
SAFE: A Clean-Slate Architecture
for Secure Systems

Silviu Chiricescu§, André DeHon∗, Delphine Demange∗, Suraj Iyer§, Aleksey Kliger§, Greg Morrisett†,
Benjamin C. Pierce∗, Howard Reubenstein§, Jonathan M. Smith∗, Gregory T. Sullivan§, Arun Thomas§,

Jesse Tov†, Christopher M. White§, David Wittenberg§,
∗University of Pennsylvania, Philadelphia, PA †Harvard University, Cambridge, MA

§BAE Systems, Burlington, MA
Corresponding author: gregory.sullivan@baesystems.com

Abstract—SAFE is a large-scale, clean-slate co-design project
encompassing hardware architecture, programming languages,
and operating systems. Funded by DARPA, the goal of SAFE
is to create a secure computing system from the ground up.
SAFE hardware provides memory safety, dynamic type checking,
and native support for dynamic information flow control. The
Breeze programming language leverages the security features of
the underlying machine, and the “zero kernel” operating system
avoids relying on any single privileged component for overall
system security. The SAFE project is working towards formally
verifying security properties of the runtime software. The SAFE
system sets a new high-water mark for system security, allowing
secure applications to be built on a solid foundation rather than
on the inherently vulnerable conventional platforms available
today.

I. INTRODUCTION.
THE CASE FOR CLEAN-SLATE CO-DESIGN

A premise of the SAFE project is that conventional hard-
ware, operating systems, and programming languages are
hopelessly broken with respect to security concerns. Attempt-
ing to patch an endless stream of newly discovered vulnera-
bilities, while unavoidable in the short term, is not a viable
long-term path to secure computing systems.

The root causes for the current state of affairs can be
traced back to decisions made when transistors were scarce,
networked computers rare, and formal methods were con-
ducted with pencil and paper. The results of these now
outdated assumptions include: computer hardware that can
compute impressive rates of floating point operations per
second, but has no intrinsic notion of security; programming
languages that can describe data structures and functions, but
not security properties; and operating systems that are written
in unsafe languages and try to enforce security policies on
insecure programs running on security-oblivious hardware.
The “Trusted Computing Base (TCB)”—that is, the part of
a system that, if compromised, would result in a security
violation—is essentially the whole system, including hard-
ware, programming language compilers, operating system (de-
vice drivers, scheduler, network stack, file systems, etc.), and
all application software such as web servers, web browsers,

Approved for Public Release; Distribution Unlimited. Cleared for Open
Publication on 9/10/2013.

databases, scripting languages, and so forth. The last decade of
cyber defense has shown that for every security vulnerability
discovered (usually after compromise) and patched, attackers
find multiple alternatives in short order. As our cyber defenses
grow ever more complex, we seem to be spending many of
the computer cycles we have gained over the years towards
fruitlessly searching for yesterday’s attacks, while continuing
to increase the attack surface exposed to attackers.

The SAFE project takes a clean-slate approach to system
design. We start by revisiting the historical assumptions listed
above, and by applying a “radical co-design” methodology
to ensure that security properties are preserved across all
layers of the system. The four major thrusts of the SAFE
project—hardware, languages, operating system, and formal
verification—have been designed and developed in concert to
produce a highly secure computing platform, featuring:

1) Hardware support for fine-grained tracking and checking
of security properties.

2) Programming languages that support application-level
security properties, and compile those properties to the
hardware security features.

3) A decentralized operating system consisting of least
privilege, mutually suspicious components. The compro-
mise of any single component will not violate system
level security guarantees.

4) Formal proofs, using computer-assisted formal methods,
that the software stack from applications to hardware
maintains end-to-end security properties.

A number of papers have appeared on several aspects of the
SAFE project, such as the hardware interlocks [1], multi-level
cache algorithms for tag management [2], and error handling
in the presence of dynamic information flow control [3]. We
presented a paper [4] at the 2011 Workshop on Programming
Languages and Operating Systems (PLOS) describing our
initial design goals. The present paper represents the results
of two additional years of design and implementation; we
have an initial implementation of the hardware on an FPGA
platform, and we have addressed many of the open questions
from the PLOS paper. The reader is invited to visit http:
//crash-safe.org/, which contains all of the project’s publicly

http://crash-safe.org/
http://crash-safe.org/


SAFE - A Clean-Slate Architecture for Secure Systems

released materials.
The next section walks through two typical vulnerabili-

ties and describes how the SAFE system prevents security
violations in the face of such attacks. In the following sec-
tions, we present in more detail the security-related elements
of the hardware (Section III), the low-level runtime system
(“concreteware”) (Section IV), and the Breeze programming
language (Section V). In Section VI, we present our approach
to verification of the concreteware, and in Section VII we give
the status of the SAFE project.

II. MOTIVATING EXAMPLES

We describe two canonical attacks, (1) buffer overflow
followed by binary code injection, and (2) SQL injection,
and briefly discuss how the SAFE system prevents these
attacks from being successful. While there are obviously a
huge range of attack vectors (cf. [5]), we hope that these two
examples will provide some intuition for how SAFE addresses
vulnerabilities, and will help motivate the technical details
presented in later sections.

A. Buffer Overflow and Binary Code Injection

A canonical low-level attack is buffer overflow followed by
binary code injection. A typical attack sequence consists of:

1) Overflow an allocated region of memory, putting
attacker-provided data in overflowed memory.

2) Modify stack to jump (return) to attacker-injected data.
3) Execute attacker-injected data as native instructions, at

privilege of the current process.
The SAFE hardware architecture blocks the above attack

steps with multiple mechanisms:
1) Fat Pointers - Every pointer encodes not only the address

to which it points, but also the base and bounds of the
frame into which it points. Attempting to index a pointer
outside of the frame into which it points results in an
error. SAFE uses an efficient fat pointer encoding that
extends the work of [6]. The fat pointer mechanism rules
out buffer overflow attacks.

2) User Inaccessible Stack - User code cannot directly read
or write the stack, but rather, can only manipulate the
stack through call and return instructions.

3) Machine-checked Types - Every word in the SAFE
machine has an atomic group tag that defines how
the word can be used. For example, SAFE has atomic
groups for integer, instruction, pointer, and several other
specialized types. Thus, even if an attacker could redi-
rect the program counter at words injected via buffer
overflow, if the words are not instructions, then the
SAFE machine will not execute them. Only the Linker
concreteware component has the ability to tag a word
as an instruction (more on the “least privilege” runtime
design in Section IV), and so data injected by an attacker
into a user process will not be executed. The fact
that integers cannot be treated as either instructions or
pointers, and vice versa, rules out a wide range of attacks
to which conventional architectures are vulnerable.

B. SQL Injection (aka “Improper Neutralization”)

Buffer overflow and binary code injection attacks can be
largely thwarted by hardware mechanisms. However, there
are a wide range of attacks that violate higher level security
policies and thus need input from the application level to suc-
cessfully identify and block them. Some well known categories
of application level attacks are: privilege escalation, cross-site
scripting, and SQL injection.

In a classic SQL injection attack, an input form might
request, for example, an employee ID, and then query the
database in order to display the corresponding employee name.
If the data from the input form is INPUT, the query string
might be “SELECT EMP.name FROM Employee WHERE Id
= $INPUT”. If an attacker enters into the employee ID field
something like “1234; SELECT EMP.salary FROM Employee
WHERE Id=1234”, (a semicolon separates SQL commands)
and the application neglects to “neutralize” the input (e.g.
throw away anything after a “;”), the attacker may be able
to view an employee’s salary when they were only supposed
to have access to the employee’s name.

Both operating system security and programming language
security researchers have focused recently on Information
Flow Control (IFC) as a unifying approach both to access
control (what authority has access to what data) as well as
label propagation, namely how to propagate access control
metadata as data is combined and flows through a computation.
There is a huge range of approaches to information flow –
from coarse-grained dynamic per-process labels (e.g., [7], [8])
to fine-grained dynamic per-value labels (e.g., [9], [10]) to
statically checked IFC (e.g., [11], [12]).

The SAFE hardware architecture supports the efficient im-
plementation of fine-grained dynamic information flow with
two features: (1) tags as pointers, and (2) a programmable
tag management unit. Together, these features allow the im-
plementation of arbitrary dynamic information flow control
policies.

For programs written in the Breeze programming language
(Section V), the metadata on values specifies which principals
(think of a principal as a user, or an “actor” in the SAFE
system) have access to what data. In the SQL injection
example, even if a Breeze program neglected to check for
input after a semicolon, the information flow control rules
would prevent data private to an employee being leaked to
an unauthorized channel.

The following section describes the hardware architecture
in more detail.

III. SAFE HARDWARE ARCHITECTURE

The core idea of SAFE is that security properties of
data (and instructions) can be specified at a high level, and
faithfully tracked and checked at the hardware level. In order
to support this granularity, (1) every word in the system
must have metadata associated with it, and (2) information
flow properties must be propagated and checked at every
instruction.

Non-Technical Data - Releasable to Foreign Persons 2



SAFE - A Clean-Slate Architecture for Secure Systems

Fig. 1. SAFE atom encoding

Fig. 2. SAFE architecture

A. Atom = Atomic Group + Tag + Payload

The basic unit of memory on a SAFE machine is called
an atom. Each atom consist of three inextricably linked parts:
the atomic group (described earlier), a tag which is a pointer
to structured metadata (though opaque to user code), and a
payload which will be treated according to the atomic group
element of the atom. Figure 1 depicts the layout of an atom
on a 128-bit SAFE machine.

Figure 2 presents a schematic of the SAFE architecture.
The architecture specification is implemented in the Bluespec
hardware description language [13]. It is mostly a straightfor-
ward RISC architecture, with the addition of several security-
related components, shaded in gray in the figure, which we
now discuss in more detail.

B. Atomic Group Unit

The block labeled “AGU” in Figure 2 is the atomic group
unit—it is responsible for checking that the atomic groups
of the current instruction operands match those required. For
example, for an integer ADD instruction, it is required that
the atomic group of both source registers be Integer.

C. Tag Management Unit (TMU)

The semantics of the SAFE architecture is that at every in-
struction, the metadata for each atom involved (PC, instruction,
and each operand) is evaluated against an installed ruleset and
either an access violation is flagged or the metadata for the
result is returned. We rely on a TMU rule cache to minimize
the overhead of this fine-grained information flow control.

The design used for our TMU cache, to achieve near-
associative hash performance, is described in [2]. An overview
of the entire suite of hardware interlocks, including fat
pointers, atomic group checking, and TMU management, is
described in [1].

Critical to our design is that TMU cache processing must
happen in parallel to the rest of the machine’s execution,
and that the TMU cache check must be on the order of a
single add instruction so as to not stall the instruction pipeline.
This design requirement makes explicit our choice to trade
silicon for security, without compromising speed (at least in
the common, cache hit, case).

D. Low-Fat Pointers

The box labeled “Fat Ptr Unit” in Figure 2 manages our
low-fat pointers. The idea of encoding base and bounds in a
“fat pointer” has long been a desired feature (c.f., fat pointers
in Cyclone [14] or capabilities for memory as in [15]). The
SAFE architecture builds on the fat pointer encoding scheme
of the Aries project [6], which fits the encoding of a pointer
and the base and bounds of the pointed-to frame in a single
word. The costs of the Aries fat pointer encoding are (1) some
wasted space, because allocation rounds up to 2n sized blocks
(n a parameter), and (2) added encode/decode time in the
instruction pipeline. Our initial implementation of the Aries
fat pointer encoding scheme resulted in a fat pointer unit that
was the largest (in time) component of our pipeline, and so we
have invented an enhanced fat pointer scheme, called “low-fat
pointers,” which breaks fat pointer decoding into two phases
and no longer impedes our efforts to pipeline the processor.

E. Lightweight, Fine-Grained Domain Crossing (Gates)

Conventional systems have two (or some fixed, small num-
ber of) security regimes—kernel and user. Kernel mode has
complete access to all resources, while user mode restricts ac-
cess to some system resources such as files and sockets based
on authentication. Furthermore, domain crossing—switching
from kernel to user mode or vice versa—is considered ex-
pensive, which encourages pushing more functionality into
single system calls rather than separating system functionality
into lots of little functions. As kernel mode has “superuser”
access to a machine’s resources, attackers focus on gaining
control while in kernel mode. Some approaches to reducing
the vulnerability of so-called “monolithic kernels” include
“microkernels”, such as the L3-L4 family of microkernels [16],
[17], [18]. Microkernels aim to minimize the size of kernel
code, under the assumption that a smaller “Trusted Code Base
(TCB)” is more amenable to careful validation.

The SAFE system takes a two-pronged approach to reducing
the vulnerability exposed by privileged operations:

1) First class authority—We allow for dynamically created
Authorities that can be used as the basis for isolating
privilege.

2) Gate calls—SAFE introduces gate calls that atomically
switch from one authority to another, with overhead
comparable to a simple function call. Lightweight gate
calls make domain crossing cheap, which enables a least
privilege kernel design where each privileged operation
in the runtime is segregated to its own gate running
under its own authority.

Non-Technical Data - Releasable to Foreign Persons 3



SAFE - A Clean-Slate Architecture for Secure Systems

A gate is similar to a closure in functional programming
language implementations, as it maintains a pointer to a gate’s
local storage. When a gate call is made, the current authority
and local storage pointer are pushed onto the gate stack, the
authority register is populated with the target gate’s authority,
and the target gate’s local storage pointer is installed. The gate
stack is not accessible other than by gate call and gate return
operations, and so attack vectors that rely on access to the call
stack are impossible.

IV. SAFE CONCRETEWARE.
A ZERO KERNEL OPERATING SYSTEM

Above the hardware is the layer of system software referred
to as concreteware. The concreteware includes thread manage-
ment and global memory management, providing abstractions
of concurrent computation and infinite memory. A key design
decision of the SAFE runtime is that there is no user-visible
shared memory between threads—all communication between
threads takes place via single-reader, single-writer streams (a
native hardware construct, with an atomic group for stream
pointers). This distributed runtime shares many elements from
the design of Erlang [19].

A. Least Privilege

A central design goal of the SAFE runtime is to ensure
that security-sensitive functions run with the least privilege
required to do their job. We accomplish this goal by leveraging
hardware security features including per-instruction access
control and gates. For example, there is only one case when
a pointer is fabricated (from a larger frame)—in a memory
allocation gate. The TMU rules, then, enforce the invariant that
if a new pointer is being created, the instruction executing that
code is running under the authority of the memory allocator.
Other examples include: tagging an atom as a forwarding
pointer can only be performed if running under the garbage
collector authority; tagging a bit pattern as a Principal can
only happen in a single function of the PAT server; and
extracting the tag component of an atom and treating it as
a value can only take place during TMU cache miss handling.
As another example, we divide the scheduling process into
two subcomponents, each running under its own authority: the
ComputeSchedule gate calculates the next schedule iteration,
based on access to protected data about individual threads,
and the AdvanceSchedule gate is the single function that can
actually swap thread pointers in and out of the machine’s state.

The following sections describe the most important compo-
nents of the SAFE runtime (memory management; manage-
ment of principals, authorities, and tags; and scheduling).

B. Memory Management

Memory, along with CPU time, is a critical resource to be
managed by a runtime system. The SAFE project has made
a number of unconventional design decisions around memory
management, in the service of the security and verification
goals of the SAFE platform.

We have already introduced SAFE’s fat pointers, which
encode base and bounds information within pointers. Further-
more, due to atomic group checking, user code cannot inspect
pointers—user code can only dereference pointers. Pointers,
then, can be viewed as capabilities, as in [15]. That is, the
only way that code can access a region of memory is to be
handed a pointer to that region of memory; in particular, user
code can not fabricate, or “guess”, pointers into memory it
does not already have a pointer into.

One subtle but important result of encoding pointers as
opaque memory capabilities is that there is no longer any
reason to use virtual memory as a mechanism for compart-
mentalizing per-process memory spaces, as is done on most
conventional systems. This greatly simplifies reasoning about
low level memory management—for example, in the seL4
verification effort [18], one of the places the verification effort
had to explicitly compromise their proof standards was around
dealing with virtual memory.

There is a top-level memory manager that allocates larger
frames of memory to individual threads, and which reclaims
memory from threads when threads die.

There are many motivations for providing automatic mem-
ory management, aka garbage collection (GC) as a system
service in SAFE. For one thing, the decision that threads
cannot share memory, which is motivated both by security
and formal reasoning concerns, enables a relatively simple
implementation of per-thread GC. Similar to the motivation
for precluding shared memory, providing automatic memory
management supports a layered verification process—we first
need to prove that the allocator and garbage collector are cor-
rect, and then we can reason about user code without worrying
about memory leaks and other memory-related errors.

C. Global Principals, Authorities, and Tags (PATs)

SAFE concreteware supports communication between
threads via single-reader, single-writer streams. Because there
is no user-visible shared memory between threads, all values
are copied (instead of sending pointers across streams). How-
ever, it is important that information flow control applies to
copies of values the same as to the original values. Recall that
tags on atoms are pointers to metadata about the values. The
metadata memory resides in a concreteware thread known as
the PAT Server, where PAT stands for Principals, Authorities,
and Tags. When values are copied, the tag on the value stays
the same – that is, both copies have tags that point to the
same metadata, contained within the memory space of the
PAT Server thread. In this way, TMU cache miss handling,
which applies information flow propagation and access control
at every instruction, will perform the same way for the same
tags on data in different threads.

SAFE also has atomic groups for Authorities and Principals.
The PAT server thread, in addition to handling TMU misses,
also has entry points for providing fresh principals and author-
ities (one can think of them as unique 64-bit integers, tagged
as principal or authority). The terms principal and authority
occur frequently in the information flow control literature,

Non-Technical Data - Releasable to Foreign Persons 4



SAFE - A Clean-Slate Architecture for Secure Systems

Fig. 3. Schematic of a Breeze value with metadata from multiple label
models

and having principals and authorities as first-class values
in the hardware enables SAFE to more directly implement
information flow control policies. One can view principals as
stand-ins for users of the system, or for individual components
(actors) of the runtime, and authorities as the “keys” to access
values labeled by corresponding principals. The exact struc-
ture of metadata, and the correspondence between individual
principals and authorities, are functions of a particular label
model.

In SAFE terminology, label models (LMs) maintain the
metadata, and multiple label models may be installed at the
same time. For example, a value manipulated by a Breeze
program may have a tag that points to metadata frames for
both the Breeze Secrecy Label Model and the Breeze Dynamic
Type Label Model. The Breeze Secrecy LM maintains nested
frames of principals, representing (as formulas in CNF1) which
principals have read access to the data. The Dynamic Type
LM simply contains a pointer to a data structure that provides
accessor functions for a data structure’s fields. The sketch in
Figure 3 represents a value corresponding to a pointer to a
Breeze record, whose tag points to both secrecy and type
metadata. Note the dotted line indicating that the value and
metadata are in two different memory spaces.

The global PAT space also needs to be garbage collected.
PAT GC requires a global algorithm that incrementally tran-
sitions each thread from an “old” PAT space to a “new” PAT
space. The details of this algorithm are beyond the scope of
this overview paper.

D. Tempest Programming Language

The concretware is implemented in a combination of SAFE
assembly language and a new systems programming lan-
guage, Tempest. Tempest is analogous to the C programming
language—sufficiently low level to give direct access to native
representations and instructions, but also providing higher
level features such as procedure calls, structures, abstract
types, and register allocation. Unlike with C on a conventional
machine, we get strong type and memory safety guarantees
through hardware mechanisms.

1CNF = Conjunctive Normal Form. See http://en.wikipedia.org/wiki/
Conjunctive normal form

Unlike Breeze (Section V), Tempest is typed. In addition to
types corresponding to SAFE atomic groups such as integers
and pointers, Tempest’s type system correctly tracks linear
pointers. A linear pointer is the only (user-visible) pointer to
a frame of memory. On the SAFE architecture, pointers to
streams are linear, which greatly simplifies reasoning about
concurrency.

Tempest’s type system also tracks procedures’ calling con-
ventions, which may be specified by programmers. Because
several SAFE mechanisms (e.g., the bracket construct in
Breeze) depend on careful treatment of registers, different
Tempest procedures may pass arguments and results in dif-
ferent registers, and have different registers available for use,
thus requiring different calling conventions.

Tempest also provides robust support for inline assembly
language, which can refer to Tempest variables in place of
physical registers and is properly handled by the register
allocator.

V. BREEZE PROGRAMMING LANGUAGE

Breeze is a new dynamically typed language with first-class
labels, authorities, and principals. Breeze’s semantics enforce
dynamic, fine-grained information flow control. That is, every
access to a Breeze value checks that the access is allowed
given the current authority context and the labels of the data
involved. The Breeze language has co-evolved along with the
SAFE hardware architecture, in order for Breeze programs
to be efficiently implementable on the hardware, as well as to
enable programmers to take maximum advantage of the SAFE
architecture’s security features.

Breeze has a number of interesting features, which we
will briefly describe. At the time of this paper preparation,
we are working towards releasing Breeze as an open source
project – check http://crash-safe.org for more details. The open
source release of Breeze will include more detailed language
documentation.

A. Public labels and Brackets

Perhaps surprisingly, we have settled on a design in which
the labels on Breeze values are public. One might think that
a simple exfiltration technique would be to return different
labels depending on the value of some secret data. However,
in order to test high data but reliably return to a low context, a
Breeze program needs to enter a bracket, and the label of data
returned from a bracket must be specified in advance, thus
foiling any attempts to use labels as an information channel.

B. Not-a-Values (NaVs)

Exceptional control flow is difficult to handle in the context
of dynamic information flow control. Breeze does not have an
exception mechanism, but instead will return a labeled Not-a-
Value (NaV) value when an access violation occurs. In order
to check for an error (i.e., for a NaV), the user code must raise
its authority to the label on the value.

Public labels, brackets and NaVs are explored and explained
in [10].

Non-Technical Data - Releasable to Foreign Persons 5

http://en.wikipedia.org/wiki/Conjunctive_normal_form
http://en.wikipedia.org/wiki/Conjunctive_normal_form
http://crash-safe.org


SAFE - A Clean-Slate Architecture for Secure Systems

C. Clearance

In order to access labeled data, a Breeze program must
exercise the appropriate authorities. The mechanism for es-
tablishing a context in which secret data can be accessed is
raising the clearance. The Labeled IO Monad in [9] uses a
similar clearance mechanism.

VI. VERIFICATION OF CONCRETEWARE

The SAFE project is actively working towards formal verifi-
cation (using the Coq proof assistant [20]) of the concreteware.
The formal property that we are focusing on is noninterfer-
ence. Noninterference formalizes the standard requirement that
the high-security inputs to a program should not influence its
low-security outputs. For more careful definitions of noninter-
ference, see, for example [21], [22].

As an example of the verification goals of the SAFE project,
consider the compilation of a Breeze program. Breeze program
values will be tagged with metadata according to the Breeze
Secrecy Label model, and the preservation of the semantics
of the labels must be maintained by the compiled code and
the concreteware services that come into contact with Breeze
values.

We are not yet at a stage where we can verify the compiled
implementation of the Breeze Secrecy Label Model on the
actual SAFE instruction set. Instead, we have defined a rela-
tively simple stack machine and a straightforward compilation
of information flow control rules to that machine. We have
proved noninterference for the abstract machine, as well as
refinement of the abstract machine by the concrete machine
plus compiled label model. Even this simplified scenario has
presented interesting challenges, and we consider the proof of
refinement to have been a significant accomplishment. We are
currently working on extending the proof to a larger fragment
of the full SAFE architecture.

VII. IMPLEMENTATION STATUS

As of June 2013, we have implemented the SAFE architec-
ture on an FPGA platform, and we are able to compile simple
Breeze and Tempest programs to the FPGA. We currently
shuttle TMU misses offboard to a PAT server process running
on a linux co-host. In the next few months, we will have the
PAT server reimplemented in Tempest and running onboard the
SAFE platform. We have a “minimal concreteware” running
on a SAFE simulator, but the minimal concreteware does not
yet include garbage collection (only allocation). Networking
is currently handled by the linux co-host, and we are slowly
working towards implementing a network stack on the SAFE
processor. To add networking, we also have to implement a
more sophisticated scheduler in order to guarantee time to the
network device driver (there is only one interrupt in the SAFE
architecture—the timer).

VIII. CONCLUSION

The SAFE project is taking a clean slate approach to
designing a secure computing system from the ground up.
SAFE provides hardware support for modern security policies

based on information flow control, and we trade silicon for
security without sacrificing performance. We are working
towards formal semantics of the SAFE instruction set architec-
ture (ISA), as well as the Breeze and Tempest programming
languages. Furthermore, we are working to formally verify
that the SAFE operating system correctly enforces high level
security policies such as noninterference.

SAFE will provide a platform that formally guarantees an
unheard of level of security from the operating system down
to the hardware. While we can never completely rule out
programmers writing ill conceived programs, or insider threats,
we can at least provide a computing platform, including
threading, garbage collection, and high level programming
languages, that can guarantee that application level security
policies will be correctly enforced.

IX. ACKNOWLEDGEMENTS

This material is based upon work supported by the DARPA
CRASH program through the United States Air Force Re-
search Laboratory (AFRL) under Contract No. FA8650-10-C-
7090. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of
Defense or the U.S. Government.

REFERENCES

[1] U. Dhawan, A. Kwon, E. Kadric, C. Hriţcu, B. C. Pierce,
J. M. Smith, A. DeHon, G. Malecha, G. Morrisett, T. F. Knight,
Jr., A. Sutherland, T. Hawkins, A. Zyxnfryx, D. Wittenberg,
P. Trei, S. Ray, and G. Sullivan, “Hardware support for safety
interlocks and introspection,” in SASO Workshop on Adaptive
Host and Network Security, Sep. 2012. [Online]. Available: http:
//www.crash-safe.org/sites/default/files/interlocks ahns2012.pdf

[2] U. Dhawan and A. DeHon, “Area-efficient near-associative memories
on FPGAs,” in International Symposium on Field-Programmable
Gate Arrays, (FPGA2013), Feb. 2013. [Online]. Available: http:
//www.crash-safe.org/node/21

[3] C. Hriţcu, J. Hughes, B. C. Pierce, A. Spector-Zabusky, D. Vytiniotis,
A. A. de Amorim, and L. Lampropoulos, “Testing noninterference,
quickly,” in 18th ACM SIGPLAN International Conference on
Functional Programming (ICFP), Sep. 2013, to appear. [Online].
Available: http://www.crash-safe.org/node/24

[4] A. DeHon, B. Karel, T. F. Knight, Jr., G. Malecha, B. Montagu,
R. Morisset, G. Morrisett, B. C. Pierce, R. Pollack, S. Ray,
O. Shivers, J. M. Smith, and G. Sullivan, “Preliminary design of
the SAFE platform,” in 6th Workshop on Programming Languages
and Operating Systems, ser. PLOS, Oct. 2011. [Online]. Available:
http://www.crash-safe.org/sites/default/files/plos11-final 0.pdf

[5] MITRE, “Common weakness enumeration,” http://cwe.mitre.org/, 2013.
[6] J. Brown, J. Grossman, A. Huang, and T. F. Knight, Jr., “A capability

representation with embedded address and nearly-exact object bounds,”
MIT AI Lab, Tech. Rep. 5, April 2000, aries Project. [Online]. Available:
http://www.ai.mit.edu/projects/aries/Documents/Memos/ARIES-05.pdf

[7] M. N. Krohn, A. Yip, M. Z. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris, “Information flow control for standard OS
abstractions,” in Proceedings of the Symposium on Operating Systems
Principles, ser. SOSP. ACM, October 2007, pp. 321–334. [Online].
Available: http://pdos.csail.mit.edu/∼max/docs/flume.pdf

[8] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris, “Labels and
event processes in the Asbestos operating system,” in Proceedings of
the Symposium on Operating Systems Principles, ser. SOSP. ACM,
2005, pp. 17–30. [Online]. Available: http://asbestos.cs.ucla.edu/pubs/
asbestos-sosp05.pdf

[9] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières, “Flexible
dynamic information flow control in Haskell,” in 4th Symposium
on Haskell. ACM, 2011, pp. 95–106. [Online]. Available: http:
//www.scs.stanford.edu/∼deian/pubs//stefan:2011:flexible-ext.pdf

Non-Technical Data - Releasable to Foreign Persons 6

http://www.crash-safe.org/sites/default/files/interlocks_ahns2012.pdf
http://www.crash-safe.org/sites/default/files/interlocks_ahns2012.pdf
http://www.crash-safe.org/node/21
http://www.crash-safe.org/node/21
http://www.crash-safe.org/node/24
http://www.crash-safe.org/sites/default/files/plos11-final_0.pdf
http://cwe.mitre.org/
http://www.ai.mit.edu/projects/aries/Documents/Memos/ARIES-05.pdf
http://pdos.csail.mit.edu/~max/docs/flume.pdf
http://asbestos.cs.ucla.edu/pubs/asbestos-sosp05.pdf
http://asbestos.cs.ucla.edu/pubs/asbestos-sosp05.pdf
http://www.scs.stanford.edu/~deian/pubs//stefan:2011:flexible-ext.pdf
http://www.scs.stanford.edu/~deian/pubs//stefan:2011:flexible-ext.pdf


SAFE - A Clean-Slate Architecture for Secure Systems

[10] C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett, “All
your IFCException are belong to us,” in 34th IEEE Symposium on
Security and Privacy. IEEE Computer Society Press, May 2013, pp.
3–17. [Online]. Available: http://www.crash-safe.org/node/23

[11] A. C. Myers and B. Liskov, “Protecting privacy using the decentralized
label model,” Transactions On Software Engineering And Methodology
(TOSEM), vol. 9, pp. 410–442, October 2000. [Online]. Available:
http://doi.acm.org/10.1145/363516.363526

[12] D. Volpano, G. Smith, and C. Irvine, “A sound type system for
secure flow analysis,” Journal of Computer Security, vol. 4, no. 3, pp.
167–187, 1996. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.152.7374&rep=rep1&type=pdf

[13] R. S. Nikhil, “Bluespec system verilog: efficient, correct rtl from high
level specifications,” in 2nd ACM & IEEE International Conference on
Formal Methods and Models for Co-Design (MEMOCODE 2004), 23-
25 June 2004, San Diego, California, USA, Proceedings. IEEE, 2004,
pp. 69–70.

[14] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney, and
Y. Wang, “Cyclone: A safe dialect of c,” in Proceedings of the General
Track: 2002 USENIX Annual Technical Conference, June 10-15, 2002,
Monterey, California, USA, C. S. Ellis, Ed. USENIX, 2002, pp. 275–
288.

[15] R. S. Fabry, “Capability-based addressing,” Commun. ACM, vol. 17,
no. 7, pp. 403–412, 1974.

[16] J. Liedtke, “On micro-Kernel Construction,” in 15th ACM Symposium
on Operating Systems Principles, 1995, pp. 237–250.

[17] K. Elphinstone, G. Heiser, and J. Liedtke, L4 Reference Manual: MIPS
R4x00, Version 1.11, Kernel Version 79, School Comp. Sci. & Engin.,
University NSW, Sydney 2052, Australia, May 1999, available from
http://www.disy.cse.unsw.edu.au/Softw./L4.

[18] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”
in Proceedings of the Symposium on Operating Systems Principles.
ACM, 2009, pp. 207–220. [Online]. Available: http://ertos.nicta.com.
au/publications/papers/Klein EHACDEEKNSTW 09.pdf

[19] R. Virding, C. Wikström, and M. Williams, Concurrent programming in
ERLANG (2nd ed.), J. Armstrong, Ed. Hertfordshire, UK, UK: Prentice
Hall International (UK) Ltd., 1996.

[20] The Coq Proof Assistant, 2012, version 8.4. [Online]. Available:
http://coq.inria.fr/refman/

[21] D. E. Denning, “A lattice model of secure information flow,”
Communications of the ACM, vol. 19, pp. 236–243, May 1976.
[Online]. Available: http://doi.acm.org/10.1145/360051.360056

[22] A. Sabelfeld and A. Myers, “Language-based information-flow
security,” IEEE Journal on Selected Areas in Communications,
vol. 21, no. 1, pp. 5–19, Jan. 2003. [Online]. Available: http:
//www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf

Non-Technical Data - Releasable to Foreign Persons 7

http://www.crash-safe.org/node/23
http://doi.acm.org/10.1145/363516.363526
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.7374&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.7374&rep=rep1&type=pdf
http://www.disy.cse.unsw.edu.au/Softw./L4
http://ertos.nicta.com.au/publications/papers/Klein_EHACDEEKNSTW_09.pdf
http://ertos.nicta.com.au/publications/papers/Klein_EHACDEEKNSTW_09.pdf
http://coq.inria.fr/refman/
http://doi.acm.org/10.1145/360051.360056
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf

