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IMAGE COMPRESSION

Digital image compression methods reduce the space
necessary to encode, store or transmit digital images
by changing the way those images are represented.
To see why image compression is desirable, consider
an 8 x 10 inch color picture, digitized using a resolu-
tion of 600 pixels per inch and a byte for each of three
color planes. Then the number of bytes required to
represent each image is:

8 x 10 x 600 x 600 x 3 bytes ~ 85 MB.

On typical current personal computing systems with
only a few gigabytes of hard disk (g.v.) space, 85 MB s
too much for storage of all but a small number of
pictures. Even in the future with much cheaper and
larger stores, the ability to compress images by a factor

of 25 or more (typical of current standards such as
JPEG) will be highly desirable. Similar issues apply to
communications.

There are numerous methods for compressing data
and each has advantages and disadvantages depending

" on what kind of image one wishes to compress, how

much loss of information one is willing to tolerate, and
what form that loss takes. Methods can also be com-
bined. In fact, most standard compression systems
combine more than one technique.

Digital Image Representation

The simplest images are bi-level images. This format is
often used to encode sharp documents and faxes,
where a pixel can assume only one of two values, black
or white. Pixel encoding is usually one bit (“0” or “1”).

When several gray midtones are present, as in black
and white photos, two values are no longer sufficient
to encode all possible gray intensities. Thus, each pixel
must be assigned a numerical value, proportional to
the brightness of that point. Typical choices for these
values fall in the ranges 0-15 or 0-255 (requiring
respectively 4 and 8 bits for each pixel). This kind of
image is referred to as a gray-level picture.

Color images take advantage of the fact that each color
can be expressed as a combination of three primary
colors (red, green and blue or yellow, magenta and
cyan, for example). Therefore a color picture can be
considered as the superimposition of three “simpler”
pictures (called color planes), with each of them
encoding the brightness of a primary color. In other
words, each color plane of an image can be treated
much like a gray-level picture with a range of values
based on the luminosity of that particular color. This
type of representation, called RGB or YMC according
to the color planes, is “hardware-oriented” (monitors,
printers and photographic devices use these color
schemes), and it is used when dealing with synthetic
(computer-generated) images.

In many scientific applications, images may have more
than three planes of information (e.g. multispectral
images) and may be higher dimensional. In natural (or
non-computer-generated) images, however, the bright-
ness values of corresponding pixels in different color
planes are highly correlated (what is bright in the red
plane, for example, will often be bright in the green and
blue planes) and this correlation can easily be exploited
using an alternative system of color representation.
Instead of dividing the image into three color planes,
the overall brightness of each pixel can be encoded int
a luminosity plane (Y). This makes two color planes
sufficient to encode the chromatic variations (these
two planes are called Cb and Cr). This “YCbCr” color



format is used, with some variations, in the broadcast
of TV transmissions (the luminance component alone
gives a representation that is backward-compatible
with black and white (B/W) pictures).

Lossless vs. Lossy Methods

A basic distinction among image compression algo-
rithms can be made in terms of reconstruction fidelity.
When it is possible to recover exactly the original data
from the compressed data, the algorithm is called
lossless. Otherwise, when some distortion is intro-
duced in the coding process and part of the original
information is irremediably lost, the algorithm is
called lossy. Lossy compressors, since they can discard
part of the information, achieve a more compact rep-
resentation than lossless systems.

A compromise between these two categories is repre-
sented by “near to lossless” or “transparent” algo-
rithms where a small coding error is allowed only
when it is semantically irrelevant. These methods are
useful, for example, in compressing medical images
where two contrasting needs arise: high compression
rates (required by the large amount of data) and the
preservation of the diagnostic information.

In what follows we focus on lossy methods because
lossless methods are covered in the article on DATA
COMPRESSION.

Lossy Image Compression

TRANSFORM CODING

Transform coding uses a transformation that exploits
peculiar characteristics of the signal, increasing the
performance of a scheme such as Huffman or arith-
metic coding, for example (see DATA COMPRESSION).

For natural sources (audio, images, and video), the
information that is relevant for a human user is best
described in the frequency domain. When a pictorial
scene is decomposed into its frequency components,
the low frequencies (gradual luminosity changes) corre-
spond to the scene illumination, and the high frequen-
' cies (rapid changes) characterize objects’ contours.

Representing the input in the frequency domain results
in better control of the error introduced in lossy com-
pression; information that is not important for a
human viewer, can be easily discarded or distorted,
so that the image will be smaller or easier to compress.

Several time domain to frequency domain transforma-
tions have been proposed for digital image signals;
one of the most used, the Discrete Cosine Transform
(DCT), has the advantage of a good decorrelation of
the signal (which reduces redundancy), requiring only
an acceptable computational effort.
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Figure 1. Wavelet decomposition.

Transformations are not compression methods in the
literal sense (sometimes they even increase the size of
the input), but when used properly they provide a
powerful enhancement of entropy-based compression
methods. For further reading, see Rao and Yip (1990).

WAVELET COMPRESSION

Another compression scheme that adopts transform
coding is based on wavelet functions (Fig. 1). The basic
idea of this coding scherme is to process data at different
scales of resolution. If we look at a picture from a dis-
tance, we notice the macro-structure (i.e. the subject
of the painting). If we move close to the painting, we
notice the micro-structures (e.g. the painter’'s brush
strokes). Using wavelet functions allows us to see both
the subject and the micro-structure. This is achieved
using two versions of the picture at a different scaling
of the same prototype function called the mother
wavelet or wavelet basis. A contracted version of the
basis function is used for the analysis in the time
domain, while a stretched one is used for the fre-
quency domain. -

Localization (in both time and frequency) means that
it is always possible to find a particular scale at which a
specific detail of the signal may be discerned. Wavelet
analysis enables the amplitude of the input signal to be
drastically reduced. This is particularly appealing for
image compression, since it means that half of the
data is almost zero and thus easily compressible. For
further reading, see Vetterli and Kovacevic (1995).
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VECTOR QUANTIZATION
A dictionary (or codebook) is a collection of a small

number of statistically relevant patterns (codewords).

Every image is encoded by dividing it into blocks
and assigning to each block the index of the closest
codeword in the dictionary. Matching can be exact
or approximate, thereby achieving, respectively, loss-
less or lossy compression. The codebook is some-
times allowed to change in response to the input’s
peculiarities.

The best known dictionary method is vector quantiza-
tion; in its simplest form, it is a lossy compression
scheme that uses a static dictionary. A set of images
(the training set), statistically representative of the
source’s behavior, is carefully selected; each image is
divided into blocks and a small set of dictionary
codewords is determined. The codewords are selected
to minimize the coding error on the training set.
Because of its mathematical tractability, the mean
square error is usually used as the error metric and is
used to guide both the design and the encoding process
(see Performance Evaluation below).

The compression rate depends both on the size of each
block and on the size of the dictionary. A dictionary
with N codewords of n x n pixels each compresses an
image digitized with b bits per pixel with a ratio:

_nxmnlogb
log, N

Once the dictionary is determined, encoding is per-
formed by assigning to each block of the image the
index of the closest codeword in the dictionary (i.e.
the one with the minimum mean error). The decoder,
which also knows the dictionary, simply expands the
indices of the codewords into their appropriate blocks.

In a vector quantizer, encoding and “decoding are
highly asymmetric processes. Searching for the closest
block in the dictionary (encoding) is computationally
much more expensive than retrieving the codeword
associated with a given index (decoding). Even more
expensive is the dictionary design, but fortunately this
can be done offline.

Vector quantization may be proved to be asymptoti-
cally optimal when the size of the block increases;
unfortunately the size of the codebook also grows
exponentially with the block size.

Many variations of vector quantization have been
proposed to speed up the encoding and to simplify the
codebook design. Most of these are based on tree
(g.v.) structures. For further reading see the book of
Gersho and Gray (1992).

FRACTAL COMPRESSION

Algorithms based on fractals (g.v.) have very good per-
formance and high compression ratios (32 to 1 is not
unusual), but their use can be limited by the extensive
computation required. The basic idea can be described
as a “self vector quantization,” where an image block
is encoded by applying a simple transformation to one
of the blocks previously encoded. Transformations
frequently used are combinations of scaling, reflec-
tions, and rotations of another block.

Unlike vector quantization, fractal compressors do not
maintain an explicit dictionary, which is why the
process can be long and computationally intensive.
The basic idea is that each encoded block must be
transformed in all possible ways .and compared with
the current one to determine the best match. Because
the blocks are allowed to have different sizes, there is
very little “blocking” noise and the perceived quality
of the compressed image is usually very good. See the
books of Barnsley and Hurd (1993) or Fisher (1995).

Data Compression Standards

JPEG

The Joint Photographic Experts Group (JPEG) devel-
oped a standard for color image compression that was
issued in 1990. The standard was mainly targeted for
compressing hatural black and white and color images.
JPEG, like almost every other transform coding image
compression algorithm, defines two steps. The first is
lossy and involves transformation and quantization;
it is used to remove information that is perceptively
irrelevant for a human user. The second step is a
lossless encoding that eliminates statistical redundan-
cies still present in the compressed representation.

JPEG assumes a color image divided into color planes
and compresses each of them independently. It uses
the YCbCr representation discussed earlier, taking
advantage of the fact that the human visual system is
more sensitive to luminosity than to color changes.
Thus it is possible to achieve some compression (even
before applying JPEG) just by reducing the resolution
of the two chrominance (Cb and Cr) components.
Each color plane is further divided into blocks of 8 x 8
pixels. This size block was determined to be the best
compromise between computational effort and the
compression achieved. For each block, a decomposi-
tion in the frequency domain is computed using the
DCT. Fig. 2 shows an 8 x 8 image block and the result
of applying the DCT to it. The result is an 8 x 8 matrix
with some small numbers and several zeros. Using
a zigzag pattern, this matrix is scanned from the low
to the high frequencies and then converted into a
vector. Run-length encoding is applied to compress
the sequences of consecutive zeros. The result is then
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Figure 2. |PEG: an image block and a block showing the
quantized values after applying the DCT as well as the
zigzag pattern used in scanning it.

further compressed using a Huffman or an arithmetic
coder (see DATA COMPRESSION).

JPEG-LS

In 1994 ISO/JPEG issued a call for a new standard for
lossless and near-lossless compression of continuous
tone images (2 to 16 bits per pixel—bpp). This stan-
dard, called JPEG-LS, is a predictive coder which uses
an error-feedback technique. The encoder classifies
the prediction context and stores the mean prediction
residual that occurs in each class. After the predic-
tion step, the encoder locates the class to which the
current image context belongs and adds the mean
error to the prediction. The prediction residual is then
computed and coded.

In addition to providing a better prediction, the
advantage of the error feedback technique is that
errors in different contexts have different probability

distributions which can be used to tune the coder to -

the specific context. See Weinberger et al. (1996).

|BIG

In 1991 the Joint Bi-level Image Experts Group (JBIG)
defined an innovative lossless compression algorithm
for black and white images. It is a predictive coder
that uses a pool of already coded neighbor pixels to
guess the value of the current pixel. The algorithm
simply concatenates the value of the template pixels to
identify the context in which the current pixel is going
to be predicted. The index of the context is used to
choose which probability distribution should be used
by an arithmetic coder.

The “A" pixel in Fig. 3 is an adaptive pixel. Its position
is allowed to change as the image is processed. The use
of an adaptive pixel improves compression by identify-
ing repeated occurrences of the same block of
information.

JBIG may also be successfully used in coding images
with more than one bit per pixel for gray-scale or
color images. The image is decomposed into bit-planes
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Three-line template Two-line template

Figure 3. Prediction templates for |BIC.

(i.e. if the image is 4 bpp, each pixel is represented by
the binary string b3 b, by by; bit-plane i then stores bit b;
of each pixel) and each plane is coded separately.
In principle, JBIG could work with 255bpp images,
but in practice the algorithm has good performance
only for images with at most 8 bpp. See Arps and
Truong (1994).

Performance Evaluation

The performance of an image compression algorithm
is mainly determined by two characteristics: the com-
pression ratio and the magnitude of the error intro-
duced by the encoding. In a lossless compressor, the
size of the image is minimized while retaining the
quality of the original. But a lossy algorithm must
compromise between these two qualities.

A fundamental problem in lossy compression is con-
trolling the error introduced by encoding process.
Among several quality metrics that are commonly
used the mean square error (MSE) criterion is much
the most important. The MSE between a given image
i(x, y) and its encoded version i(x, y) is the square root
of the sum of the squares of the differences between
the corresponding values of the samples in the two
signals: ‘

MSE = |3 (i(x,y) - i(x, ).

Xy

The MSE gives a good measure of the random error
introduced in the compression; this is enough for many
applications, but, when encoded images are mainly
used by humans, the use of distortion measures based
on the MSE may give misleading results. The poor
correlation of the MSE with the perceived distortion
occurs because the human visual system is more
sensitive to structured than to random coding errors.
See the book of Gonzalez and Wintz (1987).

Coding Artifacts

When a very high compression rate has to be achieved
or when a complex image has to be encoded, lossy
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compression methods sometimes introduce visible
artifacts that can make the perceived quality very
poor. Commonly observed artifacts are:

¢ Blocking, which happens when a gradual change
in the intensity or color of a region is coarsely
quantized. This results in periodic discontinuities in
the image, which appears segmented into its
constituent blocks.

& Blurring, which appears in different forms such as
at edges, due to the loss of high-frequency com-
ponents, or as blurring of the texture and color due
to the loss of resolution.

® Ringing effect, which is observable as periodic
pseudo-edges around original shape edges for the
compressed images. The ringing effect results from
improper truncation of high-frequency compo-
nents, also known as the Gibbs effect.

¢ Texture deviation, which appears as granular noise
or as the “dirty window” effect, and it is caused by
loss of fidelity in mid-frequency components.

See Woods (1991).
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