PERFECT Case Studies Demonstrating Order of Magnitude Reduction in Power Consumption

David K. Wittenberg, Edin Kadric, Andre DeHon, Jonathan Edwards, Jeffrey Smith, and Silviu Chiricescu

The Problem – Wide Area Motion Imaging (WAMI)

- Want real-time data
- High resolution 368 Cell phone cameras
- 1.8 Gpixels @ 10 Hz
- Airborne
- Limited bandwidth to ground
- Limited power

ARGUS-IS System Components

ARGUS-IS system components. Left: sensor in 25" gimbal; Right: CFPA with 92 5 MPixel FPAs.

ARGUS-IS ruggedized airborne processor

Our Solution

- Lower Voltage
- Light-Weight Checks
- Explore Parallelism
- Continuous Hierarchy Memory

ARGUS-IS context drives PERFECT energy improvements

Motion Detection and Tracking

512×512 Image

		Debayer	LK	GMM	WAMI
	PEs	1	4	8	(4,4,4)
	Ops/Cycle	20	220	680	360
	Area (cm ²)	0.0046	0.33	0.2	0.55
0.7V Vdd	Throughput (fps)	540	150	1600	150
	Efficiency (Gops/W)	740	280	910	340
0.5V Vdd	Throughput (fps)	110	30	320	50
	Efficiency (Gops/W)	1500	560	1800	680

Lucas-Kanade Energy/Frame

Light Weight Checks

- Example: Sorting vs. checking that it is sorted
- Not needed in many imaging algorithms, as they iterate until errors are small enough

Differential vs. Single Voltage (22nm example)

PERFECT Results and Comparison with ARGUS

• PERFECT Simulated Output for WAMI Pipeline

- Scaled 512x512 pixel 5 Mpixel and further scaled to achieve 3000 frame run
 - 7 nm process technology assumed as best-case
- Varying Vdd and Mem-size led to optimized GOPS / W
 - Vdd = 0.7, Mem size = 64k
- Key Results:
 - 237X GOPS/W increase even with memory intensive pipeline
 - Performed 4X more operations due to differences in implementation

Comparison of ARGUS-IS GPU and PERFECT output

Technology	Power (W)	Time (s)	Energy (J)	GOps	GOPS / W
ARGUS-IS GPU	77.4	6.5	507.2	940.6	1.9
PERFECT	0.5	17.1	0.9	4096.6	439.9
Ratio	0.01	2.6	0.002	4.4	236.9

TAILWIND: PERFECT gives 6-15X Improvement

	TAILWIND SYSTEM		PERFECT SYSTEM			
	Image Registration (SLAM)	Motion Detection (RFD)	Image Registration (LK)		Motion Detection (GMM)	
			STD	СНМ	STD	СНМ
Energy/Frame (mJ)	752	237	175	129	19	14
Time/Frame (ms)	253	83	444		37	

Motion Detection – PERFECT kernel consumes ≈ 15X less energy than the TAILWIND kernel

. Image Registration – PERFECT kernel consumes ≈ 6X less energy than the TAILWIND kernel

Summary

- 1.Exceeded PERFECT energy efficiency goals by up to 10x (440-680 Gops/W) on common set of Wide Area Motion Imagery (WAMI) kernels
- 2. The projected Argus power consumption reduction enables:
 - Airborne, real-time 3D situational awareness to the warfighter along with:
 - Miniaturization of 3D mapping technology currently housed in multiple server racks
 - Increased the flight mission time and track detection accuracy with improved data compression in manned flights
 - Autonomous threat detection, tracking and multi-sensor fusion
- 3.Designed a novel FPGA based architecture that combines ultra low power operation with high reliability
 - Optimize the substrate and design mapping to minimize communication energy

Acronyms Used

ARGUS Autonomous Real-time Ground-Ubiquitous Surveillance-Imaging System **Continuous Hierarchy Memory** CHM Failures In Time FIT Field Programmable Gate Array FPGA Gaussian Mixture Model GMM LEARN Low-Energy Architecture of Reconfigurable Nodes Lucas-Kanade L-K Light Weight Checks LWC PERFECT Power Efficiency Revolution for Embedded Computing Technology **RANdom SAmple Consensus** RANSAC **Robust Frame Differences** RFD SLAM Simultaneous Location And Mapping Tactical Aircraft to Increase Long Wave Infrared Nighttime Detection TAILWIND **Unmanned Aerial Vehicle** UAV WAMI Wide Area Motion Imagery

BACKUP

IVIInimal Streaming Design

Motion Detection and Tracking

512×512 Image

		Debayer	LK	GMM	WAMI
	PEs	1	1	1	(1,1,1)
	Ops/Cycle	20	55	85	90
	Area (cm ²)	0.0046	0.13	0.034	0.17
0.7V V _{dd}	Throughput (fps)	540	58	430	57
	Efficiency (Gops/W)	740	250	650	300
0.5V V _{dd}	Throughput (fps)	110	12	85	11
	Efficiency (Gops/W)	1500	500	1300	600

Optimizing Parallelism

512×512 Image WAMI

GMM Energy/Frame

Energy reduction techniques*

- Use low-power technology
- Voltage scaling
- Use T-gates or gate-boosting (GB) instead of pass-T w/ level restorer
- Use dual-Vdd
- Power gating

TAILWIND System Level Metrics

Data Set	System Level Metric	SLAM + RFD	LK + RFD	SLAM + GMM		
Quantico Scene 1	P(vehicle detection)	0.9	0.53	0.5		
	P(dismount detection)	0.64	0.38	0.46		
	False alarm/minute	1.35	103	163		
	P(tracking vehicle)	0.3	0.1	0		
	P(tracking dismount)	0.33	0.14	0.14		
Quantico Scene 2	P(vehicle detection)	0.82	0.89	0.3		
	P(dismount detection)	0.52	0.71	0.25		
	False alarm/minute	8.9	149	124		
	P(tracking vehicle)	0.42	0.25	0		
	P(tracking dismount)	0.44	0.28	0.1		
Quantico Scene 3	P(vehicle detection)	0.85	0.54	0.24		
	P(dismount detection)	0.6	0.42	0.19		
	False alarm/minute	4.1	117	126		
	P(tracking vehicle)	0.15	0.13	0.03		
	P(tracking dismount)	0.21	0.09	0.27		
TAILWIND · PERFECT						

 Fine-tuned parameters for the different kernels

- Dismounts are at granularity of a few pixels which is more than the difference between consecutive frames – large false alarm rates
- -GMM has lower levels of accuracy than RFD

ARGUS-IS Public Release Poster

References from PERFECT project

- 1. Edin Kadrik, David Lakata and André DeHon. "Impact of Memory Architecture on FPGA Energy Consumption", FPGA'15, Monterey, California, USA, Feb 22-24, 2015, <u>http://ic.ese.upenn.edu/pdf/meme_fpga2015.pdf</u>.
- 2. Benjamin Gojman, Sirisha Nalmela, Nikil Mehta, Nicholas Howarth, and André DeHon, "GROK-LAB: Generating Real On-chip Knowledge for Intra-cluster Delays using Timing Extraction", ACM Transactions on Reconfigurable Technology and Systems (TRETS), Volume 7, Number 4, DOI: 10.1145/2597889, December, 2014.
- 3. E. Kadric, K. Mahajan, A. DeHon, "Kung Fu Data Energy—Minimizing Communication Energy in FPGA Computations", IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), May 11–13, 2014
- 4. E. Kadric, K. Mahajan, A. DeHon, "Energy Reduction through Differential Reliability and Lightweight Checking", FPGA'14, February 26–28, 2014, Monterey, California, USA.
- Feng Liu, Soumyadeep Ghosh, Nick P. Johnson, David I. August. "CGPA: Coarse-Grained Pipelined Accelerators", Design Automation Conference (DAC), 2014 51st ACM/EDAC/IEEE, 1-5 June 2014, San Francisco, CA, http://dl.acm.org/citation.cfm?doid=2593069.2593105
- 6. Andre DeHon, "Fundamental Underpinnings of Reconfigurable Computing Architectures", accepted for publication in the Proceedings of the IEEE, Volume 103, Issue: 3, DOI: 10.1109/JPROC.2014.2387696, March 2015, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7086421
- 7. Feng Liu, Heejin Ahn, Stephen R. Beard, Taewook Oh, and David I. August, "DynaSpAM: Dynamic Spatial Architecture Mapping using Out of Order Instruction Schedules", Proceedings of the 42nd International Symposium on Computer Architecture (ISCA), ISBN 978-1-4503-3402-0/15/06, Portland, OR, USA, June 13-17, 2015.
- 8. Edin Kadrik, David Lakata and André DeHon, "Impact of Parallelism and Memory Architecture on FPGA Communication Energy", ACM Transactions on Reconfigurable Technology and Systems, Vol. 9, to be published date: 2016. 0/15/06, Portland, OR, USA, June 13-17, 2015.
- 9. "Demonstration of Applicability of PERFECT/PRACTICE Technology to TAILWIND Processing", BAE Systems Technical Report for DARPA PERFECT Program
- 10. "Demonstration of Applicability of PERFECT-PRACTICE Technology to ARGUS-IS Processing", BAE Systems Technical Report for DARPA PERFECT Program