
Lecture 3. Detailed Derivations using GL’s Type
Composition Logic

• Type Clashes

• Coercions

• Types for Change Predicates

99

Classic GL Treatment of Dot Objects

(123)a.Mary believes that John is sick.

b. Mary believes the story.

c. Mary believes John.

The coercion operations projecting one type from the
complex type are projection operators, defined as Σ1 and
Σ2. These two operations, together with the dot object
itself form the definition of the type cluster called a
lexical conceptual paradigm (lcp).

(124) lcp = {σ1 · σ2, Σ1[σ1 · σ2] : σ1, Σ2[σ1 · σ2] : σ2}
100

(125)a.Σ1[info·physobj]:info
b. Σ2[info·physobj]:physobj
c. info·physobj lcp = {info·physobj, info,
physobj}

book ! text ! prop

S!!!!!
"""""

[human] VP

α

"""""
V

believe

!!!!!
[prop]

book!text! prop
the book

(126)
Σ1(info · physobj) : info , Θ[info ! prop] : info→ prop

Θ[info ! prop](Σ1(info · physobj)) : prop

101

(127)a.Mary believes the book.

b. believe(̂ Θ(Σ1(the-book)))(Mary) ⇒
c. believe’(̂ Θ(the-book:info))(Mary) ⇒
d. believe’(̂ the-book:prop)(Mary)

(128) Mary sold the book to John.

(129)a.Mary sold the book to John.

b. sell(John)(Θ(Σ2(the-book)))(Mary) ⇒
c. sell(John)(Θ(the-book:physobj))(Mary) ⇒
d. sell(John)(the-book:ind)(Mary)

102

Reference to different Aspects of Dot Objects

(130)a. John read every book in the library.

b. John stole every book in the library.

(131)a.Mary answered every question in the class.

b. Mary repeated every question in the class.

103

Object-Elaboration (O-Elab). 1

• λyλx[O-Elab(x, y)]

• Predication involving the simple aspect of adot object
is an object elaboration of the dot object.

• E.g., For a book of type p • i, we can pick out or
elaborate one aspect of the variable v : p • i with a
variable of either dot element (component type).

104

Object-Elaboration (O-Elab). 2

• •-types are just mereological sums of their aspects;
hence they are idempotent, associative and
commutative;

• O-Elab is an antisymmetric and transitive
proper-part-of relation;

• Assume in addition that x is of type σ and y is of
type σ and we have O-elab(z, x) and O-elab(z, y),
then x = y; i.e. parts of an object singled out for
predication that are of the same aspect are identical.

105

Type Clash Motivates Coercion

A type clash between two constituents A and B occurs
whenever:

• if A is a function that is supposed to apply to B,
then the glb of the type τ of the λ-abstracted
variable in A and the type of B is ⊥, or

• if B is a function that is supposed to apply to A,
then the glb of the type τ of λ-abstracted variable in
B and the type of A is ⊥.

Example: A and B will have a type clash, when A is
λxFx with x : p and B is y with y : i, where p" i = ⊥.

106

Resolving the Type Clash

(132) Head Typing Principle:
Given an environment X with constituents A and B,
and type assignments A : α and B : β in clashing
type contexts for A and B respectively, if A is the
syntactic head of X, then typing of A must be
preserved in any composition rule for A and B to
produce a type for X.

107

Example of Type Clash

(133) a heavy book

(134) λPλx[heavy(x) ∧ P (x)]
x: p;
P : p−−◦ t;
heavy : (p−−◦ t)−−◦ (p−−◦ t).

(135) λvbook(v) : (p • i)−−◦ t

108

Resolving the Type Clash

(136) Head Typing Principle:
Given an environment X with constituents A and B,
and type assignments A : α and B : β in clashing
type contexts for A and B respectively, if A is the
syntactic head of X, then typing of A must be
preserved in any composition rule for A and B to
produce a type for X.

(137) λPλx∃z[heavy(z) ∧O-elab(z, x) ∧ P (x)]
where z : p, x : p • i and P : (p • i)−−◦ t.

109

Derivation using Accommodation

(138) The rock is heavy.

DP!!!!!
"""""

Det
(p−−◦ t)−−◦ ((e−−◦ t)−−◦ t)

NP

the
(e−−◦ t)−−◦ ((e−−◦ t)−−◦ t)

N

rock
p−−◦ t

(139) (e−−◦ t)−−◦ ((e−−◦ t)−−◦ t) # p−−◦ t =
the : (p−−◦ t)−−◦ ((e−−◦ t)−−◦ t)

(140)
λxφ[t], c(x : α, t : β), α # β $= ⊥

λxφ[t], c ∗ (x, t : α # β)
110

Derivation involving Coercions: Exploitation

(141) The book is heavy.

(142) S!!!!!
"""""

DP
(p • i)−−◦ . . .

p# VP:p−−◦ t

the book
V-A

is heavy
λx : p[heavy(x)]

111

Step-by-Step Derivation: 1

1. [[the]] = λQλP∃x(Q[x]∧ P [x]), 〈P, Q : e−−◦ t, x : e〉
2. [[book]] = λvbook(v), 〈v : p • i〉
3. [[the book]] = λQλP∃x(Q[x] ∧ P [x]),
〈P, Q : e−−◦ t, x : e〉[λvbook(v), 〈v : p • i〉]
As e ' (p • i) = p • i, by Accommodation, which
revises the typing context, we get:
λQλP∃x(Q[x] ∧ P [x]),
〈P, Q : (p • i) −−◦ t, x : p • i〉[λvbook(v), 〈v : p • i〉]

112

Step-by-Step Derivation: 2

5. Now we use Application and Merging Contexts to get:

6. [[the book]] =
λP∃x(book(x) ∧ P [x]), 〈x : p • i, P : (p • i) −−◦ t〉

7. [[is heavy]] = λuheavy(u), 〈u : p〉
8. The syntax dictates:

λP∃x(book(x) ∧ P [x]),
〈P : e −−◦ t, x : p • i〉[λuheavy(u), 〈u : p〉]

9. By •-Exploitation:
{λP∃x(∃v(book(v) ∧ O-Elab(x, v)) ∧ P [x])
〈v : p • i, x : p〉}[λuheavy(u), 〈u : p〉]

113

Step-by-Step Derivation: 3

10. By Merging Contexts and Application:
∃x(∃v(book(v) ∧ O-Elab(x, v)) ∧
λuheavy(u)[x]), 〈x : p, u : p, v : p • i〉

11. By Application:
∃x(∃v(book(v) ∧ O-Elab(x, v)) ∧ heavy(x)), 〈v : p •
i, x : p〉
=⇒ The book is heavy.

114

Coercion by •-Exploitation

(143)

{λPφ(P (x)), c(P : (α•β)−−◦γ)}[ψ, c′(ψ :

α′

β′

−−◦γ)],

{λPφ[
∃v(∆(φ,x)[vx]∧O-Elab(x,v))

∆(φ,x)], c∗(x :

α ' α′

β ' β′

,v : α•β)}[ψ,c′]

115

Coercion by Type Shifting •-Exploitation. 1

(144) John’s mother burned his book on magic
before he fully understood it.

(145) λx[burn(x)] : p−−◦ (e−−◦ t)
λx[understand(x)] : i−−◦ (human−−◦ t)
λvbook(v) : (p • i)−−◦ t

116

• The verb burn’s object argument must be a physical
object, and as the Head Typing Principle dictates,
although the object DP enters the composition with
type p • i, there must be some way to coerce it into
having the right type, to satisfy the typing context
and thereby allow the λ-conversion from the verb to
go through.

• To do this, we apply a kind of •-Exploitation on the
generalized quantifier to coerce it into the right type.

• λPλwP [λu(burn(w, u))], 〈P : (p −−◦ t) −−◦
t, u : p, w : p〉[λP∃x(book(x) ∧ P (x)), 〈P : (p • i) −
−◦ t, x : p • i〉]

117

Coercion by Type Shifting •-Exploitation. 2

{λPφ, c(P : (

α′

β′

−−◦γ)−−◦δ)}[λPψ(P [x]), c′(P : (α•β)−−◦γ)]

{λPφ, c}[λPψ{∃v(∆(ψ,x){v
x}∧O-Elab(x,v))
∆(ψ,x) }, c′∗(v : α•β,x :

α ' α′

β ' β′

)]

118

Type-Shift •-Exploitation applies

1. λPλwP [λu(burn(w, u))], 〈P : (p −−◦ t) −−◦
t, u : p, w : p〉 [λP∃x(∃v(book(v) ∧ O-Elab(x, v)) ∧
P [x]), 〈P : p −−◦ t, x : p, v : p • i〉]

2. Applying Merging and Application, we get the
following expression:

3. λw λP ∃x(∃v(book(v) ∧ O-Elab(x, v) ∧
P [v]))[λu(burn(w, u))],
〈P : p −−◦ t, x : p, v : p • i, u : p, w : p〉

4. λw∃x∃v(book(v) ∧ O-Elab(x, v)) ∧
burn(w, v), 〈w : p, x : p, v : p • i〉]

119

Derivation involving Coercions: Introduction

1. Mary read the book.

2. John read the rumor about his ex-wife.

3. Mary read the subway wall.

120

Example Walk-through of •-Introduction

(146) a heavy book

(147) λPλx[heavy(x) ∧ P (x)]
x: p;
P : p−−◦ t;
heavy : (p−−◦ t)−−◦ (p−−◦ t).

(148) λvbook(v) : (p • i)−−◦ t

121

Resolving the Type Clash

(149) Head Typing Principle:
Given an environment X with constituents A and B,
and type assignments A : α and B : β in clashing
type contexts for A and B respectively, if A is the
syntactic head of X, then typing of A must be
preserved in any composition rule for A and B to
produce a type for X.

(150) λPλx∃z[heavy(z) ∧O-elab(z, x) ∧ P (x)]
where z : p, x : p • i and P : (p • i)−−◦ t.

122

Rule of •-Introduction

{λPφ(P [x]), c(P :

[
α′

β′

]
−−◦ γ)}[ψ, c′(ψ : (α • β) −−◦ γ)], head(ψ)

{λPφ[
∃v(∆(φ,x)[vx]∧O-Elab(v,x))

∆(φ,x)], c ∗ (v :

[
α ' α′

β ' β′

]
, x : α • β)} [ψ, c′]

123

Step-by-Step Derivation: 1

1. [[a]] = λQλP∃x(Q[x] ∧ P [x]), 〈P, Q : e −−◦ t, x : e〉
2. [[book]] = λvbook(v), 〈v : p • i〉
3. [[heavy]] = λPλx[heavy(x) ∧ P (x)]

4. •-Introduction applies to the Adjective Phrase:

5. [[heavy]] = λPλx∃z[heavy(z) ∧O-elab(z, x) ∧ P (x)]
where z : p, x : p • i and P : (p • i) −−◦ t.

6. This now combines with the head noun book:
λx∃z((Heavy(z) ∧ O-elab(z, x) ∧ Book(x))

7. [[heavy book]] =
λx∃z((Heavy(z) ∧ O-elab(z, x) ∧ Book(x))

124

8. [[a heavy book]] =
λPλx∃z((Heavy(z)∧O-elab(z, x)∧Book(x)∧P [x]),
z : p, x : p • i and P : (p • i)−−◦ t.

125

Rule of Type Shift •-Introduction

{λPφ, c(P : ((α • β) −−◦ γ) −−◦ δ) [λPψ(P [x]), c′(P :

[
α
β

]
−−◦ γ)]

{λPφ, }̧ [λPψ{∃v(∆(ψ,x){v
x}∧O-Elab(v,x))
∆(ψ,x) }, c′ ∗ (x : α • β, v :

[
α ' α′

β ' β′

]
)]

126

Example Walk-through of Type Shift •-Introduction

• John read every wall.

The rule of •-ITS transforms the logical form for the DP
every wall into:

λP ∀x[∃v[wall(v) ∧ O-elab(v, x)] → P (x)],
〈x : p • i, v : p〉

127

Exploitation of Qualia (⊗). 1

1. begin a cigarette (i.e., smoking)

2. enjoy the book (i.e., reading)

3. enjoy the sonata (i.e., listening or playing)

4. finish the coffee (i.e., drinking)

5. finish the house (i.e., building)

128

Exploitation of Qualia (⊗). 2

• If σ and τ1, · · · τn are types, then so is
(σ ⊗R1,...Rn (τ1 · · · τn)).

• phys⊗Telic smoke

• p • i⊗ A,T (write, read)

129

Example Walk-through of Qualia ⊗-Exploitation

• Zac enjoyed the book.

1. enjoy:
λPλuP(λvenjoy(u, v)), 〈P : (event−−◦ t) −−◦
t, v : event, u : agent〉

2. the book:
λ∃x(Book(x) ∧ P [x]), 〈x : (p • i) ⊗A,T
(write, read)〉

3. putting the two together:
{λPλuP(λvenjoy(u, v)),

〈P : (event−−◦ t) −−◦
130

t, v : event, u : agent〉}[λ∃x(Book(x) ∧
P [x]), 〈x : (p • i)⊗A,T (write, read)〉]

We’ll assume that enjoy prefers the telic of its object. So
QCTS exploitation on the telic role will give us:

1. {λPλuP(λvenjoy(u, v)), 〈P : (event−−◦ t)−−◦
t, v : event, u : agent〉}

[λP∃e∃x(book(x) ∧ (Telic(x, e) ∧ P [e]),
〈x : (p • i)⊗ (write, read), u : event, e : read〉].

2. Now by Accommodation,
{λPλuP(λvenjoy(u, v)), 〈P : (event−−◦ t)−−◦
t, v : event (read, u : agent〉}
[λP∃e∃x(book(x) ∧ (Telic(x, e) ∧ P [e]),
〈x : (p • i)⊗ (write, read), u : event, e : read〉]

131

3. Now by Application:
λu∃e∃x(book(x) ∧ (Telic(x, e) ∧ enjoy(u, e)),
〈x : (p • i) ⊗ (write, read), e : read〉

132

