LING 130: Sample Quiz 1 with Answers

James Pustejovsky

March 19, 2010

1. Natural Deduction: Propositional Logic

Use **pr** for premise and **as** for assumption.

Prove the following: $p \rightarrow q, r \rightarrow s \vdash p \land r \rightarrow q \land s$

(1) 1	$p \rightarrow q$	pr
2	$r \to s$	pr
3	$\mathbf{S.} \mid p \wedge r$	as
4	p	$\wedge e 3$
5	5. $\mid q$	$\rightarrow e1,4$
6	$b. \mid r$	$\wedge e 3$
7	$r \mid s$	\rightarrow e 2,6
8	$B. \mid q \wedge s$	∧i 5,7
9	$0. \ p \wedge r \to q \wedge s$	\rightarrow i 3-8

2. Natural Deduction: First-order Logic

Use **pr** for premise and **as** for assumption.

Prove the following: $\forall x[P(x) \land Q(x)] \vdash \forall x[P(x)] \land \forall x[Q(x)]$

(2)	1. $\forall x [P(x) \land Q(x)]$	pr
	2. <i>a</i>	as
	3. $P(a) \wedge Q(a)$	$\forall e 1$
	4. $ P(a)$	$\wedge e 3$
	5. $\forall x[P(x)]$	∀i 2-4
	6. <i>a</i>	as
	7. $P(a) \wedge Q(a)$	$\forall e 1$
	8. $ Q(a)$	$\wedge e 7$
	9. $\forall x[Q(x)]$	∀i 6-8
	10. $\forall x [P(x) \land Q(x)]$	∧i 5,9

3. First-order Logic Translation

Translate into a first-order expression.

No student attended every lecture.

 $\neg \exists x [Student(x) \land \forall y [Lecture(y) \rightarrow Attend(x, y)]]$

4. Propositional Logic Truth-table

Fill in the truth table for the following expression: $(p \lor q) \rightarrow \neg r$

p	q	r	$p \lor q$	$\neg r$	\rightarrow
1	1	1	1	0	0
1	1	0	1	1	1
1	0	1	1	0	0
1	0	0	1	1	1
0	1	1	1	0	0
0	1	0	1	1	1
0	0	1	0	0	1
0	0	0	0	1	1

5. Types and Type Derivations

Give the type and semantic expression for each of the following words:

a. friend: $e \to t$, $\lambda x[friend(x)]$ b. admire: $e \to (e \to t)$, $\lambda y \lambda x[admire(x, y)]$ c. slowly: $(e \to t) \to (e \to t)$, $\lambda P \lambda x[Slowly(P(x)]]$ d. any: $(e \to t) \to ((e \to t) \to t)$, $\lambda P \lambda Q \forall x[P(x) \to Q(x)]$

6. Quantifiers and Entailment

Explain why the quantifier *a* allows for deductions involving \land -elimination.

While not giving the full answer, I will say that you should be able to answer this with a few sentences and an example or two. In other words, show how *a* is monotone increasing in both restrictor and scope domains.