset == period {
                    right += offset;
                    offset = 1;
                } else {
                    offset += 1;
                }
            } else {
                // Suffix is larger, start over from current location.
                left = right;
                right += 1;
                offset = 1;
                period = 1;
            }
        }
        (left + 1, period)
    }
}

/// The internal state of an iterator that searches for matches of a substring
/// within a larger string using a dynamically chosen search algorithm
#[derive(Clone)]
enum Searcher {
    Naive(NaiveSearcher),
    TwoWay(TwoWaySearcher),
    TwoWayLong(TwoWaySearcher)
}

impl Searcher {
    fn new(haystack: &[u8], needle: &[u8]) -> Searcher {
        // FIXME: Tune this.
        // FIXME(#16715): This unsigned integer addition will probably not
        // overflow because that would mean that the memory almost solely
        // consists of the needle. Needs #16715 to be formally fixed.
        if needle.len() + 20 > haystack.len() {
            Naive(NaiveSearcher::new())
        } else {
            let searcher = TwoWaySearcher::new(needle);
            if searcher.memory == usize::MAX { // If the period is long
                TwoWayLong(searcher)
            } else {
                TwoWay(searcher)
            }
        }
    }
}

/// An iterator over the start and end indices of the matches of a
/// substring within a larger string
#[derive(Clone)]
#[unstable(feature = "core", reason = "type may be removed")]
pub struct MatchIndices<'a> {
    // constants
    haystack: &'a str,
    needle: &'a str,
    searcher: Searcher
}

/// An iterator over the substrings of a string separated by a given
/// search string
#[derive(Clone)]
#[unstable(feature = "core", reason = "type may be removed")]
pub struct SplitStr<'a> {
    it: MatchIndices<'a>,
    last_end: usize,
    finished: bool
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Iterator for MatchIndices<'a> {
    type Item = (usize, usize);

    #[inline]
    fn next(&mut self) -> Option<(usize, usize)> {
        match self.searcher {
            Naive(ref mut searcher)
                => searcher.next(self.haystack.as_bytes(), self.needle.as_bytes()),
            TwoWay(ref mut searcher)
                => searcher.next(self.haystack.as_bytes(), self.needle.as_bytes(), false),
            TwoWayLong(ref mut searcher)
                => searcher.next(self.haystack.as_bytes(), self.needle.as_bytes(), true)
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Iterator for SplitStr<'a> {
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> {
        if self.finished { return None; }

        match self.it.next() {
            Some((from, to)) => {
                let ret = Some(&self.it.haystack[self.last_end .. from]);
                self.last_end = to;
                ret
            }
            None => {
                self.finished = true;
                Some(&self.it.haystack[self.last_end .. self.it.haystack.len()])
            }
        }
    }
}


/*
Section: Comparing strings
*/

// share the implementation of the lang-item vs. non-lang-item
// eq_slice.
/// NOTE: This function is (ab)used in rustc::middle::trans::_match
/// to compare &[u8] byte slices that are not necessarily valid UTF-8.
#[inline]
fn eq_slice_(a: &str, b: &str) -> bool {
    // NOTE: In theory n should be libc::size_t and not usize, but libc is not available here
    #[allow(improper_ctypes)]
    extern { fn memcmp(s1: *const i8, s2: *const i8, n: usize) -> i32; }
    a.len() == b.len() && unsafe {
        memcmp(a.as_ptr() as *const i8,
               b.as_ptr() as *const i8,
               a.len()) == 0
    }
}

/// Bytewise slice equality
/// NOTE: This function is (ab)used in rustc::middle::trans::_match
/// to compare &[u8] byte slices that are not necessarily valid UTF-8.
#[lang="str_eq"]
#[inline]
fn eq_slice(a: &str, b: &str) -> bool {
    eq_slice_(a, b)
}

/*
Section: Misc
*/

/// Walk through `iter` checking that it's a valid UTF-8 sequence,
/// returning `true` in that case, or, if it is invalid, `false` with
/// `iter` reset such that it is pointing at the first byte in the
/// invalid sequence.
#[inline(always)]
fn run_utf8_validation_iterator(iter: &mut slice::Iter<u8>)
                                -> Result<(), Utf8Error> {
    let whole = iter.as_slice();
    loop {
        // save the current thing we're pointing at.
        let old = iter.clone();

        // restore the iterator we had at the start of this codepoint.
        macro_rules! err { () => {{
            *iter = old.clone();
            return Err(Utf8Error::InvalidByte(whole.len() - iter.as_slice().len()))
        }}}

        macro_rules! next { () => {
            match iter.next() {
                Some(a) => *a,
                // we needed data, but there was none: error!
                None => return Err(Utf8Error::TooShort),
            }
        }}

        let first = match iter.next() {
            Some(&b) => b,
            // we're at the end of the iterator and a codepoint
            // boundary at the same time, so this string is valid.
            None => return Ok(())
        };

        // ASCII characters are always valid, so only large
        // bytes need more examination.
        if first >= 128 {
            let w = UTF8_CHAR_WIDTH[first as usize] as usize;
            let second = next!();
            // 2-byte encoding is for codepoints  \u{0080} to  \u{07ff}
            //        first  C2 80        last DF BF
            // 3-byte encoding is for codepoints  \u{0800} to  \u{ffff}
            //        first  E0 A0 80     last EF BF BF
            //   excluding surrogates codepoints  \u{d800} to  \u{dfff}
            //               ED A0 80 to       ED BF BF
            // 4-byte encoding is for codepoints \u{1000}0 to \u{10ff}ff
            //        first  F0 90 80 80  last F4 8F BF BF
            //
            // Use the UTF-8 syntax from the RFC
            //
            // https://tools.ietf.org/html/rfc3629
            // UTF8-1      = %x00-7F
            // UTF8-2      = %xC2-DF UTF8-tail
            // UTF8-3      = %xE0 %xA0-BF UTF8-tail / %xE1-EC 2( UTF8-tail ) /
            //               %xED %x80-9F UTF8-tail / %xEE-EF 2( UTF8-tail )
            // UTF8-4      = %xF0 %x90-BF 2( UTF8-tail ) / %xF1-F3 3( UTF8-tail ) /
            //               %xF4 %x80-8F 2( UTF8-tail )
            match w {
                2 => if second & !CONT_MASK != TAG_CONT_U8 {err!()},
                3 => {
                    match (first, second, next!() & !CONT_MASK) {
                        (0xE0         , 0xA0 ... 0xBF, TAG_CONT_U8) |
                        (0xE1 ... 0xEC, 0x80 ... 0xBF, TAG_CONT_U8) |
                        (0xED         , 0x80 ... 0x9F, TAG_CONT_U8) |
                        (0xEE ... 0xEF, 0x80 ... 0xBF, TAG_CONT_U8) => {}
                        _ => err!()
                    }
                }
                4 => {
                    match (first, second, next!() & !CONT_MASK, next!() & !CONT_MASK) {
                        (0xF0         , 0x90 ... 0xBF, TAG_CONT_U8, TAG_CONT_U8) |
                        (0xF1 ... 0xF3, 0x80 ... 0xBF, TAG_CONT_U8, TAG_CONT_U8) |
                        (0xF4         , 0x80 ... 0x8F, TAG_CONT_U8, TAG_CONT_U8) => {}
                        _ => err!()
                    }
                }
                _ => err!()
            }
        }
    }
}

// https://tools.ietf.org/html/rfc3629
static UTF8_CHAR_WIDTH: [u8; 256] = [
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x1F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x3F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x5F
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, // 0x7F
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0x9F
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, // 0xBF
0,0,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, // 0xDF
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, // 0xEF
4,4,4,4,4,0,0,0,0,0,0,0,0,0,0,0, // 0xFF
];

/// Struct that contains a `char` and the index of the first byte of
/// the next `char` in a string.  This can be used as a data structure
/// for iterating over the UTF-8 bytes of a string.
#[derive(Copy)]
#[unstable(feature = "core",
           reason = "naming is uncertain with container conventions")]
pub struct CharRange {
    /// Current `char`
    pub ch: char,
    /// Index of the first byte of the next `char`
    pub next: usize,
}

/// Mask of the value bits of a continuation byte
const CONT_MASK: u8 = 0b0011_1111u8;
/// Value of the tag bits (tag mask is !CONT_MASK) of a continuation byte
const TAG_CONT_U8: u8 = 0b1000_0000u8;

/*
Section: Trait implementations
*/

mod traits {
    use cmp::{Ordering, Ord, PartialEq, PartialOrd, Eq};
    use cmp::Ordering::{Less, Equal, Greater};
    use iter::IteratorExt;
    use option::Option;
    use option::Option::Some;
    use ops;
    use str::{StrExt, eq_slice};

    #[stable(feature = "rust1", since = "1.0.0")]
    impl Ord for str {
        #[inline]
        fn cmp(&self, other: &str) -> Ordering {
            for (s_b, o_b) in self.bytes().zip(other.bytes()) {
                match s_b.cmp(&o_b) {
                    Greater => return Greater,
                    Less => return Less,
                    Equal => ()
                }
            }

            self.len().cmp(&other.len())
        }
    }

    #[stable(feature = "rust1", since = "1.0.0")]
    impl PartialEq for str {
        #[inline]
        fn eq(&self, other: &str) -> bool {
            eq_slice(self, other)
        }
        #[inline]
        fn ne(&self, other: &str) -> bool { !(*self).eq(other) }
    }

    #[stable(feature = "rust1", since = "1.0.0")]
    impl Eq for str {}

    #[stable(feature = "rust1", since = "1.0.0")]
    impl PartialOrd for str {
        #[inline]
        fn partial_cmp(&self, other: &str) -> Option<Ordering> {
            Some(self.cmp(other))
        }
    }

    /// Returns a slice of the given string from the byte range
    /// [`begin`..`end`).
    ///
    /// This operation is `O(1)`.
    ///
    /// Panics when `begin` and `end` do not point to valid characters
    /// or point beyond the last character of the string.
    ///
    /// # Example
    ///
    /// ```rust
    /// let s = "Löwe 老虎 Léopard";
    /// assert_eq!(&s[0 .. 1], "L");
    ///
    /// assert_eq!(&s[1 .. 9], "öwe 老");
    ///
    /// // these will panic:
    /// // byte 2 lies within `ö`:
    /// // &s[2 ..3];
    ///
    /// // byte 8 lies within `老`
    /// // &s[1 .. 8];
    ///
    /// // byte 100 is outside the string
    /// // &s[3 .. 100];
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    impl ops::Index<ops::Range<usize>> for str {
        type Output = str;
        #[inline]
        fn index(&self, index: &ops::Range<usize>) -> &str {
            // is_char_boundary checks that the index is in [0, .len()]
            if index.start <= index.end &&
               self.is_char_boundary(index.start) &&
               self.is_char_boundary(index.end) {
                unsafe { self.slice_unchecked(index.start, index.end) }
            } else {
                super::slice_error_fail(self, index.start, index.end)
            }
        }
    }

    /// Returns a slice of the string from the beginning to byte
    /// `end`.
    ///
    /// Equivalent to `self[0 .. end]`.
    ///
    /// Panics when `end` does not point to a valid character, or is
    /// out of bounds.
    #[stable(feature = "rust1", since = "1.0.0")]
    impl ops::Index<ops::RangeTo<usize>> for str {
        type Output = str;
        #[inline]
        fn index(&self, index: &ops::RangeTo<usize>) -> &str {
            // is_char_boundary checks that the index is in [0, .len()]
            if self.is_char_boundary(index.end) {
                unsafe { self.slice_unchecked(0, index.end) }
            } else {
                super::slice_error_fail(self, 0, index.end)
            }
        }
    }

    /// Returns a slice of the string from `begin` to its end.
    ///
    /// Equivalent to `self[begin .. self.len()]`.
    ///
    /// Panics when `begin` does not point to a valid character, or is
    /// out of bounds.
    #[stable(feature = "rust1", since = "1.0.0")]
    impl ops::Index<ops::RangeFrom<usize>> for str {
        type Output = str;
        #[inline]
        fn index(&self, index: &ops::RangeFrom<usize>) -> &str {
            // is_char_boundary checks that the index is in [0, .len()]
            if self.is_char_boundary(index.start) {
                unsafe { self.slice_unchecked(index.start, self.len()) }
            } else {
                super::slice_error_fail(self, index.start, self.len())
            }
        }
    }

    #[stable(feature = "rust1", since = "1.0.0")]
    impl ops::Index<ops::RangeFull> for str {
        type Output = str;
        #[inline]
        fn index(&self, _index: &ops::RangeFull) -> &str {
            self
        }
    }
}

/// Any string that can be represented as a slice
#[unstable(feature = "core",
           reason = "Instead of taking this bound generically, this trait will be \
                     replaced with one of slicing syntax (&foo[..]), deref coercions, or \
                     a more generic conversion trait")]
pub trait Str {
    /// Work with `self` as a slice.
    fn as_slice<'a>(&'a self) -> &'a str;
}

impl Str for str {
    #[inline]
    fn as_slice<'a>(&'a self) -> &'a str { self }
}

impl<'a, S: ?Sized> Str for &'a S where S: Str {
    #[inline]
    fn as_slice(&self) -> &str { Str::as_slice(*self) }
}

/// Return type of `StrExt::split`
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Split<'a, P>(CharSplits<'a, P>);
delegate_iter!{pattern &'a str : Split<'a, P>}

/// Return type of `StrExt::split_terminator`
#[derive(Clone)]
#[unstable(feature = "core",
           reason = "might get removed in favour of a constructor method on Split")]
pub struct SplitTerminator<'a, P>(CharSplits<'a, P>);
delegate_iter!{pattern &'a str : SplitTerminator<'a, P>}

/// Return type of `StrExt::splitn`
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct SplitN<'a, P>(CharSplitsN<'a, P>);
delegate_iter!{pattern forward &'a str : SplitN<'a, P>}

/// Return type of `StrExt::rsplitn`
#[derive(Clone)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RSplitN<'a, P>(CharSplitsN<'a, P>);
delegate_iter!{pattern forward &'a str : RSplitN<'a, P>}

/// Methods for string slices
#[allow(missing_docs)]
pub trait StrExt {
    // NB there are no docs here are they're all located on the StrExt trait in
    // libcollections, not here.

    fn contains(&self, pat: &str) -> bool;
    fn contains_char<P: CharEq>(&self, pat: P) -> bool;
    fn chars<'a>(&'a self) -> Chars<'a>;
    fn bytes<'a>(&'a self) -> Bytes<'a>;
    fn char_indices<'a>(&'a self) -> CharIndices<'a>;
    fn split<'a, P: CharEq>(&'a self, pat: P) -> Split<'a, P>;
    fn splitn<'a, P: CharEq>(&'a self, count: usize, pat: P) -> SplitN<'a, P>;
    fn split_terminator<'a, P: CharEq>(&'a self, pat: P) -> SplitTerminator<'a, P>;
    fn rsplitn<'a, P: CharEq>(&'a self, count: usize, pat: P) -> RSplitN<'a, P>;
    fn match_indices<'a>(&'a self, sep: &'a str) -> MatchIndices<'a>;
    fn split_str<'a>(&'a self, pat: &'a str) -> SplitStr<'a>;
    fn lines<'a>(&'a self) -> Lines<'a>;
    fn lines_any<'a>(&'a self) -> LinesAny<'a>;
    fn char_len(&self) -> usize;
    fn slice_chars<'a>(&'a self, begin: usize, end: usize) -> &'a str;
    unsafe fn slice_unchecked<'a>(&'a self, begin: usize, end: usize) -> &'a str;
    fn starts_with(&self, pat: &str) -> bool;
    fn ends_with(&self, pat: &str) -> bool;
    fn trim_matches<'a, P: CharEq>(&'a self, pat: P) -> &'a str;
    fn trim_left_matches<'a, P: CharEq>(&'a self, pat: P) -> &'a str;
    fn trim_right_matches<'a, P: CharEq>(&'a self, pat: P) -> &'a str;
    fn is_char_boundary(&self, index: usize) -> bool;
    fn char_range_at(&self, start: usize) -> CharRange;
    fn char_range_at_reverse(&self, start: usize) -> CharRange;
    fn char_at(&self, i: usize) -> char;
    fn char_at_reverse(&self, i: usize) -> char;
    fn as_bytes<'a>(&'a self) -> &'a [u8];
    fn find<P: CharEq>(&self, pat: P) -> Option<usize>;
    fn rfind<P: CharEq>(&self, pat: P) -> Option<usize>;
    fn find_str(&self, pat: &str) -> Option<usize>;
    fn slice_shift_char<'a>(&'a self) -> Option<(char, &'a str)>;
    fn subslice_offset(&self, inner: &str) -> usize;
    fn as_ptr(&self) -> *const u8;
    fn len(&self) -> usize;
    fn is_empty(&self) -> bool;
    fn parse<T: FromStr>(&self) -> Result<T, T::Err>;
}

#[inline(never)]
fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
    assert!(begin <= end);
    panic!("index {} and/or {} in `{}` do not lie on character boundary",
          begin, end, s);
}

impl StrExt for str {
    #[inline]
    fn contains(&self, needle: &str) -> bool {
        self.find_str(needle).is_some()
    }

    #[inline]
    fn contains_char<P: CharEq>(&self, pat: P) -> bool {
        self.find(pat).is_some()
    }

    #[inline]
    fn chars(&self) -> Chars {
        Chars{iter: self.as_bytes().iter()}
    }

    #[inline]
    fn bytes(&self) -> Bytes {
        Bytes(self.as_bytes().iter().map(BytesDeref))
    }

    #[inline]
    fn char_indices(&self) -> CharIndices {
        CharIndices { front_offset: 0, iter: self.chars() }
    }

    #[inline]
    fn split<P: CharEq>(&self, pat: P) -> Split<P> {
        Split(CharSplits {
            string: self,
            only_ascii: pat.only_ascii(),
            sep: pat,
            allow_trailing_empty: true,
            finished: false,
        })
    }

    #[inline]
    fn splitn<P: CharEq>(&self, count: usize, pat: P) -> SplitN<P> {
        SplitN(CharSplitsN {
            iter: self.split(pat).0,
            count: count,
            invert: false,
        })
    }

    #[inline]
    fn split_terminator<P: CharEq>(&self, pat: P) -> SplitTerminator<P> {
        SplitTerminator(CharSplits {
            allow_trailing_empty: false,
            ..self.split(pat).0
        })
    }

    #[inline]
    fn rsplitn<P: CharEq>(&self, count: usize, pat: P) -> RSplitN<P> {
        RSplitN(CharSplitsN {
            iter: self.split(pat).0,
            count: count,
            invert: true,
        })
    }

    #[inline]
    fn match_indices<'a>(&'a self, sep: &'a str) -> MatchIndices<'a> {
        assert!(!sep.is_empty());
        MatchIndices {
            haystack: self,
            needle: sep,
            searcher: Searcher::new(self.as_bytes(), sep.as_bytes())
        }
    }

    #[inline]
    fn split_str<'a>(&'a self, sep: &'a str) -> SplitStr<'a> {
        SplitStr {
            it: self.match_indices(sep),
            last_end: 0,
            finished: false
        }
    }

    #[inline]
    fn lines(&self) -> Lines {
        Lines { inner: self.split_terminator('\n').0 }
    }

    fn lines_any(&self) -> LinesAny {
        fn f(line: &str) -> &str {
            let l = line.len();
            if l > 0 && line.as_bytes()[l - 1] == b'\r' { &line[0 .. l - 1] }
            else { line }
        }

        let f: fn(&str) -> &str = f; // coerce to fn pointer
        LinesAny { inner: self.lines().map(f) }
    }

    #[inline]
    fn char_len(&self) -> usize { self.chars().count() }

    fn slice_chars(&self, begin: usize, end: usize) -> &str {
        assert!(begin <= end);
        let mut count = 0;
        let mut begin_byte = None;
        let mut end_byte = None;

        // This could be even more efficient by not decoding,
        // only finding the char boundaries
        for (idx, _) in self.char_indices() {
            if count == begin { begin_byte = Some(idx); }
            if count == end { end_byte = Some(idx); break; }
            count += 1;
        }
        if begin_byte.is_none() && count == begin { begin_byte = Some(self.len()) }
        if end_byte.is_none() && count == end { end_byte = Some(self.len()) }

        match (begin_byte, end_byte) {
            (None, _) => panic!("slice_chars: `begin` is beyond end of string"),
            (_, None) => panic!("slice_chars: `end` is beyond end of string"),
            (Some(a), Some(b)) => unsafe { self.slice_unchecked(a, b) }
        }
    }

    #[inline]
    unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
        mem::transmute(Slice {
            data: self.as_ptr().offset(begin as isize),
            len: end - begin,
        })
    }

    #[inline]
    fn starts_with(&self, needle: &str) -> bool {
        let n = needle.len();
        self.len() >= n && needle.as_bytes() == &self.as_bytes()[..n]
    }

    #[inline]
    fn ends_with(&self, needle: &str) -> bool {
        let (m, n) = (self.len(), needle.len());
        m >= n && needle.as_bytes() == &self.as_bytes()[m-n..]
    }

    #[inline]
    fn trim_matches<P: CharEq>(&self, mut pat: P) -> &str {
        let cur = match self.find(|c: char| !pat.matches(c)) {
            None => "",
            Some(i) => unsafe { self.slice_unchecked(i, self.len()) }
        };
        match cur.rfind(|c: char| !pat.matches(c)) {
            None => "",
            Some(i) => {
                let right = cur.char_range_at(i).next;
                unsafe { cur.slice_unchecked(0, right) }
            }
        }
    }

    #[inline]
    fn trim_left_matches<P: CharEq>(&self, mut pat: P) -> &str {
        match self.find(|c: char| !pat.matches(c)) {
            None => "",
            Some(first) => unsafe { self.slice_unchecked(first, self.len()) }
        }
    }

    #[inline]
    fn trim_right_matches<P: CharEq>(&self, mut pat: P) -> &str {
        match self.rfind(|c: char| !pat.matches(c)) {
            None => "",
            Some(last) => {
                let next = self.char_range_at(last).next;
                unsafe { self.slice_unchecked(0, next) }
            }
        }
    }

    #[inline]
    fn is_char_boundary(&self, index: usize) -> bool {
        if index == self.len() { return true; }
        match self.as_bytes().get(index) {
            None => false,
            Some(&b) => b < 128u8 || b >= 192u8,
        }
    }

    #[inline]
    fn char_range_at(&self, i: usize) -> CharRange {
        let (c, n) = char_range_at_raw(self.as_bytes(), i);
        CharRange { ch: unsafe { mem::transmute(c) }, next: n }
    }

    #[inline]
    fn char_range_at_reverse(&self, start: usize) -> CharRange {
        let mut prev = start;

        prev = prev.saturating_sub(1);
        if self.as_bytes()[prev] < 128 {
            return CharRange{ch: self.as_bytes()[prev] as char, next: prev}
        }

        // Multibyte case is a fn to allow char_range_at_reverse to inline cleanly
        fn multibyte_char_range_at_reverse(s: &str, mut i: usize) -> CharRange {
            // while there is a previous byte == 10......
            while i > 0 && s.as_bytes()[i] & !CONT_MASK == TAG_CONT_U8 {
                i -= 1;
            }

            let mut val = s.as_bytes()[i] as u32;
            let w = UTF8_CHAR_WIDTH[val as usize] as usize;
            assert!((w != 0));

            val = utf8_first_byte!(val, w);
            val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 1]);
            if w > 2 { val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 2]); }
            if w > 3 { val = utf8_acc_cont_byte!(val, s.as_bytes()[i + 3]); }

            return CharRange {ch: unsafe { mem::transmute(val) }, next: i};
        }

        return multibyte_char_range_at_reverse(self, prev);
    }

    #[inline]
    fn char_at(&self, i: usize) -> char {
        self.char_range_at(i).ch
    }

    #[inline]
    fn char_at_reverse(&self, i: usize) -> char {
        self.char_range_at_reverse(i).ch
    }

    #[inline]
    fn as_bytes(&self) -> &[u8] {
        unsafe { mem::transmute(self) }
    }

    fn find<P: CharEq>(&self, mut pat: P) -> Option<usize> {
        if pat.only_ascii() {
            self.bytes().position(|b| pat.matches(b as char))
        } else {
            for (index, c) in self.char_indices() {
                if pat.matches(c) { return Some(index); }
            }
            None
        }
    }

    fn rfind<P: CharEq>(&self, mut pat: P) -> Option<usize> {
        if pat.only_ascii() {
            self.bytes().rposition(|b| pat.matches(b as char))
        } else {
            for (index, c) in self.char_indices().rev() {
                if pat.matches(c) { return Some(index); }
            }
            None
        }
    }

    fn find_str(&self, needle: &str) -> Option<usize> {
        if needle.is_empty() {
            Some(0)
        } else {
            self.match_indices(needle)
                .next()
                .map(|(start, _end)| start)
        }
    }

    #[inline]
    fn slice_shift_char(&self) -> Option<(char, &str)> {
        if self.is_empty() {
            None
        } else {
            let CharRange {ch, next} = self.char_range_at(0);
            let next_s = unsafe { self.slice_unchecked(next, self.len()) };
            Some((ch, next_s))
        }
    }

    fn subslice_offset(&self, inner: &str) -> usize {
        let a_start = self.as_ptr() as usize;
        let a_end = a_start + self.len();
        let b_start = inner.as_ptr() as usize;
        let b_end = b_start + inner.len();

        assert!(a_start <= b_start);
        assert!(b_end <= a_end);
        b_start - a_start
    }

    #[inline]
    fn as_ptr(&self) -> *const u8 {
        self.repr().data
    }

    #[inline]
    fn len(&self) -> usize { self.repr().len }

    #[inline]
    fn is_empty(&self) -> bool { self.len() == 0 }

    #[inline]
    fn parse<T: FromStr>(&self) -> Result<T, T::Err> { FromStr::from_str(self) }
}

/// Pluck a code point out of a UTF-8-like byte slice and return the
/// index of the next code point.
#[inline]
#[unstable(feature = "core")]
pub fn char_range_at_raw(bytes: &[u8], i: usize) -> (u32, usize) {
    if bytes[i] < 128u8 {
        return (bytes[i] as u32, i + 1);
    }

    // Multibyte case is a fn to allow char_range_at to inline cleanly
    fn multibyte_char_range_at(bytes: &[u8], i: usize) -> (u32, usize) {
        let mut val = bytes[i] as u32;
        let w = UTF8_CHAR_WIDTH[val as usize] as usize;
        assert!((w != 0));

        val = utf8_first_byte!(val, w);
        val = utf8_acc_cont_byte!(val, bytes[i + 1]);
        if w > 2 { val = utf8_acc_cont_byte!(val, bytes[i + 2]); }
        if w > 3 { val = utf8_acc_cont_byte!(val, bytes[i + 3]); }

        return (val, i + w);
    }

    multibyte_char_range_at(bytes, i)
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Default for &'a str {
    #[stable(feature = "rust1", since = "1.0.0")]
    fn default() -> &'a str { "" }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Iterator for Lines<'a> {
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> { self.inner.next() }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> DoubleEndedIterator for Lines<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a str> { self.inner.next_back() }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> Iterator for LinesAny<'a> {
    type Item = &'a str;

    #[inline]
    fn next(&mut self) -> Option<&'a str> { self.inner.next() }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) { self.inner.size_hint() }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a> DoubleEndedIterator for LinesAny<'a> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a str> { self.inner.next_back() }
}