Automotive Vulnerability Detection System

David K. Wittenberg, PhD
BAE Systems
Burlington, MA

Jeffrey Smith, PhD
BAE Systems
Burlington, MA

Abstract—In [1] we presented a Vulnerability Detection System
(VDS) that can detect emergent vulnerabilities in complex Cyber
Physical Systems (CPSs). It used the attacker’s point of view
by collecting a target system’s vulnerability information from
varied sources and populating an Attack Point (AP) database.
From these APs, a Hierarchical Task Network (HTN) generated
the set of composite device-level attack scenarios. The VDS
used Alloy [2], a Satisfiability (SAT) planner to reduce the
cardinality of the generated space by evaluating the feasibility of
each attack. In [3], we specialized the VDS for the automobile
domain. This paper further 1) specializes our prior research by
submitting the generated prioritized list to an Automotive-specific
Attack Evaluation Process (AAEP) and 2) enhances our prior
research with a method to discover and test vulnerabilities by
reverse engineering the actual binary code. With a combination
of simulation and vehicle instrumented real-time execution, the
AAEP confirms each candidate attack. The AAEP’s output is
used as feedback to refine the SAT constraint model model. A
novel part of AAEP is our Automated Reverse Engineering (ARE)
system, which greatly reduces the search space for software bugs.
The VDS is designed to support short product release cycles.

A. Knowledge Acquisition
I. INTRODUCTION

Automobiles are highly complex with a large set of sensors
and information sources assisting the driver to safely drive
the vehicle. Modern automotive electrical systems are modu-
larized into many increasingly complex, frequently upgraded,
Electronic Control Units (ECUs). ECUs are composed of com-
ponents, with vulnerabilities, some that are known publically,
some that are known by the manufacturer, and some that are
yet to be discovered. Just as a composite system can display
emergent behaviors, i.e. behaviors that are not predicted solely
by modeling the assembly of the constituent parts, it can
also have emergent vulnerabilities leading to exploits that
are unique to the aggregate system. These exploits could be
catastrophic even though they result from a combination of
relatively benign subsystem vulnerabilities. The composition
of many components in an automobile leads to a combinatorial
explosion of the behaviors to check. Given the short upgrade
cycle and the rapidly changing list of vulnerabilities for each
part, reaching a minimal level of due diligence when designing
and building a automotive electrical system is a daunting task.

With automobiles becoming self-sufficient, even to the point
of controlling the driving, the human becomes a passenger.
This represents a ubiquitous, massively deployed, safety criti-
cal system in the center of our critical transportation infrastruc-
ture. Though this autonomy promises great improvements to
public safety, it also poses potential threats to it. These threats

Robert Gray, PhD
BAE Systems
Arlington, VA

Gregory Eakman, PhD
BAE Systems
Burlington, MA

include the effect of a random car malfunction, and a coordi-
nated malfunction causing havoc throughout the transportation
infrastructure. We have seen such attacks demonstrated by [4].

The challenge is to prove the proper functioning of the
automobile’s electronic systems under all possible conditions
in the presence of attackers. This task is extremely difficult
based on the vast set of possible scenarios and the failure
modes of the components involved. The VDS offers a disci-
plined approach that identifies vulnerabilities in the system,
selects scenarios that would expose those vulnerabilities, and
generates controlled tests based on those scenarios. Though
this approach still produces a very large set of tests, and has
issues with how to compute robustness of the solutions, it
is tractable with a massively parallel simulation and storage
system. The ARE further reduces the number of required tests
by eliminating the requirement to check some paths through
the software.

The VDS accelerates the detection of emergent exploits
by identifying a manageable prioritized checklist of device-
specific, feasible attack scenarios. These guide the discovery
of automotive component vulnerabilities at a tempo supporting
short ECU update cycles by:

« Automating ingestion of public and private vulnerabilities
into a structured, semantically consistent format,

o Organizing vulnerabilities based on potential attack sce-
narios and transforming vulnerability information into
standardized APs,

o Using an HTN planner to explore the APs and generating
a large set of composite, device level sub-plans and
attack scenarios to segment feasible and infeasible attacks
against a known device,

o Using a satisfaction constraint model of the CPS, based
on system constraints, to exhaustively evaluate device
characteristics for potential exploit techniques, prune
unlikely or infeasible attacks, and validate sub-plans to
reduce the size of the set of composite vulnerabilities,

e Using the ARE to further characterize which software
flows that must be checked and,

o Handing off a reduced, prioritized list of weaknesses,
based on the potential for damage, for execution in simu-
lated and actual automotive devices, to validate weakness
checklist guidance or provide constraint/success feedback
to our planner and constraint satisfaction steps.

The possible permutations of vulnerabilities, physical sys-
tem configurations and attack scenarios are numerous. This

KNOWLEDGE ACQUISITION ATTACK PLAN GENERATOR ATTACK VERIFICATION & FEEDBACK
] Author
Operational |System context gggcgg;g\
Systems Model : -
Hierarchical
Task Network fes Automa.ted R_everse
Planner > Engineering
Adversary Device level Feasibility Discovery and Test
Goals Adversary sub-plans, and '-E’k d
strategies, attack P ockinet
attack recipes scenarios B
Cyber and Threat SAT Planner
Knowledge |attack surface —#{ (Alloy) :
Sourcing |representation Manually Simulated and
Validated/ generated > i
T Vlittad) eotn Actual Automotive
; plans Test
Context HEsRCkNISICS Prioritize
Vulnerability
Known Checklist
Automotive o
Vulnerabilities Plan pruning input

Fig. 1. system overview

VDS method of automatically maintaining these ontological
relationships is scalable, saves time, and reduces errors. Re-
ducing the number of these permutations, using planning and
feedback, yields a manageable set of vulnerabilities and attacks
to validate and check. The VDS results in earlier detection
of potential exploits than is possible with manual methods,
reducing cost and increasing safety.

The VDS analyzes emergent vulnerabilities of automotive
component systems, including curve speed warning, traffic
sign recognition, distance alert, and laser cruise control, on
both an existing instrumented automobile and a simulation
environment.

Setup of the Attack Verification process is time consuming
and limited in its effective application to rapidly evolving
attack scenarios. The VDS solves this problem by introducing
extensive automation (including the ARE) for attack scenario
generation. We use the Attack Verification results to generate
feedback that enables the system to incrementally refine the
generated attack plans.

II. SYSTEM ARCHITECTURE

Figure 1 depicts the Knowledge Acquisition, Attack Plan
Generator, and Attack Feedback and Generation architecture
parts. The Attack Plan Generator generates a prioritized (in
order of risk) checklist of software and firmware that must
be checked. The ARE and automotive test parts of the Attack
Verification and Feedback consider the items on that checklist
to determine which, if any, of them constitues a real danger.

To detect CPS threats, we consolidate data from several
external data sources and restructure it into a format suit-
able for planning. Based on this team’s study of MAISSI
(Mediation, Alignment and Information Systems for Seman-
tic Interoperability) [5], BAE Systems developed Dynamic
Composition of Enterprise Services (DCES), an innovative
approach to semantic alignment that handles the intricacies
of real-world data. DCES effectively addresses the problem
of service composition using a novel combination of existing
open-source products and advanced semantic technologies.

In the computer domain, we have several databases of
known attacks such as MITRE’s CVE (Common Vulnera-
bilities and Exposures) [6], and NIST’s (National Institute
of Standards and Technologies) NVD (National Vulnerability
Database) [7]. We need such databases for the automotive
domain, and a few are starting to appear. In 2015, the Alliance
of Automobile Manufacturers announced the start of such
a database, Auto-ISAC [8], and Ring ef al. [9] propose to
strengthen it.

Translation from source data into a semantically equivalent
representation in a target ontology faces a number of problems.
These include structural dissimilarities (non-isomorphism) in
the source and target data models, varied representations of
data types, and disparities in the way properties and attributes
are packaged into objects. MAISSI transforms each external
data source record into a standardized AP record based on
an Attack Surface Ontology (ASO) to normalize the data. We
develop the ASO to accomplish two objectives: 1) translate
vulnerabilities into potential APs and 2) capture attack cen-

Semantic Alignment Mediator

Attack NVD
Goals
v
<subgoal> <cves
<name="ModifyStartup5 <seg> 2013-110%
Effect etﬁnss“h_ deoEscalat dseq>‘ | Vulnerability
. effect="PrivilegeEscala <name {snippet)> ort
description an” goal="0OwnDevice"> “bypass wireless—- <P
<fsubgoal> | management settings"
BAE Systems
HAP k
Goalfttac Semantic Alignment NVD2HAP |
Mediator

______ _Z,____I.--li.P.AEP.------.\.A._------..

I
I
I 1 I

U |

Fig. 2. Semantic Alignment Mediator (MAISSI)

tered data that may include exploits, configurations, and ways
to leverage legitimate device functionality.

A comprehensive AP repository is built through ASO
development detailing how hackers may conduct malicious
activities. One key aspect will be to apply the advanced
reasoning and data mapping methods provided through our
mediation solution to attach new semantic Weakness and
Effect descriptions to each record. These are critical for
developing a clear attack model that includes vulnerabilities
and legitimate features that an attacker could misuse. This way,
we enhance our attack surface perspective of a given device.

A. Attack-Centric Analysis and Context

The common bottom-up technology-centric perspective pro-
moted by security researchers comes at the expense of under-
standing how a hacker discovers and exploits vulnerabilities.
Hackers champion context, seeking to understand how a
system functions in a top-down manner to reach a target.
Each weakness grants the hacker leverage to gain greater
control. Vulnerability repositories only organize and categorize
system vulnerabilities rather than express how an individual
vulnerability or feature may relate to, and even anticipate, an
attack objective.

This VDS approach combines AP systems to conduct an
attack-centric analysis that examines how vulnerabilities and
legitimate device services relate to attack objectives. Sheyner
and Wing [10] point out that a system represents a combination
of services, configurations, functions and vulnerabilities that,
when viewed from an attack perspective, combine into attack
graphs depicting multistage cyber-attacks against systems.
Whereas Sheyner and Wing’s research focuses on the layers
within a complex network environment, we extend the attack
graph definition to represent system services and functions as
discrete attack objects, focusing on layers within a complex
network environment. Each of those architectural objects rep-
resents potential APs that are accessible only from the next
layer, with externally available services residing on the outer-
most architecture layer.

The process of identifying and prioritizing system vul-
nerabilities involves reasoning over many series of exploits
that can rapidly lead to an undesirably huge set of states.
The VDS approach uses a predefined list of common attack
patterns as an organizing and filtering tool, providing two
methods to reduce the search space: probability of attack
pattern applicability, and user interaction with the lists of
attack categories and patterns. If patterns or categories exist

in a hierarchical tree, reduction or inclusion occurs from the
selected node and down the tree. Facilitating search with the
possibility of human modification of any of the ASO structures
used to generate attack goals and subgoals is important to

o Improve and direct search and test,

o Improve the goal generation process with spiked goals

and plan fragments, and
o Refine structures with learned behavior.

This also facilitates parallel development and test. Figure 2
illustrates how the Semantic Alignment Mediator supports the
VDS solution. In this example, to transform vulnerability data
into attack-centric AP records, we combine the output from
the Attack Goals analysis and an applicable Auto-ISAC [§]
entry. For the information to be useful, our solution needs
to know that the subgoal is the same as the Effect assigned
to the Auto-ISAC entry. This unification is achieved with
declarative mappings from the Attack Goals repository and
Auto-ISAC schemas to the common ASO ontology. The result
is a set of Resource Description Framework (RDF) statements
in the AP knowledge base that links a device with a particular
vulnerability that can be analyzed to confirm malice. Common
Attack Pattern Enumeration and Classification (CAPEC) [11]
attack patterns can also be used to seed the high-level planner
portion of the Attack Plan Generator with attack plans or
fragments of plans. Attack patterns have their own structure,
with prerequisites. These will be translated using the semantic
alignment techniques discussed above into forms that the
Attack Plan Generator (next section) can reason over.

B. Attack Plan Generation

The VDS uses a hybrid planning mechanism and multi-
ple sources of information to discover feasible attack plans.
An SAT planner’s (in our case, Alloy [2]) capabilities for
exhaustively evaluating hierarchically structured spaces of
possible exploit techniques, combined with heuristic search to
prioritize choices of device characteristics assumptions, allows
a high-level planner to generate high-risk attack plan options.
This approach uses a broad range of available information,
including known characteristics of the device being evaluated,
uncertainties in device properties, repositories that support
attack surface operators (e.g. Vulnerabilities [8]), the device
class architecture, and adversarial goals and strategies.

The planning engine supports checking for invalid pre-
conditions of tactics. When constructing a plan, invalid precon-
ditions can lead to backplanning to satisfy the preconditions,
or to detect a conflict between the results in one subplan
and the preconditions for another. If there is not enough data
to determine whether a precondition is met, the appropriate
analysis must be invoked. The tactics being considered shape
the network analysis to be performed, and the results observed
are folded into the cost calculations to direct the search.
The VDS approach is a mixed initiative, using Alloy for
enumerated elements, and mapping the Alloy representation
to appropriate base classes.

Alloy takes the plan fragments and attack scenarios from
the HTN planner and creates a minimally complete plan. An

Activity Estimator uses the HTN’s leaf nodes to create an
initial Activity Graph, which embodies at least one chain of
causally ordered qualitative states that connect the start state
and a goal state.

Alloy generates every possible outcome for each individual
activity, either validating the feasibility of the attack plan
relative to its device model by fully instantiating the plan, or
refuting the plan by demonstrating no instantiation is possible.
Combining a heuristic search mechanism with Alloy enables
reasoning from a diverse set of information and compensates
for weaknesses of the individual planners when used in
isolation. Search prioritizes high-risk candidates based on a
combination of vulnerability related data drawn from general
attack/adversary goals, and known vulnerabilities of classes
of devices and their services. Alloy uses a model of the
automotive component being assessed, made specific through
assumptions in the heuristic search to exhaustively check for
existence of a sequence of AP-level actions that can achieve
adversary goals. This serves to answer the question “is there a
way to perform the given actions even if the preconditions are
false?”. (Formally, if the System Model is Sys and Properties
are P, Alloy tries to satisfy Sys A —P).

Given a set of feasible, concrete plans generated by Alloy,
combined with the calculated likelihoods of different config-
urations, the VDS produces a checklist that is ordered by risk
and likelihood. For the achievable attacker goals that pose the
greatest risk, the VDS groups together attack plans achieving
similar goals, and identifies required configuration settings.

The primary value of the Knowledge Acquisition and Attack
Plan Steps is to generate a checklist as an input to focus more
detailed analysis. This checklist is prioritized and actionable
to make best use of limited analyst resources. Approaches
that perform a post-processing prioritization step would be
hopelessly inefficient. The checklist that the VDS generates is
in the order of likelihood of attack success.

III. ATTACK VERIFICATION AND FEEDBACK GENERATION

This Attack Verification and Feedback Generation section is
made up of two parts. The first part describes a vulnerability
verification method using simulation, for large scale test, and
actual automotive test to verify the simulation on actual soft-
ware running on the real platform. The second part performs
independent verification operating solely on the real software
binary code and vulnerability checklist clues.

A. Scenario Generation and Automotive Test Attack Verifica-
tion and Feedback Generation

As a prerequisite, a large set of scenarios (based on real-
world driving data) are abstracted into a virtual world model.
This large data set is then tagged with descriptors for each
scenario.

As depicted in Figure 3, Attack Verification and Feedback
(AVF) generation uses the vulnerabilities identified through
the feasibility and risk prioritized attack plan checklist, then
selects scenarios that would expose those vulnerabilities, and
generate controlled tests based on those scenarios.

ATTACK VERIFICATION AND FEEDBACK

Malice in the form of a
feasibility and risk
prioritized Vulnerability
Checklist

Build Scenario

Model Sensors

ew candidate and
validated
vulnerabilities for
new and improved
attack plans

Execute in fully instrumented Volvo

: H Add Control System

t ¥

@ Self-Localization

: gf’ HW in the Loop

reLad Morgadon Cals Fumon Sevmer

Fig. 3. Generate, verify and prune to manage and prioritize possible attack point vulnerabilities

Testing all possible conditions of a CPS in a non-cooperative
environment is difficult due to the vast set of possible scenarios
and failure modes. The attack plan checklist selects scenarios
that would expose those vulnerabilities and generate controlled
tests. By combining this technology with massively parallel
computation, storage system, and simulation technology, the
VDS generates parameterized scenarios based on real-world
data, and runs them in parallel.

Driving tests, and simulation systems that run a multiple
scenario closed-loop simulation with a System Under Test
(SUT) are executed. The test generator selects test cases out
of the collection that likely expose predicted vulnerabilities.
These cases are then run using a driving and sensor simulator
(PreScan by TASS [12]), a model of the vehicle (CPS)
under test (Matlab/Simulink) and a vehicle dynamics model
in a closed loop. Simulation results (pass, fail, near miss,
emergency, etc.) are fed back to the test generator where
modified test scenarios are generated creating the outer loop.
Well-defined interfaces of separately pluggable independently
developed modules are used to enable scaling and modifying
of applications independent of real or simulated sensors. Fig-
ure 4 shows Simulink correspondence to existing automotive
software that runs the same on computer and test-car test
benches. Both positive and negative test bench results are
returned to the Attack Plan Generator, with explanation, to
improve the HTN and SAT planner process.

In our second use case the SUT is exposed to an external
attack. In this case the proposed system generates attacks
scenarios on the systems.

In these cases the “real-world” scenarios are taken from
the recorded sample set, but then the ‘“test” scenarios are
modified by the attacker’s approach in the simulator (for
example a target appears in different locations for the radar
sensor and camera sensor, or a GPS drift is imposed). The test
generator then samples the parameter space of this scenario
based on results, and randomly varies the scenario (thousands
of different variations) to try to expose vulnerabilities in the
system. Using the ARE in this step greatly reduces the search
space. The found vulnerabilities are then fed back to the
system and/or user for further analysis.

The parameter space for these systems is so vast that a
brute force method for securing and proving correctness is
not feasible. With this approach the search space is reduced
to manageable dimensions while maintaining “full” test cov-
erage.

B. Automated Reverse Engineering (ARE) for Attack Verifica-
tion and Feedback Generation

The Automated Reverse Engineering (ARE) system auto-
matically searches software binaries for candidate software
vulnerabilities and determines which candidate vulnerabilities
can be exercised through external system input to realize a
cyber effect such as a crash or exploit [13][14]. The ARE
both provides candidate vulnerabilities to Alloy for attack
plan generation and verifies whether a candidate attack plan
can be realized against the real System under Test (SUT).
The ARE is a whitebox system that uses modern constraint
solvers to explicitly compute a set of external inputs that

=
el
il
e s
e
- Lot T
el i i
- o s
',
T Rt
Ry als R
o
ol “wai g
F— =
=
w LU hilen— .
- B o o S 2
e s i
P 10 -
fresis —— s —
sl e s e =3 [P
(- g B =8 i
e et e ..
- : D
2 . neR =
s e = "
-, W =, =3
firarty T L
R L.
— IR
T P o] -
1
e e
SR
it
2 L)
et
ke
e,
e,
e

Fig. 4. Executable Simulink Specification is System Under Test that runs on simulation and automotive testbeds

realize each unique execution or control-flow path through
the system software. The ARE thus is much more efficient
at searching the control-flow space than blackbox systems,
such as traditional blackbox fuzzers [15], which simply probe
the SUT with inputs drawn from the input space according
to some random or other process. More importantly, since the
ARE methodically explores each unique control-flow path, it
can demonstrate conclusively that a vulnerability of a given
type is either not present or cannot be exercised through the
external inputs of interest. The ARE is particularly well suited
to the automotive domain where well-defined interfaces and
software processing lead to simpler constraint problems than
are seen with applications such as Web servers or clients.

In contrast to other whitebox systems such as Microsoft
SAGE [16], [17] the ARE uses statically identified Points
of Interest (POIs) to quickly prune paths that ultimately will
not be of interest. For example, an attacker-controllable buffer
overflow cannot exist without an indexed memory operation,
i.e., base address + index, where the feasible values of the
index are in some way determined or tainted by external input.
For buffer-overflow analyses, the ARE statically identifies
indexed memory operations where the index is at least tainted
by something outside the local function as the POIs. During
the subsequent dynamic analysis, the ARE uses the POIs and
the software’s overall call graph to prune paths as soon as it
becomes clear that they cannot possibly lead to one of the
POIs. This POI-driven approach, in early testing, has shown
order-of-magnitude better performance than simply exploring
every path without reference to POlIs.

Figure 5 shows the architecture and components of the ARE
system. The execution environment is a real or virtualized
environment in which the software binaries of interest can be
executed under real-world conditions.

The ARE uses the execution environment to obtain a state
image for the SUT at the point where the SUT has reached
an internal state of interest. When searching for candidate
vulnerabilities, the ARE would provide a normal input to the
SUT and capture a state image when the software component
of current interest is about to perform its processing. When
validating that an attack plan can be realized, the ARE would
provide inputs according to the attack plan and capture the
state image when the software component containing the
suspected vulnerability is about to perform its processing. In
both cases, the ARE then performs its path exploration and
analysis starting from the point at which it captured the state
image.

The ARE does not perform its analysis against the live
system but instead against two intermediate representations
of the software binaries. The Power Reverse Engineering
Intermediate Language (PREIL) is a platform-independent
assembly language in which instructions have no implicit
operands or side effects. Every operand and effect is explicitly
represented and thus the PREIL translation of a single native
instruction typically requires multiple PREIL instructions. The
Taint Modeling Functions (TMF) are an algebraic represen-
tation of the PREIL where the variables are registers and

memory locations. Algebraic simplification produces TMF
expressions that can reveal POIs. For example, candidate
buffer overflows have a particular signature within simplified
TMF expressions.

Since the ARE performs its analysis against these platform-
independent representations, the only platform-dependent
components in the ARE system are the execution environment
and front-end translation modules that convert native machine
code to PREIL and TMF. The ARE currently has translation
front ends for 16- and 32-bit x86 machine code, 32-bit MIPS
machine code, and 32-bit ARM machine code. Adding a
new translation module is straightforward but does involve
many individual translations for a Complex Instruction Set
Computer (CISC) instruction set such as x86. Many of the
processors in embedded automotive systems, however, are
Reduced Instruction Set Computers (RISC) and have much
simpler instruction sets. The translation module for the basic
MIPS instruction, for example, took only a few man weeks
with each additional MIPS coprocessor adding only a few
additional man weeks. Further, since instruction sets change
very slowly and are typically backwards compatible with older
processor versions, a translation module, once written, requires
only sporadic updates and maintenance.

The Static Behavior Sensors (SBS) identify different types
of POI for different types of vulnerabilities. The set of POIs
is the set of Basic Blocks (BBs) of which a control-flow
path must reach at least one for a vulnerability of a certain
type to even potentially exist. An exploitable buffer overflow,
as noted above, cannot exist without a potentially tainted
memory-address calculation. Alternatively, unintended infor-
mation leakage in a network-transmitted response cannot exist
without an OS system call that actually places the response
onto the network. In this case, the POIs are BBs that contain
a transmission-related system call. Given a set of POlIs, the
ARE uses the software call- and control-flow graphs to define
a set of the paths that the codes structure allows. This set is
a superset of realizable paths since, although the code struc-
ture may allow a particular path, data-driven decisions may
make the particular path impossible. The superset, however,
allows the ARE to define a super-subset of paths that reach
one of the POIs. If a path under exploration deviates from
the super-subset, the ARE can immediately prune that path
during its dynamic-analysis steps. In this way, the ARE can
consider up to orders of magnitude fewer paths than actually
exist in the software while still comprehensively evaluating
the software for the given vulnerabilities. This efficiency is
particularly important in the safety-critical automotive domain
that demands an extremely large number of tests and analyses
and must provide six-nines likelihood that certain failures and
attacks cannot occur.

The ARE’s dynamic analysis, which is to the right of
the dashed line in Figure 5, actually explores the control-
flow paths. A planner guides the overall process. Starting
with a random or other bootstrap input, the planner obtains
a first control-flow trace with a PREIL-based emulator. A
taint-analysis engine identifies the input-tainted conditional

ATTACK VERIFICATION AND FEEDBACK

New candidate and validated
vulnerabilities for new and improved

attack plans

Malice in the form of a feasibility and
risk prioritized Vulnerability Checklis

6&\ \\

)

Analysts

_—

/

P —— aps -
Binary xecution Initial Planner Main
Environment State il (Path Selector) Loop
4
Preprocessing New Inout
v Inputs P
2w
[T
2 <
o léﬂ PREIL Constraint Dyn. Behav PREIL
8 = & TMF Solver Search (DBS) Emulation
= v
T @ 4 \
E £
2 & . Control. Partial
2 w Static Behav. POIls Jumps Trace
Search (SBS)
4 Taint
Analysis

Fig. 5. The Automated Reverse Engineering (ARE) system performs both static analysis (left side of dash lines) and dynamic analysis (right side of dashed
line) to identify candidate vulnerabilities and determine which candidate vulnerabilities can be exercised through external system input.

branches i.e., conditional branches where the condition de-
pends in some way on external input within the trace. These
input-tainted branches, which we call controllable jumps, rep-
resent the potential for deriving new control-flow paths from
the existing trace. The constraint solver, for each controllable
jump, formulates and solves a constraint problem to compute
a new input, if it exists, that will reach the controllable jump
along the same path prefix but then take the conditional branch
in the other direction. The planner thus ends up with a set
of new inputs that can be used to generate new traces that,
in their turn, will leads to additional inputs. The planner, of
course, does significant work to prune the emerging paths that
cannot possibly reach one of the POIs; avoid consideration
of duplicate paths; and avoids repeated solution of constraint
subproblems when possible.

The Dynamic Behavior Sensors (DBS), which are in the
middle of the planner loop in Figure 5, consider each path or
trace as the planner discovers it and determines whether that
path actually contains a vulnerability relative to the systems
external input. This determination occurs in one of two ways.
First, the path exercises the vulnerability directly. For example,

in the case of a potential buffer overflow, the path being
considered might overflow the buffer, something that can be
directly observed. Second, the path does not exercise the
vulnerability directly under the planner-computed input, but
a different input exists that would follow the same path and
exercise the vulnerability. For example, if the path in question
indexes into valid element k£ of an n-element array where
k < m, a different input might induce the same control-flow
path yet index into invalid element & where & > n. The ARE,
as it performs the taint analysis, performs full interval analysis
to assess the realizable ranges of registers, pointer values, and
other data. If interval analysis indicates that the vulnerability
might be exercisable with a different input value, the ARE
extends the constraint problem associated with the control-
flow path to include additional assertions. In this example, the
ARE would assert that it wants the same path but with k£ > n
at a certain point. If the expanded constraint problem has a
solution, the candidate vulnerability is a real vulnerability that
can be exercised through external input.

The ARE’s approach of independently assessing each path
has two advantages. First, it is typically extremely quick to

Bug sets p
not p

: ‘l

sb's produce overflow (when realloc
returns newBuf != origBuf)

Fig. 6. A real ARE-discovered buffer-overflow flaw where the programmer
uses the old pointer value rather than the potentially new pointer value from
realloc

solve the extended constraint problem starting from the current
input solution. Second, since a vulnerability must exist along a
realizable path for it to be a threat, considering the realizable
paths independently does not hinder our ability to conclude
that a vulnerability is not present in the software.

The ARE, through its overall approach, addresses many
different types of vulnerabilities and malicious code extremely
well:

e Memory. Improper access to memory, including buffer
and stack overflows. Figure 6 shows an ARE-discovered
software flaw where the programmer has used realloc
to obtain a larger buffer but then inadvertently used the
old buffer pointer when writing data. In cases where
realloc could not expand the existing buffer in place,
this software flaw produces a buffer overflow as the code
writes past the end of the old (smaller) buffer.

o Information leakage. Sensitive information, as defined by
an analyst, reaches or taints external output.

o Parameter manipulation. Parameters to dangerous func-
tions, such as fprintf, or system calls, such as
execve, are input tainted. An analyst would evaluate
ARE-identified parameters further to determine if the
input-tainted parameters have been appropriately sani-
tized.

o Safety violations. There exists a control-flow path along
which the software performs an unexpected action, such

Run Username Bytes 0-13

0 abcde fgh i1 j k Im0Odo0d
1 a b cdefgh i j k Im0d0ol
80 |00 D00 e f g K 1 j k 10D 00
81 | £000000 e f g h 1 | k 1mo000
82 |NE010000 e T g h 1 j k_1mo0000
84] c | 0000 e f g h i i k_1m0000
26 | £ h0100 e f g h 1 | k 1Imo000
87 |c h 200 e f g h 1 | k Imooad
83 | € h a0l e f g h i j k _1m0000
90 |l ¢ h a n e f g h 1 j k [1m0O00D
92 | € h a nO0ODOD DD 1 j k 1/;n0d 00
93 | £ h a n g0 00 1 j k 1 moO000D
95 | ¢ h a n 010000 i j k I/m0d|00
96 | ¢ h a n g eDOO0 1 j k [1mo0O00D
98 | ch an g eol00 i j k_1m0000
o3 |eh an g ep0o i |k Imoooo
101 c h an g e p0l i | k Im0000
l2fc h anegepo I jk Imoooo
104/ c h an g e p 000000000 MO0 00
105/ c h a n g € p o w00 0000 m 00|00
107 €c h a n g € g o w0l 0000 m 00|00
108l c h a n g e p ow e0000 moO0 0D
1100 c h a n g e p ow e0l0d moo 0D
111 €c h a n g e p o w & 100 moOo0D
113 € h @ n g e p o w e 01 mo0d0d

Fig. 7. The ARE quickly identifies a hard-coded backdoor username and
associated Trojan code that a test team inserted into the real dropbear
executable from a software router.

as communicating with a component that should not be a
communication partner. There exists a control-flow path
that reaches function F without going through function G.
For example, F might be a function that changes a braking
configuration parameter, and G might be an authenti-
cation routine that verifies that the parameter-change
command can come only from the primary processor.
The analyst identifies functions F and G and can impose
additional conditions. In this example, reaching function
F even though function G returns ACCESS_DENIED is
still a safety violation.

o Liveness violations. There exists a control-flow path in
which the software is no longer exercising (critical)
function F in response to external input. The analyst
identifies function F.

o Backdoors and other Trojan code. There exists a control-
flow path that makes a decision based on an unexpected
characteristic/feature of the external input. For example,
if the software makes a decision based on a specific hard-
coded value of a username or password field, that deci-
sion is intrinsically suspicious and worthy of immediate
attention, Figure 7 shows an example of exactly this case
where the ARE discovered a backdoor username that a
test team had inserted into a real router executable. The
ARE reveals the username, one character at a time, as
it solves for inputs that satisfy the conditional branches

associated with recognizing the username. Although the
backdoor username happens to be human-readable in
this case, the only thing that matters to the ARE is the
existence of a control-flow path that expects a specific
username (as opposed to normal control-flow paths that
compare a username against a set loaded from a con-
figuration file or other source). The domain analyst can
define the unexpected input-driven decisions for the ARE
to evaluate.

« Integer overflow/underflow and divide by zero. The ARE,
through its taint analysis, interval analysis, and constraint
solvers, is uniquely suited to identify potential problems
with integer calculations. For example, if external input
can produce a denominator of 0, the software may crash
or freeze when the division is performed. More inter-
estingly, the ARE is able to identify the multiplication-
produced integer-overflow vulnerabilities associated with
the recent Android STAGE FRIGHT vulnerabilities. The
ARE does not yet have the code to address floating-point
issues but ultimately can address floating-point problems
in analogous ways.

The ARE has performed extremely well against many
software executables but is still under active development
across multiple projects. Currently the team is focused on
the system engineering needed to (1) reduce developer effort
when implementing new front-end translation modules and
providing syscall models for the PREIL emulator and (2)
perform complete analyses overnight rather than over several
days. These enhancements will make it much easier to apply
the ARE to new platforms, e.g., proprietary embedded systems
in the automotive domain, and to fit the ARE into existing Test
and Evaluation (T&E) procedures and timeframes.

As is and as it evolves further, the ARE can play exactly the
intended role in our larger approach. An attack plans provide
bootstrap inputs and define POls, e.g., this section of particu-
larly critical code. The ARE determines if the attack plan can
realize a real attack. Conversely, the ARE’s existing analyses
identify vulnerabilities that can be used to generate additional
attack plans. The resulting iterative process can analyze system
safety, security, and liveness across as comprehensive a set of
attack plans as desired.

IV. CONCLUSION

We have described a method to digest online and man-
ufactured attack-related technical data to proactively secure
automotive electrical systems using an Attack Plan Gener-
ator that combines a hierarchical task network planner to
efficiently hypothesize likely attack scenarios with planning,
formal model checking to prune infeasible attacks, and ARE
to prune the software search space. While we are in the
process of developing each of the related components, they
are at varying levels of maturity (e.g. the Semantic Alignment
Mediator [5] is the most mature), and we are identifying new
development opportunities to connect the research “dots” to
bring the Knowledge Acquisition and Attack Plan Generator
vision into practice.

V. ACKNOWLEDGEMENTS

The development of the Automated Reverse Engineering
(ARE) system is supported by Defense Advanced Research
Projects Agency (DARPA) and SPAWAR Systems Center
Pacific (SSC Pacific) under Contract No. N66001-13-C-4047.

This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA). The views,
opinions, and/or findings contained in this article/presentation
are those of the author(s)/presenter(s) and should not be
interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

The authors extend their deep gratitude to the ARE R&D
team, Ms. Quy Messiter, Dr. Vu Le, Dr. Rob Ross, Mr. Michael
Weber, Mr. Gregory Sadosuk, Mr. Terry Ware, Mr. Haris
Stewart, Mr. Christopher Cash, Mr. Carl Washington, and Mr.
Kris Ambrose, and to Mr. John (JH) Berry from Cromulence
LLC, who has provided feedback on ARE usability from an
expert analysts perspective.

REFERENCES

[1] J. Smith and M. Figueroa, “Reduced realistic attack plan surface for
identification of prioritized attack goals,” in 2013 IEEE Homeland
Security Conference, Nov. 2013.

[2] D. Jackson, Software Abstractions — Logic, Language and Analysis.
MIT Press, 2011.

[3] J. Smith, B. Krikeles, D. K. Wittenberg, and M. Taveniku, “Applied
vulnerability detection system,” in Proceedings of the IEEE International
Conference on Technologies for Homeland Security, 2015.

[4] C. Miller and C. Valasek, “Adventures in automotive networks and
control units,” DEF CON, vol. 21, pp. 260-264, 2013. [Online].
Available: http://illmatics.com/car_hacking.pdf

[5] BAE Systems, “Mediation, alignment, and information services for
semantic interoperability (MAISSI): A trade study,” Air Force Research
Laboratories, Tech. Rep. AFRL-IF-RS-TR-2007-147, June 2007.

[6] The MITRE Corporation, “Common vulnerabilities and exposures
(CVE).” [Online]. Available: http://cve.mitre.org

[7] NIST, “National vulnerability database (NVD).” [Online]. Available:
http://nvd.nist.gov

[8] “Automakers announce initiative to further en-
hance cyber-security in autos,” 2015. [Online]. Avail-
able: http://www.autoalliance.org/index.cfm?objectid=8D04F310-2A45-
11E5-9002000C296BA 163

[91 M. Ring, J. Diirrwang, and R. Kriesten, “Building an automotive

vulnerability database survey and tools,” in ESCAR, 2015.

O. Sheyner and J. Wing, “Tools for generating and analyzing attack

graphs,” in 2nd Intl. Symposium on Formal Methods for Components

and Objects, ser. LNCS, no. 3188. Springer Verlag, 2004.

The MITRE Corporation, “Common attack pattern enumeration and

configuration (CAPEC).” [Online]. Available: http://capec.mitre.org

“PreSCAN product page,” 2014. [Online]. Available:

https://www.tassinternational.com/prescan

B. Ross, “Are: A system for automated reverse engineering,” Poster

Session, High Confidence Systems and Software Conference, 2013.

V. Lee, Q. Messiter, R. Ross, and G. Sadosuk, “ARE: Automated

reverse engineering of machine,” BAE Systems CCTR (Cyber and

Communications Research) White Paper, 2014.

M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability

Discovery. Addison-Wesley, 2007.

P. Godefroid, M. Y. Levin, and D. A. Molnar, “Au-

tomated whitebox fuzz testing” in NDSS, vol. 8, 2008,

pp. 151-166. [Online]. Available: http://research.microsoft.com/en-

us/um/people/pg/public_psfiles/ndss2008.pdf

, “SAGE: White box fuzzing for security testing,” CACM, vol. 55,

no. 3, March 2012.

[10]

(1]
[12]
[13]

[14]

[15]

[16]

(17]

