
PERFECT Case Studies Demonstrating Order of
Magnitude Reduction in Power Consumption

David K. Wittenberg⇤, Edin Kadric‡, André DeHon‡, Jonathan Edwards⇤, Jeffrey Smith⇤, and Silviu Chiricescu⇤
⇤BAE Systems

‡University of Pennsylvania

Abstract—We propose three methods for reducing power con-

sumption in high-performance FPGAs (field programmable gate

arrays). We show that by using continuous hierarchy memory,

lightweight checks, and lower chip voltage for near-threshold

voltage computation, we can both reduce power consumption

and increase reliability without a decrease in throughput.

We have implemented these techniques in two different, realistic

wide-area motion imagery algorithms on FPGAs. We demon-

strated greatly improved performance/efficiency compared to two

flight-tested platforms, getting up to a 250X reduction in power

use (measured in giga operations per second per watt). This paper

summarizes these two case studies.

I. INTRODUCTION

As part of DARPA’s (Defense Advanced Research Projects
Agency) PERFECT (Power Efficiency Revolution For Em-
bedded Computing Technology) Program, we developed the
LEARN (Low-Energy Architecture of Reconfigurable Nodes)
architecture, which represents a reconfigurable hardware ap-
proach. To highlight its capabilities, we have used a wide-
area motion imagery (WAMI) application as a test. WAMI
systems have to fly on power-constrained aircraft, with limited
bandwidth to the ground, requiring most of the computation
to take place on the aircraft. This implies a requirement to
reduce power consumption as much as possible.

WAMI algorithms require a representative mixture of pro-
cessing techniques and kernels: it includes linear algebra and
image arithmetic operations. This makes it a good test case for
systems with high vector/matrix computational requirements.

A. Advances

We introduce three innovations which together result in lower
power use without a loss of throughput or reliability. They are
introduced here, and more fully described in Section III.

1) Continuous Hierarchy Memory (CHM): By splitting the
memory blocks into multiple banks, it is possible to reduce
energy consumption by choosing the optimal memory size for
an application. Memory block size is chosen at fabrication
time. Further optimization is possible at fabrication time by
choosing the size of the memory blocks. The optimal size of
the memory blocks is application dependent.

2) Lightweight Checks (LWC): For many problems, it is much
easier to check an answer than to find it in the first place.
For example sorting takes time n log n, but can be checked in
linear time. We use LWC to verify the computations and repeat
them if a failure is detected. As a result, this process makes up
for reliability lost when we calculate with low votage (Vdd).

3) Lower Voltage: By running the chip at a near-threshold
voltage, we reduce the power consumption of the chip while
paying a reliability and throughput penalty. However, we
recover the reliability loss (by employing LWC) and restore
the original throughput (by increasing the parallelism of the
design) while maintaining most of the (substantial) power
savings advantage.

If the platform has additional resources, the power savings
could be used to move more logic onto the platform while
maintaining a fixed power envelope. For example, on one of
the case studies, the WAMI processing was only a small part
of a larger computation mapped across multiple computing
nodes. By lowering the power required by the WAMI com-
putation we could do additional computations on one FPGA,
and in the process remove the need for some interfaces and
auxiliary circuitry, resulting in additional power savings.

B. Two Case Studies

We demonstrate these advances on two related WAMI systems:
ARGUS-IS [1] (Autonomous Realtime Ground-Ubiquitous
Surveillance-Imaging System) and TAILWIND (Tactical Air-
craft to Increase Long-Wave Infrared Nighttime Detection) [2].
ARGUS is an advanced camera system that uses hundreds
of cellphone cameras to record video and autotrack moving
objects. ARGUS was chosen as a common WAMI system,
across all DARPA PERFECT performers, where power reduc-
tion was mission critical. These technologies were also applied
to TAILWIND, as a second case study, as it represented the
next-generation WAMI processing pipeline that goes beyond
simple detection and tracking of vehicles and pedestrians, and
is capable of performing 3-D scene reconstruction, working in
the Infrared (IR) spectrum. The 3-D scene structure was pos-
tulated to improve detection of small targets (e.g. pedestrians)
occupying very few pixels. By understanding 3-D structure,
nuisance false-alarm sources (e.g. those caused by parallax)
could be mitigated in ways not easily accessible in traditional



WAMI processing pipelines lacking this information. TAIL-
WIND was designed to fly at lower altitude than ARGUS to
concentrate more on tracking pedestrians.

The rest of the paper is organized as follows: Section II
discusses ARGUS and TAILWIND in more detail, as well as
describing the kernels which make up both systems. Section III
describes the novel techniques we developed for lowering
FPGA power consumption. Section IV shows the results of
our improvements and Section V concludes.

II. CASE STUDIES

In this section we describe three implementations of a WAMI
pipeline. Two of the implementations have been flight tested
and the third one is based on our LEARN architecture and
compared against the other two. WAMI systems are designed
for use on unmanned aerial vehicles (UAVs) and long-flight
duration airships, so the need for power efficiency cannot
be overstated. These reconnaissance platforms are designed
to loiter, and contain other payloads, resulting in extremely
limited available power. Ground users are generally able to
communicate with such platforms through a constrained wire-
less downlink, but there is also a premium on this bandwidth.
Ultimately, this limits the ability to process large amounts of
data on the ground in real time. For that reason, significant
processing must occur on the platform and the system is highly
power constrained.

The first implementation targets a combination of CPU/GPU
platform derived from the original ARGUS architecture.
Specifically for testing purposes, we have used a Tesla K40
(with 6 GHz memory clock, 384 b memory width, 235 W
power consumption and 4.29 TFLOPS single precision). The
second implementation maps the advanced wide-area image
processing algorithms in TAILWIND onto a typical low-power
x86 CPU (Intel Core i5-4250U processor) platform fabricated
in 22 nm. The third implementation (PERFECT WAMI) was
developed during the DARPA PERFECT Program [3] and can
be targeted to a custom-defined differentially reliable LEARN
architecture.

A. Kernels

The PERFECT WAMI application software was adapted from
the original reference implementations of three algorithm
kernels created by the BAE Systems PERFECT team, namely:

• Debayer (for image decolorization) – Kernel for convert-
ing a 1-channel Bayer color filter pattern image into a
3-channel RGB image by interpolating pixels in a 5 x 5
pixel window.

• Lucas-Kanade (LK for image registration) – Kernel for
image alignment between successive frames of a moving
image. The LK algorithm is used as an iterative solver for
the affine warp parameters that relate successive images.

• Gaussian Mixture Models (GMM for image change
detection) – Kernel for separating background objects

from foreground or moving objects in a video stream.
GMM models the probability that a given pixel is in the
foreground using multiple Gaussian probability models
for each pixel.

The 3 kernels were designed using Bluespec SystemVerilog1

and mapped onto the LEARN architecture using a customized
set of tools based on VTR [4].

Table I shows key differences between ARGUS and TAIL-
WIND.

ARGUS TAILWIND

Visual spectrum Infrared spectrum
Debayer No Debayer, as IR doesn’t need it

Registration - LK Registration SLAM (FAST 9)
H.264 Frames PNGs

Multiple GMMs Multiple GMMs, RFD
TABLE I

ARGUS VS. TAILWIND DIFFERENCES

For image registration, ARGUS utilizes the Lucas-Kanade
(LK) algorithm [5], while TAILWIND utilizes FastSLAM [6],
a modern simultaneous localization and mapping (SLAM)
algorithm [7].

The SLAM algorithm consists of three steps. In the first
step, a set of feature points is extracted from the image
using the Rosten and Drummond [8], [9] algorithm. The
second step determines the correspondence of the feature
points across images using a RANdom SAmple Consensus
(RANSAC) algorithm [10], which has been proven to be robust
to outlier corresponding points. The last step estimates the
camera rigid body motion between two consecutive frames as
an 8 parameter homographic transform, using the Levenberg-
Marquardt algorithm [11].

The SLAM approach is particularly relevant in an unknown
3-D environment such as that addressed on TAILWIND. It is a
natural framework within which: 1) perspective homographies
can be recovered, or 2) 3-D scene structure can be incorpo-
rated.

For detection, ARGUS uses a traditional Gaussian mixture
model (GMM) algorithm (e.g. Stauffer-Grimson GMM) [12].
The observed intensity of each pixel is modeled by K mixtures
of Gaussian distributions (each one with its own mean, stan-
dard deviation, and weight). The algorithm has three basic
steps: (i) the intensity of each pixel is matched (based on
a threshold) against all the Gaussian distributions; (ii) based
on the results from the previous step, the parameters of the
matched Gaussian distribution (if there is one) or that of the
least likely distribution (if none matched) are updated; and
(iii) the number of background distributions is updated and
the pixel is classified as background or foreground.

The GMM algorithm works well for images produced by
stationary cameras when the lighting changes slowly. However,

1Bluespec SystemVerilog is a high-level, Haskell-extended, functional hard-
ware description programming language used to accelerate reliable chip design
and electronic design automation.



if used on images produced by moving platforms (such as
UAVs), the algorithm produces high rates of false alarms,
especially in regions with high contrast (e.g. a crosswalk)
due to image alignment errors, parallax handling, and post-
transform image interpolation. To deal with these challenges,
TAILWIND provides three improved versions of GMM: GMM
+ edge suppression, interval-based GMM, and robust frame
differences (RFD) [13]. The edge suppression lowers the false-
alarm rate, but can introduce fragments in detection. The
interval-based GMM extends the search of matching GMM
to surrounding warped pixel location to deal with registration
drift. The RFD applies the main idea in interval-based GMM
to the traditional frame differences algorithm.

Demosaic 
and Color 
Transfom

Image 
Alignment

GMM MTI

Y Image

Affine 
Transform

Background 
Mean

Detection 
Image

MtiTestApp Kernels

Input Image
File

Y Image 
File

Transform 
Text File

Detection 
Image File

Fig. 1. The ARGUS wide-area imaging processing pipeline test application

B. ARGUS

BAE Systems and DARPA developed the ARGUS-IS sen-
sor (Fig. 1) and the first- and second-generation Airborne
Processing System (APS) [1]. The ARGUS-IS sensor is a
1.85 GPixel, Bayer pattern, motion imaging system consisting
of 368 individual, 5 MPixel CMOS image sensors, with a
maximum frame rate of 10 Hz. The systems were developed
to support several military objectives for wide-area persistent
overwatch, including tracking of pedestrians and vehicles
with an operational concept emphasizing wide-area persistent
surveillance of city-sized ground areas. A typical use case
would involve simultaneously: 1) creating and downlinking
many simultaneous geostationary area or object (vehicle and
pedestrian) tracking video feeds, 2) lossy compression and
storage of the full-scene image stream, and 3) full-scene vision
processing for motion detection or tracking of vehicles.

C. TAILWIND

TAILWIND is the next-generation WAMI processing pipeline
that goes beyond simple tracking of vehicles and pedestrians.

SLAM 
Registration 

Homographies 
(image-to-world) 

Micro-tracks 

Micro-
Tracking 

Graph 
Tracker 

Sensor 
Preprocessing 

System 
Database 

3D Model 

Tracks 

Detection 

Model updates at 
reduced framerate 

Images and 
metadata 

PERFECT 
LK 

PERFECT 
GMM 

Fig. 2. The TAILWIND image processing subsystem instrumented with
PERFECT kernels (in blue).

Our motivation for adding the TAILWIND case is that TAIL-
WIND: 1) is capable of performing 3-D (actually multiple 2-D
planes) reconstruction of a scene from IR data for improved
clutter removal, 2) is a locally modifiable, closest matching,
WAMI program that actually flew on real avionic platforms,
3) has a framework that incorporates elements from tactical,
small-SWaP and exploitation systems, 4) has a variety of
WAMI datasets with associated ground truth data for electro-
optic and infrared sensors needed for measurement, 5) has
algorithm metrics for functional verification (e.g. probability
of detection and false alarm rate) and 6) has performance
metrics for comparison to conventional architectures (CPU
usage, memory, run time) - See Table II.

TAILWIND code runs on an low-power x86 platform and
is optimized for performance with minimal consideration
given to energy consumption. To test the applicability of
the PERFECT technologies to the TAILWIND system, we
have substituted TAILWIND’s image registration and change
detection kernels with functionally equivalent kernels from the
ARGUS/TAV suite (see Fig. 2) and evaluated the system-level
performance.

III. ADVANCES

We introduced the LEARN architecture, an FPGA architecture
that supports operation at near threshold voltages with cus-
tomized banked internal memories [14]. When error checking
is performed with LWC [15], a net energy savings can be
realized with no loss of reliability. The LEARN architecture
is characterized by:

• Very low energy consumption
• Low system clock rates
• Increased silicon area to accommodate application paral-

lelism to compensate for slow clocks with no decrease in
throughput.

A. Continuous Hierarchy Memory

CHM was introduced in [16], and better described in [14].
Because the energy cost of addressing memory grows as the



Data Set System Level SLAM + RFD LK + RFD SLAM + GMM
Metric

Quantico Scene 1 P(vehicle detection) 0.9 0.53 0.5
P(dismout detection) 0.64 0.38 0.46
False Alarm/minute 1.35 103 163
P(tracking vehicle) 0.3 0.1 0
P(tracking dismount) 0.33 0.14 0.14

Quantico Scene 2 P(vehicle detection) 0.82 0.89 0.3
P(dismout detection) 0.52 0.71 0.25
False Alarm/minute 8.9 149 124
P(tracking—vehicle) 0.42 0.25 0
P(tracking—dismount) 0.44 0.28 0.1

Quantico Scene 3 P(vehicle detection) 0.85 0.54 0.24
P(dismout detection) 0.6 0.42 0.19
False Alarm/minute 4.1 117 126
P(tracking—vehicle) 0.15 0.13 0.03
P(tracking—dismount) 0.21 0.09 0.27

TABLE II
TAILWIND SYSTEM-LEVEL EVALUATION METRICS FOR DIFFERENT KERNELS

square root of the size of the memory block, excessively
large memories increase the energy cost. Excessively small
memories have increased energy costs because of the longer
wires necessary to reach the extra memory blocks. CHM
minimizes the energy cost by dividing memory blocks into
several smaller blocks, allowing the designer to use an optimal
number of memory blocks. One can further optimize power
consumption by choosing the appropriate-size memory blocks
when the FPGA is made.

B. Lightweight Checks

In many applications, particularly in signal processing, we
can tolerate increased error rate while still maintaining proper
operation. These are applications that already tolerate a level
of signal-to-noise ratio (SNR), such as compression, object
matching, and feature detection. Therefore, we often have
a margin to decrease voltage and SNR, yet maintain an
acceptable signal, image or sound quality, even with more
errors at the output.

Some kernels also have inherent fault mitigation mechanisms.
For example, consider using GMM [17] to separate foreground
objects from the background. The algorithm itself is inher-
ently noisy. As a result, the downstream processing typically
performs morphological operations to tolerate isolated pixels
that are misidentified [12]. As long as the errors introduced
due to transient circuit failures are small compared to the
noise inherent in the algorithm, the downstream operations
can easily tolerate them along with the algorithm noise. We
tolerate an isolated foreground or background pixel that would
be removed by the morphological operations.

Other kernels require correct results and do not tolerate errors
introduced by circuit failures. For those kernels, we use
LWC to detect failures in the computation and re-execute
the computations. A detailed classification of LWC classes is
presented in [18]. Here, we present only two classes:

1) Operations with Checksums: Many signal, image pro-
cessing, and scientific computing tasks are based on linear

weighted sums. It is often possible to identify sums that remain
invariant between the input data and the output data, or at
least change in easily predictable ways. These sums serve as
an LWC on the operation.

2) Convergent Algorithms: Iterative convergent algorithms are
an important class of kernels in both image processing [5] and
scientific computing [19]. They often have the useful property
that an LWC is built into the algorithm—the convergence
acceptance test. Assuming the the acceptance check is reliable,
it guarantees that no result is produced until it is correct. In
many cases, the algorithm will self-correct if errors occur
in an iterative improvement computation. This means, for
correctness, we only need to focus on the convergence test
regardless of the iterative improvement computation. If neither
fault mitigation or built-in LWCs apply, we have to engineer
custom LWCs to add to the algorithm.

IV. RESULTS

For the WAMI pipeline of ARGUS and TAILWIND, we have
employed the profiling and power-estimation tools provided
by the manufacturers of plaforms onto which the application
was mapped. For the WAMI pipeline mapped onto the LEARN
architecture, we have provided detailed simulations and energy
estimations using a set of tools developed (and validated)
during the PERFECT program.

A. ARGUS

1) Measurement Methodology: Power and calculation opera-
tions were profiled on a 3000-image, 5 MPixel (2592 x 1944
pixels with 8-bit/color RGB per pixel) focal plane array (FPA)
representative test data set consisting of 3.3 Hz ARGUS-IS
imagery representing an observation duration of 16.7 seconds
(four FPAs were repeated fifteen times to approximately match
the 60-FPA, node-level load of the fielded system).

NVML API [20] and nvprof [21] sampling profilers from
NVIDIA were used to obtain power and timing estimates,



from which energy estimates were derived. Pure calcula-
tion algorithm timing estimates were obtained by subtracting
PCIe device-transfer and CUDA overhead time. The profiler
also specified calculation-operation and memory-transaction
counts.

2) Results: The ARGUS WAMI application shown in Fig. 1
mapped onto a Tesla K40 platform has achieved a total of
940 ⇤ 109 operations and 17 giga-transfers (i.e. 384-bit global
memory read/write interactions) while maintaining a constant
power draw (across all kernels) of 77.4 W for 3000 FPAs
in 6.5 seconds of wall-clock processing time. This suggested
per-pixel values of: 33.5 nJ, 62 calculation operations, and 18
B of memory access. ARGUS achieves 1.86 GOPS/W (giga
operations per second per watt).

B. TAILWIND

1) Measurement Methodology: The TAILWIND WAMI
pipeline (shown in Fig. 2) was compiled and run on a fourth-
generation ultra-low power Intel Core i5-4250U processor
fabricated on a 22 nm node and running at 1.3 GHz. The Intel
performance analyzer, Intel R�V TuneTM Amplifier 2015 [22],
was used to implement extensive energy measurements of the
code. Since the performance analyzer samples the performance
counters present inside the Haswell microarchitecture, for each
input data set, we have conducted 11 runs and averaged the
results (e.g. energy, time) across all the runs. Each input data
set consists of 500 frames at 2048 x 1536 pixels.

2) Results: Here we present the energy and latency of only the
image registration and change-detection blocks from Fig. 2.
Although we have the overall performance numbers for the en-
tire pipeline, we present in Figure 3 only the energy per frame
and latency per frame for the image registration and change
detection only (see the columns with green background). This
is done because: (i) we want to assess the applicability of the
techniques discussed in Section I-A to the above-mentioned
kernels; and (ii) together, these kernels account for a significant
percentage (i.e. 21+6.6=27.6%) of the overall energy of the
TAILWIND system.

Fig. 3. TAILWIND vs PERFECT kernels

C. LEARN

1) Measurement Methodology: A WAMI application simi-
lar to the one presented in Fig. 1 has been mapped onto

the LEARN architecture. Since we are able to vary any
architectural parameter, we have conducted a sweep of the
most important architectural parameters (i.e. memory size and
organization, location of the memory within the FPGA fabric,
type of hard resources available, operating voltage, algorithm
parallelism) to arrive at an optimal LEARN architecture that
meets the throughput requirement and minimizes the overall
energy.

The entire WAMI application is represented as a parameterized
Bluespec SystemVerilog design, which is mapped onto our
architecture using an internally developed customized flow
based in part on VTR [23]. To get accurate energy estimation,
we use activity factors obtained by simulating the gate-level
design processing the same inputs as the ones mentioned
in Section IV-A1. This way, we know precisely how often
any architectural element (i.e. look-up table, routing segment,
memory access, etc.) is toggled. Since we share inputs with
the ARGUS implementation of the WAMI pipeline, we can
compare the energy required by the two implementations.

Our energy estimation also considers the operating voltage
of every architectural element and the characteristics of the
process technology. We operate the memory elements at
nominal voltage and use CACTI [24] to model their energy
consumption. We operate the remaining architectural elements
at close to threshold voltage to save power.

2) Results: This section presents the energy consumption of
both the full WAMI application and its constituent kernels.
We have mentioned above that we have conducted a sweep
of the architectural parameters to determine the architecture
that minimizes the energy. It comes as no surprise that the
architectures that minimize the energy consumption of each
WAMI kernel (while maintaining throughput requirements)
have different parameters. Specifically, they have different
memory block sizes. For example, the optimal energy for
GMM and DeBayer kernels is achieved for an architecture
with a memory block size of 128Kb x 64, and 32Kb x 64,
respectively.

To assess the improvements afforded by the techniques de-
scribed in Section I-A on a flight-tested system, we replace
the image-registration and change-detection kernels in the
TAILWIND system with “functionally” equivalent kernels
used with the LEARN architecture (see Fig. 2) and evaluate
the resulting system-level performance. The blue background
columns in Figure 3 show the energy consumption of the
above-mentioned kernels. There are two energy numbers for
each of the kernels – one for an architecture with “regular”
memory blocks (STD), and one for an architecture employing
the CHM memory block. In both cases, the size of the memory
block is kept constant at 64 Kb x 64.

Figure 3 shows that the “PERFECT kernels” (i.e. LK and
GMM) consume only a small fraction of the energy con-
sumed by the functionally equivalent “TAILWIND kernels”
(i.e. SLAM and RFD): 129/752⇡17% and 14/237⇡6% for



the image registration and change detection respectively. This
is due to multiple factors such as: running frequency of
the kernels, spatial distribution of the computations in the
“PERFECT kernels” and memory access optimization. In
addition, the “PERFECT kernels” could further benefit from
having the computations run at near-threshold voltage (e.g. 0.6
V) resulting in additional energy savings.

64k 128k 64k-CHM 128k-CHM 64k-CHM-S128k-CHM-S
0

0.02

0.04

0.06

0.08

0.1

0.12

Lucas-Kanade Energy/Frame

mem
route
logic
clk

Memory Size

E
ne

rg
y(

J)

Fig. 4. LK Energy/frame using one PE

64k 128k 64k-CHM 128k-CHM 64k-CHM-S128k-CHM-S
0

0.005

0.01

0.015

0.02

0.025

GMM Energy/Frame

mem
route
logic
clk

Memory Size

E
ne

rg
y 

(J
)

Fig. 5. GMM Energy/frame using one PE

Figures 4 and 5 show the energy per frame for the LK and
GMM kernels for two different architectures (with memory
blocks of size 64Kb x 64 and 128 Kb x 64) along with the
energy contribution breakdown – using a frame size of 1024
x 1024. As expected, the memory and route energy dominate
the energy expenditure. Taking as basis an architecture with a
single processing element and standard (non-banked) memory
blocks of size 128 Kb x 64, the GMM and LK kernels achieve
an energy savings of 21.5% and 24% respectively, for simply
employing CHM (e.g. banking existing memory - see the
“128k-CHM” bars); an additional 14.1% and 23% savings
is achieved by scaling the voltage down from the nominal
0.95 V to the near-threshold value (see the “128k-CHM-S”
bars). Scaling the voltage from the nominal value to the near-
threshold value comes at the expense of increasing the delay
by a factor of 29. To make up for the significant decrease in
throughput, one can increase the parallelism by adding more
processing elements, but that in turn increases the area required
by the circuit. A more appropriate choice is to scale the voltage
down to 0.75 V which in turn would increase the delay by

a factor of ⇡ 3.5; this throughput loss can be easily made
up by quadrupling the number of processing elements for a
kernel like GMM. Increasing the number of PEs also reduces
the energy consumption (due to needing less memory per PE)
up to a certain point after which the energy increases due to
interconnect energy [14].

To determine the parameters of the LEARN architecture that
minimize the energy of the entire WAMI application, we have
conducted preliminary studies with small input image sets (i.e.
input frames of size 256x256, 512x512, 1024x1024). These
experiments allowed us to determine that the architecture
that minimizes the overall energy consumption of the WAMI
application has a block memory size of 64Kb x 64, with
memory block columns placed every 20 logic block columns.
We then scaled up the simulation to the 5 Mpixel FPA size
(same input size as the experiments in Section IV-A) and
3000 frame data set. Multiple Vdd values and technology
nodes were simulated. In the optimal configuration of 64 Kb
x 64/memory block, using a 7 nm technology node and a
VDD= 0.4, the simulation was capable of executing 4 ⇤ 1012
operations in 17.1 s using 0.5 W, thus providing 467 GOPS/W.
This energy efficiency result compares favorably with the
similar result reported in Section IV-A. We used the Intel
VTune Amplifier profiler. We didn’t include the GOPS/W
measurement metric, in this case, since VTune did not provide
it. The energy efficiency improvement of 467/1.86⇡250x is
partially due to the difference in the technology nodes: 28
nm for the ARGUS vs 7 nm for the LEARN; even when
accounting for additional, non-trivial parallelism performance
gains in the ARGUS WAMI implementation, our approach
suggest an order-of-magnitude gain in energy efficiency over
what is likely achievable in the future 7 nm technology.

V. CONCLUSION

Successful application of the LEARN architecture to WAMI
permits the employment of larger sensors or increases in capa-
bility on the same platform, enabling exploitation techniques
that have previously been inconceivable with conventional
technology or longer missions. We have shown that optimizing
FPGAs can produce great savings in power consumption, apart
from the power reductions that decreasing feature size will
provide. For the cost of extra silicon area, we show that
reliability can be increased and power consumption decreased
with no decrease in throughput.

VI. ACKNOWLEDGMENTS

This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA). The views,
opinions and/or findings expressed are those of the author and
should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.



REFERENCES

[1] B. Leininger, J. Edwards, J. Antoniades, D. Chester, D. Haas, E. Liu,
M. Stevens, C. Gershfield, M. Braun, J. D. Targove, S. Wein,
P. Brewer, D. G. Madden, and K. H. Shafique, “Autonomous
real-time ground ubiquitous surveillance-imaging system (ARGUS-
IS),” vol. 6981, 2008, pp. 69 810H–69 810H–11. [Online]. Available:
http://dx.doi.org/10.1117/12.784724

[2] J. Keller, “BAE Systems to develop wide-area motion-analysis sensors
to detect and track large numbers of ground forces,” June 2011.
[Online]. Available: http://www.militaryaerospace.com/articles/2011/06/
bae-systems-to-develop.html

[3] BAE Systems, University of Pennsylvania, Princeton University, and
Brown University, “PRACTICE: power-reducing adaptive computing
technologies: Intelligent, cross-layer, and efficient,” in Response to
DARPA-BAA-12-24 (PERFECT), April 2012.

[4] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville,
K. B. Kent, P. Jamieson, and J. Anderson, “The VTR project:
architecture and CAD for FPGAs from verilog to routing,” in
Proceedings of the International Symposium on Field-Programmable
Gate Arrays. New York, NY, USA: ACM, 2012, pp. 77–86. [Online].
Available: http://doi.acm.org/10.1145/2145694.2145708

[5] S. Baker and I. Matthews, “Lucas-Kanade 20 years on: A unifying
framework,” International Journal of Computer Vision, vol. 56, no. 3,
pp. 221–255, Febuary 2004.

[6] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM: A
factored solution to the simultaneous localization and mapping problem,”
in AAAI-02, July 2002, pp. 593–598.

[7] R. C. Smith and P. Cheeseman, “On the representation and estimation
of spatial uncertainty,” International Journal of Robotics Research,
vol. 5, no. 4, 1986. [Online]. Available: http://www.frc.ri.cmu.edu/
⇠hpm/project.archive/reference.file/Smith&Cheeseman.pdf

[8] E. Rosten and T. Drummond, “Fusing points and lines for high
performance tracking,” in IEEE International Conference on Computer
Vision, vol. 2, October 2005, pp. 1508–1511. [Online]. Available:
http://www.coxphysics.com/work/rosten 2005 tracking.pdf

[9] ——, “Machine learning for high-speed corner detection,” in
European Conference on Computer Vision, vol. 1, May 2006, pp.
430–443. [Online]. Available: http://www.coxphysics.com/work/rosten
2006 machine.pdf

[10] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” CACM, vol. 24, no. 6, pp. 381–395, June 1981.
[Online]. Available: http://www.dtic.mil/dtic/tr/fulltext/u2/a460585.pdf

[11] D. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” SIAM Journal on Applied Mathematics, vol. 11, no. 2, pp.
431–441, 1963.

[12] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture
models for real-time tracking,” in Computer Vision and Pattern
Recognition, 1999. IEEE Computer Society Conference on., vol. 2.
Los Alamitos, CA, USA: IEEE, Aug. 1999, pp. 246–252 Vol. 2.
[Online]. Available: http://dx.doi.org/10.1109/cvpr.1999.784637

[13] T. Pollard and M. Antone, “Detecting and tracking all moving objects
in wide-area aerial video,” in Computer Vision and Pattern Recognition
Workshops, 2012, pp. 15–22.

[14] E. Kadric, D. Lakata, and A. DeHon, “Impact of Memory Architecture
on FPGA Energy Consumption,” in Proceedings of the International
Symposium on Field-Programmable Gate Arrays, 2015, pp. 146–155.

[15] E. Kadric, K. Mahajan, and A. DeHon, “Energy reduction through
differential reliability and lightweight checking,” in Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines,
2014.

[16] ——, “Kung Fu data energy—minimizing communication energy in
FPGA computations,” in Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, 2014.

[17] M. Genovese and E. Napoli, “ASIC and FPGA implementation of the
gaussian mixture model algorithm for real-time segmentation of high
definition video,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 3, pp. 537–547, March 2014.

[18] E. Kadric, “Energy reduction through voltage scaling and lightweight
checking,” Ph.D. dissertation, University of Pennyslvania, 2016.

[19] Y. Saad, Iterative Methods for Sparse, Linear Systems, 2nd ed. SIAM,
2003.

[20] NVIDIA, “NVIDIA management library (NVML).” [Online]. Available:
https://developer.nvidia.com/nvidia-management-library-nvml

[21] ——, “CUDA toolkit profiler user’s guide,” 2015. [Online]. Available:
http://docs.nvidia.com/cuda/profiler-users-guide/#axzz44PXT7f9M

[22] “Intel VTune amplifier 2015,” 2015. [Online]. Available: https:
//software.intel.com/en-us/intel-vtune-amplifier-xe

[23] J. Luun, V. Betz, T. Campbell, W. M. Fang, P. Jamieson, I. Kuon,
A. Marquardt, A. Ye, and J. S. Rose, “VPR user’s manual,” 2012.
[Online]. Available: http://vtr-verilog-to-routing.googlecode.com/files/
VPR User Manual 6.0.pdf

[24] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated
cache timing, power, and area model,” Technical Report 2001/2,
Compaq Computer Corporation, Tech. Rep., 2001. [Online]. Available:
http://www.cs.utexas.edu/⇠cart/publications/cacti3.pdf

http://dx.doi.org/10.1117/12.784724
http://www.militaryaerospace.com/articles/2011/06/bae-systems-to-develop.html
http://www.militaryaerospace.com/articles/2011/06/bae-systems-to-develop.html
http://doi.acm.org/10.1145/2145694.2145708
http://www.frc.ri.cmu.edu/~hpm/project.archive/reference.file/Smith&Cheeseman.pdf
http://www.frc.ri.cmu.edu/~hpm/project.archive/reference.file/Smith&Cheeseman.pdf
http://www.coxphysics.com/work/rosten_2005_tracking.pdf
http://www.coxphysics.com/work/rosten_2006_machine.pdf
http://www.coxphysics.com/work/rosten_2006_machine.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a460585.pdf
http://dx.doi.org/10.1109/cvpr.1999.784637
http://ic.ese.upenn.edu/abstracts/meme_fpga2015.html
http://ic.ese.upenn.edu/abstracts/meme_fpga2015.html
https://developer.nvidia.com/nvidia-management-library-nvml
http://docs.nvidia.com/cuda/profiler-users-guide/#axzz44PXT7f9M
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://vtr-verilog-to-routing.googlecode.com/files/VPR_User_Manual_6.0.pdf
http://vtr-verilog-to-routing.googlecode.com/files/VPR_User_Manual_6.0.pdf
http://www.cs.utexas.edu/~cart/publications/cacti3.pdf

	INTRODUCTION
	Advances
	Continuous Hierarchy Memory (CHM)
	Lightweight Checks (LWC)
	Lower Voltage

	Two Case Studies

	Case Studies
	Kernels
	ARGUS
	TAILWIND

	Advances
	Continuous Hierarchy Memory
	Lightweight Checks
	Operations with Checksums
	Convergent Algorithms


	Results
	ARGUS
	Measurement Methodology
	Results

	TAILWIND
	Measurement Methodology
	Results

	LEARN
	Measurement Methodology
	Results


	Conclusion
	acknowledgments
	References

