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Abstract

We comnsider physical facts which cannot be verified in practice. We are
not interested in classic metaphysical or philosophical arguments which
cannot be decided even in principle, but in facts where the answer is in
theory easy to measure, but in reality, essentially impossible to measure.
Most of the time, the facts we are interested in are probabilities of events
which are too rare to measure directly, or which would involve experiments
which are far too damaging to contemplate. One example is estimating
the probability of catastrophic failure in a space shuttle launch or nuclear
reactor.

1 Introduction

There are always debates going on about science, both among scientists and in
the political arena. Many of these debates are trying to use science outside of the
area where science is applicable[13], but a good number are about things which
should be solvable. Why the debates when we could simply do the experiment?
Sometimes, the debates are political, and the answers one gets correlate perfectly
with the opinions one started with.

We study the cases where the questions are clearly within the realm of sci-
ence, and could be answered given enough time and money to do the experi-
ments, but the experiments are too expensive, time consuming, or dangerous to
do. In most of these cases, the question can be phrased as “What is the prob-
ability of some event occurring?” These problems, which share the difficulty
in measuring reliability, include the accuracy of ballistic missiles[10], safety of
space travel[12, 5], and safety of commercial aircraft. By limiting our study
to problems which clearly should be solvable, and noting the great difficulties
in solving these comparatively simple cases, we show that the difficulties we
encounter are inherent in calculating probabilities of unlikely events.

In those cases one tries to combine results from experiments which can be
done in order to estimate the probabilities of interest. This is where the difficulty
lies. When calculating (as opposed to measuring) probabilities, it is crucial to
understand how each event’s probability is affected by the probabilities of other
events, ie. which probabilities are independent of each other. Figuring out which
experiments are germane to a particular calculation is the issue which Barnes|2]



addresses with similarity judgments. Any school of scientific thought is based
on agreed upon similarity judgments. These are implicit agreements about
what issues are relevant in predicting behaviour, and, just as important, what
issues are not relevant in predicting behaviour. In arguing that a measurable
example justifies a conclusion about an immeasurable one, we need to argue that
they are, in fact, similar. Different schools of thought with different similarity
judgments will use different examples of a “similar” event, which can result
in wildly different estimates. Duhem[4], writing in the late nineteenth century,
describes a more basic problem in trusting physical measurments by pointing out
the requirement for what he called “auxiliary assumptions”. Duhem points out
that when a physicist says he made a measurement (say of voltage), he is actually
reporting the output of a relatively sophisticated device.! As the measurement
devices get more sophisticated, and farther from simple observation, more and
more assumptions are required for one to accept the measurement. As long as
everyone shares those assumptions, science can proceed normally, but if those
assumptions are not shared, it is barely possible to even communicate ones
results.

1.1 Problems of Interest

My interest in estimating probabilities of rare events comes from attempts to
ensure the reliability of computer programs. People realized that debugging
programs was hard almost as soon as they started to program in the late 1940s.
Wilkes[17] said “[in 1949] the realization came over me with full force that a good
part of the remainder of my life was going to be spent in finding errors in my own
programs.” This was a surprise. It had been thought that building computer
hardware was difficult, but programming was assumed (in the late 1940’s) to be
straightforward. By 1974, Fred Brooks could write a chapter called No Silver
Bullet (in The Mythical Man Month[3] a witty and widely read description of
problems in software engineering) and expect everyone to understand how hard
getting programs correct is. So, I started with the question “How likely is it
that a particular program gets the right answer?” in cases where it’s clear what
a correct answer is. These issues are of great interest in making software highly
reliable.

1.2 Non-Problems

We are not interested in questions unless they have (in principle) clear answers.
So arguments about the odds of a particular team winning the next World Cup
or what people actually believe when they lie to pollsters are not covered here.
In the first example, the statistical class is not large enough for the probability

IThe issue here is that most of the quantities physicists talk about are not directly mea-
surable, but are abstractions. To measure the length of something one puts a ruler next to
it, but to measure voltage, one chooses any of several different methods. It is an assumption
that different voltmeters, using different measurement methods based on different physical
assumptions, actually measure the same thing.



to be well defined[16], and in the second, the question falls outside of what
Medawar calls “The Limits of Science”[13]. We are only interested in facts
(mainly the probabilities of events which are too rare to observe) which could
be gathered if not for the danger or expense involved. The figures that we are
interested in are, therefore, well defined. While statistics can be used to confuse
an audience, we are not concerned with that here. We are assuming that the
estimates are made in good faith, though the issues we discuss can certainly be
used to confuse people.

By limiting our study to calculating well defined values, we show that even
in the comparatively easy cases the problems are intractable.

2 Motivation

Why does this matter to an engineer? In specifying a system, one often specifies
a failure rate. If the system is small and inexpensive enough (say a $10 electronic
component), one can test a large enough number of samples to determine if
the failure rate is acceptably small. With systems, end to end testing[15] (ie.
testing the entire system at once) is the obvious answer, but that works only
when we can afford to test several prototypes before finalizing the design. We
are concerned with expensive or dangerous systems where it is impossible to run
enough tests. These issues frequently appear in discussions of safety in designing
things like bridges, nuclear power plants, or airplanes. In the early 20th century,
there were over 1000 boiler explosions each year in North America[l]. Today
we are much less tolerant of that number of casualties. We are particularly
demanding of aircraft, as the FAA specifies a failure rate of 1 structural failure
per 10° hours of flight. Note that most models of commercial aircraft never
achieve a total of a billion flight hours over all the planes made of that model.
This leads us to the problem in making extremely reliable systems: One cannot
test them long enough to measure the failure rate, so it is hard to trust that the
system is as reliable as it is specified to be.

With structural materials one can make a test part (smaller and weaker
than the part of interest), test it to destruction, and then argue that the part in
use is stronger by some factor which can be calculated from theories based on
experience with parts of the same shape but different size. Similarly, one can
argue that the number of (say) flex cycles before failure corresponds to some
number of hours of flight, and that the thicker piece in actual use will last some
(known) factor longer than the test part. With this sort of argument, one can
usually get a fairly good idea of how likely a part is to fail.

This works quite well, and it’s rare for a steel and cement structure like
a bridge or a building to fall down. In most of the cases where a structure
does fall down, it turns out that either the material or the application were not
understood as well as we thought. A classic example is the Tacoma Narrows
Bridge (often called “Galloping Gertie”) that collapsed in 1940 as a consequence
of a resonance excited by the wind[7]. The enquiry into the collapse of the
bridge found that the design was not at fault, because even in retrospect they



did not have enough understanding of wind driven oscillations to predict the
failure. This led to serious consideration of building a replacement bridge to
the same design as the failed bridge. Theodore von Kérmén (a member of
the commission investigating the collapse) pointed out that if they rebuilt the
bridge in the same way it would fall down in the same way. von Kdrmdan later
explained the failure in terms of vortex shedding (sometimes called Kérmdn
vortex street). Petroski[14] points out that this sort of failure of prediction is
necessary for engineering to advance, so we will have buildings falling as long
as we keep designing structures with new materials or novel designs.

3 Why This is Hard

In systems which are less well understood than steel and concrete, one can not
make arguments of this sort. Instead, one has to calculate the failure rate more
indirectly, and this requires careful judgment, and thus can never be entirely
convincing.

A well documented example of the difficulty in this sort of prediction was
the safety of the space shuttle. Before the space shuttle “Challenger” exploded
in 1986, top NASA management claimed that a failure that killed the crew
would occur once in 105 flights, while low level engineers thought the failure
rate of the solid rocket boosters was likely to be 1 in 10? flights[5]. Management
and engineers differed almost as much in their estimates for failure rates of
the main (liquid-fueled) engines. McConnell[12] describes other problems with
the shuttle. How could different groups (both with access to almost all the
known data) come to such different conclusions? Donald MacKenzie[10] gives
one answer with his description of a “Certainty trough” (figure 1). This refers to
a rough graph of perceived uncertainty in a system (on the vertical axis) plotted
against social or intellectual distance from the system. The graph is bathtub
shaped. The low area in the center represents people who know something,
but not a great deal about the technology and who tend to have the most
faith in it. These are the managers or others who are committed to using
the technology. People intimately involved in technology (the high area at the
left) know the uncertainties, while people alienated from the institutions or
committed to a different technology (the high area at the right) think it won’t
work. Mackenzie[11] later elaborated on the certainty trough. A particularly
clear example of the certainty trough was in the huge range of estimates of the
reliability of the Strategic Defense Initiative (SDI, often ridiculed as Star Wars).

Software reliability is particularly prone to this sort of difficulty in estimat-
ing. One cannot use the usual sort of argument, where one tests weaker systems,
and uses a physical theory to claim that the stronger one should last some cal-
culated factor longer than the tested one, and from that argue that the Mean
Time Between Failures (MTBF) is acceptable. Most material systems exhibit
continuous behaviour, where a small change in the forces on a piece results in
a small change in the amount of deflection. Software, on the other hand, is
non-continuous. Sometimes, as in passwords, we rely on this (A tiny change in
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Figure 1: Certainty Trough (after Mackenzie[10])

input results in a huge change in output. A one bit error in my password would
result in my not gaining access to my account.), but it makes testing extremely
difficult.

The data we have on software failures shows a cumulative mathematical error
of 1% per four thousand lines of code in extremely carefully written programs[8g],
so it is not possible to argue that some piece of code will work for 10° hours
as FAA regulations require for critical parts of commercial aircraft. Other data
gives the number of errors (found) per 1000 lines of code, but it is not clear how
to calculate MTBF (mean time between failures) from that measurement.

4 Possible Solutions

Once we realize that good estimates of probabilities are both necessary and
impossible, we have to find some way to make estimates.

Fault Tree Analysis is a favorite. One lists all the possible ways the system
can fail, and then for each of those lists all the possible causes, and so on. If one
is sufficiently prescient as to make these lists complete, fault tree analysis works
fine. In a system of non-trivial size, this is an enormous undertaking, and one
is likely to miss some faults (most famously the Maginot line, whose builders
failed to realize that the German army could go around the line). Fault tree
analysis or some variant of it form the basis of most of the arguments for high
reliability. While it is hard to do a fault tree analysis of a system which has



not failed, it is relatively easy to point out the cause of a failure in retrospect.
Arguments that something has low reliability can often be made by pointing
out partial failures.

In the end, all techniques for predicting the probability of extremely rare
events depend on a complete understanding of the problem. In some cases (say
the probability of a particular atom of a radioactive isotope decaying in the next
second), we have sufficient understanding to make reliable predictions. The cases
of interest are, or course, those where we don’t have a perfect understanding,
either because the system is simply too complex to describe accurately, or in
rare cases, because we must change the underlying model (what Kuhn[9] calls
a paradigm shift).

5 Conclusion

There are decisions which we must make (for example: should we build nuclear
power plants) which depend on unreliable estimates of the safety of a particular
system. The decisions must be made, and the costs of the wrong decision are
high, but the decisions can not be put off indefinitely.

So we are left with a problem: We can not make accurate estimates of the
failure rate of some technology, but we need accurate estimates.

As there are decisions which must be made, we will continue to try to esti-
mate risks, and we will live with the results. We can understand the difficulties
in measuring the risks accurately, and we can hope to improve our estimates.
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