Compression: Can it prevent energy loss?

A study by the MIT Artificial Intelligence Lab Kenneth C. Barr and Krste Asanovic

Platform

StrongARM SA-11 skiff

Developed by Compaq.

- •233MHZ Processor
- •802.11b card
- •32mb DRAM
- •ARM/Linux 2.42-rmk1-np1-hh2
- •4mb Flash memory
- •NFS filesystem

Similar to popular Compaq IPAQ

Schematics

Compression Methods Tested:

Why were these methods chosen as theoretical test beds?

Compression Comparison

How do the native Unix methods compare to each other?

Fig. 3.	Benchmark	comparison	bv	traditional	metrics.
	The second secon	componitoon	~.,	0100010101101	1110011000

	bzip2	compress	LZO	PPMd	zlib
Compress read throughput (Text data)	0.91	3.70	24.22	1.57	0.82
Decompress write throughput (Text data)	2.59	11.65	109.44	1.42	41.15
Compress read throughput (Web data)	0.58	4.15	50.05	2.00	3.29
Decompress write throughput (Web data)	3.25	27.43	150.70	1.75	61.29

Experiment

The experiment: Basic Overview:

Simulation

•Event model

- •Purpose of Skiff
 - •Power measurement
- •Removal of user front end
 - •Only kernel threads left
- •Corpus
 - Text
 Web content
 Differences/similarities
- Automation

•Simple Scalar •Random result sampling

•Error?

Basic Power Equations

Table II. Maximum Measurement Error: Compression

	CPU (percent)	Memory (percent)	Peripheral (percent)
bzip2	0.36	0.10	0.11
compress	0.31	0.09	0.06
lzo	0.15	0.09	0.06
PPMd	0.18	0.09	0.07
zlib	0.60	0.09	0.12

Table III. Maximum Measurement Error: Decompression

	CPU (percent)	Memory (percent)	Peripheral (percent)
bzip2	0.53	0.10	0.13
compress	0.28	0.09	0.08
lzo	0.13	0.09	0.06
PPMd	0.19	0.10	0.08
zlib	0.12	0.10	0.06

Power use ratio

Receive + Decompress (5.70Mb/sec)

Compress + Send Energy (5.70Mb/sec)

Energy Efficiency

Ranking

Compress	Decompress
lzo	zlib
compress	compress
none	lzo
ppmd	bzip2
zlib	none
bzip2	ppmd

Compression performance even with Power based memory loss

7

Example

Potential file content:

- •Graphics
 - •Music
- •XML data

Final Results

Results Are Close

Given previously discussed room for error, what is the conclusion of the experiment?

Fig. 12. Average power of compression and decompression applications.