Alert: An Architecture for Transforming a Passive DBMS into an Active DBMS

Ulf Schreier, Hamid Pirasesh, Rakesh Agrawal, C. Mohan

IBM Almaden Research Center

Alert Idea

- Does not build an Active DMBS from scratch
- Extends a Passive DBMS into an Active DMBS
- Examples:
 - Active queries are written in SQL with minimal additions.
 - Indexing and Query optimization are used for event detection

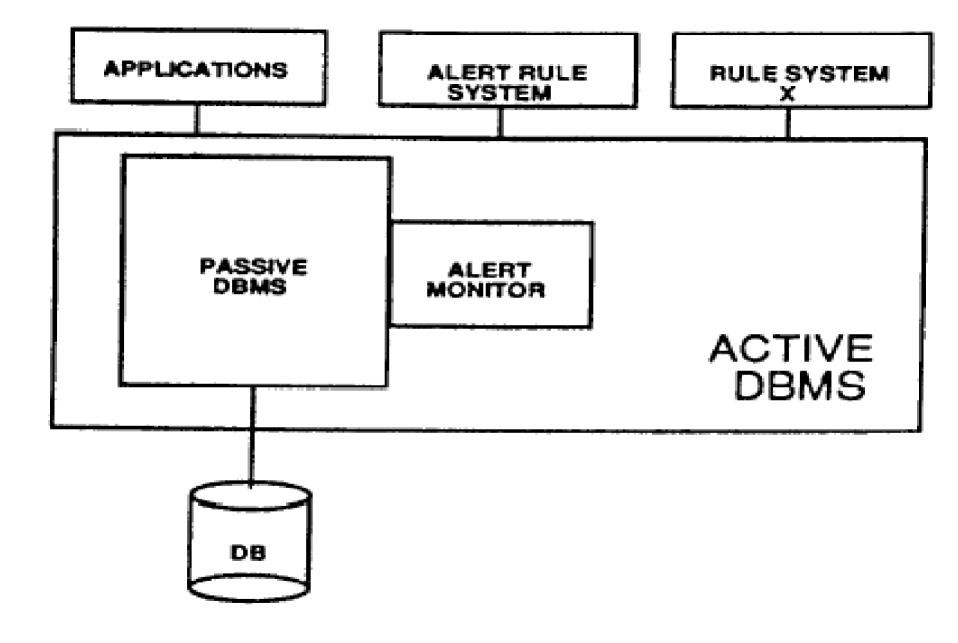


Figure 1: Architecture

Passive Tables / Cursors

- Cursor = bookmark for queries
- Query calls fetch which moves the cursor
- Loop until end of table
- No more results after table's end

Active Cursors / Tables

- Active table = append only table
- Queries call fetch-wait
- Fetch-wait goes to sleep at end of table
- Awoken on update
- New results

Sample Active Query

```
Declare C cursor for
 SELECT name, email FROM classlist
Open C;
while(TRUE)
{ fetch_wait C into:name,;email
;; send welcome to class email
```

Alert Rules

- Rule = named active query
- Conditions in FROM and WHERE clause.
- Ex: Create rule temp_watch as
 SELECT alarm('EVACUATE!')
 FROM temps
 WHERE location = 'Nuclear Reactor'
 AND temp > 500

Rule = SQL View

```
Create rule exam as
  SELECT email("registrar")
  FROM rooms
  WHERE actual capacity > max capacity/2;
Create rule fire-code-violation as
  SELECT phone ("Fire Department")
  FROM exam
  WHERE actual_capacity > max_capacity;
```

Rule Activation

- Rules can be activated with consideration for three categories:
 - Transaction coupling = Same / Separate
 - Time coupling = Synchronous / Asynchronous
 - Assertion mode = Immediate / Deeferred

Transaction Coupling

- Same Coupling
 - Triggered transaction is part of triggering transaction
 - Ex: An integrity check should run as part of an insertion to correct it if necessary.
- Separate Coupling
 - Triggered transaction runs separately from its triggering transaction
 - Ex: A stock order should run separately from a query over stock prices.

Time Coupling

- Synchronous
 - Triggered transaction runs and triggering transaction waits for it to complete before running
- Asynchronous
 - Triggered transaction runs in parallel

Assertion Mode

◆Immediate

■ The rule is triggered as soon as its condition is satisfied.

Deferred

- The rule is triggered only within certain parts of the triggering transactions.
- Ex: A certain professor wants to allow students to work together during tests.

Restrictions

- Same must be synchronous
- Separate must be asynchronous
- Deferred can only be used in the same coupling mode.
- Why all these options? It seems like there are 8 combinations, but really only 3!

Monitor System -- Locks

- Ex: Rule that monitors bank accounts for accounts below the minimum balance
 - Most transactions will not result in a transaction applying to this rule.
- Regular locking scheme requires rule to wait for locks for useless data.
- Only waits for locks when a tuple meets rule conditions.

Monitor System – Adding tuples

- When a tuple is added we would like to quickly know to which rule it is applied.
- Modified B+ tree that alerts corresponding rules when a tuple is added to corresponding index
- Tuples have increasing Ids and therefore each tuple will be added to the end of buckets.

What to take away

- Active DBMS can be created by simply extending normal DBMS features.
- DSMS must be able to perform better than this extended type of DBMS.