Representing Curves

Foley \& Van Dam, Chapter 11

Representing Curves

- Motivations
- Techniques for Object Representation
- Curves Representation
- Free Form Representation
- Approximation and Interpolation
- Parametric Polynomials
- Parametric and Geometric Continuity
- Polynomial Splines
- Hermite Interpolation

3D Objects Representation

- Solid Modeling attempts to develop methods and algorithms to model and represent real objects by computers

General Techniques

- Primitive Based:

A composition of "simple" components

- Not precise
- Efficient and simple
- Free Form:

Global representation, curved manifolds

- Precise
- Complicated
- Statistical:

Modeling of objects generated by statistical phenomena, such as fog, trees, rocks

Objects Representation

- Three types of objects in 3D:
- 1D curves
- 2D surfaces
- 3D objects
- We need to represent objects when:
- Modeling of existing objects (3D scan) - modeling is not precise
- Modeling a new object "from scratch" (CAD) - modeling is precise
- interactive sculpting capabilities

Curves Representation

Primitive Based Representation

- Line segments: A curve is approximated by a collection of connected line segments

Free Form Representations

- Explicit form: $z=f(x, y)$
- $f(x, y)$ must be a function
- Not a rotation invariant representation
- Difficult to represent vertical tangents
- Implicit form: $f(x, y, z)=0$
- Difficult to connect two curves in a smooth manner
- Not efficient for drawing
- Useful for testing object inside/outside
- Parametric: $x(t), y(t), z(t)$
- A mapping from $[0,1] \rightarrow \mathrm{R}^{3}$
- Very common in modeling

Free Form Representations

Example: A Circle of radius R

- Implicit:

$$
x^{2}+y^{2}+z^{2}-R^{2}=0 \& z=0
$$

- Parametric:

$$
\begin{aligned}
& x(\theta)=R \cos (\theta) \\
& y(\theta)=R \sin (\theta) \\
& z(\theta)=0
\end{aligned}
$$

Parametric Polynomials

- For interpolating n points we need a polynomial of degree n -1

- Example: Linear polynomial. For interpolating 2 points we need a polynomial of degree 1

Approximated vs. Interpolated Curves

- Given a set of control points P_{i} known to be on the curve, find a parametric curve that interpolates/approximates the points

Example: Linear Polynomial

- The geometrical constraints for $\mathrm{x}(\mathrm{u})$ are:
$x(0)=a_{x}=P_{0}{ }^{x} ; x(1)=a_{x}+b_{x}=P_{1}{ }^{x}$
- Solving the coefficients for $\mathrm{x}(\mathrm{u})$ we get:

$$
\begin{aligned}
& a_{x}=P_{0}{ }^{x} ; b_{x}=P_{1}{ }^{x}-P_{0}{ }^{x} \\
\Rightarrow \quad & x(u)=P_{0}{ }^{x}+\left(P_{1}{ }^{x}-P_{0}{ }^{x}\right) u
\end{aligned}
$$

- Solving for $[\mathrm{x}(\mathrm{u}) \mathrm{y}(\mathrm{u}) \mathrm{z}(\mathrm{u})]$ we get:

Example: Linear Polynomial

$V(u)=\left(\begin{array}{c}x(u) \\ y(u) \\ z(u)\end{array}\right)=\sum_{i} \hat{V}_{i}(u)$
where $\quad \hat{V}_{i}(u)=\left\{\begin{array}{cc}V_{i}(u) & \text { if } u \in\left[u_{i}, u_{i+1}\right] \\ 0 & \text { otherwise }\end{array}\right.$

Parametric Polynomials

- Polynomial interpolation has several disadvantages:
- Polynomial coefficients are geometrically meaningless
- Polynomials of high degree introduce unwanted wiggles
- Polynomials of low degree give little flexibility
-Solution: Polynomial Splines

Polynomial Splines

- Piecewise, low degree, polynomial curves, with continuous joints
$C(u)=\left(\begin{array}{c}x(u) \\ y(u) \\ z(u)\end{array}\right)=\sum_{i} \hat{C}_{i}(u)$
where $\quad \hat{C}_{i}(u)=\left\{\begin{array}{cc}C_{i}(u) & \text { if } u \in\left[u_{i}, u_{i+1}\right] \\ 0 & \text { otherwise }\end{array}\right.$
- Advantages:
- Rich representation
- Geometrically meaning coefficients
- Local effects
- Interactive sculpting capabilities

Tangent Vector

- Let $\mathrm{V}(\mathrm{u})=[\mathrm{x}(\mathrm{u}), \mathrm{y}(\mathrm{u}), \mathrm{z}(\mathrm{u})], \quad \mathrm{u} \rightarrow[0,1]$ be a continuous univariate parametric curve in R^{3}
- The tangent vector at $u_{0}, T\left(u_{0}\right)$, is:
$\vec{T}\left(u_{0}\right)=V^{\prime}\left(u_{0}\right)=\left.\frac{d V(u)}{d u}\right|_{u=u_{0}}=\left[\frac{d x}{d u} \frac{d y}{d u} \frac{d z}{d u}\right]_{u=u_{0}}$
- $\mathrm{V}(\mathrm{u})$ may be thought of as the trajectory of a point in time
- In this case, $\mathrm{T}\left(\mathrm{u}_{0}\right)$ is the instantaneous velocity vector at time u_{0}

Parametric Continuity

- Let $\mathrm{V}_{1}(\mathrm{u})$ and $\mathrm{V}_{2}(\mathrm{u}), \mathrm{u} \rightarrow[0,1]$, be two parametric curves
-Level of parametric continuity of the curves at the joint between $\mathrm{V}_{1}(1)$ and $\mathrm{V}_{2}(0)$:
- C^{-1} : The joint is discontinuous, $\mathrm{V} 1(1) \neq \mathrm{V} 2(0)$
- C^{0} : Positional continuos, $\mathrm{V}_{1}(1)=\mathrm{V}_{2}(0)$
- C^{1} : Tangent continuos, $\mathrm{C}^{0} \& \mathrm{~V}_{1}(1)=\mathrm{V}^{\prime}(0)$
- $\mathrm{C}^{\mathrm{k}}, \mathrm{k}>0$: Continuous up to the k -th derivative, $V_{1}{ }^{(j)}(1)=V_{2}{ }^{(0)}(0), \quad 0 \leq j \leq k$

Geometric Continuity

- In computer aided geometry design, we also consider the notion of geometric continuity:
- $\mathrm{G}^{-1}, \mathrm{G}^{0}$: Same as C^{-1} and C^{0}
- G^{1} : Same tangent direction: $\mathrm{V}^{\prime}{ }_{1}(1)=\alpha \mathrm{V}^{\prime}(0)$
- G^{k} : All derivatives up to the k-th order are proportional
- Given a set of points \{pi\}:
- A piecewise constant interpolant is C^{-1}
- A piecewise linear interpolant is C^{0}

Parametric and Geometric Continuity

- $\mathrm{S}-\mathrm{C}_{0}$ is C^{0}
- $\mathrm{S}-\mathrm{C}_{1}$ is C^{1}
- $\mathrm{S}-\mathrm{C}_{2}$ is C^{2}
- In general, C^{i} implies G^{i} (not vice versa)
- Exception when the tangents are zero

- $Q_{1}-Q_{2}$ both C^{1} and G^{1}
- $Q_{1}-Q_{3}$ is G^{1} but not C^{1}

Parametric Cubic Curves

- Cubic polynomials defining a curve in R^{3} have the form:

```
x(u)= a \mp@subsup{x}{x}{}\mp@subsup{u}{}{3}+\mp@subsup{b}{x}{}\mp@subsup{u}{}{2}+\mp@subsup{c}{x}{}u+\mp@subsup{d}{x}{}
y(u)= a y }\mp@subsup{u}{}{3}+\mp@subsup{b}{y}{}\mp@subsup{u}{}{2}+\mp@subsup{c}{y}{}u+\mp@subsup{d}{y}{
z ( u ) = a _ { z } u ^ { 3 } + b _ { z } u ^ { 2 } + c _ { z } u + d _ { z }
```

Where u is in $[0,1]$. Defining:

$$
\begin{aligned}
& U^{T}(u)=\left[\begin{array}{llll}
u^{3} & u^{2} & u^{1} & 1
\end{array}\right] \text { and } \quad Q=\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z} \\
c_{x} & c_{y} & c_{z} \\
d_{x} & d_{y} & d_{z}
\end{array}\right] \\
& \text { he curve can be rewritten as: }
\end{aligned}
$$

$$
\left[\begin{array}{lll}
x(u) & y(u) & z(u)
\end{array}\right]=V^{T}(u)=U^{T}(u) Q
$$

Parametric Cubic Curves

- The coefficients Q are unknown and should be determined
- For this purpose we have to supply 4 geometrical constraints
- Different types of constraints define different types of Splines

Hermite Curves

- Assume we have n control points $\left\{p_{k}\right\}$ with their tangents $\left\{\mathrm{T}_{\mathrm{k}}\right\}$
- W.L.O.G. V(u) represents a parametric cubic function for the section between p_{k} and p_{k+1} - For $\mathrm{V}(\mathrm{u})$ we have the following geometric constraints:

$$
\begin{aligned}
& \mathrm{V}(0)=p_{k} ; \quad \mathrm{V}(1)=p_{k+1} \\
& \mathrm{~V}^{\prime}(0)=\mathrm{T}_{\mathrm{k}} ; \quad \mathrm{V}^{\prime}(1)=\mathrm{T}_{\mathrm{k}+1}
\end{aligned}
$$

Hermite Curves

Since
we have that

$$
\left(V^{\prime}\right)^{T}(u)=\left[\begin{array}{llll}
3 u^{2} & 2 u & 1 & 0
\end{array}\right] \quad Q
$$

We can write the constraints in a matrix form:

$$
G=M Q \quad \Rightarrow \underbrace{\left[\begin{array}{c}
p_{k} \\
p_{k+1} \\
T_{k} \\
T_{k+1}
\end{array}\right]}_{\mathbf{G}}=\underbrace{\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]}_{\mathbf{M}} Q
$$

And thus $\quad V^{T}(u)=U^{T}(u) Q=U^{T}(u) M^{-1} G$
Where
$M^{-1}=\left[\begin{array}{cccc}2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$

Hermite Curves

$$
=\left[\begin{array}{cc}
H_{0}(u) \\
H_{1}(u) \\
H_{2}(u) \\
H_{3}(u)
\end{array}\right]^{T}\left[\begin{array}{c}
p_{k} \\
p_{k+1} \\
T_{k} \\
T_{k+1}
\end{array}\right]
$$

Hermite Curves

Hermite Blending Functions

Hermite Curves

Hermite Curves

Properties:

- The Hermite curve is composed of a linear combinations of tangents and locations (for each u)
- Alternatively, the curve is a linear combination of Hermite basis functions (the matrix M)
- It can be used to create geometrically intuitive curves
- The piecewise interpolation scheme is C^{1} continuous
- The blending functions have local support; changing a control point or a tangent vector, changes its local neighborhood while leaving the rest unchanged

Hermite Curves

- Main Drawback:

Requires the specification of the tangents This information is not always available

