Query Processing

Jon Frankel, Noi Jencharat, Ened Ketri, Anurag Maskey, Andy See, Larissa Smelkov

3/25/03

Opening Game - Who am I?

- Professor at the University of Wisconsin – Madison
- Specializing in database performance issues (i.e. joins)
- **Bonus**: What stream system have I worked on?

Query Processing – Papers

- Stratis Viglas and Jeffrey F. Naughton. *Rate-based query optimization for streaming information sources*. SIGMOD Conference 2002

Query Processing – Today’s Agenda

- 1:40 Motivation & Setup Examples
- 2:20 Rate Based Query Paper
- 2:50 Break
- 3:00 Window Joins Paper
- 3:30 K-Constraints Paper
- 4:00 Discussion
127 Flashback

- Optimizer - cost based
- Select * from students where major = ‘cosi’ and birthday = ‘0325’

Stream Challenges

- Final Answer?
- Block Reads?
- Cardinality?

Stream Challenges

- Final Answer?
- Block Reads?
- Cardinality?

Rate Based Analysis

<table>
<thead>
<tr>
<th>Day</th>
<th>New</th>
<th>MFC</th>
<th>Left</th>
<th>JDF</th>
<th>Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>6–3</td>
<td>0</td>
<td>3–1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>9–4</td>
<td>0</td>
<td>3–1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>10–5</td>
<td>2</td>
<td>3–1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2–1</td>
<td>0</td>
<td>3–1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Rate Based Analysis
MFC – 10/day; JDF 3/day

<table>
<thead>
<tr>
<th>Day</th>
<th>New</th>
<th>MFC</th>
<th>Left</th>
<th>JDF</th>
<th>Left</th>
<th>JDF</th>
<th>Left</th>
<th>MFC</th>
<th>Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

127 Flashback – Joins

- Predicate Pushdown
- Select * from students as s, courses as c where s.major = 'cosi'
 and c.dept = 'cosi'
 and s.sid = c.sid

Cost Optimization - Speed??

Coming Up….
- Different ways to measure rates
- SPJ applicability
Stream Challenges II

- Blocking Query Operators
 - (option: pipelined join)
- Lost/Delayed/Unordered Data
- And yet, benefits are huge…

Stock Market – Econ 2A
Stock prices are based on?

Data is Out there!
(http://biz.yahoo.com/cc/)

Thu Mar 20 Times are U.S. Eastern
8:30 am CYCL Centennial Communications Earnings (Q3 2003)
8:30 am DV DeVry Inc. Acquires Ross University
8:30 am ENTG Entegris, Inc. Earnings (Q2 2003)
8:30 am PLUG Please Announcement
9:00 am HOLL Hollywood Media Corp. Fourth Quarter and Year-End 2002
9:00 am LEH Lehman Brothers Holdings First Quarter 2003 Earnings
10:00 am FNLY Finlay Enterprises, Inc. Earnings (Q4 2002)
10:00 am GIII G-III Apparel Group Earnings (Q4 2003)
10:00 am GLY NY Galen's Trading Company, Inc. Fourth Quarter 2002
10:00 am MDX Morgan Stanley Earnings (Q1 2003)
10:00 am TRMS TrimTabs, Inc. Earnings (Q4 2002)
10:30 am GPN Global Payments Inc. Earnings (Q3 2003)
11:00 am GDTH BioSex's Agreement/Drug Eluding Stent Update
11:00 am CRAI Charles River Associates Earnings (Q1 2003)
11:00 am CHKX Checkers Drive-In Restaurants Earnings (Q4 2002)
11:00 am CPWM Cost Plus Earnings (Q4 2002)
11:00 am JCREW J. Crew Group, Inc. Earnings (Q4 2003)
Query: Short-term Downward Momentum:
Find all NASDAQ stocks between $20 and $200 that have moved down more than 2% in the last 20 minutes and there has been significant buying pressure (70% or more of the volume has traded toward the ask price) in the last 2 minutes.

Or by:
Earnings, News, Industry

Aurora Example

<table>
<thead>
<tr>
<th>Soldiers (time, ID, pos)</th>
<th>Tanks (time, ID, pos)</th>
<th>Problem?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, S1, A</td>
<td>1, T1, C</td>
<td>A S1, S2</td>
</tr>
<tr>
<td>1, S2, A</td>
<td></td>
<td>T2, S3, C T1</td>
</tr>
<tr>
<td>2, S1, A</td>
<td>2, T1, C</td>
<td>A S1</td>
</tr>
<tr>
<td>1, S3, B</td>
<td>1, T2, B</td>
<td>B S3, C T1, T2, S3</td>
</tr>
<tr>
<td>2, S3, B</td>
<td>2, T2, C</td>
<td>A T1, S1</td>
</tr>
<tr>
<td>3, S1, A</td>
<td>3, T1, A</td>
<td>B S3, C T2, S3</td>
</tr>
<tr>
<td>3, S3, B</td>
<td>3, T2, C</td>
<td></td>
</tr>
<tr>
<td>2, S2, C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, S2, B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Join Challenges – Window Options

- Aurora Option (by individual tuple)
- Stream Option (slide)

Tuple vs Timestamp

Order!
Join Challenges – Window Options

- Aurora Option (by individual tuple)
- Stream Option (slide)

Tuple vs Timestamp

<table>
<thead>
<tr>
<th>A</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>D2</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>B2</td>
<td>C2</td>
</tr>
</tbody>
</table>

Order!

Join Challenges – Window Options

- Aurora Option (by individual tuple)
- Stream Option (slide)

Tuple vs Timestamp

<table>
<thead>
<tr>
<th>A</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>D1</td>
</tr>
<tr>
<td>F</td>
<td>D2</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>B2</td>
<td>C2</td>
</tr>
</tbody>
</table>

Order!

Accuracy – How to window?

Coming Up….
- Joining algorithms
- Lots of cool graphs
Motivations

- Traditional Optimizers requires cardinality of the input...
- In streams, cardinality is not known and inputs come at different rate...
- RATE-BASED optimization

What is Rate?

- Number of records per a unit of time.
- Output Rate = \frac{\# \text{ output transmitted}}{\text{time needed for transmission}}

Output Rate Estimation

- For Projections
- For Selections
- For Joins

Output Rate for Projections

- case 1: Mitch
 - Time to read papers is shorter than time between getting the papers
 - So the output rate = the input rate
Output Rate for Projections

- case 2: Jon
 Time to read papers is longer than time between getting the papers

So the output rate = 1/(time to do projection)

In general, time to do projection is low.
So

Output Rate = Input Rate

Output Rate for Selections

- Selectivity (f) = percentage of papers that will be selected

Output Rate for Selection

- case 1: Mitch
takes 1/2 hour to read 1 paper, with selectivity = 0.5

output rate = 1/2 paper/hour
So the output rate = f * the input rate
Output Rate for Selection

- case 2: John takes 1.5 hour to read 1 paper, with selectivity = 0.5

 output rate = 1/3 paper/hour (= 1/2 * 1/1.5)

 So the output rate = f * (1/time to select)

Output Rate for Selections

- In general, time to perform selection is less than interval between inputs.
- So

 Output Rate = Selectivity * Input Rate

 \[r_o \times f \times r_i \]

Output Rate for Joins

- What are the papers by same author Mitch and Jon gives the same grading to?
- \[r_M = \text{No. of papers Mitch reads per hour} \]
- \[r_J = \text{No. of papers Jon reads per hour} \]
- \[f = \text{Selectivity of join} \]
- \[C_M = \text{Time to handle reviews from Mitch} \]
- \[C_J = \text{Time to handle reviews from Jon} \]

Recall

- Output Rate =

 \[\frac{\text{# output transmitted}}{\text{time needed for transmission}} \]

 Total #’s of papers in output

 Total time to do the Join
Output Tuples

- time interval = t:
 We have:
 \(r_M^t \) paper reviews from Mitch
 \(r_J^t \) paper reviews from Jon

\(f^* r_M^t r_J^t \) tuples that can be in the output.

after 1 hour

Number of output tuples:
\(f^* r_M^t r_J^t \)

after 2 hours

Number of output tuples:
\(f^* r_M^t r_J^t + f^* r_M^t 2r_J^t + f^* 2r_M^t r_J^t - f^* r_M^t r_J^t \)

after 2 hours

Number of output tuples:
\(f^* r_M^t r_J^t + 3^* f^* r_M^t r_J^t \)
after 3 hours

Number of output tuples:
\[f \cdot r_M \cdot r_J + 3 \cdot f \cdot r_M \cdot r_J + f \cdot r_M \cdot 3r_J + f^3 r_M \cdot r_J - f^3 r_M \cdot r_J \]

Number of output tuples:
\[5 \cdot f \cdot r_M \cdot r_J \]

after time \(t \)

- There will be \((2t-1) f \cdot r_M \cdot r_J \) new tuples in the output.

- Total number of outputs at time \(t \):
 \[\int ((2t-1) f \cdot r_M \cdot r_J) \, dt = t^2 \cdot f \cdot r_M \cdot r_J - t^3 \cdot f \cdot r_M \cdot r_J = f \cdot r_M \cdot r_J \cdot t \cdot (t-1) \]

Time to Process Join

- at time \(t \)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Time</th>
<th>Processing Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitch</td>
<td>(r_M \cdot t)</td>
<td>(C_M)</td>
</tr>
<tr>
<td>Jon</td>
<td>(r_J \cdot t)</td>
<td>(C_J)</td>
</tr>
</tbody>
</table>

Total time = \(r_M \cdot t \cdot C_M + r_J \cdot t \cdot C_J \)

= \(t \cdot (r_M \cdot C_M + r_J \cdot C_J) \)
Output Rate for Joins

\[\text{Output Rate} = \frac{\text{# output transmitted}}{\text{time needed for transmission}} \]

\[= f^* r_M^* r_J^* t^* (t-1) \]

\[= \frac{f^* r_M^* r_J^* (t-1)}{t (r_M^* C_M^* r_J^* C_J)} \cdot (r_M^* C_M^* + r_J^* C_J) \]

\[\approx \frac{f^* r_M^* r_J^* t}{r_M^* C_M^* + r_J^* C_J} \]

Optimizing Queries

\[\text{# outputs} = \int_0^t r(t) dt \]

- Optimize for a specific time point
 - which plan will produce the most results by \(t_0 \)?
- Optimize for output production size
 - which plan is the first one to reach \(N \) results?

Local Rate Maximization

- first, maximize output rate here
- then, maximize rate for this join

Local Time Minimization

- first, minimize time to produce \(n \) tuples
- finally, minimize time to get the desired tuples in result
- top-down time minimization
Experiment I

the plans

A ✗ B ✗ C

(5K, 20ms) (A ✗ B) ✗ C

(10K, 2ms) (A ✗ C) ✗ B

(20K, 10ms)

A ✗ B ✗ C

B ✗ C (20K, 10ms)

A ✗ B (10K, 2ms)

A ✗ C (5K, 20ms)

Experiment I

performance until last tuple

A ✗ B ✗ C

(5K, 20ms) (10K, 2ms) (20K, 10ms)

(10K, 2ms)

(5K, 20ms)

(20K, 10ms)

Experiment I

performance for the first few thousand tuples

A ✗ B ✗ C

(5K, 20ms) (10K, 2ms) (20K, 10ms)

(10K, 2ms)

(5K, 20ms)

(20K, 10ms)

Complex Plans

(1) Left Deep

(2) Fast Leaves

(3) Evenly Spread
Experiment Result

<table>
<thead>
<tr>
<th></th>
<th>Left Deep</th>
<th>Fast Leaves</th>
<th>Evenly Spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output size (tuples)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100,000</td>
<td>200,000</td>
<td>300,000</td>
<td>400,000</td>
</tr>
<tr>
<td>200,000</td>
<td>300,000</td>
<td>400,000</td>
<td>500,000</td>
</tr>
<tr>
<td>300,000</td>
<td>400,000</td>
<td>500,000</td>
<td>600,000</td>
</tr>
</tbody>
</table>

Time (s)

Comparison to Traditional Model

<table>
<thead>
<tr>
<th>Plan</th>
<th>Traditional Est.</th>
<th>Rate-Based Est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Deep</td>
<td>10^4</td>
<td>1.3×10^3</td>
</tr>
<tr>
<td>Fast Leaves</td>
<td>2×10^3</td>
<td>9.7×10^2</td>
</tr>
<tr>
<td>Evenly Spread</td>
<td>5×10^3</td>
<td>8.8×10^2</td>
</tr>
</tbody>
</table>

Evaluating Window Joins over Unbounded Streams

- Jaewoo Kang
- Jeffrey F. Naughton
- Stratis D. Viglas

University of Wisconsin-Madison
Computer Sciences Department

Moving Window Join

$T_a \
\lambda_a \
A \
(\lambda_a T_a) \
\
B \
(\lambda_b T_b) \
\
T_b \
\lambda_b \
\lambda_b \
\
T_b$ - stream B window size
λ_b - stream B arrival rate
Types of Join

- Nested loops join
- Hash join

Nested Loops Join

Hash Join
Open Questions

- How to measure the efficiency of a moving window join?
- Can the join of streams with different rates be more efficient?
- How to deal with fast input streams when system cannot manage them?
- How to share limited memory between the two windows for the two inputs?

Idea!

- Streaming join algorithms can be asymmetric
 - Hash – Nested Loops join
 - Nested Loops – Hash join
 - ... or symmetric
 - Nested Loops – Nested Loops join
 - Hash – Hash join

Cost of Moving Window Joins

(\text{unit time basis model})

\begin{align*}
C_{AB|B} &= \lambda_a\left(\text{probe}(b) + \text{insert}(a) + \text{invalidate}(a)\right) \\
&\quad + \lambda_b\left(\text{probe}(a) + \text{insert}(b) + \text{invalidate}(b)\right) \\
\end{align*}

\begin{align*}
C_{AB|\emptyset} &= \lambda_a\left(\text{probe}(b)\right) + \lambda_b\left(\text{insert}(b) + \text{invalidate}(b)\right) \\
&\quad + \lambda_b\left(\text{probe}(a)\right) + \lambda_a\left(\text{insert}(a) + \text{invalidate}(a)\right)
\end{align*}

Cost of Join

- Nested loops join

\begin{align*}
C_{AB|B}(NLJ) &= \left(\lambda_aT_b\lambda_b + 2\lambda_b\right)\times C_n \\
&\quad + \left(\lambda_bT_a\lambda_a + 2\lambda_a\right)\times C_n
\end{align*}

- Hash join

\begin{align*}
C_{AB|\emptyset}(HJ) &= \left(\lambda_aT_b\lambda_b\sigma_b + \lambda_bT_b\lambda_b\sigma_b + \lambda_b\right)\times C_h \\
&\quad + \left(\lambda_bT_a\lambda_a\sigma_a + \lambda_aT_a\lambda_a\sigma_a + \lambda_a\right)\times C_h
\end{align*}
Comparison of Joins

\[T_A = 60, \lambda_A = 10, T_B = 60, \sigma_A = 0.1, \sigma_B = 0.1, C_A = 0.5, C_B = 0.65 \]

Full Joins

\[T_A = 60, \lambda_A = 10, T_B = 60, \sigma_A = 0.1, \sigma_B = 0.1, C_A = 0.5, C_B = 0.65 \]

Full Joins: different selectivity

\[\sigma_A = 0.05, \sigma_B = 0.05 \]

1-way Join: System/Model cost
Overhead Costs

- C_h/C_n
 - Ratio of overhead cost of Hash Join to Nested Loop join
 - Model: ratio = 1.3
- $|B|$
 - Number of hash buckets in window B, assumed same as number of unique keys in window B
 - Variable that can be changed in the model

Crossover Points

Output rates

CPU time
Insufficient Resources for handling the Stream Input Rates

- Problem
 - Very Expensive Predicates
 - Input rate > Join operator service rate

- Solution
 - Drop tuples from input

Resource Allocation Strategies

- Problem: Very Expensive Predicates
- Solution: Drop tuples from input

Limited Memory

- Variable Time Window
- Allocate Memory depending on Stream Rate

Memory Allocation Strategies

- Problem: Limited Memory
- Solution: Allocate Memory depending on Stream Rate

Figure 9. Performance of memory allocation strategies w/ fixed arrival rates ($\lambda_a=10$, $\lambda_b=50$, $M=1000$, $\sigma_a=0.005$, $\sigma_b=0.01$)
Memory Allocation Strategies

- Give all memory (biggest window size) to slowest input stream
 - Fast stream probes slow stream, skips insertion/invalidation
 - Full Join reduces to One Way Join on the direction of slow → fast
 - Choose Join Algorithm after memory allocation

Memory Allocation Implications

Conclusions

- A Full Join can be seen as two separate independent Single Joins
 - Exploit asymmetrical stream input rates
 - NLJ/HJ algorithms Combination
 - HNJ/NHJ best candidate
 - Resource allocation
 - Devote most resources to slowest stream

K-Constraints

Exploiting k-Constraints to Reduce Memory Overhead in Continuous Queries over Data Streams
Shivnath Babu and Jennifer Widom, Stanford University
Introduction

- Already saw:
 - Use Rate information to optimize.
- Now we’ll see
 - Use properties of streamed data.
 - In order to reduce memory usage.

Outline

- Constraints for streams
- K-constraints
- Synopsis
- Algorithm using k-constraints

Constraints

- Properties that data streams satisfy.
- Examples:
 - Many-one join constraints between two streams.
 - Referential-integrity constraints for streams
 - Between two streams in many-one join
 - “One” side arrives before “Many” side
 - Clustered-arrival constraints on an attribute
 - Duplicate values arrive together
 - Ordered-arrival constraints on an attribute
 - Values are clustered and ordered.

Constraints (visual)

- Referential Integrity
- Clustered Arrival
- Ordered Arrival
Constraints?

- How practical are these constraints for streams?
- Tuples may come out of order.
 - Clustered? Ordered?
- Data rate may vary.
 - Referential Integrity?

K Constraints

- Idea: allow some disorder.
- K-Constraints are:
 - Constraints that are almost met.
 - K is the adherence parameter
 - Lower K means streams come closer to the constraint.
 - Like “slack” in Aurora
 - Set amount of disorder can be tolerated by system.
 - Examples:

Referential Integrity

- Many-one join from S1 to S2.
- S2 tuple will arrive before joining S1 tuple, or within K tuples on S2.

Clumped arrival

- On attribute S.A:
- At most k tuples with different S.A values arrive between tuples with the same value for S.A.

Ordered arrival

- On stream attribute S.A:
- Tuples that arrive at least k+1 tuples after tuple s have a value greater than or equal to s.

| S.A | 4 | 3 | 2 | 2 | 1 | 3 |

K=3

s

The Idea

- Joins over streams take infinite memory.
- Idea is to use k-constraints to reduce memory usage
 - Slower increase in memory usage.
 - Constant memory usage in some cases.
- K-constraints can decide which tuples to keep around.

Terminology

- **Synopsis**: stream history
- Each Synopsis for a stream involved with a query:
 - Has 3 components of seen tuples:
 - Yes: may contribute to a result tuple
 - No: cannot contribute to a result tuple
 - Unknown: cannot be put in Yes or No.

- **Join Graph**: directed graph with arcs from “Many” (parent) to the “One” (child) of many-one join.

Synopsis example

Query: Students that have GPA < 3.0 in Kalman when fire alarm is on.

Stream Student gets tuple:

- (“Edison”, 12:00)
- (id1234, Kalman, 12:05)

Stream Fire gets tuple:

- (“Edison”, 2.9)
- (id1234, Kalman, 12:00)

Output:

- Student (stID, location, time)
 - GPA (stID, gpa)
 - Fire (location, time)

<table>
<thead>
<tr>
<th>Student</th>
<th>Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>(id1234, Kalman, 12:00)</td>
<td>(id1234, 2.9)</td>
</tr>
</tbody>
</table>

Unknown
Synopsis

- Why not just keep those tuples that are in the Yes or Unknown synopsis?
- Might cause tuples in other streams to be kept in Unknown rather than being discarded.

Referential Integrity

Join heart rates greater than 35 with soldiers in sector 3 on id and time.
Constraints:
- location gets transmitted first
- always arrives within 2 tuples of heart rate.

<table>
<thead>
<tr>
<th>id</th>
<th>time</th>
<th>loc</th>
<th>heart rate</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>1</td>
<td>sec3</td>
<td>> 35</td>
<td>(s3,1,38)</td>
</tr>
<tr>
<td>s2</td>
<td>1</td>
<td>sec2</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>2</td>
<td>sec3</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>s3</td>
<td>1</td>
<td>sec3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The No synopsis on left is never needed!!!

Referential Integrity

- If Referential Integrity with parameter K holds on many-one join S1 to S2
 □ Eliminate S2’s No component
 □ Keep S1’s Unknown component for only k tuples on S2.

 Synopsis example 2
Soldiers with heartrate = 0 where more than 2 missiles were seen.
Stream Heart (SoldierID,Rate) gets tuple: (s1,1) (s2,0) (s3,1)
Output
Stream Missile(Sector) gets tuple: (Sec3, 1) (Sec5, 4) (s2,0,Sec5)
Yes No Unknown
Heart(soldID, Rate)
Where(soldID, Sector)
Missiles(Sector)
Ordered-Arrival Constraints (OA(k))

Two algorithms:
- On child stream ("one" in many-one join)
 - OAC(k)
- On parent stream ("many" in many-one join)
 - OAP(k)

Ordered Arrival (on "one")

Soldiers in sector 3 while a soldier had heart rate of 0. (Join on time. Assume one location tuple per time.)

Constraint:
- Location comes in ordered, with at most 1 tuples out of order.

Output:

<table>
<thead>
<tr>
<th>id</th>
<th>time</th>
<th>loc</th>
</tr>
</thead>
<tbody>
<tr>
<td>s4</td>
<td>1</td>
<td>sec2</td>
</tr>
<tr>
<td>s5</td>
<td>2</td>
<td>sec2</td>
</tr>
<tr>
<td>s7</td>
<td>4</td>
<td>sec3</td>
</tr>
</tbody>
</table>

Ordered Arrival (on "many")

Soldiers in sector 3 while a soldier had heart rate of 0. (Join on time. Assume one location tuple per time.)

Constraint:
- HeartRate comes in ordered, with at most 1 tuples out of order.

Output:

<table>
<thead>
<tr>
<th>id</th>
<th>time</th>
<th>loc</th>
</tr>
</thead>
<tbody>
<tr>
<td>s4</td>
<td>0</td>
<td>sec3</td>
</tr>
<tr>
<td>s5</td>
<td>5</td>
<td>sec2</td>
</tr>
<tr>
<td>s7</td>
<td>2</td>
<td>sec3</td>
</tr>
</tbody>
</table>

OAC(k)

- Similar to Referential Integrity
- Eliminate No synopsis without filling parent Unknown synopsis:
- Maintain the minimum value L that will be seen on stream S.
- Tuples in parent Stream less than L that do not match S’s Unknown or Yes, must have no matching tuple in S – no need to put into Unknown.
OAP(k)

- **Idea:**
 - Given a child stream’s tuple \(s \),
 - If no future parent tuples can join with \(s \),
 - Then, Don’t store \(s \).
- If Ordered Arrival constraint on parent stream’s attribute \(A \) OAP(k)
 - Can drop child’s tuples after \(k \) tuples with larger \(A \) values.

Clustered Arrival (CA(k))

- **Idea:**
 - Similar to Ordered arrival on parent stream.
- If parent streams have CA(k) on attribute \(A \):
 - After a joining tuple in parent, store \(s \) for only \(k \) more parent tuples.

RIDS(k) Results

Larger \(k \) means tuples are kept in Unknown synopsis longer, using more memory.

CA(k) Results

Smaller \(K \) means store fewer tuples in child streams. Yes synopsis

- \(k = 20000 \)
- \(k = 10000 \)
- \(k = 5000 \)
- \(k = 1000 \)
- \(k = 0 \)
OAP(k)

Results

Smaller K means store less in child Yes synopsis

OAC(k)

Results

Smaller K means tuples are kept in parent stream synopsis less time.

CA(k) and OAC(k)

Combining CA(k) and OAC(k) does better than either alone, especially at high values for K.

CA(k) vs. combined CA(k) and RIDS(k)

Note that at low K for RIDS(k), CA(k) does better. Some tuples are kept around longer than in pure CA(k).
Summary

- Speed
 - Cost Optimization
 - Cardinality -> Rate
 - Pin Slow Streams
- Accuracy
 - Windows for approximation
 - Memory issues
 - Join algorithms

Discussion

- When join by timestamp with a range, what is timestamp of output tuple?
- How are punctuation and K-constraints similar?
- Rate based paper didn’t account for windows – what is the effect?

Discussion

- What are the pros/cons of windows vs K-Constraints?
- The join paper assumed finite streams – do their conclusions work for infinite streams?
- Can you think of other cost measuring methods for the optimizer?
Discussion

- How would a stream system optimize across multiple, concurrent persistent queries? Does what we studied today apply?
- How would a stream system handle non-equijoins? Does what we studied today apply?

Open Questions

- Could this approach be used on systems like Aurora/Stream etc.?
- Can this model be modified so that it can be applied to other operators, and if so, would it have good benefits?
- How much asymmetry actually exists in practice?