First-order logic

- First-order logic (FOL) models the world in terms of
- Objects, which are things with individual identities
- Properties of objects that distinguish them from other objects
- Relations that hold among sets of objects
- Functions, which are a subset of relations where there is only one "value" for any given "input"
- Examples:
- Objects: Students, lectures, companies, cars ...
- Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
- Properties: blue, oval, even, large, ...
- Functions: father-of, best-friend, second-half, one-more-than ...

Constants, Functions, Predicates

- Constant symbols, which represent individuals in the world - Mary
- 3
- Green
- Function symbols, which map individuals to individuals - father-of(Mary) = John
- color-of(Sky) = Blue
- Predicate symbols, which map individuals to truth values
- greater $(5,3)$
- green(Grass)
- color(Grass, Green)

Syntax of FOL

```
S := <Sentence> ;
<Sentence> := <AtomicSentence> |
    <Sentence> <Connective> <Sentence> |
    <Quantifier> <Variable>,... <Sentence> |
    "NOT" <Sentence> |
    "(" <Sentence> ")";
<AtomicSentence> := <Predicate> "(" <Term>, ... ")" |
        <Term> "=" <Term>;
<Term> := <Function> "(" <Term>, ... ")" |
    <Constant> |
    <Variable>;
<Connective> := "AND" | "OR" | "IMPLIES" | "EQUIVALENT";
<Quantifier> := "EXISTS" | "FORALL" ;
<Constant> := "A" | "X1" | "John" | ... ;
<Variable> := "a" | "x" | "s" | ... ;
<Predicate> := "Before" | "HasColor" | "Raining" | ... ;
<Function> := "Mother" | "LeftLegOf" | ... ;
```


Variables, Connectives, Quantifiers

- Variable symbols
- E.g., x, y, foo
- Connectives
- Same as in PL: not (\neg), and (\wedge), or (v), implies (\rightarrow), if and only if (biconditional \leftrightarrow)
- Quantifiers
- Universal $\forall \mathbf{x}$ or ($\mathbf{A x}$)
- Existential $\exists \mathbf{x}$ or (Ex)

Sentences are built from terms and atoms

Quantifiers

- Universal quantification
$-(\forall x) P(x)$ means that P holds for all values of x in the domain associated with that variable
- E.g., $(\forall x)$ dolphin $(x) \rightarrow \operatorname{mammal}(x)$
- Existential quantification
$-(\exists \mathrm{x}) \mathrm{P}(\mathrm{x})$ means that P holds for some value of x in the domain associated with that variable
- E.g., ($(\boldsymbol{x}) \operatorname{mammal}(\mathrm{x}) \wedge \operatorname{lays}-\mathrm{eggs}(\mathrm{x})$
- Permits one to make a statement about some object without naming it

Translating English to FOL

Every gardener likes the sun.
$(\forall \mathrm{x}) \operatorname{gardener}(\mathrm{x}) \rightarrow$ likes $(\mathrm{x}$, Sun $)$
You can fool some of the people all of the time.
$(\exists \mathrm{x})(\forall \mathrm{t})\left(\right.$ person $(\mathrm{x})^{\wedge}$ time $\left.(\mathrm{t})\right) \rightarrow$ can-fool (x, t)
You can fool all of the people some of the time.
$(\forall x)(\exists \mathrm{t})($ person $(\mathrm{x}) \wedge$ time $(\mathrm{t}) \rightarrow$ can-fool (x, t)
All purple mushrooms are poisonous.
$(\forall x)$ (mushroom $(x)^{\wedge}$ purple $\left.(x)\right) \rightarrow$ poisonous (x)
No purple mushroom is poisonous.
$\neg(\exists \mathrm{x})$ purple $(\mathrm{x})^{\wedge}$ mushroom $(\mathrm{x})^{\wedge}$ poisonous (x)
$(\forall \mathrm{x})\left(\right.$ mushroom $(\mathrm{x})^{\wedge}$ purple $\left.(\mathrm{x})\right) \rightarrow \neg$ poisonous (x)
There are exactly two purple mushrooms.
$(\exists \mathrm{x})(\exists \mathrm{y})$ mushroom $(\mathrm{x})^{\wedge}$ purple $(\mathrm{x})^{\wedge}$ mushroom $(\mathrm{y})^{\wedge}$ purple $(\mathrm{y})^{\wedge} \neg(\mathrm{x}=\mathrm{y})^{\wedge}$
$(\forall \mathrm{z})(\operatorname{mushroom}(\mathrm{z}) \wedge$ purple $(\mathrm{z})) \rightarrow((\mathrm{x}=\mathrm{z}) \vee(\mathrm{y}=\mathrm{z}))$
Clinton is not tall.
\neg tall(Clinton)
X is above Y if X is on directly on top of Y or there is a pile of one or more other objects directly on top of one another starting with X and ending with Y.
$(\forall \mathrm{x})(\forall \mathrm{y}) \operatorname{above}(\mathrm{x}, \mathrm{y})_{-}\left(\mathrm{on}(\mathrm{x}, \mathrm{y}) \mathrm{v}(\exists \mathrm{z})\left(\mathrm{on}(\mathrm{x}, \mathrm{z})^{\wedge} \operatorname{above}(\mathrm{z}, \mathrm{y})\right)\right)$

- A term (denoting a real-world individual) is a constant symbol, a variable symbol, or an n-place function of n terms.
x and $f\left(x_{1}, \ldots, x_{n}\right)$ are terms, where each x_{i} is a term.
A term with no variables is a ground term
- An atom (which has value true or false) is either an n-place predicate of n terms, or,
$\neg P, P \vee Q, P \wedge Q, P \rightarrow Q, P \leftrightarrow Q$ where P and Q are atoms
- A sentence is an atom, or, if P is a sentence and x is a variable, then $(\forall x) P$ and $(\exists x) P$ are sentences
- A well-formed formula (wff) is a sentence containing no "free" variables. That is, all variables are "bound" by universal or existential quantifiers.
$(\forall \mathrm{x}) \mathrm{P}(\mathrm{x}, \mathrm{y})$ has x bound as a universally quantified variable, but y is free.

Quantifiers

- Universal quantifiers are often used with "implies" to form "rules": $(\forall x)$ student $(x) \rightarrow \operatorname{smart}(\mathrm{x})$ means "All students are smart"
- Universal quantification is rarely used to make blanket statements about every individual in the world:
$(\forall \mathrm{x})$ student $(\mathrm{x}) \wedge \operatorname{smart}(\mathrm{x})$ means "Everyone in the world is a student and is smart"
- Existential quantifiers are usually used with "and" to specify a list of properties about an individual:
($\exists \mathrm{x}$) student $(\mathrm{x}) \wedge \operatorname{smart}(\mathrm{x})$ means "There is a student who is smart"
- A common mistake is to represent this English sentence as the FOL sentence:
($\exists \mathrm{x}$) student $(\mathrm{x}) \rightarrow \operatorname{smart}(\mathrm{x})$
- But what happens when there is a person who is not a student?

Quantifier Scope

- Switching the order of universal quantifiers does not change the meaning:
$-(\forall x)(\forall y) P(x, y) \Rightarrow(\forall y)(\forall x) P(x, y)$
- Similarly, you can switch the order of existential quantifiers:
$-(\exists x)(\exists y) P(x, y) \Rightarrow(\exists y)(\exists x) P(x, y)$
- Switching the order of universals and existentials does change meaning:
- Everyone likes someone: $(\forall x)(\exists y)$ likes (x, y)
- Someone is liked by everyone: $(\exists \mathrm{y})(\forall \mathrm{x})$ likes($\mathrm{x}, \mathrm{y})$

Connections between All and Exists

We can relate sentences involving \forall and \exists using De Morgan's laws:

$$
\begin{aligned}
& (\forall \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \Rightarrow \neg(\exists \mathrm{x}) \mathrm{P}(\mathrm{x}) \\
& \neg(\forall \mathrm{x}) \mathrm{P} \Rightarrow(\exists \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \\
& (\forall \mathrm{x}) \mathrm{P}(\mathrm{x}) \Rightarrow \neg(\exists \mathrm{x}) \neg \mathrm{P}(\mathrm{x}) \\
& (\exists \mathrm{x}) \mathrm{P}(\mathrm{x}) \Rightarrow \neg(\forall \mathrm{x}) \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

An example from Monty Python

- FIRST VILLAGER: We have found a witch. May we burn her?
- ALL: A witch! Burn her!
- BEDEVERE: Why do you think she is a witch?
- SECOND VILLAGER: She turned $m e$ into a newt.
- B: A newt?
- V2 (after looking at himself for some time): I got better.
- ALL: Burn her anyway.
- B: Quiet! Quiet! There are ways of telling whether she is a witch.

Monty Python cont.

- B: Tell me... what do you do with witches?
- ALL: Burn them!
- B: And what do you burn, apart from witches?
- V4: ...wood?
- B: So why do witches burn?
- V2 (pianissimo): because they're made of wood?
- B: Good.
- ALL: I see. Yes, of course.

Monty Python cont.

- KING ARTHUR: A duck!
- (They all turn and look at Arthur. Bedevere looks up, very impressed.)
- B: Exactly. So... logically...
- V1 (beginning to pick up the thread): If she... weighs the same as a duck... she's made of wood.
- B: And therefore?
- ALL: A witch!

Monty Python cont.

- B: So how can we tell if she is made of wood?
- V1: Make a bridge out of her.
- B: Ah... but can you not also make bridges out of stone?
- ALL: Yes, of course... um... er...
- B: Does wood sink in water?
- ALL: No, no, it floats. Throw her in the pond.
- B: Wait. Wait... tell me, what also floats on water?
- ALL: Bread? No, no no. Apples... gravy... very small rocks...
- B: No, no, no,

Monty Python Fallacy \#1

- $\forall \mathrm{x}$ witch $(\mathrm{x}) \rightarrow$ burns (x)
- $\forall x \operatorname{wood}(x) \rightarrow \operatorname{burns}(x)$
- $\therefore \forall \mathrm{z}$ witch $(\mathrm{x}) \rightarrow \operatorname{wood}(\mathrm{x})$
- $\mathrm{p} \rightarrow \mathrm{q}$
- $\mathrm{r} \rightarrow \mathrm{q}$

- $\mathrm{p} \rightarrow \mathrm{r}$

Fallacy: Affirming the conclusion

Monty Python Near-Fallacy \#2

- $\operatorname{wood}(\mathrm{x}) \rightarrow \operatorname{bridge}(\mathrm{x})$

- $\therefore \operatorname{bridge}(\mathrm{x}) \rightarrow \operatorname{wood}(\mathrm{x})$
- B: Ah... but can you not also make bridges out of stone?

Monty Python Fallacy \#4

- $\forall \mathrm{z} \operatorname{light}(\mathrm{z}) \rightarrow \operatorname{wood}(\mathrm{z})$
- $\operatorname{light}(\mathrm{W})$
- $\therefore \operatorname{wood}(\mathrm{W})$
ok. \qquad
- $\operatorname{witch}(\mathrm{W}) \rightarrow \operatorname{wood}(\mathrm{W})$
- $\operatorname{wood}(\mathrm{W})$
,
- \therefore witch (z)

Monty Python Fallacy \#3

- $\forall \mathrm{x}$ wood $(\mathrm{x}) \rightarrow$ floats(x$)$
- $\forall \mathrm{x}$ duck-weight $(\mathrm{x}) \rightarrow$ floats (x)
- $\therefore \forall \mathrm{x}$ duck-weight $(\mathrm{x}) \rightarrow \operatorname{wood}(\mathrm{x})$
- $\mathrm{p} \rightarrow \mathrm{q}$
- $\mathrm{r} \rightarrow \mathrm{q}$

- $\therefore \mathrm{r} \rightarrow \mathrm{p}$

Axioms for Set Theory in FOL

1. The only sets are the empty set and those made by adjoining something to a set: $\forall \mathrm{s}$ set $(\mathrm{s})<=>\left(\mathrm{s}=\right.$ Empty Set) $\left.\mathrm{v}(\exists \mathrm{x}, \mathrm{r} \text { Set(} \mathrm{r})^{\wedge} \mathrm{s}=\operatorname{Adjoin}(\mathrm{s}, \mathrm{r})\right)$
2. The empty set has no elements adjoined to it: $\sim \exists \mathrm{x}, \mathrm{S}$ Adjoin(x, s) $=$ EmptySet
3. Adjoining an element already in the set has no effect: $\forall x, s \operatorname{Member}(\mathrm{x}, \mathrm{s})<=>\mathrm{s}=\operatorname{Adjoin}(\mathrm{x}, \mathrm{s})$
4. The only members of a set are the elements that were adjoined into it: $\forall \mathrm{x}, \mathrm{S} \operatorname{Member}(\mathrm{x}, \mathrm{s})<=>\quad \exists \mathrm{y}, \mathrm{r}\left(\mathrm{s}=\operatorname{Adjoin}(\mathrm{y}, \mathrm{r})^{\wedge}(\mathrm{x}=\mathrm{y} \mathrm{v}\right.$ Member $\left.(\mathrm{x}, \mathrm{r}))\right)$
5. A set is a subset of another iff all of the 1 st set's members are members of the $2^{\text {nd }}$: $\forall \mathrm{s}, \mathrm{r} \operatorname{Subset}(\mathrm{s}, \mathrm{r})<=>(\forall \mathrm{X} \operatorname{Member}(\mathrm{x}, \mathrm{s})=>\operatorname{Member}(\mathrm{x}, \mathrm{r}))$
6. Two sets are equal iff each is a subset of the other: $\forall \mathrm{s}, \mathrm{r}(\mathrm{s}=\mathrm{r})<=>($ subset $(\mathrm{s}, \mathrm{r}) \wedge$ subset $(\mathrm{r}, \mathrm{s}))$
7. Intersection
$\forall x, \mathrm{~s} 1, \mathrm{~s} 2$ member $(\mathrm{X}$, intersection(S1,S2)) $<=>\operatorname{member}(\mathrm{X}, \mathrm{s} 1) \wedge \operatorname{member}(\mathrm{X}, \mathrm{s} 2)$
8. Union
$\exists \mathrm{x}, \mathrm{s} 1, \mathrm{~s} 2$ member(X, union($\mathrm{s} 1, \mathrm{~s} 2))$ < $=>$ member $(\mathrm{X}, \mathrm{s} 1) \mathrm{v}$ member($(\mathrm{X}, \mathrm{s} 2)$

Axioms, definitions and theorems

- Axioms are facts and rules that attempt to capture all of the (important) facts and concepts about a domain; axioms can be used to prove theorems
-Mathematicians don't want any unnecessary (dependent) axioms -ones that can be derived from other axioms
-Dependent axioms can make reasoning faster, however
-Choosing a good set of axioms for a domain is a kind of design problem
-A definition of a predicate is of the form " $p(X)$ _ \ldots " and can be decomposed into two parts
-Necessary description: " $p(x) \rightarrow \ldots$.
-Sufficient description " $\mathrm{p}(\mathrm{x}) \leftarrow \ldots$.
-Some concepts don't have complete definitions (e.g., person(x))

Higher-order logic

- In FOL, variables can only range over objects
- HOL allows us to quantify over relations
- More expressive, but undecidable
- Example:
"two functions are equal iff they produce the same value for all arguments"
$-\forall \mathrm{f} \forall \mathrm{g}(\mathrm{f}=\mathrm{g}) \Rightarrow(\forall \mathrm{xf}(\mathrm{x})=\mathrm{g}(\mathrm{x}))$
- Example:
$\left.\forall r \operatorname{transitive}(\mathrm{r}) \Rightarrow(\forall \mathrm{x} \forall \mathrm{y} \forall \mathrm{zr} \mathrm{r}, \mathrm{y}){ }^{\wedge} \mathrm{r}(\mathrm{y}, \mathrm{z}) \rightarrow \mathrm{r}(\mathrm{x}, \mathrm{z})\right)$

Extensions to FOL

- Higher-order logic
- Quantify over relations
- Representing functions with the lambda operator (λ)
- Expressing uniqueness \exists !, l
- Sorted logic

Expressing uniqueness

- Sometimes we want to say that there is a single, unique object that satisfies a certain condition
- "There exists a unique x such that $\operatorname{king}(x)$ is true"
$-\exists x \operatorname{king}(x)^{\wedge} \forall y(\operatorname{king}(y) \Rightarrow x=y)$
$-\exists x \operatorname{king}(x)^{\wedge} \operatorname{not}\left(\exists y\left(\operatorname{king}(y)^{\wedge} x \neq y\right)\right.$
- 3 ! x king (x)
- "Every country has exactly one ruler" $-\forall c$ country $(\mathrm{c}) \Rightarrow \exists$! r ruler (c, r)
- Iota operator: " $\mathrm{lx} \mathrm{P}(\mathrm{x})$ " means "the unique x such that $\mathrm{p}(\mathrm{x})$ is true"
- "The unique ruler of Freedonia is dead"
- dead($\mathrm{t} \times \operatorname{ruler}($ freedonia, x$)$)

Notational differences

- Different symbols for and, or, not, implies, ...
$-\forall \exists \Rightarrow \Leftrightarrow \wedge \vee \neg \cdot \supset$
$-\mathrm{pv}\left(\mathrm{q}^{\wedge} \mathrm{r}\right)$
$-\mathrm{p}+(\mathrm{q} * \mathrm{r})$
- etc
- Prolog
$\operatorname{cat}(\mathrm{X})$:- furry (X), meows (X), has(X, claws)
- Lispy notations
(forall ?x (implies (and (furry ?x)
(meows ?x)
(has ?x claws))
(cat ?x)))

