Representing Curves
Foley & Van Dam, Chapter 11

Representing Curves

* Motivations

» Techniques for Object Representation
* Curves Representation

* Free Form Representation

» Approximation and Interpolation

» Parametric Polynomials

» Parametric and Geometric Continuity
* Polynomial Splines

* Hermite Interpolation

3D Objects Representation

* Solid Modeling attempts to develop methods
and algorithms to model and represent real
objects by computers

Objects Representation

* Three types of objects in 3D:
* 1D curves
» 2D surfaces
+ 3D objects
+ We need to represent objects when:
* Modeling of existing objects (3D scan)
- modeling is not precise
* Modeling a new object “from scratch” (CAD)
- modeling is precise
- interactive sculpting capabilities

General Techniques

* Primitive Based:
A composition of “simple” components
* Not precise
« Efficient and simple

* Free Form:
Global representation, curved manifolds
* Precise
» Complicated
* Statistical:
Modeling of objects generated by statistical
phenomena, such as fog, trees, rocks

Curves Representation




Primitive Based Representation

* Line segments: A curve is approximated by
a collection of connected line segments
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Free Form Representations
» Explicit form: z = f(x, y)

« f(x,y) must be a function
* Not a rotation invariant representation
« Difficult to represent vertical tangents

* Implicit form: f(x,y,z) =0
« Difficult to connect two curves in a smooth manner
* Not efficient for drawing
« Useful for testing object inside/outside

* Parametric: x(t), y(t), z(t)
* A mapping from [0,1] - R3
* Very common in modeling

Free Form Representations

Example: A Circle of radius R

* Implicit:

x2+y2+72-R?=0 & z=0
 Parametric: £
x(0) = R cos(0)
y(0) = R sin(0)
z(0)=0

Approximated vs. Interpolated Curves

* Given a set of control points P; known to be
on the curve, find a parametric curve that
interpolates/approximates the points
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Parametric Polynomials

* For interpolating n points we need a polynomial of

degree n-1
x(u)=a,+b.u+c.u’+ -
y(u)=a,+ b ,u+ c,u’+
z(u)=a,+ b,u+ c.u’+ -
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* Example: Linear polynomial. For interpolating 2
points we need a polynomial of degree 1

x (u ) = a . + b _u

y (u ) = a , + b ,u P4
z (u ) = a , + b ,u po/

Example: Linear Polynomial

* The geometrical constraints for x(u) are:
x(0)=a, =P, 5 x(1)=a,+ b, = P°

* Solving the coefficients for x(u) we get:

a, =P ;5 b, =P - P
= x(u)= P, + (P - PJ) u
* Solving for [x(u) y(u) z(u)] we get:
x (u )
Vo (u ) = y (u ) = P, + (P, -— P,) u
z (u )
u=1

u=0
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Example: Linear Polynomial

u=0 b, u=1
x (u)
Po Vi,(u) = y(u) = P, + (P, — P,) u
z(u)
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where Vi (u): V’ (H) lf ue [u/’u/H]
0 otherwise

Parametric Polynomials

* Polynomial interpolation has several
disadvantages:
* Polynomial coefficients are geometrically
meaningless
* Polynomials of high degree introduce unwanted
wiggles
*» Polynomials of low degree give little flexibility

« Solution: Polynomial Splines

Polynomial Splines

* Piecewise, low degree, polynomial curves, with
continuous joints

x(u) _
Cuy=|y@)|=2 C.(u)
z(u) ! -
where é,(u):{cf(u) i ue[u',.,upl]
0 otherwise
» Advantages:
* Rich representation
» Geometrically meaning coefficients
* Local effects
. Interactivepsculpting capabilities
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Tangent Vector

* Let V(u)=[x(u), y(u), z(u)], u—[0,1] be a continuous
univariate parametric curve in R3
» The tangent vector at ug, T(u,), is:

dV (u) _[dididi}

T(ug) = V'(ug) = du " | du du du

u=uyg

* V(u) may be thought of as the trajectory of a point
in time

* In this case, T(u,) is the instantaneous velocity
vector at time u,
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Parametric Continuity

* Let V,(u) and V,(u) , u—[0,1], be two parametric
curves
Level of parametric continuity of the curves at the
joint between V(1) and V,(0):

« C': The joint is discontinuous, V1(1)#V2(0)

+ CO: Positional continuos, V,(1)=V,(0)

+ C': Tangent continuos, C° & V’,(1)=V’,(0)

« Ck, k>0: Continuous up to the k-th derivative,

V,0 (1)=V,0 (0), 0<j<k

C-1 CO C1

V5(0)

Geometric Continuity

* In computer aided geometry design, we also consider the
notion of geometric continuity:

* G, G% Same as C" and C°

+ G': Same tangent direction: V',(1)=aV’,(0)

» Gk: All derivatives up to the k-th order are proportional

* Given a set of points {pi}:
* A piecewise constant interpolant is C-
* A piecewise linear interpolant is C°




Parametric and Geometric Continuity
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Parametric Cubic Curves

« Cubic polynomials defining a curve in R3® have the
form:

x(u)=a,u’ +b.u’" +c,u+d,
3 >
y(u)=a,u’ +b,u” +c,u+d,

3 5
z(u) =a.u’+b.u’ + c.u+ d.

Where u is in [0,1]. Defining:

UT(u):[u3 u? u 1] and 0 =
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The curve can be rewritten as:

[x() y@) z@)]=V"@)=U"(u)Q

Parametric Cubic Curves

* The coefficients Q are unknown and should
be determined

* For this purpose we have to supply 4
geometrical constraints

« Different types of constraints define different
types of Splines

Hermite Curves

* Assume we have n control points {p,} with
their tangents {T,}
* W.L.O.G. V(u) represents a parametric cubic
function for the section between p, and p, .4
* For V(u) we have the following geometric
constraints:

V(0)=p;  V(1)=Pys1

V(0)=T V(1)=T,

pk Tk
V(1)
V(O/) V(u) [
Pyt T

Hermite Curves
Since
V7 (u) = .:u } u?’ u 1 :| (0]
we have that
V" (u)y=[3u> 2u 1 0] 0
We can write the constraints in a matrix form:

0 0 0 1
R B
“lo 0o 1 o0
302 1 0

G M
Andthus 7V "(u)=U "(u)Q0 =U "(u)M ~'G

Pk

G = MQ - Pk 0

2 -2 1 1

-3 3 -2 1
Where N A . .
1 0 0 0

Hermite Curves

2 -2 1 1 P,
-3 3 -2 =1
R U A V| R pT“‘
k
1 0 0 0 T, .,
Blending Geometry
functions matrix
T
2u - 3u? +1 P
—2u3 +3u? Pk+1
V (u) = -
() ud - 2u?+u T,
u’ - u’ Ty
H o(u) Pk
_ H (u) Dk
H ,(u) Ty
H 5(u) Ty




Hermite Curves
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Hermite Blending Functions

Hermite Curves
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Hermite Curves
Properties:

» The Hermite curve is composed of a linear combinations of
tangents and locations (for each u)

« Alternatively, the curve is a linear combination of Hermite
basis functions (the matrix M)

* It can be used to create geometrically intuitive curves
* The piecewise interpolation scheme is C' continuous
* The blending functions have local support; changing a

control point or a tangent vector, changes its local
neighborhood while leaving the rest unchanged

Hermite Curves

» Main Drawback:

Requires the specification of the tangents
This information is not always available




