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Abstract— We present simulation results that show that 

placing security-related intrusion monitors on SAFE 

processors (as opposed to on vulnerable conventional systems) 

dramatically increases the overall health of a distributed 

system. We model a distributed system protected by a 

combination of network- and host-based detection and 

remediation infrastructure. The model is parameterized 

according to the accuracy of attack detection, the likelihood of 

attack success, and the ratio of security-related resources to 

general computation resources.   
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I.  INTRODUCTION  

Current computers are inherently insecure, causing 

cyberattacks to be a major concern to both commercial and 

defense organizations. Computing hosts still use an 

architecture that was designed when 8 KBytes was a lot of 

memory, and internet connectivity was over a decade away. 

The environment computers are used in has changed, but our 

computer architectures have not changed. With the 

underlying hosts having minimal security, the distributed 

systems built with  them are bound to be insecure. 

Many approaches have been tried to decrease the threat of 

compromised computers. One approach is to make individual 

computers more resistant to attack. This approach is 

exemplified by SAFE [1], a system developed at BAE 

Systems with its university partners. Another approach is to 

have the nodes in a network communicate information about 

threatening nodes, enabling the entire network to act as an 

attack detector, instead of requiring each node to detect all 

attacks without help. This approach is exemplified by 

SOUND [2], a system being developed at BAE Systems with 

several university partners. The SOUND system extends 

research on Introduction-Based Routing (IBR) [3] to manage 

network connections between nodes in the distributed system 

and between the distributed system and other networks. This 

paper describes the advantages of using both approaches 

together. By using SAFE nodes as the intrusion-detection 

infrastructure in a SOUND-like system, one gains more 

reliability than one would expect from simply summing their 

improvements. A particularly strong version of this is to use 

a SAFE “dongle" between each computational node and the 

network. This would act as a gateway or firewall for each 

node. This is cost-effective, as the dongles would only have 

to run a network stack, rather than a full stack of applications 

which would be required if one were to use the SAFE nodes 

as the primary computation nodes. Even using one SAFE 

node to protect a 100 node enclave provides significantly 

more resistance to attack.  

We loosely base our security infrastructure on the SOUND 

system. The results of this experiment, however, should 

apply to a wide range of security frameworks that attempt to 

detect and adapt to security incidents. 

II. MODEL 

Our system is based on IBR. In IBR, there can be no 

communication between two nodes until they are introduced. 

An introducer will only introduce nodes if both of them have 

good enough reputations. Reputations are completely local, 

so, except for sending reports of attacks, there is no 

coordination of reputation between nodes. The IBR protocol 

is discussed at more length in Section 3.A.1. 

Our simulated distributed system is divided into enclaves 

(each with one or more computing nodes) and each enclave 

has exactly one proxy (or gateway) node. Proxy nodes 

represent security operations within an enclave (and are 

therefore candidates both for attack and for deployment on 

inherently secure nodes). All traffic into or out of the  

enclave passes through the proxy. Within an enclave, all 

nodes are connected to each other. Every proxy node is 

connected to every other proxy node. We do not model a 

connection to the wider Internet. 

This is the topology of the physical connections. Any node 

can send a message to any other node based on IP address, 

but it will be ignored unless a connection has been 

established. 

We model time in ticks. A node can send a message to any 

node it is physically connected to in one tick. 

This material is based upon work supported by the DARPA CRASH 
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Messages cannot be forged. That is, the identity of the sender 

of a message (and the entire path the message took) is what it 

claims to be. 

In our simulations, proxies will force reboot (cleanup) of 

nodes that are deemed compromised. 

A. Network Architecture 

Proxy nodes are consulted before establishing connections 

between nodes; thus proxy nodes can be used to adapt the 

network (by refusing to make connections) to account for 

compromised nodes. 

Figure 1 is a high-level view of a generic network of 

enclaves, with one proxy node per enclave. Figure 1 shows 

the distributed system connected to the broader internet via a 

proxy node; however, our simulations do not consider the 

case of connections outside of the distributed system under 

study. 

In our simulation, all nodes are sensors. We consider a 

“fabric" of sensors, so the entire network acts as a distributed 

sensor. For the purposes of the model, we assume that any 

attack is detected at a particular node. We will use the 

original version of the IBR protocol, and not handle a feature 

that SOUND adds where nodes communicate about other 

nodes’ reputations. 

B. Health Metrics 

The metric we use is Mean healthy nodes: The fraction of 

nodes in a “healthy" state when the system has reached a 

steady state. Steady state means that the fraction of healthy 

nodes remains more or less constant. It does not imply that 

any particular node does not change state. 

C. Attack Model 

When an attack occurs, we characterize it by two 

probabilities, the probability that the attack is detected by 

the network fabric, which we model as having been detected 

by the node which was attacked, and the probability that the 

attack succeeds.  Any attack which is detected is assumed 

not to succeed.  We model attack success probabilistically 

because even if the hardware and software on the nodes is 

the same, there will be different users with passwords of 

varying strength, and with different susceptibilities to 

phishing. 

III. EXPERIMENTS 

We can characterize our experiments as exploring the space 

of the three-way relation: 

N  X SimParams  →  HealthMetrics 

where N is the number and allocation strategy of inherently 

secure nodes, SimParams are parameters to the simulation, 

such as the likelihood of detection of an attack or the 

likelihood of attack success, and HealthMetrics are metrics, 

such as mean healthy nodes, as previously discussed, 

characterizing the health of the system given the distribution 

of secure nodes and the simulation parameters. 

We show that: 

1. For a given set of parameters SimParams, adding 

inherently secure nodes (increasing N) can improve 
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Figure 1 Enclaves of nodes. One proxy per enclave. Red nodes are compromised. All proxies connected to all other proxies. 
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the metrics HealthMetrics. For example, as one can 

see from Table 7, with no SAFE nodes, and 

parameter P(detect | attack) = 0.7 we have a steady 

state of 42% healthy nodes
1
. In that case, we show 

that adding inherently secure nodes increases the 

percentage of healthy nodes in the steady state to 

85%. Note that this requires one safe node for every 

hundred computing nodes, so the cost involved is 

modest. 

2. Adding inherently secure nodes (increasing N) 

increases the ranges of SimParams parameters in 

which metrics HealthMetrics are in a reasonable 

range. For example, Table 4 shows that with no 

inherently secure nodes the system reaches a steady 

state with 74% of its nodes healthy when the 

parameter P (detect | attack) is = 0.9. In that case, 

we show that by adding inherently secure nodes, we 

can reach a similar steady state with much less 

accurate detection (e.g. P(detect | attack) = 0.5). 

 

A. Connection Protocol 

 

1) IBR 

 

To start, every node has a set of nodes to which it has a 

priori connections. If the graph of a priori connections is not 

connected, then there are nodes which will never be able to 

communicate with each other. Two nodes can communicate 

either if they have an a priori connection, or if they have 

been introduced. Once two nodes are introduced, they are 

said to be connected and can communicate with each other. 

If a node A wishes to communicate with a node B, to which 

it is not connected, it must find a node C which is connected 

to both A and B. It then requests a connection from node C. 

If C deems both A and B to have good reputations, it 

introduces them, and they are then connected and can 

communicate. If C considers either A or B to be unsafe, it 

will refuse to introduce them. If there is no node C which is 

connected to both A and B, A can look for a path from A to 

B, and ask for introductions along the path.  The method of 

finding such a path is outside the scope of this paper. 

Every node maintains a reputation for each node to which it 

is connected. A node which communicates with another node 

will give feedback to the node which introduced them after 

each communication. A typical way to maintain reputations 

is to start with a positive reputation, and increase it slightly 

with each piece of positive feedback, and decrease it greatly 

with each piece of negative feedback. The node then 

performs an introduction if both nodes are over a preset 

threshold. In our system, every node is a priori connected to 

the proxy for its enclave, and all the proxies a priori form a 

                                                           
1
 Read “P(detect | attack) = 0.7" as “the probability of detection of a 

given attack is 70%" 

complete graph, so it is never necessary for a path to be of 

length more than three. 

 

2) Use of Proxies as Introducers 

A connection between two nodes is established when one 

node sends a message to the proxy for the enclave of  the 

other node requesting a connection. If the proxy grants the 

connection, the two nodes can communicate. For simplicity, 

we do not distinguish between direct versus multihop 

communication. We also do not model timeouts on 

connections, as the only communication we actually model is 

an attack,  which takes only a single message. 

Intra-enclave communication: A pair of nodes wishing to 

communicate within an enclave needs to get a connection 

between them from a local proxy. Once established, intra-

enclave packets are node to node. The requirement to acquire  

connections allows the security system to isolate problem 

nodes as they are identified. In Figure 1, the dashed lines 

represent active intra-enclave connections. 

Inter-enclave communication: Packets into and out of an 

enclave go through proxies. To establish a connection 

between nodes in separate enclaves, assuming all proxies can 

talk directly to each other, there are three connections 

involved: node → proxy1 → proxy2 → node. In Figure 1, 

the red lines represent proxy-to-proxy connections between 

enclaves. In theory, a security policy can isolate enclaves by 

not making connections between proxies. 

B. Behavior 

We only model “interesting" behavior. The events, and the 

corresponding messages, of interest in the simulation are: 

1. A compromised node attacks another node. 

Message: attack from compromised node to victim. 

2. An attack is (correctly)
2
 reported. 

Message: report (attacker) to proxy. 

3. A proxy forces a reboot of a (compromised) node 

Message: reboot from proxy to compromised node 

4. A rebooted node comes back online. 

Message: online from rebooted node to proxy. 

 

C. Attacks 

We consider what happens when a compromised node 

attempts to attack a node in another enclave. That is, when an 

attack propagates from one enclave to another.  

When an attack is detected, the proxy of the target node is 

notified. However, when a proxy receives a notification of an 

attack from another enclave, it sends the report of the attack 

to the proxy for the originating enclave. If the receiving 

proxy is behaving normally, the offending attacker will 

eventually be rebooted. If the originating enclave keeps 

sending out attacks, the receiving enclave's proxy may elect 

to force a reboot of the entire foreign enclave.    

                                                           
2
 We are not modeling false positive attacks reports. 
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A proxy may send a reboot message to another proxy.  Only 

proxy nodes can send reboot messages. In the following, the 

policy is that if a proxy receives a reboot message, it in turn 

sends reboot messages to all of the nodes in its enclave. 

A proxy keeps track of reputations for both (1) nodes in its 

proxy and (2) proxies for other enclaves. It can decide to 

send reboot messages either to (1) nodes in its enclave, or (2) 

proxies in other enclaves. 

D. Details of Simulation 

There are two types of node (proxy and regular), and each 

node is in one of three states: healthy, compromised, or 

offline. We start with one compromised regular node per 

enclave. In Figure 1, the red nodes represent compromised 

nodes. A healthy proxy node keeps track of a set of suspect 

nodes, forcing them to reboot when they are deemed 

compromised. Here any node which is detected as the source 

of an attack is deemed to be compromised. A compromised 

node selects a victim (proxy or regular node) from within its 

local enclave and attacks it. 

An attack on a node is detected according to probability 

parameter P (detect | attacked). If the attack is detected, the 

attack is reported to the local proxy. If the attack is not 

detected, the node becomes compromised according to 

probability parameter P (compromise | attacked, not 

detected) (which is 0 for SAFE nodes). When a node is 

rebooting, it ignores all messages (though in the cross-

enclave case, it might be rebooted while rebooting). 

Attacks on already compromised nodes can be detected if 

there is a separate attack detection mechanism outside of the 

nodes being attacked. 

At each time step, the following actions take place, according 

to the type of the node and its state: 

Healthy regular: 

1. If received attack message, flip P (detect | attacked-

healthy) coin. 

2. If attack detected, send message report (sender) to 

local proxy. 

3. Handle reboot message. May arrive if local proxy 

is being rebooted by an external enclave. Transition 

to offline mode with countdown (reboot-node-

countdown). 

4. If attack not detected, flip P (compromise | 

attacked, not-detected) coin. 

5. If compromised, transition to compromised regular 

node. 

Compromised regular: 

1. Check message queue for attack message (assumes 

attacker cannot distinguish between healthy and 

compromised nodes). 

2. If attacked, flip P (detect | attacked-compromised) 

coin. 

If attacked and detected, send message report (sender) to 

appropriate proxy. Note that the ability to detect attacks on 

compromised nodes models there being some attack 

detection in the system that does not necessarily rely on the 

target being healthy. 

3. Check message queue for reboot message. If 

received, transition to offline mode, with count-

down timer (node-reboot-time). 

4. If not rebooted, select a target node from local 

enclave. Send attack message to target. 

Healthy proxy: 

1. Check message queue for attack message. 

2. If attacked, flip P (detect | attacked-compromised) 

coin. 

3. If attacked and did not detect and compromised, 

transition to compromised proxy node. 

4. If attacked and detected 

a. If attacker is local to this proxy's enclave, 

decrement attacker's reputation. 

b. If attacker is from another enclave, 

decrement attacker's proxy's reputation. 

5. For each incoming report (attacker) message, 

a. If attacker is local to this proxy's enclave, 

decrement attacker's reputation. 

b. If attacker is from another enclave, 

decrement attacker's proxy's reputation. 

c. If attacker is from another enclave, send 

report (attacker) message to other 

enclave's proxy. 

6. Handle reboot message. Send reboot message to all 

nodes in this enclave. Transition to offline proxy 

with proxy-reboot-countdown. 

7. If any nodes have low enough reputations: 

a. If bad node is in local enclave, send it a 

reboot message. 

b. If bad node is another enclave, send 

reboot message to its proxy. 

8. For every node to which just sent reboot message, 

reset reputation. 

Compromised proxy: 
1. Handle reboot message. Send reboot message to all 

nodes in this enclave. Transition to offline proxy 

with countdown. 

2. If attacked, flip P (detect | attacked-compromised) 

coin. 

3. If attacked and detected, send message report 

(sender) to attacker's proxy. 

Offline regular or proxy: 
1. Ignore all messages. 

2. Decrement timer. 

3. If timer at zero, transition to uncompromised. 

IV. RESULTS 

A. Data 

In Tables 1-5, Frac SAFE is the fraction of Proxy nodes 

which are immune to attack. Every enclave has exactly one 

proxy node, in addition to the clients listed. All client nodes 

can be compromised. The internal table values are the 

fraction of the nodes which are HEALTHY in what appears 
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to be a steady state. In almost all cases, the system entered 

what appeared to be a steady state in 100 or fewer ticks. We 

continue the run for 1000 ticks to see if it indeed stays 

steady.  In some cases, all the nodes became 

COMPROMISED, or all the nodes became HEALTHY.  In 

either of those cases, the run is said to have ended when that 

occurred. 

 Pdetect is the probability that an attack will be detected 

 Pcompromise is the probability that an attack that is not 

detected will compromise the attacked node. 

 All runs have “offline time" (that is, the time between 

when a node gets a reset signal and when it finishes 

rebooting) of 5 ticks. 

 All runs use a “one strike and you're out" rule for when 

to force a node to reboot. 

 All runs use an “attack delay" (the time between attacks 

by a single node) of 2 ticks. 

 All reported data are the average of 50 runs. 

 

1) 20 Enclaves, 50 Clients/Enclave 

In Tables 1 through 5 we plot the fraction of healthy nodes at 

steady state as a function of Pdetect and the fraction of 

proxies which are SAFE nodes at different values of 
Pcompromise. The only differences between the first five tables 

are the values of Pcompromise . Most of the runs went for the 

full 1000 ticks allowed, but a few ended in 10 to 20 ticks. In 

Table 3 the value 0.02 for Pdetect = 0:7, no SAFE nodes, 

comes from 1 run which quickly became all HEALTHY, and 

49 runs which relatively quickly became all 

COMPROMISED. 

What we learn from these tables is that even relatively small 

numbers of SAFE nodes go a long way toward making a 

resilient network. For example, in Table 2, where 

Pcompromise is 0.8, reading a row from left to right, such as 

when Pdetect is 0.7 if there are no SAFE nodes, all the nodes 

quickly become compromised, but, when all the proxies are 

SAFE nodes (which is still only 2% of the total nodes), one 

gets 27% HEALTHY nodes in the steady state.  

 

Frac 

SAFE 

0 0.1 0.3 0.5 0.7 1.0 

Pdetect       

0.1 0.00 0.00 0.02 0.03 0.04 0.08 

0.3 0.00 0.01 0.02 0.06 0.08 0.13 

0.5 0.00 0.02 0.03 0.08 0.11 0.18 

0.7 0.00 0.02 0.04 0.09 0.12 0.21 

0.9 0.00 0.02 0.05 0.10 0.15 0.22 

 

Table 1: Pdetect vs. Fraction of SAFE nodes, 20 
enclaves, 50 clients per enclave, Pcompromise = 1.0 
 

1) 10 Enclaves 100 Clients/Enclave 

In Table 6, we consider having fewer larger enclaves – 10 

enclaves of 100 nodes each.  It appears from Table 6 and 

Table 4 that with a fixed number of SAFE nodes, it almost 

doesn't matter if you have 10 enclaves of 100 clients each 

with all proxies being SAFE nodes, or 20 enclaves of 50 

clients each, with half the proxies being SAFE nodes. 

 
 

Frac 

SAFE 

0 0.1 0.3 0.5 0.7 1.0 

Pdetect       

0.1 0.00 0.00 0.01 0.03 0.06 0.09 

0.3 0.00 0.03 0.03 0.07 0.11 0.18 

0.5 0.00 0.02 0.04 0.09 0.14 0.22 

0.7 0.00 0.02 0.07 0.11 0.19 0.27 

0.9 0.00 0.02 0.08 0.13 0.20 0.28 

 

Table 2: Pdetect vs. Fraction of SAFE nodes, 20 
enclaves, 50 clients per enclave, Pcompromise = 0.8 
 

Frac 

SAFE 

0 0.1 0.3 0.5 0.7 1.0 

Pdetect       

0.1 0.00 0.00 0.02 0.07 0.09 0.12 

0.3 0.00 0.05 0.08 0.18 0.17 0.23 

0.5 0.04 0.03 0.08 0.16 0.20 0.31 

0.7 0.02 0.02 0.13 0.18 0.29 0.37 

0.9 0.00 0.07 0.21 0.25 0.32 0.43 

 

Table 3: Pdetect vs. Fraction of SAFE nodes, 20 
enclaves, 50 clients per enclave, Pcompromise = 0.6 
 

Frac 

SAFE 

0 0.1 0.3 0.5 0.7 1.0 

Pdetect       

0.1 0.06 0.18 0.21 0.17 0.17 0.32 

0.3 0.20 0.16 0.34 0.41 0.53 0.61 

0.5 0.32 0.52 0.51 0.64 0.75 0.79 

0.7 
3
 0.62 0.79 0.83 0.88 0.85 

0.9 0.74 0.83 0.87 0.90 0.91 0.92 

Table 4: Pdetect vs. Fraction of SAFE nodes, 20 
enclaves, 50 clients per enclave, Pcompromise = 0.3 
 

Frac 

SAFE 

0 0.1 0.3 0.5 0.7 1.0 

Pdetect       

0.1 0.40 0.73 0.75 0.82 
4
 0.93 

0.3 1.00 1.00 1.00 1.00 1.00 1.00 

0.5 1.00 1.00 1.00 1.00 1.00 1.00 

0.7 1.00 1.00 1.00 1.00 1.00 1.00 

0.9 1.00 1.00 1.00 1.00 1.00 1.00 

Table 5: Pdetect vs. Fraction of SAFE nodes, 20 
enclaves, 50 clients per enclave, Pcompromise = 0.1 

                                                           
3
 22 runs ended before 30 ticks. Ran for 2000 ticks, 30 runs ended 

before 90 ticks. After 1000 ticks, the fraction HEALTHYwas dropping 
steadily. Ran it for 2000 ticks - it was dropping at 1000 ticks, but may 
have steadied at 0.60 at 2000 ticks. 
4
 no steady state. After 1000 ticks, it was at 0.89, but 

dropping 0.01 every 200 or so ticks 



 

Approved for public release; unlimited distribution 

 

Frac 
SAFE 

0 0.2 0.6 1.0 

Pdetect     

0.1 0.08 0.16 0.19 0.32 

0.3 0.28 0.30 0.43 0.60 

0.5 0.37 0.41 0.64 0.77 

0.7 0.42 0.63 0.88 0.85 

0.9  0.85 0.95 0.92 

Table 6: Fraction SAFE nodes vs. Pdetect, 10 enclaves, 
100 clients per enclave, PCompromise = 0.3 
 

2) 254 Enclaves, 1 Client per Enclave 

One good use for SAFE nodes would be to use them as 

“dongles” each computing node and the rest of the network.  

They would need only a minimal amount of software, and 

could be made rather inexpensively. As Table 7 shows this 

gives a large increase in the usability of a system.  

 

Frac 

SAFE 

0 0.1 0.3 0.5 0.7 1.0 

Pdetect       

0.1 0.02 0.06 0.18 0.29 0.39 0.57 

0.3 0.00 0.08 0.21 0.33 0.47 0.63 

0.5 0.00 0.11 0.26 0.41 0.53 0.71 

0.7 0.03 0.14 0.31 0.43 0.59 0.75 

0.9 0.00 0.16 0.38 0.49 0.61 0.79 

Table 7: Pdetect vs. fraction SAFE nodes, 254 enclaves, 
1 node per enclave Pcompromise = 0.7 

B. Discussion 

We have shown that converting even a small fraction of the 

proxy nodes in a system to SAFE nodes gives a large gain in 

the usability of a computer network under attack. Since 

nearly every network is under attack at almost all times, it is 

clearly cost effective to have routers and similar 

infrastructure nodes inherently secure. Even better would be 

to have small secure “dongles” running SOUND or some 

similar protocol between every node and its network. 
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