
Representing Curves
Foley & Van Dam, Chapter 11

Representing Curves

• Motivations

• Techniques for Object Representation

• Curves Representation

• Free Form Representation

• Approximation and Interpolation

• Parametric Polynomials

• Parametric and Geometric Continuity 

• Polynomial Splines

• Hermite Interpolation

3D Objects Representation

• Solid Modeling attempts to develop methods 

and algorithms to model and represent real 

objects by computers

Objects Representation

• Three types of objects in 3D:

• 1D curves

• 2D surfaces

• 3D objects

• We need to represent objects when:

• Modeling of existing objects (3D scan)

- modeling is not precise

• Modeling a new object “from scratch” (CAD)

- modeling is precise

- interactive sculpting capabilities

General Techniques

• Primitive Based:

A composition of “simple” components
• Not precise

• Efficient and simple

• Free Form:

Global representation, curved manifolds

• Precise

• Complicated

• Statistical:

Modeling of  objects generated by statistical

phenomena, such as fog, trees, rocks

Curves Representation
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Primitive Based Representation

• Line segments: A curve is approximated by 

a collection of connected line segments

Free Form Representations

• Explicit form: z = f(x, y)
• f(x,y) must be a function

• Not a rotation invariant representation

• Difficult to represent vertical tangents

• Implicit form: f(x, y, z) = 0
• Difficult to connect two curves in a smooth manner

• Not efficient for drawing

• Useful for testing object inside/outside

• Parametric: x(t), y(t), z(t)
• A mapping from [0,1] R3

• Very common in modeling

Free Form Representations

Example: A Circle of radius R

• Implicit:  

x2 + y2 + z2 - R2 = 0  &  z = 0

• Parametric: 

x( ) = R cos( )

y( ) = R sin( )

z( ) = 0

x
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z

Approximated vs. Interpolated Curves

• Given a set of control points Pi known to be 

on the curve, find a parametric curve that 

interpolates/approximates the points
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Interpolating Curve

Approximating Curve

Parametric Polynomials

• For interpolating n points we need a polynomial of 

degree n-1 

• Example: Linear polynomial. For interpolating 2 

points we need a polynomial of degree 1
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Example: Linear Polynomial
• The geometrical constraints for x(u) are:

• Solving the coefficients for x(u) we get:

• Solving for [x(u) y(u) z(u)] we get:
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Example: Linear Polynomial
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Parametric Polynomials

• Polynomial interpolation has several 

disadvantages:

• Polynomial coefficients are geometrically 

meaningless

• Polynomials of high degree introduce unwanted 

wiggles

• Polynomials of low degree give little flexibility

• Solution: Polynomial Splines
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Polynomial Splines
• Piecewise, low degree, polynomial curves, with 

continuous  joints

• Advantages:

• Rich representation

• Geometrically meaning coefficients

• Local effects

• Interactive sculpting capabilities
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Tangent Vector
• Let V(u)=[x(u), y(u), z(u)],   u [0,1] be a continuous 

univariate parametric curve in R3

• The tangent vector at u0, T(u0), is:

• V(u)  may be thought of as the trajectory of a point 

in time

• In this case, T(u0) is the instantaneous velocity 

vector at time u0
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Parametric Continuity

• Let V1(u) and V2(u) , u [0,1], be two parametric 

curves

•Level of parametric continuity of the curves at the 

joint between V1(1) and V2(0):
• C-1: The joint is discontinuous, V1(1) V2(0)

• C0: Positional continuos, V1(1)=V2(0)

• C1: Tangent continuos, C0 & V’1(1)=V’2(0)

• Ck, k>0: Continuous up to the k-th derivative, 

V1
(j) (1)=V2

(j) (0),   0 j k
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V1(1)
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Geometric Continuity

• In computer aided geometry design, we also consider the 

notion of geometric continuity:

• G-1, G0: Same as C-1 and C0

• G1: Same tangent direction: V’1(1)= V’2(0)

• Gk: All derivatives up to the k-th order are proportional

• Given a set of points {pi}:

• A piecewise constant interpolant is C-1

• A piecewise linear interpolant is C0



Parametric and Geometric Continuity

• Q1-Q2 both C1 and G1

• Q1-Q3 is G1 but not C1

• S-C0 is C0

• S-C1 is C1

• S-C2 is C2

• In general, Ci implies Gi

(not vice versa)

• Exception when the tangents 

are zero

Parametric Cubic Curves

• Cubic polynomials defining a curve in R3 have the 

form:

Where u is in [0,1]. Defining: 

The curve can be rewritten as:
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Parametric Cubic Curves

• The coefficients Q are unknown and should 

be determined

• For this purpose we have to supply 4 

geometrical constraints

• Different types of constraints define different 

types of Splines

Hermite Curves

• Assume we have n control points {pk} with 

their tangents {Tk}

• W.L.O.G. V(u) represents a parametric cubic 

function for the section between pk and pk+1

• For V(u) we have the following geometric 

constraints:

V(0)=pk;     V(1)=pk+1

V'(0)=Tk;    V'(1)=Tk+1
pk

Pk+1

V(u)
V(0)

V(1)
Tk

Tk+1

Hermite Curves
Since

we have that

We can write the constraints in a matrix form:

And thus
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Hermite Curves
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Hermite Blending Functions

Hermite Curves

Change in Magnitude of T0

Change in Direction of T0
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y(u)

Hermite Curves
Properties:

• The Hermite curve is composed of a linear combinations of 

tangents and locations (for each u)

• Alternatively, the curve is a linear combination of Hermite

basis functions (the matrix M)

• It can be used to create geometrically intuitive curves

• The piecewise interpolation scheme is C1 continuous

• The blending functions have local support; changing a 

control point or a tangent vector, changes its local 

neighborhood while leaving the rest unchanged

Hermite Curves

• Main Drawback:

Requires the specification of the tangents 

This information is not always available


