
Heap Compression for
Memory-Constrained Java

OOPSLA’03
October 26-30 2003

CSE Department, PSU
G. Chen M. Kandemir
N. Vijaykrishnan M. J. Irwin

Sun Microsystems
B. Mathiske M. Wolczko



Overview

PROBLEM: Typical portable devices support less than
1MB of memory (2003)

SOLUTION: Reduce execution heap size of current
embedded JVMs
 Extending existing garbage collection methods to allow for

 Heap Compression: When current execution cannot
continue, compress heap

 Lazy Allocation: Exploit limited usage of large object
components



Results Summary
Compared to Mark-Compact Garbage Collection

 Analysis of ten applications suitable for mobile
devices
 One method reduced heap demand by 35% on average (16-54%)
 Introduced less than 2% performance degradation due to

compression/decompression



Garbage Collection Overview
Existing Methods

Mark-Sweep (MS)
 Phase One:  (Mark) Traverse reference tree,

marks objects reachable from root.
 Phase Two:  (Sweep) Scans heap, put all

unmarked objects into a free-table
 Results in "Fragmentation Problem" -- live

objects and free space interleaved.
 Requires heap size larger than application

footprint



Garbage Collection Overview
Existing Methods

Mark-Compact (MC)
 Addresses the "Fragmentation Problem”
 Slides all marked objects to one end of the heap
 Requires updates to all object references



Mark-Compact-Compress (MCC)

 Allows application to run with heap smaller
than footprint

 Mark Phase:  Same as existing, but counts
size of live objects.
 Allocate new object based on free space
 Object smaller:  Proceed without compression
 Object larger:  Compress all live objects on the

heap



Mark-Compact-Compress (MCC)

 Zero Removal Compression
 Based on observation; large portion of memory

locations contain only zeros
 Compression / Decompression Overhead

 Overhead not incurred frequently
 Heap demand occurs during a very short period of execution
 Decompression cost amortized over multiple accesses.
 Many objects never accessed after compression



Compression Algorithm Selection

 Any compression/decompression algorithm
will work

 For best results, algorithm should satisfy
 Compressor should have good compression ratio
 Compression / decompression should be fast
 Neither compressor nor decompressor should

require large working area



Compression
Heap Objects

Type

0: unmarked; 1:marked
0: uncompressed

Type

0: unmarked; 1:marked
0: uncompressed

Bitmap Compressed SizeSize

Pointer to the Handle

Contents of the Object

Pointer to the Handle
Original Size Extra Bitmap

Extra Bitmap

Non-zero Bytes of the Object

Uncompressed object Compressed object

•  Each bit in the bitmap corresponds to a byte of the objects data in
the uncompressed format.
•  0-bit indicates a zero byte; not stored in the compressed format
•  1-bit indicates non-zero byte; contents stored in non-zero bytes
•  When required:  Scan the entire heap, compress all
uncompressed objects.



Decompression
Object Access

 Allocate free block size of uncompressed
object. (invoke GC if required)

 Decompress the object
 Update the pointer in the handle
 The compressed object is marked for GC



Decompression
Mark Phase

 Collector traverses reference tree
 Visit to compressed object

 Check object class for referenced fields
 If required, decompress, retrieve contents

 Fields are decompressed one-by-one
 Decompressed data is discarded
 Never invokes allocation



Lazy Allocation

Different portions of an object allocated
on-demand

Only applied to large arrays to minimize
runtime overhead

MCCL garbage collection



Creation of subobjects

 Decompression of large objects
 Inefficient for a few fields

 Break large objects into (1KB max) “subobjects”
 Currently only arrays are broken down



Minimum Heap Sizes
without out-of-memory exceptions



Compressions / Decompressions



Runtime Overhead
with minimum heap for MC

* Bar on left is MCCL, bar on the right is MC


