
Simple Additive LSB Steganography in Losslessly
Encoded Images

Arik Z. Lakritz, Peter Macko, and David K. Wittenberg

September 26, 2007

Abstract

Kurak and McHugh [7] described LSB encoding, a steganographic
technique to hide data in the low order bits of an image. Moskowitz,
Longdon, and Chang [10] point out that most pictures have areas where
the low order bits are clearly non-random, so if those bits are replaced
with (apparently) random bits, the replacement is easily detected. Other
attacks on LSB encoding are based on the observation that even low order
bits which appear random when viewed alone correlate with the higher
order bits in the region. Several groups [8, 9, 2, 4] have showed how to
detect steganography using this fact. We introduce XLSB, which solves
both problems without complicating the decoder, the first by avoiding the
areas of an image in which the low order bits are non-random, and the
second by adding small values to the data instead of replacing the low or-
der bits. We give test results showing that several steganalysis techniques
do not detect XLSB, even at very high data rates (∼ 4 bpp). This is
several hundred times the data rate at which the steganalysis techniques
detect ordinary LSB encoding.

1 Introduction

Steganography predates cryptography as a method of hiding information. The
first known uses were described by Herodotus around 480 BCE. In one a mes-
sage was written on the wood of a writing tablet, rather than scratched in the
wax which covered the wood, as was usually done. In another, a message was
tattooed on a slave’s head, and after his hair grew back, he was sent with the
message hidden under his hair [13]. David Kahn wrote a classic short introduc-
tion to the history of steganography [6].

For most of its history, steganography consisted of thinking of new hiding
methods and hoping that no one else thought to look in those places. Moskowitz,
Longdon, and Chang [10] changed the basic model of steganography to be closer
to the standard model of cryptography. Instead of trying to pick a method of
communicating which others are unlikely to look for (so called “security through
obscurity”), the steganographer now assumes that the steganalyst knows what
steganographic system is in use, and tries to make it impossible to distinguish

1

objects with hidden data from unmodified objects without knowledge of the
steganographic key. By specifying the technique and keeping the key hidden,
one can compare steganographic techniques mathematically.

A classic steganographic technique is to replace the lower order bits in a
digital image (which were thought to be essentially random noise) with the
message one wishes to hide. By compression, encryption, or both, the message
is made to look random so that obvious non-randomness does not announce
the existence of a steganographic message. See Kurak and McHugh [7] for one
discussion. If one assumes that the low order bits are essentially random, this
should be undetectable. Unfortunately, as Moskowitz, Longdon, and Chang [10]
show, this assumption turns out to be false. In almost every photograph we
looked at, large sections (typically a quarter to a third of the area of the image)
had low order bits which did not pass simple tests [11] for randomness. When the
low order bits of the picture were viewed alone, these areas stood out visually.

More recent work has shown that even in areas of an image in which the low
order bits appear random, they correlate with nearby high order bits. There
are several steganalysis tools based on this observation [8, 9, 4, 2].

We introduce XLSB, a steganographic system which is not detected by either
class of techniques.

2 Computational Model

We consider a world in which an encoder named Alice with reasonable compu-
tational power wishes to send hidden messages to a decoder named Bob whose
computational power is somewhat limited, and who may not be able to obtain
sophisticated software for decoding. Eve is an eavesdropper who tries to de-
termine which images contain hidden data. Eve has large, but not unlimited,
computational resources. This corresponds to sending information to political
dissidents in an authoritarian country. As much as possible, we put all the dif-
ficult computations at the encoder’s end, so that the decoder’s program can be
quite simple to write, and will execute reasonably quickly even on slow hard-
ware.

We use the term cover for the original image in which we wish to hide data,
message for the data we are trying to hide, and stego-object for the image with
the message embedded in it.

It is important to realize that a major difference between cryptography and
steganography is the comparative computing power of the encoder and the at-
tacker. In both cases, the attacker (Eve) is assumed to have much greater total
resources than Alice or Bob, but in steganography Alice can force Eve to spread
her resources over many more possible messages. In cryptography, Alice en-
crypts a great many messages, from which Eve chooses a few to attack. Since
the encryption must be done on almost all Alice’s messages, and Eve can choose
which few to concentrate on, Eve can bring to bear much more computing power
per message than Alice.

In contrast, a steganalyst must look at large numbers of possible stego-

2

objects, many of which are simply covers before finding a real stego-object.
Alice can force Eve to study more possible stego-objects just by sending more
unmodified images, or equivalently by hiding a message in a few images in a
large web gallery. Even if Eve only suspects that the gallery contains stego-
objects, she must study a large fraction of the images. Thus Alice can afford
more computation per message than Eve can, despite Eve’s much greater overall
processing power. It still must be easy for Bob to determine which images are
covers and which are stego-objects.

3 Algorithm

This paper introduces XLSB, a steganographic system which incorporates two
separate techniques (block selection and additive LSB encoding) which together
constitute a relatively simple LSB steganographic system. Essentially all of the
added complexity is in the encoder, leaving a relatively simple decoder. This is
important as our model assumes an encoder with reasonable resources trying to
get information to a resource-poor decoder.

We define the hiding area to be the part of each byte which contains embed-
ded data. Note that in color images, each color component is represented by a
byte. The hiding area is the lowest order bit or bits of each byte and is typically
one or two bits per byte. We use H for the number of bits in each byte’s hiding
area. Note that bits outside the hiding area may be modified to help hide the
steganography, but Bob need not look outside the hiding area.

3.1 Algorithm Overview

XLSB proceeds in three phases. The first phase, block selection (subsection 3.2),
chooses blocks which are sufficiently irregular to make it difficult to detect
steganography. Given the amount of data to be embedded, this phase checks
if there are sufficiently many relatively irregular blocks to hold the amount of
data and determines which blocks to use.

The second phase is to calculate exactly what data to embed. This consists
of compressing or encrypting (or both) the data to make it appear random, and
then breaking it into chunks of appropriate size and calculating a checksum for
each block.

The third phase, additive LSB encoding (subsection 3.3), modifies the cover
image to hold the necessary data.

Our testing used three color components image blocks of size 9 × 9 pixels,
which have capacity 3 × 9 × 9 × 2/8 ≈ 60 bytes for color images with a hiding
area of two bits.

3.2 Block Selection

The word block is used in cryptography to mean a string of data (either before
or after encryption) and in discussing images to mean a small rectangular area

3

of the image. In this paper, we will use blocks in the image sense, and use
chunks to mean a string of data.

Block selection is the process of choosing which blocks to embed data in. We
choose blocks which look as much as possible like a typical image. While we have
an intuitive idea of what a typical image looks like, it is very hard to formalize
that idea, and we do not try to do so. Obviously typical does not mean random,
as it is not clear what population to choose over, and a simple calculation of an
arithmetic mean returns a uniform grey. Real images have large areas which are
very regular, and we avoid those areas. It is slightly paradoxical to note that
an image which appears “typical” over its entire area is rare indeed.

Block selection in XLSB employs two types of tests, choosing blocks which
are both relatively “random” to avoid the attack of Moskowitz, Longdon, and
Chang [10] and reasonably “rough” to avoid the Gaussian smoothing attacks of
Avcıbaş, Memon and Sankur [5]. The Gaussian smoothing attack is discussed
further in Section 5.1. Because Alice has a computational advantage over Eve
(on a per message basis), we can afford to add other tests as they are found
useful. There is always an arms race in cryptography and steganography. As
new methods of recognizing overly regular areas are discovered, they will have
to be added to XLSB.

We divide the image into blocks of N × M pixels (usually 9 × 9). For each
pixel in the block, we run the various tests on a bit-string composed of the
bits from the hiding areas of the pixels from an N × M square (reading the
3× 9× 9×H bits as a string in row major order) surrounding the pixel. Some
of these pixels are outside the block under consideration.

We measure a randomness and a roughness value for each block, then linearly
combine them to get a suitability score. We then determine the number of blocks
n which is required to hold the message. XLSB then uses the n blocks with the
best suitability score. The algorithm has a security parameter which specifies
how “random” a block must be for it to be used. If there are not enough blocks
with suitability scores above the chosen threshold, it returns a “picture too
small” error. For each block chosen, the encoder embeds part of the message
together with a checksum in it (called, jointly, a chunk.) Bob can determine
which blocks contain data by testing the checksums of all of them.

3.2.1 Randomness Testing

In each block we measure the randomness of the hiding area using part of the
NIST suite of randomness checkers [11]. Our current implementation uses the
first two of the 16 tests in the suite: frequency test and runs test. We have
modified the frequency test to return a floating point value which grows as the
apparent randomness decreases instead of returning 0 or 1, depending on some
threshold. We currently combine the results of the tests linearly with weights
of 0.65 for the frequency test and 0.35 for the runs test.

4

3.2.2 Smoothness Testing

We measure the smoothness of each block using the Gaussian smoothing and
compare techniques of Avcıbaş, Memon and Sankur [5]. XLSB does this by
computing the difference between the value of a pixel in the image and the local
Gaussian mean around that pixel as determined by the Gaussian smoothing
filter. We choose areas where |c− ĉ| (where c is the color intensity vector of the
tested pixel and ĉ is the corresponding color intensity vector in the smoothed
image) is high in order to avoid using smooth blocks for which steganalysis based
on Gaussian smoothing is likely to succeed.

The measurements by Avcıbaş, Memon and Sankur [5] have led us to observe
that large smooth flat areas of single or gradient color tend to appear regular-
looking with little noise in them. Embedding secret information in these areas
randomizes the noise and makes it irregular, since our method does not dis-
tribute data evenly throughout the picture. Gaussian smoothing detects these
changes in a manner similar to the attack of Moskowitz et al. Therefore, such
areas in the picture should be avoided when embedding data. On the other
hand, areas with many edges and a large variety of colors usually contain much
random noise, and therefore should be preferred.

3.3 Additive LSB Encoding

The more difficult problem is that early LSB steganography schemes treated
the low order bits as an independent random variable. While those bits do
indeed appear random (when viewed alone), they correlate with the values of
nearby pixels and with the high order bits in the same pixel. This makes them
susceptible to Sample Pair analysis [2], Color Cube analysis [8], and related
attacks.

We introduce additive LSB encoding which avoids this problem by poten-
tially modifying the entire byte, rather than just the low order bits. Instead
of replacing the LSBs with the data we wish to embed, we add to each byte
the smallest number which results in the correct value for the LSBs we wish to
embed. This addition may carry into the high order bits. To avoid increasing
the average intensity values, we subtract a small value (2 when H is 2) from each
byte before increasing the value. The total effect is essentially to add a small
pseudo-random value to each byte, which in effect is simply adding noise to the
entire signal. This makes it much more difficult to detect our changes. Because
XLSB adds to the entire byte, instead of just changing the LSBs, XLSB makes
much smaller changes in the second order statistics than earlier algorithms. In
particular, XLSB makes very little change in the relationship between the low
order bits and the higher order bits.

If the addition causes overflow (or underflow), we replace the value with the
largest legal (or smallest legal) value. This might cause additive LSB encoding
to disrupt the distribution of values near zero and near the maximum byte value
(usually 255), but this overflow or underflow is so rare as to not be an issue.
In a majority of the images we examined, the blocks which were selected had

5

no pixels with values of 0, 1, 2, 253, 254, or 255, either before or after XLSB
steganography. Thus the possible changes in distribution of values near the
maximum value are unlikely to be visible, and can be avoided entirely by not
using blocks in which overflow or underflow occur.

The critical advantage of additive LSB encoding over normal LSB encoding is
that it does not create unnecessarily large differences between consecutive pairs
of pixels, which is what many steganalysis systems detect with their second
order statistics. Consider hiding 1100 in two 4-bit pixels with values 0100 and
0011, which differ by one. After performing traditional LSB, we obtain 0111 and
0000; these two values now differ by seven. On the other hand, XLSB encoding
would produce 0011 and 0100, which still differ by only one.

For testing, we used a hiding area of two bits of data per 8-bit byte of the
image. PNG uses three bytes per pixel (red, green, blue), so we embed up to
6 bpp (bits per pixel). If one were more worried about detection, one could
embed one bit per byte (3 bpp).

3.4 Identifying Message Blocks

Bob needs some way to determine which blocks have data in them. The method
of this determination is the steganographic key. If the data is encrypted, Bob
can check to see that it decrypts sensibly, and if so, he knows that the block is in
use. This requires that each image block be large enough to hold a cryptographic
block. Our current implementation uses blocks which are too small to allow this,
but the blocks could easily be enlarged. If the data is not encrypted, then one
needs to use a hash function to identify the blocks in use.

Our current implementation uses MD5 to generate a 16 byte checksum,
which is sent as the last 16 bytes of each chunk. Since each block can hold 60
embedded bytes, this leaves enough room for 60− 16 = 44 bytes of data in each
block. We could either use a salt to MD5 as the steganographic key, or the key
could be an agreed upon string used to pad the short blocks we use to the 512
bits in a MD5 block.

It is known that the short size of an MD5 hash allows one to search for
different messages with the same hash using a “birthday” attack after which an
attacker could replace one data chunk with another. This is not a concern here,
as we assume the attacker does not know what salt is used for the MD5 hash.
Knowing the salt is equivalent to knowing the steganographic key. We assume
Eve does not know the key.

Bob does not need to do statistical tests, so his code is relatively simple and
requires few computational resources.

4 Image Formats

There are many image formats in use. XLSB should work equally well with
any lossless image format, or indeed (with the obvious minor modifications) for
audio data. The only part of the algorithm which depends on the format is how

6

image blocks are defined and chosen in each format. We have concentrated on
PNG formats [12]. We expect XLSB to work on TIFF [1] and BMP formats
but have not studied them. If a format is sufficiently compressed, embedding
data will visibly change the image, so those formats are not appropriate for
steganography, or can only be used with very low data rates. Steganography
depends on the cover having some noise, and in a highly compressed format,
there is not enough noise for steganography. In general, the lossier the format,
the less suitable it is for steganography. Fridrich, Goljan, and Du [3] explain why
images which have been previously converted from JPEG to any other format
are poor choices for steganography.

5 Steganalysis

There is a significant literature on steganalysis, and it is important to consider
how XLSB copes with known means of detecting steganography. We applied
several published steganalytic attacks to XLSB, and found that XLSB could
encode large amounts of data without being detected by any of them. In some
cases, there was a statistically detectable difference between a population of
cover images and the population of stego-objects XLSB creates from them,
but the difference is only detectable over populations of images, as there is
tremendous overlap of the samples. By choosing safe images to use for XLSB
steganography, even the population differences can be hidden. We tested on a
set of 39 images. We used all the images in the data set, and did not select
them for steganographic reasons.

We show data only from images of 640 × 480 pixels in order to show the
algorithm on images of a size which is commonly used on web pages.

Note that the steganographer can select images in which the steganography
is least obvious. Because the steganalyst has no knowledge of what images the
steganographer chooses from, the steganographer need use only a small fraction
of the images he considers. In this paper we ignore that ability. Using it would,
of course, improve our results.

5.1 Non-Random or Smooth areas in images

For now, XLSB defends against the attack of Moskowitz et al. [10] and the
attack of Avcıbaş, Memon and Sankur [5] by using the same tests they use,
except that in XLSB they are used prospectively. That is, XLSB takes a test
which a cryptanalyst might use to detect steganography, and if steganography
is likely to be detected, omits that block from the blocks used to embed data.

Avcıbaş, Memon and Sankur [5] proposed to use ANOVA Image Quality
Metrics to detect steganography. They did this by using a Gaussian smoothing
convolution filter, which gives a local mean value for the area around each pixel.
They use that mean (which is also the maximum likelihood estimate of pixel
value in the original image under the Gaussian assumption) as the pixel value

7

in the smoothed image. If the value of a pixel varies greatly from the value in
the smoothed image, that is taken as evidence of steganography.

Moskowitz et al. look for areas of low order bits which they expect to
appear non-random based on the contents of the image they are looking at.
They however do not specify which features of an image tend to correspond to
non-random low order bits, but from our experience, a stegoanalyst can gain
such intuition by studying a rather small number of unmodified images. The
non-random areas generally tend to correspond to very bright, dark, or single-
color areas of an image. The safest way around this is to embed messages only
in blocks that look sufficiently random, preserving the non-random areas.

5.2 Statistical Tests

There are many different measurements which one can make to describe images.
The point of steganalysis is to use some of those measurements to determine if
an image has been tampered with. Here we discuss some of them.

Lee et al. point out that one can use two part statistical tests to detect
steganography in color [8] (Color Cube Analysis) and grey scale [9] images.
They use the ideas from Dumitrescu, Wu, and Wang’s Sample Pair Analysis [2]
which measures the length of hidden texts very accurately. Dumitrescu et al.
built on the earlier RS-steganalysis work of Fridrich, Goljan, and Du [4].

5.2.1 Number of Colors

We define LSB2 as a measure of the number of colors in an image. Consider the
high order 6 bits of each color. For each 18 bit value which appears, we count
the number of different values of the 6 low order bits (2 bits of each color). The
maximum value for LSB2 is 64. LSB2 is the average of these counts for values
of high order bits which appear in an image.

For our cover images, LSB2 ranged from 8.49 to 11.49. After embedding
6 bpp over about three quarters of the image, for a density of about 4 bpp
(15% of the total bits in the image are embedded bits), LSB2 ranged from 8.52
to 11.62. While for each picture, LSB2 increased by between .02 and .4 when
we embedded data, it is certainly not enough of a change to draw a threshold
for determining if data is hidden. (Note that the smallest LSB2 value before
embedding does not correspond to the smallest LSB2 value after embedding.)

5.2.2 Color Cube Analysis

Color cubes are three dimensional sets of points made up of the red, green,
and blue intensity values for pixels in pictures to be analyzed. The steganalytic
technique is based on the observation that with a high probability, comparable
color cubes have the same noisiness levels.

Lee et al. [8] described a statistical test that can be done on the set of
colors used in the picture. They represent the color space as Z256 ×Z256 ×Z256

(where Z256 is the additive group of integers modulo 256). This color space has

8

point (r, g, b) if and only if a color corresponding to that point is used in the
image. The color cube is defined as a cube with vertices (r, g, b), (r + sδ, g, b),
(r+sδ, g+sδ, b), (r, g+sδ, b), (r, g, b+sδ), (r+sδ, g, b+sδ), (r+sδ, g+sδ, b+sδ),
and (r, g + sδ, b + sδ), where r, g, b are even, δ is odd, and s ∈ {−1, 1}. Right
cube is defined as a cube with s = 1, left cube has s = −1, and the order of the
cube is the number of vertices that are points in the color space.

The color cube analysis method assumes that in an unmodified cover, for
each delta and each order, the numbers of left and right sub-cubes is about
equal, and proceeds to check for statistically significant deviations from this
symmetry.

Traditional LSB embedding adds noisiness to the color cubes by adding
points within the cubes, which can be detected when the noise is not symmetric
with the comparable cubes.

XLSB embedding 6 bpp of data only changes the results of color cube anal-
ysis [8] slightly, sometimes increasing and sometimes decreasing the measured
amount of data embedded.

5.2.3 Sample Pair Analysis

Sample Pair Analysis [2] is based on the idea that in a digitization of a con-
tinuous signal (like audio or photographic data), it is likely that consecutive
points will have values which are close together. Sample pair analysis detects
steganography by statistically measuring the difference between adjacent points.
Because XLSB does not increase that difference nearly as much as standard LSB
embedding does, sample pair analysis is not sensitive enough to XLSB to have
a threshold over which one should suspect steganography. The distribution of
measurements from covers has enormous overlap with the distribution of mea-
surements for stego-objects.

Using Sample Pair Analysis [2], we find that embedding 6 bpp sometimes
increases and sometimes decreases the measured bit rate. Untouched pictures
had measured bit rates of 1.25 to 3.49, while pictures with embedded data had
measured bit rates of 0.49 to 3.38. In most cases the measured bit rate went
down. Again, there is so much overlap between the distribution of untouched
pictures and the distribution of pictures with embedded data that it is not
possible to use a threshold function to separate them.

With normal LSB encoding, Sample Pair analysis detects steganography at
.03 bpp, while XLSB is not detected at 200 times that level.

5.2.4 RS Steganalysis

Fridrich et al. [4] introduced RS steganalysis which uses the distribution of reg-
ular and singular groups to detect steganography in uncompressed images with
an exceedingly high success rate. They claim that they can reliably detect se-
cret messages with density as low as 0.03 bpp. Note that they assume that the
hidden message is randomly distributed throughout the image’s low order bits,

9

which makes decoding (and detection) more difficult. In XLSB the hidden mes-
sage is placed deterministically, but can still hide 6 bpp without being detected
by RS Steganalysis.

!!! how many bits are we embedding?? It’s not 6 bpp, because we don’t use
every pixel. Is 4 a good number? We may need some testing here.

When we embed 6 bpp (2 for each color), we slightly decrease the estimated
percentage of flipped pixels RS Steganography returns, but the change is de-
tectable only because the distributions are slightly different. They still have an
enormous overlap. The original images have values (RS measured embedding
densities R + G + B) ranging from 1.28% to 2.04%, while the images with
data embedded range from 0.75% to 1.95%. We do not know why XLSB de-
creases the apparent density of steganographic bits below the values measured
on unmodified images.

6 Results

Table 1 shows results of 3 steganalysis techniques on images in three forms:
First the cover image, then the image with a jpeg embedded in it, and finally
the image with text embedded in it. Notice that while each of the measurements
changes with the data embedding, none of them consistently change in the same
direction. We do not understand why XLSB embedding sometimes reduces the
measured embedding rate compared to the cover image. Further note the large
overlap in the ranges of each measurement with and without embedding. This
overlap in the ranges makes it all but impossible to use these analysis techniques
to detect XLSB. All of the images are available on-line at the URL at the end
of the paper. We discuss them briefly here.

Picture 1075 is a photograph of a banana on a light colored desk. All the
colors are in the yellow range, and there is relatively little contrast. We do not
know why the analysis tools flag that photograph, nor why embedding data in it
reduces the measured embedding rate so sharply. Picture 1086 is a photograph
of a large rectangular fluorescent light fixture. Like 1075, it has rather little
contrast, and most of the image is pale yellows.

7 Images Used

Most of the images we tested were photographs taken by Jason C. Wu with a
Panasonic DMC-FZ30 8 Megapixel camera in TIFF mode. Other images were
taken with a Olympus Camedia C4000 Zoom in TIFF mode. We converted the
TIFF images to PNG format with ImageMagick convert. For smaller images,
we used ImageMagick to reduce the size to 640 × 480.

All of the images are available on the web site:
http://www.cs.brandeis.edu/∼dkw/xlsb

10

File Name LSB2 Color Cube Sample Pair RS Group
χ2 P-value

pa150034.png (portrait) 12.84 2.61 0.08 0.08 2.01
pa150034.png with jpeg 12.87 4.20 0.24 0.20 1.08
pa150034.png with text 12.84 3.73 0.19 0.091 1.16
1073.png (buildings) 16.37 2.24 0.05 5.22 2.37
1073.png with jpeg 16.47 3.21 0.14 5.56 2.63
1073.png with text 16.45 2.72 0.09 4.37 1.90
1086.png (flourescent) 20.45 4.82 0.32 7.45 4.02
1086.png with jpeg 20.77 4.51 0.28 7.33 3.96
1086.png with text 20.49 5.48 0.40 7.69 4.22
1075.png (bannanas) 11.15 39.93 ∼ 1 15.56 8.31
1075.png with jpeg 11.30 32.16 ∼ 1 6.57 3.62
1075.png with text 11.25 36.63 ∼ 1 8.28 3.02
P1010053.png (bird) 8.28 3.76 0.19 2.74 2.17
P1010053.png with jpeg 8.37 1.66 0.02 1.88 1.76
P1010053.png with text 8.36 2.27 0.06 1.24 1.46

Table 1: In each group of three images, the first is the cover image, the second
a stego object consisting of the cover with a jpeg XLSB embedded, and the
third a stego object consisting of the cover with a text message embedded. The
same 35.5 Kbyte jpeg and 24.8 Kbyte text messages were used for each image.
The “color cube” column (see Section 5.2.2) is the test of Lee et al. [8]. The P-
value is the calculated probability that the image contains steganographic data.
The Sample Pair (see Section 5.2.3) column is the test of Dumitrescu, Wu, and
Wang [2], and RS group (see Section 5.2.4) is the RS steganalysis of Fridrich et
al. [4]

8 Acknowledgments

We thank the Brandeis Computer Science Department Security Reading Group,
in particular Jon Sagotsky for suggesting this problem. We thank Marty Cohn
for his encouragement, Tim Hickey for the suggested application, and Jason
C. Wu and Neal Lakritz for providing images.

References

[1] Adobe Developer’s Association. TIFF revision 6.0, 1992.
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf.

[2] Sorina Dumitrescu, Xiaolin Wu, and Zhe Wang. Detection of LSB steganog-
raphy via sample pair analysis. In Fabien A. P. Petitcolas, editor, Infor-
mation Hiding, volume 2578 of Lecture Notes in Computer Science, pages
355–372. Springer, 2002.

11

[3] Jessica Fridrich, Miroslav Goljan, and Rui Du. Steganalysis based on JPEG
compatibility. In Digital Watermarking and Data Hiding, SPIE Multimedia
Systems and Applications IV, pages 275–280, 2001.

[4] Jessica J. Fridrich, Miroslav Goljan, and Rui Du. Reliable detection of
LSB steganography in color and grayscale images. In Proc. of the ACM
Workshop on Multimedia and Security, pages 27–30, 2001.

[5] İsmail Avcıbaş, Nasir Memon, and Bülent Sankur. Steganalysis using image
quality metrics. IEEE Transactions on Image Processing, 12(3):221–229,
Feb 2003.

[6] David Kahn. The history of steganography. In Ross Anderson, editor,
Information Hiding: First International Workshop, volume 1174 of Lecture
Notes in Computer Science, pages 1–5. Springer, 1996.

[7] C. Kurak and J. McHugh. A cautionary note on image downgrading. In
Computer Security Applications Conference, pages 153–159, 1992.

[8] Kwangsoo Lee, Changho Jung, Sangjin Lee, and Jongin Lim. Color cube
analysis for detection of LSB steganography in RGB color images. In In-
formation Security and Hiding Workshop in Intenational Conference on
Computer Science and its Applicatons - ICCSA Part II, volume 3481 of
Lecture Notes in Computer Science, pages 537–546, 2005.

[9] Kwangsoo Lee, Changho Jung, Sangjin Lee, and Jongin Lim. New steganal-
ysis methodology: LR cube analysis for the detection of LSB steganogra-
phy. In Mauro Barni, Jordi Herrera-Joancomart́ı, Stefan Katzenbeisser, and
Fernando Pérez-González, editors, Information Hiding: 7th International
Conference, volume 3727 of Lecture Notes in Computer Science, pages 312–
326. Springer, 2005.

[10] Ira S. Moskowitz, Garth E. Longdon, and LiWu Chang. A new paradigm
hidden in steganography. In Paradigms Workshop, 2000.

[11] National Institute of Standards and Technology. A statistical
test suite for the validation of random number generators and
pseudo random number generators for cryptographic applications, 2001.
http://csrc.nist.gov/rng/SP800-22b.pdf.

[12] Portable network graphics (PNG) specification (second edition),
2003. ISO/IEC 15948:2003 (E) http://www.w3.org/TR/2003/REC-PNG-
20031110.

[13] Simon Singh. The Code Book: The Science of Secrecy from Ancient Egypt
to Quantum Cryptography. Fourth Estate, London, 1999.

12

