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Abstract 1. Introduction

We analyze the computational complexity EFA, a hierarchy We investigate th@recisionof static, compile-time analysis, and
of control flow analyses that determine which functions may be the necessary analytitadeoff with the computationatesources
applied at a given call-site. This hierarchy specifies related decision that go into the analysis.
problems, quite apart from any algorithms that may implement Control flow analysis provides a fundamental and ubiquitous
their solutions. We identify a simple decision problem answered static analysis of higher-order progrars. Heintze and McAllester
by this analysis and prove that in the OCFA case, the problem is (1997) point out that “in fact, some form of CFA is used in most
complete for polynomial time. The proof is based on a nonstandard, forms of analyses for higher-order languages.” Control flow analy-
symmetric implementation of Boolean logic within multiplicative  sis answers the following basic questions (Palsperg|1995):
linear logic (MLL). We also identify a simpler version of 0CFA
related tay-expansion, and prove that it is complete fOIGSPACE
using arguments based on computing paths and permutations.
For any fixedk > 0, it is known thattCFA (and the analogous
decision problem) can be computed in time exponential in the
program size. Fok = 1, we show that the decision problem is These questions specify well-defined, significaetision prob-
NP-hard, and sketch why this remains true for larger fixed values lems quite apart from any algorithm proposed to solve them. What
of k. The proof technique depends on using dpproximationof is the inherent computational difficulty of solving these problems?
CFA as an essentially nondeterministic computing mechanism, asWhat do they have to do with normalization (evaluation), as op-
distinct from the exactness of normalization. Whien= n, so posed to approximation? Where is the fulcrum located between ex-
that the “depth” of the control flow analysis grows linearly in the act computation and approximation to it, and how does that balance
program length, we show that the decision problem is complete for make this compile-time program analysis tractable?
EXPTIME. To answer either of the enumerated questions above, we must be
In addition, we sketch how the analysis presented here may able to approximate the set of values to which any given subexpres-
be extended naturally to languages with control operators. All of sion may evaluate. This approximation can be formulatediasva
the insights presented give clear examples of how straightforward to relation between fragments of program text—the set of values a
observations about linearity, and linear logic, may in turn be used subexpression may evaluate to, then, is the set of appropriately de-
to give a greater understanding of functional programming and fined (program text) values that flow into that subexpression. This

1. For every application, which abstractions can be applied?
2. For every abstraction, to which arguments can it be applied?

program analysis.

Categories and Subject DescriptorsF.3.2 Logics and Meanings
of Program$: Semantics of Programming Languages—Program
analysis; F.4.1 Nlathematical Logic and Formal Languades
Mathematical Logic—Computability theory, Computational logic,
Lambda calculus and related systems; D.Bf®§ramming Lan-
guage§ Language Constructs and Features—Control structures

General Terms Languages, Theory

Keywords Control flow analysis, static analysis, linear logic, eta
expansion, continuation, geometry of interaction, proofnet, normal-
ization, complexity
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analysis possibly includes “false positives” (values timaty flow

to a call site, but in fact do not), and thudlews toanalysis might
relate every program fragment. We focus attention on an accept-
ably “least” analysis, that is, a solution to the constraints which has
a minimum of false positives. More precision means fewer false
positives.

To ensure tractability of any static analysis, there has to be an
approximationof something, where information is deliberatédgt
in the service of providing what'’s left in a reasonable amount of
time. A good example of what is lost during static analysis is that
the information gathered for each occurrence of a bound variable
is merged. When variablg occurs twice in function position with
two different arguments, and a substitution of a function is made for
f» OCFA will blur which copy of the function is applied to which
argument.

Further refining the relatively coarse approximation of the
above control flow analysis, a hierarchy of analyses was developed
by Olin Shivers in his Ph.D. thesis (Shivgrs 1991), the so-called
kCFA analyses, of which the above analysis marks the base—
OCFA. A 1CFA, for example, usesantourto distinguish a more
specific and dynamic calling context in the analysis of each pro-
gram point; kCFA, then, distinguishes betweénlevels of such
contexts. Moving up the hierarchy increases the precision of this
analysis, by constructing more elaborate contours. However, this
increased precision is accompanied by an empirically observed
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increase in cost. As Shivers observed in his “Best of PLDI” retro-
spective on thé&CFA work:

It did not take long to discover that the basic analysis, for I
anyk > 0, was intractably slow for large programs. In the

ensuing years, researchers have expended a great deal of

effort deriving clever ways to tame the cost of the analysis.

! [eo] :J \/\[[‘31]]:‘
Technical contributions: We identify a simple decision problem [='] [(Az.e)'] [(eo e1)]
answered by control flow analysis and prove that in the OCFA
case, the problem is complete for polynomial time. The proof is
based on a nonstandard, symmetric implementation of Boolean
logic within multiplicative linear logic (MLL). We also identify a
simpler version of OCFA related tg-expansion, and prove that

it is complete for logarithmic space, using arguments based on en=t expressions (or labeled terms)
computing paths and permutations. t:=uxz](ee)| (Az.e) terms (orunlabeled expressions)

Moreover, we show that the decision problem for 1CFA is Expressions are represented graphically as folllows: a graph
NP—hard. Given 'th_at_ there is a naive exponential algorlthm,_ We consists of ternary apply (@), abstractior),(and sharing nodes
conjecture that it is in fackP-complete, where prudent guessing (v): unary weakening nodes)j; and wires between these nodes.
in the computation of the naive algorithm can answer specific £5cn node has a distinguishgdncipal port, ternary node’s other
questions about flows. Moreover, the proof likely generalizes to an 4 xjlary portsare distinguished as the left and right (or black and
r\_IP-hardn_ess proof for all fixedl > 1; we will report on this in the white) ports. We call the principal port of an @-node fhection
final version of the paper. _ _ the left port thecontinuation and the right port theargument

Like all good proofs, thisve-hardness result has simple in- | i ewise, the principal port of a-node is theroot, the left port

tuitions. 1CFA depends oapproximation where multiple values s thehody and the right port is thparameter That is:
(here, closures) flow to the same program point, including false '

Figure 1. Graphical coding of expressions.

abstract syntax of the language is given by the following gran[ﬂ’nar:

positives. The bottleneck of the naive algorithm is its handling of root ‘ continuation\ argument

closures with many free variables. For example,wzizs2 - - - x,, A

hasn free variables, with an exponential number of possible as- body / I\ parameter function

sociated environments mapping these variables. Approximation al-

lows us to bind each;, independently, to either closedterms for Wires are labeled to correspond with the labels on terms, i.e. the
“true” or “false”. In turn, application to an-ary Boolean function,  continuation wire for the graph d& ¢) will be labeled! and the

as analyzed in CFA, must then evaluate the function on each of thergot wire for (Az.¢)! will be labeledi. Parameter wires will be
possible environments. Asking whether “true” can flow out of the |gpeled with the bound variable’s name.

call site then becomes a way of asking if the Boolean function is gives the graphical coding of expressions. Inthe
satisfiable. _ o case, the figure is drawn as thouglappears twice ir, and thus
No such “pseudo parallelism” would be possible in an exact the sharing node is used to duplicate the wire, one going to each
normalization—it is the existence afpproximationthat mashes  occurrence. The wire between thenode and the sharing node is
these distinct closures together. Simite-hardness okCFA for implicitly labeledz. The two wires attached to the auxiliary ports
k > 1 results by suitably “padding” the construction for 1CFA S0 of the sharing node will be labeled with the distinct labels of each
as to render the added precision useless. We remark also that thgccurrence of. If x occurred more than twice, more sharing nodes
NP-hardness construction cannot be coded in 0CFA because in thatygyld be attached to fan out the binding the appropriate amount. If
case, there are no environments and hence no closures. the bound variable occurred exactly once, the wire would connect
Despite being the fundamental analysis of higher-order pro- the \ node directly to the variable occurrence; the labeind the
grams, despite being the subject of investigation for over twenty- |ape| used at the occurrencesofvould both refer to the same wire.
five years|(Jongs 19B1), and the great deal of expended “effort de-|f the bound variable: did not occur ire, the wire from the\-node
riving clever ways to tame the cost”, there has remained a poverty would attach to a weakening node. The “dangling wire” from the
of analytic knowledge on the complexity of control flow analysis graph of the body of the function denotes a variable free In the
and thekCFA hierarchy, the essence of how this hierarchy is com- ¢a5e of(eo e1), the figure is drawn witk, ande; both having a
puted, and where the sources of approximation occur that make thefree variable in common, i.e. there is arin fv(eo) N fv(ey), and

analysis work. This paper is intended to repair such lacunae in our pothe, ande; have another free variable not occuring in the other.
understanding of program analysis.

3. OCFA

2. Preliminaries . . .
) ] ) ] ) Control flow analysis seeks to answer questions such as “what
In this section, we describe the programming language that is the functions can be applied at a give application position?” Because
subject of our control flow analysis and provide the necessary poth functions and applications may be copied, such questions be-
mechanics of the graphical representation of programs employedcome ambiguous. When one points to an application in the program
in our algorithms. The language on which the control flow analysis text, running the program may duplicate this point several times,
will be performed is the untyped-calculus extended by a labelling 5o which of the copies are we really asking about? Likewise, if a
scheme serving to index subexpressions of a program. Following jambda term is said to flow into some application, which copy of
Nielson et al.[(1999), we define the following syntactic categories: the term is going to be applied? The ansWEFA gives is: all of
e € Exp expressions (or labeled terms) them—all copies of a term are identified. Later, we see how con-

t € Term terms (or unlabeled expressions)

o . o LUnlike |Nielson et al.|(19€9), constants, binary operators, and recursive-
A countably infinite set of labeld(ab) is assumed and for simplic-  and let-binding syntax are omitted. These language features add nothing
ity we suppose the set of variable names are includdchib. The interesting to the computational complexity of the analysis.
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Figure 2. CFA virtual wire propagation rules.

textual information can be used to distinguish the copies and give
more precise answers to these questions.

We follow|Nielson et a).[(1999) and say the result of OCFA is
anabstract cacheC associating abstract values with each labeled
program point. More precisely:

7 € Val = P(Term) abstract values
C € Cache = Lab — Val abstractcaches

Lemma 1. C' = eimpliesC C. C' for C constructed fore as
An abstract cachenaps a program label to afvstract valuey, a set described above.
of lambda expressions, which represents the set of (textual) values
that mayflow into that label's subexpression during evaluation.
Similarly, theabstract enviromeninaps a variable to an abstract

We now consider an example of use of the algorithm. Consider
the labeled program:

value, which represents the set of (textual) values that may be (AL Oy (a0
bound to that variable during evaluation. )
An acceptable control flow analysis for an expressias writ- shows the graph coding of the program and the corre-

sponding CFA graph. The CFA graph is constructed by adding vir-
tual wires10 ~» 6 and f ~» 9, induced by the actuad-redex on
wire 7. Adding the virtual patlf ~» 9 to the graph creates a vir-
tual 5-redex via the routé ~~ f (through the sharing node), and

tenC = e. Recalling again from Nielson et al. (1999), the accept-
ability relation is given by the greatest fixed point of the functional
defined according to the following clauses:

C E 2iff C(z) C C) f ~ 9 (through the virtual wire). This induces~ 8 and8 ~ 2.
~ L ~ There is now a virtugB-redex via3 ~» 8 ~» 2 ~» f ~» 9, so wires
C E (Aze)iff Azee C(l) 6 ~ 8 and8 ~ 5 are added. This addition creates another virtual
C E (hid)ifCeti ACEAVARLY e Cl): redex via3 ~» 8 ~» 2 ~» 5, which induces virtual wire§ ~» 4

and4 ~» 5. No further wires can be added, so the CFA graph is

. = ~ . Py
CREtg' AC(l2) € Clz) A C(lo) € C0) complete. The resulting abstract cache gives:

‘We now describe an algorithm for performing control flow anal- C(1) = {rz} C(6) ={A\z,\y}
ysis that is based on the graph coding of terms. The graphical for- 6(2) — {1} 6(7) —(\f) a(f) — [z}
mulation consists of generating a sewotual pathsfor a program bl = - M
graph. Virtual paths describe an approximation of the real paths that ~ €(3) = {Az, Ay} C(8) ={Az, Ay} C(x) ={Aiz, Ay}
will arise during program execution. C(4) ={ g} C9) ={A=z} Cly) = {\y}
defines the virtual path propagation rules. The lefthand ~ C(5) = {\y} C(10) = { Az, Ay}

rule states that a virtual wire is added from the continuation wire to
the body wire and from the variable wire to the argument wire of
eachg-redex. The right hand rule states analogous wires are added
to eachvirtual g-redex—an apply and lambda node connected by
a virtual path. There is girtual path between two wire¢ and!’, e
written ~ I’ in a CFA-graph iff: 1)l = I, 2) there is a virtual 31 The OCFA decision problem
wire from [ to I/, 3) [ connects to an auxiliary port ariconnects A decision problem—a question that can be answered with a yes
to the principal port of a sharing node, ori4y- " andl” ~ 1. or a no—makes the analysis insensitive to the output size of any
Some care must be taken to ensure leastness when propagatcontrol flow analysis. Typically, this analysis computes the answer
ing virtual wires. In particular, wires are added only when there t0 questions like “what functions can be applied at a particular call
is a virtual path between @achableapply and a lambda. An ap-  Site?” or “what arguments can a particular function be applied to?”,
ply node is reachable if it is on the spine of the program, i.e., if SO & natural decision problem based on these questions are “is this
e = (...((eoe1)"e2)" ... e,)' then the apply nodes with con-  Particular function applied at this particular call site?” or “does
tinuation wires labeled, . . ., l,, are reachable, or itis on the spine  this function get applied to this argument?”, where the function is
of an expression with a virtual path from a reachable apply node. denoted by some lambda expression or application in the program
The graph-based analysis can now be performed in the follow- text. These questions provide ways of answering the more general
ing way: construct the CFA graph according to the rule§ in]Fig- o what values can a subexpression evaluate?”
, then defin€ (1) as{(/\x.e)l' | I ~ I'}. Itis easy to see
that the algorithm constructs answers that satisfy the acceptabil-
ity relation specifying the analysis. Moreover, this algorithm con-

We now describe a natural decision problem answered by this
control flow analysis. After describing the problem here, subse-
guent sections will consider variants of it fe€FA.

Control Flow Problenl(OCFA): Given expressions, A\z.eq, and
labell, is Axz.ep € C(1) in a least analysis af?

structs least solutions according to the partial order, C' iff The graphical analogue of this problem point ta-mode and
vl € Lab. : C(I) C C'(I), whereLab, denotes the set of labels  an application node, and ask if thergigtual path (describing a3-
restricted to those occurring i the program of interest. redex from reductions to take place) from the function port of the
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apply to the root port of tha? Or likewise, point to two\-nodes:
is there a virtual path from the variable port of one to the root of the
other? The graph-reduction characterization has the virtue of being
free of a lot of notational clutter (like variable renaming).

We now prove that this decision problem is complete for poly-
nomial time. A graph-based argument for containmemimmE is
straightforward:

Theorem 1. OCFA is contained i TIME.

Proof. OCFA computes a binary relation over a fixed structure (the

graph description of a program). The computation of the relation

is monotone: it begins as empty and is added to incrementally.
Because the structure is finite, a fixed point must be reached by
this incremental computation. The binary relation can be at most
polynomial in size, and each increment is computed in polynomial

time.

O

We now turn to the more interestimgIME-hardness property of
the problem. Recall that a propertyis PTIME-hard if, given any
PTIME Turing MachineM and inputz, (M, z) can be compiled
using O(In |z|) space into a problem instande whereI has
the property¢ iff M acceptsz. The canonicaPTIME-complete
decision problent (Ladner 1975) is the following:

Circuit Value Problem: Given a Boolean circuiC' of n inputs
and one output, and truth valugs= z1, ..., z,, isZ accepted
by C?

As has been observed by Henglein and Mairson (1991); Mair-
sori (2004); Neergaard and Mairson (200#earity is the key in-
gredient in understanding the lower-bound complexity of analyses.
In looking at the control flow analysis algorithm [of secfign 3, we
may askwhat is the source of approximatiorThe answer is that
every copy of a function is identified, and every copy of an appli-
cation site is identified. In other words, a program with copying

let val (x,y)= v(true,false) in x end);
val Show = fn : (bool * bool -> ’a * ’b)
* (bool * bool -> ’c * ’d) -> ’a * ’c
- Show True;

val it = (true,false) : bool * bool
- Show False;
val it = (false,true) : bool * bool

The way we computénd is to use the famous 1930s-era coding of
conjunction (hacked by Alonzo Church?) in the first component,
and the disjunction in the second component. That way, we are
guaranteed that the junk inandv’ is symmetric: one igT, and

the other isFF. Then function composition can be used to erase
the symmetric garbage—the slogan is, “symmetric garbage is self-
annihilating.”

- fun And (p,p’) (q,q’)=
let val ((u,v),(u’,v?)) = (p (q,FF), p’ (TT,q’))
in (u,Compose (Compose (u’,v),Compose (v’,FF)))
end;
val And =
: Ca*x (°b *x ’b => ’b * ’b) -> ’c *x (°d -> ’e))
* ((;f * 2f => ’f % 7f) * 7g
-> (e => ’h) * (’1i * ’i -> ’d))
-> 23 % Jg -> ¢ x (’i * 23 => ;h)

fn
(7

- Show (And True False);
val it = (false,true) : bool * bool

Notice that sincep’ is the complement op, andq’ that of q,
we knowu’ is the complement ofi. Composingv, v’ andFF is
always thedentity functionTT, which can then be composed with
u’ without changing the value af’.

The construction of ther term is symmetric to thénd term,
theNot term is just an inversi¢h—all this an obvious consequence
of deMorgan duality and the construction here of the Booleans. The
Copy gate uses the fact that eitheor p’ will invert its argument,
so that either((TT,FF), (TT,FF)) or ((FF,TT), (FF,TT)) is
returned:

engenders an approximate analysis. More concretely, notice that an

application site has multiple virtual paths to a vatmy through
virtual paths that pass through copying nodes. If there are no shar-
ing nodes—as in a linear term—it is simple to see that there is only
a single virtual path. By the conservativity of the analysis, it follows
immediately that if there is a single path from an apply node to a
lambda node, then these nodes will fuse during reduction. Thus,
linearity subverts approximatioand renders control flow analysis
synonymous with normalization.

As a calculational tool, we use a linear fragment of Standard
ML to illustrate the constructiofl. The Boolean valueSrue and
False are built out of the constant andFF:

- fun TT (x:’a,y:’a)= (x,y);
val TT = fn : ’a * ’a -> ’a * ’a
- fun FF (x:’a,y:’a)= (y,x);
val FF = fn : ’a * ’a -> ’a % ’a

(TT: (’a * ’a -> ’a * ’a),
FF: (Ca * ’a -> ’a * ’a));
(fn,fn) : (Pa * ’a -> ’a * ’a)
* (Ca *x ’a -> ’a * ’a)
- val False= (FF: (’a * ’a -> ’a * ’a),
TT: (Ca * ’a -> ’a * ’a));
(fn,fn) : (Ca * ’a -> ’a * ’a)
* (a *x ’a -> ’a * ’a)

- val True=

val True

val False

This little hack will print out what Boolean we are talking about:

- fun Show (u,v)=
(let val (x,y)= u(true,false) in x end,

2Use of1et binding is only for linear unpairing, not polymorphism.

- fun Copy (p,p’)= (p (TT,FF), p’ (FF,TT));
val Copy = fn
: ((a x ’a -> ’a * ’a) *
Cb * ’b -> ’b * ’b) -> ’c)
* ((’d * °d -> ’d * ’d) *
(e * ’e => ’e * ’e) —> ’f)
->’c x ’f

- let val (p,q)= Copy True in (Show p, Show q) end;
val it ((true,false), (true,false)) : (bool * bool)
* (bool * bool)

By writing logic gates in continuation-passing style, for example:
- fun Andgate p q k= k (And p q)
we can then write circuits that look like straight-line code:

el e2 e3 e4 eb eb=
e3 (fn e7=>
e5 (fn e8=>

- fun Circuit
(Andgate e2
(Andgate e4
(Andgate e7 e8 (fn f=>
(Copygate f (fn (e9,e10)=>
(Orgate el €9 (fn ell=>
(Orgate e10 e6 (fn el2=>
(Orgate ell el12 (fn Output=> Output))))))))))))));

val Circuit = fn : < big type... >

The above code says: compute thel of e2 ande3, putting the
result in registee7,. .., make two copies of registér putting the
values in registere9 ande10,. .., compute ther of e11 ande12,
putting the result in theutput register.

3Both are omitted for space reasons.
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- Circuit True False False False False True; The acceptability relation is given by the greatest fixed point of
val it = (fn,fn) : (Ca * ’a -> ’a * ’a) the functional defined according to the following clauses (again we

* (Pa * 2a -> a x ’a) are concerned only with least solutioffs):
- Show (Circuit True False False False False True);

val it = (true,false) : bool * bool

- let val (u,u’)=

s 2l iff Cla, ce(x)) C C(1,0)
Circuit True False False False False True =se ()\x.e)l iff (\z.e,ceq) € 6(175)
in

let val ((x,y),(x’,y’))= (u (f,g), w (f’,g’)) in whereceg = ce|fv(Az.eo)
((x a, y b),(x’ a’, y’ b’)) end end; ge (tlll t122)l iff C j=5° tlll AC =g tl22 A
Now for the decision problem: the paix,y) is either the pair V(Az.t, ceo) € C(1y,6) : C 5o to A

(f,g) or (g,f), depending on the Boolean circuit computing =~ ~ =~ ~
outputu. Thus, isf applied toa and g to b, or the other way C(l2,0) € C(x,0) A C(lo, o) & C(1,0)

(@) eY

(@)

around? Because the computation is entirely linear, the set of pos- wheredo = [6, 1]k
sible binders tax is—this must be emphasizedciet {£, g}: it is andce = ceg[z — o)
precisely{f}, or {g}. The OCFA “approximation” is in fact an ex-
act normalization. The notation[d, /] denotes the string obtained by appending
to the end of and taking the rightmosgi labels.
Theorem 2. OCFA is complete foPTIME. Let us consider an acceptable least analysis for the program in

[Figure 3. We writee for the empty contour anfl for the empty

contour environment. Since evekyterm in the program is closed,
4 LCEA the contour environments in the results will always be empty so we
: omit it from this table:

Increasing the precision of the coarse approximation given by the

above control flow analysis, a hierarchy of more and more refined §(1, 10) = {\z} §(7, e) ={\f} R

analyses was developed. These analysesamngext-sensitiver C(2,10) = {\z} C(8,3) ={\z} C(f,10) = {\z}

polyvariantbecause they distinguish functions applied in distinct 6(3 10) = {\z} 6(8 6) ={\y} a(x 3) ={\x}

call sites to increase the precision of the analysis. A 1CFA analysis, el =0 =0
tnqu ; (5,100 ={ \y}  C(9¢) ={ra}  C(z,6) ={\y}

for example, uses aontourto distinguishone level of dynamic = =

calling context in the analysis of each program point. C(6,10) = {Ay} C(10,¢) = {Ay}

In the example given i section 3, for instance, the analysis is )
able to distinguish each occurrencefoés distinct in the analysis. ~ And the following holds:
The increased precision allows us to conclude that the program P o3 4567 810010
is approximatedby the (singleton) sef\y.y}. We return to this CEe (M) Ayy?)”)) (Aea™)”)
example after specifying the analysis.
Contours) are strings of labels of length at mdstthey serve to .
record the lask dynamic call points and thus distinguish instances 4-1 ThekCFA decision problem
of variables and program points. Contour environments map vari- As we did insubsection 3.1, we now formulate a decision problem

able names to contours. naturally answered by the analysis and ask: What is the difficulty of
“r ) ) computing within this hierarchy? What are the sources of approxi-
6 € A = Lab~ contour information mation that render such analysis tractable?

ce € CEnv Var — A contour environment
Abstract values are extended to pairs of (textual) program values Control Flow Problem (kCFA): Given an expressiom, an ab-
and contour environments closing the term, i.e. abstract closures.  stract closurg\z.eo, ceo), and a label and contour pdit, )
The environment maps variable names to the contours in place at  with 6] < kK, is (Az.eq, ceo) € 6(175) in a least analysis af?
the definition point for the free variables. The abstract cache now
maps a label and a contour to an abstract (closure) value. That is:
The source of approximation ikCFA is the bounding of the
v € Val = 7P(Term x CEnv) abstract values Iéength of contour s(tjriggs_. Bu;suppc:&ei_s s\L/JvacientIy Il;atrge Fgatb
= AT o is never truncated during the analysis. at can be said about
C € Cache (Lab x A) — Val  abstract caches the precision of the resultg? If the co¥1tour is never truncated, the
analysis is just normalization. The acceptability relation above can
be read as specifying a non-standard interpreter, which is given
an expression and constructs a table from which the normalized
program can be retrieved.
Let’s rewrite the specification to make this clear. Evaluation is

An acceptablé:-level control flow analysis for an expressien
is written C =§° e, which states tha€ is an acceptable analysis
of e in the context of the current environment and current
contourd (for the top level analysis of a program, these will both
be empty). Colloquially we understand these judgments as follows: ;.2 aterized by an initially empty table and inclusion constraints

when running the programing, fragments of the original program ; ; ce
; ' A " areinterpreted as destructive updates to the tafjté]<¢ evaluates
text may be duplicated, contours distinguish between these copies P P apee]s

(for copies created via at mostapplication points, beyond this
the distinction in copies is blurred), so when judging an analysis
correct for a program fragment, we u&¢o tell us which copy of 4To be precise, we take as our starting paintform kCFA rather than a
the text is being analyzed, ard to tell us which copies of the free  kCFA in whichCache = (Lab x CEnv) — Val. The differences are
variables in this copy of the program are being analyzed. immaterial for our purposes.
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t and writes the result into the tableat location(¥, 9). to program points (contours of length 1). Approximation allows us
to bind eache;, independently, to either of the closaeterms for

El«*]5° = C(£,8) — C(x, ce(x)) “true” or “false” that we saw in the@TIME-completeness proof for
E[(Az.e0)Js¢ = C(£,6) — (Az.eq,ceo) OCFA. In turn, application to an-ary Boolean function necessi-
wherecey = ce|fv(Az.ep) tates computation of ali” such bindings in order to compute the
g[[(t‘flt?)@]]ge = g[[tfl]]gﬁ g[[t§2]§e; flow out from the application site. The term for “true” can only flow
let (Az.t2, ceq) = C(t1,6)in out if the Boolean function is satisfiable by some truth valuation.
C(z, 6,0) — C(£2,0); (Afi.(f1 True)(f1 False))
g[[tgoﬂg,eedzjul (Az1.
C(¢,6) « C(4o, 6, 2) (Af2.(f2 True)(f2 False))
The contour environment plays much the same role as an environ- (Az2.
ment in a typical interpreter, but rather than mapping a variable to (Af3.(f3 True)(fs False))

its value, it maps a variable to a location in the table where its value

is found. The contoué is a history of call sites in place at the cur- (Azs.
rent point of evaluation and serves to keep locations in the table T
distict (a simple induction proof shows thit §) is unique). (Afn.(fn True)(fn False))
In the application case, the operator and operand are evaluated, O
updating the table at positiori4;, §) and(4z, §), respectively. The "
closure in(¢1,6) is retrieved from the table and the variable is Cl(w.¢ v)(Awwzizz - x0)]) - +))))

“bound” by writing the value of the argument (found at position  For an appropriately chosen program point (labglthe cache
(£2,9)) into position(z, 4, £). The body of the closure is evaluated ,cation C (4, ¢) will contain the set of all possible closures which

in an extended environment that mapw the location inthe table - 5o 5h5roximated to flow to. This set is that of all closures
where its value is stored. After evaluating the body, the table is

updated to record the value of the application as being the value (AMw.wzizs - - Ty, ce)
foundin(£o, 0, ¢).

This evaluation function can be seen as a variant of the exact
collecting semantics from which the analysis was originally ab-
strac;eﬁr,] In othler_wprdg, 'ﬂf is big elr_lough to tlhat It Its) notdtrun-h function ¢ is completely linear, as in theTIME-completeness
cated, the analysis is simply normalization. A lower bound on the ¢ the contexe uses the Boolean output(s) as in the conclusion
hardness of the analysis, then, is the expressivity of the language

that can be evaluated in the above interpreter withof length at to that proof: mixing in some ML, the contextis:

wherece ranges over all assignmentsTfue andFalse to the free
variables (or more precisely assignments of locations in the table
containingTrue andFalse to the free variables). The Boolean

mostk. - let val (u,u’)= [---] in

When the contours areuncatedto length at mosk (remem- let val ((x,y),x’,y*))= (u (f,g), v’ (£’,g’)) in
bering thelast & labels added to the contour, the resul&{SFA. ((x a, y b),(x> a’, y’ b’)) end end;
The evaluator can be modified to perfok@FA by truncating con- Again,a can only flow as an argumentfdf True flows to (u,u’),

tours and since the truncation destroys the uniqueness of locationgeaving (£,g) unchanged, which can only happerséimeclosure
in the table, the evaluator has to be iterated until a fixed pointis (xu.wayxs - - - 2, ce) provides a satisfying truth valuation fr
reached. In this case, the takll¢/, §) is finite and has*** entries. We have as a consequence:

Each entry contains a setwdluesand the only values are closures .

(Az.eo, ceo); the environment in a closure mapéree variables to Theorem 4. 1CFA isNP-hard.

any one Ofnk_ contours. Because there arepossibleAz.e, and We observe that while the computation of taetire cacheC
n*? such environments, there are sets of size at mbst” inany ~ requires exponential time, the existence spacificflow in it may
table entry. well be computable inpP. A nondeterministic polynomial might

Observe that the above evaluationrimnotonic each table  compute using the “collection semantic8[t]s¢, but rather than
entries is initialzed to the empty set, and built up incrementally. compute entire setshoosehe element of the set that bears witness

Thus inkCFA, there can be at most+(*+1? ypdates tcC, and to the flow. There are some details to be worked out here, which
E[t°]s° then has at most®®) program states during evaluation.  seem straightforward enough, and which we hope to report in the
Because < n, we conclude with the well-known observation—  final version of the paper.

see, for example, Nielson etlal. (1999, page 193): Conjecture 1. 1CFA isNp-complete

Theorem 3. kCFA is contained IrEXPTIME. Increasing the precision t&CFA with k¥ > 1 undermines

. the approximation that allows for construction of the-hardness
4.1.1 kCFAis Np-hard proof. We use the following program transformation to render a
Because CFA makes approximations, many closures can flow kCFA of the original synonymous with@& -+ 1)CFA of the trans-

to a single program point and contour. In 1CFA, for example, formed program. Their-hardness okCFA for & > 0 falls out by
Aw.wzrizs - - T, hasn free variables, with an exponential num-  iterating the transformatioh — 1 times on the 1CFA construction.
ber of possible associated environments mapping these variables Transform expressions as follows, whéteis a distinguished
label andk a distinguished variable not appearing in the source
5However it varies in flavor—being a big step semantics rather than the expression:
structured operational semantics| of Nielson €t[al. (1999). The motivation

l l
for SOS irf Nielson et &lf (1999) was to prove correctness of the analysis for () = =z

non-terminating programs. Our evaluator only works for finite programs, <(6162)l> _ (<61><62>)l

but since we are investigating the complexity of the analysis, this is agree- ; I ,
able. (Az.e)’)y = ((Ak.(Az.{e))” )(Ay.y))
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The transformation works by nesting evermabstraction inasingle  these limiting cases shed analytic light on the natufeGHFA. Even
application context (d¢-redex), which consumes the added preci- when the polyvariance of the analysis is taken to an extreme as in
sion of a(k + 1)CFA. The following lemma states that top-level & = n, the expressivity of the analysis is still limitedgaPTIME. It
flows are analogous in the transformed program under a more pre-seems likely that alternative control flow analyses can be designed
cise analysis: to be more expressive in the exact case.

Lemma 2. If C = ' is a leastkCFA, andC’ = (t') is a least _
(k-+1)CFA, then(Az.e, ce) € C(1) iff (Az.(e), c¢’) € C'(1),where 9. LOGSPACEand n-expansion

ce andce’ are isomorphic upto placement efiabels. In this section, we identify a restricted class of functional programs

From this, we conclude: whose OCFA decision problem may be simpler—namely, com-
i plete forLoGspPACE Consider programs that are simply typed, and

Theorem 5. kCFA isNP-hard, for anyk > 0. where a variable in the function position or the argument position of

Observe that this program transformation is exponentiak in ~ @n application is fully)-expanded. This case—especially, but not
(since the\y.y terms, introduced by the transformation, must then ©nly when the programs are linear—strongly resembles multiplica-
be themselves transformed in an iterated composition of the tech-tve linear logic withatomicaxioms. This distinction is highlighted

nique, in order to reduce fromCFA to 1CFA) and linear in pro- i the discussion below. _
gram size. However, for any fixdd this constant-factor expansion We remark that)-expansion changes control flow analysis. If
can be computed by a logspace-computable reduction. OCFA infers that a call sitg may call a functions in a program

II, and we ask the same question of the residuaind ¢ in the
4.1.2 nCFAis complete forEXPTIME n-expanded version dfl, the answer may vary.

We now examine the complexity &fCFA wherek is allowed to
vary linearly in the size of the program.

In the previous section, we saw that OCFA was sufficient to The sequent rules of MLL are:
evaluate linean-terms. Following the construction pf Neerggard n
and Mairsoh [(2004), we can code a Turing machine transition ax cut LA A A 9 IA, B ® A AB
function and machine IDs with linear terms. Suppgss a linear A, At I'A I', A®B I''AA® B
transition function that takes a tuple, L, R) consisting of the
current machine state, the tape to the left of the head in reverse
order, and the tape to the right of the head and returns a tuple
(¢', L', R') consisting of the new state and tape. Léte the initial

5.1 MLL and (linear) functional programming

These rules have an easy functional programming interpretation
as the types of a linear programming language, following the in-
tuitions of the Curry-Howard correspondence (Girard et al. 1989,

) : . : Chapter 3).
fnglsgggzt'zggb?ni];g;: lates one step of the maching!) The Axiom rule says that a variable can be viewed simultane-
If OCFA is sufficient to .evaluataﬂ, then what is 1CFA suffi- ously as a continuation{( ) or as an expressionij—one man's

cient for? By introducing non-linearity using the Church numeral fe'“ng 1S anotherl[nlan’s floor. Thus we say .“'npl.n .Of typéapd
2, we can iterate the transition function twice, as follows: output of type A" interchangably, along with similar dualisms.
L 9 3ABGT 8 0 We also regardA~)* synonymous with4: for example Int is an
(((As.(Az.(s7(s727)7)")") " 9)"1) integer, andnt ™ is a request (need) for an integer, and if you need
A contour of length 1 is sufficient to distinguish between the appli- t0 need an integer{Int=)-—then you have an integer. _
cation of¢ in the calling context of 4 and that of 5, we are able to The QUT rule says that if you have two computations, one with

maintain an exact analysis. Scaling up, suppose we have: an output of typed, another with an input of typd, you can plug
/ ’ 111, 712 _713\14\15\16\17 them together
((As".(Az '(Si 2(53 2 6) 7) 8) g The ®-rule is about pairing: it says that if you have separate
((As.(Az.(s7(572°)%)")) " ¢)°1) computations producing outputs of typésndB respectively, you

A contour of length 2 is sufficient to distinguish between the appli- can combine the computations to produce a paired output of type
cation of¢ in the calling context 14,4; 14,5; 15,4; and 15,5. Nowlet A ® B. Alternatively, given two computations witd an output

@, be2" ¢, then amCFA is sufficient to distinguish all of the call-  in one, andB an input (equivalently, continuatioB~ an output)
ing contexts in whichp is applied, thus:CFA is exact ford,, I—it in the other, they get paired ascall site “waiting” for a function
is synonymous with normalization—and the program normalizes Which produces aoutputof type B with aninputof type A. Thus
to ¢>" I. So whenk is linear in the size of the program we can ® is bothcons and function call (@). _ ,
simulate a Turing machine for an exponential number of steps. The’s-rule is the linear unpairing of thig-formation. When a

. computation uses inputs of typeilsand B, these can be combined
Theorem 6. nCFA is complete foEXPTIME. as a single input pair, e.glet (x,y)=p in.... Alternatively,

It should be remarked that in this case, the contours are large When a computation has an input of tydefoutput of continuation
enough that the computation is essentiallynmymalization with- of type A*) and an output of type, these can be combined to
out using the power of any approximation. Every location of the construct a function which inputs a call site pair, and unpairs them
cacheC contains at most one value. appropriately. Thugp is both unpairing and.

Researchers have noted that computing a more precise analysis . . .
is often cheaper than performing a less precise one. A less precise>-2 AtOMIC VErsus non-atomic axiomspTIME versus
analysis “yields coarser approximations, and thus induces more LOGSPACE
merging. More merging leads to more propagation, which in turn The above Aiom rule does not make clear whether the formdla
leads to more reevaluatiori” (Wright and Jagannégthan|1998). Har- is an atomic type variable or a more complex type formula. When a
nessing the computational power of this reevaluation is precisely linear program only has atomic formulas in the “axiom” position,
what makes theiP-hardness construction work and relegates lower then we can evaluate (normalize) it in logarithmic space. When the
bounds using exact analyses to limit cases sudh-as; an anal- program is not linear, we can similarly compute a OCFA analysis in
ysis that is exact can only be polynomialifi. On the other hand, LOGSPACE Moreover, these problems are completelfoGSPACE
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need to have a graphical picture of what a linear functional program

\ |
N 7~ SN \ﬂ@\/\ looks like.
X : Without loss of generality, such a program has a typdlodes
o — o = 46%0’ VA NN <U o in its graphical picture are eitharor linear unpairing’ in MLL),
: or application/call site or linear pairingz(in MLL). We draw the
o o A
L/ /

graphical picture so that axioms are on top, and cuts (redexes, either
(B-redexes or pair-unpair redexes) are on the bottom.

,,,,, daee = dadyecy | wClea] = deCle(y.ay)] a ot ag 1ot a@h ot
o —o : )\\ )\\ /\\ ...
\ \ 3 z
S R N ¢ ¥ vty p
< < Because the axioms all have atomic type, the graph has the
@/ : | following nice property:
: A
: / Lemma 3. Begin at an axionn and “descend” to a cut-link,
eo(ere2) = eo(Ay-erezy): Az.CAz.a] = Az Ay.ClAz.zy] saving in an (initially empty) stack whether nodes are encountered
: Az.x = Az Ay.zy on their left or right auxiliary port. Once a cut is reached, “ascend”

the accompanying structure, popping the stack and continuing left
or right as specified by the stack token. Then (1) the stack empties
exactly when the next axiord is reached, and (2) if thé-th node

MLL proofs with non-atomic axioms can be easily converted fromthe starttraversedis@, thek-th node from the end traversed
to ones with atomic axioms using the following transformation, IS @’%, and vice versa.
analogous ta)-expansion:

Figure 4. Expansion algorithm.

The path traced in the Lemma, using the stack, is geometry

o ot W of interaction (Gol), also known as static analysis. The correspon-
,7@ Qence petween thieth node from the start and end of th.e traversal
N a®p,a, is precisely that betweenaall site () and acalled function(s),
a®pB,atept a®pB,atept or between &ons (®) and a linear unpairingg).

This transformation can increase the size of the proof. For ex- A sketch of the “four finger” normalization algorithm: The
ample, in the circuit examples of the previous section (which are stack height may be polynomial, but we do not need the stack! Put
evidence for PTIME-completenessg)}expansion causes an expo- fingersa, 3 on the axiom where the path begins, and iterate over

nential increase in the number of proof rules L@@dLOGSPACE all possible choices of another two finger's 3 at another axiom.
evaluation is then polynomial-time and -space in the original circuit Now move3 and 3’ towards the cut link, where {8 encounters a
description. node on the left (right), the@’ must move left (right) also. &', 5’

The program transformation corresponding to the above proof were correctly placed initially, then wheharrives at the cut link,
expansion is a version efexpansion: sefe Figuré 4. The left hand it must be met by3'. If 3" isn't there, or got stuck somehow, then
expansion rule is simply, dualized in the unusual right hand rule. &', 3’ were incorrectly placed, and we iterate to another placement
The right rule is written with the @ above theonly to emphasis and try again.
its duality with the left rule. Although not shown in the graphs, but
implied by the term rewriting rules, an axiom may pass through any Lemma 4. Any path from axiona to axioma traced by the stack
number of sharing nodes. algorithm of the previous lemma is also traversed by the “four

o ] ) finger” normalization algorithm.
5.3 Normalization and OCFA for linear programs in
LOGSPACE Normalization by static analysis is synonymous with traversing

A normalizediinear program has no redexes. From the type of the these paths. Because these fingers can be stored in logarithmic
program, one can reconstruct—in a totally syntax-directed way— space, we concludg (Tefui 2002; Mairson 2006):
what the structure of the term is. It is only the position of the

axiomsthat is not revealed. For example, bathandFF from the Theorem 7. Normalization of linear, simply-typed, and fulty
above circuit example have type * ’a -> ’a * ;am From expanded functional programs is contained.inGSPACE

this type, we can see that the term is-abstraction, the parameter . . . )

is unpaired—and then, are the two components of typepaired That OCFA is then contained dGSPACEIS a casual byproduct
as before, or “twisted”? To twist or not to twist is what distinguishes  ©f this theorem, due to the following observation: if application site
TT from FF. x calls functiong, then the® and’g (synonymously, @ and)

The geometry of interaction (Gol)—the semantics of linear denoting call site and function are in distinct trees connected by a
logic—and the notion of paths provide a way to calculate normal Cut Ilnk._As a consequence the OCFA computation is a subcase of
forms, and may be viewed as the logician’s way of talking about the four-finger algorithm: traverse the two paths from the nodes to

static program analysis. To understand how this analysis works, wethe cut link, checking that the paths are isomorphic, as described
above. The full OCFA calculation then iterates over all such pairs

81t is linear in the formulas used, whose length increases exponentially (not Of nodes.

so if the formulas are represented by directed acyclic graphs). ) )

7The linear logic equivalent ik ®a )9 (a ® «). TheA is represented Coro!lary 1. OCFA o_f Imear,_smply-typed, and fully-expanded
by the outerg, the unpairing by the inneg, and theconsing by the®. functional programs is contained ir0GSPACE
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5.4 OCFA InLOGSPACE

Now let us remove the linearity constraint, while continuing to
insist on full n-expansion as described above, and simple typing.
The normalization problem is no longer contained @GSPACE

but rather nonelementary recursive, (Statinan 1979; Mélirsor| 1992;
Asperti and Mairson 1998). However, OCFA remains contained in
LOGSPACE because it is now azpproximation This result follows
from the following observation:

Lemma 5. Supposéz.eo)’ and (¢} es) occur in a simply typed,
fully n-expanded program anklz.eo € G(l). Then the correspond-
ing ® and’g occur in adjacent trees connected at their roots by a
cuT-link and on dual, isomorphic paths modulo placement of shar-
ing nodes.

Here “modulo placement” means: follow the paths to the cut—
then we encounter (resp.,’®) on one path when we encounter
% (resp.,®) on the other, on the same (left, right) auxiliary ports.
We thusignore traversal of sharing nodes on each path in judging
whether the paths are isomorphic. (Without sharing nodesgthe
and’e would annihilate—i.e., @-redex—during normalization.)

Theorem 8. OCFA of a simply-typed, fully-expanded program is
contained iNLOGSPACE

Observe that OCFA defines approximateform of normaliza-
tion which is suggested by simpignoring where sharing occurs.
Thus we may define thgetof A-terms to which that a term might
evaluate. Call thi9CFA-normalization

Theorem 9. For fully n-expanded, simply-typed terms, OCFA-
normalization can be computed mondeterministic OGSPACE

Conjecture 2. For fully n-expanded, simply-typed terms, OCFA-
normalization is complete farondeterministic OGSPACE

The proof of the above conjecture likely depends on a coding

Begin with a vector of length set toFalse, and a permutation on
n letters:

- val V= (False,False,False);

val V = ((fn,fn), (fn,fn), (fn,fn))
: (Cax ’a ->’a* ’a) * (a *x ’a -> ’a * ’a))
* ((Ca * ’a -> ’a * ’a) * (a *x ’a -> ’a *x ’a))
* ((Pa * ’a -> ’a * ’a) * (Ca x ’a -> ’a * ’a))

Denote ag the type of vectow.

- fun Perm (P,Q,R)= (Q,R,P);
val Perm = fn : v -> v

The functionInsert linearly insertsTrue in the first vector com-
ponent, using all input exactly once:

- fun Insert ((p,p’),Q,R)= ((TT,Compose(p,p’)),Q,R);
val Insert fn : v > v

The functionSelect linearly selects the third vector component:

- fun Select (P,Q,(r,r’))=
(Compose (r,Compose (Compose P, Compose Q)),r’);
val Select fn
cv=> (Ca* ’a->’a* ’a) *x Ca* ’a->"’a* ’a))

BecausePerm and Insert have the same flat type, they can

be composed iteratively in ML without changing the type. (This
clearly isnot true in our coding of circuits, where the size of the

type increases with the circuit. A careful coding limits the type size
to be polynomial in the circuit size, regardless of circuit depth.)

Lemma 6. Let 7 be coded as permutatioPerm. DefineFoo to
be Compose (Insert,Perm) composed with itself times. Then 1
and: are on the same cycle afiff Select (Foo V) normalizes
to True.

Because OCFA of a linear program is identical with normaliza-
tion, we conclude:

of arbitrary directed graphs and the consideration of commensurateTheorem 10. OCFA of a simply-typed, fully-expanded program

path problems.

Conjecture 3. An algorithm for OCFA normalization can be real-
ized byoptimal reductionwhere sharing nodealwaysduplicate,
and never annihilate.

5.5 LoGspPAcEhardness of normalization and OCFA: linear,
simply-typed, fully n-expanded programs

That the normalization and OCFA problem for this class of pro-
grams is as hard as anyoGSPACE problem follows from the
LOGSPACEhardness of thpermutation problemgiven a permuta-
tionmonl,... ,nandinteged < i < n, arel andi on the same
cycle inm? That is, is there & wherel < k < n andn®(1) = i?
Briefly, the LoGsPACEhardness of the permutation problem is
as follows. Given an arbitraryoGsPACETuring machineM and
an inputx to it, visualize a graph where the nodes are machine IDs,

is complete foLOGSPACE

6. Languages with first-class control

Shivers$ [(2004) argues that “CPS provide[s] a uniform representa-
tion of control structure,” allowing “this machinery to be employed
to reason about context, as well,” and that “without CPS, seperate
contextual analyses and transforms must be also implemented—
redundantly,” in his view. Although our formulation &CFA is a
“direct-style” formulation, a graph representation enjoys the same
benefits of a CPS representation, namely that control structures are
made explicit—in a graph a continuation is simply a wire. Con-
trol constructs such asall/cc can be expressed directly (Lawall
and Mairsofi 2000) and our graphical formulation of control flow
analysis carries over without modification.

Lawall and Mairson (2000) derive graph representations of pro-

with directed edges connecting successive configurations. Assumegrams with control operators such @sl1/cc by first translating

that M always accepts or rejects in unique configurations. Then programs into continuation passing style (CPS). They observed that
the graph has two connected components: the “accept” componentwhen edges in the CPS graphs carrying answer values (ofitype
and the “reject” component. Each component is a directed tree are eliminated, the original (direct-style) graph is regained, modulo
with edges pointing towards the root (final configuration). Take an placement of boxes and croissants that control sharing. Compos-
Euler tour around each component (like tracing the fingers on your ing the two transformations results in a direct-style graph coding
hand) to derive twaycles and thus germutationron machine IDs. for languages witltall/cc (hereafter\«c). The approach applies
Each cycle is polynomial size, because the configurations only take equally well to languages such as Filinksi's symme#vicalculus
logarithmic space. The equivalent permutation problem is then: (1989), Parigot's\, calculus[(1992), and most any language ex-
does the initial configuration and the accept configuration sit on pressible in CP.
the same cycle?

The following linear ML code describes the “target” code of a 8| anguages such a, which contains the “delimited control” operators
transformation of an instance of the permutation problem. For a shift and reset(Danvy and Filinsk| 1990), are not immediately amenable
permutation om letters, we take here an example where= 3. to this approach since the direct-style transformation requires all calls to
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7. Related work

The pTIME-completeness of OCFA is most closely related to the
PTIME-completeness of simply typing in thecaclculus|(Mairson
2004). Both results use linearity to subvert the approximation of
the analysis, and since both analyses rely on the same source of
approximation, it is no suprise that they share the same lower bound
on complexity.
& ML typing can be viewed as a bounded running of a program
(reducing allLet-redexes) followed by a simple typing of the resid-
[call/cc] ual. The residual program can be exponentially larger, leading to
EXPTIME-completeness results by using polymorphism to iterate
Figure 5. Graph coding otall/cc and example CFA graph. a linear TM transition function| (Mairsoh 1990). ThexPTIME-
completeness ofCFA can be viewed in a similar light. Contours
of length proportional to the program size provide a bounded “run-
ning” of the program by exact analysis of the non-linearity intro-

The left side of Figure]5 shows the graph codingcafl/cc. duced by iterative doubling of the transition function.
Examining this graph, we can read of an interpretatiocedfl / cc, The story is the same fdr-rank bounded intesection typing—a
namely:call/cc is a function that when applied, copies the cur- program is run by computing successiveninimal complete devel-
rent continuationy) and applies the given functigfito a function opmentsand the residual is simply typed. The resulting hardness

(Av...) that when applied abandons the continuation at that point of typing is elementary ik (Neergaard and Mairstin 2004), and
(®) and gives its argument to a copy of the continuation where  thus the complexity class of each fixeds seperated. On the other
call/cc was applied. Iff never applies the function it is given,  hand, for(k > 0)CFA, the complexity in the “hierarchy” remains
then control returns “normally” and the valyereturns is given to the same a& grows. There should be a natural way of developing
the other copy of the continuation whet&l1/cc was applied. an alternative control flow hierarchy that relies on complete de-
The right side of Figurel5 gives the CFA graph for the program:  velopments for its notion of bounded running that will be strictly
= more expressive than tHeCFA examined in this paper. The result
(call/cc (Ak.(Az.1)(k2))) is likely to be similiar in spirit to that df Mossjr (199F7b), although
-~ - = . Mossin’s analysis is simply evaluation by virtue of its exactness. To
From the CFA graph we see thal(l) = {1,2}, reflecting thg remain useful, some information must be purposeless lost in order
fact that the program will returih under a call-by-name reduction y, compute an answer in less time than it takes to run the program.
strategy anc under call-by-value. Thus, the analysis is indifferent — 5,54 seems likely that the linear logic based investigation into
to th? reduction strategy. N°t¢ that_ whereas befo“?' approximation cpa presented here can be coupled with that of Neergaard and
was introduced through non-linearity of bound variables, approxi- zirson (2004) to provide the foundation for complexity results

mation can now be introduced via non-linear use of continuations, ¢, the control flow analysis of rank-2 bounded intersection typed
as seen in the example. In the same way that OCFA considers a”programs (Banerjee and Jenisen 2003).

occurrences of a bound variable “the same”, OCFA considers all Static program analysis has been recast as various kinds of

continuations obtained with each instanceall/cc “the same™. o5 reachability problems, and parenthesis languages have been
Note that we can ask new kinds of interesting questions in this ,5eq 1o describe paths in these graphs: see Reps (2000) for example.
analysis. For example, jn Figure 5, we can compute which contin- \yods in these languages are tuntextsof the context semantics
uations are potentialigiscarded by computing which continua- e sentatior] (Mairscin 2003) of the geometry of interacfion (Girard
tions flow into the weakening node of teell/cc term. (The an-  179gq) The undecidability of decision problems for these special-

swer is the continuatiof{Az.1)[ ).) Likewise, itis possible to ask 764 parenthesis languages corresponds naturally to versions of the
which continuations are potentiallyopied by computing which halting problem.

continuations flow into the principal port of the sharing node in The graph coding of terms in our development is based on the
the call/cc term (in this case, the top-level empty continuation technology ofsharing graphsin the untyped case, amtoof nets
[ ]). Because continuations are used linearlganl/cc-free pro- — j the typed casé (Lafont 1995). The graph codings, CFA graphs,
grams, the questions were uninteresting before—the answer is al-gq yirtual wire propogation rules share a strong resemblance to the
waysnone “pre-flow” graphs, flow graphs, and graph “closing rules”, respec-
Our proofs for thepTIME-completeness of OCFA for the un-  ¢ely of Mossin (1997a). Casting the analysis in this light leads
typed A-calculus—and likewise for the results diCFA—carry to insights from linear logic and optimal reduction. For example,
over without modification languages suchas, ), and the sym- < WMossin[(1997a, page 78) notes, the CFA virtual paths computed

metric A-calculus. In other words, first-class control operators such by OCFA are an approximation of the actual runtime paths and cor-
ascall/cc increase the expressivity of the language, but add noth- respond exactly to the “well-balanced paths| of Asperti and Lan-

ing to the cqmputational complexity of control flow analysis. In  gya (1995) as an approximation to “legal pathis&yy|1978) and
the case of simply-typed, fully-expanded programs, the same can rgqyits on’proof normalization in linear logic (Mairson and Terui
be said. A suitable notion of "simply-typed” programs is needed, 503) informed the novel CFA algorithms presented here.
such as that provided by Griffin (1990) fdvic. The type-based The usefulness of-expansion has been noted in the context
expansion algorithm 4 applies without modification and ¢ nartial evaluation] (Jones et |al. 1993; Danvy et/ al. 1996). In
Lemma[$ holds, allowing OCFA for this class of programs to be 4t setting-redexes serve to syntactically embed binding-time
done inLOGSPACE Linear logic provides a foundation for (clas-  -gercions. In our case, the type-baseexpansion does the trick of
sical))\-calqul_i Wit_h cont_rol; related logical insights allow control placing the analysis inoGsPaceby embedding the type structure
flow analysis in this setting. into the syntax of the program.

Other research has shown a correspondence between 0CFA and

functions or continuations be in tail position. Adapting this approach to certain type systems .(Palsberg and O'Kgefe :L!395;, HEeintze. 1995)
such languages constitutes an active area of research for us. and a further connection has been made between intersection typ-
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