Printer Command Language (PCL)

By Chih-Yu (Joey) Tang October 11, 2006

Isn't It Easy?

The most popular Printer Description Languages (PDLs) are

- Printer Command Language (PCL)
 - PCL 1 was introduced in 1984 on the HP ThinkJet 2225.
 - basic text and graphics printing
 - 150 Dots Per Inch (DPI)
 - 5c color standard 1992
 - □ 5e monochrome standard 1992
- PCLXL
 - □ 6 1995
- PostScript (PS)
- Portable Document Format (PDF)
- Coming up...
 - □ XPS (Microsoft Vista)

Why Using These PDLs?

If we send a raw raster image to a printer:

- Paper Size: A LETTER is 8.5 x 11 inch
- Output Resolution: 600 DPI
- Output Color Model: Cyan, Magenta, Yellow, and Black (CMYK) (4 planes)

□ Intensity Level: 256 (1 Byte)

 Width x Height x Plane x Intensity Level = (8.5x600)x(11x600)x4x1 = 5100x6600x4 = 134,640,000 Bytes = 128.4 MB per page

- A better way to do it?
 - Assume using PCL, we describe a page and sends the descriptions to the printer that supports the language.

- While a PDL is more resolution independent, a raster image is the opposite.
 - □ For example, a font, an arc, ...

 The edges of the character "M" looks smooth in this this resolution.

See the difference in a higher resolution.

 Industrial view: Raster printers are considered as the low end devices while PDL printers are the high end devices.

PCL

• What happen after you click PRINT?

 Application either generates PCL itself (most old applications) or interacts with the Graph Device Interface (Windows GDI) to generate PCL (most new applications)

PCL commands include

Paper size, simplex/duplex, N-up, text, font, image, drawing, palette, transparency, ROPs, and many...

If you even wonder what PCL looks like?

E← B←)8U←)s1p15v0s3b4101T∮ ← *p30x50YXIONICS Color ← *p1368x50YMICRO5C FUNCTIONALITY TEST←)s7V← *p30x3085YTest File: ./micro5c.c Copyright (C) 1999 by Xionics Document Technologies, Inc. compiled on Jul 19 1999 08:57:32 by vun← *p2300x3085Ypage 10 ← *p0x0Y← &a+150h+200V← *r-3U← &a+0h+144V← (s1p6v0s0b4148T← *v7S← &f0SCMY text← &f1S← &a+0h+`596V← (s1p15v0s0b4101T← *v1SA ← *v2SB ← *v3SC 895V← *v7S← &a+50h+0V← *r-3U- &a+0h+144V- (s1p6v0s0b4148T- *v7S- &f0SCMY opaq~ &f1S~ &a+40h+736V~ *v1S~ (s1p60v0s0b4101TA~ *v1N~ *v2S~ (s1p 24v0s0b4101T← *p-165x-100YB← *v3S← (s1p15v0s0b4101T← &a-100h+0VC← (s1p20v0s0b4101T← *v4SD← &a-380h+250V← *v5S← (s1p30v0s0b4101TE← *v6S← (s1p24v0s0b4101T← &a-100h+0VF← *v7S← (s1p35v0s0b4101TG← *v8S← (s1p25v0s0b4101T← *p-100x+0YH← &a+290h-890V← *v7S← *v0N← &a+50h+0V← *r-3U← &a+0h+144V← (s1p6v0s0b4148T← *v7S← &f0SCMY over← &f1S← &a+40h+736V← *v1S← (s1p60v0s0b4101TA← *v2S← (s1p24v0s0 b4101T← *p-165x-100YB← *v3S← (s1p15v0s0b4101T← &a-

Don't Worry! We have tools.

RESET;

- SYMBOLSET2("8U");
- FONT2(1,15,0,3,4101);
- TEXT("\016");
- POSP(30,50);
- TEXT("XIONICS Color");
- POSP(1368,50);
- TEXT("MICRO5C FUNCTIONALITY TEST");
- HEIGHT2(7);
- POSP(30,3085);
- TEXT("Test File: ./micro5c.c Copyright (C) 1999 by Xionics Document Technologies, compiled on Jul 19 1999 08:57:32 by vun");
- POSP(2300,3085);
- TEXT("page 1\017");
- POSP(0,0);
- MOVE_D(150,200);
- CMY_PALETTE;
- MOVE_D(0,144);
- FONT(1,6,0,0,4148);
- SELECT_COLOR(7);

Three Major Objects

Text

Resident fonts and downloaded fonts

Vector Drawing

□ Line, arc, circle, rectangle, ...

- Raster Graphics
 - compression methods
 - 1 Run-Length Encoding
 - 2 Tagged Image File Format (TIFF) rev 4.0
 - 3 Delta row
 - 4 Adaptive compression

Run-Length Encoding

- Interprets raster data in pairs of bytes
- [(Repetition count byte 0-255)(pattern byte)].[.][]
- Ex:
 - If source looks like "UUUUATT"
 - The Run-Length Encoding is
 - <ESC>b1m6W3U0A1T
 - □ 1m means method 1 compression
 - □ 6W means 6 bytes follows

Tagged Image File Format (TIFF) rev 4.0

- A negative number (-1 to -127) indicates a repeated byte.
- A positive number plus 1 indicates that the number of the following literal bytes.
- EX:
 - The same source "UUUUATT"
 - TIFF 4.0 looks like <ESC>b2m6W(-3)U(0)A(-1)T or <ESC>b2m6W(-3)U(2)ATT where (-3)U comes from the twos complement.
 - The complement of 0000 0011² is 1111 1100²
 - Plus one is twos complement 1111 1101₂. Or, 256 3 = 253 which is 1111 1101₂ as well.

Delta Row Compression

- Identifies a section of bytes in a row that is different from the preceding (seed) row, then transmits only the different data.
 - If a row is completely different, a entire row needs to be sent as the delta (inefficient)
- [(Command byte)(1 to 8 Replacement bytes)]
 - Command byte looks like

Command Byte				
7 5	4 0			
Number of bytes to replace (1-8)	Relative offset from last untreated byte			

Continue.

Delta Row Compression Cont.

Command Byte				
7 5	4 0			
Number of bytes to replace (1-8)	Relative offset from last untreated byte			

Command Byte:

- □ 0th 4th bit: relative offset 0 to 31 (2^5 = 32 values), and 31 is reserved for an additional offset byte. Then, if the second offset byte is 255, an additional offset byte follows.
- □ 5th 7th bit: the number of replacement (delta) bytes (2^3 = 8 values)
- □ Therefore, we can replace up to 8 bytes at a time/per command in any length offset.

• Example:

- $\square < ESC > *b3m4W(00011111_2) (11111111_2) (1000000_2) (10010111_2)$
- Method 3 (3m), 4 bytes follow (4w), at offset ((11111)+ (111111)+(1000000)) replace 1 (000) byte with value (10010111)

Delta Row Compression Cont.

Byte Number	0	1	2	3	4
BZERO	00000000	00000000	00000000	00000000	00000000

<ESC>*b3m2W(00000012)(111111112)

Row 1	00000000	11111111	0000000	00000000	0000000
-------	----------	----------	---------	----------	---------

<ESC> $*b2W(0000010_2)(11110000_2)$

00001111

Row 3

Row 2	00000000	11111111	11110000	00000000	00000000	

11111111

<ESC>*b5W(00000002)(000011112) (001000102)(101010102) (010101012)

11110000

10101010

01010101

Adaptive Compression

- Interprets a raster image as a block of raster data rather than as individual rows.
 - □ Up to 32,767 compressed bytes
- Uses
 - □ 0 Unencoded
 - 1 Run-Length Encoding
 - □ 2 TIFF
 - □ 3 Delta row
 - □ 4 Empty row
 - \Box 5 Duplicate row

Summary: PCL Minimizes The Data Translation

- PCL minimizes the low-level compression effort by describing the semantic of a page rather than in the page's output context
 Although the final product before print engine puts out color is always an engine ready
 - raster image.

References

- Printer Command Language, www.wikipedia.org, <u>http://en.wikipedia.org/wiki/PCL_6</u>, retrieved on Sep. 25, 2006
- PCL 5 Printer Language Technical Reference Manual, Hewlett-Packard CO., 1992
- PCL 5 Color Technical Reference Manual, Hewlett-Packard CO., 1996

