

Approved for public release; unlimited distribution

Benefits of Deploying Inherently Secure Nodes

Within a Distributed System

Joseph Fahey, Howard Reubenstein, David Wittenberg

BAE Systems

Burlington, MA

David.Wittenberg@BAESystems.com

Gregory Sullivan

Charles Stark Draper Laboratory

Cambridge, MA

Abstract— We present simulation results that show that

placing security-related intrusion monitors on SAFE

processors (as opposed to on vulnerable conventional systems)

dramatically increases the overall health of a distributed

system. We model a distributed system protected by a

combination of network- and host-based detection and

remediation infrastructure. The model is parameterized

according to the accuracy of attack detection, the likelihood of

attack success, and the ratio of security-related resources to

general computation resources.

Keywords— security, network, gateway, resilience

I. INTRODUCTION

Current computers are inherently insecure, causing

cyberattacks to be a major concern to both commercial and

defense organizations. Computing hosts still use an

architecture that was designed when 8 KBytes was a lot of

memory, and internet connectivity was over a decade away.

The environment computers are used in has changed, but our

computer architectures have not changed. With the

underlying hosts having minimal security, the distributed

systems built with them are bound to be insecure.

Many approaches have been tried to decrease the threat of

compromised computers. One approach is to make individual

computers more resistant to attack. This approach is

exemplified by SAFE [1], a system developed at BAE

Systems with its university partners. Another approach is to

have the nodes in a network communicate information about

threatening nodes, enabling the entire network to act as an

attack detector, instead of requiring each node to detect all

attacks without help. This approach is exemplified by

SOUND [2], a system being developed at BAE Systems with

several university partners. The SOUND system extends

research on Introduction-Based Routing (IBR) [3] to manage

network connections between nodes in the distributed system

and between the distributed system and other networks. This

paper describes the advantages of using both approaches

together. By using SAFE nodes as the intrusion-detection

infrastructure in a SOUND-like system, one gains more

reliability than one would expect from simply summing their

improvements. A particularly strong version of this is to use

a SAFE “dongle" between each computational node and the

network. This would act as a gateway or firewall for each

node. This is cost-effective, as the dongles would only have

to run a network stack, rather than a full stack of applications

which would be required if one were to use the SAFE nodes

as the primary computation nodes. Even using one SAFE

node to protect a 100 node enclave provides significantly

more resistance to attack.

We loosely base our security infrastructure on the SOUND

system. The results of this experiment, however, should

apply to a wide range of security frameworks that attempt to

detect and adapt to security incidents.

II. MODEL

Our system is based on IBR. In IBR, there can be no

communication between two nodes until they are introduced.

An introducer will only introduce nodes if both of them have

good enough reputations. Reputations are completely local,

so, except for sending reports of attacks, there is no

coordination of reputation between nodes. The IBR protocol

is discussed at more length in Section 3.A.1.

Our simulated distributed system is divided into enclaves

(each with one or more computing nodes) and each enclave

has exactly one proxy (or gateway) node. Proxy nodes

represent security operations within an enclave (and are

therefore candidates both for attack and for deployment on

inherently secure nodes). All traffic into or out of the

enclave passes through the proxy. Within an enclave, all

nodes are connected to each other. Every proxy node is

connected to every other proxy node. We do not model a

connection to the wider Internet.

This is the topology of the physical connections. Any node

can send a message to any other node based on IP address,

but it will be ignored unless a connection has been

established.

We model time in ticks. A node can send a message to any

node it is physically connected to in one tick.

This material is based upon work supported by the DARPA CRASH
program through the United States Air Force Research Laboratory (AFRL)

under Contract No. FA8650-10-C-7090. The views expressed are those of
the authors and do not reflect the official policy or position of the

Department of Defense or the U.S. Government

mailto:David.Wittenberg@BAESystems.com

Approved for public release; unlimited distribution

Messages cannot be forged. That is, the identity of the sender

of a message (and the entire path the message took) is what it

claims to be.

In our simulations, proxies will force reboot (cleanup) of

nodes that are deemed compromised.

A. Network Architecture

Proxy nodes are consulted before establishing connections

between nodes; thus proxy nodes can be used to adapt the

network (by refusing to make connections) to account for

compromised nodes.

Figure 1 is a high-level view of a generic network of

enclaves, with one proxy node per enclave. Figure 1 shows

the distributed system connected to the broader internet via a

proxy node; however, our simulations do not consider the

case of connections outside of the distributed system under

study.

In our simulation, all nodes are sensors. We consider a

“fabric" of sensors, so the entire network acts as a distributed

sensor. For the purposes of the model, we assume that any

attack is detected at a particular node. We will use the

original version of the IBR protocol, and not handle a feature

that SOUND adds where nodes communicate about other

nodes’ reputations.

B. Health Metrics

The metric we use is Mean healthy nodes: The fraction of

nodes in a “healthy" state when the system has reached a

steady state. Steady state means that the fraction of healthy

nodes remains more or less constant. It does not imply that

any particular node does not change state.

C. Attack Model

When an attack occurs, we characterize it by two

probabilities, the probability that the attack is detected by

the network fabric, which we model as having been detected

by the node which was attacked, and the probability that the

attack succeeds. Any attack which is detected is assumed

not to succeed. We model attack success probabilistically

because even if the hardware and software on the nodes is

the same, there will be different users with passwords of

varying strength, and with different susceptibilities to

phishing.

III. EXPERIMENTS

We can characterize our experiments as exploring the space

of the three-way relation:

N X SimParams → HealthMetrics

where N is the number and allocation strategy of inherently

secure nodes, SimParams are parameters to the simulation,

such as the likelihood of detection of an attack or the

likelihood of attack success, and HealthMetrics are metrics,

such as mean healthy nodes, as previously discussed,

characterizing the health of the system given the distribution

of secure nodes and the simulation parameters.

We show that:

1. For a given set of parameters SimParams, adding

inherently secure nodes (increasing N) can improve

n1-2

Enclave1

n1-1 n1-3 n1-n...

proxy1

Enclave2

n2-1 n2-2 n2-3 n2-n...

proxy2

Enclave3

n3-1 n3-2 n3-3 n3-n...

proxy3

Enclavem

nm-1 nm-2 nm-3 nm-n...

proxym

...

proxynet

internet

Figure 1 Enclaves of nodes. One proxy per enclave. Red nodes are compromised. All proxies connected to all other proxies.

Approved for public release; unlimited distribution

the metrics HealthMetrics. For example, as one can

see from Table 7, with no SAFE nodes, and

parameter P(detect | attack) = 0.7 we have a steady

state of 42% healthy nodes
1
. In that case, we show

that adding inherently secure nodes increases the

percentage of healthy nodes in the steady state to

85%. Note that this requires one safe node for every

hundred computing nodes, so the cost involved is

modest.

2. Adding inherently secure nodes (increasing N)

increases the ranges of SimParams parameters in

which metrics HealthMetrics are in a reasonable

range. For example, Table 4 shows that with no

inherently secure nodes the system reaches a steady

state with 74% of its nodes healthy when the

parameter P (detect | attack) is = 0.9. In that case,

we show that by adding inherently secure nodes, we

can reach a similar steady state with much less

accurate detection (e.g. P(detect | attack) = 0.5).

A. Connection Protocol

1) IBR

To start, every node has a set of nodes to which it has a

priori connections. If the graph of a priori connections is not

connected, then there are nodes which will never be able to

communicate with each other. Two nodes can communicate

either if they have an a priori connection, or if they have

been introduced. Once two nodes are introduced, they are

said to be connected and can communicate with each other.

If a node A wishes to communicate with a node B, to which

it is not connected, it must find a node C which is connected

to both A and B. It then requests a connection from node C.

If C deems both A and B to have good reputations, it

introduces them, and they are then connected and can

communicate. If C considers either A or B to be unsafe, it

will refuse to introduce them. If there is no node C which is

connected to both A and B, A can look for a path from A to

B, and ask for introductions along the path. The method of

finding such a path is outside the scope of this paper.

Every node maintains a reputation for each node to which it

is connected. A node which communicates with another node

will give feedback to the node which introduced them after

each communication. A typical way to maintain reputations

is to start with a positive reputation, and increase it slightly

with each piece of positive feedback, and decrease it greatly

with each piece of negative feedback. The node then

performs an introduction if both nodes are over a preset

threshold. In our system, every node is a priori connected to

the proxy for its enclave, and all the proxies a priori form a

1
 Read “P(detect | attack) = 0.7" as “the probability of detection of a

given attack is 70%"

complete graph, so it is never necessary for a path to be of

length more than three.

2) Use of Proxies as Introducers

A connection between two nodes is established when one

node sends a message to the proxy for the enclave of the

other node requesting a connection. If the proxy grants the

connection, the two nodes can communicate. For simplicity,

we do not distinguish between direct versus multihop

communication. We also do not model timeouts on

connections, as the only communication we actually model is

an attack, which takes only a single message.

Intra-enclave communication: A pair of nodes wishing to

communicate within an enclave needs to get a connection

between them from a local proxy. Once established, intra-

enclave packets are node to node. The requirement to acquire

connections allows the security system to isolate problem

nodes as they are identified. In Figure 1, the dashed lines

represent active intra-enclave connections.

Inter-enclave communication: Packets into and out of an

enclave go through proxies. To establish a connection

between nodes in separate enclaves, assuming all proxies can

talk directly to each other, there are three connections

involved: node → proxy1 → proxy2 → node. In Figure 1,

the red lines represent proxy-to-proxy connections between

enclaves. In theory, a security policy can isolate enclaves by

not making connections between proxies.

B. Behavior

We only model “interesting" behavior. The events, and the

corresponding messages, of interest in the simulation are:

1. A compromised node attacks another node.

Message: attack from compromised node to victim.

2. An attack is (correctly)
2
 reported.

Message: report (attacker) to proxy.

3. A proxy forces a reboot of a (compromised) node

Message: reboot from proxy to compromised node

4. A rebooted node comes back online.

Message: online from rebooted node to proxy.

C. Attacks

We consider what happens when a compromised node

attempts to attack a node in another enclave. That is, when an

attack propagates from one enclave to another.

When an attack is detected, the proxy of the target node is

notified. However, when a proxy receives a notification of an

attack from another enclave, it sends the report of the attack

to the proxy for the originating enclave. If the receiving

proxy is behaving normally, the offending attacker will

eventually be rebooted. If the originating enclave keeps

sending out attacks, the receiving enclave's proxy may elect

to force a reboot of the entire foreign enclave.

2
 We are not modeling false positive attacks reports.

Approved for public release; unlimited distribution

A proxy may send a reboot message to another proxy. Only

proxy nodes can send reboot messages. In the following, the

policy is that if a proxy receives a reboot message, it in turn

sends reboot messages to all of the nodes in its enclave.

A proxy keeps track of reputations for both (1) nodes in its

proxy and (2) proxies for other enclaves. It can decide to

send reboot messages either to (1) nodes in its enclave, or (2)

proxies in other enclaves.

D. Details of Simulation

There are two types of node (proxy and regular), and each

node is in one of three states: healthy, compromised, or

offline. We start with one compromised regular node per

enclave. In Figure 1, the red nodes represent compromised

nodes. A healthy proxy node keeps track of a set of suspect

nodes, forcing them to reboot when they are deemed

compromised. Here any node which is detected as the source

of an attack is deemed to be compromised. A compromised

node selects a victim (proxy or regular node) from within its

local enclave and attacks it.

An attack on a node is detected according to probability

parameter P (detect | attacked). If the attack is detected, the

attack is reported to the local proxy. If the attack is not

detected, the node becomes compromised according to

probability parameter P (compromise | attacked, not

detected) (which is 0 for SAFE nodes). When a node is

rebooting, it ignores all messages (though in the cross-

enclave case, it might be rebooted while rebooting).

Attacks on already compromised nodes can be detected if

there is a separate attack detection mechanism outside of the

nodes being attacked.

At each time step, the following actions take place, according

to the type of the node and its state:

Healthy regular:

1. If received attack message, flip P (detect | attacked-

healthy) coin.

2. If attack detected, send message report (sender) to

local proxy.

3. Handle reboot message. May arrive if local proxy

is being rebooted by an external enclave. Transition

to offline mode with countdown (reboot-node-

countdown).

4. If attack not detected, flip P (compromise |

attacked, not-detected) coin.

5. If compromised, transition to compromised regular

node.

Compromised regular:

1. Check message queue for attack message (assumes

attacker cannot distinguish between healthy and

compromised nodes).

2. If attacked, flip P (detect | attacked-compromised)

coin.

If attacked and detected, send message report (sender) to

appropriate proxy. Note that the ability to detect attacks on

compromised nodes models there being some attack

detection in the system that does not necessarily rely on the

target being healthy.

3. Check message queue for reboot message. If

received, transition to offline mode, with count-

down timer (node-reboot-time).

4. If not rebooted, select a target node from local

enclave. Send attack message to target.

Healthy proxy:

1. Check message queue for attack message.

2. If attacked, flip P (detect | attacked-compromised)

coin.

3. If attacked and did not detect and compromised,

transition to compromised proxy node.

4. If attacked and detected

a. If attacker is local to this proxy's enclave,

decrement attacker's reputation.

b. If attacker is from another enclave,

decrement attacker's proxy's reputation.

5. For each incoming report (attacker) message,

a. If attacker is local to this proxy's enclave,

decrement attacker's reputation.

b. If attacker is from another enclave,

decrement attacker's proxy's reputation.

c. If attacker is from another enclave, send

report (attacker) message to other

enclave's proxy.

6. Handle reboot message. Send reboot message to all

nodes in this enclave. Transition to offline proxy

with proxy-reboot-countdown.

7. If any nodes have low enough reputations:

a. If bad node is in local enclave, send it a

reboot message.

b. If bad node is another enclave, send

reboot message to its proxy.

8. For every node to which just sent reboot message,

reset reputation.

Compromised proxy:
1. Handle reboot message. Send reboot message to all

nodes in this enclave. Transition to offline proxy

with countdown.

2. If attacked, flip P (detect | attacked-compromised)

coin.

3. If attacked and detected, send message report

(sender) to attacker's proxy.

Offline regular or proxy:
1. Ignore all messages.

2. Decrement timer.

3. If timer at zero, transition to uncompromised.

IV. RESULTS

A. Data

In Tables 1-5, Frac SAFE is the fraction of Proxy nodes

which are immune to attack. Every enclave has exactly one

proxy node, in addition to the clients listed. All client nodes

can be compromised. The internal table values are the

fraction of the nodes which are HEALTHY in what appears

Approved for public release; unlimited distribution

to be a steady state. In almost all cases, the system entered

what appeared to be a steady state in 100 or fewer ticks. We

continue the run for 1000 ticks to see if it indeed stays

steady. In some cases, all the nodes became

COMPROMISED, or all the nodes became HEALTHY. In

either of those cases, the run is said to have ended when that

occurred.

 Pdetect is the probability that an attack will be detected

 Pcompromise is the probability that an attack that is not

detected will compromise the attacked node.

 All runs have “offline time" (that is, the time between

when a node gets a reset signal and when it finishes

rebooting) of 5 ticks.

 All runs use a “one strike and you're out" rule for when

to force a node to reboot.

 All runs use an “attack delay" (the time between attacks

by a single node) of 2 ticks.

 All reported data are the average of 50 runs.

1) 20 Enclaves, 50 Clients/Enclave

In Tables 1 through 5 we plot the fraction of healthy nodes at

steady state as a function of Pdetect and the fraction of

proxies which are SAFE nodes at different values of
Pcompromise. The only differences between the first five tables

are the values of Pcompromise . Most of the runs went for the

full 1000 ticks allowed, but a few ended in 10 to 20 ticks. In

Table 3 the value 0.02 for Pdetect = 0:7, no SAFE nodes,

comes from 1 run which quickly became all HEALTHY, and

49 runs which relatively quickly became all

COMPROMISED.

What we learn from these tables is that even relatively small

numbers of SAFE nodes go a long way toward making a

resilient network. For example, in Table 2, where

Pcompromise is 0.8, reading a row from left to right, such as

when Pdetect is 0.7 if there are no SAFE nodes, all the nodes

quickly become compromised, but, when all the proxies are

SAFE nodes (which is still only 2% of the total nodes), one

gets 27% HEALTHY nodes in the steady state.

Frac

SAFE

0 0.1 0.3 0.5 0.7 1.0

Pdetect

0.1 0.00 0.00 0.02 0.03 0.04 0.08

0.3 0.00 0.01 0.02 0.06 0.08 0.13

0.5 0.00 0.02 0.03 0.08 0.11 0.18

0.7 0.00 0.02 0.04 0.09 0.12 0.21

0.9 0.00 0.02 0.05 0.10 0.15 0.22

Table 1: Pdetect vs. Fraction of SAFE nodes, 20
enclaves, 50 clients per enclave, Pcompromise = 1.0

1) 10 Enclaves 100 Clients/Enclave

In Table 6, we consider having fewer larger enclaves – 10

enclaves of 100 nodes each. It appears from Table 6 and

Table 4 that with a fixed number of SAFE nodes, it almost

doesn't matter if you have 10 enclaves of 100 clients each

with all proxies being SAFE nodes, or 20 enclaves of 50

clients each, with half the proxies being SAFE nodes.

Frac

SAFE

0 0.1 0.3 0.5 0.7 1.0

Pdetect

0.1 0.00 0.00 0.01 0.03 0.06 0.09

0.3 0.00 0.03 0.03 0.07 0.11 0.18

0.5 0.00 0.02 0.04 0.09 0.14 0.22

0.7 0.00 0.02 0.07 0.11 0.19 0.27

0.9 0.00 0.02 0.08 0.13 0.20 0.28

Table 2: Pdetect vs. Fraction of SAFE nodes, 20
enclaves, 50 clients per enclave, Pcompromise = 0.8

Frac

SAFE

0 0.1 0.3 0.5 0.7 1.0

Pdetect

0.1 0.00 0.00 0.02 0.07 0.09 0.12

0.3 0.00 0.05 0.08 0.18 0.17 0.23

0.5 0.04 0.03 0.08 0.16 0.20 0.31

0.7 0.02 0.02 0.13 0.18 0.29 0.37

0.9 0.00 0.07 0.21 0.25 0.32 0.43

Table 3: Pdetect vs. Fraction of SAFE nodes, 20
enclaves, 50 clients per enclave, Pcompromise = 0.6

Frac

SAFE

0 0.1 0.3 0.5 0.7 1.0

Pdetect

0.1 0.06 0.18 0.21 0.17 0.17 0.32

0.3 0.20 0.16 0.34 0.41 0.53 0.61

0.5 0.32 0.52 0.51 0.64 0.75 0.79

0.7
3
 0.62 0.79 0.83 0.88 0.85

0.9 0.74 0.83 0.87 0.90 0.91 0.92

Table 4: Pdetect vs. Fraction of SAFE nodes, 20
enclaves, 50 clients per enclave, Pcompromise = 0.3

Frac

SAFE

0 0.1 0.3 0.5 0.7 1.0

Pdetect

0.1 0.40 0.73 0.75 0.82
4
 0.93

0.3 1.00 1.00 1.00 1.00 1.00 1.00

0.5 1.00 1.00 1.00 1.00 1.00 1.00

0.7 1.00 1.00 1.00 1.00 1.00 1.00

0.9 1.00 1.00 1.00 1.00 1.00 1.00

Table 5: Pdetect vs. Fraction of SAFE nodes, 20
enclaves, 50 clients per enclave, Pcompromise = 0.1

3
 22 runs ended before 30 ticks. Ran for 2000 ticks, 30 runs ended

before 90 ticks. After 1000 ticks, the fraction HEALTHYwas dropping
steadily. Ran it for 2000 ticks - it was dropping at 1000 ticks, but may
have steadied at 0.60 at 2000 ticks.
4
 no steady state. After 1000 ticks, it was at 0.89, but

dropping 0.01 every 200 or so ticks

Approved for public release; unlimited distribution

Frac
SAFE

0 0.2 0.6 1.0

Pdetect

0.1 0.08 0.16 0.19 0.32

0.3 0.28 0.30 0.43 0.60

0.5 0.37 0.41 0.64 0.77

0.7 0.42 0.63 0.88 0.85

0.9 0.85 0.95 0.92

Table 6: Fraction SAFE nodes vs. Pdetect, 10 enclaves,
100 clients per enclave, PCompromise = 0.3

2) 254 Enclaves, 1 Client per Enclave

One good use for SAFE nodes would be to use them as

“dongles” each computing node and the rest of the network.

They would need only a minimal amount of software, and

could be made rather inexpensively. As Table 7 shows this

gives a large increase in the usability of a system.

Frac

SAFE

0 0.1 0.3 0.5 0.7 1.0

Pdetect

0.1 0.02 0.06 0.18 0.29 0.39 0.57

0.3 0.00 0.08 0.21 0.33 0.47 0.63

0.5 0.00 0.11 0.26 0.41 0.53 0.71

0.7 0.03 0.14 0.31 0.43 0.59 0.75

0.9 0.00 0.16 0.38 0.49 0.61 0.79

Table 7: Pdetect vs. fraction SAFE nodes, 254 enclaves,
1 node per enclave Pcompromise = 0.7

B. Discussion

We have shown that converting even a small fraction of the

proxy nodes in a system to SAFE nodes gives a large gain in

the usability of a computer network under attack. Since

nearly every network is under attack at almost all times, it is

clearly cost effective to have routers and similar

infrastructure nodes inherently secure. Even better would be

to have small secure “dongles” running SOUND or some

similar protocol between every node and its network.

REFERENCES

[1] Udit Dhawan, Albert Kwon, Edin Kadric, Cătălin

Hriţcu, Benjamin C. Pierce, Jonathan M. Smith, André

DeHon, Gregory Malecha, Greg Morrisett, Thomas F.

Knight, Jr., Andrew Sutherland, Tom Hawkins, Amanda

Zyxnfryx, David Wittenberg, Peter Trei, Sumit Ray, and

Greg Sullivan. Hardware support for safety interlocks and

introspection. In SASO Workshop on Adaptive Host and

Network Security, September 2012.

[2] Michael Figueroa, Karen Uttecht, and Jothy

Rosenberg. A SOUND approach to security in mobile and

cloud-oriented environments. In 2015 IEEE International

Symposium on Technologies for Homeland Security, 2015.

Gregory Frazier, Quang Duong, Michael P. Wellman, and

Edward Petersen. Incentivizing responsible networking via

introduction-based routing. In Trust and Trustworthy

Computing - 4th International Conference, TRUST 2011,

Pittsburgh, PA, USA, June 22-24, 2011. Proceedings, pages

277--293, 2011.

