
Flow analysis, linearity, and PTIME

David Van Horn and Harry G. Mairson

Department of Computer Science
Brandeis University

Waltham, Massachusetts 02454
{dvanhorn,mairson}@cs.brandeis.edu

Abstract. We examine the computational complexity of flow analyses
that approximate Shivers’ 0CFA by trading precision for faster compu-
tation. As a motivating example, we consider Henglein’s simple closure
analysis, which forfeits the notion of directionality in flows and enjoys
an “almost linear” time algorithm, whereas the best known algorithm
for 0CFA is cubic. We show that despite near linear time computability,
simple closure analysis, like 0CFA, is complete for ptime.
Proof of this lower bound relies on the insight that linearity of programs
subverts the approximation of analysis and renders it equivalent to eval-
uation. We establish a correspondence between Henglein’s simple closure
analysis and evaluation for linear terms. In doing so, we derive sufficient
conditions effectively characterizing not only simple closure analysis, but
many known flow analyses computable in less than cubic time, such as
Ashley and Dybvig’s sub-0CFA, Heintze and McAllester’s subtransitive
flow analysis, and Mossin’s single source/use analysis.
By using a nonstandard, symmetric implementation of Boolean logic
within the linear lambda calculus, it is possible to simulate circuits at
analysis-time, and as a consequence, we prove that all of the above anal-
yses are complete for ptime. Any subpolynomial algorithm for these
problems would require (unlikely) breakthrough results in complexity,
such as ptime = logspace.

1 Introduction

Flow analysis [1–3] is concerned with providing sound approximations to the
question of “does a given value flow into a given program point during evalua-
tion?” The most approximate analysis will answer yes everywhere, which takes
no resources to compute—and is useless. On the other hand, the most precise
analysis will answer yes if and only if the given value flows into the program
point during evaluation, which is useful, albeit uncomputable. So every static
analysis necessarily gives up valuable information for the sake of computing an
answer within bounded resources. Designing a static analyzer, therefore, requires
making trade-offs between precision and complexity. But what exactly is the ana-
lytic relationship between forfeited information and resource usage for any given
design decision? In other words:

What are the computationally potent ingredients in a static analysis?

The best known algorithms to compute Shivers’ 0CFA [4], a canonical flow
analysis for higher-order programs, are cubic in the size of the program, and
there is strong evidence to suggest that in general, this cannot be improved [5].
But if we are willing to give up information in the service of quickly computing
a—necessarily less precise—analysis, we can avoid the “cubic bottleneck”. For
example, if we are willing to give up the direction of flows, as in Henglein’s simple
closure analysis [6], we can enjoy algorithms that run in near linear time. Like-
wise, if we explicitly bound the number of passes over the program the analyzer
is allowed, as in Ashley and Dybvig’s sub-0CFA [7], we can recover running times
that are linear in the size of the program. But the question remains: Can we do
better? For example, is it possible to compute these less precise analyses in log-
arithmic space? We show that without profound combinatorial breakthroughs
(ptime = logspace), the answer is no. Simple closure analysis, sub-0CFA, and
other sub-cubic analyses require—and are therefore complete for—polynomial
time, just like 0CFA [8], despite algorithms that compute them in linear or al-
most linear time.

What is flow analysis? Flow analysis is a fundamental and ubiquitous static
analysis of higher-order programs. It answers fundamental questions such as
what values can a given subexpression possibly evaluate to at run-time? Each
subexpression is identified with a unique superscripted label ℓ, which serves to
index that program point. The result of a flow analysis is a cache Ĉ that maps
program points (and variables) to sets of values. These analyses are conservative

in the following sense: if v is in Ĉ(ℓ), then the subexpression label ℓ may evaluate

to v when the program is run (likewise, if v is in Ĉ(x), x may be bound to v when

the program is run). But if v is not in Ĉ(ℓ), we know that e cannot evaluate to

v and conversely if e evaluates to v, v must be in Ĉ(ℓ).

For the purposes of this paper and all of the analyses considered herein, values
are (possibly open) lambda abstractions. During evaluation, functional values are
denoted with closures—a lambda abstraction together with an environment that
closes it. Values considered in the analysis approximate run-time denotations in
the sense that if a subexpression labeled ℓ evaluates to the closure 〈λx.e, ρ〉, then

λx.e is in Ĉ(ℓ).

The acceptability of a flow analysis is often specified as a set of (in)equations
on program fragments. The most naive way to compute a satisfying analysis is to
initialize the cache with the flow sets being empty everywhere. Successive passes
are then made over the program, monotonically updating the cache as needed,
until the least fixed point is reached. The more approximate the analysis, the
faster this algorithm converges on a fixed point. The key to a fruitful analysis,
then, is [7] “to accelerate the analysis without losing too much information.”

One way to realize the computational potency of a static analysis is to subvert
this loss of information, making the analysis an exact computational tool. Lower
bounds on the expressiveness of an analysis thus become exercises in hacking,
armed with this newfound tool. Clearly the more approximate the analysis, the
less we have to work with, computationally speaking, and the more we have to

do to undermine the approximation. But a fundamental technique has emerged
in understanding expressivity in static analysis—linearity, and this paper serves
to demonstrate that this hammer hits several of the most approximate flow
analyses that exist in the literature.

Linearity and approximation in static analysis: Linearity, the Curry-Howard
programming counterpart of linear logic [9], plays an important role in under-
standing static analyses. The reason is straightforward: because static analysis
has to be tractable, it typically approximates normalization, instead of simu-
lating it, because running the program may take too long. For example, in the
analysis of simple types—surely a kind of static analysis—the approximation is
that all occurrences of a bound variable must have the same type. (As a conse-
quence, perfectly good programs are rejected). A comparable but not identical
thing happens in the case of type inference for ML and bounded-rank intersec-
tion types—but note that when the program is linear, there is no approximation,
and type inference becomes evaluation under another name.

In the case of flow analysis, similarly, a cache is computed in the course of an
approximate evaluation, which is only an approximation because each evaluation
of an abstraction body causes the same piece of the cache to be (monotonically)
updated. Again, if the term is linear, then there is only one evaluation of the
abstraction body, and the flow analysis becomes synonymous with normalization.

Organization of this paper: The next section introduces Shivers’ 0CFA in order
to provide intuitions and a point of reference for comparisons with subsequent
analyses. Section 3 specifies and provides an algorithm for computing Henglein’s
simple closure analysis. Section 4 develops a correspondence between evaluation
and analysis for linear programs. It is shown that, when the program is linear,
normalization and analysis are synonymous. As a consequence the normal form
of a program can be read back from the least analysis. We then show in Section
5.1 how to simulate circuits, the canonical ptime-hard problem, using linear
terms. This establishes the ptime-hardness of the analysis. Finally, we discuss
other sub-cubic analyses and sketch why these analyses remain complete for
ptime and provide conclusions and perspective.

2 Shivers’ 0CFA

As a starting point, we consider Shivers zeroth order control flow analysis [4].

The Language: A countably infinite set of labels (Lab) is assumed, where the
set of variable names (Var) are included in Lab. The syntax of the language is
given by the following grammar:

Exp e ::= tℓ expressions (or labeled terms)
Term t ::= x | e e | λx.e terms (or unlabeled expressions)

All of the syntactic categories are implicitly understood to be restricted to the
finite set of terms, labels, variables, etc. that occur in the program of interest—
the program being analyzed. The set of labels, which includes variable names, in
a program fragment is denoted lab(e). As a convention, programs are assumed
to have distinct bound variable names.

The result of 0CFA is an abstract cache that maps each program point (i.e.,
label) to a set of lambda abstractions which potentially flow into this program
point at run-time:

Ĉ ∈ Lab → P(Term) abstract caches

Caches are extended using the notation Ĉ[ℓ 7→ s], and we write Ĉ[ℓ 7→+ s] to

mean Ĉ[ℓ 7→ (s∪ Ĉ(ℓ))]. It is convenient to sometimes think of caches as mutable
tables (as we do in the algorithm below), so we abuse syntax, letting this notation
mean both functional extension and destructive update. It should be clear from
context which is implied.

The Analysis: We present the specification of the analysis here in the style of
Nielson, et al. [10]. Each subexpression is identified with a unique superscripted

label ℓ, which marks that program point; Ĉ(ℓ) stores all possible values flowing to

point ℓ. An acceptable control flow analysis for an expression e is written Ĉ |= e:

Ĉ |= xℓ iff Ĉ(x) ⊆ Ĉ(ℓ)

Ĉ |= (λx.e)ℓ iff λx.e ∈ Ĉ(ℓ)

Ĉ |= (tℓ11 tℓ22)ℓ iff Ĉ |= tℓ11 ∧ Ĉ |= tℓ22 ∧ ∀λx.tℓ00 ∈ Ĉ(ℓ1) :

Ĉ |= tℓ00 ∧ Ĉ(ℓ2) ⊆ Ĉ(x) ∧ Ĉ(ℓ0) ⊆ Ĉ(ℓ)

The |= relation needs to be coinductively defined since verifying a judgment

Ĉ |= e may obligate verification of Ĉ |= e′ which in turn may require verification

of Ĉ |= e. The above specification of acceptability, when read as a table, defines a
functional, which is monotonic, has a fixed point, and |= is defined coinductively
as the greatest fixed point of this functional.1

Writing Ĉ |= tℓ means “the abstract cache contains all the flow information
for program fragment t at program point ℓ.” The goal is to determine the least
cache solving these constraints to obtain the most precise analysis. Caches are
partially ordered with respect to the program of interest:

Ĉ ⊑ Ĉ
′ iff ∀ℓ : Ĉ(ℓ) ⊆ Ĉ

′(ℓ).

The Algorithm: These constraints can be thought of as an abstract evaluator—
Ĉ |= tℓ simply means evaluate tℓ, which serves only to update an (initially empty)
cache.

1 See [10] for details and a thorough discussion of coinduction in specifying static
analyses.

AJxℓK = Ĉ[ℓ 7→+ Ĉ(x)]

AJ(λx.e)ℓK = Ĉ[ℓ 7→ {λx.e}]

AJ(tℓ11 tℓ22)ℓK = AJtℓ11 K; AJtℓ22 K;

for each λx.tℓ00 in Ĉ(ℓ1) do

Ĉ[x 7→+ Ĉ(ℓ2)]; AJtℓ00 K; Ĉ[ℓ 7→+ Ĉ(ℓ0)]

The abstract evaluator AJ·K is iterated until the finite cache reaches a fixed
point.2 Since the cache size is polynomial in the program size, so is the running
time, as the cache is monotonic—we put values in, but never take them out.
Thus the analysis and any decision problems answered by the analysis are clearly
computable within polynomial time.

An Example: Consider the following program, which we will return to discuss
further in subsequent analyses:

((λf.((f1f2)3(λy.y4)5)6)7(λx.x8)9)10

The least 0CFA is given by the following cache:

Ĉ(1) = {λx} Ĉ(6) = {λx, λy}

Ĉ(2) = {λx} Ĉ(7) = {λf}

Ĉ(3) = {λx, λy} Ĉ(8) = {λx, λy}

Ĉ(4) = {λy} Ĉ(9) = {λx}

Ĉ(5) = {λy} Ĉ(10) = {λx, λy}

Ĉ(f) = {λx}

Ĉ(x) = {λx, λy}

Ĉ(y) = {λy}

where we write λx as shorthand for λx.x8, etc.

3 Henglein’s simple closure analysis

Simple closure analysis follows from an observation by Henglein some 15 years
ago: he noted that the standard control flow analysis can be computed in dramat-
ically less time by changing the specification of flow constraints to use equality
rather than containment [6]. The analysis bears a strong resemblance to simple
typing—analysis can be performed by emitting a system of equality constraints
and then solving them using unification, which can be computed in almost linear
time with a union-find datastructure.

Consider a program with both (f x) and (f y) as subexpressions. Under
0CFA, whatever flows into x and y will also flow into the formal parameter of

2 A single iteration of AJeK may in turn make a recursive call AJeK with no change
in the cache, so care must be taken to avoid looping. This amounts to appealing
to the coinductive hypothesis bC |= e in verifying bC |= e. However, we consider this
inessential detail, and it can safely be ignored for the purposes of obtaining our main
results in which this behavior is never triggered.

all abstractions flowing into f , but it is not necessarily true that whatever flows
into x also flows into y and vice versa. However, under simple closure analysis,
this is the case. For this reason, flows in simple closure analysis are said to be
bidirectional.

The Analysis:

Ĉ |= xℓ iff Ĉ(x) = Ĉ(ℓ)

Ĉ |= (λx.e)ℓ iff λx.e ∈ Ĉ(ℓ)

Ĉ |= (tℓ11 tℓ22)ℓ iff Ĉ |= tℓ11 ∧ Ĉ |= tℓ22 ∧ ∀λx.tℓ00 ∈ Ĉ(ℓ1) :

Ĉ |= tℓ00 ∧ Ĉ(ℓ2) = Ĉ(x) ∧ Ĉ(ℓ0) = Ĉ(ℓ)

The Algorithm: We write Ĉ[ℓ ↔ ℓ′] to mean Ĉ[ℓ 7→+ Ĉ(ℓ′)][ℓ′ 7→+ Ĉ(ℓ)].

AJxℓK = Ĉ[ℓ ↔ x]

AJ(λx.e)ℓK = Ĉ[ℓ 7→+ {λx.e}]

AJ(tℓ11 tℓ22)ℓK = AJtℓ11 K; AJtℓ22 K;

for each λx.tℓ00 in Ĉ(ℓ1) do

Ĉ[x ↔ ℓ2]; AJtℓ00 K; Ĉ[ℓ ↔ ℓ0]

The abstract evaluator AJ·K is iterated until a fixed point is reached.3 By similar
reasoning to that given for 0CFA, simple closure analysis is clearly computable
within polynomial time.

An Example: Recall the example program of the previous section:

((λf.((f1f2)3(λy.y4)5)6)7(λx.x8)9)10

Notice that λx.x is applied to itself and then to λy.y, so x will be bound
to both λx.x and λy.y, which induces an equality between these two terms.
Consequently, everywhere that 0CFA was able to deduce a flow set of {λx}
or {λy} will be replaced by {λx, λy} under a simple closure analysis. The least
simple closure analysis is given by the following cache (new flows are underlined):

Ĉ(1) = {λx, λy} Ĉ(6) = {λx, λy}

Ĉ(2) = {λx, λy} Ĉ(7) = {λf}

Ĉ(3) = {λx, λy} Ĉ(8) = {λx, λy}

Ĉ(4) = {λy, λx} Ĉ(9) = {λx, λy}

Ĉ(5) = {λy, λx} Ĉ(10) = {λx, λy}

Ĉ(f) = {λx, λy}

Ĉ(x) = {λx, λy}

Ĉ(y) = {λy, λx}

3 The fine print of FN 2 applies as well.

4 Linearity and normalization

In this section we show that when the program is linear—every bound variable
occurs exactly once—analysis and normalization are synonymous.

First, consider an evaluator for our language, EJ·K:

EJ·K : Exp → Env ⇀ 〈Term,Env〉

EJxℓK[x 7→ c] = c
EJ(λx.e)ℓKρ = 〈λx.e, ρ〉
EJ(e1 e2)

ℓKρ = let 〈λx.e0, ρ
′〉 = EJe1Kρ↾ fv(e1) in

let c = EJe2Kρ↾ fv(e2) in

EJe0Kρ
′[x 7→ c]

We use ρ to range over environments, Env = Var ⇀ 〈Term,Env〉, and let c
range over closures, each comprising a term and an environment that closes the
term. The set of labels in a closure is defined as lab(t, ρ) = lab(t) ∪ lab(ρ),
where lab(ρ) =

⋃
x∈dom(ρ) lab(ρ(x)).

Notice that the evaluator “tightens” the environment when evaluating an ap-
plication, thus maintaining throughout evaluation that the domain of the envi-
ronment is exactly the set of free variables in the expression. So, when evaluating
a variable occurrence, there is only mapping in the environment, and likewise,
when constructing a closure the environment does not need to be restricted—it
already is.

In a linear program, each mapping in the environment corresponds to the
single occurrence of a bound variable. So when evaluating an application, this
tightening splits the environment ρ into two (ρ1, ρ2), where ρ1 closes the operator,
ρ2 closes the operand, and dom(ρ1) ∩ dom(ρ2) = ∅.

Definition 1. Environment ρ linearly closes t (or 〈t, ρ〉 is a linear closure) iff
t is linear, ρ closes t, and for all x ∈ dom(ρ), x occurs exactly once (free) in t,
ρ(x) is a linear closure, and for all y ∈ dom(ρ), x does not occur (free or bound)
in ρ(y). The size of a linear closure 〈t, ρ〉 is defined as:

|t, ρ| = |t| + |ρ|

|x| = 1

|(λx.tℓ)| = 1 + |e|

|(tℓ11 tℓ22)| = 1 + |t1| + |t2|

|[x1 7→ c1, . . . , xn 7→ cn]| = n +
∑

i

|ci|

Lemma 1. If ρ linearly closes t and EJtℓKρ = c, then |c| ≤ |t, ρ|.

Proof. Straightforward by induction on |t, ρ|, reasoning by case analysis on t.
Observe the size strictly decreases in the application and variable case and re-
mains the same in the abstraction case. ⊓⊔

This is the environment-based analog to the easy observation that each β-step
strictly decreases the size of a linear term.

Definition 2. A cache Ĉ respects 〈t, ρ〉 (written Ĉ ⊢ t, ρ) when,

1. ρ linearly closes t,
2. ∀x ∈ dom(ρ).ρ(x) = 〈t′, ρ′〉 ⇒ Ĉ(x) = {t′} and Ĉ ⊢ t′, ρ′, and

3. ∀ℓ ∈ lab(t) \ fv(t), Ĉ(ℓ) = ∅.

Clearly, ∅ ⊢ t, ∅ when t is closed and linear, i.e. t is a linear program.
Assume that the imperative algorithm AJ·K of Section 3 is written in the

obvious “cache-passing” functional style.

Theorem 1. If Ĉ ⊢ t, ρ, Ĉ(ℓ) = ∅, ℓ /∈ lab(t, ρ), EJtℓKρ = 〈t′, ρ′〉, and AJtℓKĈ =

Ĉ′, then Ĉ′(ℓ) = {t′}, Ĉ′ ⊢ t′, ρ′, and Ĉ′ |= tℓ.

An important consequence is noted in Corollary 1.

Proof. By induction on |t, ρ|, reasoning by case analysis on t.

– Case t ≡ x.
Since Ĉ ⊢ x, ρ, ρ linearly closes x, thus ρ = [x 7→ 〈t′, ρ′〉] and ρ′ linearly
closes t′. By definition,

EJxℓKρ = 〈t′, ρ′〉, and

AJxℓKĈ = Ĉ[x ↔ ℓ].

Again since Ĉ ⊢ x, ρ, Ĉ(x) = {t′}, with which the assumption Ĉ(ℓ) = ∅
implies,

Ĉ[x ↔ ℓ](x) = Ĉ[x ↔ ℓ](ℓ) = {t′},

and therefore Ĉ[x ↔ ℓ] |= xℓ. It remains to show that Ĉ[x ↔ ℓ] ⊢ t′, ρ′. By

definition, Ĉ ⊢ t′, ρ′. Since x and ℓ do not occur in t′, ρ′ by linearity and
assumption, respectively, it follows that Ĉ[x 7→ ℓ] ⊢ t′, ρ′ and the case holds.

– Case t ≡ λx.e0.
By definition,

EJ(λx.e0)
ℓKρ = 〈λx.e0, ρ〉,

AJ(λx.e0)
ℓKĈ = Ĉ[ℓ 7→+ {λx.e0}],

and by assumption Ĉ(ℓ) = ∅, so Ĉ[ℓ 7→+ {λx.e0}](ℓ) = {λx.e0} and therefore

Ĉ[ℓ 7→+ {λx.e0}] |= (λx.e0)
ℓ. By assumptions ℓ /∈ lab(λx.e0, ρ) and Ĉ ⊢

λx.e0, ρ, it follows that Ĉ[ℓ 7→+ {λx.e0}] ⊢ λx.e0, ρ and the case holds.
– Case t ≡ tℓ11 tℓ22 . Let

EJt1Kρ↾ fv(tℓ11) = 〈v1, ρ1〉 = 〈λx.tℓ00 , ρ1〉,

EJt2Kρ↾ fv(tℓ22) = 〈v2, ρ2〉,

AJt1KĈ = Ĉ1, and

AJt2KĈ = Ĉ2.

Clearly, for i ∈ {1, 2}, Ĉ ⊢ ti, ρ↾ fv(ti) and

1 +
∑

i

|tℓi

i , ρ↾ fv(tℓi

i)| = |(tℓ11 tℓ22), ρ|.

By induction, for i ∈ {1, 2} : Ĉi(ℓi) = {vi}, Ĉi ⊢ 〈vi, ρi〉, and Ĉi |= tℓi

i . From

this, it is straightforward to observe that Ĉ1 = Ĉ∪ Ĉ′

1 and Ĉ2 = Ĉ∪ Ĉ′

2 where

Ĉ
′

1 and Ĉ
′

2 are disjoint. So let Ĉ3 = (Ĉ1∪Ĉ2)[x ↔ ℓ2]. It’s clear that Ĉ3 |= tℓi

i .
Furthermore,

Ĉ3 ⊢ t0, ρ1[x 7→ 〈v2, ρ2〉],

Ĉ3(ℓ0) = ∅, and

ℓ0 /∈ lab(t0, ρ1[x 7→ 〈v2, ρ2〉]).

By Lemma 1, |vi, ρi| ≤ |ti, ρ↾ fv(ti)|, therefore

|t0, ρ1[x 7→ 〈v2, ρ2〉]| < |(tℓ11 tℓ22)|.

Let

EJtℓ00 Kρ1[x 7→ 〈v2, ρ2〉] = 〈v′, ρ′〉,

AJtℓ00 KĈ3 = Ĉ4,

and by induction, Ĉ4(ℓ0) = {v′}, Ĉ4 ⊢ v′, ρ′, and Ĉ4 |= v′. Finally, observe

that Ĉ4[ℓ ↔ ℓ0](ℓ) = Ĉ4[ℓ ↔ ℓ0](ℓ0) = {v′}, Ĉ4[ℓ ↔ ℓ0] ⊢ v′, ρ′, and Ĉ4[ℓ ↔
ℓ0] |= (tℓ11 tℓ22)ℓ, so the case holds.

⊓⊔

We can now establish the correspondence between analysis and evaluation.

Corollary 1. If Ĉ is a least simple closure analysis of a linear program tℓ, then
EJtℓK∅ = 〈v, ρ′〉 where Ĉ(ℓ) = {v} and Ĉ ⊢ v, ρ′.

By a simple replaying of the proof substituting the containment constraints
of 0CFA for the equality constraints of simple closure analysis, it is clear that the
same correspondence can be established, and therefore 0CFA and simple closure
analysis are identical for linear programs.

Corollary 2. If e is a linear program, then Ĉ is a least simple closure analysis
of e iff Ĉ is a least 0CFA of e.

Discussion: Returning to our earlier question of the computationally potent
ingredients in a static analysis, we can now see that, when the term is linear,
whether flows are directional and bidirectional is irrelevant. For these terms,
simple closure analysis, 0CFA, and evaluation all correspond. And, as we’ll see,
when an analysis is exact for linear terms, the analysis will have a ptime-lower
bound. The key to designing sub-ptime analyses therefore is to do something
less precise on linear terms.

5 Lower bound for the linear λ-calculus

There are at least two fundamental ways to reduce the complexity of analysis.
One is to compute more approximate answers, the other is to analyze a syntac-
tically restricted language.

We use linearity as the key ingredient in proving lower bounds on analysis.
This shows not only that simple closure analysis and other sub-cubic analyses
are ptime-complete, but the result is rather robust in the face of analysis design
based on syntactic restrictions. This is because we are able to prove the lower
bound of complexity for a very restricted programming language–the linear λ-
calculus. So long as the subject language of an analysis includes the linear λ-
calculus, and is exact for this subset, the analysis must be at least ptime-hard.

5.1 Boolean encodings in linear λ-calculus

The canonical ptime-complete problem is the Circuit Value Problem [11]:

Circuit Value Problem: Given a Boolean circuit C of n inputs and one out-
put, and truth values x = x1, . . . , xn, is x accepted by C?

A problem is ptime-hard if any instance of it can be compiled using only O(ln |x|)
space into an instance of the circuit value problem. We now show how to program
circuits using linear terms, proving simple closure analysis to be ptime-hard.

We code in a linear subset of Scheme and rely on the usual Church-encoding
of pairs, but use Scheme’s syntax-rules facility to define some syntactic sugar
and thus sweeten the presentation a bit. The connectives from linear logic are
used to emphasize the connection: ⊗ constructs pairs, e.g., (⊗ x y), O linearly
unpairs them, e.g., (O ((x y) p) e)—this destructures a pair p, binding the names
x and y in the scope of e, where by linearity, x and y must appear exactly once.
Function composition, ◦, is defined as usual albeit as sugar (((to spare some
parentheses))).

(define-syntax ◦
(syntax-rules ()

[(◦ f g) (λ (x) (f (g x)))]))

(define-syntax ⊗
(syntax-rules ()

[(⊗ x y) (λ (z) ((z x) y))]))

(define (tt p) (O ((x y) p) (⊗ x y)))
(define (ff p) (O ((x y) p) (⊗ y x)))
(define T (⊗ tt ff))
(define F (⊗ ff tt))

(define-syntax O
(syntax-rules ()

[(O ((x y) p) e)
(p (λ (x) (λ (y) e)))]))

(define and
(λ (a) (λ (b)

(O ((p p) a)
(O ((q q) b)
(O ((u v) (p (⊗ q ff)))
(O ((u v) (p (⊗ tt q)))

(⊗ u (◦ u (◦ v (◦ v ff)))))))))))

(define or
(λ (a) (λ (b)

(O ((p p) a)
(O ((q q) b)
(O ((u v) (p (⊗ tt q)))
(O ((u v) (p (⊗ q ff)))

(⊗ u (◦ u (◦ v (◦ v ff)))))))))))

(define (copy p)
(O ((u v) p) (⊗ (u (⊗ tt ff)

(v (⊗ ff tt))))))

(define (not p)
(O ((u v) p) (⊗ v u)))

Briefly, the logic gates work like this: tt is the identity on pairs, and ff is the
swap. Boolean values are either (tt,ff) or (ff,tt), where the first component is
the “real” value, and the second component is the negation. Conjunction works
by computing pairs (p,p’), (q,q’) where the first is the and, and the second
is (exploiting deMorgan duality) the or on the complements. Then the answer
is (p,q), and we are guaranteed that ff ◦ p′ ◦ q′ = tt. This latter computation
represents the garbage, which needs disposal, easy since tt is the identity function.
This hacking allows Boolean computation without K-redexes, making the lower
bound stronger, but also preserving all flows. In addition, it is the best way to
do circuit computation in multiplicative linear logic, and is how you compute
similarly in non-affine typed λ-calculus.

Once continuation-passing style variants of the logic gates are defined,

(define and-gate (λ (a) (λ (b) (λ (k) (k ((and a) b)))))),

and similarly for the other gates, circuits can be written as straight-line code—
and also compiled in logarithmic space into the corresponding Scheme program:

(define circuit
(λ (e1) (λ (e2) (λ (e3) (λ (e4) (λ (e5) (λ (e6)

(((and-gate e2) e3) (λ (e7)
(((and-gate e4) e5) (λ (e8)
(((and-gate e7) e8) (λ (f)
((copy-gate f) (λ (e9) (λ (e10)
(((or-gate e1) e9) (λ (e11)
(((or-gate e10) e6) (λ (e12)
(((or-gate e11) e12) (λ (out) out))))))))))))))))))))))

We further assume that the definition of the logical gates and boolean values
are inlined, the program is α-converted to have distinct bound variable names,
and is uniquely labeled. Note that inlining only increases the size of the pro-
gram by a constant factor. We now formalize the flow analysis decision problem
described colloquially in Section 1:

The Decision Problem

Given a closed expression e, a term λx.e′, and label ℓ, is λx.e′ ∈ Ĉ(ℓ) in a
least analysis of e?

We know from Theorem 1 that normalization and analysis of linear programs
are synonymous, and our encoding of circuits will faithfully simulate a given cir-
cuit on its inputs, evaluating to T iff the circuit accepts its inputs. But there may
be many syntactic instances of T after inlining. In other words, if the program
is labeled ℓ, we know Ĉ(ℓ) = T iff the circuit accepts, but we don’t know which
T to ask about for the purposes of the decision problem.

We thus use the following construction, dubbed The Widget, to isolate a
particular flow that can be asked about with respect to the decision problem:

(define (widget b)
(O ((u u) b)
(O ((m m) (u (⊗ (λ (c) c) (λ (c) c))))
(O ((w w) (u (⊗ (λ (e) e) (λ (e) e))))

(⊗ (⊗ (m (λ (t?) t?)) (m (λ (f?) f?)))
(⊗ (w (λ (t?) t?)) (w (λ (f ?) f ?))))))))

The Widget inputs a boolean value b, destructures it into its constituent, dual
functions on pairs. So u is the identity function on pairs when b is true, otherwise
it’s the swap function. Then u is applied to a pair and the result destructured.
Thus m is bound to (λ (c) c) iff b is true, in which case, when m is applied
to the closed term (λ (t?) t?), it flows into c. The rest of the widget performs
symmetric operations in order to maintain linearity.

So by Theorem 1, either (λ (t?) t?) ∈ Ĉ(c) or (λ (f?) f?) ∈ Ĉ(c), not both.

Theorem 2. Simple closure analysis is ptime-complete.

6 Other sub-cubic analyses

In this section we survey some of the existing monovariant analyses that either
approximate or restrict Shivers’ 0CFA to obtain faster analysis times. In each
case, we sketch why these analyses are complete for ptime.

6.1 Ashley and Dybvig’s sub-0CFA

In [7], Ashley and Dybvig develop a general framework for specifying and com-
puting flow analyses, which can be instantiated to obtain Shivers’ 0CFA or Ja-
gannathan and Weeks polynomial 1CFA [12], for example. They also develop
a class of instantiations of their framework dubbed sub-0CFA that is faster to
compute, but less accurate than 0CFA.

This analysis works by explicitly bounding the number of times the cache can
be updated for any given program point. After this threshold has been crossed,
the cache is updated with a distinguished unknown value that represents all
possible lambda abstractions in the program. Bounding the number of updates
to the cache for any given location effectively bounds the number of passes
over the program an analyzer must make, producing an analysis that is O(n)
in the size of the program. Empirically, Ashley and Dybvig observe that setting
the bound to 1 yields an inexpensive analysis with no significant difference in
enabling optimizations with respect to 0CFA.

The idea is the cache gets updated once (n-times in general) before we give
up and say all lambda abstractions flow out of this point. But in linear terms
of course, the cache is only updated at most once for each program point. Thus
we can conclude even when the sub-0CFA bound is 1, the problem is ptime-
complete.

As Ashley and Dybvig note, for any given program, there exists an analysis
in the sub-0CFA class that is identical to 0CFA (namely by setting n to be the
number of passes 0CFA makes over the given the program). We can further clar-
ify this relationship by noting that for all programs that are linear, all analyses
in the sub-0CFA class are identical to 0CFA (and thus simple closure analysis).

6.2 Subtransitive 0CFA

Heintze and McAllester [5] have shown that the “cubic bottleneck” of computing
full 0CFA—that is, computing all the flows in a program—cannot be avoided in
general without combinatorial breakthroughs: the problem is 2npda-hard, for
which the “the cubic time decision procedure [. . .] has not been improved since
its discovery in 1968.”

Given the unlikeliness of improving the situation in general, Heintze and
McAllester [13] identify several simpler flow questions (including the decision
problem discussed in the paper, which is the simplest; answers to any of the
other questions imply an answer to this problem). They give algorithms for
simply typed terms that answer these restricted flow problems, which under
certain conditions, compute in less than cubic time.

Their analysis is linear with respect to a program’s graph, which in turn, is
bounded by the size of the program’s type. Thus, bounding the size of a pro-
gram’s type results in a linear bound on the running times of these algorithms.
If we remove this bound assumption, though, it is clear that even these sim-
plified flow problems (and even their bidirectional-flow analogs), are complete
for ptime(observe every linear term is simply typable, however the size of this
type is proportional to the size of the circuit being simulated). As they point
out, when type size is not bounded, the flow graph may be exponentially larger
with respect to the program size—in which case the standard cubic algorithm is
preferred.

Independently, Mossin [14] developed a type-based analysis that, under the
assumption of a constant bound on the size of a program’s type, can answer
restricted flow questions such as single source/use in linear time with respect
to the size of the explicitly typed program. But again, removing this imposed
bound results in ptime-completeness.

As Hankin, et al. [15] point out: both Heintze and McAllester’s and Mossin’s
algorithms operate on type structure (or structure isomorphic to type structure),
but with either implicit or explicit η-expansion. For simply typed terms, this can
result in an exponential blow-up in type size. It’s not surprising then, that given
a much richer graph structure, the analysis can be computed quickly. In this
light, recent results [8] on 0CFA of η-expanded, simply typed programs can be
seen as an improvement of the substransitive flow analysis since it works equally
well for languages with first-class control and is done in logspace (or in other
words, ptime = logspace upto η).

7 Conclusions and perspective

What can be said about designing sub-ptime-hard analyses is that it necessarily
involves making approximations on linear programs. When an analysis is exact,
it will be possible to establish a correspondence with evaluation. The richer
the language for which analysis is exact, the harder it will be to compute the
analysis. As an example in the extreme, Mossin [16] developed an “analysis”
which is exact for simply typed terms and is ipso facto non-elementary recursive
[17]. But what is the usefulness of an analysis if there is no difference between
analyzing and running a program?

It remains open whether there are useful analyses for linear programs that
can be computed with less resources than it takes to evaluate the program.

We should be clear about what’s being said, and not said. There is a con-
siderable difference in practice between linear algorithms (nominally considered
efficient) and cubic algorithms (still feasible, but taxing for large inputs), even
though both are polynomial-time. ptime-completeness does not distinguish the
two. But if a sub-polynomial (e.g., logspace) algorithm was found for this
sort of flow analysis, it would depend on (or lead to) things we do not know
(logspace = ptime). Similarly, were a parallel implementation of this flow
analysis to run in logarithmic time (i.e., nc), we would consequently be able to
parallelize every polynomial time algorithm similarly.

A fundamental question we need to be able to answer is this: what can be de-
duced about a long-running program with a time-bounded analyzer? When we
statically analyze exponential-time programs with a polynomial-time method,
there should be a analytic bound on what we can learn at compile-time: a theo-
rem delineating how exponential time is being viewed through the compressed,
myopic lens of polynomial time computation.

For example, there is a theorem due to Rick Statman [17] that says this:
let P be a property of simply-typed λ-terms that we’d like to detect by static
analysis, where P is preserved by reduction (normalization), and is computable
in elementary time (polynomial, or exponential, or doubly-exponential, or. . .).
Then P is a trivial property: for any type τ , P is satisfied by all or none of the
programs of type τ .

We’d like to prove some analogs of Statman’s theorem, with or without the
typing condition, but weakening the condition of “preserved by reduction” to
some approximation analogous to the approximations of control flow analysis,
as described above. We’re motivated as well by yardsticks such as Shannon’s
theorem [18] from information theory: specify a bandwidth for communication
and an error rate, and Shannon’s results give bounds on the channel capacity.
We too have essential measures: the time complexity of our analysis, the asymp-
totic differential between that bound and the time bound of the program we’re
analyzing. There ought to be a fundamental result about what information can
be yielded as a function of that differential. At one end, if the program and
analyzer take the same time, the analyzer can just run the program to find out
everything. At the other end, if the analyzer does no work (or a constant amount
of work), nothing can be learned. Analytically speaking, what is in between?

Acknowledgments: We are grateful to Olin Shivers and Matt Might for a long,
fruitful, and ongoing dialogue on flow analysis. The first author also thanks the
researchers of the Northeastern University Programming Research Lab for the
hospitality and engaging discussions had as a visiting lecturer over the last year.

References

1. Jones, N.D.: Flow analysis of lambda expressions (preliminary version). In: Pro-
ceedings of the 8th Colloquium on Automata, Languages and Programming, Lon-
don, UK, Springer-Verlag (1981) 114–128

2. Sestoft, P.: Replacing function parameters by global variables. Master’s thesis,
DIKU, University of Copenhagen, Denmark (October 1988) Master’s thesis no. 254.

3. Shivers, O.: Control-Flow Analysis of Higher-Order Languages, or Taming
Lambda. PhD thesis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania (May 1991) Technical Report CMU-CS-91-145.

4. Shivers, O.: Control flow analysis in Scheme. In: PLDI ’88: Proceedings of the ACM
SIGPLAN 1988 conference on Programming Language design and Implementation,
New York, NY, USA, ACM (1988) 164–174

5. Heintze, N., McAllester, D.: On the cubic bottleneck in subtyping and flow anal-
ysis. In: LICS ’97: Proceedings of the 12th Annual IEEE Symposium on Logic in
Computer Science, Washington, DC, USA, IEEE Computer Society (1997) 342

6. Henglein, F.: Simple closure analysis. DIKU Semantics Report D-193 (1992)
7. Ashley, J.M., Dybvig, R.K.: A practical and flexible flow analysis for higher-order

languages. ACM Trans. Program. Lang. Syst. 20(4) (1998) 845–868
8. Van Horn, D., Mairson, H.G.: Relating complexity and precision in control flow

analysis. In: Proceedings of the 2007 ACM SIGPLAN International Conference on
Functional Programming, New York, NY, USA, ACM Press (2007) 85–96

9. Girard, J.Y.: Linear logic: its syntax and semantics. In: Proceedings of the work-
shop on Advances in linear logic, Cambridge University Press (1995)

10. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (1999)

11. Ladner, R.E.: The circuit value problem is log space complete for P . SIGACT
News 7(1) (1975) 18–20

12. Jagannathan, S., Weeks, S.: A unified treatment of flow analysis in higher-order
languages. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, New York, NY, USA, ACM (1995) 393–407

13. Heintze, N., McAllester, D.: Linear-time subtransitive control flow analysis. In:
PLDI ’97: Proceedings of the ACM SIGPLAN 1997 conference on Programming
language design and implementation, New York, NY, USA, ACM (1997) 261–272

14. Mossin, C.: Higher-order value flow graphs. Nordic J. of Computing 5(3) (1998)
214–234

15. Hankin, C., Nagarajan, R., Sampath, P.: Flow analysis: games and nets. In: The
essence of computation: complexity, analysis, transformation. Springer-Verlag New
York, Inc., New York, NY, USA (2002) 135–156

16. Mossin, C.: Exact flow analysis. In: SAS ’97: Proceedings of the 4th International
Symposium on Static Analysis, London, UK, Springer-Verlag (1997) 250–264

17. Statman, R.: The typed λ-calculus is not elementary recursive. Theor. Comput.
Sci. 9 (1979) 73–81

18. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27 (1948)

