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1 Introduction

This paper is devoted to the formulation and investigation of a dynamic seman-
tic interpretation of the language of first-order predicate logic. The resulting
system, which will be referred to as ‘dynamic predicate logic’, is intended as
a first step towards a compositional, non-representational theory of discourse
semantics.

In the last decade, various theories of discourse semantics have emerged
within the paradigm of model-theoretic semantics. A common feature of these
theories is a tendency to do away with the principle of compositionality, a prin-
ciple which, implicitly or explicitly, has dominated semantics since the days of
Frege. Therefore the question naturally arises whether non-compositionality is
in any way a necessary feature of discourse semantics.

Since we subscribe to the interpretation of compositionality as constituting
primarily a methodological principle, we consider this to be a methodological
rather than an empirical question. As a consequence, the emphasis in the present
paper lies on developing an alternative compositional semantics of discourse,
which is empirically equivalent to its non-compositional brethren, but which
differs from them in a principled methodological way. Hence, no attempts are
made to improve on existing theories empirically.

Nevertheless, as we indicate in section 5, the development of a compositional
alternative may in the end have empirical consequences, too. First of all, it can
be argued that the dynamic view on interpretation developed in this paper
suggests natural and relatively easy to formulate extensions which enable one
to deal with a wider range of phenomena than can be dealt with in existing
theories.

Moreover, the various approaches to the model-theoretic semantics of dis-
course that have been developed during the last decade, have constituted a
‘fresh start’ in the sense that much of what had been accomplished before was
ignored, at least for a start. Of course, this is a justified strategy if one feels
one is trying to develop a radically different approach to recalcitrant problems.
However, there comes a time when such new approaches have to be compared
with the older one, and when an assessment of the pros and cons of each has to
be made.

One of the main problems in semantics today, we feel, is that a semantic
theory such as Montague grammar, and an approach like Kamp’s discourse
representation theory, are hard to compare, let alone that it is possible to unify
their insights and results. One of the main obstacles is that the latter lacks,
or has abolished, the principle of compositionality, which is so central a feature
of the former. Hence, the development of a compositional alternative to the
semantics of discourse may very well have empirical import on this score as
well: in the end, it may contribute to a unification of these two approaches
which have largely complementary descriptive domains.

In the extension of modeltheoretic semantics from the sentential to the dis-
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course level, various theories have emerged: beside discourse representation the-
ory (Kamp [1981,1983]), we should mention Heim’s file card semantics (Heim
[1982,1983]), and, in a different framework, the work of Seuren (Seuren [1986]).
None of these theories makes compositionality its starting point. (However,
it seems that Heim [1982, Ch.3], does attach some value to compositionality.)
Since the aim of this paper is restricted to showing that a compositional al-
ternative can be developed, and since Kamp’s discourse representation theory
is both self-consciously non-compositional and formally most explicit, we feel
justified in restricting comparison to just the latter theory.

The paper is organized as follows. In section 2, we introduce the elements
of dynamic interpretation in a heuristic fashion, discussing a small number of
well-known problematic cases. In section 3, we recapitulate our findings and
formulate the dynamic semantics of predicate logic systematically, and study
its logical properties. The resulting system is compared with ordinary predi-
cate logic, discourse representation theory, and quantificational dynamic logic
in section 4. In section 5, we indicate prospects for further developments and,
in retrospect, we present our philosophical and methodological motives.

To end this introductory section, we remark that Barwise’ proposal for the
interpretation of anaphoric relations within the framework of situation seman-
tics (Barwise [1987]), which in Rooth [1987] is compared with Heim’s file card
semantics and with Montague Grammar, are akin in spirit and content to our
approach. So is Schubert & Pelletier [1989]. Equally akin in spirit, but less in
content, is Zeevat [1989].

2 Elements of dynamic interpretation

2.1 Cross-sentential and donkey-anaphora

We begin this section with a brief discussion of two well-known problems: cross-
sentential anaphora and anaphoric relations in donkey-sentences. We state them
anew, because we want to make clear what, we feel, is the real challenge they
offer.

If we use standard first-order predicate logic (henceforth, PL) in translating
a natural language sentence or discourse, anaphoric pronouns will turn up as
bound variables. In many cases, this means that in order to arrive at formulas
which are good translations, i.e., which express the right meaning, we have to
be pretty inventive, and should not pay too much attention to the way in which
the natural language sentence or discourse is built up. Let us illustrate this
with three simple examples, which nevertheless are representative for the kind
of problems we meet:

(1) A man walks in the park. He whistles

(2) If a farmer owns a donkey, he beats it
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(3) Every farmer who owns a donkey, beats it

In order for the pronoun he in the second sentence of (1) to be anaphorically
linked to a man in the first sentence, we have to give an existential quantifier
wide scope over the conjunction of the two sentences involved. Doing so, we
arrive at (1a):

(1a) ∃x[man(x) ∧ walk in the park(x) ∧ whistle(x)]

Now, notice that the translation of the first sentence in (1), which would be
∃x[man(x)∧walk in the park(x)], does not occur as a subformula in (1a). Ap-
parently, we do not get from (1) to (1a) in a step-by-step, i.e., in a compositional
way. If we did, we would rather translate (1) as (1b):

(1b) ∃x[man(x) ∧ walk in the park(x)] ∧ whistle(x)

But this is not a proper translation of (1), at least not in standard predicate
logic, since in (1b) the last occurrence of the variable x is not bound by the
existential quantifier, and hence the anaphoric link in (1) is not accounted for.
However, suppose we could interpret (1b) in such a way that it is equivalent
with (1). Evidently, (1b) would be preferred to (1a) as a translation of (1), since
it could be the result of a compositional procedure.

Turning to examples (2) and (3), we observe that a proper translation in PL
for both of them is (2a):

(2a) ∀x∀y[[farmer(x) ∧ donkey(y) ∧ own(x, y)]→ beat(x, y)]

These cases are more dramatic than the previous one. Although (2) and (3)
contain indefinite terms, which normally translate as existentially quantified
phrases, we need universal quantification to account for their meaning in these
kinds of examples. And notice, moreover, that the corresponding universal
quantifiers ∀x and ∀y have to be given wide scope over the entire formula,
whereas the indefinite terms in (2) and (3) to which they correspond, appear
inside the antecedent of an implication in the case of (2), and way inside the
relative clause attached to the subject term every farmer in the case of (3). If we
use PL as our means to represent meaning, these kinds of examples prevent us
from uniformly translating indefinite terms as existentially quantified phrases.
Again, this constitutes a breach of the principle of compositionality, a principle
which is not only intuitively appealing, but also theoretically parsimonious and
computationally plausible.

From a compositional point of view, translations like (2b) for sentence (2),
and (3b) for sentence (3), are to be preferred:

(2b) ∃x[farmer(x) ∧ ∃y[donkey(y) ∧ own(x, y)]]→ beat(x, y)

(3b) ∀x[[farmer(x) ∧ ∃y[donkey(y) ∧ own(x, y)]]→ beat(x, y)]
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But then again, (2b) and (3b) do not have the proper meaning in PL. For one
thing the occurrences of the variable y in case of (3b), and of the variables x and
y in case of (2b), in the respective consequents, are not bound by the existential
quantifiers in the antecedents. Hence, (2b) and (3b) are not equivalent with
(2a), at least not in PL.

Examples like (1)–(3) have been treated successfully in discourse represen-
tation theory (henceforth DRT ), but at a cost: the problem of providing a com-
positional translation is not really solved, and DRT uses a rather non-orthodox
logical language. In DRT, (1) would be represented as (1c), (2) and (3) as (2c):

(1c) [x][man(x), walk in the park(x), whistle(x)]

(2c) [ ][[x, y][farmer(x), donkey(y), own(x, y)]→ [ ][beat(x, y)]]

We will not go into the semantics of these discourse representation structures
here (cf. section 4.2), for the moment it suffices to note that (1c) and (2c)
have essentially the same truth conditions as (1a) and (2a) respectively. The
important thing, however, is that these representations differ in structure from
the corresponding sentences in much the same way as the PL-translations. In
fact, the structure of (1c) is essentially that of (1a), and not that of (1b). And
in (2c) no representation of the relative clause who owns a donkey or of the
intransitive verbphrase own a donkey—which form a constituent in (2) and (3)
respectively—can be isolated as a substructure of (2c). So, from a compositional
point of view, they are hardly a change for the better. For the moment we leave
it at this observation, but we return to the issue in some detail in section 4.2.

In this paper we give an alternative account of the phenomena exemplified
by (1)–(3); we do so by replacing the standard semantics of the language of
first-order predicate logic by a dynamic semantics, which is inspired by systems
of dynamic logic as they are used in the denotational semantics of programming
languages. (See Harel [1984] for an overview.) The resulting system of dynamic
predicate logic (henceforth, DPL) constitutes an improvement over DRT in the
following sense: to the extent that this is possible in a first-order language at all,
it gives a compositional semantic treatment of the relevant phenomena, while
the syntax of the language used, being that of standard predicate logic, is an
orthodox one. More specifically, using DPL it becomes possible to represent the
meanings of the sentences (1), (2) and (3) by means of the formulas (1b), (2b)
and (3b). As we remarked above, such representations are to be preferred from
a compositional and a computational point of view. The dynamic semantics of
DPL makes sure that (1b) comes out with the same truth conditions as (1a) is
assigned in PL, and that (2b) and (3b) come out with the same truth conditions
as (1a) and (2a) have in PL.

2.2 The dynamic view on meaning

The general starting point of the kind of semantics that DPL is an instance of,
is that the meaning of a sentence does not lie in its truth conditions, but rather
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in the way it changes (the representation of) the information of the interpreter.
The utterance of a sentence brings us from a certain state of information to
another one. The meaning of a sentence lies in the way it brings about such
a transition. Although this ‘procedural’ dynamic view on meaning as such is
not particular to semantic theories of discourse (it can also be found in theories
about sentence meaning, e.g., in the work of Stalnaker), it is a view which is
endorsed by all approaches to discourse semantics which we referred to above.

It should be noted, though, that in most cases one really studies only one
particular aspect of the information change potential that makes up the meaning
of a sentence, at a time. For example, in the standard version of DRT, informa-
tion change is narrowed down to the (im)possibilities of subsequent anaphoric
reference that sentences determine. All other information that a sentence con-
veys, is treated in a static, rather than in a dynamic fashion. DPL is like DRT
in this respect. It, too, restricts the dynamics of interpretation to that aspect
of the meaning of sentences that concerns their potential to ‘pass on’ possible
antecedents for subsequent anaphors, within and across sentence boundaries.
(See Groenendijk & Stokhof [1988] for some more discussion of this point.)

As has been observed by several authors, there is a strong correspondence
between the dynamic view on meaning, and a basic idea underlying the deno-
tational approach to the semantics of programming languages, viz., that the
meaning of a program can be captured in terms of a relation between machine
states. Given the restriction to antecedent-anaphor relations, the observed cor-
respondence comes down to the following. A machine state may be identified
with an assignment of objects to variables. The interpretation of a program can
then be regarded as a set of ordered pairs of assignments, as the set of all its
possible ‘input-output’ pairs. A pair 〈g, h〉 is in the interpretation of a program
π, if when π is executed in state g, a possible resulting state is h.

For example, the execution of an atomic program consisting of a simple
assignment statement ‘x := a’ transforms a state (assignment) g into a state
(assignment) h which differs from g at most with respect to the value it assigns
to x, and in which the object denoted by the constant a is assigned to x.

Another simple illustration is provided by sequences of programs. The in-
terpretation of a sequence of programs ‘π1 ;π2’ is as follows. It can take us from
state g to h, if there is some state k such that the program π1 can take us from
g to k, and π2 from k to h. Or to put it differently, the second program is
executed in a state which is (partly) created by the first.

As we intend to show in this paper, the basic idea that (certain aspects) of
meaning can be described in terms of relations between states, can be applied
fruitfully in natural language semantics as well. It should be remarked, though,
that the aims and perspectives of systems of dynamic logic as they are used in
the semantics of programming languages, are rather different from the purpose
for which we want to use the system to be developed below. And consequently,
there are differences between these systems as such. Some discussion of these
matters can be found in section 4.3.
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2.3 Dynamic conjunction and existential quantification

In the present and the next two sections, we introduce a dynamic interpreta-
tion for the language of extensional first-order predicate logic in a step-by-step
fashion, deferring an explicit statement and a formal investigation of DPL to sec-
tion 3. In the present section we introduce dynamic conjunction and existential
quantification, which will enable us to deal with the first of the three exam-
ples discussed above, which concerned cross-sentential anaphora. In section 2.4,
we discuss implication and existential quantification. Their dynamic treatment
will give us the means to treat simple donkey-sentences, such as exemplified
by the second example. And finally in section 2.5, we turn to universal quan-
tification and negation in order to be able to deal with the more complicated
donkey-sentences as exemplified by the last example.

The vocabulary of DPL consists of n-place predicates, individual constants
and variables. They are interpreted in the usual fashion. The models that
we use, are ordinary extensional first-order models, consisting of a domain D
of individuals and an interpretation function F , assigning individuals to the
individual constants, and sets of n-tuples of individuals to the n-place predicates.
Further, we use assignments as usual, i.e., as total functions from the set of
variables to the domain. They are denoted by ‘g’, ‘h’, and so on. By ‘h[x]g’ we
mean that assignment h differs from g at most with respect to the value it assigns
to x. When in what follows we speak of the interpretation of an expression, we
mean its semantic value in a suitable model. The function assigning semantic
values is denoted by ‘[[ ]]’.

In the standard semantics of predicate logic, the interpretation of a formula
is a set of assignments, viz., those assignments which verify the formula. In
the dynamic semantics of DPL the semantic object expressed by a formula is a
set of ordered pairs of assignments. Trading on the analogy with programming
languages, such pairs can be regarded as possible ‘input-output’ pairs: a pair
〈g, h〉 is in the interpretation of a formula φ iff when φ is evaluated with respect
to g, h is a possible outcome of the evaluation procedure. Since g and h are
assignments of objects to variables, the difference between an input assignment
g and an output assignment h can only be that a different object is assigned
to one or more variables. This is precisely what happens when an existentially
quantified formula is interpreted dynamically. Consider the formula ∃xPx. In
the standard semantics, an assignment g is in the interpretation of ∃xPx iff there
is some assignment h which differs from g at most with respect to the value it
assigns to x, and which is in the interpretation of Px, i.e., which assigns an
object h(x) to x such that h(x) ∈ F (P ). When ∃xPx is treated dynamically, all
assignments h such that h[x]g & h(x) ∈ F (P ), are taken to be possible outputs
with respect to input g. In other words:

[[∃xPx]] = {〈g, h〉 | h[x]g & h(x) ∈ F (P )}

This will not yet do for the general case of ∃xφ. We have to reckon with the
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possibility that the interpretation of φ, too, has dynamic effects. (For example,
φ itself might be an existentially quantified formula.) Taking this into account,
the dynamic interpretation of ∃xφ will consist of those pairs of assignments
〈g, h〉 such that there is some assignment k which differs from g at most in
x and which together with h forms a possible input-output pair for φ. The
interpretation clause for existentially quantified formulas then reads as follows:

[[∃xφ]] = {〈g, h〉 | ∃k: k[x]g & 〈k, h〉 ∈ [[φ]]}

In order to show that this interpretation of ∃xφ squares with the one given
above for ∃xPx, we first have to state the interpretation of atomic formulas.

Unlike existentially quantified formulas, atomic formulas do not have dy-
namic effects of their own. Rather, they function as a kind of ‘test’ on incoming
assignments. An atomic formula tests whether an input assignment satisfies the
condition it embodies. If so, the assignment is passed on as output, if not it
is rejected. So, the dynamics of an atomic formula consists in letting pass the
assignments which satisfy it, and blocking those that don’t. This is captured in
the following definition:

[[Rt1 . . . tn]] = {〈g, h〉 | h = g & 〈[[t1]]h, . . . , [[tn]]h〉 ∈ F (R)}

Here, as usual, [[t]]h = F (t) if t is an individual constant, and [[t]]h = h(t) if t is
a variable.

We first work out our simple example of an existentially quantified formula
∃xPx:

[[∃xPx]] = {〈g, h〉 | ∃k: k[x]g & 〈k, h〉 ∈ [[Px]]} =
{〈g, h〉 | ∃k: k[x]g & k = h & h(x) ∈ F (P )}} =

{〈g, h〉 | h[x]g & h(x) ∈ F (P )}

This example illustrates the interpretation of the existential quantifier and that
of atomic formulas. The meaning of ∃xPx determines that for a given input
assignment g, we get as possible outputs those assignments h which differ from
g at most in x and which satisfy the condition that the individual h(x) has the
property F (P ).

The dynamic interpretation of existential quantification presented here is
only one ingredient of a treatment of cross-sentential anaphoric binding as it was
illustrated by the first example discussed in setion 2.1. The example consists of
a sequence of two sentences, the first of which contains an indefinite term which
functions as the antecedent of an anaphoric pronoun occurring in the second
sentence. Although this obviously is not all there is to it, within the framework
at hand, simple sentence sequencing is best represented as conjunction. Going
about compositionally, what we get in this case is a conjunction consisting of an
existentially quantified formula and a formula containing a free occurrence of
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the variable corresponding to the quantifier. The simplest example of a formula
that is of this form is ∃xPx ∧Qx.

To get the required interpretation for this kind of formula, a dynamic inter-
pretation of existential quantification alone does not suffice, we need a dynamic
treatment of conjunction as well. For example, in order to get the required
anaphoric reading we have to interpret ∃xPx ∧Qx in such a way that the sec-
ond occurrence of x, which is outside the scope of the quantifier, is bound by
that quantifier with the same force as the first occurrence of x, which is inside
its scope.

So the first thing we require of the dynamic interpretation of conjunction is
that it passes on values of variables from the first conjunct to the second. More-
over, we note that values assigned to variables in a conjunction should remain
available for further conjuncts that are added. If we continue the discourse ‘A
man walks in the park. He meets a woman.’ with ‘He kisses her.’, we must
view this as adding another conjunct. And this newly added conjunct may con-
tain ‘free’ occurrences of variables (pronouns) which nevertheless are bound by
existential quantifiers (indefinite terms) which have occurred earlier on.

In fact, this is exactly what the interpretation of a sequence of programs as
described above amounts to. Hence, our definition of dynamic conjunction is
the following:

[[φ ∧ ψ]] = {〈g, h〉 | ∃k: 〈g, k〉 ∈ [[φ]] & 〈k, h〉 ∈ [[ψ]]}

According to this definition, the interpretation of φ∧ψ with input g may result
in output h iff there is some k such that interpreting φ in g may lead to k, and
interpreting ψ in k enables us to reach h.

We are now fully equipped to deal with the first of the three examples di-
cussed above, which concerned cross-sentential anaphora. Calculating the inter-
pretation of ∃xPx ∧Qx shows that indeed the binding effects of an existential
quantifier may reach further than its scope, more in particular they reach over
further conjuncts:

[[∃xPx ∧Qx]] = {〈g, h〉 | ∃k: 〈g, k〉 ∈ [[∃xPx]] & 〈k, h〉 ∈ [[Qx]]} =
{〈g, h〉 | ∃k: k[x]g & k(x) ∈ F (P ) & h = k & h(x) ∈ F (Q)} =

{〈g, h〉 | h[x]g & h(x) ∈ F (P ) & h(x) ∈ F (Q)}

Here, we see that the occurrence of x in the second conjunct Qx, although it is
not in the scope of the quantifier ∃x in the ordinary sense, is nevertheless bound
by it with the same force as the occurrence of x in Px in the first conjunct, which
obviously is in the scope of ∃x. This means that in DPL there is no difference in
meaning between the formula ∃xPx∧Qx and the formula ∃x[Px∧Qx]. From the
latter fact it is also clear that if we continue a conjunction φ∧ψ with a further
conjunct χ, the binding force of quantifiers in either one of the conjuncts φ and
ψ will remain active.
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Because of its power to pass on variable bindings from its left conjunct to the
right one, we call conjunction an internally dynamic connective. And because
of its capacity to keep passing on bindings to conjuncts yet to come, we call it
an externally dynamic connective as well. For similar reasons, the existential
quantifier is called both internally and externally dynamic: it can bind variables
to the right, both inside and outside its scope.

It is precisely this feature of DPL, that it allows for existential quantifiers
to bind variables yet to come which are outside their scope, that lends it the
power to solve the problem of getting a compositional treatment of antecedent-
anaphor relations which go across sentence boundaries. It allows us to translate
the sentence containing the antecedent indefinite term, without having to look
ahead at what is still to come, treating it as an ordinary existentially quantified
phrase. Then we can translate a sentence which follows and which contains
an anaphor, without having to re-analyze the translation so-far, regarding the
anaphoric pronoun as an ordinary variable. The dynamic semantics takes care
of the rest. It makes sure that the pronoun is treated as a variable bound by
the quantifier which corresponds to the indefinite term.

2.4 Dynamic existential quantification and implication

The second kind of example which we introduced in section 2.1, concerns simple
donkey-sentences. The main problem of donkey-sentences is the occurrence of an
indefinite term in the antecedent of an implication which is anaphorically linked
to a pronoun in the consequent. As we indicated above, if we are to represent the
meaning of such sentences in ordinary predicate logic, which allows quantifiers
to bind only those variables which occur in their syntactic scope, then we are
forced to regard the indefinite term as a universal quantifier and to give it wide
scope over the implication as a whole. This goes against compositionality in two
ways: first of all, we cannot use the ordinary, lexically determined meaning of
indefinite terms, and secondly, we must deviate from the syntactic structure by
‘raising’ these terms from their position in the antecedent to a position outside
the implication. In order to show that this kind of example can be treated in
DPL in a more compositional, and hence more satisfactory way, we have to say
what the dynamic interpretation of implication is.

The simplest example of a formula corresponding to a donkey-sentence is
∃xPx → Qx. In order for this formula to get the required interpretation, the
dynamic interpretation of implication has to allow for an existential quantifier in
its antecedent to bind a variable in its consequent. This means that implication
is like conjunction in the following respect: it passes on values assigned to
variables in its antecedent to its consequent. In other words, implication is an
internally dynamic connective.

But that is not all. We also observe that the existential quantifier in the
antecedent has universal force. This can be accounted for as follows. With re-
spect to an input assignment, the antecedent of an implication results in a set of
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possible output assignments. For the implication as a whole, it seems reasonable
to require that every assignment that is a possible output of the antecedent,
be a possible input for the consequent. By this we mean that an output assign-
ment h of the antecedent, when taken as input to the consequent, should result
in at least one output assignment k. In other words, the interpretation of an
implication φ→ ψ should be such that for every pair 〈g, h〉 in the interpretation
of φ there is some assignment k such that 〈h, k〉 is in the interpretation of ψ.
This feature of the interpretation of implication results in universal force of an
existential quantifier occurring in the antecedent. Consider ∃xPx→ Qx. With
respect to an input assignment g, the antecedent ∃xPx results in the set of
assignments h such that h[x]g and h(x) ∈ F (P ). If we require, as we do, that
every such h should be a proper input of the consequent Qx, the result is that
every h such that h(x) ∈ F (P ), also satisfies h(x) ∈ F (Q).

This does not yet determine which pairs of assignments constitute the inter-
pretation of φ → ψ, it only tells us with respect to which assignments φ → ψ
can be ‘successfully executed’. To get at the full interpretation of φ → ψ we
need yet another observation, which is that normally an implication as a whole
does not pass on values assigned to variables by quantifiers in the implication
itself, to sentences yet to come. Consider the following example:

(4) ∗If a farmer owns a donkey, he beats it. He hates it

In this example, the pronouns he and it in the second sentence cannot be
anaphorically linked to the indefinite terms in the preceding implication. And
quite generally it is concluded on the basis of examples such as these that a
quantifier which occurs inside an implication, be it in the antecedent or in the
consequent, cannot bind variables outside the implication. (A lot more needs
to be said about this, and for some of it we refer to section 5.1.) In this respect
implication is unlike conjunction: it is not externally dynamic; like an atomic
formula, an implication as a whole has the character of a test.

What we thus end up with as the dynamic interpretation of implication, is
the following:

[[φ→ ψ]] = {〈g, h〉 | h = g & ∀k: 〈h, k〉 ∈ [[φ]]⇒ ∃j: 〈k, j〉 ∈ [[ψ]]}
The interpretation of φ → ψ accepts an assignment g iff every possible output
of φ with respect to g leads to a successful interpretation of ψ, and it rejects g
otherwise. Armed with this definition, we can now proceed to show that DPL
assigns the required interpretation to formulas which correspond to the kind of
donkey-sentences exemplified by our second example. By way of illustration, we
work out the interpretation of the formula ∃xPx→ Qx:

[[∃xPx→ Qx]] =
{〈g, h〉 | h = g & ∀k: 〈h, k〉 ∈ [[∃xPx]]⇒ ∃j: 〈k, j〉 ∈ [[Qx]]} =
{〈g, g〉 | ∀k: 〈g, k〉 ∈ [[∃xPx]]⇒ ∃j: 〈k, j〉 ∈ [[Qx]]} =
{〈g, g〉 | ∀k: k[x]g & k(x) ∈ F (P )⇒ k(x) ∈ F (Q)}
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This example shows that the binding effects of an existential quantifier occurring
in the antecedent of an implication extend to occurrences of the corresponding
variable in the consequent, and that such a quantifier occurrence has universal
force. It also shows that dynamic effects are restricted to the implication as
such, and are not passed on to any formulas which might follow it. In effect, as
we shall see below, ∃xPx→ Qx is equivalent in DPL to ∀x[Px→ Qx].

2.5 Universal quantification, negation and disjunction

For a treatment of the second, more complicated kind of donkey-sentences, ex-
emplified by our third example, we need to state the interpretation of the uni-
versal quantifier. One aspect of this interpretation is illustrated by the following
two examples:

(5) ∗Every man walks in the park. He whistles

(6) ∗Every farmer who owns a donkey beats it. He hates it

The pronoun he occurring in the second sentence of (5), cannot be interpreted
as being anaphorically linked to the universal term in the sentence preceding it.
Nor can the pronouns he and it in the second sentence of (6) be anaphorically
linked to the terms every farmer and a donkey in the first sentence of (6). Gen-
erally, from examples such as these it is concluded that the universal quantifier
shares with implication the characteristic of being externally static. Neither
a universal quantifier itself, nor any existential quantifier inside its scope can
bind variables outside the scope of that universal quantifier. (Again, we refer to
section 5.1 for some discussion of this point.) But, of course, inside the scope
of a universal quantifier dynamic effects may very well occur, as the donkey-
sentence (3) shows. This leads to the following definition of the interpretation
of universal quantification:

[[∀xφ]] = {〈g, h〉 | h = g & ∀k: k[x]h⇒ ∃m: 〈k,m〉 ∈ [[φ]]}

So, a universally quantified formula ∀xφ, too, functions as a test. An input
assignment g is passed on iff every assignment that differs at most from g in x
is a proper input for φ, otherwise it is blocked. An output assignment is always
identical to the corresponding input.

That the dynamic interpretation of the universal quantifier, together with
that of the existential quantifier and implication, allows us to deal with the
donkey-sentence (3) in the manner discussed at the beginning of this section, is
shown by working out the interpretation of a formula that exhibits the relevant
structure:

[[∀x[[Px ∧ ∃y[Qy ∧Rxy]]→ Sxy]]] =
{〈g, h〉 | h = g & ∀k: k[x]h⇒ ∃m: 〈k,m〉 ∈ [[[Px ∧ ∃y[Qy ∧Rxy]]→ Sxy]]} =
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{〈g, g〉 | ∀k: k[x]g ⇒ (∀j: 〈k, j〉 ∈
[[Px ∧ ∃y[Qy ∧Rxy]]]⇒ ∃z: 〈j, z〉 ∈ [[Sxy]])} =

{〈g, g〉 | ∀k: k[x]g & k(x) ∈ F (P )⇒
(∀j: j[y]k & j(y) ∈ F (Q) & 〈j(x), j(y)〉 ∈ F (R)⇒ 〈j(x), j(y)〉 ∈ F (S))} =

{〈g, g〉 | ∀h:h[x, y]g & h(x) ∈ F (P ) &
h(y) ∈ F (Q) & 〈h(x), h(y)〉 ∈ F (R)⇒ 〈h(x), h(y)〉 ∈ F (S)}

This example illustrates that the dynamic semantics of DPL enables us to treat
the more complicated type of donkey-sentences, too, in a straightforward, intu-
itive and compositional manner. DPL allows us to translate an indefinite term
uniformly as an existentially quantified phrase in situ, i.e., when and where
we encounter it in a structure, without any need of re-analysis. We can treat
a pronoun which is anaphorically linked to such a term simply as a variable
corresponding to the quantifier. The dynamic interpretation of the existential
quantifier and of the implication, ensures that the proper bindings result, and
that the indefinite term has the required universal force.

Within the limits set by a first-order language, the account we have given
above of cross-sentential anaphora and donkey-sentences, is as compositional as
can be. Using DPL as our semantic representation language, we can proceed to
obtain representations of the meanings of simple natural language discourses in
an on-line, more or less left-to-right manner, guided by the ordinary syntactic
structures and the usual lexical meanings of the phrases we encounter.

We conclude this section by stating the interpretation of negation and dis-
junction. Negation is like implication and universal quantification in that it,
too, normally blocks anaphoric links between a term that occurs in its scope,
and a pronoun outside of it, i.e., negation is static. (More on this in section
5.1.) The following two examples illustrate this:

(7) It is not the case that a man walks in the park. ∗He whistles.

(8) No man walks in the park. ∗He whistles.

Hence, the interpretation of a negation ¬φ will be of the type of a test: it
returns an input assignment g iff φ can not be succesfully processed. If φ can
be succesfully processed with respect to g as input, g is blocked by ¬φ:

[[¬φ]] = {〈g, h〉 | h = g & ¬∃k: 〈h, k〉 ∈ [[φ]]}

The following example, which has the structure of such sequences of sentences
as (7) and (8), illustrates how negation works:

[[¬∃xPx ∧Qx]] =
{〈g, h〉 | ∃k: 〈g, k〉 ∈ [[¬∃xPx]] & 〈k, h〉 ∈ [[Qx]]} =

{〈g, h〉 | ∃k: 〈g, k〉 ∈ [[¬∃xPx]] & h = k & h(x) ∈ F (Q)} =
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{〈g, h〉 | 〈g, h〉 ∈ [[¬∃xPx]] & h(x) ∈ F (Q)} =
{〈g, h〉 | h = g & ¬∃k: 〈h, k〉 ∈ {〈g, h〉 | h[x]g & h(x) ∈ F (P )} & h(x) ∈ F (Q)} =

{〈g, h〉 | h = g & ¬∃k: k[x]h & k(x) ∈ F (P ) & h(x) ∈ F (Q)} =
{〈g, g〉 | ¬∃k: k[x]g & k(x) ∈ F (P ) & g(x) ∈ F (Q)}

As we can see, the first conjunct, being a negation, does not change the assign-
ment with respect to which the second conjunct is interpreted. The test-like
character of a negation leaves the occurrence of x in the second conjunct un-
bound by the existential quantifier which occurs within its scope in the first
conjunct. This means that, whereas ∃xPx∧Qx and Qx∧∃xPx differ in mean-
ing, ¬∃xPx ∧Qx is equivalent to Qx ∧ ¬∃xPx.

As for disjunction, it shares the feature of being externally static with impli-
cation, negation and the universal quantifier. It, too, tests an input assignment
g, and the condition it embodies is that at least one of its disjuncts be inter-
pretable successfully with g as input. Only if this condition is met, g is returned
as output:

[[φ ∨ ψ]] = {〈g, h〉 | h = g & ∃k : 〈h, k〉 ∈ [[φ]] ∨ 〈h, k〉 ∈ [[ψ]]}

According to this interpretation of disjunction, no antecedent-anaphor relations
are possible between the disjuncts, i.e., disjunction is not only externally, but
also internally static. We will come back to this in sections 4.3 and 5.1.

This concludes our introduction of the ingredients of DPL. In the next sec-
tion, we will present DPL more systematically, and investigate some of the
logical facts touched upon above in somewhat more detail.

3 DPL, a system of dynamic predicate logic

This section is devoted to a formal study of the DPL-system. In 3.1, we present
its syntax and semantics systematically. Section 3.2 contains definitions of some
basic semantic notions, such as truth and equivalence. In section 3.3, we turn
to the subject of scope and binding, and in section 3.4, we state some logical
facts. Section 3.5 is concerned with the notion of entailment.

3.1 Syntax and semantics

The non-logical vocabulary of DPL consists of: n-place predicates, individual
constants, and variables. Logical constants are negation ¬, conjunction ∧, dis-
junction ∨, implication→, the existential and universal quantifiers ∃ and ∀, and
identity =.

Definition 1 (Syntax)

1. If t1, . . . , tnare individual constants or variables, R is an n-place predicate,
then Rt1 . . . tn is a formula
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2. If t1 and t2 are individual constants or variables, then t1 = t2 is a formula

3. If φ is a formula, then ¬φ is a formula

4. If φ and ψ are formulas, then [φ ∧ ψ] is a formula

5. If φ and ψ are formulas, then [φ ∨ ψ] is a formula

6. If φ and ψ are formulas, then [φ→ ψ] is a formula

7. If φ is a formula, and x is a variable, then ∃xφ is a formula

8. If φ is a formula, and x is a variable, then ∀xφ is a formula

9. Nothing is a formula except on the basis of 1–8

So, the syntax of DPL is that of ordinary predicate logic.
A model M is a pair 〈D,F 〉, where D is a non-empty set of individuals,

F an interpretation function, having as its domain the individual constants
and predicates. If α is an individual constant, then F (α) ∈ D; if α is an n-
place predicate, then F (α) ⊆ Dn. An assignment g is a function assigning an
individual to each variable: g(x) ∈ D. G is the set of all assignment functions.
Next, we define [[t]]g = g(t) if t is a variable, and [[t]]g = F (t) if t is an individual
constant. Finally, we define the interpretation function [[ ]]DPLM ⊆ G × G as
follows. (As usual, we suppress subscripts and superscripts whenever this does
not give rise to confusion.)

Definition 2 (Semantics)

1. [[Rt1 . . . tn]] = {〈g, h〉 | h = g & 〈[[t1]]h . . . [[tn]]h〉 ∈ F (R)}

2. [[t1 = t2]] = {〈g, h〉 | h = g & [[t1]]h = [[t2]]h}

3. [[¬φ]] = {〈g, h〉 | h = g & ¬∃k: 〈h, k〉 ∈ [[φ]]}

4. [[φ ∧ ψ]] = {〈g, h〉 | ∃k: 〈g, k〉 ∈ [[φ]] & 〈k, h〉 ∈ [[ψ]]}

5. [[φ ∨ ψ]] = {〈g, h〉 | h = g & ∃k: 〈h, k〉 ∈ [[φ]] ∨ 〈h, k〉 ∈ [[ψ]]}

6. [[φ→ ψ]] = {〈g, h〉 | h = g & ∀k: 〈h, k〉 ∈ [[φ]]⇒ ∃j: 〈k, j〉 ∈ [[ψ]]}

7. [[∃xφ]] = {〈g, h〉 | ∃k: k[x]g & 〈k, h〉 ∈ [[φ]]}

8. [[∀xφ]] = {〈g, h〉 | h = g & ∀k: k[x]h⇒ ∃j: 〈k, j〉 ∈ [[φ]]}

Besides the clauses that were discussed in the previous section, definition 2 also
contains a clause which gives the interpretation of identity statements. It will
come as no surprise that such statements are interpreted as tests.
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3.2 Meaning, truth and equivalence

The notion of the interpretation of a formula that the semantics of DPL specifies,
differs from the one we are familiar with from PL. The latter can be given in
the form of a recursive specification of a set of assignments, those which satisfy
a formula, whereas the semantics stated above defines a recursive notion of a
set of pairs of assignments, those which are proper input-output pairs.

The notion of interpretation of PL brings along a notion of truth with respect
to an assignment which is defined as follows: φ is true with respect to g iff g
is an element of the set denoted by φ. In the present, essentially richer scheme
a similar notion can be defined. We call a formula true with respect to an
assignment g in a model M iff with g as input, it has an output:

Definition 3 (Truth) φ is true with respect to g in M iff ∃h: 〈g, h〉 ∈ [[φ]]M

In terms of this notion, we define when a formula is valid and when it is a
contradiction:

Definition 4 (Validity) φ is valid iff ∀M∀g: φ is true with respect to g in M

Definition 5 (Contradictoriness) φ is a contradiction iff ∀M∀g: φ is false
with respect to g in M

Notice that the interpretation of any contradiction is always the empty set.
For valid formulas things are different: no unique semantic object serves as
their interpretation. They either denote the identity relation on G, or a certain
extension of this. For example, Px ∨ ¬Px always denotes the set of all pairs
〈g, g〉, but ∃x[Px∨¬Px] denotes the set of all pairs 〈g, h〉 such that h differs at
most with respect to x from g. Both formulas are valid according to definition
4, since both are true with respect to any g in any M . So, whereas semantically
there is only one contradiction, there are many different tautologies. What
distinguishes these can be expressed in terms of the variables they bind.

The set of all assignments with respect to which a formula is true, we call
its satisfaction set, and we denote it by ‘\ \M ’:

Definition 6 (Satisfaction set) \φ\M = {g | ∃h: 〈g, h〉 ∈ [[φ]]M}

So, truth with respect to g in M can also be defined as g ∈ \φ\M , validity as
\φ\M = G for every M , and contradictoriness as \φ\M = ∅ for every M .

The notion of a satisfaction set is of the same type as the notion of inter-
pretation in PL. But truth conditions do not exhaust dynamic meaning. The
satisfaction set of a compound formula can not always be defined in terms of
the satisfaction sets of its compounds, it is determined by its compositional in-
terpretation in terms of the notion [[ ]]. The latter gives the building blocks of
meaning. And meaning in its turn determines, globally but not locally, what
the truth conditions of compound expressions are.
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These considerations make clear that the notion of equivalence of standard
logic, that of two formulas having the same truth conditions, although definable
in DPL in terms of the notion of a satisfaction set, has only a marginal role to
play. We call it s-equivalence, and denote it by ‘'s’:

Definition 7 (s-equivalence) φ 's ψ ⇔ ∀M : \φ\M = \ψ\M

Full equivalence of two formulas requires that their interpretations be the same
in every model. We call it equivalence simpliciter, and denote it by ‘'’:

Definition 8 (Equivalence) φ ' ψ ⇔ ∀M : [[φ]]M = [[ψ]]M

Of course, if two formulas are equivalent they will also have the same satisfaction
set, i.e. they will be s-equivalent:

Fact 1 φ ' ψ ⇒ φ 's ψ

The reverse does not hold. For example, ∃xPx and ∃yPy have the same satisfac-
tion sets, G or ∅, but they differ in meaning, since they produce different output
assignments, viz., {h | h(x) ∈ F (P )} and {h | h(y) ∈ F (P )} respectively. The
first formula has the potential to bind free occurrences of x in formulas to come,
and the second has the potential to bind occurrences of y. We can formulate
this in terms of the notion of the production setof a formula, the set consisting
of those assignments which are its possible outputs, which we write as ‘/ /M ’:

Definition 9 (Production set) /φ/M = {h | ∃g: 〈g, h〉 ∈ [[φ]]M}

Whereas the satisfaction sets of ∃xPx and ∃yPy are the same, their production
sets are different. If two formulas always have the same production set, we call
them p-equivalent, denoted by ‘'p’:

Definition 10 (p-equivalence) φ 'p ψ ⇔ ∀M : /φ/M = /ψ/M

Of course, analogous to the previous fact, we have:

Fact 2 φ ' ψ ⇒ φ 'p ψ

So, if two formulas have the same meaning, they always have the same satisfac-
tion set and the same production set. However, the reverse does not hold:

Fact 3 φ 's ψ & φ 'p ψ 6⇒ φ ' ψ

If two formulas always have the same satisfaction set and always the same pro-
duction set, this does not imply that they have the same meaning. So, meaning
can not be defined in terms of satisfaction and production sets. Consider the
following simple example. The two tautologies Px∨¬Px and ∃x[Px∨¬Px] both
have the total set of assignments G as their satisfaction set and as their produc-
tion set. But, as we have seen above, their meanings are different. The interpre-
tation of the former is {〈g, h〉 | g = h}, and that of the latter is {〈g, h〉 | h[x]g}.
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We end this section with the definitions of two other notions that will prove
useful for what is to come.

As we have seen in the previous section, various kinds of DPL-formulas have
the characteristic that they do not pass on bindings created by expressions which
occur in them. They function as a kind of ‘test’ in this sense that they examine
whether an input assignment meets a certain condition, return it as output if it
does, and reject it otherwise. Semantically, they can be characterized as follows:

Definition 11 (Test) φ is a test iff ∀M∀g∀h: 〈g, h〉 ∈ [[φ]]M ⇒ g = h

Notice that for a test φ the definition of truth with respect to g given above boils
down to 〈g, g〉 ∈ [[φ]]. Also, we observe that for tests equivalence, s-equivalence
and p-equivalence coincide.

Fact 4 If φ and ψ are tests, then: φ 's ψ ⇔ φ ' ψ ⇔ φ 'p ψ

The notion of a test is a semantic one. A partial syntactic characterization can
be given as follows. In view of their semantic interpretation, atomic formulas,
negations, implications, disjunctions, and universally quantified formulas are
tests. Further, it holds that a conjunction of tests is a test. We will refer to this
syntactically delineated class of formulas as conditions:

Definition 12 (Conditions)

1. If φ is an atomic formula, a negation, a disjunction, or an implication,
then φ is a condition;

2. If φ and ψ are conditions, then [φ ∧ ψ] is a condition;

3. Nothing is a condition except on the basis of 1 or 2.

And we note the following fact:

Fact 5 If φ is a condition, then φ is a test

With the exception of contradictions, which have the empty set as their inter-
pretation, and hence are tests, the syntactic notion of a condition characterizes
the semantic notion of a test:

Fact 6 φ is a test iff φ is a condition or a contradiction

3.3 Scope and binding

A distinctive feature of DPL is that it allows for existential quantifiers to bind
variables which are outside their syntactic scope. In this section we give a
syntactic characterization of when an occurrence of a variable is bound by an
occurrence of a quantifier. This characterization will consist of a simultaneous
recursive definition of three notions:
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• bp(φ), the set of binding pairs in φ;

• aq(φ), the set of active quantifier occurrences in φ;

• fv(φ), the set of free occurrences of variables in φ.

A binding pair consist of a quantifier occurrence and a variable occurrence
such that the first binds the second. An active quantifier occurrence is one
which has the potential to bind occurrences of the corresponding variable further
on. A free occurrence of a variable is one which is not in any binding pair.
The definition, which is a bit sloppy since we have refrained from explicitly
introducing a notation for occurrences, is as follows:

Definition 13 (Scope and binding)

1. bp(Rt1, . . . , tn) = ∅
aq(Rt1, . . . , tn) = ∅
fv(Rt1, . . . , tn) = {ti | ti a variable}

2. bp(¬φ) = bp(φ)
aq(¬φ) = ∅
fv(¬φ) = fv(φ)

3. bp(φ ∧ ψ) = bp(φ) ∪ bp(ψ) ∪ {〈∃x, x〉 | ∃x ∈ aq(φ) & x ∈ fv(ψ)}
aq(φ ∧ ψ) = aq(ψ) ∪ {∃x ∈ aq(φ) | ∃x /∈ aq(ψ)}
fv(φ ∧ ψ) = fv(φ) ∪ {x ∈ fv(ψ) | ∃x /∈ aq(φ)}

4. bp(φ ∨ ψ) = bp(φ) ∪ bp(ψ)
aq(φ ∨ ψ) = ∅
fv(φ ∨ ψ) = fv(φ) ∪ fv(ψ)

5. bp(φ→ ψ) = bp(φ) ∪ bp(ψ) ∪ {〈∃x, x〉 | ∃x ∈ aq(φ) & x ∈ fv(ψ)}
aq(φ→ ψ) = ∅
fv(φ→ ψ) = fv(φ) ∪ {x ∈ fv(ψ) | ∃x /∈ aq(φ)}

6. bp(∃xφ) = bp(φ) ∪ {〈∃x, x〉 | x ∈ fv(φ)}
aq(∃xφ) = aq(φ) ∪ {∃x}, if ∃x /∈ aq(φ), = aq(φ) otherwise
fv(∃xφ) = fv(φ) minus the occurrences of x in φ

7. bp(∀xφ) = bp(φ) ∪ {〈∀x, x〉 | x ∈ fv(φ)}
aq(∀xφ) = ∅
fv(∀xφ) = fv(φ) minus the occurrences of x in φ

The ‘test’-like character of atomic formulas, negations, disjunctions, implica-
tions and universally quantified formulas, is reflected in the above definition by
the fact that for such formulas φ, aq(φ) = ∅, i.e., no quantifier occurring in
such a formula is able to bind occurrences of the corresponding variable fur-
ther on. Notice that if we conjoin two formulas which each have an empty set
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of active quantifier occurrences, the resulting conjunction has no active occur-
rences either. This reminds us of the notion of a condition defined above. In
fact, the requirement that aq(φ) = ∅ characterizes those φ which are conditions,
and hence it also characterizes those φ which are tests, with the exception of
contradictions.

The extra(-ordinary) binding power of the existential quantifier, the fact
that it is externally dynamic, is reflected in clause 6. The occurrence of ∃x in
∃xφ is added to the active occurrences of φ, unless, of course, there is already an
active occurrence of that same quantifier in φ, in which case the latter remains
the active occurrence. It is precisely in this respect that the binding properties
of existential and universal quantification differ. Only existential quantifiers can
have active occurrences, and for any formula, only one occurrence of a quantifier
in that formula can be active.

That disjunction is internally static is reflected in the first line of clause 4.
The set of binding pairs of a disjunction is simply the union of the binding
pairs of its disjuncts. So, no binding relations are possible across the disjuncts
of a disjunction. In contrast to this, the binding pairs of a conjunction or an
implication are not simply obtained by putting together the binding pairs of
the constituent formulas; what is further added are pairs consisting of active
occurrences of quantifiers in the first conjunct or in the antecedent, together
with free occurrences of the corresponding variables in the second conjunct or
in the consequent.

In addition to the three notions just introduced, we define a fourth one, which
will turn out to be convenient when we compare DPL and PL in section 4.1. It
is the set of scope pairs, sp(φ), of a formula φ:

Definition 14 (Scope pairs)

1. sp(Rt1, . . . , tn) = ∅

2. sp(¬φ) = sp(φ)

3. sp(φ ∧ ψ) = sp(φ) ∪ sp(ψ)

4. sp(φ ∨ ψ) = sp(φ) ∪ sp(ψ)

5. sp(φ→ ψ) = sp(φ) ∪ sp(ψ)

6. sp(∃xφ) = sp(φ) ∪ {〈∃x, x〉 | x ∈ fv(φ)}

7. sp(∀xφ) = sp(φ) ∪ {〈∀x, x〉 | x ∈ fv(φ)}

We note two things about this definition. First, if we replace the notion fv(φ),
the notion of a free variable in DPL as defined above, by the notion fvPL(φ),
the notion of a free variable in PL, we end up with the notion of binding in
PL. Secondly, concerning DPL itself again, the following fact can be proved by
simple induction:
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Fact 7 sp(φ) ⊆ bp(φ)

So, it is sufficient but not necessary for a variable to be bound by a quantifier
that it occurs in its scope. Of course, in some cases, all variables bound by a
quantifier are also inside its scope. This holds for example for ∃x[Px ∧ Qx]:
bp(∃x[Px ∧ Qx]) = sp(∃x[Px ∧ Qx]). In section 3.6, we will show that for
any formula φ there is a formula φ′ which is equivalent in DPL to φ, such that
bp(φ′) = sp(φ′).

For some purposes it is convenient to talk about the free variables of a
formula, rather than about their occurrences. We will write the set of free
variables in φ as ‘FV (φ)’:

Definition 15 x ∈ FV (φ) iff there is an occurrence of x in fv(φ)

For similar reasons, we introduce the notion of the set of variables x such that
there is an active occurrence of ∃x in φ, and denote it as ‘AQV (φ)’:

Definition 16 x ∈ AQV (φ) iff ∃x ∈ aq(φ)

It is useful to point out the following two facts, which both can be proven by
simple induction on the complexity of φ (by g =FV (φ) h we mean that for all
x ∈ FV (φ): g(x) = h(x)):

Fact 8 If g =FV (φ) h, then ∀M : g ∈ \φ\M ⇔ h ∈ \φ\M

Fact 9 If ∃M : 〈g, h〉 ∈ [[φ]]M & g(x) 6= h(x), then x ∈ AQV (φ)

Fact 8 says that if two assignments differ in that the one is in the satisfaction
set of a formula φ, whereas the other is not, they should also differ in the value
they assign to at least one of the free variables of φ. And fact 9 says that if
two assignments which assign a different value to a certain variable x form an
input-output pair in the interpretation of a formula φ, then there is an active
occurrence of the quantifier ∃x in φ.

3.4 Some logical facts

Let us now turn to an exposition of some basic logical facts, which will illustrate
various properties of DPL.

We start with the interdefinablity of the logical constants. A simple calcu-
lation with the relevant clauses of definition 2 shows that negation, conjunction
and existential quantification can be used as our basic logical constants, the
others being definable in terms of them in the usual way:

φ→ ψ ' ¬[φ ∧ ¬ψ]

φ ∨ ψ ' ¬[¬φ ∧ ¬ψ]

∀xφ ' ¬∃x¬φ
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It should be noted, though, that contrary to what is the case in ordinary pred-
icate logic, a different choice of basic constants is not possible. The following
facts show that we cannot do with the universal quantifier and disjunction, nor
with the universal quantifier and implication:

φ ∧ ψ 6' ¬[φ→ ¬ψ]

φ ∧ ψ 6' ¬[¬φ ∨ ¬ψ]

∃xφ 6' ¬∀x¬φ
The reason for this is, of course, that the expressions on the right are tests,
which lack the dynamic binding properties of the expressions on the left. In the
first and in the last case, the satisfaction sets, i.e., the truth conditions, of the
expressions on the right and of those on the left indeed are the same: they are
s-equivalent. This does not hold in the second case, because of the fact that
disjunction is not only externally, but also internally static.

φ ∧ ψ 's ¬[φ→ ¬ψ]

φ ∧ ψ 6's ¬[¬φ ∨ ¬ψ]

∃xφ 's ¬∀x¬φ
Furthermore, we may note that, whereas disjunction can be defined in terms of
implication, the reverse does not hold:

φ ∨ ψ ' ¬φ→ ψ

φ→ ψ 6' ¬φ ∨ ψ
Disjunctions and implications are both tests, they are externally static. How-
ever, an implication is internally dynamic, i.e., an existential quantifier in the
antecedent can bind variables in the consequent. But no such binding relations
are possible between the disjuncts of a disjunction, the latter being also inter-
nally static. This is also the reason why in the last case not even the truth
conditions of the expressions on the right and on the left are the same: no
s-equivalence obtains in this case:

φ→ ψ 6's ¬φ ∨ ψ

In some special cases, some of these non-equivalences do hold. For example,
if (and only if) φ ∧ ψ is a test, it is equivalent with ¬[φ → ¬ψ]. And if φ is
a test, or more generally if no binding relations exist between φ and ψ, i.e., if
AQV (φ)∩FV (ψ) = ∅, then φ→ ψ is equivalent with ¬φ∨ψ. Similarly, ∃xφ is
equivalent with ¬∀x¬φ iff ∃xφ is a test, which it is only if φ is a contradiction.

A relationship between the existential and the universal quantifier that does
hold unconditionally is:

¬∃xφ ' ∀x¬φ
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Of course, this follows from the fact that negation turns anything into a test.
From the latter observation, we may conclude that the law of double negation

will not hold unconditionally. Consider a formula φ that is not a test. Negating φ
results in the test ¬φ, and a second negation, which gives ¬¬φ, does not reverse
this effect. And this seems correct, since a doubly negated sentence in general
does not allow subsequent pronouns to refer back to elements in the scope of
the negations. (But see section 5.1 for some further discussion.) Precisely in
this respect, φ and ¬¬φ may differ in meaning. However, as far as their truth
conditions are concerned, the two coincide, so φ and ¬¬φ are s-equivalent. We
can formulate the following restricted versions of the law of double negation:

φ 's ¬¬φ

¬¬φ ' φ iff φ is a test

Hence, double negation is not in general eliminable. The effect of applying
double negation is that the meaning of a formula is restricted, so to speak, to
its truth conditions. It is useful to introduce an operator, ♦, which performs
this function:

Definition 17 (Closure) [[♦φ]] = {〈g, h〉 | g = h & ∃k: 〈h, k〉 ∈ [[φ]]}

One can look upon ♦ as a kind of assertion or closure operator. It can be used to
close off a piece of discourse, blocking any further anaphoric reference, stating:
this is how things stand.

We notice that the following hold:

♦φ ' ¬¬φ ' φ iff φ is a test

♦φ ' ♦ψ ⇔ φ 's ψ
♦♦φ ' ♦φ ' ¬¬φ
♦¬φ ' ¬φ ' ¬♦φ

In terms of the operator ♦ we can also state the restricted versions of the
interdefinability of the logical constants discussed above:

♦[φ ∧ ψ] ' ¬[φ→ ¬ψ]

♦φ ∧ ♦ψ ' ¬[¬φ ∨ ¬ψ]

♦∃xφ ' ¬∀x¬φ
♦φ→ ψ ' ¬φ ∨ ψ

Let us now turn to some properties of conjunction. First of all, it can be
noticed that conjunction is associative:

[φ ∧ ψ] ∧ χ ' φ ∧ [ψ ∧ χ]
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Notice that associativity holds despite the increased binding power of the exis-
tential quantifier. This is so because if two conjuncts each contain an active oc-
currence of the same quantifier, it is the rightmost one which is active in the con-
junction as a whole, the left one being ‘de-activated’. Compare [∃xPx∧ψ]∧∃xQx
with ∃xPx∧ [ψ ∧ ∃xQx]. The last occurrence of ∃x is the active one. Hence, it
is this occurrence that binds the x in Hx, both in [[∃xPx ∧ ψ] ∧ ∃xQx] ∧Hx,
and in [∃xPx∧ [ψ ∧ ∃xQx]]∧Hx. The structure of the respective conjunctions
is irrelevant in this respect.

Conjunction is not unconditionally commutative, however, as the simple
example of ∃xPx ∧ Qx and Qx ∧ ∃xPx shows. In fact the latter of these two
formulas is a counterexample against idempotency of conjunction as well.

φ ∧ ψ 6' ψ ∧ φ

φ 6' ψ ∧ φ
Of course, if both φ and ψ are tests, commutativity holds, and if φ is a test
idempotency holds:

♦φ ∧ ♦ψ ' ♦ψ ∧ ♦φ
♦φ ' ♦φ ∧ ♦φ

That φ is a test is not a necessary condition for idempotency of conjunction to
hold. It is sufficient that active occurrences of a quantifier in φ are unable to
bind free variables in φ:

AQV (φ) ∩ FV (φ) = ∅ ⇒ φ ' φ ∧ φ

This condition isn’t a necessary one either, e.g. Px ∧ ∃xPx ' [Px ∧ ∃xPx] ∧
[Px ∧ ∃xPx].

Similarly, φ and ψ need not necessarily be both tests for commutativity of
conjunction to hold. An example of a conjunction which does not consist of
tests, but which nevertheless is commutative is ∃xPx∧Qy, which has the same
meaning as Qy ∧ ∃xPx. Commuting this conjunction does not interfere with
its binding pattern. In general, if commuting the conjuncts does not change in
the binding pairs, nor the active occurrences of quantifiers in the conjunction,
commutativity holds:

AQV (φ) ∩ FV (ψ) = ∅
AQV (ψ) ∩ FV (φ) = ∅
AQV (φ) ∩AQV (ψ) = ∅

⇒ φ ∧ ψ ' ψ ∧ φ

In this case, too, the conditions are sufficient but not necessary. A case in point
is the contradiction [Px ∧ ¬Px] ∧ ∃xQx.

As is to be expected, disjunction, being both internally and externally static,
is unconditionally idempotent, commutative and associative:

φ ' φ ∨ φ
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φ ∨ ψ ' ψ ∨ φ

φ ∨ [ψ ∨ χ] ' [φ ∨ ψ] ∨ χ

Idempotency and commutativity of disjunction reflect that there cannot be any
anaphoric relations across disjuncts. (But see sections 4.3 and 5.1 for some
discussion.)

As for the classical de Morgan laws, DPL validates the following:

♦[φ ∧ [ψ ∨ χ]] ' [φ ∧ ψ] ∨ [φ ∧ χ]

φ ∨ [♦ψ ∧ χ] ' [φ ∨ ψ] ∧ [φ ∨ χ]

The latter is a special instance of:

AQ(ψ) ∩ FV (χ) = ∅ ⇒ φ ∨ [ψ ∧ χ] ' [φ ∨ ψ] ∧ [φ ∨ χ]

Turning to implication, we may observe that the following form of contra-
position goes through unconditionally:

[¬φ→ ψ] ' [¬ψ → φ]

But for the general case we need, again, the condition that no binding pairs are
distorted:

[♦φ→ ψ] ' [¬ψ → ¬φ]

AQV (φ) ∩ FV (ψ) = ∅ ⇒ [φ→ ψ] ' [¬ψ → ¬φ]

The reason that we need a condition here, is that quantifiers in the antecedent
of an implication may bind variables in the consequent. Implications, as we
noted repeatedly, are internally dynamic. But no outside binding effects are
permitted, they are externally static, and this is reflected in the following two
equivalences:

[φ→ ψ] ' ♦[φ→ ψ]

[φ→ ψ] ' [φ→ ♦ψ]

The first equivalence is another way of saying that an implication is a test, the
second expresses that an implication turns its consequent into a test.

A last fact concerning implication that we want to note, is the following:

φ→ [ψ → χ] ' [φ ∧ ψ]→ χ

Finally, we notice some facts concerning the interplay of quantifiers and
connectives:

∃xφ ∧ ψ ' ∃x[φ ∧ ψ]

x /∈ (FV (φ) ∪AQV (φ))⇒ φ ∧ ∃xψ ' ∃x[φ ∧ ψ]

24



The first fact illustrates the dynamics of the existential quantifier: its binding
power extends indefinitely to the right. This is what makes DPL a suitable
instrument for the representation of antecendent-anaphor relations across sen-
tence boundaries. The second fact states under which condition the scope of an
existential quantifier may be extended to the left in a conjunction: under the
usual condition that the left conjunct has no free occurrences of x, and further
that the active occurrence of ∃x is not ‘de-activated’ by an occurrence of that
same quantifier in the first conjunct.

The following equivalence is important for the analysis of ‘donkey’- like cases
of anaphora:

∃xφ→ ψ ' ∀x[φ→ ψ]

Existential quantifiers in the antecedent of an implication may bind occurrences
of variables in the consequent, and they have ‘universal’ force.

One final observation:
∃xφ 6' ∃y[y/x]φ

Here, [y/x]φ denotes, as usual, the result of replacing all free occurrences of x in
φ by y. This non-equivalence illustrates the fact that bound variables in DPL
are ‘more meaningful’ expressions than in PL. Notice that ∃xφ and ∃y[y/x]φ
are s-equivalent if no occurrence of y that is free in ∃xφ is bound in ∃y[y/x]φ:

y /∈ FV (φ)⇒ ∃xφ 's ∃y[y/x]φ

The above observations mark some of the ways in which the dynamic se-
mantics of DPL differs from the ordinary, static interpretation of PL. A more
detailed comparison can be found in section 4.1.

3.5 Entailment

In standard logic, φ entails ψ iff whenever φ is true, ψ is true as well. Since we
have defined a notion of truth in DPL, we can also define an analogue of this
notion of entailment for DPL. We will refer to it as s-entailment , and write it
as ‘|=s’:

Definition 18 (s-entailment) φ |=s ψ iff ∀M∀g: if φ is true with respect to
g in M , then ψ is true with respect to g in M

In other words, φ s-entails ψ iff ∀M : \φ\M ⊆ \ψ\M . Obviously, s-equivalence
as it was defined above, is mutual s-entailment.

Unlike the notion of entailment in PL, in DPL the notion of s-entailment
does not coincide with that of meaning inclusion, which is denoted by ‘¹’:

Definition 19 (Meaning inclusion) φ ¹ ψ iff ∀M : [[φ]]M ⊆ [[ψ]]M

In DPL, meaning is a richer notion than in PL, where interpretation and satis-
faction coincide. Meaning inclusion implies s-entailment, but not the other way
around:
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Fact 10 φ ¹ ψ ⇒ φ |=s ψ

The notion of equivalence' defined in section 3.2 is nothing but mutual meaning
inclusion.

In an important sense, the notion of s-entailment is not a truly dynamic
notion of entailment. One way to illustrate this, is to point out the fact that
the notion of s-entailment does not correspond in the usual way to implication.
For example, although it holds that |=s ∃xPx → Px, we have ∃xPx 6|=s Px.
Whereas in an implication an existential quantifier in the antecedent can bind
variables in the consequent, the notion of s-entailment does not account for
similar binding relations between premiss and conclusion. However, in natural
language, such relations do occur. From A man came in wearing a hat, we may
conclude So, he wore a hat, where the pronoun in the conclusion is anaphorically
linked to the indefinite term in the premiss. As we have just seen, if we want
to account for this, the notion of s-entailment is not the one we are after. For
similar reasons, meaning inclusion is not what we are looking for either. It is
too strict: ∃xPx 6¹ Px. And it is also not strict enough. For ¹ is reflexive,
but, as is argued below, dynamic entailment is not: Px ∧ ∃xQx does not entail
Px ∧ ∃xQx.

Hence, we have to find another, an inherently dynamic notion of entailment.
Taking up our processing metaphor once more, which means looking at sentences
as a kind of programs, a reasonably intuitive notion is the following. We say that
φ entails ψ if every successful execution of φ guarantees a succesful execution
of ψ. Or, to put it slightly differently, φ entails ψ iff every assignment that is a
possible output of φ is a possible input for ψ. This is captured in the following
definition of dynamic entailment:

Definition 20 (Entailment)

φ |= ψ iff ∀M ∀g∀h: 〈g, h〉 ∈ [[φ]]M ⇒ ∃k: 〈h, k〉 ∈ [[ψ]]M

Using the notions of satisfaction set and production set, we can write this more
economically as:

φ |= ψ iff ∀M : /φ/M ⊆ \ψ\M
As requested, the notion of dynamic entailment corresponds in the usual

way to the interpretation of implication:

Fact 11 (Deduction theorem) φ |= ψ iff |= φ→ ψ

Entailment is related to s-entailment in the following way:

Fact 12 φ |=s ψ iff 3φ |= ψ

More generally, entailment and s-entailment coincide if no binding relations
exist between premiss and conclusion:

26



Fact 13 If AQV (φ) ∩ FV (ψ) = ∅, then: φ |=s ψ ⇔ φ |= ψ

We note further that mutual entailment of φ and ψ does not mean that φ
and ψ are equivalent. For example, ∃xPx and Px do entail each other, but they
are not equivalent. The same pair of formulas illustrates that entailment does
not imply meaning inclusion. And the reverse does not hold in general either.
For example, the meaning of Qx∧∃xPx includes the meaning of Qx∧∃xPx, but
the latter does not entail the former. Meaning inclusion does imply entailment
if there are no binding relations between premiss and conclusion:

Fact 14 If AQV (φ) ∩ FV (ψ) = ∅, then: φ ¹ ψ ⇒ φ |= ψ

In the proof of this fact, the two facts 8 and 9 stated in section 3.3 play a
central role. Suppose AQV (φ) ∩ FV (ψ) = ∅ and φ ¹ ψ. Let h ∈ /φ/M , that
is ∃g: 〈g, h〉 ∈ [[φ]]M . Since, if 〈g, h〉 ∈ [[φ]]M , then h[AQV (φ)]g (fact 9), and
AQV (φ) ∩ FV (ψ) = ∅, it holds for all x ∈ FV (ψ) that g(x) = h(x). Since
φ ¹ ψ, it also holds that 〈g, h〉 ∈ [[ψ]]M , and hence that g ∈ \ψ\M . From
g(x) = h(x) for all x ∈ FV (ψ), and g ∈ \ψ\M , we may conclude on the basis of
fact 8 that h ∈ \ψ\M as well.

Precisely because the notion of entailment is truly dynamic in the sense that
it allows active quantifiers in a premiss to bind variables in the conclusion, it
lacks some properties which more orthodox notions, such as s-entailment, do
have, notably the properties of reflexivity and transitivity.

We already encountered a typical counterexample to reflexivity of dynamic
entailment in the formula Px ∧ ∃xQx, which does not entail itself. The reason
is that in the occurrence of this formula as a conclusion, the variable x in the
first conjunct gets bound by the quantifier in the occurrence of the formula as
a premiss, whereas in the occurrence of the formula as a premiss it is free. The
following restricted fact about reflexivity, however, does hold as an immediate
consequence of fact 14 and the reflexivity of ¹:

Fact 15 (Reflexivity) If AQV (φ) ∩ FV (φ) = ∅, then φ |= φ

The condition on reflexivity given here is a sufficient, but not a necessary one.
For example, the formulas Px ∧ ∃xPx, and Px ∧ ∃xPx ∧ Qx, both do entail
themselves. Conditions similar to the one on reflexivity can be laid upon other
facts about entailment known from ordinary predicate logic, in order to accom-
modate them to DPL. An example is the following:

If AQV (ψ) ∩ FV (ψ) = ∅, then φ ∧ ψ |= ψ

We mention in passing that if one would use DPL for practical purposes, one
would certainly choose active quantifiers and free variables in such a way that
these troublesome cases are avoided.

Not only reflexivity, but transitivity, too, may fail when free occurrences of
variables in a conclusion, are bound by a premiss. If we arrive at a conclusion χ
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in several steps ψ1 . . . ψn from an initial premiss φ, we cannot simply omit these
intermediary steps, and conclude immediately from φ to χ. Roughly speak-
ing, we first have to make sure that there are no antecedent-anaphor relations
between one of the intermediate steps and the conclusion which are not due
to a similar relation between premiss and conclusion. For example, although
¬¬∃xPx |= ∃xPx, and ∃xPx |= Px, we notice that ¬¬∃xPx 6|= Px.

The cases which present problems for transitivity can be characterized as
follows. Suppose φ |= ψ and ψ |= χ. If we want to conclude from this that
φ |= χ, then problems may arise if x ∈ FV (χ) and x ∈ AQV (ψ). Consider
again ¬¬∃xPx, ∃xPx, and Px. Clearly, the first entails the second, and the
second entails the third, without the first entailing the third. On the other
hand, consider ∃xPx, ∃xPx, and Px, or ∃xPx∧Qx, ∃xPx, and Px. These are
two cases where nothing goes wrong. So, not all cases where χ contains a free
occurrence of x, and ψ contains an active ocurrence of ∃x are to be excluded.
Evidently, what also matters is what φ ‘says’ about x, in the dynamic sense
of what constraint it puts on whatever free occurrences of x that are still to
come. Roughly speaking, what φ says about variables which occur freely in χ
and which are bound by ψ, should be at least as strong as what ψ says about
them. So, what is needed is a stronger version of the notion of entailment that
covers the condition that the premiss puts at least as strong a condition on
certain variables as the conclusion does. This notion can be defined as follows,
where by ‘h =x1...xn g’ we mean ‘h(x1) = g(x1) & . . . & h(xn) = g(xn)’:

Definition 21 (x1 . . . xn-Entailment)

φ |=x1...xn ψ iff ∀M ∀g: g ∈ /φ/M ⇒ ∃h: 〈g, h〉 ∈ [[ψ]]M & h =x1...xn g

Notice that φ |=x1...xn ψ implies that φ |= ψ, and that if n = 0, then φ |=x1...xn ψ
collapses into φ |= ψ.

Now we are ready to state the following fact:

Fact 16 (Transitivity) φ |=AQV (ψ)∩FV (χ) ψ & ψ |= χ⇒ φ |= χ

The proof of this fact runs as follows. Suppose g ∈ /φ/M . Then ∃h: 〈g, h〉 ∈
[[ψ]]M , and for all x ∈ AQV (χ) ∩ FV (ψ), it holds that g(x) = h(x). Since
ψ |= χ, it holds that h ∈ \χ\M . For any variable x ∈ FV (χ), if x ∈ AQV (ψ)
then g(x) = h(x) by assumption; but if x 6∈ AQV (ψ), then also g(x) = h(x),
since 〈g, h〉 ∈ [[ψ]]M (use fact 9). Hence, we have g(x) = h(x) for all variables
x ∈ FV (χ), and hence g ∈ \χ\M (fact 8).

The above shows that there are some complications inherent in the notion
of dynamic entailment. These do pay off, however. We can translate ‘natural
language’ reasonings in which pronouns are introduced in intermediary steps,
directly into DPL. Consider the following, admittedly stylized, example and its
translation into DPL:

1. It is not the case that nobody walks and talks. (¬¬∃x[Px ∧Qx])
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2. So, somebody walks and talks. (∃x[Px ∧Qx])

3. So, he walks. (Px)

4. So, somebody walks. (∃xPx)

5. So, it is not the case that nobody walks. (¬¬∃xPx)

The interesting bit is the step from 2 to 3. The pronoun he occurring in 3 is
bound by somebody in 2. So, although 1 implies 2, and 2 implies 3, 1 does not
imply 3, precisely because 1 cannot, and should not, bind the pronoun in 3. But
in the transition from 2 via 3 to 4, 3 can be omitted. And the same holds for
all other intermediate steps. So, in the end, 5 is a consequence of 1.

Up to now, we have only discussed entailment with respect to a single pre-
miss. It makes sense to generalize the definition of entailment given above in
the following way:

Definition 22 (Entailment, general form)

φ1, . . . , φn |= ψ iff ∀M∀h∀g1 . . . gn: 〈g1, g2〉 ∈ [[φ1]]M & . . .

& 〈gn, h〉 ∈ [[φn]]M ⇒ ∃k: 〈h, k〉 ∈ [[ψ]]M

Notice that it is not a set, but a sequence of formulas, a discourse, that can
be said to entail a formula. In view of the above, this is not surprising. What
holds, of course, is:

φ1, . . . , φn |= ψ iff φ1 ∧ . . . ∧ φn |= ψ iff |= [φ1 ∧ . . . ∧ φn]→ ψ

Since the order of the conjuncts matters for the interpretation of a conjunction,
so will the order of the premisses matter for entailment. For example, although
∃xPx,∃xQx |= Qx, we have ∃xQx,∃xPx 6|= Qx. Further, we note that in a
certain sense dynamic entailment is not monotonic. Whereas it holds uncondi-
tionally that if φ |= ψ, then χ, φ |= ψ, we may not always conclude from φ |= ψ
that φ, χ |= ψ. The reason for this being, again, that χ may interfere with
bindings between φ and ψ, For example, it does hold that ∃xPx |= Px, but we
have ∃xPx,∃xQx 6|= Px.

Again, for practical purposes these complications can be evaded by a suitable
choice of active quantifiers and free variables. For example, in adding a premiss
which contains an active quantifier, we better choose one which does not already
occur actively in one of the other premisses.

Such practical considerations are particularly important in designing a proof
system. In cooperation with Roel de Vrijer, a sound and complete system of
natural deduction for DPL has been developed. It will be presented in a separate
paper.
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4 Comparisons

In section 4.1, we compare DPL with ordinary predicate logic. In section 4.2,
the relation between DPL and DRT is discussed. And in section 4.3, we turn
to a comparison of DPL with quantificational dynamic logic.

4.1 DPL and PL

In discussing some basic logical facts concerning DPL, we have noticed a number
of differences between DPL and PL, all arising from the essentially richer notion
of binding of the former. In this section we show that this is indeed exactly the
point at which the two systems differ. First we show that for any formula
φ there is a formula φ′ which is DPL-equivalent to φ, in which all variables
bound by a quantifier are brought under its scope, i.e., for which it holds that
bp(φ′) = sp(φ′). Then we show that for any formula φ such that bp(φ) = sp(φ),
the truth conditions of φ in DPL and in PL coincide. If we put these two
facts together, it follows that for any formula φ there is a formula φ′ which is
equivalent to it, and for which it holds that its truth conditions in DPL and PL
are the same.

We already noticed above that the satisfaction set of a DPL-formula, the
set of assigments with respect to which it is true, is the same type of semantic
object as the PL-interpretation of a formula. Because PL and DPL have the
same syntax, we may speak of the PL- and the DPL-interpretation of one and
the same formula.

We first define the semantics of PL in the same kind of format we used
for the semantics of DPL. PL-models are the same as DPL-models, as are as-
signments and the interpretation of terms. The definition of the interpretation
function [[ ]]PLM ⊆ G is as follows. (We drop subscripts whenever this does not
lead to confusion, and we continue to use ‘[[ ]]’ without a superscript to denote
interpretation in DPL.)

Definition 23 (PL-semantics)

1. [[Rt1 . . . tn]]PL = {g | 〈[[t1]]g . . . [[tn]]g〉 ∈ F (R)}

2. [[t1 = t2]]PL = {g | [[t1]]g = [[t2]]g}

3. [[¬φ]]PL = {g | g /∈ [[φ]]PL}

4. [[φ ∨ ψ]]PL = {g | g ∈ [[φ]]PL ∨ g ∈ [[ψ]]PL}

5. [[φ→ ψ]]PL = {g | g ∈ [[φ]]PL ⇒ g ∈ [[ψ]]PL}

6. [[φ ∧ ψ]]PL = {g | g ∈ [[φ]]PL & g ∈ [[ψ]]PL}

7. [[∃xφ]]PL = {g | ∃k: k[x]g & k ∈ [[φ]]PL}

30



8. [[∀xφ]]PL = {g | ∀k: k[x]g ⇒ k ∈ [[φ]]PL}

The set of assignments which is the interpretation of a formula, consists of those
assignments which satisfy the formula: we call φ true with respect to g in M iff
g ∈ [[φ]]PLM .

The satisfaction set \φ\ of a formula in DPL, and its interpretation [[φ]]PL in
PL are both sets of assignments. But the satisfaction set of a formula need not be
the same as its PL-interpretation. For example, the satisfaction set of ∃xPx∧Qx
is not identical to its PL-interpretation. However, for the formula ∃x[Px∧Qx],
which is equivalent to ∃xPx ∧ Qx in DPL, it does hold that its satisfaction
set and its PL-interpretation are the same. The difference between the two
is that in the latter all occurrences of x which are bound by the existential
quantifier are also brought in its scope. Similarly, the satisfaction set and the
PL-interpretation of ∃xPx → Qx are different, whereas the satisfaction set
and the PL-interpretation of ∀x[Px → Qx], which is equivalent in DPL to
∃xPx→ Qx, are the same. Again, the difference between the two is that in the
latter case all bound variables are brought under the scope of a quantifier.

In fact, for every formula φ there is a formula φ′ which is equivalent to φ
in DPL such that in φ′ all variables which are bound by a quantifier, occur in
its scope. We define a recipe [ which provides us with such a variant for every
formula. We will call [φ the normal binding form of φ:

Definition 24 (DPL normal binding form)

1. [Rt1 . . . tn = Rt1 . . . tn

2. [(t1 = tn) = (t1 = tn)

3. [¬ψ = ¬[ψ

4. [[ψ1 ∨ ψ2] = [[ψ1 ∨ [ψ2]

5. [∃xψ = ∃x[ψ

6. [∀xψ = ∀x[ψ

7. [[ψ1 ∧ ψ2] =

(a) [[χ1 ∧ [χ2 ∧ ψ2]] if ψ1 = [χ1 ∧ χ2]

(b) [∃x[[χ ∧ ψ2]] if ψ1 = ∃xχ
(c) [[ψ1 ∧ [ψ2] otherwise

8. [[ψ1 → ψ2] =

(a) [[χ1 → [χ2 → ψ2]] if ψ1 = [χ1 ∧ χ2]

(b) [∀x[[χ→ ψ2]] if ψ1 = ∃xχ
(c) [[ψ1 → [ψ2] otherwise
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The interesting bit in this definition are clauses 7 and 8. Clause 7(a) rebrackets
complex conjunctions in such a way that all closing brackets are moved to the
right end side. For example, [[Px ∧Qx] ∧ Rx] is turned into [Px ∧ [Qx ∧ Rx]],
and [[[Px∧Qx]∧Rx]∧Sx] is first turned into [[Px∧Qx]∧ [Rx∧Sx]], and then
into [Px∧ [Qx∧ [Rx∧Sx]]]. Clause 7(b) moves existential quantifiers which are
inside the first conjunct of a conjunction, outside that conjunction. For example,
[[[∃xPx ∧ ∃yQy] ∧ Rxy] = [[∃xPx ∧ [∃yQy ∧ Rxy]] = ∃x[[Px ∧ [∃yQy ∧ Rxy]]
= ∃x[[Px ∧ [[∃yQy ∧ Rxy]] = ∃x[Px ∧ ∃y[Qy ∧ Rxy]]. The workings of 7(a)
and 7(b) make sure that after repeated application, one will always end up
with a conjunction of which the first conjunct is neither a conjunction, nor an
existentially quantified formula, i.e., it will be a condition. That is when clause
7(c) applies. Clause 8 defines an analogous procedure for implications. Notice
that all clauses leave the length of the formula unchanged. A proof that the
recipe will always terminate can easily be given.

Now, we prove the following fact:

Fact 17 For all formulas φ:φ ' [φ

The proof is by induction on the length of φ. For the cases which concern the
clauses 1-6, 7(c) and 8(c), the proof is trivial. For the clauses 7(a) and (b), and
8(a) and (b), it suffices to point out the following four DPL-equivalences:

[φ ∧ ψ] ∧ χ ' φ ∧ [ψ ∧ χ]
∃xφ ∧ ψ ' ∃x[φ ∧ ψ]

[φ ∧ ψ]→ χ ' φ→ [ψ → χ]
∃xφ→ ψ ' ∀x[φ→ ψ]

Next, we show that when a formula is brought in normal binding form, all
variables bound by a quantifier are in its scope:

Fact 18 bp([φ) = sp([φ)

The proof is by induction on the length of φ.
Clauses 1–6 are simple. For 7(a) we only need to remark that bp([χ1∧χ2]∧

ψ2) = bp(χ1∧ [χ2∧ψ2]), as can be seen from definition 13. Similar observations
can be made for 7(b), 8(a) and 8(b).

The crucial clauses are 7(c) and 8(c). Consider case 7(c); i.e. φ = ψ1∧ψ2 and
[φ = [ψ1 ∧ [ψ2. We have bp([ψ1 ∧ [ψ2) = bp([ψ1) ∪ bp([ψ2) ∪ {〈∃x, x〉 | ∃x ∈
aq([ψ1) & x ∈ fv([ψ2)}. Since in this case [ψ1 can not be a conjunction or an
existentially quantified formula, it holds that aq([ψ1) = ∅. This means that in
this case bp([ψ1∧ [ψ2) = bp([ψ1)∪bp([ψ2). By induction, bp([ψ1) = sp([ψ1)
and bp([ψ2) = sp([ψ2). Hence, bp([ψ1 ∧ [ψ2) = sp([ψ1) ∪ sp([ψ2). And
according to the definition of sp, the latter is the same as sp([ψ1 ∧ [ψ2). For
8(c) a similar reasoning can be given.
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Now we show that for any formula in which all variables which are bound by
a quantifier are inside its scope, it holds that its satisfaction set and its PL-
interpretation coincide:

Fact 19 If bp(φ) = sp(φ), then ∀M : \φ\M = [[φ]]PLM

The proof proceeds by induction on the length of φ.
Obviously, it holds for atomic formulas. And for all but the internally dy-

namic connectives → and ∧, the result follows by a straightforward induction.
For example: let φ = ∃xψ, and suppose bp(∃xψ) = sp(∃xψ). This is the case
iff bp(ψ) = sp(ψ). Now,

\∃xψ\ = {g | ∃k: k[x]g & ∃h: 〈k, h〉 ∈ [[ψ]]} = {g | ∃k: k[x]g & k ∈ \ψ\}

By induction the latter is the same as:

{g | ∃k: k[x]g & k ∈ [[ψ]]PL}

which in turn equals:
[[∃xψ]]PL

The case of → is slightly more complex. Let φ = ψ → χ. Suppose bp(ψ →
χ) = sp(ψ → χ). In other words, bp(ψ) = sp(ψ), bp(χ) = sp(χ), and if
∃x ∈ aq(ψ), then x /∈ fv(χ). We also know that:

\ψ → χ\ = {g | ∀h: 〈g, h〉 ∈ [[ψ]]→ h ∈ \χ\}

It follows by facts 8 and 9 from section 3.3 that this is equal to:

{g | ∀h: 〈g, h〉 ∈ [[ψ]]→ g ∈ \χ\}

For, by fact 9, g and h differ only in variables which have a corresponding
active occurrence in ψ. By our assumption that bp(ψ → χ) = sp(ψ → χ),
these variables do not occur freely in χ, whence it follows by fact 8 that if
h ∈ \χ\, then g ∈ \χ\.

The above, in its turn, is equal to:

{g | g ∈ \ψ\ → g ∈ \χ\}

Applying induction, we see that this is the same as:

{g | g ∈ [[ψ]]PL ⇒ g ∈ [[χ]]PL}

which equals:
[[ψ → χ]]PL

We end the proof by noting that for the remaining case of φ = ψ ∧χ, the proof
proceeds in a similar fashion.

From facts 18 and 19 it now follows that:
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Fact 20 ∀M : \[φ\ = [[[φ]]PL

And putting the latter fact together with fact 17 we get:

Fact 21 For any formula φ there is a formula φ′ such that ∀M : [[φ]]M = [[φ′]]M ,
and \φ′\M = [[φ′]]PLM

Moreover, we also have that:

Fact 22 For any formula φ there is a formula φ′ such that ∀M : [[φ]]PLM = [[φ′]]PLM ,
and [[φ′]]PLM = \φ′\M
It is easy to see that this holds. In PL any formula φ is equivalent to a formula
]φ in which all occurrrences of ∧, → and ∃x are eliminated in favour of ∨, ¬
and ∀. Clearly, bp(]φ) = sp(]φ). Hence, by fact 19, \]φ\M = [[]φ]]PLM , for all
M .

Finally, we note the following:

Fact 23 If bp(φ) = sp(φ), then |=PL φ iff |=DPL φ

This follows directly from fact 19.
Summing up:

Fact 24 For any formula φ:

1. there is a formula φ′ such that |=DPL φ iff |=DPL φ
′ iff |=PL φ

′

2. there is a formula φ′′ such that |=PL φ iff |=PL φ
′′ iff |=DPL φ

′′

4.2 DPL and DRT

In this section we compare the language of DPL with what corresponds to it
in Kamp’s DRT, viz., the language in which the discourse representation struc-
tures (DRS’s) are formulated. DPL is intended to be ‘empiricallly equivalent’ to
DRT: it was designed to deal with roughly the same range of natural language
facts. The difference between the two approaches is primarily of a methodolog-
ical nature and compositionality is the watershed between the two. Therefore,
besides giving a formal comparison of the logical languages of the two systems
in the present section, we shall also discuss the matter of compositionality in
somewhat more detail in section 5.2.

The DRS-language and the language of DPL differ in several respects. First
of all, in the DRS -language, a syntactic distinction is made between condi-
tions and DRS’s. It is by means of the latter, that natural language sentences
and discourses are represented; conditions are elements out of which DRS’s are
constructed. In other words, conditions occur as subexpressions of DRS’s. Cor-
responding to this syntactic distinction, there is a semantic one. Conditions are
interpreted in terms of their truth conditions, DRS’s are interpreted in terms
of their verifying embeddings.
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A second difference between the DRS -language and the language of DPL is
that the former contains negation, implication and disjunction, but not conjunc-
tion and no quantifiers. The basis of the DRS -language is formed by a set of
atomic conditions. Further, there is a single, non-iterative rule which has DRS’s
as output: DRS’s are formed by prefixing a number of variables to a number of
conditions. This rule is to compensate DRT’s lack of conjunction and quanti-
fiers. The prefixed variables function as DRT’s quantification mechanism, and
the conditions to which they are prefixed can be viewed as the conjunction of
those conditions. These conditions can be either atomic or complex. Complex
conditions are in turn built from DRS’s by means of the connectives. Negation
turns a DRS into a condition, implication and disjunction take two DRS’s and
deliver a condition.

Choosing a format that resembles as closely as possible that of DPL, the
syntax and semantics of DRT can be defined as follows. The non-logical vo-
cabulary of consists of: n-place predicates, individual constants, and variables.
Logical constants are negation ¬, disjunction ∨, implication→, and identity =.
The syntactic rules are as follows:

Definition 25 (DRT -syntax)

1. If t1 . . . tnare individual constants or variables, R is an n-place predicate,
then Rt1 . . . tn is a condition

2. If t1 and t2 are individual constants or variables, then t1 = t2 is a condition

3. If φ is a DRS, then ¬φ is a condition

4. If φ and ψ are DRS’s, then [φ ∨ ψ] is a condition

5. If φ and ψ are DRS’s, then [φ→ ψ] is a condition

6. If φ1 . . . φn (n ≥ 0) are conditions, and x1 . . . xk are variables (k ≥ 0),
then [x1 . . . xk][φ1 . . . φn] is a DRS

7. Nothing is a condition or a DRS except on the basis of 1–6

Models for the DRS -language are the same as those for DPL, as are as-
signments and the interpretation of terms. Parallel to the syntactic distinction
between conditions and DRS’s, the semantics defines two notions of interpre-
tation. First of all, we define an interpretation function [[ ]]DRSM ⊆ G × G, for
DRS’s. Here, ‘〈g, h〉 ∈ [[φ]]DRS ’ corresponds to the DRT -notion ‘h is a verifying
embedding of φ with respect to g’. Since DRS’s are built up from conditions, we
also need to define a notion of interpretation of conditions: [[ ]]CondM ⊆ G, where
‘g ∈ [[φ]]Cond’ corresponds to the DRT -notion ‘φ is true with respect to g’. So,
DRS’s receive the same type of interpretation as DPL-formulas. In one respect
our definition of these notions differs from the one given in DRT : we prefer
assignments to be total functions rather than partial ones. This is no matter of
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principle. Just as is usually done in DRT, we could rephrase the semantics of
DPL in terms of partial assignments.

The simultaneous recursive definition of the notions [[ ]]CondM and [[ ]]DRSM

runs as follows (where we drop subscripts again, whenever this does not lead to
confusion):

Definition 26 (DRT -semantics)

1. [[Rt1 . . . tn]]Cond = {g | 〈[[t1]]g . . . [[tn]]g〉 ∈ F (R)}

2. [[t1 = t2]]Cond = {g | [[t1]]g = [[t2]]g}

3. [[¬φ]]Cond = {g | ¬∃h: 〈g, h〉 ∈ [[φ]]DRS}

4. [[φ ∨ ψ]]Cond = {g | ∃h: 〈g, h〉 ∈ [[φ]]DRS ∨ 〈g, h〉 ∈ [[ψ]]DRS}

5. [[φ→ ψ]]Cond = {g | ∀h: 〈g, h〉 ∈ [[φ]]DRS ⇒ ∃k: 〈h, k〉 ∈ [[ψ]]DRS}

6. [[[x1 . . . xk][φ1 . . . φn]]]DRS =
{〈g, h〉 | h[x1 . . . xk]g & h ∈ [[φ1]]Cond & . . . & h ∈ [[φn]]Cond}

In order to make clear in what sense the set of variables introduced in clause
6 functions as DRT’s quantification mechanism, we first define the notion of a
DRS being true with respect to an assignment in a model:

Definition 27 (Truth in DRT) A DRS φ is true with respect to g in M iff
∃h: 〈g, h〉 ∈ [[φ]]DRSM

So, the notion of truth for DRS’s is the same as the notion of truth in DPL. And
from definition 27 we see that the variable set in a DRS behaves like existential
quantification over these variables. A simple DRS like [x][Px,Qx] has the same
truth conditions as the formula ∃x[Px ∧ Qx] in PL and DPL. Moreover, the
interpretations of this DRS and of the DPL-formula are also the same. To give
another example, the DRS [x, y][Px,Qx,Rxy] has the same meaning as the
DPL-formula ∃x∃y[Px ∧Qy ∧Rxy].

Notice that DRS’s can also be built from conditions by means of empty DRS-
quantification. For example, [ ][Px] is a DRS, and its interpretation according
to definition 26, is {〈g, h〉 | h[ ]g & h(x) ∈ F (P )}. Now, h[ ]g means the same
as h = g, so the ‘atomic DRS ’ [ ][Px] and the atomic DPL-formula Px have
the same interpretation. In fact, this procedure can be applied to turn any
DRT -condition into a DRS, giving it structurally the same interpretation as the
corresponding DPL-conditions.

The interpretation of a DRS, being the same kind of object as the interpreta-
tion of formulas in DPL, is of a dynamic nature. The dynamics of DRS’s is put
to use in the interpretation of implications (and nowhere else, by the way). For
example, the DRT-condition [x][Px]→ [ ][Qx] has the same truth conditions as
the DPL-formula ∃xPx → Qx. This, of course, is the key to DRT’s successful
treatment of donkey-sentences.
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Having made these observations, we now turn to the definition of a transla-
tion from the DRS -language into that of DPL. We translate both DRS’s and
DRT-conditions into DPL-formulas. Blurring the syntactic and semantic dis-
tinction between DRS’s and conditions in this way is justified, since DRT-
conditions will translate into DPL-conditions, and the latter are tests, i.e., their
meaning and truth conditions in DPL are one-to-one related. The translation
†φ of a DRS or a condition φ is defined as follows:

Definition 28 (DRT -to-DPL translation)

1. †Rt1 . . . tn = Rt1 . . . tn

2. †(t1 = tn) = (t1 = tn)

3. †¬ψ = ¬ † ψ

4. †[ψ1 ∨ ψ2] = [†ψ1 ∨ †ψ2]

5. †[ψ1 → ψ2] = [†ψ1 → †ψ2]

6. †[x1 . . . xk][ψ1 . . . ψn] = ∃x1 . . . ∃xn[†ψ1 ∧ . . . ∧ †ψn]

We prove that our translation is meaning-preserving in the following sense:
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Fact 25

1. If φ is a condition, then ∀M : [[φ]]CondM = \ † φ\M
2. If φ is a DRS , then ∀M : [[φ]]DRSM = [[†φ]]M

This fact is proven by induction on the complexity of φ. For the clauses 1–5 of
definition 25, which build DRT-conditions, the proof is trivial. So, what remains
to be shown is that:

[[[x1 . . . xk][ψ1 . . . ψn]]]DRS = [[∃x1 . . .∃xn[†ψ1 ∧ . . . ∧ †ψn]]]

By definition it holds that:

[[[x1 . . . xk][ψ1 . . . ψn]]]DRS =
{〈g, h〉 | h[x1 . . . xk]g & h ∈ [[ψ1]]Cond & . . . & h ∈ [[ψn]]Cond}

By induction: [[ψi]]Cond = \ † ψi\, for 1 ≤ i ≤ n. So, we may continue our
equation as follows:

= {〈g, h〉 | h[x1 . . . xk]g & h ∈ \ † ψ1\ & . . . & h ∈ \ † ψn\}

Next, we note two auxiliary facts:

Fact 26 If φ and ψ are DRT-conditions, then †φ∧ †ψ is a condition in DPL as
well

From definition 28 it is easy to see that if φ and ψ are DRT-conditions, then
†φ and †ψ are conditions in DPL as well. By definition 12 it then follows that
†φ ∧ †ψ is also a DPL-condition.

Fact 27 If φ and ψ are DPL-conditions, then \φ ∧ ψ\ = \φ\ ∩ \ψ\

This can be proven by a simple calculation.
Now we return to our proof of fact 25. On the basis of our auxiliary facts,

we arrive at the following continuation of our equation:

= {〈g, h〉 | h[x1 . . . xk]g & h ∈ \ † ψ1 ∧ . . . ∧ †ψn\}

Since †ψ1 ∧ . . . ∧ †ψn is a DPL-condition, it holds that h ∈ \ † ψ1 ∧ . . . ∧ †ψn\
iff 〈h, h〉 ∈ [[†ψ1 ∧ . . . ∧ †ψn]]. This implies that we can continue as follows:

= {〈g, h〉 | ∃kk[x1 . . . xk]g & 〈k, h〉 ∈ [[†ψ1 ∧ . . . ∧ †ψn]]}
= [[∃x1 . . . ∃xk[†ψ1 ∧ . . . ∧ †ψn]]]

By which the proof of fact 25 is completed.

Before turning to the less urgent, but more difficult problem of translating DPL-
formulas into DRS’s, we return, by way of a short intermezzo, to two of the
examples discussed in section 2.1, and compare, once again, the corresponding
DPL-formulas and DRS’s. By †DRT we mean the translation of the DRT -
representation in DPL.
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(1) A man walks in the park. He whistles.

(1a) ∃x[man(x) ∧ walk in the park(x) ∧ whistle(x)] PL/†DRT

(1b) ∃x[man(x) ∧ walk in the park(x)] ∧ whistle(x) DPL

(1c) [x][man(x), walk in the park(x), whistle(x)] DRT

(3) Every farmer who owns a donkey beats it

(3a) ∀x∀y[[farmer(x) ∧ donkey(y) ∧ own(x, y)]→ beat(x, y)] PL

(3b) ∀x[[farmer(x) ∧ ∃y[donkey(y) ∧ own(x, y)]]→ beat(x, y)] DPL

(3c) [ ][[x, y][farmer(x), donkey(y), own(x, y)]→ [ ][beat(x, y)]] DRT

(3d) ∃x∃y[farmer(x) ∧ donkey(y) ∧ own(x, y)]→ beat(x, y) †DRT

Consider the first example. If our diagnosis of the problem that such a sequence
poses, viz., that the real problem is to provide a compositional translation of
such sequences of sentences into a logical representation language, is correct,
then the DRT -representation has as little to offer as the PL-translation. The
two component sentences cannot be retrieved from (1c), neither can they be
isolated from (1a) as subformulas. The DPL-representation differs precisely at
this point.

As for the second example, it is not possible to retrieve the component parts
of the sentence from either the PL- or the DRT -representation, nor from the
†DRT -translation. But in the DPL-formula, we do find an open formula which
corresponds to the complex noun farmer who owns a donkey, viz., farmer(x)∧
∃y[donkey(y) ∧ own(x, y)]. But no such sub-expression is to be found in the
DRT -representation or in the corresponding †DRT -formula.

In fact, each of the two examples can be used to make a point in favour
of DPL. The preferable DPL-translation of the first example is available pre-
cisely because DPL has dynamic conjunction, whereas such a concept is lacking
in DRT. As for the second example, here DPL fares better because, unlike
DRT -quantification, DPL-quantification is iterative. It are precisely these two
concepts of DPL which enable us to give a compositional treatment of the cases
at hand. In fact, if both conjunction of DRS’s and iterative quantification were
added to DRT, it would simply collapse into DPL.

This is a rather surprising result, since one of the trademarks of theories
such as those of Kamp and Heim is the non-quantificational analysis of indefinite
terms, whereas it is characteristic of DPL that it does allow us to treat such
terms as existentially quantified expressions.

A host of arguments have been presented against a quantificational analysis
of indefinites, see in particular in Heim [1982]. However, these arguments now
appear to be directed, not against a quantificational analysis as such, but only

39



against the traditional quantificational analysis, which is static. The dynamic
DPL-approach is not affected by these.

We do not discuss the various arguments here, with one exception. This
argument concerns what Heim calls the ‘chameleontic’ nature of the quantifi-
cational force of indefinites. What follows is in essence, but not in all details,
taken from Heim [1982].

Consider the following variants of our example (2):

(9) If a farmer owns a donkey, he always/usually/sometimes/never beats it

These variants of the donkey-example (2) have readings which can be para-
phrased as in (10):

(10) In all/most/some/no cases in which a farmer owns a donkey, he beats it

Examples such as those in (9) are taken to support the view that what appears
to be the quantificational force of an indefinite term, is in fact either due to
a different expression, a so-called ‘adverb of quantification’, as in (9), or is
implicit in the construction, as for example in the original donkey-sentence (2).
Following Lewis [1975], it is assumed that the sentences in (9) are to be analyzed
along the following lines. The main operator is the adverb of quantification,
which takes two arguments, the antecedent and the consequent. The indefinite
terms are treated as free variables, which are unselectively bound by the main
operator, which determines the quantificational force. The antecedent serves as
a restriction on the unselective quantification. For the original donkey-sentence,
which lacks an overt adverb of quantification, it is assumed that the construction
itself acts as a universal adverb of quantification.

At first sight, this argument seems not to be restricted to the traditional,
static quantificational analysis, but seems to apply to any quantificational ap-
proach which associates a specific quantificational force with indefinite terms.
However, in view of our observations concerning the relationship between DPL
and DRT, this can not really be correct. In fact, it is not difficult to incorporate
the ‘adverbs-of-quantification’ analysis of sentences such as (9) in DPL, thus
showing its compatibility with a quantificational treatment of indefinites.

Recall that in the interpretation clause of implication, there is universal
quantification over the output assignments of the antecedent:

[[φ→ ψ]] = {〈g, h〉 | h = g & for all k: 〈h, k〉 ∈ [[φ]], ∃j: 〈k, j〉 ∈ [[ψ]]}

What we can do is simply generalize this to other quantificational forces, and
index the implication accordingly:

[[φ→Q ψ]] = {〈g, h〉 | h = g & for Qk: 〈h, k〉 ∈ [[φ]], ∃j: 〈k, j〉 ∈ [[ψ]]}

This has the required effects. Consider the following example:

(11) If a farmer owns a donkey, he never beats it
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If we translate this using →no, the result is:

∃x[farmer(x) ∧ ∃y[donkey(y) ∧ own(x, y)]]→no beat(x, y)

This denotes the following set of pairs of assignments:

{〈g, g〉 | ¬∃h:h[x, y]g & h(x) ∈ F (farmer) & h(y) ∈ F (donkey) &
〈h(x), h(y)〉 ∈ F (own) & 〈h(x), h(y)〉 ∈ F (beat)}

Notice that this analysis works precisely because indefinite terms are analyzed
as dynamically existentially quantified expressions. For this has the effect that
the quantification in the general scheme is restricted to the variables which
correspond to indefinite terms.

We do not intend this as a final analysis of adverbs of quantification, since,
for one thing, such an analysis has to be higher-order and intensional, and DPL
is only first-order and extensional. But we do take the above to show that
an ‘adverbs-of-quantification’ analysis is perfectly compatible with a quantifica-
tional analysis of indefinite terms, provided this is a dynamic one.

After this intermezzo, we return to the formal comparison of DPL and DRT.
As we already remarked above, the formulation of a translation from the DPL-
language to the DRS -language, is more difficult than the other way around.
In fact, no strict interpretation-preserving translation is possible, though one
which preserves truth conditions is. We point out the main features of such a
translation, written as ‘§’, without, however, going into details.

Notice that the fact that DRT distinguishes between conditions and DRS’s ,
presents no problem. Defining a translation from DPL-formulas into DRS’s is
sufficient, for as we saw above, any DRT -condition can easily be turned into a
DRS by means of empty DRT -quantification.

Now, there are three complications. The first concerns universal quantifica-
tion, which is lacking in DRT. We can either use the definition of ∀xφ in terms
of ¬∃x¬φ, or turn §∀xφ directly into the condition [x][ ]→ §φ.

The remaining two complications, not surprisingly, stem from the two es-
sential differences between DRT and DPL which we noticed above. Because
DRT lacks a notion of DRS-conjunction, we cannot compositionally translate a
DPL-conjunction. Something like §[φ∧ψ] = [ ][§φ, §ψ] would work only if both
conjuncts are DPL-conditions, which, of course, they need not be.

Similarly, no compositional translation of existentially quantified formulas
is possible either. Again, §∃xφ = [x]§φ works only if φ is a DPL-condition.
Suppose that φ in its turn is ∃yRxy. Then the resulting translation would be
[x][y]Rxy. But this is not a well-formed DRS , since [y]Rxy is not a DRT -
condition.

To get things to work, we first need to define a special format for DPL-
formulas which enables us to translate them in a non-compositional, global
manner into DRS’s. In order to arrive at the required format, any DPL-formula
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φ should be turned into a formula φ′, such that any subformula of φ′ is of the
form ∃x1 . . . ∃xnψ(n ≥ 0), where ψ is a DPL-condition.

It is possible to give an algorithm that has the required effect, but it is not
strictly meaning-preserving. The following two examples may serve to illustrate
this. Consider the formula Px ∧ ∃xQx. In order to give it the right format,
the existential quantifier in the second conjunct has to be moved outside of the
conjunction. But this can’t be done, since there is a free occurrence of x in
the first conjunct. So, we have to resort to an alphabetic variant: ∃y[Px ∧
Qy]. As a second example, consider ∃xPx ∧ ∃xQx. In this case, too, both
quantifiers have to be moved outside the conjunction, and then again, we need
an alphabetic variant: ∃x∃y[Px ∧ Qy]. The use of alphabetic variants implies
that the algorithm is not meaning preserving, for in DPL such variants have
different meanings: ∃xφ 6' ∃y[y/x]φ.

These features of DPL-to-DRT -translation illustrate once more, we think,
what exactly makes DPL a more suitable instrument for semantic analysis.
Its dynamic notion of conjunction, and its dynamic and iterative concept of
existential quantification allow us to deal with various phenomena in a simple,
intuitive and compositional manner.

4.3 DPL and quantificational dynamic logic

Although there are important resemblances between DPL and certain systems of
dynamic logic as they are discussed in Harel [1984], there are also major differ-
ences. To begin with, there is an important difference in perspective and over-all
aims. Dynamic logic is meant to be used in the formalization of reasoning about
computer programs, about the effects of their execution, their soundness and
correctness, and so on. Typically, the formulas of a system of dynamic logic
are interpreted as assertions about programs. And the semantic interpretation
of these formulas is an ordinary static interpretation. However, in order to be
able to talk about programs in a logical language, one also needs expressions
that refer to these programs. And that is where dynamic interpretation comes
in. The expressions which are the logical stand-in’s for programs, do receive a
dynamic interpretation. However, they only appear as sub-expressions in the
formulas that make up the logical system, they are not themselves formulas of
the logic.

We note in passing, that in this respect we find precisely the opposite situa-
tion in DRT. There as well, we have a distinction between statically interpreted
expressions, DRT’s conditions, and dynamically interpreted ones, the DRS’s.
But in DRT it are the dynamic expressions that play first fiddle, and the static
conditions only occur as subexpressions in these.

In DPL, it are the formulas themselves that receive a dynamic interpretation,
the kind of interpretation that programs receive in ordinary dynamic logic. DPL
is a system in which certain kinds of ‘programs’ can be expressed, but we cannot
formulate assertions about these programs in DPL itself. Since it is a logical
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language which is designed to represent meanings of natural language sentences,
one could say that it embodies the view that the meaning of a sentence is a
program, an instruction to the interpreter. So, one could view DPL as a kind
of ‘programming language’, rather than as a language to reason about such
programs. Of course, one can reason about it in a metalanguage. And, in fact,
one could use ordinary dynamic logic as a means to formalize reasoning about
DPL.

Of course, this difference in what the systems are meant to be able to do, is
reflected in various aspects of their organization. We illustrate this by presenting
the syntax and semantics of a particular system of quantificational dynamic
logic, referred to as ‘QDL’, which proves to be intimately related to DPL.

Dynamic logic is related to modal logic. The models contain a set S of pos-
sible (execution) states. The formulas are interpreted as sets of states, the set of
states in which a formula is true. Programs are conceived of as transformations
of possible states, i.e., as relations between possible states. In this respect, the
interpretation of a program is like an accessibility relation in modal logic. Each
program π corresponds to an accessibility relation [[π]]M ⊆ S × S. A pair 〈s, s′〉
is an element of [[π]]M if when executed in s, π may lead to s′. (If the program
is deterministic, [[π]]M would be a (partial) function.)

In view of their association with accessibility relations, we can build modal
operators 〈π〉 and [π] around a program π. Like their counterparts in modal
logic, these operators can be prefixed to a formula φ to form another formula,
〈π〉φ or [π]φ. A formula 〈π〉φ is true in a state s iff execution of π in s may lead
to a state s′ such that φ is true in s′. In other words, 〈π〉φ expresses that it is
possible that φ is true after π has been executed. Similarly, [π]φ is true in s iff
all executions of π in s will lead to a state s′ in which φ is true. So, [π]φ means
that φ must be true after π has been executed. [π]φ is equivalent to ¬〈π〉¬φ,
where ¬ is interpreted as ordinary static negation.

In systems of quantificational dynamic logic, the set of possible states is not
just a set of primitive objects, but is identified with the set of assignment func-
tions G. The interpretation of a formula φ is [[φ]]M ⊆ G. And the interpretation
of a program π is [[π]]M ⊆ G×G.

We now present a particular version of QDL that has precisely the features we
need to compare it with DPL. We start out from the language of PL and add the
following features. Basic programs are random assignments to variables, written
as ‘x := random’. (This is a feature not present in standard QDL, where ordinary
determistic assignments ‘x := a’ figure in the language.) Further, we add an
operator ‘?’, which turns a formula φ into a program ?φ. Such a program is
called a ‘test’, and its interpretation is indeed like that of a test in DPL, it is the
set of identity pairs 〈g, g〉 such that φ is true with respect to g. Next, we add the
operator ‘;’ to form sequences of programs. (Ordinary deterministic assignments
can be defined in terms of these notions as: x := random; ?x = a.) Finally, we
add the ‘modal operators’ discussed above. So, QDL has the following syntax:
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Definition 29 (Syntax of QDL)

1. > is a formula

2. If t1 . . . tn are individual constants or variables, R is an n-place predicate,
then Rt1 . . . tn is a formula

3. If t1 and t2 are individual constants or variables, then t1 = t2 is a formula

4. If φ is a formula, then ¬φ is a formula

5. If φ and ψ are formulas, then [φ→ ψ], [φ ∧ ψ] and [φ ∨ ψ] are formulas

6. If φ is a formula, then ∃xφ is a formula

7. If φ is a formula, then ∀xφ is a formula

8. If φ is a formula, then ?φ is a program

9. If x is a variable, then x := random is a program

10. If π1 and π2 are programs, then [π1;π2] is a program

11. If π is a program and φ is a formula, then 〈π〉φ is a formula

12. If π is a program and φ is a formula, then [π]φ is a formula

13. Nothing is a formula or a program except on the basis of 1–12

Models for QDL are like those for (D)PL. Like in DRT, we simultaneously
define two interpretation functions, one for formulas: [[ ]]QDLM ⊆ G; and one
for programs: [[ ]]ProgM ⊆ G × G as follows (as usual, we suppress subscripts
whenever this does not give rise to confusion):

Definition 30 (Semantics of QDL)

1. [[>]]QDL = G

2. [[Rt1 . . . tn]]QDL = {g | 〈[[t1]]g . . . [[tn]]g〉 ∈ F (R)}

3. [[t1 = t2]]QDL = {g | [[t1]]g = [[t2]]g}

4. [[¬φ]]QDL = {g | g /∈ [[φ]]QDL}

5. [[φ→ ψ]]QDL = {g | g ∈ [[φ]]QDL ⇒ g ∈ [[ψ]]QDL}, and similarly for ∧,∨

6. [[∃xφ]]QDL = {g | ∃k: k[x]g & k ∈ [[φ]]QDL}

7. [[∀xφ]]QDL = {g | ∀k: k[x]g ⇒ k ∈ [[φ]]QDL}

8. [[?φ]]Prog = {〈g, h〉 | h = g & h ∈ [[φ]]QDL}
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9. [[x := random]]Prog = {〈g, h〉 | h[x]g}

10. [[π1 ; π2]]Prog = {〈g, h〉 | ∃k: 〈g, k〉 ∈ [[π1]]Prog & 〈k, h〉 ∈ [[π2]]Prog}

11. [[〈π〉φ]]QDL = { g | ∃h: 〈g, h〉 ∈ [[π]]Prog & h ∈ [[φ]]QDL}

12. [[[π]φ]]QDL = { g | ∀h: 〈g, h〉 ∈ [[π]]Prog ⇒ h ∈ [[φ]]QDL}

First, we note that the language defined above can be economized rather dras-
tically. Of course, the interdefinability of the connectives and quantifiers in PL
carries over to QDL. But, moreover, as appears from the following two equiva-
lences, we can conclude that all that is characteristic of PL can be eliminated
altogether:

φ→ ψ ' [?φ]ψ

∃xφ ' 〈x := random〉φ

So, in terms of negation, the test-operator, random assignments and one of the
two modal operators, all other logical constants can be defined.

As we noted above, DPL-formulas can be conceived of as a kind of programs.
The following definition presents a translation ‘.’ of DPL-formulas into QDL-
programs:

Definition 31 (DPL-to-QDL translation)

1. .Rt1 . . . tn = ?Rt1 . . . tn

2. .¬φ = ?¬〈.φ〉>

3. .[φ ∧ ψ] = [.φ ; .ψ]

4. .[φ ∨ ψ] = ?[〈.φ〉> ∨ 〈.ψ〉>]

5. .[φ→ ψ] = ?[.φ]〈.ψ〉>

6. .∃xφ = [x := random ; .φ]

7. .∀xφ = ?[x := random]〈.φ〉>

The last but one of these clauses illustrates that in DPL we need not introduce
the existential quantifier syncategorematically: we could could take ∃x itself
to be a formula of DPL, with the same interpretation as a random assignment
statement, and we could write ∃x ∧ φ instead of ∃xφ.

The following fact can be proven by induction on the complexity of φ:

Fact 28 ∀M : [[φ]]M = [[.φ]]ProgM
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Unlike in the case of DRT, we can equally easily define a translation in the
opposite direction. Like in our translation from DRT to DPL, we don’t pay at-
tention to the distinction between formulas and programs in QDL. No problems
can arise from this, since QDL-formulas will be translated into DPL-conditions.
We make only one small addition to DPL: we add > as a basic formula, and
interpret it as the identity relation on G. We denote the translation function
by ‘/’:

Definition 32 (QDL-to-DPL translation)

1. /> = >

2. /Rt1 . . . tn = Rt1 . . . tn

3. /¬φ = ¬ / φ

4. /[φ→ ψ] = [/φ→ /ψ], and similarly for ∨ and ∧

5. /∃xφ = ♦∃x / φ

6. /∀xφ = ∀x / φ

7. / ?φ = /φ

8. /x := random = ∃x>

9. /[π1 ; π2] = [/π1 ∧ /π1]

10. /〈π〉φ = ♦[/π ∧ /ψ]

11. /[π]φ = [/π → /ψ]

By simultaneous induction on the complexity of the programs π and formulas
φ of QDL it can be shown that the translation is meaning-preserving in the
following sense:

Fact 29

1. ∀M : [[φ]]QDLM = \ / φ\M

2. ∀M : [[φ]]ProgM = [[/φ]]M

The redundancy of QDL is reflected illuminatingly in the translation. Most
DPL-operators can be found twice on the right hand side. In some cases, they
occur once in a dynamic and once in a static variant, the latter being obtained
by prefixing the closure operator. Notice that since PL forms a fragment of
QDL, the translation presented above is also a translation of PL into DPL.

We end this section by discussing two standard features of quantificational
dynamic logics that we have left out sofar. The one is program disjunction, the
other program repetition. We also discuss briefly their possible use in natural
language semantics.

The syntax and semantics of program-disjunction are defined as follows:
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Definition 33 (Program disjunction)

1. If π1 and π2 are programs, then [π1 ∪ π2] is a program

2. [[π1 ∪ π2]]Prog = [[π1]]Prog ∪ [[π2]]Prog

Of course, the same definition could be used to introduce a second notion of dis-
junction ∪ besides ∨ in DPL. Unlike the latter, ∪ is a dynamic notion, but it dif-
fers in an interesting way from dynamic implication and conjunction. Whereas
implication is only internally dynamic, and conjunction is both internally and
externally dynamic, ∪ is only externally dynamic. An existential quantifier ∃x
in the first disjunct cannot bind free occurrences of x in the second disjunct (nor
vice versa), but an existential quantifier in either disjunct can bind variables in
a further conjunct. In the formula [∃xPx∪∃xQx]∧Hx both occurrences of ∃x
in the first conjunct bind the occurrence of x in the second conjunct. In fact the
formula in question is equivalent to [∃xPx∧Hx]∪ [∃xQx∧Hx]. More generally
the following holds:

[φ ∪ ψ] ∧ χ = [φ ∧ χ] ∪ [ψ ∧ χ]

[φ ∪ ψ]→ χ = [φ→ χ] ∧ [ψ → χ]

Adding this kind of disjunction to our dynamic repertoire would enable us to
treat the anaphoric links in examples like (12) and (13) in a completely straight-
forward way:

(12) A professor or an assistant professor will attend the meeting of the uni-
versity board. He will report to the faculty

(13) If a professor or an assistant professor attends the meeting of the university
booard, then he reports to the faculty

However, as we shall see in the next section, adding this new kind of dynamic
disjunction still leaves certain dynamic feature of natural language disjunction
unexplained.

We now turn to program repetition. This concept is important in the seman-
tic analysis of program constructions like ‘while . . . do . . . ’ and ‘repeat . . . until
. . . ’. The syntax and semantics of program repetition is defined as follows:

Definition 34 (Program repetition)

1. If π is a program, then π∗ is a program

2. [[π∗]]Prog = {〈g, h〉 |∃n∃g0, g1, . . . , gn: g0 =g & gn=h &
∀i: 1 ≤ i ≤ n: 〈gi−1, gi〉 ∈ [[π]]progM }

According to this definition, a pair 〈g, h〉 is in the interpretation of π∗ iff h can
be reached from g by a repeating π a finite but non-deterministically determined
number of times.
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At first sight, this kind of concept seems of no use in natural language
semantics. However, consider the following example (due to Schubert & Pelletier
[1989]):

(14) If I’ve got a quarter in my pocket, I’ll put in the parking meter

Notice first of all, that unlike a DRT/DPL-analysis would have it, one who
utters (14), probably does not intend to spend all the quarters in his pocket
on the parking meter. Now, notice that a procedural meaning of (14) could
informally be paraphraseds as “Repeat getting coins out of your pocket until
it is a quarter; then put it in the parking meter”. So maybe after all, adding
repetition to DPL could add to its use as a tool in natural language semantics.

As one of the referees pointed out, the Schubert & Pelletier analysis can be
dealt with in DPL in a more straightforward way, too. It would suffice to define
another notion of implication as follows:

φ ↪→ ψ =def ¬φ ∨ [φ ∧ ψ]

See also Chierchia [1988], where this conservative notion of implication is argued
for.

5 Prospect and retrospect

5.1 Problems and prospects

As we have pointed out in the introduction of this paper, we are interested
in developing a compositional, non-representational semantics of discourse, one
which will enable us to marry the compositional framework of Montague gram-
mar to a dynamic outlook on meaning such as can be found in DRT and its
kin. The development of DPL is only a first step in achieving this over-all aim.
At the empirical level, DPL matches DRT, and from a methodological point of
view, it is in line with MG. At least at the following two points, DPL needs to
be extended. First of all, like DRT, DPL is restricted to the resources of an
extensional first-order system, whereas MG essentially makes use of intensional
higher order logic. And secondly, DPL shares several empirical characteristics
with DRT which have been disputed in the literature.

As for the first point, DPL offers as compositional a treatment of natural
language expressions as a first-order system permits; nothing more, nothing
less. However, to match MG, and more in particular to be able to cope with
compositionality below the sentential level in the way familiar from MG, we
do need more. In fact, we need a higher-order, intensional language with λ-
abstraction, or something else that is able to do what that does. In Groenendijk
& Stokhof [1990] one way to go about is presented, which uses a version of
dynamic intensional logic (DIL) as it was developed in Janssen [1986] with the
aim of providing a Montague-style semantics for programming languages. The
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resulting system of ‘dynamic Montague grammar’ (DMG) is able to cope with
the phenomena DPL deals with in a completely compositional fashion — below,
on, and beyond the sentential level.

The second issue we want to touch upon here concerns certain empirical
predictions that DPL shares with DRT.

As we remarked several times in the above, only conjunction and the existen-
tial quantifier are treated in a fully dynamic fashion. They are both internally
and externally dynamic. All other logical constants are externally static. In this
respect, DPL is like DRT. In our informal introduction to DPL in section 2, we
motivated the interpretation clauses for the various logical constants by point-
ing out that they behave differently with regard to possible anaphoric relations.
(Cf. examples (4)–(8).) Thus it was argued, for example, that conjunction and
implication should be internally dynamic, because both allow an antecedent in
their first argument to bind an anaphor in their second argument. However,
it was concluded that only conjunction is also externally dynamic, since it also
passes on bindings to sentences to come, whereas implication, in view of the
fact that it lacks this feature, should be treated as externally static. The inter-
pretation of the universal quantifier, negation, and disjunction was motivated
in a similar fashion.

Several authors have provided examples which seem to indicate that the
predictions that DRT and DPL make here, are not borne out by the facts. (See
e.g. Roberts [1987,1989], Kadmon [1987].) Consider the following examples
(which are (variants of) examples that can be found in the literature):

(15) If a client turns up, you treat him politely. You offer him a cup of coffee
and ask him to wait

(16) Every player chooses a pawn. He puts it on square one.

(17) It is not true that John doesn’t own a car. It is red, and it is parked in
front of his house

(18) Either there is no bathroom here, or it is in a funny place. In any case, it
is not on the first floor

Different conclusions may be drawn from these observations, some of which
are compatible with the way in which the logical constants are interpreted in
DRT and DPL. However, one might also take these examples to show that,
at least in certain contexts, the universal quantifier, implication, disjunction,
and negation are both internally and externally dynamic. Without wanting to
commit ourselves to the latter position, we want to explore its consequences a
little here.

As for the first of the examples, it can then be observed that the second
sentence is interpreted as an additional conjunct of the consequent of the impli-
cation in the first sentence, as the following paraphrase of (15) shows:
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(19) If a client turns up, you treat him politely, you offer him a cup of coffee,
and ask him to wait

So, what we need is an interpretation of implication which will make (20) equiv-
alent to (21):

(20) [∃x[client(x)∧turn up(x)]→ treat politely(y, x)]∧ offer coffee(y, x)∧
ask to wait(y, x)

(21) ∃x[client(x)∧turn up(x)]→ [treat politely(y, x)∧offer coffee(y, x)∧
ask to wait(y, x)]

More generally, an externally dynamic interpretation of implication will make
[φ→ ψ] ∧ χ equivalent with φ→ [ψ ∧ χ].

As for the second example, similar observations can be made. It can be
paraphrased as (22), which indicates that an externally dynamic treatment of
universal quantification will make (23) equivalent with (24):

(22) Every player chooses a pawn, and (he) puts it on square one

(23) ∀x[player(x)→ ∃y[pawn(y) ∧ choose(x, y)]] ∧ put on square one(x, y)

(24) ∀x[player(x)→ ∃y[pawn(y) ∧ choose(x, y) ∧ put on square one(x, y)]]

So, on this approach, ∀xφ ∧ ψ turns out to be equivalent with ∀x[φ ∧ ψ]. And
if this is combined with a dynamic interpretation of implication, ∀x[φ→ ψ]∧χ
will be equivalent with ∀x[φ→ [ψ ∧ χ]].

In a similar fashion, the third example may be taken to indicate that a
dynamic version of negation is needed for which the law of double negation
holds.

The last example indicates that disjunction, too, can sometimes be inter-
preted dynamically. This interpretation should make [φ∨ψ]∧χ equivalent with
φ ∨ [ψ ∧ χ]. Notice that the dynamic interpretation of disjunction that is at
stake here, differs from the one discussed in section 4.3. The latter, as we have
seen, is essentially internally static, and only externally dynamic, whereas the
present notion is both internally and externally dynamic. Also, their external
dynamic behaviour is different: [φ ∪ ψ] ∧ χ is equivalent with [φ ∧ χ] ∪ [ψ ∧ χ].

These observations characterize one way of dealing with such as examples as
(15)–(18). We end our discussion of them with three remarks. First of all, saying
what the desired effect of the dynamic interpretations of the logical constants
involved are, is, of course, not the same as actually giving the interpretations
themselves. And secondly, the availability of suitable dynamic interpretations
would leave unanswered the question why it is that the logical constants involved
act dynamically in certain contexts, but not in others. Finally, in view of the
latter fact, one would not want to postulate two independent interpretations.
Rather, the static interpretation should be available from the dynamic one by
a general operation of closure.
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The first and the last issue are discussed at length in Groenendijk & Stokhof
[1990]. There it is shown that using the richer framework of DMG, the required
dynamic interpretations can indeed be obtained, and in such a fashion that the
static interpretations are the closures of the dynamic ones. As for the second
point, this seems to be more an empirical than a formal question, to which DMG
as such does not provide an answer.

From this, we conclude that the kind of dynamic approach to natural lan-
guage meaning that is advocated in this paper, is not restricted to the particular
form it has taken here, i.e., that of the DPL-system, but is sufficiently rich to
allow for alternative analyses and extensions (see, e.g., Chierchia [1988], Dekker
[1990], van den Berg [1990]).

5.2 Meaning and compositionality

The primary motivation for the DPL-undertaking was that we were interested in
the development of a compositional and non-representational theory of meaning
for discourses. Compositionality is the corner-stone of all semantic theories in
the logical tradition. As a consequence, it has also been of prime importance in
those approaches to natural language semantics which use tools developed in the
logical paradigm. However, compositionality has been challenged as a property
of natural language semantics. Especially when dealing with the meaning of dis-
courses people have felt, and sometimes argued, that a compositional approach
fails.

In the context of natural language semantics, we interpret compositionality
as primarily a methodological principle, which gets empirical, computational, or
philosophical import only when additional, and independently motivated con-
straints are put on the syntactic or the semantic part of the grammar that
one uses. In other words, it being a methodological starting point it is always
possible to satisfy compositionality by simply adjusting the syntactic and/or
semantic tools one uses, unless that is, the latter are constrained on indepen-
dent grounds. In view of this interpretation of compositionality, our interest in
the possibility of a compositional semantics of discourse is also primarily of a
methodological nature. Faced with non-compositional theories that give an ac-
count of interesting phenomena in the semantics of natural language discourses,
we wanted to investigate the properties of a theory that is compositional and
accounts for the same facts. We knew in advance that such a theory should
exist, what we wanted to know is what it would look like: it might have been
that being compositional was the only thing that speaks in favour of such a
theory, in which case there would have been good reasons to abandon it.

As we already remarked in the introduction, beside these methodological
considerations, there may also be practical reasons to be interested in trying
to keep to compositionality. One such reason can be found in computational
requirements on the semantics of discourses, or texts. For example, in a transla-
tion program one would like to be able to interpret a text in an on-line manner,
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i.e., incrementally, processing and interpreting each basic unit as it comes along,
in the context created by the interpretation of the text sofar. Although certainly
not the only way to meet this requirement, compositionality is a most intuitive
way to do so. As such, on-line interpretation does not preclude that in the inter-
pretation of a unit of text, other things than the interpretation of the text sofar
play a role. But it does require that at any point in the processing of a text we
are able to say what the interpretation thus far is. In other words, it does rule
out approaches (such as DRT ) in which the interpretation of a text is a two-
stage process, in which we first build a representation, which only afterwards,
i.e., at the end of the text, or a certain segment of it, mediates interpretation of
the text as such. So, from the viewpoint of a computational semantics, there is
ample reason to try and keep to compositionality.

Yet another reason is provided by certain philosophical considerations. These
concern the fact that non-compositional semantic theories usually postulate a
level of semantic representation, or ‘logical form’, in between syntactic form and
meaning proper, which is supposed to be a necessary ingredient of a descrip-
tively and explanatorily adequate theory. Consider the following two sequences
of sentences (the examples are due to Partee, they are cited from Heim [1982]):

(25) I dropped ten marbles and found all of them, except for one. It is probably
under the sofa.

(26) I dropped ten marbles and found only nine of them. It is probably under
the sofa.

There is a marked contrast between these two sequences of sentences. The first
one is all right, and the pronoun it refers to the missing marble. The second
sequence, however, is out. Even though it may be perfectly clear to us that the
speaker is trying to refer to the missing marble with the pronoun it, evidently,
this is not the way to do this. Like most authors, we start from the assumption
that co-reference and anaphora are, by and large semantic phenomena. (‘By
and large’ in view of the fact that sometimes certain syntactic features are
involved in pronoun resolution as well. A case in point is syntactic gender
in languages like German and Dutch.) Therefore, we may take the following
for granted: the contrast between (23) and (24) marks a difference between the
respective opening sentences, and this difference is one of meaning, in the broad,
intuitive sense of the word. But what does this difference consist in? For notice
that the first sentences of (23) and (24) do characterize the same situation.
There is no difference in their truth conditions, therefore it seems that they are
semantically equivalent. Indeed, they are equivalent in any standard semantic
system that explicates meaning solely in terms of truth (or more generally,
denotation) conditions. And we speculate that it is for this reason that many
semanticists have taken the view that the difference in question is one of (logical)
form, of (semantic) representation, rather than one of content.

For various reasons, we think that one should not adopt this point of view
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too hastily. For, it means that one has to postulate an intermediate level of
representation in between natural language and its interpretation. True, most
semantic frameworks interpret natural language via translation into a logical
language, but the general methodological strategy here has always been to make
sure that the translation procedure is compositional, and hence, in view of the
compositional nature of the interpretation of the logical language, in principle
dispensable. The logical translation serves practical purposes only, in principle
it can be discarded. But notice that the level of representation that is assumed
if one views the difference between (23) and (24) as one of form, is not of this
(optional) nature. The two sentences involved will be mapped onto different
logical forms, or semantic representations, which in their turn will receive an
equivalent interpretation. Accounting for the difference between (23) and (24)
in this way, makes the existence of this level of representation imperative, rather
than useful. It would be a necessary go-between natural language and its mean-
ing. So it seems that, perhaps without being aware of it, many have put a
constraint on the semantics: meaning is truth (denotation) conditions. Then,
indeed, compositionality becomes a contentfull, rather than a methodological
principle, and one which is falsified: the facts force the existence of a level of
semantic representation on us.

There are several reasons why we think that the move to a semantic theory
which assumes such an independent level of semantic representation, distinct
both from syntactic structure and from meaning proper, should be looked upon
with reserve. First of all, there is the familiar, almost commonplace reason of
theoretical parsimony. Levels of representation, too, should not be multiplied
beyond necessity, and although this is perhaps not too exciting a comment to
make, we feel that from a methodological point of view it is still a sound one.
Of course, its relevance in the present context does presuppose that we are not
really forced to introduce such a level of semantic representation, that we can
do without it. Such a claim can not be substantiated in general, but it can
be shown to be correct in particular cases. And the development of the DPL-
system shows that, in the case at hand, the principle of compositionality has
not only negative implications, but also points positively towards a satisfactory
treatment of the issues involved. For the phenomena in question, no level of
representation is needed, for compositionality clearly guides towards a notion of
meaning which allows us to do without.

Be that as it may, our appeal to this methodological principle will be waved
by those who claim that there is empirical evidence for the existence of a level
of semantic representation. In fact, quite often when such a level of repre-
sentation is postulated, this is accompanied by the claim that it is somehow
psychologically ‘real’. We must be careful in our evaluation here, for one might
be making a weaker and a stronger claim. The weaker one is that in produc-
ing and understanding language, people somehow represent meanings, extract
them from linguistic structures, manipulate them, ‘put them into words’, and
so on. This claim is in fact subsidiary to the view of the mind as a calculating
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machine. Notice, however, that this weaker claim is not necessarily at odds
with our parsimonious starting point. For, as such there may very well be a
separate level of semantic representation, without it being a necessary ingredi-
ent of a descriptively and explanatorily adequate semantic theory. The stronger
claim adds exactly this to the weaker one: it claims, not just the cognitive re-
ality of representation of meaning, but the existence of a level of representation
which carries information that goes beyond that what is represented there, viz.,
meaning. In effect, this view splits the intuitive notion of meaning in two: those
aspects which are covered by the technical notion of meaning (or interpretation)
that the theory provides (or borrows from other frameworks), and those which
are accounted for by properties of the particular kind of representation of the
former.

Thus, a mentalist we call someone who claims that a level of representa-
tion is necessary, not someone who merely claims that it exists. Should we
include among the mentalists the latter kind of person too, we would be forced
to consider the Wittgenstein of the Tractatus as a mentalist, for he claimed that
there exists a level of thoughts and thought-elements which is isomorphic to lan-
guage, and hence to the world. However, he did consider this level completely
irrelevant for an account of the nature of meaning and the way in which it is
established. Thus Wittgenstein apparently accepted the existence of a level of
‘semantic representation’, but considered its existence of no interest for seman-
tics proper. In connection with this, it may be worthwhile to point out the close
correspondence between the isomorphic ‘picturing’ relation between language
and the world of the Tractatus, and the modern-day, algebraic explication of
compositionality, as it can be found, for example, in Janssen [1986]. Of course,
the later Wittgenstein would have discarded even any talk of a ‘cognitive’ sub-
stratum of our linguistic behaviour, which may help to remind us that even the
weaker claim is not as philosophically neutral as some apparently think it is.

To return to the main point, we think that the stronger claim is unwar-
ranted, and that it certainly cannot be justified simply by an appeal to the
linguistic facts of the matter. As for the weaker claim, the view on the mind
and its operations that it stems from, when taken literally is, of course, not
philosophically neutral. Those who really subscribe to it face the burden of
showing that there are such things as ‘mental’ representations and the like, a
task which is not without philosophical pitfalls. Notoriously, these issues are as
interesting as they are undecidable. Our own opinion, for whatever it is worth,
is that the calculating mind is a metaphor rather than a model. It is a pow-
erful metaphor, no doubt, on which many branches of ‘cognitive’ science are
based, and sometimes it can be helpful, even insightful. But it remains a way of
speaking, rather than a true description of the way we are. However, whatever
stand one would like to take here, it does not affect the point we want to make,
which is that it is better to try to keep ones semantic theory, like every theory,
as ontologically parsimonious and as philosophically neutral as possible. The
stronger claim goes against this, and hence has to be rejected, unless, somehow,
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proven.
As for the weaker claim, subscribing to it or not makes no real difference,

but one has to be careful not to let it interfere with the way one sets up ones
semantic framework. The best way to go about, then, is to carry on semantics
as really a discipline of its own, not to consider it a priori a branch of cognitive
science, and to enter into the discussion of the reality of mental representations
in a ‘modular’ frame of mind.

It may be the case, though, that for some the acceptance of a level of logical
representation springs forth from a positive philosophical conviction, viz., a
belief in the deficiencies of natural language as a means to convey meaning.
Now such there may be (or not) when we consider very specialized kinds of
theoretical discourse, such as mathematics, or philosophy, or particle physics.
And again, natural language may be deficient (or not) when we consider a
special task that we want to be performed in a certain way, such as running a
theorem prover based on natural deduction on natural language sentences, or
such a thing. In such cases, clearly there is room for extension and revision, for
regimentation and confinement. But that is not what is at stake here. Here,
it turns on the question whether natural language structures themselves, as we
encounter them in spoken and written language, then and there are in need of
further clarification in order to convey what they are meant to convey. In this
matter, semantics, we feel, should start from the premiss that natural language
is all right. If anything is a perfect means to express natural language meaning,
natural language is. It can very well take care of itself and is in no need of
(psycho)logical reconstruction and improvement in this respect. To be sure, that
means taking a philosophical stand, too, but one that is neutral with respect to
the question whether there is such a thing as an indispensable level of logical
representation in semantics. As we said above, if such there is, this has to be
shown, not taken for granted.

Our ideological point of view concerning the status of mental representations
is in line with the methodological interpretation of the principle of composition-
ality. As was already remarked above, this interpretation not only forces us to
reject certain approaches to the problems we started out with, it also positively
suggests us a proper solution. Compositionality dictates that the meanings of
(23) and (24) should be functions of the meanings of their parts. We take it to
be an obvious fact that the immediate components of the sequences of sentences
(23) and (24) are the two sentences of which they consist. Because of the dif-
ference in acceptability we cannot but conclude that the first sentence of (23)
and the first sentence of (24) differ in meaning. Accepting the fact that their
truth conditions are the same, this leads to the inevitable conclusion that truth
conditions do not exhaust meaning. (‘Do not exhaust meaning. . . ’, because we
do want to stick to the idea that truth conditions are an essential ingredient of
meaning.) What compositionality strongly suggests, then, is that we look for
an essentially richer notion of meaning of which the truth conditional one is a
special case. Our claim is that the kind of dynamic semantics that DPL is an

55



instance of, naturally suggests itself as a first step on the right track.
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