Heap Compression for
Memory-Constrained Java

CSE Department, PSU
G. Chen M. Kandemir

N Vijaykrishnan M. J. Irwin

Sun Microsystems
B. Mathiske M. Wolczko

OOPSLA’03
October 26-30 2003

Overview

PROBLEM: Typical portable devices support less than
1MB of memory (2003)
SOLUTION: Reduce execution heap size of current

embedded JVMs
v Extending existing garbage collection methods to allow for
v Heap Compression: When current execution cannot
continue, compress heap

v Lazy Allocation: Exploit limited usage of large object
components

Results Summary

Compared to Mark-Compact Garbage Collection

Analysis of ten applications suitable for mobile
devices

v~ One method reduced heap demand by 35% on average (16-54%)

v" Introduced less than 2% performance degradation due to
compression/decompression

Garbage Collection Overview

Existing Methods

Mark-Sweep (MS)

v Phase One: (Mark) Traverse reference tree,
marks objects reachable from root.

v" Phase Two: (Sweep) Scans heap, put all
unmarked objects into a free-table

v" Results in "Fragmentation Problem" -- live
objects and free space interleaved.

v Requires heap size larger than application
footprint

Garbage Collection Overview

Existing Methods

Mark-Compact (MC)

v" Addresses the "Fragmentation Problem”

v" Slides all marked objects to one end of the heap
v Requires updates to all object references

Mark-Compact-Compress (MCC)

-

Allows application to run with heap smaller
than footprint

Mark Phase: Same as existing, but counts

size of live objects.

v" Allocate new object based on free space
v Object smaller: Proceed without compression

v Object larger: Compress all live objects on the
heap

Mark-Compact-Compress (MCC)

Zero Removal Compression
v" Based on observation; large portion of memory

locations contain only zeros

Compression / Decompression Overhead

v Overhead not incurred frequently
v" Heap demand occurs during a very short period of execution
v" Decompression cost amortized over multiple accesses.
v" Many objects never accessed after compression

Compression Algorithm Selection

Any compression/decompression algorithm
will work

For best results, algorithm should satisfy

v" Compressor should have good compression ratio
v" Compression / decompression should be fast

v Neither compressor nor decompressor should
require large working area

Compression
Heap Objects

0: uncompressed 0: uncompressed

0: unmarked; 1:marked 0: unmarked; 1:marked
A A
v v

Type Size Type | Bitmap |Compressed Size
Pointer to the Handle Pointer to the Handle

QOriginal Size Extra Bitmap

Contents of the Object Extra Bitmap

Non-zero Bytes of the Object

Uncompressed object Compressed object

« Each bit in the bitmap corresponds to a byte of the objects data in
the uncompressed format.

» 0-bit indicates a zero byte; not stored in the compressed format
 1-bit indicates non-zero byte; contents stored in non-zero bytes

* When required: Scan the entire heap, compress all
uncompressed objects.

Decompression

Object Access

Allocate free block size of uncompressed
object. (invoke GC if required)

Decompress the object

Update the pointer in the handle
The compressed object is marked for GC

Decompression

Mark Phase

Collector traverses reference tree

Visit to compressed object

v Check object class for referenced fields
v If required, decompress, retrieve contents

Fields are decompressed one-by-one

Decompressed data is discarded

Never invokes allocation

Lazy Allocation

Different portions of an object allocated
on-demand

Only applied to large arrays to minimize
runtime overhead

MCCL garbage collection

Creation of subobjects
Decompression of large objects
v Inefficient for a few fields
Break large objects into (1KB max) “subobjects”

Currently only arrays are broken down

Minimum Heap Sizes

without out-of-memory exceptions

Minimum Heap Size (KB) Normalized against MC (%)
Benchmark | N / MCL | MCC | MCCL | MCCL+ / MCL | MCC | MCCL | MCCL+

Auction 76 72 62 58 91.6 86.8 74.7 69.9
Calculator 40 34 34 32 100.0 85.0 85.0 80.0
JBrowser 196 195 164 157 86.7 86.2 72.6 69.5
JpegView RS 79 17 64 1000 | 929 90.6 75.3
ManyBalls 35 31 31 29 100.0 88.6 88.6 82.9
MDoom 71 114 76 57 57.3 91.9 61.3 46.0
PhotoAlbum 55 50 50 46 1000 | 909 90.9 83.6
Scheduler 36 32 32 31 97.3 86.5 86.5 R3.8
Sfmap 118 175 91 78 72.8 | 108.0 56.2 48.1
Snake 42 35 35 33 100.0 3.3 83.3 78.6

Average: 75 81 65 59 90.5 89.2 79.0 65.6

Compressions / Decompressions

Decompressions Number of Objects
Benchmark Total % of Total | Decompressed /N times
Number Comp. 2 | N=1
Auction 131 24.72% 131
Calculator 46 20.35% 36
JBrowser 261 27.80% 261
JpegView 867 45.02% 411
ManyBalls 83 31.44% 47
MDoom 207 56.71% 179
PhotoAlbum 54 22.98% 54
Scheduler 36 20.93% 36
Sfmap 90 6.30% 90
Snake 38 16.24% 38

Average: 181 | 28.69% 128
(@ MCC

Decompressions Number of Objects
Benchmark Total % of Total | Decompressed N times
Number Comp. N=2 | N=1
Auction 131 24.72% 131
Calculator 46 20.35% 36
JBrowser 261 27.80% 261
JpegView 0 N/A 0
ManyBalls 83 31.44% 47
MDoom 0 N/A 0
PhotoAlbum 54 22.98% 54
Scheduler 36 20.93% 36
Sfmap 0 N/A 0
Snake 38 16.24% 38
Average: > 65 | 24.96% 60
(b) MCCL

o wno

—
o0

S | [=NeNeNoNe

i
W
o5
L
| -
O
>
O
o
=
l—m
>
o

O
=
s
o
®
D
<
&
S
=
=
S
<
E

B Indirect Reference

[0 Lazy Access

[Check

_1Decompression
JGC Decompression

B Compression
.. Other GC Time

(%) @wi] uopnN2ax3 Ul aseaIoUu|

abesaay
axey

ayeus
aMzol
deuwys

anie
la|npayos
anss
wng|yojoyd
anvel

wooqaw

anse

| sjegfuew

axsse
maipBadp

aMoze
lasmougr

. aoy

ioje|najen

aMee
uonany

* Bar on left is MCCL, bar on the right is MC

