
Heap Compression for
Memory-Constrained Java

OOPSLA’03
October 26-30 2003

CSE Department, PSU
G. Chen M. Kandemir
N. Vijaykrishnan M. J. Irwin

Sun Microsystems
B. Mathiske M. Wolczko

Overview

PROBLEM: Typical portable devices support less than
1MB of memory (2003)

SOLUTION: Reduce execution heap size of current
embedded JVMs
 Extending existing garbage collection methods to allow for

 Heap Compression: When current execution cannot
continue, compress heap

 Lazy Allocation: Exploit limited usage of large object
components

Results Summary
Compared to Mark-Compact Garbage Collection

 Analysis of ten applications suitable for mobile
devices
 One method reduced heap demand by 35% on average (16-54%)
 Introduced less than 2% performance degradation due to

compression/decompression

Garbage Collection Overview
Existing Methods

Mark-Sweep (MS)
 Phase One: (Mark) Traverse reference tree,

marks objects reachable from root.
 Phase Two: (Sweep) Scans heap, put all

unmarked objects into a free-table
 Results in "Fragmentation Problem" -- live

objects and free space interleaved.
 Requires heap size larger than application

footprint

Garbage Collection Overview
Existing Methods

Mark-Compact (MC)
 Addresses the "Fragmentation Problem”
 Slides all marked objects to one end of the heap
 Requires updates to all object references

Mark-Compact-Compress (MCC)

 Allows application to run with heap smaller
than footprint

 Mark Phase: Same as existing, but counts
size of live objects.
 Allocate new object based on free space
 Object smaller: Proceed without compression
 Object larger: Compress all live objects on the

heap

Mark-Compact-Compress (MCC)

 Zero Removal Compression
 Based on observation; large portion of memory

locations contain only zeros
 Compression / Decompression Overhead

 Overhead not incurred frequently
 Heap demand occurs during a very short period of execution
 Decompression cost amortized over multiple accesses.
 Many objects never accessed after compression

Compression Algorithm Selection

 Any compression/decompression algorithm
will work

 For best results, algorithm should satisfy
 Compressor should have good compression ratio
 Compression / decompression should be fast
 Neither compressor nor decompressor should

require large working area

Compression
Heap Objects

Type

0: unmarked; 1:marked
0: uncompressed

Type

0: unmarked; 1:marked
0: uncompressed

Bitmap Compressed SizeSize

Pointer to the Handle

Contents of the Object

Pointer to the Handle
Original Size Extra Bitmap

Extra Bitmap

Non-zero Bytes of the Object

Uncompressed object Compressed object

• Each bit in the bitmap corresponds to a byte of the objects data in
the uncompressed format.
• 0-bit indicates a zero byte; not stored in the compressed format
• 1-bit indicates non-zero byte; contents stored in non-zero bytes
• When required: Scan the entire heap, compress all
uncompressed objects.

Decompression
Object Access

 Allocate free block size of uncompressed
object. (invoke GC if required)

 Decompress the object
 Update the pointer in the handle
 The compressed object is marked for GC

Decompression
Mark Phase

 Collector traverses reference tree
 Visit to compressed object

 Check object class for referenced fields
 If required, decompress, retrieve contents

 Fields are decompressed one-by-one
 Decompressed data is discarded
 Never invokes allocation

Lazy Allocation

Different portions of an object allocated
on-demand

Only applied to large arrays to minimize
runtime overhead

MCCL garbage collection

Creation of subobjects

 Decompression of large objects
 Inefficient for a few fields

 Break large objects into (1KB max) “subobjects”
 Currently only arrays are broken down

Minimum Heap Sizes
without out-of-memory exceptions

Compressions / Decompressions

Runtime Overhead
with minimum heap for MC

* Bar on left is MCCL, bar on the right is MC

