Representing Curves

Foley & Van Dam, Chapter 11

Representing Curves

- Motivations
- Techniques for Object Representation
- Curves Representation
- Free Form Representation
- Approximation and Interpolation
- Parametric Polynomials
- Parametric and Geometric Continuity
- Polynomial Splines
 - Hermite Interpolation

3D Objects Representation

 Solid Modeling attempts to develop methods and algorithms to model and represent real objects by computers

Objects Representation

- Three types of objects in 3D:
 - 1D curves
 - 2D surfaces
 - · 3D objects
- We need to represent objects when:
- Modeling of existing objects (3D scan)
 - modeling is not precise
- Modeling a new object "from scratch" (CAD)
 - modeling is precise
 - interactive sculpting capabilities

General Techniques

Primitive Based:

A composition of "simple" components

- Not precise
- Efficient and simple
- Free Form:

Global representation, curved manifolds

- Precise
- Complicated
- Statistical:

Modeling of objects generated by statistical phenomena, such as fog, trees, rocks

Curves Representation

Primitive Based Representation

• Line segments: A curve is approximated by a collection of connected line segments

Free Form Representations

- Explicit form: z = f(x, y)
 - f(x,y) must be a function
 - Not a rotation invariant representation
 - · Difficult to represent vertical tangents
- Implicit form: f(x, y, z) = 0
 - Difficult to connect two curves in a smooth manner
 - · Not efficient for drawing
 - Useful for testing object inside/outside
- Parametric: x(t), y(t), z(t)
 - A mapping from $[0,1] \rightarrow \mathbb{R}^3$
 - · Very common in modeling

Free Form Representations

Example: A Circle of radius R

• Implicit:

$$x^2 + y^2 + z^2 - R^2 = 0 & z = 0$$

Parametric:

$$x(\theta) = R \cos(\theta)$$

$$y(\theta) = R \sin(\theta)$$

$$z(\theta) = 0$$

Approximated vs. Interpolated Curves

• Given a set of *control points* P_i known to be on the curve, find a parametric curve that interpolates/approximates the points

Parametric Polynomials

• For interpolating n points we need a polynomial of degree n-1

$$x(u) = a_{x} + b_{x}u + c_{x}u^{2} + \cdots$$

$$y(u) = a_{y} + b_{y}u + c_{y}u^{2} + \cdots$$

$$z(u) = a_{z} + b_{z}u + c_{z}u^{2} + \cdots$$

$$p_{1}$$

$$p_{2}$$

• Example: Linear polynomial. For interpolating 2 points we need a polynomial of degree 1

Example: Linear Polynomial

• The geometrical constraints for x(u) are:

$$x(0) = a_x = P_0^x$$
; $x(1) = a_x + b_x = P_1^x$

• Solving the coefficients for x(u) we get:

$$a_x = P_0^x$$
; $b_x = P_1^x - P_0^x$
 $\Rightarrow x(u) = P_0^x + (P_1^x - P_0^x)$ u

• Solving for [x(u) y(u) z(u)] we get:

$$V \quad (u \quad) = \begin{bmatrix} x & (u \quad) \\ y & (u \quad) \\ z & (u \quad) \end{bmatrix} = P_0 + (P_1 - P_0) \quad u$$

$$u=0$$

$$p_0$$

$$p_1$$

Example: Linear Polynomial

Parametric Polynomials

- Polynomial interpolation has several disadvantages:
 - Polynomial coefficients are geometrically meaningless
 - Polynomials of high degree introduce unwanted wiaales
 - Polynomials of low degree give little flexibility
- Solution: Polynomial Splines

Polynomial Splines

 Piecewise, low degree, polynomial curves, with continuous joints

$$C(u) = \begin{pmatrix} x(u) \\ y(u) \\ z(u) \end{pmatrix} = \sum_{i} \hat{C}_{i}(u)$$

$$where \qquad \hat{C}_{i}(u) = \begin{cases} C_{i}(u) & if \quad u \in [u_{i}, u_{i+1}] \\ 0 & otherwise \end{cases}$$
Advantages:

- · Advantages:
 - Rich representation
 - Geometrically meaning coefficients
 - Local effects

Tangent Vector

- Let $V(u)=[x(u), y(u), z(u)], u \rightarrow [0,1]$ be a continuous univariate parametric curve in R3
- The tangent vector at u₀, T(u₀), is:

$$\vec{T}\left(u_{\,0}\,\right) = \left.V^{\,\prime}\!\left(u_{\,0}\,\right) = \left.\frac{dV^{\,}\left(u^{\,}\right)}{du}\right|_{u=u_{\,0}} = \left[\left.\frac{dx}{du} \cdot \frac{dy}{du} \cdot \frac{dz}{du}\right]_{u=u_{\,0}}\right]$$

- V(u) may be thought of as the trajectory of a point in time
- In this case, T(u₀) is the instantaneous velocity vector at time u₀

Parametric Continuity

- Let $V_1(u)$ and $V_2(u)$, $u\rightarrow [0,1]$, be two parametric curves
- ·Level of parametric continuity of the curves at the joint between $V_1(1)$ and $V_2(0)$:
 - C⁻¹: The joint is discontinuous, V1(1)≠V2(0)
 - C⁰: Positional continuos, V₁(1)=V₂(0)
 - C¹: Tangent continuos, C⁰ & V'₁(1)=V'₂(0)
 - Ck, k>0: Continuous up to the k-th derivative, $V_1^{(j)}(1)=V_2^{(j)}(0), \quad 0 \le j \le k$

Geometric Continuity

- In computer aided geometry design, we also consider the notion of *geometric continuity*:
 - G-1, G0: Same as C-1 and C0
 - G¹: Same tangent direction: V¹₁(1)=αV¹₂(0)
 - Gk: All derivatives up to the k-th order are proportional
- Given a set of points {pi}:
 - A piecewise constant interpolant is C-1
 - A piecewise linear interpolant is C⁰

Parametric and Geometric Continuity

- S-C₀ is C⁰
- S-C₁ is C¹ • S-C₂ is C²
- In general, Cⁱ implies Gⁱ (not vice versa)
- Exception when the tangents are zero

- Q₁-Q₂ both C¹ and G¹
- Q₁-Q₃ is G¹ but not C¹

Parametric Cubic Curves

• Cubic polynomials defining a curve in R³ have the form:

$$x(u) = a_x u^3 + b_x u^2 + c_x u + d_x$$

$$y(u) = a_y u^3 + b_y u^2 + c_y u + d_y$$

$$z(u) = a_x u^3 + b_x u^2 + c_x u + d_x$$

Where u is in [0,1]. Defining:

$$U^{T}(u) = \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix} \text{ and } Q = \begin{bmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \\ d_{x} & d_{y} & d_{z} \end{bmatrix}$$

The curve can be rewritten as:

$$\begin{bmatrix} x(u) & y(u) & z(u) \end{bmatrix} = V^{T}(u) = U^{T}(u) Q$$

Parametric Cubic Curves

- The coefficients Q are unknown and should be determined
- For this purpose we have to supply 4 geometrical constraints
- Different types of constraints define different types of Splines

Hermite Curves

- Assume we have n control points {p_k} with their tangents {T_k}
- W.L.O.G. V(u) represents a parametric cubic function for the section between p_k and p_{k+1}
- For V(u) we have the following geometric constraints:

$$V(0)=p_k;$$
 $V(1)=p_{k+1}$
 $V'(0)=T_k;$ $V'(1)=T_{k+1}$
 $V(0)$ $V(u)$ $V(1)$

Hermite Curves

Since

$$V^{T}(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} Q$$

we have that

$$(V')^T(u) = [3u^2 2u 1 0] Q$$

We can write the constraints in a matrix form:

$$G = MQ \Rightarrow \begin{bmatrix} P_k \\ P_{k+1} \\ T_k \\ T_{k+1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} Q$$

And thus $V^{T}(u) = U^{T}(u)Q = U^{T}(u)M^{-1}G$

Where
$$M^{-1} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Hermite Curves

$$V(u) = \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_{k} \\ p_{k+1} \\ T_{k} \\ T_{k+1} \end{bmatrix}$$
Blending functions
$$V(u) = \begin{bmatrix} 2u^{3} - 3u^{2} + 1 \\ -2u^{3} + 3u^{2} \\ u^{3} - 2u^{2} + u \\ u^{3} - u^{2} \end{bmatrix}^{T} \begin{bmatrix} p_{k} \\ p_{k+1} \\ T_{k} \end{bmatrix} = \begin{bmatrix} H_{0}(u) \\ H_{1}(u) \\ H_{2}(u) \end{bmatrix}^{T} \begin{bmatrix} p_{k} \\ p_{k+1} \\ T_{k+1} \end{bmatrix}$$

Hermite Curves

Hermite Blending Functions

Hermite Curves

Hermite Curves

Properties:

- The Hermite curve is composed of a linear combinations of tangents and locations (for each u)
- Alternatively, the curve is a linear combination of Hermite basis functions (the matrix M)
- It can be used to create geometrically intuitive curves
- The piecewise interpolation scheme is C¹ continuous
- The blending functions have local support; changing a control point or a tangent vector, changes its local neighborhood while leaving the rest unchanged

Hermite Curves

Main Drawback:

Requires the specification of the tangents This information is not always available