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This dissertation, directed and approved by José M. Castaño’s committee, has been accepted and
approved by the Graduate Faculty of Brandeis University in partial fulfillment of the requirements
for the degree of:

DOCTOR OF PHILOSOPHY

Adam Jaffe, Dean of Arts and Sciences

Dissertation Committee:
James Pustejovsky, Dept. of Computer Science, Chair.
Martin Cohn, Dept. of Computer Science
Timothy J. Hickey, Dept. of Computer Science
Aravind K. Joshi, University of Pennsylvania





c©Copyright by

José M. Castaño

2004





Al Campris y su eterna perserverancia.

A la Pipi y su gran amor.

Debes amar

la arcilla que va en tus manos

debes amar

su arena hasta la locura

y si no,

no lo emprendas, que será en vano
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Rodŕıguez, Ana Arregui, Alejandro Renato and the extraordinary friends I met at Brandeis, Pablo

Funes, Francesco Rizzo, Maŕıa Piñango, Domingo Medina, Marc Verhagen, Piroska Csúri, Anna
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ABSTRACT

Global Index Languages

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of
Brandeis University, Waltham, Massachusetts

by José M. Castaño

Context-free grammars (CFGs) is perhaps the best understood and most applicable part of for-

mal language theory. However there are many problems that cannot be described by context-free

languages: “the world is not context-free” [25]. One of those problems concerns natural language

phenomena. There is increasing consensus that modeling certain natural language problems would

require more descriptive power than that allowed by context-free languages. One of the hard prob-

lems in natural language is coordination. In order to model coordination, it might be necessary to

deal with the multiple copies language: {ww+ |w ∈ Σ∗} [29].

Innumerable formalisms have been proposed to extend the power of context-free grammars.

Mildly context-sensitive languages and grammars emerged as a paradigm capable of modeling the

requirements of natural languages. At the same time there is a special concern to preserve the ‘nice’

properties of context-free languages: for instance, polynomial parsability and semi-linearity. This

work takes these ideas as its goal.

This thesis presents an abstract family of languages, named Global Index Languages (GILs).

This family of languages preserves the desirable properties mentioned above: bounded polynomial

parsability, semi-linearity, and at the same time has an “extra” context-sensitive descriptive power

(e.g the “multiple-copies” language is a GI language). GIls descriptive power is shown both in terms

of the set of string languages included in GILs, as well as the structural descriptions generated by the

corresponding grammars. We present a two-stack automaton model for GILs and a grammar model

(Global Index Grammars) in Chapter 2 and 3. Then characterization and representation theorems

as well as closure properties are also presented. An Earley type algorithm to solve the recognition

problem is discussed in Chapter 5, as well as an LR-parsing algorithm for the deterministic version of

GILs. Finally, we discuss in Chapter 6 the relevance of Global Index Languages for natural language

phenomena.

xi
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Chapter 1

Introduction

1.1 Introduction

Context-free grammars (CFGs) constitute perhaps the most developed, well understood and most

widely applicable part of formal language theory. However there are many problems that cannot

be described by context-free languages. In [25] seven situations which cannot be described with a

context-free framework are given.

The purpose of this thesis is to explore an alternative formalism with restricted context-sensitivity

and computational tractability. We try to obtain a model with efficient computation properties. Such

a model is relevant, at least, for the following areas:

• Natural Language modeling and processing.

• Computational Biology

• Possibly also relevant to programming languages which might use context sensitive features

(like Algol 60).

Many formalisms have been proposed to extend the power of context-free grammars using control

devices, where the control device is a context-free grammar (see [87] and [26] regarding control

languages). In an automaton model those extensions either use constrained embedded or additional

stacks (cf. [7, 81, 59]). The appeal of this approach is that many of the attractive properties of

context-free languages are preserved (e.g. polynomial parsability, semilinearity property, closure

properties).

1



2 CHAPTER 1. INTRODUCTION

Such models can be generalized and additional control levels, additional levels of embeddedness,

or additional stacks can be added. They form hierarchies of levels of languages, where a language

of level k properly includes a language of level k − 1. Examples of those related hierarchies are:

Khabbaz’s [49], Weir’s [87], multiple context free grammars [71], and multi-push-down grammars

[21]. As a consequence those generalizations provide more expressive power but at a computational

cost. The complexity of the recognition problem is dependent on the language level. In general, for

a level k language the complexity of the recognition problem is a polynomial where the degree of the

polynomial is a function of k. We will exemplify this issue with some properties of natural language

and we will consider some biology phenomena, that can be modeled with GILs.

We will focus in natural language problems from a language theoretic point of view, in partic-

ular related to the so called Mildly-Context Sensitive formalisms. Within Mildly-Context Sensitive

formalisms we focus on Linear Indexed Grammars (LIGs) and Tree Adjoining Grammars (TAGs)

which are weakly equivalent.

1.1.1 Natural Language

Regarding natural languages (one of the seven cases mentioned above), there is increasing consensus1

on the necessity of formalisms more powerful than CFGs to account certain typical natural languages

constructions. These constructions are exemplified as [26]:2

– reduplication, leading to languages of the form {ww |w ∈ Σ∗}

– multiple agreements, corresponding to languages of the form {anbncn | n ≥ 1}, {anbncndn | n ≥
1}, etc.

– crossed agreements, as modeled by {anbmcndm | n m ≥ 1}

Mildly context-sensitive grammars [43] have been proposed as capable of modeling the above

mentioned phenomena.3 It has been claimed that a NL model must have the following properties:4

1See for example [73, 23, 29], among others.

2The following type of languages are also relevant to model molecular biology phenomena [70]
3However there are other phenomena (e.g. scrambling, Georgian Case and Chinese numbers) might be considered

to be beyond certain mildly context-sensitive formalisms.

4See for example, [46, 86] and [55, 47] on semi-linearity.
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– Constant growth property (or semi-linearity, a stronger version of this requirement )

– Polynomial parsability

– Limited cross-serial dependencies

– Proper inclusion of context-free languages

The most restricted mildly context-sensitive grammar formalisms are linear indexed Grammars

(LIGs), head grammars (HGs), tree adjoining grammars (TAGs), and combinatory categorial gram-

mars (CCGs) which are weakly equivalent. These formalisms have long been used to account for

natural language phenomena. Many different proposals for extending the power of LIGs/TAGs have

been presented in the recent past. However, an increase in descriptive power is correlated with an

increase in time and space parsing complexity. One of the characteristics of mildly context sensitive

formalisms is that they can be described by a geometric hierarchy of language classes. In such hier-

archies there is a correlation between the complexity of the formalism (grammar or automata), its

descriptive power, and the time and space complexity of the recognition problem. Tree Adjoining

languages belong to the class L2 in Weir’s hierarchy. A TAG/LIG is a level-2 control grammar,

where a CFG controls another CFG. Their expressive power regarding multiple agreements is lim-

ited to 4 counting dependencies (e.g., L = {anbncndn |n ≥ 1}). The equivalent machine model is

a nested or embedded push down automata (NPDA or EPDA). They have been proven to have

recognition algorithms with time complexity O(n6 ) considering the size of the grammar a constant

factor ( [67, 62]).

More expressive power can be gained in a mildly context-sensitive model by increasing the pro-

gression of this mechanism: in the grammar model adding another level of grammar control, and in

the machine model allowing another level of embeddedness in the stack.

This is reflected in the pumping lemma. A lemma for level k of the hierarchy involves “pumping”

2k positions in the string. Therefore the following relations follow:

The family of level-k languages contains the languages

{an
1 ...a

n
2k
| n ≥ 0} and {w2 k−1 |w ∈ Σ∗}

but does not contain the languages

{an
1 ...a

n
2k+1

| n ≥ 0} and {w2 k−1+1 |w ∈ Σ∗}
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An increase in the language level increases the time (and space) complexity but it still is in P : for

a level-k control grammar (or a level-k of stack embeddedness, or ordering) the recognition problem

is in O(n3 ·2 k−1

) [86, 87].

There are other formalisms related to mildly context-sensitive languages that are not charac-

terized by a hierarchy of grammar levels, but their complexity and expressive power is bound to

some parameter in the grammar (in other words the expressive power is bound to a parameter

of the grammar itself). Some of those formalisms are: Minimalist grammars [78, 38, 54], Range

Concatenative Grammars [34, 10, 12], and the related Literal Movement Grammars (LMGs). For

LMGs the complexity of the recognition problem is O(|G|m(+p)n1+m+2p) where p is the arity of

the predicates, and m the number of terms in the productions.

In Coupled Context-Free Grammars the recognition problem is in O(|P | ·n3l) where l is the rank

of the grammar [28] and Multiple Context Free Grammars is O(ne) where e is the degree of the

grammar. Multivalued Linear Indexed Grammars [63], Tree Description Grammars [47] are other

such examples.

Contextual Grammars [52, 66] is another formalism with some mildly context sensitive charac-

teristics. However, Contextual Languages do not properly include context-free languages. In this

case the complexity of the recognition problem is a bound polynomial: O(n6 ) space and O(n9 ) time

[36].

1.1.2 Biology and the Language of DNA

Recently, generative grammars have been proposed as models of biological phenomena and the

connections between linguistics and biology have been exploited in different ways (see [40, 69]).

Gene regulation, gene structure and expression, recombination, mutation and rearrangements,

conformation of macromolecules and the computational analysis of sequence data are problems which

have been approached from such a perspective. Searls [70, 68] proposes a grammar model to capture

the language of DNA. He shows that the language of nucleic acids is not regular, nor deterministic

nor linear, that it is ambiguous and that it is not context-free. Those problems which are beyond

context free are: Tandem Repeats (multiple copies), Direct Repeats (the copy language), Pseudoknots

(crossing dependencies) represented as: Lk = {uvūRv̄R}.



1.1. INTRODUCTION 5

Unbounded number of repeats, inverted repeats, combinations, or interleaved repeats, are char-

acteristic of the language of DNA. Probably the work by Searls is the most salient in this field. He

proposed String Variable Grammars to model the language of DNA. String Variable Languages are

a subset of Indexed Languages, and they are able to describe those phenomena. However there is

no known algorithm that decides the recognition problem for String Variable Languages. Recently

Rivas and Eddy [64] proposed an algorithm which is O(n6 ) to predict RNA structure including

pseudoknots, and proposed a formal grammar [65] corresponding to the language that can be parsed

using such an algorithm.

1.1.3 Our proposal

Unlike mildly context-sensitive grammars and related formalisms, in the model we present here,

which we call Global Index Languages, (GILs), there is no correlation between the descriptive power

(regarding the three phenomena we mentioned) and the time complexity of the recognition problem,

which is in time O(n6 ). We will show that the automaton and grammar model proposed here

extends in a natural way the properties of Push Down Automata and context-free languages. We

will also show that it is able to describe phenomena relevant both to natural language and biology.

The following languages can be generated by a Global Index Grammar:

• Lm = {a1
na2

n ...ak
n | n ≥ 1, k ≥ 2} any number of agreements or dependencies.

• L(Gwwn) = {ww+ |w ∈ {a, b}∗} unbounded number of copies or repeats (which allows also an

unbounded number of crossing dependencies).

• L(Gmix ) = {w|w ∈ {a, b, c}∗ and |a|w = |b|w = |c|w ≥ 1} The mix language, which is

conjectured not to be an Indexed Language.

• L(Ggenabc) = {an(bncn)+| n ≥ 1} unbounded number of agreements.

• L(Gsum) = { anbmcmdlelfn | n = m + l ≥ 1}, dependent branches

There are many similarities between Linear Indexed Grammars and Global Index Grammars,

however there are many GI languages which do not belong to the set of Linear Indexed Languages
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(LILs). This suggests that Linear Indexed Languages might be properly included in the family of

Global Index Languages. The recognition problem for Global Index Languages (GILs) has a bounded

polynomial complexity, and there is no correlation between the recognition problem complexity

and the expressive power. GILs include multiple copies languages and languages with any finite

number of dependencies as well as the MIX language. We also discuss the structural descriptions

generated by GIGs along the lines of Gazdar [29] and Joshi [82, 44]. We show in Chapter 6 that

the relevant structural descriptions that can be generated by LIGs/TAGs can also be generated by

a GIG. However GIGs can generate structural descriptions where the dependencies are expressed in

dependent paths of the tree. GILs are also semi-linear, a property which can be proved following

the proof presented in [37] for counter automata. Therefore GILs have at least three of the four

properties required for mild context sensitivity: a) semi-linearity b) polynomial parsability and c)

proper inclusion of context free languages. The fourth property, limited cross-serial dependencies

does not hold for GILs, given they contain the MIX (or Bach) language [11].

In this work we will address three aspects of the problem: language theoretic issues, parsing and

modeling of natural language phenomena. We detail the properties of GILs in the following section.

1.2 Outline of the Thesis and Description of the Results

Language Theoretic Aspects (Chapters 2-4)

We define the corresponding Automaton model, which we call LR-2PDAs in Chapter 2 (a significant

part of this chapter was published in [18]). We present the corresponding grammar model : Global

Index Grammars (GIGs), and the family of Global Index Languages (GILs) in Chapter 3. The

initial presentation of Global Index Languages was published in [17]. A subset of GIGs (trGIGs), is

also presented in Chapter 3, although no further implications are pursued. In addition, a proof of

equivalence between the grammar model and the automaton model (the characterization Theorem)

and a Chomsky-Schützenberger representation Theorem are presented in Chapter 3.

In Chapter 4 we discuss some of the closure properties of Global Index Languages and their

relationship with other languages. The set of Global Index Languages is an Abstract Family of

Languages. An abstract family of languages (AFL) is a family of languages closed under the following
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six operations: union, catenation, Kleene star, intersection with regular languages, free morphisms

and inverse morphisms. We show by construction using GIGs that GILs are closed under union,

concatenation and Kleene star. We also show that GILs are closed under intersection with regular

languages and inverse homomorphism (proved by construction with LR-2PDAs). We also show that

GILs are closed under substitution by e-free CFLs, e-free regular sets, e-free homomorphism. Most

of the properties of GILs shown in these chapters are proved using straightforward extensions of

CFL proofs. This is due to the fact that GILs inherit most of CFL properties. We also prove that

GILs are semi-linear.

Parsing (Chapter 5)

We present a recognition algorithm that extends Earley’s algorithm for CFGs using a graph-

structured stack [80] to compute the operations corresponding to the index operations in a GIG.

The graph-structured stack enables the computations of a Dyck language over the set of indices and

their complements. The time complexity of the algorithm is O(n6 ). However it is O(n) for LR or

state bound grammars and is O(n3 ) for constant indexing grammars which include a large set of

ambiguous indexing grammars. The space complexity is O(n4 ). We evaluated the impact of the

size of the grammar and the indexing mechanism separately. The result, O(|I|3 · |G|2 · n6 ), shows

that the size of the grammar has the same impact as in the CFG case, but the indexing mechanism

could have a higher impact.

We also give an LR parsing algorithm for for deterministic GILs. Deterministic LR parsing tech-

niques are relevant, for example, for higher level programming languages or deterministic approaches

for shallow parsing in natural language. They are also the basis for non-deterministic approaches,

such as a non-deterministic Generalized LR parsing. The construction of the Goto function shows an

interesting (though not surprising) fact about GILs: the Goto function defines a PDA that recognizes

the set of viable prefixes.

Natural Language Modeling (Chapter 6)

We present a comparison of LIGs and GIGs (some of these results were presented in [20]). LIGs,

Combinatory Categorial Grammars, Tree Adjoining Grammars and Head Grammars are weakly
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equivalent. There is a long and fruitful tradition that has used those formalisms for Natural Lan-

guage modeling and processing. GILs include CFLs by definition, so the descriptive power of CFGs

regarding by natural language phenomena is inherited by GIGs. Those natural language phenom-

ena that require an extra power beyond CFLs can be dealt with GILs with much more flexibility

than with LILs/TALs. We also show that GIGs can generate trees with dependent paths. The set

inclusion relation between CFLs, LILs/TALs, and GILs can be represented as in figure 1.1. The

question still to be answered is whether the area with lines in the LILs and LCFR languages set is

empty or not. Our conjecture is that it is. We discuss the relationship of LIGs with GILs in depth

in section 6.2.

Finally, we disscuss how some properties of HPSGs can be modeled with GIGs (presented in [19].

Other formalisms that might share structural similarities with GIGs could be Minimalist Grammars

and Categorial Grammars.

ww

ww +

an n n(b )+

a

c

b cnnn

LILs

GILs

CFLs

LCFRLs

Figure 1.1: Language relations



Chapter 2

Two Stack Push Down Automata

2.1 Automata with two Stacks

Different models of 2-Stack Push Down Automata have been proposed, (e.g.,[31, 83, 9], also gener-

alized models of multistacks (e.g.,[7, 21, 84]). Restricted classes of PDA with two stacks (2-PDA)

were proposed as equivalent to a second order EPDA1, and n-Stack PDA, or multi-store PDAs as

equivalent to n-order EPDA.2 It is well known that an unrestricted 2-PDA is equivalent to a Tur-

ing Machine (cf. [41]). Those models restrict the operation of additional stacks (be embedded or

ordered) allowing to read or pop the top of an additional stack only if the preceding stacks are empty.

The model of 2-PDA that we want to explore here is a model which preserves the main charac-

teristics of a PDA but has a restricted additional storage capacity: allows accessing some limited

left context information, but behaves like a PDA, in the sense that it is forced to consume the

input from left to right and has a limited capacity to go back from right to left.

We need to guarantee that the proposed automaton model does not have the power of a Turing

Machine. The simulation of a TM by a 2-PDA is enabled by the possibility of representing the

head position and the tape to the left side of the head in a TM with one stack and the tape to the

right side with the second stack. Consequently it is possible to simulate the capacity that a TM

1See [7, 81, 59]

2E.g., [21, 84, 85].

9
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has to move from left to right and from right to left, either reading or replacing symbols. In order

to simulate these movements in a 2-PDA, the input must be consumed and it must be possible to

transfer symbols from one stack to the other. Alternatively, the input might be initially stored in

the second stack (e.g., [83, 13]).

We adopt the following restrictions to the transitions performed by the kind of 2-PDA we propose

here: the Main stack behaves like an ordinary PDA stack (allows the same type of transitions that a

PDA allows). However transitions that push a symbol into the second auxiliary stack do not allow

ε moves.3

These constraints force a left to right operation mode on the input in the LR-2PDA, because once

the input is consumed, it is not possible to write into the auxiliary stack. Consequently it is possible

to “use” the information stored in the auxiliary stack only once. Moving back to the left, “erases”

the symbols as they are removed from the stack. Given that it is not possible to re-store them again

in the auxiliary stack, they cannot be recovered (unless some more input is consumed). A more

detailed comparison of TMs, PDAs, and the LR-2-PDA is presented in section 2.3. Its expressive

power is beyond PDA (context free grammars) and possibly beyond EPDA (e.g., TAGs), a 2nd order

PDA in the progression hierarchy presented in [86]. In the next two subsections we review some

models that proposed 2-stack or nested stack automata. In 2.3 we define the LR-2PDA.

2.1.1 EPDA and equivalent 2 Stack Machines

An EPDA, M’, is similar to a PDA, except that the push-down store may be a sequence of stacks.

It is initiated as a PDA but may create new stacks above and below the current stack. The number

of stacks is specified in each move. Then a transition function looks like (from [45]):

δ′ (input symbol, current state, stack symbol)=

(new state, sb1 , sb2 , ..., sbm , push/pop on current stack,st1 , st2 , ..., stn)

where sb1 , sb2 , ..., sbm are a finite number of stacks introduced below the current stack,

and st1 , st2 , ..., stn are stacks introduced above the current stack.

3We might restrict even more the operation of the auxiliary stack disallowing ε moves that pop symbols from the

auxiliary Stack. Consequently this would produce a more restricted set of languages.
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The possibility of swapping symbols from the top stack to embedded stacks produces the context

sensitive power of L2 languages in Weir’s hierarchy. It allows the NPDA, for instance, to recognize

crossed dependencies as in the example depicted in the next figure:

Figure 2.1: Dutch Crossed Dependencies (Joshi & Schabes 97)

2 Stack automata (2-SA) were shown to be equivalent to EPDA [7, 81, 59], they use the additional

stack in the same way as the embedded stacks are used in the EPDA. Symbols written in the second

stack can be accessed only after the preceding stack is empty. They also require the use of a symbol

for the bottom of the stack, so as to separate different sub-stacks.

The possible moves for a 2-SA automaton are the following [7]:

• Read a symbol from the input tape
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• push a string onto, or pop a symbol from, the main stack

• push a string onto the auxiliary stack.

• pop a symbol from the auxiliary stack provided the main stack contains the bottom of the

stack symbol

• create a new set of empty stacks (add a string of bottom of the stack symbols).

• remove bottom of the stack symbols.

Wartena [85] shows the equivalence of the concatenation of one-turn multi-pushdown automata

restricted with respect to reading (as in the 2-SA case), and the alternative restriction with respect

to writing. The reading/writing restriction is related to the requirement that the preceding stacks

be empty. The kind of automata we present implements a restriction on the writing conditions on

the additional stack. But this restriction is not related to conditions on the the main stack but to

conditions on the input.

2.1.2 Shrinking Two Pushdown Automata

Recently there has been interest on Church-Rosser Languages, Growing Context Sensitive Languages

(defined by a syntactic restriction on context sensitive grammars) and the corresponding model of

two pushdown automata (see [24, 16, 15, 53, 58]. In [16] Buntrock and Otto’s Growing Context

Sensitive Languages (GCSLs) are characterized by means of the Shrinking Two Pushdown Automata

(sTPDA). GCSLs are a proper subclass of CSLs: The Gladkij language {w#wR#w | w ∈ {a, b}∗}
belongs to CSL \ GCSLs. GCSLs contain the non-context-free and non-semi-linear {a2n |n ≥ 0}
[16]

The copy language is not a GCSL {ww|w ∈ {a, b}∗}, but {anbncn |n ≥ 1} is a GCSL. The

recognition problem for growing context sensitive grammars is NP-complete ( [14]).

The TPDA initializes the input in one of the stacks. The shrinking-TPDA, is defined as follows:

Definition 1 a) A TPDA is a 7-tuple M = (Q, Σ, Γ, δ, q0 ,⊥, F ), where

• Q is the finite set of states,
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• Σ is the finite input alphabet,

• Γ is the finite tape alphabet with Γ ) Σ and Γ ∩Q = ∅

• q0 ∈ Q is the initial state,

• ⊥ ∈ Γ \ Σ is the bottom marker of pushdown store,

• F ⊆ Q is the set of final (or accepting) states, and

• d : Q × Γ × Γ → P(Q × Γ∗ × Γ∗)

It can be seen that this kind of automaton needs some restriction, otherwise it is equivalent to a

TM. The restriction is implemented using a weight function over the automaton configuration, and

the requirement that every move must be weight reducing [57].

b) A TPDA is M is called shrinking if there exists a weight function φ : Q ∪ Γ → N+ such that

for all q ∈ Q and a, b ∈ Γ if (p, u, v) ∈ (δ, a, b) then φ(puv) < φ(qab).

We can consider the automaton model we present in the next section as preserving a shrinking

property that conditions the use of the additional stack: it has to consume input.

2.2 Left Restricted 2 Stack Push Down Automatas (LR-

2PDAs)

We define here the model of automaton that we described and proposed at the beginning of this

section. We use a standard notation similar to the one used in [77] or [41]. The current state,

the next symbol read and the top symbols of the stacks determine the next move of a LR-2PDA.

Either of these symbols may be ε, causing the machine to move without reading a symbol from the

input or from the stacks. The definition of the transition function δ ensures that transitions with

epsilon moves are allowed only if they do not push a symbol into the auxiliary stack, i.e., only if

they are equivalent to a PDA transition function. Part a) in the definition of the transition function

is equivalent to a PDA. Part b) enables transitions that affect the auxiliary stack if and only if an

input symbol is consumed (i.e. if it is not ε). Part c) is a relaxation of the previous one and enables
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ε-moves that pop elements from the second stack. If part c) is removed from the definition a different

class of automata is defined: we will call it sLR-2PDA. For Natural Language purposes it might be

desirable to keep stronger restrictions on the auxiliary stack. The auxiliary stack should be emptied

only consuming input. Such a restriction could be accomplished in the sLR-2PDA case because

the auxiliary stack cannot be emptied using ε-moves, but this would rule out reduplication (copy)

languages (See the introduction) as we will see below. The set of languages that can be recognized

by a sLR-2PDA is therefore a proper subset of the set of languages that can be recognized by a

LR-2PDA.

Definition 2 A LR-2PDA is a 7-tuple (Q, Σ,Γ, δ, q0 ,⊥, F ) where Q, Σ, Γ, and F are all finite sets

and

1. Q is the set of states,

2. Σ is the input alphabet,

3. Γ is the stacks alphabet,

4. δ is the transition function ( where PF denotes a finite power set, and Γε is Γ ∪ {ε} ) :

a. Q× (Σ ∪ {ε})× Γε × {ε} → PF (Q× Γ∗ × {ε}) and

b. Q× Σ× Γε × Γ → PF (Q× Γ∗ × Γ2 )

c. Q× (Σ ∪ {ε})× Γε × Γ → PF (Q× Γ∗ × {ε})4

5. q0 ∈ Q is the start state

6. ⊥ ∈ Γ \ Σ is the bottom marker of the stacks

7. F ⊆ Q is the set of accept states.

Definition 3 A sLR-2PDA is a LR-2PDA where δ is:

a. Q× (Σ ∪ {ε})× Γε × {ε} → PF (Q× Γ∗ × {ε}) and
4The two transition types a. and c. can be conflated in:

a’. Q× (Σ ∪ {ε})× Γε × Γε → PF (Q× Γ∗ × {ε}) .

We keep them separate to show the parallelism with the type of productions in the grammar model.
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b. Q× Σ× Γε × Γ → PF (Q× Γ∗ × Γ∗)

The instantaneous descriptions (IDs) of a LR-2PDA describe its configuration at a given mo-

ment. They specify the current input, state and stack contents. An ID is a 4-tuple (q, w, γ1 , γ2 )

where q is a state w is a string of input symbols and γ1 , γ2 are strings of stack symbols. If

M = (Q, Σ,Γ, δ, q0 ,⊥, F ) is a LR-2PDA, then (q, aw, Zα, Oβ) `M (p, w, ζα, ηβ) if δ(q, a, Z, O)

contains (p, ζ, η). The reflexive and transitive closure of `M is denoted by `M∗ . The language ac-

cepted by a LR-2PDA M = (Q, Σ,Γ, δ, q0 ,⊥, F ) is {w | (q0 , w,⊥,⊥) `∗(p, ε,⊥,⊥)} for some p in F .

(Acceptance by empty stacks)

2.3 Comparison with TM, PDA and LR-2PDA

A Turing Machine: the input tape is also a storage tape. The input can be transversed as many

times as desired, plus it has an unlimited work-space, that can be also used and reused at any time.

Read and Write one cell
One head

Figure 2.2: A Turing Machine

A PDA: The input can be transversed only once, from left to right. There is a work space (storage

data structure) that also can be transversed only once (as soon there is a move to the left, whatever

remains at the right is forgotten). A clear example of maximum transversal and input storage is

the language Lr = {wwR | w ∈ Σ∗} which can be recognized by a PDA. It has the capacity of

remembering a sequence of symbols and matching it with another equal length sequence, but it

cannot recognize Lc = {ww | w ∈ Σ∗} which would require additional use of the storage capacity.

Writes left to right or same cell

Moves to the left erasing.

Reads left to right only.

Independent operation:
allows e-moves

Figure 2.3: A PDA
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A LR-2PDA: The input can be transversed only once, from left to right. There are two work-

spaces which also can be transversed only once (as soon there is a move to the left, whatever remains

at the right is forgotten). Transfer from one stack to the other is restricted. In order to avoid the

possibility of transferring symbols from one stack to the other indefinitely, the second storage can be

written to only when consuming input; if information from the first ordered stack is transferred to the

second auxiliary stack, then the possibility of storing information from the input seen at this move is

lost. The following languages which can be recognized by an LR-2PDA are examples of a maximum

use of the storage of the input: L2ra = {wwRwRw | w ∈ Σ∗} and L2rb = {wwRwwR | w ∈ Σ∗}. This

exemplifies how many times (and the directions in which) the same substring can be transversed,

but unlike a TM, a LR-2PDA is not able to transverse a substring indefinitely. This capacity is

reduced even further in the case of sLR-2PDA: both types of operations on the auxiliary stack are

made dependent on consuming input. However, given the constraints imposed on LR-2PDAs, an

LR-PDA can recognize the language L3 = {www | w ∈ Σ∗}. While recognizing the second copy all

the information stored about the first copy is lost, but it can store again in the second stack (the

second copy). Consider the following transitions (where a is a symbol in Σ). The corresponding

machine is detailed below in the exsection 2.4.

1. (q1 , a, ε, ε) = (q1 , ε, a) (store the symbols of the first copy)

2. (q2 , ε, ε, a) = (q2 , a, ε) (transfer symbols from auxiliary to main stack)

3. (q3 , a, a, u) = (q3 , ε, au) (recognize the second copy using the symbols stored in the main stack,

and store the symbols of the second copy back

A loop back from state q3 to state q2 allows recognition of the language of any finite number of

copies (example 2).

A sLR-2PDA cannot recognize the copy language: if the auxiliary stack is used to store all the

symbols of the input tape then it would be of no more use than storing all the symbols in the

main stack: the symbols can only be transferred from the auxiliary stack to the main stack only if

the input tape is being read, consequently what is being read cannot be stored in the main or the

auxiliary stack if there is a transferral occurring. The crucial fact is that transitions type c. (above)
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 Independent moving.

Dependent writing from  1.

Moves to the left erasing.

Moves to the left erasing.

Writes left to right or same cell

Writes left to right or same cell

Reads left to right only.

 Transfer possible

Independent both operations.

Figure 2.4: LR-2PDA

are not allowed. However the language L = {wuw | u,w ∈ Σ∗ and |w| ≤ |u|} is recognized by a

sLR-2PDA.

Independent both operations.

Moves to the left erasing.

Writes left to right or same cell

Moves to the left erasing.

Writes left to right or same cell

Reads left to right only.

Dependent writing from  1.

 Dependent moving (erasing)

 Transfer NOT possible

Figure 2.5: sLR-2PDA

2.4 Examples of LR-2PDAs

The first example is a sLR-2PDA. Examples 2 and 3 are LR-2PDAs.

Example 1 (Multiple Agreements) .

M5 = ({q0 , q1 , q2 , q3}, {a, b, c, d, e}, {x}, δ, q0 ,⊥, q3 ) where δ:
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( [] , $ , $) = accept

4

( [] , $ , $) = accept

ε
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ε
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5

6

Four Counting Dependencies

 Idem

3

ε
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(c, c ,a’) = (cc,     )

 Idem
ε(a,a,    ) = (aa,     )
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(b,a,  $ ) = (   ,a’$)

Three counting dependencies

(c,$,a’) = (c$,     )

( d , c ,   ) =  (   ,   )

(a,$,   ) = (a$,      )  

ε ε

( d , c , $) =  (   , c’$)

Five Counting dependencies

ε

M 1
M M2 3

Figure 2.6: Multiple agreement in an sLR-2PDA

1. δ(q0 , a,⊥,⊥) = {(q1 , x⊥,⊥)}

2. δ(q1 , a, x,⊥) = {(q1 , xx,⊥)}

3. δ(q1 , b, x,⊥) = {(q1 , ε, x⊥)}

4. δ(q1 , b, x, x) = {(q1 , ε, xx})

5. δ(q1 , c,⊥, x) = {(q2 ,⊥, ε), (q1 , x⊥, ε)}

6. δ(q1 , c, x, x) = {(q1 , xx, ε)}

7. δ(q1 , d, x,⊥) = {(q1 , ε, x⊥), (q2 , ε,⊥)}

8. δ(q1 , d, x, x) = {(q1 , ε, xx}

9. δ(q1 , e,⊥, x) = {(q2 ,⊥, ε)}

10. δ(q2 , c,⊥, x) = {(q2 ,⊥, ε)}

11. δ(q2 , d, x,⊥) = {(q2 , ε,⊥)}

12. δ(q2 , e,⊥, x) = {(q2 ,⊥, ε)}

L(M5 ) = {anbncn | n ≥ 1} ∪ {anbncndn | n ≥ 1} ∪ {anbncndnen | n ≥ 1}

It can be easily seen that the following is a proper generalization:

Claim 1 For any alphabet Σ = {a1 , ..., ak}, where k > 3, there is an sLR-2PDA that recognizes the

language L(Mk ) = {a1
na2

n ...a
k
n | n ≥ 1}
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Proof Construct the sLR-2PDA Mk as follows:

Mk = ({q0 , q1 , q2}, Σ, Σ, δ, q0 ,⊥, q2 ) where δ is as follows, such that o, e ≥ 3 < k and o is odd

and e is even:
1. δ(q0 , a1 ,⊥,⊥) = {(q1 , a1⊥,⊥)}

2. δ(q1 , a1 , a1 ,⊥) = {(q1 , a1a1 ,⊥)}

3. δ(q1 , a2 , a1 ,⊥) = {(q1 , ε, a2⊥)}

4. δ(q1 , a2 , a1 , a2 ) = {(q1 , ε, a2a2})

5. δ(q1 , ao ,⊥, ao−1 ) = {(q1 , ao⊥, ε)}

6. δ(q1 , ao , ao , ao−1 ) = {(q1 , aoao , ε)}

7. δ(q1 , ae , ae−1 ,⊥) = {(q1 , ε, ae⊥)}

8. δ(q1 , ae , ae−1 , ae) = {(q1 , ε, aeae} and

9. δ(q1 , ak ,⊥, ak−1 ) = {(q2 ,⊥, ε)} if k is odd

or

10. δ(q1 , ak , ak−1 ,⊥) = {(q2 , ε,⊥)} if k is

even.
¤

In the next example, transitions 1 to 4 recognize the first occurrence of w, transitions 5 to 8,

reverse the order of the stored symbols, transitions 9 to 12 recognize either the following copy or

the last copy. If an intermediate copy is recognized transitions 13 and 14 allow going back to state

2 and reverse the order of the stored symbols.

Example 2 (The language of multiple copies) Mwwn = ({q0 , q1 , q2 , q3}, {a, b}, {x, y}, δ, q0 ,⊥, q3 )

where δ (s.t. u is any symbol in the vocabulary):
1. δ(q0 , a,⊥,⊥) = {(q1 ,⊥, x⊥)}

2. δ(q0 , b,⊥,⊥) = {(q1 ,⊥, y⊥)}

3. δ(q1 , a,⊥, u) = {(q1 ,⊥, xu)}

4. δ(q1 , b,⊥, u) = {(q1 ,⊥, yu)}

5. δ(q1 , ε,⊥, x) = {(q2 , x⊥, ε)}

6. δ(q1 , ε,⊥, y) = {(q2 , y⊥, ε)}

7. δ(q2 , ε, w, x) = {(q2 , xw, ε)}

8. δ(q2 , ε, w, y) = {(q2 , yw, ε)}

9. δ(q2 , a, x,⊥) = {(q3 , ε, x⊥), (q3 , ε,⊥)}

10. δ(q2 , b, y,⊥) = {(q3 , ε, y⊥), (q3 , ε,⊥)}

11. δ(q3 , a, x, u) = {(q3 , ε, xu), (q3 , ε,⊥)}

12. δ(q3 , b, y, u) = {(q3 , ε, yu), (q3 , ε,⊥)}

13. δ(q3 , ε,⊥, x) = {(q2 , x⊥, ε)}

14. δ(q3 , ε,⊥, y) = {(q2 , y⊥, ε)}

L(M4 ) = {ww+ |w ∈ {a, b}+}
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Example 3 (Crossed dependencies) Mcr3 = ({q0 , q1 , q2 , q3}, {a, b, c, d, e, f}, {x, y, z}, δ, q0 ,⊥, q3 )

where δ:
1. δ(q0 , a,⊥,⊥) = {(q1 ,⊥, x⊥)}

2. δ(q1 , a,⊥, x) = {(q1 ,⊥, xx)}

3. δ(q1 , b,⊥, x) = {(q1 ,⊥, yx)}

4. δ(q1 , b,⊥, y) = {(q1 ,⊥, yy)}

5. δ(q1 , c,⊥, y) = {(q1 ,⊥, zy)}

6. δ(q1 , c,⊥, z) = {(q1 ,⊥, zz)}

7. δ(q1 , ε,⊥, z) = {(q2 , z⊥, ε)}

8. δ(q2 , ε, z, z) = {(q1 , zz, ε)}

9. δ(q2 , ε, z, y) = {(q1 , yz, ε)}

10. δ(q2 , ε, y, y) = {(q1 , yy, ε)}

11. δ(q2 , ε, y, x) = {(q1 , xy, ε)}

12. δ(q2 , d, x,⊥) = {(q3 , ε,⊥)}

13. δ(q3 , d, x,⊥) = {(q3 , ε,⊥)}

14. δ(q3 , e, y,⊥) = {(q3 , ε,⊥)}

15. δ(q3 , f, z,⊥) = {(q3 , ε,⊥)}
L(Mcr3 = {anbmcldnemf l | n,m, l ≥ 1}

2.5 Determinism in LR-2PDA

An LR parser for a CFL is essentially a compiler that converts an LR CFG into a DPDA automata

[41, 2]. Therefore understanding the deterministic LR-2PDA is crucial for obtaining a deterministic

LR parser for GILs defined in chapter 6. Deterministic GILs are recognized in linear time as we

mentioned in the introduction. The corresponding definition of a deterministic LR-2PDA is as

follows:

2.5.1 Deterministic LR-2PDA

Definition 4 A LR-2PDA is deterministic iff:

1. for each q ∈ Q and Z, I ∈ Γ, whenever δ(q, ε, Z, I) is nonempty, then δ(q, a, Z, I) is empty for

all a ∈ Σ.

2. for no q ∈ Q, Z, I ∈ Γ, and a ∈ Σ ∪ {ε} does δ(q, a, Z, I) contain more than one element.

3. for each q ∈ Q, A ∈ Σ and Z, I ∈ Γ, whenever δ(q, A, Z, ε) is nonempty, then δ(q, A, Z, I) is

empty for all I ∈ Γ.
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Condition 1 prevents the possibility of a choice between a move independent of the input

symbol (ε-move) and one involving an input symbol.

Condition 2 prevents the choice of move for any equal 4-tuple.

Condition 3 prevents the possibility of a choice between a move independent of the second

stack symbol (ε-move) and one involving a symbol from the stack.

We can regard ε to be an abbreviation for all the possible symbols in the top of the stack. Therefore,

in the following examples of transitions, the first case is not compatible with the third, nor with the

fourth, because they imply a non-deterministic choice.

1. (q, a, ε, ε) = (q, ε, i) 2. (q, b, ε, ε) = (q, ε, j)

3. (q, a, ε, i) = (q, ε, ε) 4. (q, a, ε, j) = (q, ε, j)

2.5.2 LR-2PDA with deterministic auxiliary stack

Even if a GIG grammar is non-deterministic, it might be an advantage to be able to determine

whether the non-determinism lies in the CFG back-bone only and the indexing mechanism does not

introduce non-determinism. If the non-determinism is in the CFG backbone only we can guarantee

that the recognition problem is in O(n3 ). The construction of the LR(k) parsing tables would show

whether the indexing mechanism for a given GIG is non-deterministic.

Definition 5 A LR-2PDA has a deterministic indexing, or is a deterministic indexing LR-2PDA

if and only if:

1. for each q ∈ Q and Z, I ∈ Γ, whenever δ(q, ε, Z, I) is nonempty, then δ(q, a, Z, I) is empty for

all a ∈ Σ.

2. for no q ∈ Q, Z, I ∈ Γ, and a ∈ Σ ∪ {ε} does δ(q, a, Z, I) contain two elements = (qi , Zi , I i)

and (qj , Zj , I j ) such that I i 6= I j .

3. for each q ∈ Q, A ∈ Σ and Z, I ∈ Γ, whenever δ(q, A, Z, ε) is nonempty, then δ(q, A, Z, I) is

empty for all I ∈ Γ.
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Chapter 3

Global Index Grammars

3.1 Indexed Grammars and Linear Indexed Grammars

Indexed grammars, (IGs) [1], and Linear Index Grammars, (LIGs;LILs) [29], have the capability to

associate stacks of indices with symbols in the grammar rules. IGs are not semi-linear (the class of

ILs contains the language {a2n | n ≥ 0}). LIGs are Indexed Grammars with an additional constraint

on the form of the productions: the stack of indices can be “transmitted” only to one non-terminal.

As a consequence they are semi-linear and belong to the class of MCSGs. The class of LILs contains

L4 but not L5 (see Chapter 1).

An Indexed Grammar is a 5-tuple (N, T, I, P, S), where N is the set of non-terminal symbols,

T the set of terminals, I the set of indices, S in V is the start symbol, and P is a finite set of

productions of the form:

a. A → α b. A[..] → B[i..] c. A[i..] → [..]α

where A and B are in V , i is in I , [..] represents a stack of indices, a string in I∗, and α is in

(V ∪ T )∗.

The relation derives, ⇒, on sentential forms, i.e., strings in (V I∗∪T )∗, is defined as follows. Let

β and γ be in (V I∗ ∪ T )∗, δ be in I∗, and X i in V ∪ T .

23
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1. If A → X1 ...Xk is a production of type a. then

βAδγ ⇒ βX1 δ1 ...Xkδkγ

where δi = δ if X i is in V and δi = ε if X i is in T.

2. If A[..] → B[x..] is a production of type b. then

βAδγ ⇒ βBxδγ

3. If [x..]A → [..] X1 ...Xk is a is a production of type c. then

βAxδγ ⇒ βX1 δ1 ...Xkδkγwhere δi = δ if X i is in V and δi = ε if X i is in T.

Example 4 L(G1 ) = {a2n

n ≥ 0}, G1 = ({S, A}, {a}, {i}, P, S) where P :

S[..] → S[i..], S[..] → A[..] A[..] A[i..] → A[..] A[..] A[] → a

A Linear Indexed Grammar is an Indexed Grammar where the set of productions have the

following form, where A and B are non terminals and α and γ are (possible empty) sequences of

terminals and non terminals:

a. A[..] → α B[..] γ

b. A[i..] → α B[..] γ

c. A[..] → αB[i..] γ

Example 5 L(G1 ) = {anbncndn |n ≥ 0}, G1 = ({S, B}, {a, b, c, d}, {i}, P, S), where P is:

S[..] → aS[i..]d, S[..] → B[..], B[i..] → bB[..]c, B[ ] → ε

3.2 Global Index Grammars

In the IG or LIG case, the stack of indices is associated with variables. It is a grammar that controls

the derivation through the variables of a CFG. The proposal we present here uses the stack of indices

as a unique designated global control structure. In this sense, these grammars provide a global but

restricted context that can be updated at any local point in the derivation. GIGs are a kind of

regulated rewriting mechanism [25] with global context and history of the derivation (or ordered

derivation) as the main characteristics of its regulating device. The introduction of indices in the

derivation is restricted to rules that have terminals in the right-hand side. This feature makes the use
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of indices dependent on lexical information, in a linguistic sense, and allows the kind of recognition

algorithm we propose in Chapter 5. An additional constraint imposed on GIGs is strict leftmost

derivation whenever indices are introduced or removed by the derivation.

Definition 6 A GIG is a 6-tuple G = (N, T, I, S, #, P ) where N,T, I are finite pairwise disjoint

sets and 1) N are non-terminals 2) T are terminals 3) I a set of stack indices 4) S ∈ N is the start

symbol 5) # is the start stack symbol (not in I,N ,T ) and 6) P is a finite set of productions, having

the following form,1 where x ∈ I, y ∈ {I ∪#}, A ∈ N , α, β ∈ (N ∪ T )∗ and a ∈ T .

a.1 A →
ε

α or A → α (epsilon rules or context free (CF) rules )

a.2 A →
[y]

α or [..]A → [..]α (epsilon rules or CF with constraints)

b. A →
x

a β or [..]A → [x..]a β (push rules or opening parenthesis)

c. A →̄
x

α or [x..]A → [..]α (pop rules or closing parenthesis)

Note the difference between push (type b) and pop rules (type c): push rules require the right-

hand side of the rule to contain a terminal in the first position. Pop rules do not require a terminal at

all. The constraint on push rules is a crucial property of GIGs, without it GIGs would be equivalent

to a Turing Machine. In the next subsection we present an even more restricted type of GIG that

requires both push and pop rules in Greibach Normal Form.

Derivations in a GIG are similar to those in a CFG except that it is possible to modify a string

of indices. This string of indices is not associated with variables, so we can consider them global.

We define the derives relation ⇒ on sentential forms, which are strings in I∗#(N ∪ T )∗ as follows.

Let β and γ be in (N ∪ T )∗, δ be in I∗, x in I, w be in T ∗ and X i in (N ∪ T ).

1. If A →
µ

X1 ...Xk is a production of type a. (i.e. µ = ε or µ = [x], x ∈ I) then:

δ#βAγ ⇒ δ#βX1 ...Xkγ

Using a different notation:

δ#βAγ ⇒
ε

δ#βX1 ...Xkγ (production type a.1 or context free )

xδ#βAγ ⇒
[x]

xδ#βX1 ...Xkγ) (production type a.2)

1The notation at the left makes explicit that operation on the stack is associated to the production and not to

terminals or non-terminals. It also makes explicit that the operations are associated to the computation of a Dyck

language (using such notation as used in e.g. [39]). The notation at the right is intended to be more similar to the

notation used in IGs and LIGs.
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This is equivalent to a CFG derives relation in the sense that it does not affect the stack of

indices (push and pop rules).

2. If A →
µ

aX1 ...Xn is a production of type (b.) or push: µ = x, x ∈ I, then:

δ#wAγ ⇒ xδ#waXk ...Xnγ ( or δ#wAγ ⇒
x

xδ#waX1 ...Xnγ )

3. If A →
µ

X1 ...Xn is a production of type (c.) or pop : µ = x̄, x ∈ I, then:

xδ#wAγ ⇒ δ#wX1 ......Xnγ ( or xδ#wAγ ⇒̄
x

δ#wX1 ...Xnγ )

The reflexive and transitive closure of ⇒ is denoted as usual by ∗⇒. We define the language of a

GIG G, L(G) to be: {w|#S
∗⇒ #w and w is in T ∗}

It can be observed that the main difference between, IGs, LIGs and GIGs, is the interpretation

of the derives relation relative to the behavior of the stack of indices. In IGs the stacks of indices are

distributed over the non-terminals on the right-hand side of the rule. In LIGs indices are associated

with only one non-terminal at the right-hand side of the rule. This produces the effect that there

is only one stack affected at each derivation step, with the consequence that LILs are semilinear.

GIGs share this uniqueness of the stack with LIGs, but to an extreme: there is only one stack to be

considered. Unlike LIGs and IGs, the stack of indices in a GIG is independent of non-terminals in the

GIG case. GIGs can have rules where the right-hand side of the rule is composed only of terminals

and affects the stack of indices. Indeed push rules (type b) are constrained to start the right-hand

side with a terminal as specified in GIG’s definition (6.b) (in other words push productions must be

in Greibach Normal Form).

The derives definition requires a leftmost derivation for those rules (push and pop rules) that

affect the stack of indices.

3.2.1 trGIGS

We now define trGIGs as GIGs where the pop rules (type c.) are constrained to start with a

terminal in a similar way as push (type b.) rules in GIGs. We also introduce some examples of

trGIGs modeling multiple agreements and crossed dependencies.

Definition 7 A trGIG is a GIG where the set of production of types (c) (pop) rules, are as follows,

where x ∈ I, A ∈ N , α, β ∈ (N ∪ T )∗, x ∈ I, and a ∈ T :

c. A →̄
x

a β or [x..]A → [..] a β
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Example 6 (multiple agreements) L(G5 ) = {anbncndnen | n ≥ 1},
G5 = ({S, A,C, D1 , D, E}, {a, b, c, d, e}, {a′, g′}, S, #, P ) and P is:

S → ACE A →
i

aAb A →
i

ab C →̄
i

cD1 D1 → CD

C →̄
i

cD D →
j

d E →̄
j

eE E →̄
j

e

The derivation of w = aabbccddee:

#S ⇒ #ACE ⇒ i#aAbCE ⇒ ii#aabbCE ⇒ i#aabbcD1E ⇒ i#aabbcCDE ⇒ #aabbccDDE ⇒
j#aabbccdDE ⇒ jj#aabbccddE ⇒ j#aabbccddeE ⇒ #aabbccddee

Example 7 (crossing dependencies) L(Gcr ) = {anbmcndm | n,m ≥ 1}, where Gcr = ({S,A, B, C}, {a, b, c, d}, {x, y}, S, #, P )

and P is:

1. S → A D 2. A → a A c | a B c 3. B →
x

b B | b 4. D →̄
x

d D | d

Now we generalize example 6 and show how to construct a trGIG that recognizes any finite number

of dependencies (similar to the LR-2PDA automaton presented in the previous chapter):

Claim 2 The language Lm = {a1
na2

n ...a
k
n | n ≥ 1, k ≥ 4} is in trGIL

Proof Construct the GIG grammar

Gk = ({S, E2 , O3 , ..., Ak}, {a1 , ..., ak}, {a′2 , a′4 , ..., a′j}, S, #, P ) such that k ≥ 4 and j = k if k is

even or j = k − 1 if k is odd, and P is composed by:

1. S → a1 S E2 2. S→ a1 E2

and for every Ei and Oi such that i is odd in Oi and i is even in Ei add the following rules:

3a.Ei →
ai

ai Ei 4a. Ei →
ai

ai Oi+1 5a. Oi →
āi−1

ai Oi Ei+1

6a. Oi →
āi−1

ai Ei+1

If k is even add: 3b.Ak → ak Ak 4b. Ak → ak

If k is odd add: 5b. Ak →
āk−1

ak Ak 6b. Ok →
āk−1

ak

L(Gn) = {a1
na2

n ...a
k
n | n ≥ 1, 4 ≤ k}

We can generalize the same mechanism even further as follows:

Example 8 (Multiple dependencies) L(Ggdp) = { an(bncn)+ | n ≥ 1},
Ggdp = ({S,A, R,E, O,L}, {a, b, c}, {i}, S, #, P ) and P is:

S → AR A → aAE A → a E →
i

b R →
i

b L

L → OR | C C →̄
i

c C | c O →̄
i

c OE | c
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The derivation of the string aabbccbbcc shows five dependencies.

#S ⇒ #AR ⇒ #aAER ⇒ #aaER ⇒ i#aabR ⇒ ii#aabbL ⇒ ii#aabbOR ⇒
i#aabbcOER ⇒ #aabbccER ⇒ i#aabbccbRii#aabbccbbL ⇒ ii#aabbccbbC ⇒
i#aabbccbbcC ⇒ #aabbccbbcc

3.2.2 GIGs examples

We conjecture that the following languages can be defined with a GIG and cannot be defined using

a trGIG. Above, we mentioned the difference between push and pop rules in GIGs. This difference

enables the use of left recursive pop rules so that the order of the derivation is a mirror image of the

left-right order of the input string. This is not possible in trGIGs because pop rules cannot be left

recursive.

Example 9 (Copy Language) L(Gww ) = {ww |w ∈ {a, b}∗}
Gww = ({S,R}, {a, b}, {i, j}, S, #, P ) and P =

1. S →
i

aS 2. S →
j

bS 3. S → R 4. R →̄
i

Ra | a 5. R →̄
j

Rb | b
The derivation of the string abbabb:

#S ⇒ i#aS ⇒ ji#abS ⇒ jji#abbS ⇒ ji#abbRb ⇒ i#abbRbb ⇒ #abbRabb ⇒ #abbabb

Example 10 (Multiple Copies) L(Gwwn) = {ww+ | w ∈ {a, b}∗}
Gwwn = ({S, R, A, B, C}, {a, b}, {i, j}, S, #, P ) and P =

S → AS | BS | C C → RC | L R →̄
i

RA R →̄
j

RB R →
[#]

ε A →
i

a

B →
j

b L →̄
i

La | a L →̄
j

Lb | b
The derivation of ababab:

#S ⇒ #AS ⇒ i#aS ⇒ i#aBS ⇒ ji#abS ⇒ ji#abC ⇒ ji#abRC ⇒ i#abRBC ⇒ #abRABC ⇒
#abABC ⇒ i#abaBC ⇒ ji#ababS ⇒ ji#ababL ⇒ i#ababLb ⇒ #ababab

In the next example, we can see that by using left recursive pop productions we can generate a

language with a higher number of crossing dependencies than we can by using a trGIG. It is easy

to see that by generalizing the same mechanism any finite number of crossing dependencies can be

generated.

Example 11 (Crossing Dependencies) L(Gcr3 ) = {anbmcldnemf l}
Gcr3 = ({S, F, L,B,C, D,E}, {a, b, c, d, e, f}, {i, j, k}, S, #, P ) and P =
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1. S → FL 2. F →
i

aF | aB 3. B →
j

bB | bC 4. C →
k

cC | c
5. L →̄

k
Lf | Ef 6. E →̄

j
Ee | De 7. D →̄

i
Dd | d

This can be even further generalized, obtaining sets of crossing dependencies, as exemplified by

Lmcr = {anbmcldnemf lgnhm il} or {anbmcl(dnemf l)+}
The next example shows the MIX (or Bach) language (the language with equal number of a’s

b’s and c’s in any order, see e.g. [11] ). It was conjectured in [29] that the MIX language is not

an IL. We show that GILs are semilinear, therefore ILs and GILs could be incomparable under set

inclusion. This language though conceptually simple, turns out to be a very challenging problem.

It allows an incredible number of possible strings of any given length in the language, and at the

same time it requires that three dependencies be observed. The number of permutations for a string

of length n is n!. There are also factorial duplicates for the number of times a character occurs in

the string. In the mix language each character occurs in one third of the string and there are three

characters. The number of strings of length 3n is (3n)!/(n!)3 .

Example 12 (MIX language) Gmix = ({S}, {a, b, c}, {i, j, k}, S, #, P ) and P is:

S →
i

cS S →
j

bS S →
k

aS

S →̄
i

SaSbS | SbSaS

S →̄
j

SaScS | ScSaS

S →̄
k

SbScS | ScSbS

S → ε

L(Gmix ) = Lmix = {w|w ∈ {a, b, c}∗ and |a|w = |b|w = |c|w ≥ 1}

Example of a derivation for the string abbcca.

S ⇒ k#aS ⇒ #aSbScS ⇒ #abScS ⇒ j#abbcS ⇒ #abbcScSaS ⇒ #abbccSaS ⇒ #abbccaS ⇒
#abbcca

We present here the proof that L(Gmix ) = Lmix . This is important because it is very difficult

to build a proof for the claim that the MIX language belongs (or does not belong to) to a family of

languages 2. The difficulty is due to the number of strings in the language at the basic combination

level (there are 90 strings of length 6, and 1680 strings of length 9), and the need to ensure that

the three dependencies (between a’s, b’s and c’s) are observed. It is easy to design GIG grammars

where the respective languages are in Lmix , however it is not so easy to prove or assess whether the

2A. Joshi p.c.
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language is indeed Lmix . It might just turn out to be a significant subset of Lmix (in other words it

is not so easy to figure out if there are some set of strings in Lmix that might not be generated by

a particular grammar).

Proof .

First direction: L(Gmix ) is in Lmix = {w|w ∈ {a, b, c}∗ and |a|w = |b|w = |c|w ≥ 0}.
It can be seen that all the derivations allow only equal number of a′s, b′s and c′s due to the

constraint imposed by the indexing mechanism.

Second direction: Lmix is in L(Gmix )

Basis n = 0, ε is clearly in the language.

n = 3:

S ⇒
k

k#a ⇒̄
k

#abc

S ⇒
k

k#a ⇒̄
k

#acb

S ⇒
j

j#b ⇒̄
j

#bac

S ⇒
j

j#b ⇒̄
j

#bca

S ⇒
i

i#b ⇒̄
i

#cba

S ⇒
i

i#b ⇒̄
i

#cab

Inductive Hypothesis: Assume for any string uwyz in Lmix then uwyz is in L(GMIX ), where

|uwyz| = n, n ≥ 0. We need to prove that ut1wt̄2yt̄3 z is in L(GMIX ) ( |utiwt̄iyt̄iz| = n+3). Where

t1 t̄2 t̄3 is any string of length three in Lmix and t designates the terminals that introduce the indices

in the derivation, and t̄ are members of the pairs that remove indices in the derivation. We show

that Gmix generates any utiwt̄iyt̄iz

It is trivial to see that the following derivation is obtained (where a corresponds to tk and b and c

to the t̄k ’s.

1. S
∗⇒ δ#uS ⇒ kδ#uaS ⇒ δ#uaSbScS

∗⇒ δ′#uawbScS

But at this point the strings b and c might block a possible derivation. This blocking effect can be

illustrated by the following hypothetical situation: suppose uwyz might be composed by u = u′b1 ,

y = a1y′c1 z, w = w′c2 and y′ = a2y′′b2 trigger the following derivation (perhaps the only one).

2. S
∗⇒ jδ′#u′bS ⇒ δ#u′bSaScS

∗⇒ iδ′′#u′bw′caScS ⇒ δ′′#u′bw′caay′′bcS

If we try to combine the derivation proposed in 1. with the one proposed in 2. we reach the

following point:
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3. S
∗⇒ jδ′#u′b1S ⇒ kjδ′#u′b1a0S ⇒ jδ′#u′b1a0Sb0Sc0S

At this point the next step should be the derivation of the non-terminal S at b0Sc0 , removing

the index j. This cannot be done because the derivation has to proceed with the preceding S (at

a0Sb0 ) due to the leftmost derivation constraint for GIGs. Therefore, there is no guarantee that

the necessary sequence of indices are removed.

We prove now that such a blocking effect in the indexing is not possible: there are always

alternative derivations, because the grammar is highly ambiguous.

We need to account whether there is a possible configuration such that a conflict of indices arises.

In other words, is there any possible combination of indices :

ti · · · tj · · · tk · · · t̄j · · · t̄k · · · t̄i · · · t̄j · · · t̄k · · · t̄i
that cannot be derived by GMIX ? Remember t designates the terminals that introduce the indices

in the derivation, and t̄ are members of the pairs that remove indices in the derivation. We show

now that this situation is impossible and that therefore Lmix is in L(GMIX ).

Claim 3 For any sequence of possibly conflicting indices the conflicting indices can be reduced to

two conflicting indices in a derivation of the grammar Gmix .

Case 1. there are three different indices (ti 6= tj 6= tk ):

tiutj vtk ... clearly S ⇒ i#tiS ⇒ #tiStjStkS and the complements of ti , tk , tj are reduced to the

case of two conflicting indices.

Case 2. there is more than one element in one of the indices :

ti tj (ti)n [t̄j t̄j (t̄i t̄i)n+1 ] for example: ab(a)n [cacb](cb)n ab(a)n [accb](cb)n

S ⇒ tiS[ti ti ] reduces to the following problem which is derived by the embedded S

tj (ti)n [t̄j ..t̄j ...(t̄i ...t̄i)n ]

And this problem is reduced to:

tj tiSt̄j t̄j t̄i t̄iS i.e.: baScacbS where the two non terminal S expand the ti
n−1 triples.

This in turn can be easily derived by:

δ#S ⇒ jδ#bS ⇒ δ#baScS ⇒ in−1 δ#baan−1 cS ⇒ kin−1 δ#baan−1 caS ⇒
in−1 δ#baan−1 cacbS ⇒ δ#baan−1 cacb(cb)n−1

Claim 4 For any sequence of two possible conflicting indices there is always at least a derivation in

Gmix .
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Assume the possible empty strings u,w, x, z and y do not introduce possible blocking indices (i.e.

if indices are introduced, they are also removed in the derivation of the substring). This assumption

is made based on the previous two claims, given we are considering just two possible conflicting

indices.

Formally:

S
∗⇒ #uS

∗⇒ #uwS
∗⇒ #uwxS

∗⇒ #uwxzS
∗⇒ #uwxzy

Therefore for the following combination:

tiutjwt̄ixt̄izt̄j yt̄j :

the following derivation is possible.

S
∗⇒ i#utiS ⇒ #utiSt̄iSt̄iS

∗⇒ j#utivtj t̄iSt̄iS
∗⇒

j#utivtj t̄ixt̄iS ⇒ #utivtj t̄ixt̄iSt̄jSt̄j
∗⇒ #utivtj t̄ixt̄izt̄j yt̄j

Similar alternatives are possible for the remaining combinations:

utivt̄iwtjxt̄izt̄j yt̄j utivt̄iwtjxt̄j zt̄iyt̄j

utivtjwt̄jxt̄izt̄j yt̄i utivtjwt̄jxt̄izt̄iyt̄j

utivtjwt̄ixt̄j zt̄j yt̄i utivtjwt̄ixt̄j zt̄iyt̄j

However the last one requires some additional explanation. Let us assume the ti triple corresponds

to a(bc) and tj triple corresponds to b(ca) therefore it is: uaivbjwbixcj zciyaj

(or uaivbj cixcj zbiyaj , etc.)

It can be seen that there is an alternative derivation:

S
∗⇒ k#uaivS ⇒ #uaivbjScjS

∗⇒ j#uaivbjwbixcjS ⇒
#uaivbjwbixcjSciSaj

∗⇒ #uaivbjwbixcjzciyaj .

Therefore we conclude that there is no possible blocking effect and there is always a derivation:

S
∗⇒ #uawbycz

¤

We also used the generate-and-test strategy to verify the correctness of the above grammar Gmix

for Lmix and two other grammars for the same language. The tests were performed on the strings

of length 6 and 9.

3.3 GILs and Dyck Languages

We argue in this section that GILs correspond to the result of the “combination” of a CFG with

a Dyck language. The well-known Chomsky-Schützenberger theorem [22], shows that any CFG is
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the result of the “combination” of a Regular Language with a Dyck Language. The analogy in the

automaton model is the combination of a Finite State Automaton with a stack, which results in

a PDA. Push and pop moves of the stack have the power to compute a Dyck language using the

stack symbols. This “combination” is formally defined in the CFG case as follows: each context-free

language L is of the form, L = φ(Dr ∩R), where D is a semi-Dyck set, R is a regular set and φ is a

homomorphism [39].

Dyck languages can also provide a representation of GILs. A GIG is the “combination” of a CFG

with a Dyck language: GIGs are CFG-like productions that may have an associated stack of indices.

This stack of indices, as we said, has the power to compute the Dyck language of the vocabulary of

indices relative to their derivation order. As we have seen above, GILs include languages that are

not context free. GILs can be represented using a natural extension of Chomsky-Schützenberger

theorem (we will follow the notation used in [39]).

Theorem 1 (Chomsky-Schützenberger for GILs) .

For each GIL L, there is an integer r, a CFL and a homomorphism φ such that L = φ(Dr∩CFL).

Proof Let L = L(G), where G = (NT, T, I, S,#, P ).

T and I are pairwise disjoint and |T ∪ I| = r

The alphabet for the semi-Dyck set will be Σ0 = (T ∪ I) ∪ (T̄ ∪ Ī). Let Dr be the semi-Dyck set

over Σ0 .

Define φ as the homomorphism from Σ0
∗ into T ∗ determined by

φ(a) = a, φ(ā) = ε if a ∈ T .

φ(i) = ε, φ(̄i) = ε if i ∈ I.

Define a CFG grammar G1 = (N, Σ0 , S1 , P1) such that P1 is given according to the following

conditions. For every production p ∈ P where a ∈ T, i ∈ I, and α, β ∈ (N ∪ T )∗ create a new

production p1 ∈ P1, such that α1 and β1 ∈ (N ∪ T T̄ )∗ as follows: 3

1. if p = A → αaβ then p1 = A1 → α1aāβ1

2. if p = A →
i

α then p1 = A1 → iα1

3We use a subscript 1 to make clear that either productions and non-terminals with such subscript belong to the

CFG G1 and not to the source GIG.
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3. if p = A →̄
i

α then p1 = A1 → īα1

4. if p = A →
[i]

α then p1 = A1 → īiα1

L(G1) is a CFL, so we have defined Dr , φ and the corresponding CFL. We have to show that

L = φ(Dr ∩ L(G1)). The proof is an induction on the length of the computation sequence.

First direction L ⊆ φ(Dr ∩ L(G1)). Suppose w ∈ L.

Basis

a) w = ε then #S ⇒ #ε and S1 ⇒ ε

b) |w| = 1 then #S ⇒ #a and S1 ⇒ aā

Both ε and aā are in Dr ∩ L(G1)

The induction hypothesis exploits the fact that any computation starting at a given configuration

of the index stack and returning to that initial configuration is computing a Dyck language.

Induction Hypothesis. Suppose that if there is a GIL derivation δ#uA
k⇒ δ#uyB (where u, y ∈

T ∗) implies there is a L(G1) derivation u′A k⇒ u′zB (where u′, z ∈ (T T̄ ∪ I ∪ Ī)∗) such that z ∈ Dr

and φ(z) = y for every k < n, n > 1 then:

Case (A) If:

#S
n−1⇒ #yB ⇒ #ya by Induction Hypothesis and (1)

S1
n−1⇒ zA1 ⇒ zaā

It is clear that if z ∈ Dr , so is zaā. And if φ(z) = y then φ(zaā) = ya

Case (B) If:

#S
k⇒ #uA ⇒

i
i#uaB

n−1⇒ i#uayC
n⇒
i

#uaya by Induction Hypothesis, (2) and (3)

S
k⇒ u′A1 ⇒ u′iaāB1

n−1⇒ u′iaāzC1
n⇒ u′iaāzīaā

If u′, z ∈ Dr so is u′iaāzīaā. And if φ(z) = y and φ(u′) = u then φ(u′iaāzīaā) = uaza

The reverse direction φ(Dr ∩ L(G1)) ⊆ L. Suppose w ∈ φ(Dr ∩ L(G1)).

Basis:

a) w = ε then S1 ⇒ ε and #S ⇒ #ε

b) |w| = 1 then S1 ⇒ aā and #S ⇒ #a and φ(aā) = a

Induction Hypothesis Suppose that if there is a CFL derivation uA
k⇒ uzB and z ∈ Dr then

there is a GIL derivation δ#u′ k⇒ δ#u′yA such that φ(z) = y

Case (A) If:

S1
n−1⇒ zA1 ⇒ zaā then
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#S
n−1⇒ #yA ⇒ #ya

If z ∈ Dr so is zaāaā and if φ(z) = y then φ(zaāaā) = yaa

Case (B) If:

S1
k⇒ u′A1 ⇒ u′iaāB1

n−1⇒ u′iaāzC1 ⇒ u′iaāzīaā then

#S
k⇒ #yA ⇒

i
i#yaB

n−1⇒ i#uayC ⇒̄
i

#uaya

If u′, z ∈ Dr so is u′iaāzīaā and if φ(z) = y and φ(u′) = u then φ(u′iaāzīaā) = uaza

If other (possible) derivations were applied to u′iaāzC then the corresponding string would not

be in Dr .

¤

We exemplify how the Chomsky-Schützenberger equivalence of GIGs can be obtained construct-

ing the grammar for the language L1:

Example 13 () L(Gww ) = {ww |w ∈ {a, b}∗}
Given Gww = ({S, S′}, {a, b}, {i, j}, S, #, P ) and P =

1. S →
i

aS 2. S →
j

bS 3. S′ → ε 4. S →̄
i

S′a 5. S →̄
j

S′b

6. S′ →̄
i

S′a 7. S′ →̄
j

S′b

Let D4 be the semi-Dyck set defined over Σ0 = {a, ā, b, b̄, i, ī, j, j̄} = Σ∪Σ̄, Σ = T = {a, b}∪I = {i, j}
CFLww = L(GwwD), and we construct GwwD from Gww as follows:

GwwD = ({S, S′}, {a, ā, b, b̄, i, ī, j, j̄}, S, #, P ) and P =

1. S → aāiS 2. S → bb̄jS 3. S′ → ε 4. S → S′īaā 5. S → S′bb̄j̄

6. S′→S′aāī 7. S′→S′bb̄j̄

3.4 Equivalence of GIGs and LR-2PDA

In this section we show the equivalence of GIGs and LR-2PDA. The proof is an extension of the

equivalence proof between CFGs and PDAs. This is on our view a consequence of the fact that

GIGs are a natural extension of CFGs.

Theorem 2 If L is a GIL, then there exists a LR-2PDA M such that L= L(M).
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Proof Assume a GIG G that generates L, use G to construct an equivalent LR-2PDA. We use as

a basis the algorithm used in [77] to convert a CFG into an equivalent PDA, the only change that

we require is to take into account the operations on the indices stated in the grammar rules. The

general description of the algorithm is as follows. Given a GIG G:

1. Place the marker symbol ⊥ and the start variable on the stack.

2. Repeat the following steps forever.

a. If the top of the stack is a variable A, select one of the rules for A and substitute A by

the string on the right-hand side of the rule, and affect the second stack accordingly.

b. If the top of the stack is a terminal a, compare it to the next symbol in the input. If

they match repeat. Otherwise reject this branch of the non-determinism.

c. If the top of the stack is ⊥ accept.

The corresponding formalization is: Let G = (V, T, I, S, #, P ) be a GIG. Construct the LR-2PDA

M = ({q0 , q1 , q2}, T,Γ, δ, q0 ,⊥, q2 ) where Γ = V ∪ T ∪ I and δ:

1. δ(q0 , ε, ε, ε) = {(q1 , S⊥,⊥)}

2. δ(q1 , ε, A, ε) = {(q1 , w, ε)| where A → w is a rule in P}

3. δ(q1 , ε, A, j) = {(q1 , w, j)| where A →
[j]

w is a rule in P}

4. δ(q1 , a, A, u) = {(q1 , w, ju)| where A →
j

aw is a rule in P}

5. δ(q1 , ε, A, j) = {(q1 , w, ε)| where A →̄
j

w is a rule in P}

6. δ(q1 , a, a, ε) = {(q1 , ε, ε)}

Now we have to prove that L(G) = L(M). Remember GIGs require leftmost derivations for the rules

that affect the stack to apply. Therefore each sentential must be of the form xα where x ∈ T and

alpha ∈ V ∪ T

Claim 5 #S
∗⇒ #xα iff (q1, x, S,⊥)

∗
` (q1, ε, α,⊥)

Notice that the proof is trivial if all the derivations are context free equivalent, i.e. if #S
∗⇒
δ1

#xα if

and only if (q1, x, S,⊥)
∗

δ̀2

(q1, ε, α,⊥)

where δ1 , δ2 = ε or δ = [#], δ2 = ⊥



3.4. EQUIVALENCE OF GIGS AND LR-2PDA 37

This holds true by the equivalence of PDA and CFG. Therefore we need to prove that whenever the

stacks are used, the corresponding equivalence holds, i.e. that the claim above is a particular case

of: #S
∗⇒ δ#xα iff (q1, x, S,⊥)

∗
` (q1, ε, α, δ)

First direction (if) Basis:

#S ⇒ #x if (q1, x, S,⊥) ` (q1,⊥,⊥)

where x ∈ T ∪ {ε} and δ = ε or δ = [#]. By (1.) or (2.) respectively.

Induction Hypothesis. Assume (q1, x, S,⊥)
k

` (q1, ε, α, δ) implies #S
∗⇒ δ#yβ for any k ≥ 1 and

show by induction on k that #S
∗⇒ δ#xα Let x = ya

Case A. This case is a standard CFL derivation.

(q1 , ya, S,⊥)
k−1

` (q1 , a, β, δ) ` (q1 , ε, α, δ).

Given the last step implies β = Aγ for some A ∈ V , A →
ι

aη ∈ P where ι = ε and α = ηγ Hence:

#S
∗⇒ δ#yβ ⇒ yaηγ = xα

Case B. Push moves in the auxiliary stack.

(q1 , ya, S,⊥)
k−1

` (q1 , a, β, γ)
j̀

(q1 , ε, α, jγ) where δ = jγ.

The last step implies A →
j

aη ∈ P

Hence: #S
∗⇒ γ#yβ ⇒

j
jγ#yaηγ = xα

Case C. Pop moves in the auxiliary stack.

(q1 , ya, S,⊥)
k−1

` (q1 , a, β, jδ) `̄
j

(q1 , ε, α, δ) .

The last step implies A →̄
j

aη ∈ P Hence: #S
∗⇒ jδ#yβ ⇒̄

j
δ#yaηγ = xα

The only if direction: Suppose that #S
k→ δ#wα implies that (q1 , w, S,⊥)

∗
` (q1 , ε, α, δ) for any

k ≥ 1

Case A context free

If #S
k⇒ δ#yAγ ⇒ δ#yaηγ = δ#xα

where x = ya and α = ηγ then by IH and 2 or 3:

(q1 , ya, S,⊥)
∗
` (q1 , a, Aγ, δ) ` (q1 , ε, ηγ, δ)

Case B Push

#S
∗⇒ µ#yAγ ⇒

j
jµ#yaηγ = jµ#xα then by IH and 4.

(q1 , ya, S,⊥)
k−1

` (q1 , a, Aγ, µ)
j̀

(q1 , ε, α, jµ) where δ = jµ.

Case C Pop

#S
∗⇒ jδ#yAγ ⇒̄

j
δ#yaηγ = δ#xα then by IH and 5.
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(q1 , ya, S,⊥)
k−1

` (q1 , a, Aγ, jδ) `̄
j

(q1 , ε, α, δ)

Given the values δ, α = ε (which excludes Case B Push to be the last step or move but not as a

step ≤ k − 1) we obtain #S
∗⇒ δ#xα = #x iff (q1 , x, S,⊥) ` (q1 , ε, α, δ) = (q1 , ε,⊥,⊥) ¤

Theorem 3 If L is recognized by a LR-2PDA M, then L is a GIL.

Proof Given a LR-2PDA construct an equivalent GIG as follows. This conversion algorithm to

construct a CFG from a PDA follows the one in [41] (including the notation), the only modification

is to mimic the operation of the auxiliary stack, with the stack of indices in the grammar, i.e. items

3. and 4. This construction is defined so that a leftmost derivation in G of a string w is a simulation

of the LR-2PDA M when processing the input w. Let M be the LR-2PDA (Q, Σ, Γ, δ, q0 ,⊥, F ).

Assume Γ is composed of two disjoint subsets Γ1 , Γ2 , such that Γ1 is used in the main stack and Γ2

is used in the auxiliary stack. Let G be a GIG = (V, Σ, I, S, #, P ) where V is the set of variables of

the form qAp, q and p in Q, A in Γ, plus the new symbol S. I = Γ2 , and P is the set of productions.

1. S →
ε

q0⊥q for each q in Q

And for each q, q1 , q2 , ..., qn in Q, each a in Σ ∪ {ε}, A,B1 , B2 , Bn−1 in Γ and i, j in I.

2. [qAqn ] →
ε

a [q1B1 q2 ] [q2B2 q3 ] ...[qn−1Bn−1 qn ] such that

δ(q, a,A, ε) contains (q1 , B1B2 ...Bn−1 , ε).

3. [qAqn ] →
[j]

a [q1B1 q2 ] [q2B2 q3 ] ...[qn−1Bn−1 qn ] such that

δ(q, a,A, j) contains (q1 , B1B2 ...Bn−1 , j).

4. [qAqn ] →
j

a [q1B1 q2 ] [q2B2 q3 ] ...[qn−1Bn−1 qn ] such that

δ(q, a,A, i) contains (q1 , B1B2 ...Bn−1 , ji). (push)

5. [qAqn ] →̄
j

a [q1B1 q2 ] [q2B2 q3 ] ...[qn−1Bn−1 qn ] (pop) such that

δ(q, a,A, j) contains (q1 , B1B2 ...Bn−1 , ε).

In all the cases if n = 1, then the production is [qAq1 ] →
δ

a. Notice that in case 4, a must be in

Σ, and cannot be ε given the constraints imposed on the possible transitions in a LR-2PDA.

We need to show that L(G) = L(M). We follow the proof from [41], proving by induction on

the steps in a derivation of G or moves of M that:

#[qAp] ∗⇒ #w if and only if (q, w, A,⊥)
∗
` (p, ε,⊥,⊥)
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If only rules created with step 1 or 2 and the corresponding transitions are used then, these are a

CFG and a PDA and therefore follows from the standard CFG, PDA equivalence.

The basis is also proven for both directions, given the only type of rules/moves applicable are 1 and

2 (in this case where δ = [⊥]).

First (if) direction:

Induction Hypothesis: If (q, w, A, γ1 )
k

` (p, ε,⊥, γk ) then γ1#u[qAp] ∗⇒ γk#uw, where γi ∈ I∗ and

u,w ∈ Σ∗. In other words, the induction hypothesis states that whenever the LR-2PDA M recognizes

a string emptying the main stack and changing the auxiliary stack from a string of indices γ1 to a

string of indices γk , in k moves (for any k ≥ 1) then the GIG G will derive the same string w and

string of indices γk

I. (q, ay, A,⊥) ` (q1 , y, B1B2 ...Bm , γ1 )
k−1

` (p, ε,⊥, γk )

Decomposing y in m substrings, ie. y = y1 ...ym where each yi has the effect of popping Bi from the

stack (see the details corresponding to the PDA-CFG case in [41]) then there exist states q2 , ..., qm+1,

qm + 1 = p, such that the inductive hypothesis holds for each:

II. (qi , yi , Bi , γi)
∗
` (qi+1 , ε, γi+1 ) then γi#[qiBiqi+1 ] ∗⇒ γi+1#yi

for 1 ≤ j ≤ m

The first move in I.:

(q, ay, A,⊥) ` (q1 , y, B1B2 ...Bm , γ1 ) implies

#[qAqn ] ⇒
δ

γ1#a [q1B1 q2 ] [q2B2 q3 ] ...[qn−1Bn−1 qn ] where δ can be only be some j in I then

γ1 = j or δ is [⊥], then γ1 = ε.

Therefore I. implies:

#[qAqn ] ⇒ γ1#a[q1B1 q2 ] [q2B2 q3 ] ...[qn−1Bn−1 qn ] ∗⇒ γk#ay1y2 ....ym = #w

The same holds for the last symbol that is extracted from the stack (from II again):

III. (q, ay, A,⊥)
k−1

` (qn−1 , ym , Bm , γk−1 ) ` (p, ε,⊥, γk ) implies:

#[qAqn ] ∗⇒ γk−1#ay1y2 ...ym−1 [qn−1Bn−1 qn ] ⇒
δ

γk#ay1y2 ....ym = #w

where γk = ⊥, then either 1. γk−1 = ⊥ and δ = ε or [#] or 2. γk−1 = j ∈ I and δ = j̄

Now the “only if” part (the basis was proven above), so the induction hypothesis is:

If γ1#u[qAp] k⇒ γk#uw then (q, w,A, γ1 )
∗
` (p, ε,⊥, γk ) for any k ≥ 1.

Suppose:
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I. #u[qAqn ] ⇒
δ

γ1#ua [q1B1 q2 ] [q2B2 q3 ] ...[qn−1Bn−1 qn ] k−1⇒ γk#uw

where qn = p.

Again, we can decompose w as ax1x2 ...xn such that

γi#ui [qiBiqi+1 ] ∗⇒ γi+1#uixi

therefore by the induction hypothesis:

(qi , xi , Bi , γi)
∗
` (qi+1 , ε,⊥, γi+1 ) for 1 ≤ i ≤ n

Now we can add Bi+1 ...Bn to each stack in the sequence of ID’s so that:

II. (qi , xi , BiBi+1 ...Bn , γi)
∗
` (qi+1 , ε, Bi+1 ...Bn , γi+1 )

From the first step of the derivation in I. we obtain (remember w = ax1x2 ...xn):

(q, w, A,⊥) ` (q1 , x1x2 ...xn , B1B2 ...Bn , γ1 )

where γ1 is ⊥ if δ in the first step of I. is ε or [⊥].

and from this move and II., where i = 1, 2, ...n, then (q, w, A,⊥)
∗
` (p, ε,⊥, γk )

If we consider the last step from I.:

#u[qAqn ] k−1⇒ γk−1#uax1 ...xm [qn−1Bn−1 qn ] ⇒
δ

γk#uw which in turn implies:

(q, w, A,⊥)
∗
` (qn−1 , xm , Bn , γk − 1) ` (qn , ε,⊥, γk ) where the possibilities are either xm = xn

or xm = ε and given we require γk to be ⊥ then the only possibilities are:

(A) either γk = γk−1 = ⊥ and δ = ε or δ = [⊥] or

(B) δ = γ̄k−1 then γk = ⊥
The final observation is that we satisfy the first claim assigning the following values: q = qO and

A = Z0 . So according to 1. in the construction of the GIG G, we obtain:

#S
∗⇒ #w iff (q0 , w, Z0 )

∗
` (p, ε,⊥,⊥). ¤



Chapter 4

Global Index Languages Properties

4.1 Relations to other families of languages

There are two clear cut relations that place GILs between CFLs and CSLs: GILs are included in

CSLs and GILs include CFLs. Most of other relations are more difficult to determine. GILs might

include LILs and perhaps LCFRLs. GILs and ILs might be incomparable. GILs are incomparable

to the Growing Context Sensitive Languages (GCSLs). However GCSLs might include trGILs. It

is interesting to establish the relation of GILs to LILs and LCFRLs because there is an extensive

tradition that relates these families of languages to natural language phenomena. Moreover, the

relation to LILs is interesting because of their similarities both in the grammar and the automaton

model. The relation to Growing Context Sensitive languages is interesting for a similar reason. The

corresponding automaton is another two stack machine, and the constraints imposed on the use of

the additional stack in the GIL automaton might be seen as a shrinking property. We do not address

possible relationship with the counter languages [42] however, another family of languages that has

some similarities with GILs.

• Proper inclusion of GILs in CSLs.

The additional stack in GIGs/LR-2PDA, corresponds to an amount of tape equal to the input

in a LBA. Due to the constraints on the push productions at most the same amount of symbols

as the size of the input can be introduced in the additional stack. Therefore a LBA can simulate

a LR-2PDA.

41
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• Proper inclusion of GILs in ILs.

This is an open question. ILs are not semi-linear and GILs are semi-linear. GILs contain some

languages that might not be ILs, such as the MIX language.

• Proper inclusion of LILs in GILs.

We consider this quite possible. We discuss this issue in Chapter 6. However it remains as an

open question.

• GILs and Growing Context Sensitive Languages are incomparable.

GCSLs include the language {ba2n |n ≥ 1} which is not semi-linear. The copy language

{ww|w ∈ Σ∗} is not a GCSL [53].

• CFLs are properly included in GILs.

This result is obtained from the definition of GIGs.

4.2 Closure Properties of GILs

The family of GILs is an Abstract Family of Languages.

Proposition 1 GILs are closed under: union, concatenation and Kleene closure.

This can be proved using the same type of construction as in the CFL case (e.g. [41]), using two

GIG grammars, instead of two CFG grammars. For concatenation, care should be taken that the

two sets of stack indices be disjoint.

Proof Let L1 and L2 be GILs generated respectively by the following GIGs:

G1 = (N1 , T 1 , I1 , P 1 , #, S1 ) and G2 = (N2 , T 2 , I2 , P 2 , #, S2 )

Since we may rename variables at will without changing the language generated, we assume that

N1 , N2 , I1 , I2 are disjoint. Assume also that S3 , S4 , S5 are not in N1 or N2 .

Union L1 ∪ L2 :. Construct the grammar G3 = (N1 ∪N2 , T 1 ∪ T 2 , I1 ∪ I2 , P 3 , #, S3 ) where

P 3 is P 1 ∪ P 2 plus the productions S3 → S1 | S2 . A string w is in L1 if and only if the

derivation #S3 ⇒ #S1
∗⇒ #w is a derivation in G3 . The same argument holds for w in L2

starting the derivation #S3 ⇒ #S2 . There are no other derivations from S3 than #S3 ⇒ #S1

and #S3 ⇒ #S2 Therefore L1 ∪ L2 = L3 .
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Concatenation:. Construct G4 = (N1 ∪ N2 , T 1 ∪ T 2 , I1 ∪ I2 , P 4 , #, S4 ) such that P 4 is

P 1 ∪ P 2 plus the production S4 → S1S2 . The proof that L(G4 ) = L(G1 )L(G2 ) is similar to the

previous one. A string w is in L1 if and only if the derivation #S4 ⇒ #S1
∗⇒ #wS2 is a derivation

in G4 , and a string u is in L2 if and only if the derivation #wS2
∗⇒ #wu, is a derivation in G4

for some w, given the only production that uses S1 and S2 is S4 L(G4 ) = L1 · L2 . Notice that

#S4 ⇒ #S1
∗⇒ δ#wS2 for some δ in I1 does not produce any further derivation because the I1

and I2 are disjoint sets, therefore also no δ ∈ I2 can be generated at this position.

Closure:.Let G5 = (N1 ∪ {S5}, T 1 , I1 , P 5 , #, S1 ) where P 5 is P 1 plus the productions:

S5 →
[#]

S1 S5 |ε.
The proof is similar to the previous one.

¤

Proposition 2 GILs are closed under substitution by ε-free CFLs, ε-free regular sets, ε-free homo-

morphisms.

This proof adapts the substitution closure algorithm given in [41] to prove substitution closure

by CFLs. The substituting CFG must be in Greibach Normal Form (so as to respect the constraints

on productions that push indices in the stack).

Proof Let L be a GIL, L ⊆ Σ∗, and for each a in Σ let La be a CFL. Let L be L(G) and for each

a in Σ let La be L(Ga), where each Ga is in GNF. Assume that the non-terminals of G an Ga are

disjoint. Construct a GIG grammar G1 such that:

(a) the non terminals of G1 are all the non-terminals of G and of each Ga ;

(b) the terminals of G1 are the terminals of the substituting grammars Ga ;

(c) the set of indices I and # are the set of indices and # from G

(d) the start symbol of G1 is the start symbol of G.

(e) The productions of G1 are all the productions of each Ga together with all the productions

from G modified as follows: replace each instance of a terminal a in each production by the

start symbol of Ga

¤
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Note that the requirement that the substituting grammar be in GNF implies that it is an ε-free

CFL. GILs do not tolerate an ε substitution due to the constraints on type b. (push) productions

which require Greibach normal form.

GILs are also closed under intersection with regular languages and inverse homomorphism.

Again, a similar proof to that used in the CFL case works for these closure properties: in both

cases a LR-2PDA with a modified control state is used (again see [41] for the CFL case).

Proposition 3 If L is a Global Index Language and R is a regular set, L ∩ R is a Global Index

Language.

Proof Let L be L(M) for an LR-2PDA M =(QG ,Σ,Γ, δG , q0 ,⊥, FG) and let R be L(A) for a DFA

A = (QA, Σ, δA, p0 , FA). Construct M’ = (QA×QG ,Σ,Γ, δ, [p0 , q0 ], FA×FG) such that δ is defined

as follows:

δ([p, q], a, X, Y ) contains ([p′, q′], γ, η) if and only if:

δA(p, a) = p′ and δG(q, a, X, Y ) contains (q′, γ, η).

Note that a may be ε, in which case p′ = p and η = ε or η = Y

It is easy to see that ([p0 , q0 ], w, Z,⊥) `i ([p, q], ε, γ, η) if and only if (an induction proof is given by

[41] for the CFL case)

(q0 , w,⊥,⊥) `i (q, ε, γ, η) and δ(p0 , w) = p

¤

Proposition 4 Global Index Languages are closed under inverse homomorphism.

Proof Let h : Σ → ∆ be a homomorphism and let L be a GIL. Let L = L(M) where M is the

LR-2PDA (Q, Σ, Γ, δ, q0 ,⊥, F ).

Construct an LR-2PDA M1 accepting h−1 (L) in the following way. On input a M1 generates

the string h(a) stores it in a buffer and simulates M on h(a). Therefore L(M1) = {w | h(w) ∈ L}.
¤

4.3 Semilinearity of GILs and the Constant Growth property

The property of semilinearity in a language requires that the number of occurrences of each symbol in

any string (also called the commutative or Parikh image of a language) to be a linear combination of

the number of occurrences in some finite set of strings. Parikh [60] showed that CFLs are semilinear,
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i.e. that CFLs are letter-equivalent to a regular set. This property has been extensively used as a

tool to characterize formal languages (e.g. [33, 37]). Semilinearity has been assumed as a good

formulation of the constant growth property of natural languages (e.g. [46, 86]). However, recently

it has been claimed that semilinearity might be too strong a requirement for models of natural

language (e.g. [55, 35]). Roughly speaking, the constant growth property requires that there should

be no big gaps in the growth of the strings in the languages. We will not discuss here whether

semilinearity is the correct approach to formalize constant growth. concept.

We assume a definition of semilinearity of languages such as that found in [39, 60].

Definition 8 A set V in Nn

a) is linear if V = {v0 + c1v1 + ... + cmvm |ci ∈ N, vi ∈ Nn for 1 ≤ i ≤ m}
b) is semilinear if V is the finite union of linear sets.

The Parikh mapping is a function that counts the number of occurrences in every word of each

letter from an ordered alphabet. The Parikh image of a language is the set of all vectors obtained

from this mapping to every string in the language.

Definition 9 Parikh Mapping (see [39]) :

Let Σ be {a1 , ..., an}, define a mapping from Σ∗ into Nn as follows:

ψ(w) = (|a1 |(w), ..., |an |(w))

where |ai |(w) denotes the number of occurrences of ai in w.

The commutative or Parikh image of a language L ∈ Σ∗, ψ(L) = {ψ(w)|w ∈ L}. If ψ(L) is

semi-linear, L is a semi-linear language. Two languages L1 , L2 in Σ∗ are letter-equivalent if ψ(L1 )

= ψ(L2 ).

Intuitively, the property of semi-linearity of GILs follows from the properties of the control

mechanism that GILs use.

We will use the following lemma in the proof of semilinearity for GIGs.

Lemma 4 If X and Y are semilinear subsets of Nn , then their intersection X∩Y is also semilinear.

The proof of this lemma is in [30], as Theorem 5.6.1.

Theorem 5 If L is a GIL then L is a semi-linear language.

We follow the proof presented in [37] to prove that the class of languages L(Mc), where Mc is

obtained from an automata class C by augmenting it with finitely many reversal-bounded counters,

is semilinear provided that the languages corresponding to C are semilinear.
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The proof exploits the properties of Theorem 1: every GIL L = φ(Dr ∩ L1) such that L1 is a CFL.

Dr and L1 are semilinear by the Parikh theorem (L1 and Dr are CFLs). We modify the construction

of L1 in the proof of Theorem 1.

Proof Given a GIG G = (N, Σ, I, #, S, P1) Define a CFG grammar G1 = (N, Σ1 , S, P ) such that

Σ1 is (Σ∪ I ∪ Ī) and P1 is given according to the following conditions. For every production p ∈ P

where a ∈ T, i ∈ I, and α,∈ (N ∪ T )∗ create a new production p1 ∈ P1, as follows:

1. if p = A → α then p1 = A → α

2. if p = A →
i

α then p1 = A → iα

3. if p = A →̄
i

α then p1 = A → īα

4. if p = A →
[i]

α then p1 = A → īiα

It can be seen that L(G1) ⊆ Σ1
∗ and that for each w that is in the GIL L(G) there is a word

w1 ∈ L(G1) such that |i|(w1) = |̄i|(w1). This follows from Theorem 1. By the Parikh theorem

[60] the Parikh map of the CFL L(G1), ψ(L(G1)) is an effectively computable semi-linear set S1 .

Let S2 be the semilinear set {(a1 , ..., am , in , īn ..., ip , īp)|aj , ik , īk ∈ N} where the pairs of ik and īk

coordinates correspond to symbols in I and the corresponding element in Ī. The intersection of S1

and S2 is a computable semilinear set S3 according to [30]. Computing the intersection of S1 and

S2 amounts to compute the properties that the control performed by the additional stack provides

to GILs, in other words, removing the illegal derivations, note that S2 is a subset of S1 .

From S3 we obtain S0 the semilinear set corresponding to ψ(L(G)), removing the pairs of ik

and īk coordinates.

¤

Corollary 6 The emptiness problem is decidable for GILs.

4.4 Pumping Lemmas and GILs

This section and the remainder of this chapter will present some exploratory ideas rather than

established results.

We can consider pumping lemmas for different families of languages as specifying the following

facts about them:
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• Regular Languages: Inserting any number of copies of some substring in a string always gives

a regular set.

• Context Free Languages: every string contains 2 substrings that can be repeated the same

number of times as much as you like.

• GCFLs, LCFRLs, others and GILs, there is always a number of substrings that can be repeated

as many times as you like.

Following upon this last observation, the following definition is given in [35] as a more adequate

candidate to express properties of natural language. This is a candidate for a pumping lemma for

GILs.

Definition 10 (Finite Pumpability) .

Let L be a language. Then L is finitely pumpable if there is a constant c0 such that for any

w ∈ L with |w| > c0 , there are a finite number k and strings u0 , ..., uk and v1 , ..., vk such that w =

u0v1u1v2u2 ...uk−1vkuk and for each i, 1 ≤ |vi | < c0 and for any p ≥ 0, u0v1
pu1v2

pu2 ...uk−1vk
puk ∈

L.

Compare the previous definition with the following k-pumpability property of LCFRS ([71], and

also in [35]) which applies to any level-k language.

Definition 11 (k-pumpability) Let L be a language. Then L is (universally) k − pumpable if

there are constants c0 ,k such that for any w ∈ L with |w| > c0 , there are stringsu0 , · · · , uk

and v1 , · · · , vk such that u0v1u1v2u2 · · ·uk−1vkuk , for each i : 1 ≤ |vi | < c0 , and for any

u0v1
pu1v2

pu2 ...uk−1vk
puk ∈ L.

In this case the k value is a constant determined by the k-level of the language.

4.4.1 GILs, finite turn CFGs and Ultralinear GILs

We showed that there is no boundary in the number of dependencies that can be described by a

GIL (see the language Lm in the previous chapter). This fact and the candidate pumping lemma

for GILs are related to the following observation. For any CFG that recognizes a number of pairs

of dependencies, ( e.g., La = {anbn , cmdm |n ≥ 1,m ≥ 1} has 2 pairs of dependencies or turns

[32, 39, 88, 5]) there is a GIG that generates the total number of dependencies included in the



48 CHAPTER 4. GLOBAL INDEX LANGUAGES PROPERTIES

pairs. This is done by “connecting” the CFG pairs of dependencies (turns) with “dependencies”

(turns) introduced by the GIG extra stack. This “connection” is encoded in the productions of the

corresponding terminals. For example, in La it is possible to “connect” the b’s and c’s, in a turn of

the GIG stack: any production that has a b in the right-hand side also adds an index symbol to the

GIG stack (our notation for this will be bx ), and every production that has a c in the right-hand

side removes the same index symbol from the production stack (we will denote this by cx̄ ).

La = {anbncmdm |n ≥ 1,m ≥ 1} → Lb = {anbx
ncx̄

mdm |n ≥ 1,m ≥ 1} = {anbncndn |n ≥ 1, }

Conjecture 1 For any k-turn CFG, where k > 1 is finite, there is a GIG that generates a language

with (2 · k) dependencies.

These observations are also related to the fact that LIGs (and the equivalent automata), can

connect one-turn for each stack [85]. Therefore the boundary of the number of dependencies is four.

4.5 Derivation order and Normal Form

We introduced GIGs as a type of control grammar, with leftmost derivation order as one of its

characteristics. GIG derivations required leftmost derivation order. We did not address the issue of

whether this is a normal form for unconstrained order in the derivation, or if an extension of GIGs

with unconstrained order in the derivation would be more powerful than GIGs. In this section we

will speculate about the possibility of alternative orders in the derivation, e.g. (rightmost) or free

derivation order.

The following grammar does not generate any language in either leftmost or rightmost derivation

order:

Example 14 L(G6 ) = {anbmcndm}, where

G6 = ({S, A,B,C, D}, {a, b, c, d}, {i, j}, S, #, P ) and P=

1. S → A B C D 2. A →
i

aA 3. A →
i

a 4. B →
j

bB 5. B →
j

b

6. C →̄
i

cC 7. C →̄
i

c 8. D →̄
j

dD 9.D →̄
j

d

The only derivation ordering is an interleaved one, for instance all the a’s are derived first, then

all the c’s, followed by the b’s and finally the d’s. However we know that such a language is a GIL. It

is our belief that the following conjecture holds, though it might be difficult to prove. Unrestricted

derivation order would introduce only unnecessary additional ambiguity.
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Conjecture 2 Unrestricted order of the derivation in a GIG is not more powerful than leftmost

derivation order.

Following the previous example, the next example might seem impossible with leftmost/rightmost

derivation. It looks like an example that might support the possibility that unrestricted order of the

derivation might yield more powerful grammars.

Example 15 L(G6b) = {anbmcldmenf l | n,m, n ≥ 1}, where

G6b = ({S, A, B,C, D,E, F}, {a, b, c, d, e, f}, {i, j, k}, S, #, P ) and P is:

1. S → ABCDEF 2. A →
i

aA 3. A →
i

a 4. B →
j

bB

5. B →
j

b 6. C →
k

cC | c 7. D →̄
j

dD 8.D →̄
j

d

9.E →̄
i

eE 10.E →̄
i

e 11. F →̄
k

fF 12. F →̄
k

f

A derivation with unrestricted order would proceed as follows:

S ⇒ ABCDEF ⇒ i#aABCDEF ⇒ ji#abCDEF ⇒ kji#abcDEF ⇒
ji#abcDEf ⇒ i#abcdEf ⇒ #abcdef

However the following grammar generates the same language in leftmost derivation:

Example 16 L(G6c = {anbmcldmenf l | n, m, n ≥ 1}, where

G6b = ({S, A, B,C, D,E, F}, {a, b, c, d, e, f}, {i, j, k}, S, #, P ) and P is:

1. S → A 2. A →
i

aA 3. A →
i

aB 4. B →
j

bB

5. B →
j

bC 6. C →
k

cCf | cMf M → DE 7. D →̄
j

dD 8.D →̄
j

d

9.E →̄
i

Ee 10.E →̄
i

De

Similarly the following language which contain unordered crossing dependencies is a GIL:

{anbmcldpbm
2
an

2
dp

2
cl

2
|n,m, l, p ≥ 1}

The next example also shows that leftmost and rightmost derivation ordering might produce

two different languages with the same grammar for each ordering, introducing therefore another

dimension of ambiguity.

Example 17 L(G7 ) = {ww|w ∈ {a, b}∗} ∪ {wwR|w ∈ {a, b}∗} (in leftmost and rightmost

derivation respectively)

G7 = ({S, S′, A,B}, {a, b}, {i, j}, S, #, P ) and P =
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1. S →
i

aS 2. S →
j

bS 3. S → S′ 4. S′ → S′A 5. S′ → S′B

6. S′ → A 7. S′ → B 8. A →̄
i

a 9. B →̄
j

b

Rightmost derivation produces:

#S →
i

i#aS →
j

ji#abS → ji#abS′ → ji#abS′B → ji#abAB →̄
j

i#abAb →̄
i

#abab

Leftmost derivation produces:

#S →
i

i#aS →
j

ji#abS → ji#abS′ → ji#abS′A → ji#abBA →̄
j

i#abbA →̄
i

#abba



Chapter 5

Recognition and Parsing of GILs

5.1 Graph-structured Stacks

In this section we introduce the notion of a graph-structured stack [80] to compute the operations

corresponding to the index operations in a GIG. It is a device for efficiently handling of non-

determinism in stack operations.1

If all the possible stack configurations in a GIG derivation were to be represented, the number

of possible configurations would grow exponentially with the length of the input. As an initial

approach, each node of the graph-structured stack will represent a unique index and a unique length

of the stack. Each node at length n can have an edge only to a node at length n − 1. This is a

departure from Tomita’s graph-structured stack. While the number of possible nodes increases, the

number of edges connecting a node to others is limited. The set of nodes that represents the top of

the stack will be called active nodes (following Tomita’s terminology).

For instance, in figure 5.1, the active nodes are represented by circles and the inactive are repre-

sented by squares. The numbers indicate the length.

The graph-structured stack at the left represents the following possible stack configurations: iii#,

iji#, ijj#, jjj#, jij#, jii#. The one at the right is equivalent to the maximal combination of stack

configurations for indices i, j with maximum length of stack 3. (i.e.) #, i#, j#, ii#, ij#, ji#, jj#,

iii#, etc.

1See [51] for a similar approach to Tomita’s, and [50] for an approach to statistical parsing using graph algorithms.

51
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$,0
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i,2

j,2
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i,2

j,2

i,3

j,3

Figure 5.1: Two graph-structured stacks

The following operations are possible on the graph-structured stack.

Push(newnode,oldnode). Creates a newnode if it is not in the graph and creates an edge from

newnode to oldnode if necessary.

Pop(curretnode). Retrieves all the nodes that are connected by an edge from the currentnode.

Because at this point we use nodes of unambiguous length, currentnode connects only to nodes of

current length-1. Therefore the number of edges connecting a node to a preceding one is bound by

the size of the indexing vocabulary.

5.2 GILs Recognition using Earley Algorithm

5.2.1 Earley Algorithm.

Earley’s parsing algorithm [27] computes a leftmost derivation using a combination of top-down

prediction and bottom-up recognition. Earley’s main data structures are states or “items”, which

are composed of a ”dotted” rule and a starting position: [A → α •β, pj ]. These items are used to

represent intermediate steps in the recognition process. Earley items are inserted in sets of states.

There are as many sets as positions in the input string. Therefore, given a string w = a1a2 ...an

with n ≥ 0 any integer i such that 0 ≤ i ≤ n is a position in w. An item [A → α •β, pj ] is inserted

in the set of states Si if α corresponds to the recognition of the substring aj ...ai .

Algorithm 1 (Earley Recognition for GFGs) .

Let G = (N,T, S, P ) be a CFG. Let w = a1a2 · · · an be an input string, n ≥ 0, and ai ∈ T for

1 ≤ i ≤ n.

Create the Sets Si :

1 S0= [S′ → •S$, 0]

2 For 0 ≤ i ≤ n do:

Process each item s ∈ S1i in order performing one of the following:

a) Predictor: (top-down prediction closure)
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If [B → α •Aβ, j] ∈ Si and (A → γ) ∈ P :

add [A → •γ, i] to Si

b) Completer: (bottom-up recognition)

If [B → γ • , j] ∈ Si :

for [A → α •Bβ, k] ∈ Sj :

add [A → αB •β, k] to S1i

c) Scanner: equivalent to shift in a shift-reduce parser.

If [A → α •aβ, j] ∈ Si and wi + 1 = a:

add [A → αa •β, j] to Si + 1

3 If Si+1 is empty, Reject.

4 If i = n and Sn+1 = {[S′ → S$ • , 0]} then accept

5.2.2 First approach to an Earley Algorithm for GILs.

We use the graph-structured stack and we represent the stack nodes as pairs of indices and counters

(the purpose of the counters is to keep track of the length of the stack for expository purposes). We

modify Earley items adding two parameters: ∆, a pointer to an active node in the graph-structured

stack, and O, used to record the ordering of the rules affecting the stack; such that O ≤ n where n is

the length of the input.2 Therefore Earley items for GILs might be as follows: [∆,O, A → α •Aβ, pj ]

Algorithm 2 (Earley Recognition for GIGs) .

Let G = (N,T, I, #, S, P ) be a GIG.

Let w = a1a2 · · · an be an input string, n ≥ 0, and ai ∈ T for 1 ≤ i ≤ n.

Initialize the graph-structured stack with the node (#, 0).

Create the Sets Si :

1 S0= [(#,0), 0, S′ → •S$, 0]

2 For 0 ≤ i ≤ n do:

Process each item s ∈ Si in order performing one of the following:

a) Predictor

b) Completer

c) Scanner
2Actually O ≤ 2n, if pop rules “erase” symbols from the stack. An example of such case would be the following

grammar: Gd = ({S},{a,b},{i},{#},{S},{P}) with P: S →
i

aS | bS S →̄
i

S | ε
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3 If Si+1 is empty, Reject.

4 If i = n and Sn+1 = {[(#, 0), 0, S′ → S$ • , 0]} then accept

The structure of the main loop of Earley’s algorithm remains unchanged except for the require-

ment that the initial item at S0 (line 1) and the accepting item at Sn +1 (line 4) point to the empty

stack node (#, 0), and have the corresponding initial order in the derivation.

The operations predictor, scanner, completer used in the For loop in 2 are modified as

follows, to perform the corresponding operations on the graph-structured stack. As we said, we

represent nodes in the graph-structured stack with pairs (δ, C) such that C ≤ n.

1. Predictor

If [(δ1 , C1 ), O1 , B →
µ

α •Aβ, j] ∈ Si and (A →
δ

γ) ∈ P :

1.2 add every [(δ2 , C2 ), O2 , A →
δ

•γ, i] to Si

such that:

if δ ∈ I then δ2 = δ, O2 = O1 + 1 and

push( (δ2 , C2 ), (δ1 , C1 ) ) s.t. C2 = C1 + 1

if δ = ī and i = δ1 then O2 = O1 + 1 and

(δ2 , C2 ) ∈ pop((δ1 , C1 )) s.t. C2 = C1 − 1

if δ = ε then (δ1 , C1 ) = (δ2 , C2 ) and O1 = O2 (ε move)

if δ = [δ1 ] then (δ1 , C1 ) = (δ2 , C2 ) and O1 = O2

2. Scanner

If [∆, O, A →
µ

α •aβ, j] ∈ Si and wi + 1 = a:

add [∆, O, A →
µ

αa •β, j] to Si + 1

3. Completer A

If [∆1 , O, B →
µ

γ • , j] ∈ Si :

for [(δ2 , C2 ), O − 1, A →
δ

α •Bβ, k] ∈ Sj where δ2 = i if µ = ī:

add [∆1 , O − 1, A →
δ

αB •β, k] to Si

3. Completer B

If [∆1 , O, B →
µ

γ • , j] ∈ Si where µ = ε or µ = [i]:

for [(δ2 , C2 ), O, A →
δ

α •Bβ, k] ∈ Sj where δ2 = i if µ = [i]:

add [∆1 , O,A →
δ

αB •β, k] to Si

The following example shows the trace of the items added to a chart parser implementing the

above algorithm. This implementation used Shieber’s deduction engine backbone [72]. The example
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shows the recognition of the string aabbccdd with the grammar G2 transformed into a trGIG. Each

item is represented as follows:

item(LeftSymbol, Predotlist, Postdotlist,

[Stacksymbol, StackCounter, OrderCounter, StackOperation],

initialposition, finalposition)

The stack operation is represented as follows: “il” is a push rule of the stack index “i” and “ir”

is a pop rule.

Example 18 (Trace of aabbccdd) L(G2 ) = {anbncndn |n ≥ 0}, G2 = ({S, B}, {a, b, c, d}, {i},#, P, S),

where P is:

S →
i

aSd, S → B B →̄
i

bBc B →̄
i

bc

1 Adding to chart: <10898> item(<start>,[],[S],[#,0,0,e],0,0)

2 Adding to chart: <27413> item(S,[],[B],[#,0,0,e],0,0)

3 Adding to chart: <23470> item(S,[],[a,S,d],[i,1,1,il],0,0)

Adding to stack: <22605> item((i,1),(#,0))

4 Adding to chart: <10771> item(S,[a],[S,d],[i,1,1,il],0,1)

5.Adding to chart: <27540> item(S,[],[B],[i,1,1,e],1,1)

6.Adding to chart: <23599> item(S,[],[a,S,d],[i,2,2,il],1,1)

Adding to stack: <22732> item((i,2),(i,1))

7 Adding to chart: <23598> item(B,[],[b,B,c],[#,0,2,ir],1,1)

8 Adding to chart: <23598> item(B,[],[b,c],[#,0,2,ir],1,1)

9 Adding to chart: <10640> item(S,[a],[S,d],[i,2,2,il],1,2)

10.Adding to chart: <27671> item(S,[],[B],[i,2,2,e],2,2)

11.Adding to chart: <23724> item(S,[],[a,S,d],[i,3,3,il],2,2)

Adding to stack: <22863> item((i,3),(i,2)])

12 Adding to chart: <23725> item(B,[],[b,B,c],[i,1,3,ir],2,2)

13.Adding to chart: <23725> item(B,[],[b,c],[i,1,3,ir],2,2)

14. Adding to chart: <27798> item(B,[b],[B,c],[i,1,3,ir],2,3)

15. Adding to chart: <23851> item(B,[b],[c],[i,1,3,ir],2,3)

16 Adding to chart: <23852> item(B,[],[b,B,c],[#,0,4,ir],3,3)

17. Adding to chart: <23852> item(B,[],[b,c],[#,0,4,ir],3,3)

18. Adding to chart: <26897> item(B,[b],[B,c],[#,0,4,ir],3,4)
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19 Adding to chart: <22956> item(B,[b],[c],[#,0,4,ir],3,4)

20. Adding to chart: <27783> item(B,[c,b],[],[#,0,4,ir],3,5)

21. Adding to chart: <23085> item(B,[B,b],[c],[#,0,3,ir],2,5)

22. Adding to chart: <27654> item(B,[c,B,b],[],[#,0,3,ir],2,6)

23. Adding to chart: <10625> item(S,[B],[],[#,0,2,e],2,6)

24. Adding to chart: <23215> item(S,[S,a],[d],[#,0,2,il],1,6)

25. Adding to chart: <10754> item(S,[d,S,a],[],[#,0,2,il],1,7)

26. Adding to chart: <23342> item(S,[S,a],[d],[#,0,1,il],0,7)

27. Adding to chart: <10883> item(S,[d,S,a],[],[#,0,1,il],0,8)

28. Adding to chart: <10982> item(<start>,[S],[],[#,0,0,e],0,8)

yes

The following example shows why some bookkeeping of the order of the derivation is required in

Earley items. This bookkeeping is performed here by the order parameter. Consider the language

Lww = {ww |w ∈ {a, b}∗}, the corresponding productions of the grammar Gww repeated below and

the string aaba

1. S →
i

aS 2. S →
j

bS 3. S → R 4. R →̄
i

Ra | a 5. R →̄
j

Rb | b
The following derivation is not possible (in particular step 4). The pairs in parenthesis represent

the nodes of the graph-structured stack:

(#,0) S 1⇒
i

(x,1) aS 2⇒
i

(i,2) aaS ⇒(i,2) aaR 3⇒̄
i

(i,1), aaRa 4⇒̄
j

(?,?) aaba

However, the following sequences can be generated using Earley’s Algorithm if no ordering constraint

is enforced at the Completer Operation. In the following example the square brackets represent

substrings to be recognized.

(#,0) S 1⇒
i

(i,1) aS 2⇒
i

(i,2) aaS 3⇒
j

(j ,3) aabS ⇒(j ,3) aabR 4⇒̄
j

(i,2)aabR[b] 5⇒̄
i

(i,1)aabR[a][b] 6⇒̄
i
(#,0)aaba[a][b]

After recognized this substring, the completer operation may jump up two steps and complete the

“R” introduced after step 3, instead of the one introduced at step 5. In other words, the following

complete operation would be performed :

Given [(#, 0), 6, R →̄
j

a • , 3] ∈ S4 and [(j, 3), 3, S → •R, 3] ∈ S3 :

add [(#, 0), 3, S → R • , 3] to S4

Then the following are sequentially added to S4 :

a) [(#, 0), 2, S →
j

bS • , 2],
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b) [(#, 0), 1, S →
i

aS • , 1],

c) [(#, 0), 0, S →
i

aS • , 0]

5.2.3 Refining the Earley Algorithm for GIGs

The Algorithm presented in the preceding section does not specify all the necessary constraints, at

some predict steps, and at completer cases. It cannot handle cases of what we call predict-complete

ambiguity, completed-stack ambiguity and stack-position ambiguity.

The predict-complete ambiguity

In this case, the complete operation of the previous algorithm does not specify the correct constraints.

The exact prediction path that led to the current configuration has to be transversed back in the

complete steps.

In other words, complete steps have to check that there is a corresponding pop-move item that has

been completed for every item produced at a reduced push move. This is depicted in the following

figure 5.2.

pop

pop

push

push

Figure 5.2: Push and Pop moves on the same spine

The following grammar produces alternative derivations which illustrate this issue.

Example 19 Gamb4 = ({S, R}, {a, b, c, d}, {i, j}, S, #, P ) where P is:

1. S →
i

aSd 2. S →
j

aSc 3. S → R 4. R →̄
i

bRc

5. R →̄
i

bc 6. R →̄
j

bRd 7. R →̄
j

bd

Grammar Gamb4 produces the following derivation:

S ⇒ i#aSd ⇒ ji#aaScd ⇒ ji#aaRcd ⇒ i#aabRdcd ⇒ #aabbcdcd

But it does not generate the string aabbcddc nor aabbdccd. The ambiguity arises in the following

configuration S
∗⇒ aabR which would lead to the following items: [(#, 2), 4, R → •b c, 2] and

[(#, 2), 4, R → •b d, 2]. At this point, there is no way to control the correct derivation given no

information on the pop moves has been stored.
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A solution is to extend the graph-structured stack to include Ī nodes. Whenever a push item is

being completed it has to be matched against the complement node on the stack. The existence of

a corresponding Ī node stored in the stack has to be checked whenever an item with a reduced push

node is completed. The following figure 5.11 depicts a graph that includes Ī nodes (pop nodes). It

also shows some additional edges (the dashed edges) that depict the corresponding active nodes in

the I domain. We will discuss this issue again in the next subsection.

$,0

i,1 i,2

j,2

i,3

j,3 j,2 j,1j,1 j,3

i,3 i,2

Figure 5.3: A graph structured stack with i and ī nodes

Completed stack ambiguity

The graph-structured stack we presented so far is built at prediction steps and no additional com-

putation is performed on the graph at completion steps. Therefore there is no way to represent the

difference between a configuration like the one depicted in figure 5.2 and the one we present in figure

5.4.

push pop

A B

Figure 5.4: Push and Pop moves on different spines

Such a difference is relevant for a grammar like Gamb5

Example 20 Gamb5 = ({S, A, R, B}, {a, b, c, d, e}, {i, j}, S, #, P ) where P is:

S→AB A→R A →
i

aAb |ab R →
j

aRd |ad B →̄
i

cBd |cd B →̄
j

cBe |ce



5.2. GILS RECOGNITION USING EARLEY ALGORITHM 59

Grammar Gamb5 generates the string aadbccde but it does not generate the string aadbcced. If

we consider the recognition of the string aaaddbccdde, it will generate the following stack nodes

for the derivation A
∗⇒ aaaddb: a(i, j, 1)a(i, j, 2)a(i, j, 3)d(→ j, 3)d(→ j, 2)b(→ i, 1). The notation

(i, j, 1) indicates that two nodes (i, 1) and (j, 1) where created at position a1 , and (→ j, 3) indicates

that the node (j, 3) was completed at the position d4 . Consequently only the nodes (j, 3), (j, 2) and

(i, 1) are completed at the derivation point S
∗⇒ aaaddbB.

The edges depicted in figure 5.5 are all valid at position 3 (i.e accessible from the item [∆, 3, R →
aaa •d, 3] in S3 ).

However they would be still valid at position 6: [∆, 3, B → α •d, 6] in S6

$,0

i,1

j,1

i,2

j,2

i,3

j,3

Figure 5.5: A predict time graph

Therefore, it is necessary to distinguish between prediction and complete stages. We need to

introduce a new edge, a completion edge. The arrows in figure 5.6 are intended to designate this

completion edge. They also indicate that there is a different kind of path between nodes. So, the

simple lines indicate that there was a potential edge at the prediction step. Only those paths with

additional arrows were confirmed at a complete step.

j,3

i,3i,2

j,2j,1

i,1

$,0

Figure 5.6: A complete steps in the graph

Stack position Ambiguity

Two (or more) different stacks might have the same active nodes available at the same position.

However those alternative stacks might correspond to alternative derivations. This issue is illustrated

by the two stacks represented in figure 5.7.
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$,0

i,1

j,1

i,2

j,2

i,3

j,3

$,0

i,1

j,1

i,2

j,2

i,3

j,3

Figure 5.7: Two alternative graph-structured stacks

The alternative graph-structured stacks depicted in figure 5.7 might be generated at different

positions, e.g. in the following alternative spines as illustrated in the following figure 5.8.

pop

push

Figure 5.8: Ambiguity on different spines

Notice that although these stacks have the same active nodes, they do differ in the nodes that

can be reached from those active nodes. They even might be continued by the same pop complement

part of the graph. It must be noticed that the active nodes from the graph structures in figure 5.8 are

indistinguishable from each other. Some information must be added to make sure that they point to

active nodes in different graphs. The information that will enable to distinguish the corresponding

nodes in the graph will be the position in which the push nodes are generated. This information

replaces the order parameter that was used in the preliminary version of the algorithm. In this case

the graph structured stack will be more like the one that is proposed in Tomita’s algorithm, in the

sense that there is not an unambiguous length of the stack at each node.

$,0

i,1

j,1

i,2

j,2

i,3

j,3

$,0

i,5

j,4

i,6 i,7

j,5 j,8

Figure 5.9: Two alternative graph-structured stacks distinguished by position
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5.2.4 Earley Algorithm for GIGs: final version

Revised Operations on the stack

We will use the following notation. A node ∆+ designates a node corresponding to a push move on

the stack. It is a pair (δ, p) such that δ is an index and p > 0 (p′s are integers). We say ∆+ ∈ I.

A node ∆− designates a node corresponding to a pop move in the stack. It is a pair (δ, p) such

that δ ∈ Ī , p < 0. We say ∆− ∈ Ī. We will use also the complement notation to designate the

corresponding complements. Therefore ∆̄+ will designate a node corresponding to a pop move which

“removes” ∆+. On the other hand ∆̄− will designate a push node which has been removed by ∆−.

We say ∆i > ∆j if ∆i = (δi , pi), ∆j = (δj , pj ), and pi > pj .

The following operations are possible on the graph-structured stack. The modifications are

necessary due to the fact that the graph-structured stack contains both nodes in I and Ī. These

operations enable the computation of the Dyck language over the graph-structured stack.

Push(newnode,oldactivnode,initialnode). Creates a newnode if it is not in the graph and creates

an edge from newnode to oldnode if necessary. It also creates an i-edge from initialnode to newnode.

These edges will be represented then by triples: (newnode, oldnode, initialnode). We will discuss it

again below.

PushC(currentnode, precednode). Creates a complete edge from currentnode to precednode if

necessary.

Path(currentnode). This operation is the equivalent of the previous Pop function with a stack

that keeps record of the nodes in Ī. It finds the preceding unreduced push node after one or more

reductions have been performed. It retrieves all the nodes in I that are connected by an edge to

the push node that currentnode reduces. A node can connect to any node at a preceding position.

Therefore the number of edges connecting a node to a preceding one is bound by the position of the

current node, i.e. for a node at position pi there might be pi−1 edges to other nodes. Note that

the position is determined by the corresponding position of the terminal introduced by the push

production.

Therefore, the path function obtains the nodes in I which can be active, after a reduce operation

has been done, as is specified in algorithm 5 and depicted in figure 5.10.

We will use a slightly more complicated version that takes into account completed nodes and the

initial nodes introduced by the Push operation.
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Algorithm 3 . Path(∆− 1 ):

where ∆− 1 , ∆− 3 ∈ Ī, and ∆̄− 1 , ∆ + 2 ∈ I

1 valueset = {}
2 For edge((∆̄− 1, ∆ + 2 )

3 add ∆ + 2 to valueset

4 For edge(∆̄− 1 ,∆− 3 )

5 add Path2(∆− 3 ) to valueset

6 return valueset

$,0

i,1 i,2 i,3

j,1 j, −1 j, 2 j, −3j, −2 j,3

i,−3 i, −2

$,0

i,1 i,2 i,3

j,1 j, −1 j, 2 j, −3j, −2 j,3

i,−3 i, −2

S
S S

S
S

S

S

Figure 5.10: Paths and reductions in a graph structured stack with i and ī nodes

The following operation operates on the reverse direction of the Path function. Both Path and

Path2 perform Dyck language reductions on the graph structured stack. While Path performs them

at predict time, Path2 performs them at complete time. Path obtains the closest non reduced nodes

in I. Path2 returns a set of nodes in Ī accessible from another node in Ī. The returned set of nodes

represent points in the derivation at which to continue performing reductions at complete time. The

portion of the graph that is already reduced corresponds to completed nodeswhich already matched

their respective complements. Completed nodes are designated by a particular kind of edge, named

edgeC.



5.2. GILS RECOGNITION USING EARLEY ALGORITHM 63

Algorithm 4 . Path2(∆− 1 ):

where ∆− 1 , ∆− 3 ∈ Ī, ∆̄− 1 ∈ I) and : ∆2 ∈ Ī ∪ {#}
1 valueset = {}
2 For edgeC((∆̄− 1, ∆2 )

3 add ∆2 to valueset

4 For edgeC(∆̄− 1 , ∆− 3 )

5 add Path2(∆− 3 ) to valueset

6 return valueset

j,1 j, -1 j, 2 j, -3j, -2 j,3$,0

paths

c c

j,1 j, -1 j, 2 j, -3j, -2 j,3$,0

S S

S

Figure 5.11: A graph structured stack with i and ī nodes

New Earley items for GIGs

Earley items have to be modified to represent the portion of the non reduced graph-stack cor-

responding to a recognized constituent. Two parameters represent the portion of the stack: the

current active node ∆Ac and the initial node ∆In .

[∆Ac , ∆In , A → α •aβ, j] ∈ Si

Nodes are represented by pairs of elements in I ∪ Ī ∪ {#}, and positive, negative integers and

zero respectively. We say a node ∆+ is in I if it designates a pair (δ, p) such that δ ∈ I, p > 0. We

say a node ∆− is in Ī if it designates a pair (delta, p) such that δ ∈ Ī , p < 0. The empty stack is

then represented by the node (#, 0). The vocabulary corresponding to the set of indices (I), their

complements (Ī) and the empty stack symbol (#), will be denoted by DI (i.e. DI = I ∪ Ī ∪ {#}).
We need also to represent those constituents that did not generate a node of their own ( a push

or pop derivation), but inherit the last generated node. We refer to these as transmitted nodes. We

use a substitution mapping cl from DI into DI ∪ {c}∗, defined as follows:

cl(δ) = cδ for any δ ∈ DI

∆cl represents a node (cl(δ), p) such that δ ∈ DI and p is an integer. A node ∆cl (or cl(∆)) is a

pointer (cl(δ), p) to the node (δ, p) (∆) in the stack.
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As we mentioned when we introduced the Push operation Push(newnode,oldactivnode,initialnode),

we will make use of an additional type of edge. This kind of edge relates ∆In nodes, therefore we

will call them I-edges. These edges will be introduced in the predict operation, by the following

Push function. The interpretation of these edge is that there is a path connecting the two ∆In

nodes. Notice that an I-edge can be identical to a push or pop edge. I-edges are depicted in figure

5.12.

I−edge

push or pop edge
A

B

α

Figure 5.12: I-edges

Now that we have introduced I − edges we present a second version of the path computation

that takes into account I − edges (here ∆R) as boundary points to define a path. It also takes

into account the difference between nodes corresponding to completed constituents (lines 7-12) and

nodes corresponding to incomplete constituents (lines 1-6).

Algorithm 5 .

StorePath(∆− 1 ,∆R):

where ∆− 1 , ∆− 3 ∈ Ī, and ∆̄− 1 , ∆ + 2 ∈ I, ∆R, ∆R2 ∈ I ∪ Ī, I the set of indices.

1 If ∆̄− 1 = ∆R:

2 For edge(∆̄− 1 , ∆ + 2 , ∆R2 )

3 add Path(∆− 1 , ∆ + 2 , ∆R2 ) to Pathset

4 For edge(∆̄−1 , ∆− 3 , ∆− 3 ) and

5 For Path(∆− 3 , ∆ + 2 ,∆R2)

6 add Path(∆− 1 , ∆ + 2 , ∆R2 ) to Pathset

7 else if ∆̄− 1 > ∆R

8 For edgeC(∆̄− 1 ,∆ + 2 ) such that ∆ + 2 ≥ ∆R

9 add Path(∆− 1 , ∆ + 2 , ∆R) to Pathset

10 For edgeC (∆̄−1 ,∆− 3 )

11 For Path (∆− 3 ,∆ + 2 ,∆R2 )

12 add Path(∆− 1∆− 3 , ∆R) to Pathset
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Algorithm 6 (Earley Recognition for GIGs) .

Let G = (N,T, I, #, S, P ) be a GIG.

Let w = a1a2 · · · an be an input string, n ≥ 0, and ai ∈ T for 1 ≤ i ≤ n.

Initialize the graph-structured stack with the node (#, 0).

Create the Sets Si :

1 S0= [(#,0), (#,0), S′ → •S$, 0]

2 For 0 ≤ i ≤ n do:

Process each item s ∈ Si in order

performing one of the following:

a) Predictor

b) Completer

c) Scanner

3 If Si+1 is empty, Reject.

4 If i = n and Sn+1 = {[(#,0), (#,0), S′ → S$ • , 0]} then accept

The structure of the main loop of Earley’s algorithm remains unchanged except for the require-

ment that the initial item at S0 (line 1) and the accepting item at Sn + 1 (line 4) have an empty

stack Active and Initial node: (#, 0).

The operations predictor, scanner, completer used in the For loop in 2 are modified as follows

to perform the corresponding operations on the graph-structured stack: as we said, we represent

nodes in the graph-structured stack with pairs (δ±, p) such that −n ≤ p ≤ n, δ ∈ DI and the

absolute value of p (abs(p)) refers to the position in w = a1 ...an in which the index δ+ in I was

introduced. Ac(δ1 , p1 ) designates an item active node (∆Ac) and I(δ0 , p0 ) designates an item initial

node.

Prediction and Scanner Operations

Prediction Operations will be divided in different subcases. These subcases are constrained by the

type of production applied (push, pop or e-move). In the pop case there are two subcases (1.2.a):

the active node in the triggering item is in I or (1.2.b) where the active node is in Ī. In the second

case, the function path is used, to retrieve the active nodes in I. This is also required for productions

that check the top of the stack: (A →
[δ]

γ) when the triggering item Active node is in Ī.
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1.1 Predictor Push

If [Ac(δ1 , p1 ), I(δ0 , p0 ), B → α •Aβ, j] ∈ Si , (A →
δ2

γ) ∈ P and δ2 ∈ I:

add every [Ac(δ2 , p2 ), I(δ2 , p2 ), A → •γ, i] to Si

such that: p2 = i + 1, and

push( (δ2 , p2 ), (δ1 , p1 ), (δ0 , p0 ) )

1.2.a Predictor Pop: Active Node is in I

If [Ac(δ1 , p1 ), I(δ0 , p0 ), B → α •Aβ, j] ∈ Si , (A →
δ2

γ) ∈ P and δ2 ∈ Ī = δ̄1 :

add every [Ac(δ2 , p2 ), I(δ2 , p2 ), A → •γ, i] to Si

such that: δ2 = δ̄1 and p2 = −p1 and

push( (δ2 , p2 ), (δ1 , p1 ), (δ0 , p0 ) )

StorePath((δ2 , p2 ), (δ0 , p0 ))

1.2.b Predictor Pop: Active Node is in Ī

If [Ac(δ1 , p1 ), I(δ0 , p0 ), B → α •Aβ, j] ∈ Si and (A →
δ2

γ) ∈ P and δ1 , δ2 ∈ Ī:

add every [Ac(δ2 , p2 ), I(δ2 , p2 ), A → •γ, i] to Si

such that: (δ3 , p3 ) ∈ path((δ1 , p1 ), (δ3 , p3 ), δr , pr )) and δ2 = δ̄3 and p3 = −p2 and

push( (δ2 , p2 ), (δ1 , p1 ), (δ0 , p0 ) )

StorePath((δ2 , p2 ), (δr , pr ))

1.3 Predictor e-move

If [Ac(δ1 , p1 ), I(δ0 , p0 ), B → α •Aβ, j] ∈ Si and (A →
δ

γ) ∈ P such that

δ = ε or δ = [δ1 ] or (δ2 , p2 ) ∈ path(δ1 , p1 ), δ1 ∈ Ī and δ2 = δ

add every [Ac(δ1 , p1 ), I(cl(δ0 ), p0 ), A → •γ, i] to Si

2. Scanner

If [∆Ac , ∆In , A → α •aβ, j] ∈ Si and wi + 1 = a:

add [∆A, ∆In , A → αa •β, j] to Si + 1

Completer Operations

The different subcases of Completer operations are motivated by the contents of the Active Node

∆Ac and the Initial Node ∆In in the triggering completed item (item in Si) and also by the contents

of the Initial Node ∆I0 of the combination target item (item in Sj ). All the completer operations
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check properties of the combination target item in Sj against edges that relate its the initial node ∆I0

to the initial node of the completed triggering item ∆In . These edges are of the form (∆In , ,∆I0 )

(where the omitted element is the active node ∆Ac of the combination target). We use the symbol

‘ ’ hereafter to indicate that the information stored in the corresponding field is not required in the

computation. Therefore if the information is stored in a three dimension table, it means that only

two dimensions are being used.

The idea is to be able to compute whether a tree has a valid stack (i.e. a stack that is in the

Dyck3 language of the indices and its complements (I∪ Ī)). For a subtree to be in the Dyck language

over DI is as follows: the initial node has to contain the node for the first index introduced in the

derivation, and the active node has to contain its inverse. This is the equivalent of a production

S → aSā for a Dyck language over the alphabet {a, ā}. If a subtree is in the Dyck language over

DI, a reduction can be performed. However, we need to check also whether the stack associated

with each subtree is a proper substring of the Dyck language over I ∪ Ī.

The first completer subcase involves a combination item in Sj that had been generated by an

e-production, (derived by Predictor 1.3 e-move) and therefore its initial node is a transmitted node,

ie. ∆I0 = (cl(δ), p). As a result of the combination, the initial node ∆In is inherited by the result

item. This is the reverse of predictor 1.3. At this step, the transmitted nodes are consumed.

3.a Completer A. Combination with an e-move item: δ0 ∈ cl(I ∪ Ī)

If [Ac(δ2 , p2 ), I(δ3 , p3 ), B → γ • , j] ∈ Si :

for edge((δ3 , p3 ), ( , , ), (δ0 , p0 )) and

for [Ac1(δ0 , p0 ) I(δ0 , p0 ), A → α •Bβ, k] ∈ Sj such that:

δ0 ∈ cl(I ∪ Ī)

add [Ac(δ2 , p2 ), I(δ3 , p3 ), A → αB •β, k] to Si

Subcase 3.b combines a completed triggering item generated by a push production (using the

prediction operation 1.1); therefore, the initial node ∆In is in I. The active node ∆Ac is also in I or

it is the empty stack (i.e ∆Ac = (δ2 , p2 ) such that δ ∈ I∪{#} and 0 ≤ p2 ≤ n). The constraint that

there is an I-edge between ∆In and ∆I0 is checked. No further constraints are checked. The result

item preserves the active node from the triggering item and the initial node from the combination

target item. A completion edge is introduced recording the fact that this push node ∆In has been

completed.

3Use the standard terminology concerning Dyck languages as found for instance in [39].
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edge

I−edge

I_0: e−move

Ac_2

I_3

+
−

I_3

Ac_2 +
−

Figure 5.13: Completer A

3.b Completer B: Push with Active Node in I ∪ {#}, (p2 > −1)

If [Ac(δ2 , p2 ), I(δ3 , p3 ), B → γ • , j] ∈ Si such that

δ3 ∈ I, δ2 ∈ I ∪ {#}, and (p2 > −1) :

for edge((δ3 , p3 ), ( , ), δ0 , p0 )) and

for [ , I(δ0 , p0 ), A → α •Bβ, k] ∈ Sj such that: δ0 ∈ I ∪ Ī,

add [Ac(δ2 , p2 ), I(δ0 , p0 ), A → αB •β, k] to Si and

pushC( (δ3 , p3 ), (δ0 , p0 ))

push edge

+
Ac_2 +

I−edge

I_0

I_3

Ac_2 +

+

I_0

+
− +

−

Figure 5.14: Completer B

Subcase 3.c also combines a triggering item generated by a push production, ∆In ∈ I. In this case

the active node ∆Ac is in Ī (i.e ∆Ac = (δ2 , p2 ) such that δ2 ∈ Ī and −n ≤ p2 < 0). The existence

of an edge between ∆In and ∆I0 is checked as in the previous cases. There are two additional

constraints. The first is −p2 < pI . In other words the active node ∆Ac is a closing parenthesis of

the Dyck language that has not yet exceeded its opening parenthesis. It should be noted that the

string position in which an index in I is introduced constrains the possible orderings of the control
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language elements. For instance, two nodes ∆In = (i, 2) and ∆Ac = (j̄ − 3), do not constitute a

valid stack configuration for a subtree, because ∆Ac should have met the corresponding matching

Dyck element and a reduction should have been performed.

The substring of the Dyck language that corresponds to the completed subtree is indicated by

the square brackets. This constraint then expresses the fact that (Āc is outside the square brackets.

(Āc ...[(I0 ...(I ......)Ac ]

The second constraint requires that ∆In has to have a matching closing parenthesis, so the node

∆̄In has to have been completed. Following the preceding example )Ī has to be inside the square

brackets:

(Āc ...[(I0 ...(In ... )Īn ...)Ac ]

The result item preserves the active node from the triggering item and the initial node from the

combination item.

3.c Completer C: Push with Active Node in Ī, (p2 < 0), and −p2 < p3

If [Ac(δ2 , p2 ), I(δ3 , p3 ), B → γ • , j] ∈ Si such that δ3 ∈ I, δ2 ∈ Ī, (p2 < 0) and

−p2 < p3 there is a completed edge((δ̄3 ,−p3 ), ( ))

for edge((δ3 , p3 ), ( , ), δ0 , p0 )) and

for [ , I(δ0 , p0 ), A → α •Bβ, k] ∈ Sj such that: δ0 ∈ I ∪ Ī,

add [Ac(δ2 , p2 ), I(δ0 , p0 ), A → αB •β, k] to Si

push edge
mirror push/pop

A_2

I_0

I_0

A_2

−
−

I_3 +

(d_3, p_3)
(d_1,−p_1)

I−edge
(d_1,p_1)

+

+
−−

−

Figure 5.15: Completer C

Subcase 3.d is the last case that combines a completed item generated by a push production,

∆In ∈ I. In this case the active node ∆Ac is also in Ī ( like in subcase 3.c). But there is a

different constraint: ∆Ac = ∆̄In , i.e. ∆Ac is the matching parenthesis of ∆In . In other words:
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(δ2 , p2 ) = (δ̄3 ,−p3 ) such that δI ∈ I and 0 < p3 ≤ n. Therefore the whole stack of the completed

triggering item can be reduced and the active node of the result is updated to a node that precedes

∆In in the stack, which is ∆Ac1 , i.e. (δ1 , p1 ).

3.d Completer D: Push with Active Node in Ī,( p2 < 0), and ∆Ac = ∆̄I

If [Ac(δ2 , p2 ), I(δ3 , p3 ), B → γ • , j] ∈ Si such that δ3 ∈ I, δ2 ∈ Ī, (p2 < 0),

−p2 = p3 and δ2 = δ̄3

for edge((δ3 , p3 ), (δ1 , p1 ), (δ0 , p0 )) and

for [Ac(δ1 , p1 ), I(δ0 , p0 ), A → α •Bβ, k] ∈ Sj such that: δ0 ∈ I ∪ Ī,

add [Ac(δ1 , p1 ), I(δ0 , p0 ), A → αB •β, k] to Si

push edge
I_3 +

I_0

I_0

Ac_2 = I_3
Ac_2 −

Ac1: (d_1,p_1)

Ac1: (d_1,p_1)

i−edge

reduced path

−+
+
−−

Figure 5.16: Completer D

The following Completer cases involve completed triggering items generated by pop productions.

Subcase 3.e corresponds to edges (∆In , ∆Ac1 , ∆I0 ) where ∆In = ∆̄Ac1 . This is the base con-

figuration to perform a Dyck reduction. The Active Node of the result item are updated, product

of the reduction, and checked to verify that they satisfy the control properties required by the case

3.d. The alternatives for performing a Dyck reduction on the graph are three:

a) The reduction is performed by the path2 function: choose (δ5 , p5 ) ∈ path2(δ2 , p2 )

b) The reduction is performed by a single edge from the complement of the Active Node (∆Ac)

to a matching node of the initial node in the target combination item ∆I0 . In other words, there

is an edge ((δ̄2 ,−p2 ), (δ̄0 ,−p0 , )). This option is similar to the previous one; the only difference is

that ∆Ac was not completed yet at this stage (the path2 function requires completed nodes).

c) The completed item initial node and active node are equal (∆In = ∆Ac). A node preceding

the active node (∆Ac1 ) of the target item (δ1 , p1 )(δ5 , p5 , ), becomes the updated Active node of
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the result. The Active node ∆Ac is updated according to the performed reduction.

3.e Completer E. Pop items with Push items and graph reduction

If [Ac(δ2 , p2 ), I(δ3 , p3 ), B → γ • , j] ∈ Si such that δ2 δ3 ∈ Ī, p3 , p2 < 0 :

Compute path2 (δ2 , p2 )

for edge((δ3 , p3 ), (δ1 , p1 ), (δ0 , p0 ))

where δ3 = δ̄1 , δ1 ∈ I, p3 = −p1 , δ0 ∈ I and p0 > 0,

for [Ac(δ1 , p1 ), I(δ0 , p0 ), A → α •Bβ, k] ∈ Sj such that

If p1 > p0 , and −p2 > p0 and (δ5 , p5 ) ∈ path2(δ2 , p2 ), and (δ5 , p5 ) = (δ̄0 ,−p0 )4

else if −p2 > p0 and there is an edge (δ̄2 ,−p2 ), (δ̄0 ,−p0 , ), and (δ5 , p5 ) ≥ (δ̄0 ,−p0 ) 5

else if p2 = p3 ,δ2 = δ3 for edge(δ1 , p1 )(δ5 , p5 ), )

add [Ac(δ5 , p5 ), I(δ0 , p0 ), A → αB •β, k] to Si

pop edge

i−edge
(d_4,p_4)

I_3=A_2

−

−

I_0
I_0

path

+
+

Ac: (d_4,p_4)

reduced graph

Ac_2

Ac_1

−
−

+ +

Figure 5.17: Completer E, last case

Subcase 3.f considers the combination of a pop item with a push item and checks the properties

of the Active Node (∆Ac) to verify that it satisfies the control properties required in 3.c. Either the

Active Node is a closing parenthesis, (∆Ac−), which has not yet exceeded the position of its opening

parenthesis, alternatively, the Active Node is positive (∆Ac+). These two alternatives are allowed

by p2 > p3 , in other words ∆Ac > ∆In . The information that ∆In was completed is stored by the

completed edge (∆In ,∆In).6

3.f Completer F. Pop items with Push items: p0 > 0, δ0 ∈ I and p2 > p3

4There is a complete path of Ī elements that reaches the one that complements δ0 , or exceeds it. Part of this

constraint might be specified in the Completer Case G.

5δ̄2 was introduced after δ0 was reduced. This case is relevant for the language Lgenabc

6An edge to itself.
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If [Ac(δ2 , p2 ), I(δ3 , p3 ), B → γ • , j] ∈ Si : such that p2 > p3

for edge((δ2 , p2 ), ( , ), (δ0 , p0 ))

for [ , I(δ0 , p0 ), A → α •Bβ, k] ∈ Sj

add [Ac(δ2 , p2 ), I(δ0 , p0 ), A → αB •β, k] to Si

pushC edge (δ3 , p3 )( )

pop edge

i−edge

Ac_2

I_0

I_0

I_3 −

+
+

+−

Ac_2 > I_3 Ac_2 +
−

Figure 5.18: Completer F

The following subcases complete the remaining alternatives. Subcase 3.g combines completed

items generated by pop productions with target items also generated by pop productions. Subcase

3.h combine completed items generated by the 1.3 predictor. Therefore the target item has to have

the same contents in the Initial and Active node as the completed item.

3.g Completer G Pop items combine with Pop items7

If [Ac(δ2 , p2 ), I(δ3 , p3 ), B → γ • , j] ∈ Si such that δ3 ∈ Ī,

for edge((δ3 , p3 ), ( , ), (δ0 , p0 )), δ0 ∈ Ī

for [ , I(δ0 , p0 ), A → α •Bβ, k] ∈ Sj

add [Ac(δ2 , p2 ), I(δ0 , p0 ), A → αB •β, k] to Si and

pushC edge (δ3 , p3 )( )

3. Completer H e-move

If [Ac(δ2 , p2 ), I(cl(δ3 ), p3 ), B → γ • , j] ∈ Si :

for [Ac(δ2 , p2 ), (δ3 , p3 ), A → α •Bβ, k] ∈ Sj :

add [Ac(δ2 , p2 ), (δ3 , p3 ), A → αB •β, k] to Si

The following table summarizes the different Completer cases.

7Here we could state the constraint p2 > p0 , or compute a graph reduction if the condition is not met.
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i−edge

I_3

I_0

I_0

Ac_2

−
−

−

Ac_2 −

Figure 5.19: Completer G

Summary of Completer Cases

CASE COMPLETED ITEM ACTIVE NODE TARGET ITEM Specific Actions

A +/- +/- transmitted ∆I 0 ← ∆In

B + + +/- pushC(∆In , ∆I0 )

C + - +/- check for ∆̄In

D + - (∆A = ∆̄I ) +/- reduce: ∆A ← ∆In − 1

E - - +/- ,∆Ac+ reduce with path2

F - +/- (∆A > ∆In) + pushC(∆In ,−)

G - +/ - - pushC(∆In ,−)

H transmitted +/- +/-, transmitted

5.3 Complexity Analysis

5.3.1 Overview

The algorithm presented above has one sequential iteration (a for loop). It has a maximum of n

iterations where n is the length of the input. Each item in Si has the form:

[Ac(δ1 , p1 ), I(δ2 , p2 ), A → α •Bβ, j] where: 0 ≤ j, p1 , p2 ,≤ i

Thus there might be at most O(i3 ) items in each set Si .

Scanner, Predictor e-move and Predictor Push operations on an item each require constant time.

Predictor pop, might require O(i2 ). For each active node there might be at most i edges, therefore

the pop procedure might take time O(i2 ) for each set Si , which may have O(i) active nodes.
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The computation of the Path function might require O(n3 ) also.

The Completer Operations (3.a to 3.h ) can combine an item from Si :

[Ac(δ2 , p2 ), I(δ3 , p3 ), B → α •γ, j] where: 0 ≤ j, p2 , p3 ,≤ i

with at most all [ , I0(δ0 , p0 ), A → α •Bβ, k] ∈ Sj (i 6= j), where: 0 ≤ j, k, p0 ,≤ j

such that there is an i−edge((δ3 , p3 ), (δ0 , p0 )). There are at most O(j2 ) such possible combinations,

provided the information in the node Ac1(δ1 , p1 ) is not taken into account in the combination. In

other words, only two dimensions are taken into account from the three dimensional table where

i-edges and edges are stored. This is in general the case except for some restricted cases in which the

node ∆Ac1 is bound to the node ∆In and therefore does not increase the combinatorial possibilities.

Given that there are at most O(i3 ) items in each set, also in Sj , then the complexity of this operation

for each state set is O(i5 ). This is a general analysis. We consider in detail each subcase of the

Completer in the next subsection.

The required time for each iteration (Si) is thus O(i5 ). There are Sn iterations then the time

bound on the entire 1-4 steps of the algorithm is O(n6 ).

It can be observed that this algorithm keeps a CFG (O(n3 )) complexity if the values of p1 and

p2 are dependent on i, i.e., if for each item there is only one value for p1 and p2 for each i.

[Ac(δ,p1 ), I(δ2 ,p2 ), A → α •Bβ, pj ], where 0 ≤ j ≤ i

Languages that have this property will be called constant indexing languages. In such cases the

number of items in each set Si is proportional to i, i.e., O(i) and the complexity of the algorithm is

O(n3 ). This is true even for some ambiguous grammars such as the following:

Gamb = ({S, B, C, D, E}, {a, b, c, d}, {i, },#, S, P ) where P is

S →
i

aSd S → BC B →̄
i

bB B →̄
i

b C → cC C → c

S → DE D → bD D → b E →̄
i

cE E →̄
i

c

L(Gamb) = {anbmcndn |n,m ≥ 1} ∪ {anbncmdn |n, m ≥ 1}
In this case, the ambiguity resides in the CFG backbone, while the indexing is so to speak, deter-

ministic. Once the CF backbone chooses either the “BC” path or the “DE” path of the derivation,

only one indexing alternative can apply at each step in the derivation.

A different case of ambiguity is Gamb2 = ({S, B, C}, {a, b, c, d}, {i, }, #, S, P ) where P is :

1.S →
i

aSd 2.S → BC 3.B →̄
i

bB 4.B →̄
i

b 5. C → cC 6.C → c

7.B → bB 8.B → b 9.C →̄
i

cC 10. C →̄
i

c

L(Gam2 ) = {anbkcmdn |n,m, k ≥ 1,m + k ≥ n}
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In this case (where the ambiguity is between a pop and an epsilon-move the number of items corre-

sponding to the rules 3, 4, 7 and 8 would be bounded by the square of the number of b’s scanned

so far. However, the similar grammar Gamb3 = ({S, B, C}, {a, b, c, d}, {i, },#, S, P ) would produce

items proportional to i in each set Si :

S →
i

aSd S → BC B →̄
i

bB B → ε C →̄
i

cC C → ε

L(Gam3 ) = {anbkcmdn |n ≥ 1, m, k ≥ 0,m + k = n}
Therefore, the sources of increase in the time complexity are a) ambiguity between mode of operation

in the stack (ε, push, or pop) through the same derivation CF path and b) a different index value

used in the same type of stack operation. The expensive one is the first case.

The properties of Earley’s algorithm for CFGs remain unchanged, so the following results hold:

O(n6 ) is the worst case; O(n3 ) holds for grammars with constant or unambiguous indexing. Un-

ambiguous indexing should be understood as those grammars that produce for each string in the

language a unique indexing derivation. O(n2 ) for unambiguous context free back-bone grammars

with unambiguous indexing and O(n) for bounded-state8 context free back-bone grammars with

unambiguous indexing.

5.3.2 Time and Space Complexity

In this subsection we compute the time and space complexities in terms of the length of the input

sentence (n) and the size of the grammar. There is an important multiplicative factor on the

complexity computed in terms of the input size which depends on the size of the grammar (see [6]).

The size of the grammar designated by |G| corresponds to the number of rules and the number of

non-terminals. Complexity results concerning formalisms related to Natural Language (including

CFLs) mostly are worst case results (upper bounds) and they do establish polynomial parsing of

these grammars. There are no mathematical average case results. All average case results reported

are empirical. In practice, most algorithms for CFGs, TAGs, and other grammar formalisms run

much better than the worst case. Usually, the real limiting factor in practice is the size of the

grammar.

In the analysis we present here, we keep separate the size of the context-free backbone and the

indexing mechanism. This will allow to compare what is the impact of the indexing mechanism as

an independent multiplicative factor.

8Context Free grammars where the set of items in each state set is bounded by a constant.
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Analysis of Scan, Predict, Complete

The scanner operation requires constant time. It checks the current word (input aj ) against the

terminal a expected by the scanner.

Scanner

If [∆A, ∆In , A → α •aβ, j] ∈ Si and wi + 1 = a:

add [∆A, C, ∆In , A → αa •β, j] to Si + 1

Predictor operations have in general the following shape.

Predictor Operations

If [Ac(δ1 , p1 ), ∆0 , B → α •Aβ, j] ∈ Si and (A →
δ

γ) ∈ P :

add every [(δ2 , p2 ), ∆3 , A → •γ, i] to Si

A grammar rule is added to the state set. There is still the need to check for duplicates of the

grammar rules. The same grammar rule may have different values for δ. The same grammar rules

may apply at most n2 times (if it is a pop rule): there might be O(I ·n) possible values for Ac(δ1 , p1 ),

and for each value there might be O(I · n) path values.

The computation of the path in Predictor takes at most O(n3 ) for each vertex, there are at most

O(|I| ·n) edges in a path and we consider edges to two vertices: the active node and the initial node.

The push (1.2) and predictor 1.3 operations take constant time regarding the input size.

Given there are two stack possible values (∆Ac and ∆In), the complexity of the predictor oper-

ation is: O(|I|2 · |G| · n4 ).

We consider now the more simple cases of the Completer operation which have the following shape.

Completer Case 1, no recalculation of ∆Ac (No reduction involved)

If [∆Ac , ∆In , B → γ • , j] ∈ Si :

for every i-edge (∆In , ∆I0 ) and item:

for [ ,∆I0 , A → α •Bβ, k] ∈ Sj

add [∆Ac , ∆I0 , A → αB •β, k] to Si

The complexity is bound by the number of elements in Sj that satisfy the edge condition. It depends

on k and p0 : O(|I| · |G| ·n2 ). There might be O(I ·∆In −1) possible values for each edge and ∆In , k

are bounded by n.
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In each set in Si there might be at most O(|I|2 · |G| · n3 ) items. There are O(n) possible values

for each ∆Ac ,∆In and j : 0 ≤ j, abs(pAc), abs(pIn), n.

Total complexity is then n×O(|I|2 · |G| · n3 )×O(I ·G · n2 ) = O(|I|3 · |G|2 · n6 )

The remaining cases of the Completer involve more complex operations because the value of ∆Ac

has to be recalculated, performing reductions. These additional operations are performed provided

certain constraints are met. We will analyze each of them in turn.

Completer Case 2, recalculation of ∆Ac: Completer D and Completer E

3.d Completer D: Push with Active Node in Ī

If [∆Ac , ∆In , B → γ • , j] ∈ Si such that ∆Ac = ∆̄I

for edge(∆In , ∆Ac1 , ∆0 ) and

for [∆Ac1 , ∆I0 , A → α •Bβ, k] ∈ Sj such that: ∆0 ∈ I ∪ Ī,

add [∆Ac1 , ∆I0 , A → αB •β, k] to Si

In each set in Si there might be at most O(|I|·|G|·n2 ) items that satisfy the condition ∆Ac = ∆̄I .

This requires the pA value of ∆Ac to be equal to −pI in ∆In (their integer values are opposites).

Each such item can be combined with at most O(|I|2 · |G| ·n3 ) items in each set in Sj , given the

node ∆Ac1 has to be considered to compute the result item added to the Si set ( the values of ∆Ac ,

∆IO and k produce give O(n3 )). So the total is n×O(|I| · n)×O(|I| · |G| · n2 )×O(|I| · |G| · n2 ) =

O(|I|3 · |G|2 · n6 )

3.e Completer E. Pop items with Push items that re-compute the value Active node.

Subcase 1

If [∆Ac , ∆In , B → γ • , j] ∈ Si such that ∆Ac ∆In ∈ Ī, pAc , pIn < 0 :

Compute path2(∆Ac)

for edge(∆In , ∆Ac1 , ∆I0 ) where ∆In = ∆̄Ac1 , ∆Ac1 , ∆IO ∈ I

for [∆Ac1 , ∆I0 , A → α •Bβ, k] ∈ Sj

such that the following conditions imposed on the edges are satisfied:

if pAc1 > pI0 , and −pAc > pI0 and ∆̄I0 ∈ path2(∆Ac)

else if −pAc > pI0 and there is an edge (∆̄Ac , ∆̄I0 , )

add [∆̄I0 ,∆I0 , A → αB •β, k] to Si

Computing the set path2 for each ∆Ac takes O(|I| · n2 ) time, so its bound is O(|I| · i3 ) for each

set Si (∆Ac) is bound by i).

There are at most O(|I| · |G| · n2 ) items in Sj that satisfy this condition. Checking if ∆̄I0 ∈
path2(∆Ac) or there is an edge (∆̄Ac , ∆̄I0 , ) is done in constant time.
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Total complexity is then n×O(|I|2 · |G| · n3 )×O(|I| · |G| · n2 ) = O(|I|3 · |G|2 · n6 )

3.e Completer E. Pop items with Push items that re-compute the value Active node.

Subcase 2

If [∆Ac , ∆In , B → γ • , j] ∈ Si such that ∆Ac = ∆In ∈ Ī:

for edge(∆In , ∆Ac1 , ∆I0 ) where ∆In = ∆̄Ac1 and items

for [∆Ac1 , ∆I0 , A → α •Bβ, k] ∈ Sj

for edge(∆Ac1 , ∆5 , )

add [∆5 ,∆In , A → αB •β, k] to Si

There are at most O(|I| · |G| · n2 ) items in each set Si that satisfy the condition ∆Ac = ∆In

There are at most O(|I| · |G| · n2 ) items in each set Sj that satisfy the condition ∆In = ∆̄Ac1

There are at most O(|I| · n) edges for each ∆Ac1 .

Total complexity is then n×O(|I| · n)×O(|I| · |G| · n2 )×O(|I| · |G| · n2 ) = O(|I|3 · |G|2 · n6 )

Finally we have not considered the case of the path2 with different values than ∆̄I0 . These can

be done as a separate filtering on the completed items in Si , within the same time bounds adding

an operation to update the active node reducing all possible paths.

We have seen then that O(|I|3 · |G|2 · n6 ) is the asymptotic bound for this algorithm.

If we compare the influence of the grammar size on the time complexity of the algorithm for GIGs

and the one for CFGs, the only change corresponds to the added size of I. Therefore if the set of

indices is relatively small there is not a significant change in the influence of the grammar size.

If we compare the algorithm with LIG algorithms, the impact of the grammar size might be

higher for the LIG algorithms and the impact of the indexing mechanism smaller.

The higher impact of the grammar size would be motivated in the following kind of completer

required by LIGs (from [4]), that involves the combination of three constituents:

[A[..] → Γ1 •B[..γ]Γ2 ,−, i, k, |−,−,−]

[B → Γ3 • , γ, k, j, |C, p, q]

[C → Γ4 • , η, p, q, |D, r, s]

[A[..] → Γ1 •B[..γ]Γ2 , η, i, j, |D, rs]

A[..] → Γ1B[..γ]Γ2

However the work load can be set either in the indexing mechanisms as is shown in the equivalent

completor from [74], used to parse TAGs, where the set of nonterminals is {t,b,}.
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Type 4 Completor:

〈t[η] → • t[ηr ], i,−,−, i〉
〈t[ηr ] → Θ • , i, j, k, l〉

〈b[η] → ∆ • , j, p, q, k〉
〈t[η] → t[ηr ] • , i, p, q, l〉

t[..η] → t[..ηηr ]

A note on Space Complexity

The space complexity is determined by the storage of Earley items. Given there are four parameter

bound by n in each item, its space complexity is O(n4 ). Storage of the graph-structured stack

takes O(n3 ). Storing the combination of i-edges and edges involves three nodes, and the number of

possible nodes is bound by n, therefore it can be done in a n× n× n table.

5.4 Proof of the Correctness of the Algorithm

The correctness of Earley’s algorithm for CFGs follows from the following two invariants (top down

prediction and bottom-up recognition) respectively:

Proposition 5 An item [A → α •β, i] is inserted in the set Sj if and only if the following holds:

1. S
∗⇒ a1 ...aiAγ

2. α
∗⇒ ai+1 ...aj

S

A

β

a 1 a i a
i+1

a j... ...

α
ηγ

Figure 5.20: Earley CFG invariant
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The corresponding invariants of Earley’s algorithm for GIGs can be stated in a similar way,

taking into account the operations on the stack. This is specified in terms of the Dyck language over

I ∪ Ī

5.4.1 Control Languages

We defined the language of a GIG G, L(G) to be: {w|#S
∗⇒ #w and w is in T ∗}. We can obtain an

explicit control language9 modifying the definition of derivation for any GIG G = (N, T, I, S, #, P )

as follows. Let β and γ be in (N ∪ T )∗, δ be in I∗, x in I, w be in T ∗ and X i in (N ∪ T ). Define C

to be the Dyck language over the alphabet I ∪ Ī (the set of stack indices and their complements).

1. If A →
µ

X1 ...Xk is a production of type (a.) (i.e. µ = ε or µ = [x], x ∈ I) then:

〈βAγ, #δ〉 ⇒
ε
〈βX1 ...Xkγ, #δ〉 or 〈βAγ, #δx〉 ⇒

[x]
〈βX1 ...Xkγ, #δx〉

2. If A →
µ

aX1 ...Xn is a production of type (b.) or push: µ = x, x ∈ I, then:

〈wAγ, #δ〉 ⇒ 〈waXk ...Xnγ, #δx〉

3. If A →
µ

X1 ...Xn is a production of type (c.) or pop : µ = x̄, x ∈ I, then:

〈wAγ, #δx〉 ⇒ 〈wX1 ......Xnγ, #δxx̄〉

4. If A →
µ

X1 ...Xn is a production of type (c.) or pop : µ = x̄, x ∈ I, y ∈ Ī, and δ′y ∈ C then:

〈wAγ, #δxδ′y〉 ⇒ 〈wX1 ......Xnγ, #δxδ′yx̄〉

Then, define the language of a GIG G to be the control language L(G, C): {w|〈S, #〉 ∗⇒ 〈w, #δ〉
and w is in T ∗, δ is in C }. It is apparent that both definitions of a GIG language are equiva-

lent. Assuming such an alternative definition of a GIG language, we address the correctness of the

algorithm as follows:

Proposition 6 (Invariants) .

An item [Ac(y, p1 ), I(z, p0 ), A → α •β, i] is a valid item in the Set Sj if and only if the following

holds:

1. 〈S, #〉 ∗⇒ 〈a1 ...aiAγ, #ν〉 for some γ ∈ V ∗ and some ν ∈ (I ∪ Ī)∗.

9See [25] for control languages pp. 173-185 and [87] for a control language representation for LIGs.
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2. (A →
δ

αβ) ∈ P

3. 〈α, #νδ〉 ∗⇒ 〈ai+1 ...aj , #νz′µy′π〉

Such that:

a. p0 ≤ i + 1 and p1 ≤ j.

b. δ = z′ iff δ ∈ I ∪ Ī, else δ = ε

c. z, y ∈ I ∪ Ī iff z = z′, y = y′, ν, µπ ∈ (I ∪ Ī)∗, π ∈ C and νz′µy′πρ ∈ C for some ρ ∈ (I ∪ Ī)∗.

d. z,∈ cl(δ′), δ′ ∈ DI iff z′µy′π = epsilon,

Figure 5.21 depicts the properties of the invariant, which naturally embed the invariant properties

of the Earley algorithm for CFGs. The remaining conditions specify the properties of the string

νz′µy′π relative to the control language C. Condition a. specifies the constraints related to the

position correlation with the strings in the generated language. Condition b. specifies the properties

for the different types of productions that generated the current item. Condition c. specifies the

properties of information of the graph-structured stack encoded in the item. Condition d. specifies

that the item has a transmitted node from the graph if the empty string was generated in the control

language.

S

A

β

a 1 a i a
i+1

a j... ...

# πyµzν

.
α.z

y

ηγ
ν

πµ

Figure 5.21: GIG invariant

We will use Parsing Schemata to prove this proposition. It will also help to understand the

implementation of the algorithm we detail in the appendix.

5.4.2 Parsing Schemata

We use Parsing Schemata, a framework that allows high-level specification and analysis of parsing

algorithms [75, 76]. This framework enables the analysis of relations between different parsing
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algorithms by means of the relations between their respective parsing schemata. Parsing schemata

are closely related to the deductive parsing approach (e.g.[72]).

We present parsing schemata rather informally here. Parsing Schemata are generalizations (or

uninstantiations) of a parsing system P. A parsing system P for a grammar G and a string a1 ...an

is composed of three parameters a) I as set of items that represent partial specifications of parse

results b) H a finite set of items (hypothesis) encodes the sentence to be parsed and D a set of

deduction steps that allow to derive new items from already known items. Deduction steps are of

the form η1 , ..., ηk ` ξ which means that if all the required antecedents ηi are present, then the

consequent ξ is generated by the parser. A set of final items, F ∈ I, represent the recognition of a

sentence.

A Parsing schema extends parsing systems for arbitrary grammars and strings. As an example we

introduce the Earley Schema for CFGs. Earley items, as we already saw are stored in sets according

to each, say j, position in the string. The corresponding set of items in the Schema is encoded by

an additional parameter in the items Schema items, defined by IEarley below.

The input string is encoded by the set of hypothesis HEarley . Earley operations are defined by

the allowed deductions: DScan , DPred , DComp .

Parsing Schema 1 (Earley Schema for CFGs) .

This parsing schema is defined by a parsing system PEarley for any CFG G and any a1 ...an ∈ Σ∗ by:

IEarley = {[A → α •β, i, j]} such that A → αβ ∈ P and 0 ≤ i ≤ j

HEarley = {[a, i− 1, i] | a = ai ∧ 1 ≤ i ≤ n};
DInit = {` [S′ → •S, 0, 0]},
DScan = {[A → α •aβ, i, j], [a, j, j + 1] ` [A → αa •β, i, j + 1]}
DPred = {[A → α •Bβ, i, j] ` [B → •γ, j, j]},
DComp = {[A → α •Bβ, j, k], [B → γ •δ, k, j] ` [A → αB •β, i, j]},
DEarley = DInit ∪ DScan ∪ DPred ∪ DComp

FEarley = {[S′ → S • , 0, n]},
A final item F(PEarley) ∈ I is correct if there is a parse tree for any string a1 ...an that conforms to

the item in question.

CEarley = {[S′ → S • , 0, n] |S ∗⇒ a1 ...an}

The set of valid items is defined by the invariant of the algorithm.

V(PEarley) = {[A → α •β, i, j]|S ∗⇒ a1 ...aiAγ ∧ α
∗⇒ ai+1 ...aj}
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Definition 12 A parsing system (P) is sound if F(P) ∩ V(P) ⊆ C(P) (all valid final items are

correct). A parsing system (P) is complete if F(P) ∩ V(P) ⊇ C(P) (all correct final items are valid).

A Parsing system is correct if F(P) ∩ V(P) = C(P)

5.4.3 Parsing Schemata for GIGs

The parsing schema for GIGs presented here is an extension of the parsing schema for CFGs given

in the previous subsection. The parsing schema for GIGs corresponds to the algorithm 6 presented

in section 5.2.

It can be observed that the major differences compared to the CFGs schema are the addition of

different types of Prediction and Completer deduction steps. However there is an additional type of

deduction step performed in this parsing schema, and this corresponds to the control language.

Therefore ICEGIG , a different set of items, will be used to perform the corresponding deduction

steps. Those items in ICEGIG , will represent edges and paths in the graph. Items in ICEGIG will

participate in some restricted deduction steps.

Prediction Push and Pop deduction Steps, DPrPush , DPrPop1 , and DPrPop2 have the following

shape, and they introduce prediction items ηp in ICEarleyGIG .

ηij ` ηjj ∧ ηp

Completers DCompB , DCompF , and DCompG have the following shape, and they introduce completion

items ηp in ICEarleyGIG .

ηik , ηkj ` ηij ∧ ηp

This kind of deduction step can be understood as shortform for two deduction steps.

Predictor steps can be decomposed as:

ηij ` ηjj

ηij ` ηp

Completer Steps can be decomposed as:

ηik , ηkj ` ηij

ηik , ηkj ` ηp

Those deduction steps that compute the the Control language are DPatha , DPathb , DPath2 a , DPath2 b
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Parsing Schema 2 (Earley Schema for GIGs) .

This parsing schema is defined by a parsing system PEGIG for any GIG G = (N, T, I, S, #, P ) and

any a1 ...an ∈ Σ∗ by:

IEGIG = {[∆Ac ,∆In , A → α •β, i, j]}
such that ∆Ac ,∆In ∈ {(δ, p)|δ ∈ DI; or δ = cl(δ′)} ,

A → αβ ∈ P and

0 ≤ i, p ≤ j

ICEGIG = {[P, ∆Ac , ∆Ac1 , ∆I0 )]} ∪ {[P, ∆1 , ∆2 ]}
such that ∆i ∈ {(δ, p)|δ ∈ DI ∧ 0 ≤ p ≤ j} and

P is in {pop, push, popC, pushC, path, path2}

HEGIG = {[a, i− 1, i] | a = ai ∧ 1 ≤ i ≤ n};

DInit = {` [(#, 0), (#, 0), S′ → •S$, 0, 0]},

DScan = {[∆Ac ,∆In , A → α •aβ, i, j], [a, j, j + 1] `
[∆Ac ,∆In , A → αa •β, i, j + 1]}

DPrE = {[∆Ac ,∆I0 , A → α •Bβ, i, j] `
[∆Ac , cl(∆)I0 , B →

ν
•γ, j, j] |ν = ε or ν = [δAc ]}

DPrPush = {[∆Ac1 , ∆I0 , A → α •Bβ, i, j] `
[(δ2 , j+ 1), (δ2 , j+ 1), B →

δ2

•γ, j, j] ∧
[push, (δ2 , j + 1),∆Ac1 ,∆I0 ] | δ2 ∈ I},

DPrPop1 = {[(δ1 , p1 )+,∆I0 , A → α •Bβ, i, j] `
[(δ̄1 ,−p1 ), (δ̄1 ,−p1 ), B →̄

δ1

•γ, j, j] ∧
[pop, (δ̄1 ,−p1 ), (δ1 , p1 ), ∆I0 ] | δ ∈ Ī]},
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DPatha = {[pop, ∆̄1−, ∆1+,∆R], [P, ∆1+, ∆2+, ∆R1 ] `
[path, ∆̄1 − ,∆2+, ∆R2 ] |
(∆R = ∆1+,∆R2 = ∆R1 , P = push) ∨
(∆R < ∆1+,∆R2 = ∆R, P = pushC)}

DPathb = {[pop, ∆̄1−,∆1+, ∆R], [P, ∆1+, ∆3−, ∆],

[path,∆3−, ∆2+,∆R2 ] `
[path, ∆̄1−, ∆2+,∆R1 ] | − same conditions Patha}

DPrPop2 = {[∆Ac−,∆I , A → α •Bβ, i, j], [path, ∆Ac−, ∆1+, ∆R1 ] `
[∆̄1 , ∆̄1 , B →̄

δ1

•γ, j, j] ∧ [pop, ∆̄1 ,∆Ac−, ∆I ]|δ1 ∈ Ī},

DPathc = {[pop, ∆̄1−,∆2−, ∆R], [path, ∆2−,∆1+, ∆R1 ],

[P, ∆1+, ∆3+,∆R2 ] ` [path, ∆̄1 − ,∆3+,∆R3 ] |
(∆R1 = ∆1+, ∆R3 = ∆R2 , P = push) ∨
(∆R1 < ∆1+, ∆R3 = ∆R1 , P = pushC)}

DPathd = {[pop, ∆̄1−,∆2−, ∆R], [path, ∆2−, ∆1+, ∆R1 ],

[P, ∆1+, ∆3−,∆], [path, ∆̄3 − ,∆4+, ∆R4 ] `
[path, ∆̄1 − ,∆3+, ∆R3 ] |
(∆R1 = ∆1+, ∆R3 = ∆R4 , P = push) ∨
(∆R1 < ∆1+, ∆R3 = ∆R1 , P = pushC)}

DCompA = {[∆Ac , ∆In , B → γ • , k, j], [∆In , , ∆I0 ]

[∆Ac1 , CL(∆)I0 , A → α •Bβ, i, k] `
[∆Ac ,∆In , A → αB •β, i, j]},

DCompB = {[∆Ac+, ∆In+, B → γ •k, j], [∆In+, , ∆I0 ]

[∆Ac1 , ∆I0 , A → α •Bβ, j, k] `
[∆Ac+, ∆I0 , A → αB •β, i, j] ∧ [pushC, ∆In+,∆I0 ]}

DCompC = {[∆Ac−,∆In+, B → γ • , k, j], [∆In+, , ∆I0 ]

[∆Ac1 , ∆I0 , A → α •Bβ, i, k], [pushC, ∆̄I , ∆̄I ] `
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[∆Ac+, ∆I0 , A → αB •β, i, j]}

DCompD = {[∆̄I−,∆In+, B → γ • , k, j], [∆In+, , ∆I0 ]

[∆Ac1 , ∆I0 , A → α •Bβ, i, k] `
[∆Ac1 , ∆I0 , A → αB •β, i, j]}

DCompE = {[∆Ac−, ∆In−, B → γ • , k, j], [∆In−, ∆̄In−, ∆I0 ]

[∆̄In−,∆I0 , A → α •Bβ, i, k], [path2, ∆Ac−,∆Ac2−] `
[∆Ac2−,∆I0 , A → αB •β, i, j] }

DCompF = {[∆Ac , ∆In−, B → γ • , k, j], [∆In−, ,∆I0+]

[∆Ac1 , ∆I0+, A → α •Bβ, i, k] `
[∆Ac ,∆I0 , A → αB •β, i, j] ∧
[pushC, ∆In , ∆I0 ] |∆Ac > ∆In}

DPath2 a = [pushC, ∆̄1−, ∆1+], [pushC, ∆1+, ∆2−] `
[path2, ∆̄1 − ,∆2−]

DPath2 b = [pushC, ∆̄1−,∆1+], [pushC, ∆1+,∆2−],

[path2,∆2−, ∆3−] `
[path2, ∆̄1−, ∆3−]

DCompG = {[∆Ac , ∆In−, B → γ • , k, j], [∆In−, ,∆I0−]

[∆Ac1 , ∆I0−, A → α •Bβ, i, k] `
[∆Ac , ∆I0−, A → αB •β, i, j] ∧ [pushC, ∆In , ∆I0 ]}

DCompH = {[∆Ac1 , CL(∆)I0 , B → γ • , k, j],

[∆Ac1 , ∆I0 , A → α •Bβ, i, k] `
[∆Ac1 , ∆I0 , A → αB •β, i, j] }
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A correctness proof method for parsing schemata

This method is defined in [76]

• Define the set of viable items W ⊆ I as the set of items such that the invariant property holds.

• Proof of soundness for all the deduction steps: V(P) ⊆ W. It has to be shown that for all

η1 · · · ηk ` ξ ∈ D with ηi ∈ H ∪W, 1 ≤ i ≤ k, it holds that ξ ∈ W . In other words that the

deduction steps preserve the invariant property.

• Proof of completeness: W ⊆ V(P). Show that all the viable items (all possible derivations are

deduced by the algorithm). This proof uses a so-called deduction length function (dlf), to use

in the induction proof. Assume that any item η in W with derivation length less than m is

obtained (if d(η) < m then η ∈ V(P)), then prove that all ξ with d(ξ) = m, ξ ∈ V(P).

Definition 13 (derivation length function ) 10

Let (P) be a parsing schema, : W ⊆ I a set of items. A function d : H ∪W → N is a dlf if

(i) d(h) = 0 for h ∈ H.

(ii) for each ξ ∈ W there is some η1 , · · · , ηk ` ξ ∈ D such that

{η1 , · · · , ηk} ⊆ W and d(ηi) < d(ξ) for 1 ≤ i ≤ k.

The derivation length function is defined according to the properties of the parsing algorithm.

Because we introduced another class of items, the items corresponding to the control language,

ICEGIG , we need also an invariant for the computation of the control properties.11

Proposition 7 (Invariant of the Path function) .

An item [path, (x,−p2 ), (y, p1 ), (z, p0 )] is valid for a string a1 · · · aj if and only if the following

holds:

1. 〈S, #〉 ∗⇒ 〈a1 ...ajγ, #νx〉 for some γ ∈ NV ∗ and some ν ∈ (I ∪ Ī)∗ and x ∈ Ī.

2. p2 > p1 ≥ p0

3. νx = µyπ such that y ∈ I, and π ∈ C
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Figure 5.22: Path invariant

Lemma 7 (GIG items soundness is preserved under Scan, Predict Completer) .

V(P) ⊆ W. For all η1 · · · ηk ` ξ ∈ D with ηi ∈ H ∪W, 1 ≤ i ≤ k it holds that ξ ∈ W
This can be rephrased as follows in terms of the algorithm presented in section 5.2, where correct

means that the proposition 2. (the invariant property) holds.

Let G = (N, T, I, #, P, S) be a GIG and let w = a1 · · · an , n ≥ 0 where each ak ∈ T for 1 ≤ k ≤ n.

Let 0 ≤ i, j ≤ n.

• If ηi is a correct item for grammar G and input w and ηi ` ηj then ηj is a correct item.

• If ηi , ηk are correct items, for grammar G and input w and ηi , ηk ` ηj then ηj is a correct

item.

Proof .

• Case 1. Scanner.

An item ηj : [Ac(y, p1 ), I(z, p0 ), A → αa •β, i] is in Sj if and only if

ηj−1 : [Ac(y, p1 ), I(z, p0 ), A → α •aβ, i] is in Sj−1 and ηj−1 `
scan

ηj

Since ηj−1 is correct, then

a. 〈S, #〉 ∗⇒ 〈a1 ...aiAγ, #ν〉 for some γ ∈ V ∗ and some ν ∈ (I ∪ Ī)∗.

b.(A →
δ

αaβ) ∈ P

c. 〈α, #νδ〉 ∗⇒ 〈ai+1 ...aj−1 , #νz′µy′π〉
10From [76].

11The correctness of the push items is straightforward. Regarding the pop items it is derived from the path function.
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Now 〈αaj , #ηδ〉 ∗⇒ (ai+1 ...aj , #νz′µy′π〉 by b. and c. This together with a. allows us to

conclude that ηj is a correct item in Sj , and we conclude the proof for Case1.

• Case 2. Predictors

An item ηjj : [Ac(u, p2 ), I(x, p3 ), B → •ξ, j] is in Sj if and only if:

η′ij : [Ac(y, p1 ), I(z, p0 ), A → α •Bβ, i] is in Sj .

(B →
δ

ξ) ∈ P such that

Since η′ij is correct,

a. 〈S, #〉 ∗⇒ 〈a1 ...aiAγ, #ν〉 for some γ ∈ V ∗ and some ν ∈ (I ∪ Ī)∗.

b.(A →
δ′

αBβ) ∈ P

c. 〈α, #νδ′〉 ∗⇒ 〈ai+1 ...aj , #νzµy′π〉

Therefore: (this is common to all the subcases)

d. 〈S,#〉 ∗⇒ 〈a1 · · · aiai+1 · · · ajBβγ, #νzµyπ〉 from η′ij (a. b. and c.)

and the following deduction steps apply according to the value of δ

i. δ = ε, x = cl(z), p3 = p0 , u = y, p1 = p2 .

η′ij `
predict

ηjj

e. 〈ε, #νzµyπ〉 ∗⇒ 〈ε, #νzµyπ〉 from (B →
ε

ξ) ∈ P

ii. δ = x ∈ I, (B →
x

aξ) ∈ P , u = x, p3 = j + 1, p2 = j + 1

η′ij `
predict

ηjj ∧ ηpush

ηpush = [push, (x, j + 1), (y, p1 ), (z, p0 ))

e. 〈ε, #νzµyπx〉 ∗⇒ 〈ε, #νzµyπx〉

iii. δ = ȳ, (B →̄
y

ξ) ∈ P , x = ȳ, u = ȳ, p3 = −p1 , p2 = −p1

η′ij `
predict

ηjj ∧ ηpop

ηpop = [pop, (ȳ,−p1 ), (y, p1 ), (z, p0 ))

e. 〈ε, #νzµyπȳ〉 ∗⇒ 〈ε, #νzµyπȳ〉

It should be noted also due to ηpop is obtained in this derivation, the following derivations

follow:

ηpop , ηpush ` ηpath [path, ȳ, x′, z′′)
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where ηpop = [pop, ȳ, y, z) and ηpush = [push, y, x′, z′) such that x′ ∈ I and z′′ is either z or z′,

by Dpatha or

ηpop , ηpush ηpath1 ` ηpath2 by Dpathb where

ηpop = [pop, ȳ, y, z), ηpush = [push, y, x̄, z′), ηpath1 = [path, x̄, x′′, z′′], ηpath2 = [ȳ, x′′, z′′],

x, x′′ ∈ I.

iv. y ∈ Ī, δ = x̄′, (B →̄
x′

ξ) ∈ P , p2 = p3 , p3 < 0, u = x, x = x̄′.

η′ij , ηpath `
predict

ηjj ∧ ηpop

ηpath((y, p1 ), (x′, abs(p3 )), z′′)

ηpop = [pop, (x̄,−p3 ), (y, p1 ), (z, p0 )]

Since ηpath = [path, (y, p1 ), (x′, abs(p3 )), z′′] is correct, then

d. #νzµyπ = #ν′x′π′ such that π′ ∈ C.

Therefore

〈S, #〉 ∗⇒ 〈a1 · · · aiai+1 · · · ajBβγ, #νzµyπ〉 from η′ij (a. b. and c. in the previous page)

〈ε, #νz′µy′πδ〉 ∗⇒ 〈ε, #νzµyπx̄〉 from (B →
δ

ξ) ∈ P

such that #νzµyπx̄ = #ν′xπ′x̄ from d.

It should be noted also that as a consequence of ηpop , the same deductions as in the previous

case are triggered:

ηpop , ηpush ` ηpath

ηpop , ηpush ηpath1 ` ηpath2 by Dpathb

Case 3. Completer

An item ηij : [Ac(y′, p2
′), I(z, p0 ), A → αB •β, i] is in Sj if and only if

an item η′kj : [Ac(y, p2 ), I1(x, p3 ), B → ξ • , k] is in Sj and

an item η′′ik : [Ac1(u, p1 ), I(z, p0 ), A → α •Bβ, i] is in Sk and

an item ηp : [p, I1(x, p3 ), ∆Ac1 , I(z, p0 )] where p is either push or pop. (This item corre-

sponds to the edges that relate the nodes in ηij and ηkj

Given η′′ik and η′kj are valid items we obtain:

a. 〈S, #〉 ∗⇒ 〈a1 ...aiAγ, #ν〉 for some γ ∈ V ∗ and some ν ∈ (I ∪ Ī)∗.
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b. 〈α, #νδ′〉 ∗⇒ 〈ai+1 ...ak , #νz′µu′π〉 for some (A →
δ′

αBβ) ∈ P

from η′′ik and

c. 〈ξ,#ν′δ′′〉 ∗⇒ 〈ak+1 ...aj ,#ν′x′µy′π′〉 for some (B →
δ′′

ξ) ∈ P

Now compose some of the pieces:

d. 〈αB, #νδ′〉 ∗⇒ 〈ai+1 ...akBβ, #νz′µu′π〉

e. ⇒〈ai+1 · · · akξ, #νz′µu′πδ′′〉 from (B →
δ′′

ξ) ∈ P

f. ∗⇒ 〈ai+1 · · · akak+1 · · · , aj#νz′µu′πx′µy′π′〉

This derivation together with a. prove that ηj : [Ac(y, p2 ), I(z, p0 ), A → αB •β, i] is a correct

item in Sj .

The crucial step is checking the consistency of: #νzµuπxµ′yπ′ in f. The individual properties

of zµu and xµy are checked using the information stored at:

Ac1(u, p1 ), I(z, p0 ) in η′′ik Ac(y, p2 ), I1(x, p3 ) in η′kj .

Both substrings are substrings of the Control language but their concatenation might not

be. We need to check the information in the corresponding nodes to validate the substring

properties.

Those conditions are checked as follows according to the corresponding deduction step:

A. η′′ik , η′kj , ηp `
Complete

ηij ( η′′ik is a transmitted item).

if and only if:

z ∈ cl(i), the control language spans ε in positions i, k, therefore the

Consequently the result subtree contains #ν′xµ′yπ′= which is in the control language.

B. η′′ik , η′kj , ηp `
Complete

ηij ∧ ηpushC ( η′kj has positive initial and active nodes)

if and only if:

y, x ∈ I and p2 ≥ p3 > 0

ηpushC = [pushC, (x, p3 ), (z, p0 )]

therefore given #ν′(xµ′(yπ′ is in the control language for some ρ then #νzµuπxµ′yπ′ is also

in the control language for some ρ′

C. η′′ik , η′kj , ηp , ηp′ `
Complete

ηij ( η′kj initial node:+, active node:-)

if and only if:
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x ∈ I, p3 > 0, y ∈ Ī, abs(p2 ) < p3

ηp′ = [popC, (x̄,−p3 ), (x̄,−p3 )] requirement that x has to be reduced.

Therefore: #νzµuπ(xµ′y)π′ = #νzµuπ(xµ′′x̄)µ′′′y)π′

D. η′′ik , η′kj , ηp `
Complete

ηij (xµ′yπ′ is in C. A reduction is performed.)

if and only if:

x ∈ I, p3 > 0, y = x̄, p2 = −p3 .

Therefore #νzµuπ(xµ′x̄)π′ = #νzµuπ′′′ and π′′′ ∈ C.

E. η′′ik , η′kj , ηp , ηpath2 `
Complete

ηij ( x reduces u. The current active node is negative).

if and only if:

ηp = [p, (ū,−p1 ), (u, p1 ), (z, p0 )]

ηpath2 = [path2, (y, p2 ), (y′, p2
′)], abs(p2

′) ≤ abs(p0 )

x = ū, p3 = −p1

Result string: #νzµ(uπū)µ′y′π which is equivalent to #νzµπ′′µ′y′π′.

ηpath2 guarantees that the result is in the control language.

F. η′′ik , η′kj , ηp `
Complete

ηij ∧ ηp
′

if and only if:

ηp
′ = [popC, (x, p3 ), (x, p3 )]

z ∈ I, x ∈ Ī , p3 < p2

Result is νzµuπx)µ′y′π′

G. η′′ik , η′kj , ηp `
Complete

ηij ∧ ηp2

if and only if

ηp2 = [popC, (x, p3 ), (x, p3 )]

z, x ∈ Ī, p3 < 0, p0 < 0,

Result is νzµuπx)µ′y′π′

H. η′′ik , η′kj , ηp `
Complete

ηij

if and only if

x ∈ cl(DI), the initial node is a transmitted node.
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cl(x)µ′y′π′ = ε

Therefore the result is νzµuπ

¤

The following table 5.1 summarizes the conditions specified by the Completer Operations.

CASE COMPLETED ITEM TARGET ITEM Result
I1(x, p3 ) Ac(y, p2 ) Ac1(u, p1 ) I(z, p0 )

A +/- +/- cl(z′µu′π) = ε x′µy′π′

B + – + +/- #νz′µu′π(x′µ′(y′π′

C + – +/- #νz′µu′π(x′µ′y′)π′,
µ′ = µ′′x̄′)µ′′′

D + – : y = x̄ +/- reduce: #νz′µ′′u′π′′

E - x = ū - + : u +/- #νz′µ(u′πū′)µ′y′π′

reduce: #νz′µ′′y′′π′′

F - +/- (x < y) + #νz′µu′πx′)µ′y′π′

G - +/ - - pushC(∆In ,−)
H cl(xµyπ′) = ε +/-, ε #νzµuπ

Table 5.1: Conditions on the completer Deductions

Lemma 8 (Second direction, Completeness) .

For each ξ ∈ W there is some η1 · · · ηk ` ξ ∈ D such that {η1 · · · ηk} ∈ W and d(ηi) < d(ξ) for

1 ≤ i ≤ k.

This lemma is equivalent to the following claim in terms of the algorithm presented in section

5.2 and Proposition 6. It states that all the derivations in the grammar will have the corresponding

item in the set of states.

If

1. 〈S, #〉 ∗⇒ 〈a1 · · · aiAγ, #ν〉

2. (A →
δ

αβ) ∈ P

3. 〈α, #νδ〉 ∗⇒ 〈ai+1 · · · aj ,#νzν′yν′′〉} where δ = z if δ ∈ I ∪ Ī else δ = ε such that #νzν′yν′′

satisfies the conditions imposed in proposition 2.

then an item

ξ = [Ac(y, p1 ), I(z, p0 ), A → α •β, i]

is inserted in the Set Sj .
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The proof by induction on the derivation length function d applied to the derivations specified in 1.

and 3.

The derivation length function is based on the treewalk that the Earley algorithm performs.

The modification of the Earley algorithm for GIGs does not modify the treewalk that the algorithm

performs. Therefore the derivation length function is the same as defined by [76] as follows: 12

d([Ac(y, p1 ), I(z, p0 ), A → α •β, i, j]) =

min{π + 2λ + 2µ + j | 〈S, #〉 π⇒ 〈δAγ, #ν〉 ∧
〈δ,#ν〉 λ⇒ a1 · · · ai , #ν′〉 ∧
〈α, #ν′〉 µ⇒ 〈ai+1 · · · aj , ν

′zν′′yν′′′〉}

• Scanner: ξ = [Ac(y, p1 ), I(z, p0 ), A → αa •β, i]

Let

1. 〈S, #〉 ∗⇒ 〈a1 · · · aiAγ′,#ν〉

2. (A →
δ

αβ) ∈ P

3. 〈α, #νδ〉 ∗⇒ 〈ai+1 · · · aj , #νzν′′yν′′′〉} if δ ∈ I ∪ Ī else δ = ε

Then η = [Ac(y, p1 ), I(z, p0 ), A → α •aβ, i] is in Sj−1 and from ζ = [a, j − 1, j] ∈ HGIG

d(ζ) = 0, d(η) = d(ξ)− 1 and ζ, η ` ξ.

• Completers: ξ = [Ac(y, p2 ), I(z, p0 ), A → αB •β, i] in Sk

Let 〈S, #〉 ∗⇒ 〈a1 · · · aiAγ′,#ν〉,

〈α, #ν〉 µ⇒ 〈ai+1 · · · aj ,#ν′zν′′uν′′′〉 and

〈B, #ν′zν′′uν′′′〉 ⇒
δ
〈γ, #ν′zν′′uν′′′δ〉

〈γ, #ν′zν′′uν′′′δ〉 ρ⇒ 〈aj+1 · · · ak ,#ν′zν′′uν′′′xµyπ′′〉

with minimal µ + ρ

then if δ = x ∈ I ∪ Ī

η = [Ac(u, p1 ), I(z, p0 ), A → α •Bβ, i] is in Sj ,
12Notice that induction on the strict length of the derivation would not work, because of the Completer operation.

The conception of the derivation length function is similar to the kind of induction used by [39] on the order of the

items to be introduced in the set Si , such that the invariant holds for those items previously introduced in the item

set.
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η′ = [p, (x, p3 ), (u, p1 ), (z, p0 )] such that p = push or p = pop.

ζ = [Ac(y, p2 ), I(x, p3 ), B → γ • , j] is in Sk and

d(η) = d(η′)− 1 < d(ζ) = d(ξ)− 1.

η, η′, ζ ` ξ

if δ = ε and xµyπ′′ = ε

ζ = [Ac(u, p1 ), I(cl(z), p0 ), B → γ • , j] is in Sk and

d(η) < d(ζ) = d(ξ)− 1.

η, η′, ζ ` ξ

if δ = ε and xµyπ′′ 6= ε

η′ = [p, (x, p3 ), (u, p1 ), (z, p0 )] such that p = push or p = pop.

ζ = [Ac(y, p2 ), I(x, p3 ), B → γ • , j] is in Sk and

d(η) < d(η′) < d(ζ) = d(ξ)− 1.

η, η′, ζ ` ξ

• Predict: ξ = [Ac(y, p1 ), I(z, p0 ), B → •γ, j] in Sj

Let 〈S, #〉 ∗⇒ 〈a1 · · · ajBγ′,#ν〉

and let δ, γ′′, π, λ, µ such that

〈S, #〉 π⇒ 〈δAγ′′, #ν〉,

〈δ,#ν〉 λ⇒ a1 · · · ai , #ν′〉

and 〈A, #ν〉 ⇒
δ
〈αBβ, #ν′δ〉

〈α, #ν′δ〉 µ⇒ 〈ai+1 · · · aj , ν
′zν′′yν′′′〉} with π + 2λ + 2µ minimal.

Then η = [Ac(y, p1 ), I(z, p0 ), A → α •Bβ, j]

η ` ξ if δ = ε and

η ` ξ ∧ ηp

ηp = [p, (δ, p3 ), (y, p1 ), (z, p0 )]

d(η) = d(ξ)− 1 = d(ηp)
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¤

Therefore from Lemma 7 ( V(P) ⊆ W), and Lemma 8 W ⊆ V(P), we have proved the correctness

of the Parsing Schema V(P) = W.

5.5 Implementation

In order to perform some tests and as a proof of concept, the parsing algorithm described in section

5.2 was implemented in Sicstus Prolog on top of a general-purpose, agenda-based inference engine

described in [72]. Encodings of the parsing schema as inference rules are interpreted by the inference

engine. Given that the parsing schema abstracts from implementation details of an algorithm, the

inference engine provides the control and data types. The Prolog database is used as a chart which

plays the same role as the state sets in Earley’s algorithm. The chart holds unique items in order to

avoid applying a rule of inference to items to which the rule of inference has already applied before.

This is performed using the subsumption capabilities of prolog: those items not already subsumed

by a previously generated item are asserted to the database (the chart).

Items should be added to the chart as they are proved. However, each new item may itself

generate new consequences. Any new potential items are added to an agenda of items for temporarily

recording items whose consequences under the inference rules have not been generated yet. When

an item is removed from the agenda and added to the chart, its consequences are computed and

themselves added to the agenda for later consideration. Those new potential items are triggered by

items added to the chart. Because the inference rules are stated explicitly, the relation between the

abstract inference rules described in the previous section as parsing schema and the implementation

we used is extremely transparent. However, as a meta-interpreter, the prototype is not particularly

efficient.

The general form of an agenda-driven, chart-based deduction procedure is as follows (from [72]):

1. Initialize the chart to the empty set of items and the agenda to the axioms of the deduction

system.

2. Repeat the following steps until the agenda is exhausted:

(a) Select an item from the agenda, called the trigger item, and remove it.

(b) Add the trigger item to the chart, if necessary.
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(c) If the trigger item was added to the chart, generate all items that are new immediate

consequences of the trigger item together with all items in the chart, and add these

generated items to the agenda.

3. If a goal item is in the chart, the goal is proved (and the string recognized); otherwise it is not.

The axioms correspond to the initial item in the Parsing Schema:

DInit = {` [(#, 0), (#, 0), S′ → •S$, 0, 0]}
and the encoding of the input string.

The goal corresponds to the final item in the Parsing Schema:

FEGIG = {[(#, 0), (#, 0), S′ → S • , 0, n]}.
In this implementation the control language was not represented by separate items but as side

conditions on the inference rules, which where performed by procedures which implemented the path

function over the graph representation.

Tests on the following languages were performed:

• {anbncn |n ≥ 1}, {anbncndn |n ≥ 1}, {anbncnden |n ≥ 1}, {ww|w ∈ {a, b}∗}

• {w(cw)+|w ∈ {a, b}+} {an(bncn)+|n ≥ 1},

• {anbncmdmenfngmhm |n ≥ 1}, {anbncmdmenfngmhm injn |n ≥ 1}

• {anbnwwcndn |n ≥ 1, w ∈ {a, b}+}

• Grammar Gamb4 which generates aabbcdcd but does not generate aabbcddc nor aabbdccd.

• Grammar Gamb5b which generates aacdbbcd and aadcbbdc but does not generate aacdbbdd nor

aacdbbdc (a variation of Gamb5 presented above).

• The mix language {w|w ∈ {a, b, c}∗ and |a|w = |b|w = |c|w ≥ 1}

Critically the most demanding was the mix language due to the grammar we chose: Gmix pre-

sented in chapter 2. This grammar has a high degree of ambiguity.

The number of items generated for the Mix and the copy languages were as follows:
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Length n4 Mix L. Copy L. MCopy L.
6 1296 ≈ 500 ≈ 100 ≈ 300

9/10 10,000 ≈ 2,000 ≈ 400 ≈ 1,500
12 20,736 ≈ 9,000 ≈ 700 ≈2,100

15/16 50,625 ≈ 16,000 ≈ 1,500 ≈5,000
18 104,976 ≈ 28,000 ≈ 2,100 ≈6,800

5.6 LR parsing for GILs

An LR parser for a CFL is essentially a compiler that converts an LR CFG into a DPDA automaton

(cf. [41], [2]). In the GIG case, the technique we present here converts an LR GIG into a deterministic

LR-2PDA according to the definition presented in Chapter 2. This approach can be extended to a

Generalized LR parsing approach, if multiple values are allowed in the parsing table (cf. [80]).

Both [75] and [3] describe transformations of Earley Parsing Schemata to LR Parsing Schemata.

The similarities of Earley Parsing and LR parsing are made explicit in those transformations. We

will refer to the connections between Earley parsing and LR parsing to clarify this presentation.

5.6.1 LR items and viable prefixes

We assume the reader has knowledge of LR parsing techniques (cf. [2]). The set of prefixes of right

sentential forms that can appear on the stack of a shift-reduce parser are called viable prefixes in

context free LR-parsing. An item A → β1 •β2 is valid for a viable prefix αβ1 if there is a derivation

S′ ∗⇒
rm

αAw ⇒
rm

αβ1β2w. We use this notion of viable prefixes to describe the computation of the

main stack in a LR-2PDA. The notion of valid items for GILs is more complex because a GIG

LR-item has to encode the possible configurations of the auxiliary stack. It is also more complex

because GIL derivation requires leftmost derivation for the stack operations.

We say a GIG item index pair [ δ,A →
µ

β1 •β2 ] where δ is in I ∪ {#} is valid for a viable GIG

prefix αβ1 if there is a derivation using the GIG context free backbone: S′ ∗⇒
rm

αAw⇒
rm

αβ1β2w and

there is a GIG derivation S′ ∗⇒ γia1 ...aiAβ
∗⇒ δγja1 ...ajβ2β.

Therefore the set of items has to encode the corresponding top-down prediction that affects the

stack of indices. We will do this in such a way that the set of items contain information not only

of what possible items belong to the set but also of the possible indices that might be associated to

the set of parsing configurations that the items describe. The sets that define the states in GIG LR

parsing are composed by a pair of sets (IT, IN).
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5.6.2 The Closure Operation.

The Closure operation is equivalent to the Predict function in Earley parsing (cf.[3]). However in

Earley’s algorithm this computation is done in run-time while in LR parsing it is precompiled in the

LR states. For the GIG algorithm the set of items and possible index values cannot be determined

only by the Closure operation. They are also determined by the Goto operation.

If IT is a set of items for a grammar G, then closure(IT ) is the set of items constructed from

IT by the two rules:

1. Initially, every item in IT is added to closure(IT ).

2. If A →
µ

α •Bβ is in closure(IT ) and (i) B →
δ

γ is a production where δ is in I ∪ {ε}, or (ii)

B →
δ

aγ then add the item B →
δ

•γ (case 1) or the item B →
δ

•aγ (case 2) to IT if it is not

already there. Apply this rule until no more new items can be added to the closure of IT .

Note that the two conditions of the Closure operation rule out the possible index operations δ̄

and [δ] when the right-hand side of the production starts with a non-terminal. Such productions are

considered in case 2 of the Goto function.

For CFG parsing (cf. [41]) the Closure operation is equivalent to obtaining the set of states of

a NFA that recognizes the viable prefixes.The transitions of this NFA are of the following form:

δ(A → α •Bβ, ε) = {B → •γ |B → γ is a production } (a NFA transition)

In the GIG case the transitions should be as follows, if the index operation is for instance ῑ:

δ(A → α •Bβ, ε, ι) = {(B →̄
ι

•γ, ε) |B →̄
ι

γ is a production } (a PDA transition)

It is apparent that the two items should not be conflated because there is a change in the stack

configuration.

The following example uses a grammar for the language Lwcw to depict the construction of the

set of items, the goto function and the parsing table.

Example 21 L(Gwcw ) = {wcw |w ∈ {a, b}∗}, Gwcw = ({S, R}, {a, b}, {i, j}, S, #, P ) and P is:

1. S →
i

aS 2. S →
j

bS 3. S → cR

4. R →̄
i

Ra 5. R →̄
j

Rb 6. R →
[#]

ε

The set of states for the grammar Gwcw should encode the possible configurations of the stack

of indices as follows:
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I0 : # S′ → •S I1 : i S →
i

a •S I2 : j S →
j

b •S I3 : {i, j, #} S → c •R

S →
i
•aS S →

i
•aS S →

i
•aS I4 : {i, j, #} R →̄

i

•Ra

S →
j

• bS S →
j

• bS S →
j

• bS I5 : {i, j, #} R →̄
j

•Rb

S → • cR S → • cR S → • cR I6 : # R →
[#]

•

I7 : # S →
j

aS • I8 : # S →
j

bS • I9 : # S →
j

cR • I10 : # R →̄
i

R •a

I11 : # R →̄
j

R • b I12 : # R →̄
i

Ra • I13 : # R →̄
j

Rb •

Figure 5.23: Set of States for Gwcw

In the same way that the dot implies that some input symbols have been consumed, the new sets

I4 and I5 (as compared to context free sets) imply that an index i or j has been consumed from the

stack. The set I6 requires that the stack be empty.

5.6.3 The Goto Operation.

The CF function goto(IT,X), where IT is a set of items and X is a grammar symbol, is defined to

be the closure of the set of all items [A →
µ

αX •β] such that [A →
µ

α •Xβ] is in IT . Intuitively, if

I is the set of items that are valid for some viable prefix γ, then goto(I, X) is the set of items that

are valid for the viable prefix γX. The CF Goto function is a DFA transition function where IT is

in the state set and X is in the vocabulary.

In the GIG case, if I is the set of items that are valid for some viable prefix-index pairs (γ,ι),

then goto(I, X, ι) = (I j , ιj ), is the set of items that are valid of the viable prefix-index pairs (γX,ιj )

in other words, the Goto function in the GIG case is a PDA and the set of viable prefixes with

associated indices is a context-free language.

We will describe the Goto function adding the possibility of computing the possible stack values

of the PDA for each state. The GIG function Goto has three parameters a) IT is a set of items b)

X is a grammar symbol and c) IN is a set of pairs (i, s) where i is an index symbol and s is a state

defined by a set of items closure. We will say an index i is in IN if (i, s) is in IN . The operation

goto(IT,X, IN) is defined to be the pair (IT 2 ,IN2 ) where either 1 or 2 applies:
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1. IT 2 is the closure of the set of all items [A →
µ

αX •β] such that [A →
µ

α •Xβ] is in IT

and IN2 is defined to be the set of indices with an associated state such that:

Case A: α is ε and X is a terminal a (i.e. [A →
µ

a •β] is in IT 2 ):

If µ is δ in I then (δ, IT 2 ) is in IN2 and IN is in predecessor(δ, IT 2 ).

If µ is ε then IN is in IN2

If µ is [δ] and δ is in IN then every (δ, IT i) in IN is in IN2

If µ is δ̄ and δ is in IN then predecessor(δ, IT i) is in IN2 .

Case B: If X is a non-terminal B then IN3 is in IN2 such that

[B →
µ

γ • ] is in (IT 3 , IN3 ).

In other words, the auxiliary stack has the configuration corresponding to the completed

item B.

Case C: If α is not ε X is a terminal a then IN = IN2 (i.e. [A →
µ

αa •β] is in IT 2 )

When the second parameter of the Goto function is ε then goto(IT, ε, IN) is defined to be:

2. IT 2 is the closure of the set of all items

[B →̄
δ

•β] such that [A →
µ

α •Bβ] is in IT and δ is in IN and IN2 is defined such that

predecessor(δ, IT i) is in IN2 for every (δ, IT i) in IN

[B →
[δ]

•β] such that [A →
µ

α •Bβ] is in IT and δ is in IN and IN2 is defined such that every

(δ, IT i) in IN is in IN2

The Goto function for the grammar Gwcw is depicted in figure 5.24 with a PDA. The first element

of the pair is the symbol X and the second indicates the operation on the PDA stack (e.g.: i indicates

a push, ī indicates a pop, [#] indicates a transition that requires an empty stack and ε indicates that

the content of the stack is ignored). The indices associated in each state are those indices that are

represented also in figure 5.23.

The construction of the collection of sets of items for a GIG grammar is made following the

algorithm used for context free grammars, (e.g. [2]). The only changes are those made to the

Closure and Goto operations as described above. The construction of an LR parsing table is shown

in the following algorithm. The action table has three parameters, state, input (or ε) and auxiliary

stack, the possible values are: a) pairs of shift action and operations on the auxiliary stack: push,



102 CHAPTER 5. RECOGNITION AND PARSING OF GILS

9

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε

ε ε

ε

ε

ε

ε

ε

0 to I 2

to I 

to I 

to I 

3

1

3

I I 
i,j,#

(b,j)

#

I 

I
i,j,#

I

#

I 

#

to I 

to I 

I 

#

3I

i,j,#

I 

#

2I
j

I 

#

1I
i

I

# #
4

5

6

7

8

10

11

6

6

12

13

(S,    )

(a , i)

(c,   )

(S,   )

(a,i)

(a,i)

(b,j)

(b,j)

(c,   )

#

(   ,[#])

(   ,j )

(c,     )

(  , j ) (  , j )

(   , i )

(   ,#)

(R,   )

(R,   )

(R,   )

(a,  )

(b,  )

(   ,#)

(   , i )

I

(   , i )

Figure 5.24: Transition diagram for the PDA recognizing the set of valid prefixes, annotated with
indices for the grammar Gwcw

pop or none; b) reduce action (in this case no operation on the auxiliary stack is performed). The

Goto table has the usual properties, and no operation on the auxiliary stack. The notation used

is a follows: capital letters (A,B) denote non-terminals lower case letters (a) terminals, α is a non

empty sequence of non terminals and terminals, β is a possible empty sequence of non terminals and

terminals, δ is an index and µ is either δ, δ̄, [δ].
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Algorithm 7 (Constructing an SLR parsing table) Input. An augmented GIG grammar G’.

Output. The SLR parsing table functions action and goto

1. Construct C = {I0 , I1 , ..., In}, the collection of sets of LR(0) items for G′.

2. State i is constructed from I i . The parsing actions for state i are determined as follows:

a. If [A →
δ

•aβ] is in I i and goto(I i , a, IN i) = (I j , IN j ), and δ is in IN j , then

set action[i, a, ε] to (“shift j”, “push δ”). Here a must be a terminal.

b. If [A →̄
δ

•aβ] is in I i and goto(I i , a, IN i) = (I j , IN j ), and δ is in IN i , then

set action[i, a, δ] to (“shift j”, “pop δ”). Here a must be a terminal.

c. If [A →̄
δ

•Bβ] is in I i and goto(I i , ε, IN i) = (I j , IN j ), and δ is in IN i , then

set action[i, ε, δ] to (shift j, “pop δ”). Here B must be a non-terminal.

d. If [A →
[δ]

•Bβ] is in I i and goto(I i , ε, IN i) = (I j , IN j ), and δ is in IN i and IN j then

set action[i, ε, δ] to (shift j, - ). Here B must be a non-terminal.

e. If [A →
ε

•aβ] is in I i and goto(I i , a, IN i) = (I j , IN j ), then

set action[i, a, ε] to (“shift j”, -).

f. If [A →
[δ]

•aβ] is in I i and goto(I i , a, IN i) = (I j , IN j ), and δ is in IN i and IN j

then set action[i, a, δ] to (“shift j”, -).

g. If [A →
µ

α •aβ] is in I i and goto(I i , a, IN i) = (I j , IN j ), then

set action[i, a, ε] to (“shift j”,-).

Here a must be a terminal and α must be non-empty.

h. If [A →
µ

β • ] is in I i , then set action[i, a, ε] to “reduce A →
µ

α” for all a in

FOLLOW(A); where A may not be S′.

i. If [S′ → S • ] is in I i then set action[i, $, #] to “accept”

If any conflicting actions are generated by the above rules, we say the grammars is not SLR(1), but it

is GLR(1).

3. The goto transitions for state i are constructed for all non-terminals A using the rule: If goto(I i , A, IN i) =

(I j , IN j ), then goto[i, A, inj ] = j, for every index in IN j .

4. the initial state of the parser is the one constructed from the set of items

The output transition table for the grammar Gwcw is shown in figure 5.2. This table is used

with an obvious extension of the context free algorithm, adding the additional stack to compute the

corresponding actions depicted in the table.
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State Action Goto
(a,ε) (b,ε) (c,ε) (ε,i) (ε,j) (ε,#) ($,#) (S,#) (R,#)

0 (s1, p i) (s2, p j) (s3, ) 14
1 (s1, p i) (s2, p j) (s3, ) 7
2 (s1, p i) (s2, p j) (s3, ) 8
3 (s4, pop) (s5, pop) (s6, ) 9
4 (s4, pop) (s5, pop) (s6, ) 10
5 (s4, pop) (s5, pop) (s6, ) 11
6 r6 r6 r6
7 r1
8 r2
9 r3
10 (s12, )
11 (s13, )
12 r4
13 r5
14 acc

Table 5.2: Action/Goto Table for Gwcw

The parsing algorithm for GIGs is essentially the same algorithm for CFGs. The only difference

is that it takes into account the operations on the auxiliary stack. We follow the notation from [2].
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Algorithm 8 (LR parsing for GIGs) .

Input. An input string w and an LR parsing action− goto table for a grammar G.

Output. If w is in L(G), a parse for w otherwise an error indication.

Initiate Stack1 with s0 . Initiate Stack2 with #. Set ip to point to the first symbol of w$;

repeat forever begin

let s be the state on top of the Stack1 and

i the symbol on top of the Stack2

a the symbol pointed by ip.

if action [s, a, (i ∪ ε)] = shift (s′, pi′)then begin

push a then s′ on top of the Stack1

push i′ on top of Stack2 ;

advance ip to the next input symbol.

else if action [s, a, (i ∪ ε)] = shift (s′, ) then begin

push a then s′ on top of the Stack1

advance ip to the next input symbol.

else if action [s, a, i] = shift (s′, pop) then begin

push a then s′ on top of the Stack1

pop i from Stack2

advance ip to the next input symbol.

else if action [s, ε, i] = shift (s′, pop) then begin

push a then s′ on top of the Stack1

pop i from Stack2

else if action [s, a, i] = reduce A → β then begin

pop 2 ∗ |β| symbols from Stack1;

let s′ be the state now on top of the stack;

push A then goto[s′, A, i] on top of Stack1

output the production A →
µ

β

else if action [s, a, i] = accept then

return

else error

end

The following table shows the moves of the LR parser on the input string abcab.
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Stack 1 Stack2 Remaining input Comments
1 0 # abcab$ Initial ID
2 0a1 #i bcab$ Shift and push
3 0a1b2 #ij cab$ Shift and push
4 0a1b2c3 #ij ab$ Shift
5 0a1b2c35 #i ab$ Shift ε and Pop
6 0a1b2c354 #i ab$ Shift ε and Pop
7 0a1b2c3546 # ab$ Shift ε
8 0a1b2c354R10 # ab$ Reduce by 6
9 0a1b2c354R10a # b$ Shift
9 0a1b2c35R11 # b$ Reduce by 4
11 0a1b2c35R11b # $ Shift
12 0a1b2c3R9 # $ Reduce by 5
13 0a1b2S8 # $ Reduce by 3
14 0a1S7 # $ Reduce by 2
15 0S14 # $ Reduce by 1
16 - # $ Accept

Table 5.3: Trace of the LR-parser on the input abcab and grammar Gwcw



Chapter 6

Applicability of GIGs

6.1 Linear Indexed Grammars (LIGs) and Global Index Gram-

mars (GIGs)

Gazdar [29] introduces Linear Indexed Grammars and discusses their applicability to Natural Lan-

guage problems. His discussion is addressed not in terms of weak generative capacity but in terms of

strong-generative capacity. Similar approaches are also presented in [82] and [44] (see [56] concerning

weak and strong generative capacity). In this section, we review some of the abstract configurations

that are argued for in [29]. The goal of this section is to show how the properties of GILs are related

to the peculiarities of the control device that regulates the derivation. Though this mechanism looks

similar to the control device in Linear Indexed Grammars , the formalisms differ in the kid of trees

they generate.

GIGs offer additional descriptive power as compared to LIGs (and weakly equivalent formalisms)

regarding the canonical NL problems mentioned above, at the same computational cost in terms

of asymptotic complexity. They also offer additional descriptive power in terms of the structural

descriptions they can generate for the same set of string languages, because they can produce

dependent paths1. However those dependent paths are not obtained by encoding the dependency in

the path itself.

1For the notion of dependent paths see for instance [82] or [44].

107
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6.1.1 Control of the derivation in LIGs and GIGs

Every LIL can be characterized by a language L(G,C), where G is a labeled grammar (cf. [87]),

G = (N, T, L, S, P ), and C is a control set defined by a CFG (a Dyck language):

{a1 ...an | < S, ε >
∗⇒< a1 , w1 > ... < an , wn >, ai ∈ T ∪ {ε}, w1 , ..., wn ∈ C}.

In other words, the control strings wi are not necessarily connected to each other. Those control

strings are encoded in the derivation of each spine as depicted in figure 6.1 at the left, but every

substring encoded in a spine has to belong to the control set language. Those control words describe

the properties of a path (a spine) in the tree generated by the grammar G, and every possible spine

is independent.

We gave an alternative definition of the language of a GIG in chapter 5 to be the control language:

L(G,C): {w | 〈S, #〉 ∗⇒ 〈w, #δ〉 and w is in T ∗, δ is in C }
C is defined to be the Dyck language over the alphabet I ∪ Ī (the set of stack indices and their

complements).

It is easy to see that no control substring obtained in a derivation subtree is necessarily in the

control language, as is depicted in the figure 6.1 at the right. In other words, the control of the

derivation can be distributed over different paths, however those paths are connected transversely

by the leftmost derivation order.

A
C

B

B

[..]

[..i][]
[]

push

A

pop

push

B

B

C

pop

Figure 6.1: LIGs: multiple spines (left) and GIGs: leftmost derivation

6.1.2 The palindrome language

CFGs generate structural descriptions for palindrome languages (e.g. the language {wwR|w ∈ Σ∗})
only of the nested (center embedded) sort. CFGs cannot generate the structural descriptions depicted

in figures 6.2 and 6.3. (we follow Gazdar’s notation: the leftmost element within the brackets

corresponds to the top of the stack).

Gazdar suggests that the configuration in figure 6.2 would be necessary to represent Scandinavian
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a

[..]
[a]

[b,a]
[c,b,a]

b
c

d

[d,c,b,a]

d
c

[c,b,a]
[b,a]

b
a

[a]

[..]

Figure 6.2: A non context-free structural description for the language wwR

unbounded dependencies. Such an structure can be obtained using a GIG (and of course an LIG).

But the exact mirror image of that structure, (i.e. the structure of figure 6.3) cannot be generated

by a GIG because it would require push productions with a non terminal in the first position of the

right-hand side. (i.e. in productions that are not in Greibach Normal Form).

[..]

[..]
[a]

[b,a]
[c,b,a]

[d,c,b,a]
[c,b,a]

[b,a]

[a]

a
b

c
d

d
c

b
a

Figure 6.3: Another non context-free structural description for the language wwR

However GIGs generate a similar structural description as depicted in figure 6.4 at the left. In

such structure the dependencies are introduced in the leftmost derivation order. The English adjec-

tive constructions that Gazdar uses to motivate the LIG derivation are generated by the following

GIG grammar. The corresponding structural description is shown in figure 6.4:

Example 22 (Comparative Construction) .

Gadj = ({AP, NP, Ā, A}, {a, b, c}, {i, j}, AP, #, P ) where P is:

AP → AP NP AP → Ā Ā → Ā A

A →
i

a A →
j

b A →
k

c NP →̄
i

a NP

NP →̄
j

b NP NP →̄
k

c NP
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[..]

[..]

[..]

c

b
a

[a] [b,a]

[c,b,a]
[d,c,b,a]

d
d

c
b

a

[c,b,a]

[b,a]
[a]

NP

NP

A

AA

A A

AP

AP

AP

AP

NP

A b

a

[a,b,c]

a NP

b NP

NPc

c

[..]

[b,c]

[b,c]

[c]

[..]

[c]

[..]

Figure 6.4: GIG structural descriptions for the language wwR

It should be noted that the operations on indices are reversed as compared to the LIG case shown

in figure 6.3. On the other hand, the introduction of indices is dependent on the presence of lexical

information and its transmission is not carried through a top-down spine, as in the LIG case. The

arrows show the leftmost derivation order that is required by the operations on the stack.

6.1.3 The Copy Language

Gazdar presents the following two possible LIG structural descriptions for the copy language (de-

picted in figure 6.5). The structural description at the left can be generated by a GIG, but not the

one at the right. However, a similar one can be obtained using the same strategy as we used with

the comparative construction.

[d]

[c,d]

[b,c,d]

[a,b,c,d]

[b,c,d]

[c,d]
[d]

a

b

c
d

[..]

[a]

[b,a]
[c,b,a]

d

c

b

a

[d,c,b,a]

[c,b,a]

[b,a]

[a]

[..]
d

c
b

a

[..]

[..]

d

c

b

a

Figure 6.5: Two LIG structural descriptions for the copy language

Gazdar further argues that the following tree structure, shown in figure 6.6 at the left, could
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be more appropriate for some Natural Language phenomenon that might be modeled with a copy

language. Such structure cannot be generated by a LIG, but can be generated by an IG.

[c,d]

[d]

[a,b,c,d]

a

b

c

c

b

a [c,d]

[b,c,d]

[a,b,c,d]

[a,b,c,d]

[b,c,d]

[c,d]

[d]

[b,c,d]

[d]

d
d

[ ]

[ ]

b

[a]
a

c

d

[d,c,b,a]

[c,b,a]

[b,a]

[a]

a
b

c

d

[d,c,b,a]

[b,a]

[c,b,a]

Figure 6.6: An IG and GIG structural descriptions of the copy language

GIGs cannot produce the structural description of figure 6.6 at the left either, but they can

generate the one presented in the figure 6.6 (right), where the arrows depict the leftmost derivation

order. GIGs can also produce similar structural descriptions for the language of multiple copies (the

language {ww+ | w ∈ Σ∗} as shown in figure 6.7, corresponding to the grammar shown in example

10.

[ ]

[ ]

[ ]

[ ]

[a]

ε
[a]

[c,b,a]

[c,b,a]

[d,c,b,a]

[b,a]

[b,a]

[d,c,b,a]a

b
c

d

[a]
[b,a]

[c,b,a]

a

b

c

d

ε

a

b

c

d

[d,c,b,a]

[c,b,a]

[b,a]

[a]

[d,c,b,a]

[c,b,a]
d

c
[b,a]

b
[a]

a

[a]

[b,a]

[c,b,a]

[d,c,b,a]

[d,c,b,a]

Figure 6.7: A GIG structural description for the multiple copy language
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6.1.4 Multiple dependencies

Gazdar does not discuss of the applicability of multiple dependency structures in [29]. The relevant

structures that can be produced by a LIG are depicted in figures 6.8 and 6.9 (left). GIGs can

generate the same structures as in 6.8 and the somehow equivalent in 6.9 (right).

a d

da

b c

cb

[i]

[..]

[i,i]

[i]

[..]

b c

b c

a

a

[..]

[i,i]

[i]

[i]

[..]

Figure 6.8: LIG and GIG structural descriptions of 4 and 3 dependencies

c

b
c

b

d

d

[..]

[..]

b c

b c[i,i] [i,i]

[i,i]
[i]

d

d
[..]

[i]

[..]

[..]

[i,i]

[i]

[i]

[..]

Figure 6.9: A LIG and a GIG structural descriptions of 3 dependencies

GIGs can also produce other structures that cannot be produced by a LIG, as we show in figures

6.10 and 6.11. The following language cannot be generated by LIGs. It is mentioned in [82] in

relation to the definition of composition in [79] Categorial Grammars, which permits composition of

functions with unbounded number of arguments and generates tree sets with dependent paths. The

corresponding structure is depicted in the figure 6.10 (at the right).

Example 23 (Dependent branches) .

L(Gsum) = { anbmcmdlelfn | n = m + l ≥ 1},
Gsum = ({S,R, F, L}, {a, b, c, d, e, f}, {i}, S, #, P ) where P is:
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S →
i

aSf |R R → F L | F | L F →̄
i

b F c |b c L →̄
i

d L e |d e

The derivation of aabcdeff :

#S ⇒ i#aSf ⇒ ii#aaSff ⇒ ii#aaRff ⇒ ii#aaFLff ⇒ i#aabcLff ⇒ #aabcdeff

d

da

c

c [..]

[i]

[i,i]

[..]

[i]

b

ba

[i,i]

e

f

f

c

a

a

b d

[..]

[..]

[i,i]

[i]

[i]

Figure 6.10: GIG structural descriptions of 4 dependencies

d

da

c

c

[..]

[i] [i]

[..]
[i,i]

a

[i,i]

a

a

b

b c

c
ε

[..]

[i]

[i,i]
[i,i]

[i]

[..]

[i]

[i,i]

[i,i]

[i]

[..]

Figure 6.11: GIG structural descriptions of 3 dependencies

6.1.5 Crossing dependencies

Crossing dependencies in LIGs and TAGs have the same structural description as the copy language.

GIGs can produce crossing dependencies with some alternative structures as depicted in the

following structures. The first example is generated by the grammars Gcr presented in Chapter 3

and repeated here.
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Example 24 (Crossing Dependencies) .

L(Gcr ) = {anbmcndm | n,m ≥ 1}, where Gcr = ({S,A, B, C}, {a, b, c, d}, {x}, S, #, P ) and P is:

S → A D A → a A c | a B c 3. B →
x

b B | b D →̄
x

d D | d

a

a

c

c

c
b

b

d

d

[ii]

[i]

b

d
a

[iii]

[i]
[ii]

[]

[]

[]

[]

Additional number of crossing dependencies can be obtained (pairs or triples). The following

kind of dependencies can be obtained:

Example 25 (Crossing Dependencies 2) .

L(Gcr8 ) = {anbncmdmenfngmhm | n, m ≥ 1}, where

Gcr8 = ({S,A, B, C}, {a, b, c, d, e, f, g, h}, {x, y}, S, #, P ) and P is:

S → A L A →
x

a A f | a B f B →̄
x

b B e| b Ce C →
y

c C d| c d L →̄
y

g L h| g h

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

[i]

[ii]

[i]

[]

[k]

[kk]

[k]

[]
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Such structures might be relevant to be able to generate the following language(discussed in [86]),

related to the operation of generalized composition in CCGs.

Lcrm = {an

1
am

2
bn
1
cn
1
bm

2
cm

2
dm

2
dn

1
|n,m ≥ 1}

The language Lcrm is generated by the following GIG:

Example 26 (Crossing Dependencies 3) .

Gcrm = ({S, A, A2 , B, C, D,L, L2}, {a1 , a2 , b1 , b2 , c1 , c2 , d1 , d2}, {x, y}, S, #, P ) and P is:

S → A L A → a1 A B1 | a1 A2 B1 A2 →
y

a2 A2 B1 →
x

b B| b
L →̄

x
c1 L d1 | c1 L2 d1 L2 → C D C →̄

y
b2 C C2 | b2 C2 C2 →

y
c2C2

D →̄
y

d2d2

The derivation of a1a1a2a2a2 b1 b1 c1 c1 b2 b2 b2 c2 c2 c2d2d2d2d1d1

S ⇒ AL ⇒ #a1AB1L ⇒ #a1a1A2B1B1L
∗⇒

yyy#a1a1a2a2a2B1B1L
∗⇒ xxyyy#a1a1a2a2a2 b1 b1L

∗⇒
yyy#a1a1a2a2a2 b1 b1 c1 c1CDd1d1

∗⇒ #a1a1a2a2a2 b1 b1 c1 c1 b2 b2 b2C2C2C2Dd1d1
∗⇒

yyy#a1a1a2a2a2 b1 b1 c1 c1 b2 b2 b2 c2 c2Dd1d1
∗⇒ #a1a1a2a2a2 b1 b1 c1 c1 b2 b2 b2 c2 c2 c2d2d2d2d1d1

6.2 Set Inclusion between GIGs and LIGs

The last section showed similarities and differences between LIGs and GIGs in terms of the struc-

tural descriptions. In this section we are going to address the issue of whether LILs and GILs are

comparable under set inclusion. Our conjecture is that LILs are properly included in GILs.

LIGs and Greibach Normal Form

The definition of GIGs requires push productions in Greibach Normal Form. If an equivalence

between LIGs and LIGs with push productions in GNF could be obtained, we could proceed as

follows.

Definition 14 A LIG is in push Greibach Normal Formal if every push production is in Greibach

Normal Form (where A,B ∈ N, a ∈ T and γ ∈ (N ∪ T )∗ :

• A[..] → a B[..i] γ
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Lemma 9 For any LIG in push-Greibach Normal Formal there is an Equivalent GIG that generates

the same language.

This is easy to prove, just a change in the interpretation of the derivation, from a LIG derivation

to a GIG derivation and the equivalence is easy obtained.

GILs contain languages which are proven not to be in the LIL set. Therefore, if a lemma such as

the following statement could be proved, the proper inclusion of LILs in GILs would be obtained:

• For any LIG there is an equivalent LIG in push-Greibach Normal Formal.

However we show in the next section that such a claim does not seem to hold.

6.2.1 LIGs in push-Greibach Normal Form

We can apply the techniques for left recursion elimination used in the conversion to Greibach Normal

Form in CFGs.

The following lemma applies to productions that do not carry stack information. A similar

lemma for CFGs is lemma 4.3 in [41]. The proof of this lemma holds for the GIG case because there

is no stack information affected.

Lemma 10 Define an A − production to be a production with variable A on the left. Let G =

(N, T, I, P, S) be a LIG. Let A[..] → B[]α be a production in P and B[..] → [..]β1 |β2 | · · · |βr be the

set of all B-productions (they do not affect the stack). Let G1 = (N, T, I, P, S) be obtained from G

by deleting the production A → Bα2 from P and adding the productions A → β1α2 |β2α2 |βrα2 .

Then L(G) = L(G1 ).

An adaptation of the lemma 4.4 in [41] as follows also holds for LIGs and it would allow to

transform left recursion into right recursion, as long as the left recursion involves the whole spine.

Lemma 11 Let G = (N, T, I, P, S) be a LIG. Let A[..] → A[..γ1 ]α1 |A[..γ2 ]α2 | · · · |A[..γr ]αr be

the set of A-productions for which A is the leftmost symbol of the right hand side. Let A[..γi ] →
β1 |β2 | · · · |βs be the remaining A−productions. Let G1 = (N ∪ {B}, T, I ∪ {γ′}, P1, S) be the LIG

formed by adding the variable B to N , index γ′ to I and replacing the A−productions by the pro-

ductions:

A[..γ′i ] → βi , A[..γ′i ] → βiB[..] such that 1 ≤ i ≤ s

B[..γ′i ] → αi , B[..γ′i ] → αiB[..] such that 1 ≤ i ≤ r
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In this way, the equivalence of the structures in figure 6.12 involving the palindrome language

would be obtained.

[..]

[..]
[a]

[b,a]
[c,b,a]

[d,c,b,a]
[c,b,a]

[b,a]

[a]

a
b

c
d

d
c

b
a a

b

c
d

c

b

a

d

[..]

[a]

[b,a]
[c,b,a]

[d,c,b,a]

[c,b,a]

[b,a]

[a]

Figure 6.12: Left and right recursive equivalence in LIGs

The previous lemma would not work in the following structure, because it would need some

additional changes, such as index renaming:

[d]

[c,d]

[b,c,d]

[a,b,c,d]

[b,c,d]

[c,d]
[d]

a

b

c
d

[..]

[a]

[b,a]
[c,b,a]

d

c

b

a

[d,c,b,a]

[c,b,a]

[b,a]

[a]

[..]
d

c
b

a

[..]

[..]

d

c

b

a

Figure 6.13: Left and right recursive equivalence in LIGs, second case

The structures depicted in figure 6.14 would require even more additional machinery. There is

no way that a LIG like the one generating the three dependencies could be transformed into a LIG

in push-GNF, without some mayor changes in the mapping algorithm.
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c

b
c

b

d

d

b

b
[i,i]

[i]

[..]

[..]

[i,i]

[i]

[i]

[..]

d

d

[..]

[i]

c

c

Figure 6.14: LIGs not in push-GNF I

Moreover some additional problems arise as in the following languages:

{w1w2w1w2
R|wi ∈ Σ∗}

{w1w2w2w1
R|wi ∈ Σ∗}

which can be depicted by the following structures:

b

b

b

a

a

a
a

a

a

1

2

3

1

2

3

3

1

2

pop

pop

pop

pop

push

push

push

push

push

push

b
pop

b1

pop b3

2

push

push

push

a 1

a 2

a 3 push

push
b1

push
b2

pop

pop

pop

3b

b3

b2

pop

b1

a 3

pop

a 2

a 1

Figure 6.15: LIGs not in push-GNF II

These languages do not seem to be obtainable with a LIG in push-GNF. The problem is that

they require the two directions of recursion (i.e. both right and left) for push productions. They are

however generated by GIGs as shown in figure 6.16

It seems that some of the above-mentioned issues would still arise if we try to obtain the inclusion

of LILs by simulating either an EPDA or Becker’s 2-SA with a LR-2PDA. However, this alternative
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b

b

b

a

a

a
a

a

a

1

2

3

3

3

2

1

1

2

pop

pop

pop

push

push

push

push

push

push

b

b

b

1

2

3

pop

pop

pop

Figure 6.16: LIGs not in push-GNF II in GIGs

should be considered in detail.

6.3 GIGs and HPSGs

We showed in the last section how GIGs can produce structural descriptions similar to those of

LIGs, and others which are beyond the descriptive power of LIGs and TAGs. Those structural

descriptions corresponding to figure 6.2 were correlated to the use of the SLASH feature in GPSGs

and HPSGs. In this section, we will show how the structural descriptive power of GIGs is not only

able to capture those phenomena but also additional structural descriptions compatible with those

generated by HPSGs [61] schemata. This follows from the ability of GIGs to capture dependencies

through different paths in the derivation.

There has been some work compiling HPSGs into TAGs (cf. [48], [8]). One of the motivations

was the potential to improve the processing efficiency of HPSG, by performing HPSG derivations

at compile time. Such compilation process allowed the identification of significant parts of HPSG

grammars that were mildly context-sensitive.

We will introduce informally some slight modifications to the operations on the stacks performed

by a GIG. We will allow the productions of a GIG to be annotated with finite strings in I∪ Ī instead

of single symbols. This does not change the power of the formalism. It is a standard change in PDAs

(cf. [39]) to allow to push/pop several symbols from the stack. Also the symbols will be interpreted

relative to the elements in the top of the stack (as a Dyck set). Therefore, different derivations
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might be produced using the same production, according to what is on the top of the stack. This

is exemplified with the productions X →̄
nv

x and X →
[n]v

x, in particular in the first three cases where

different actions are taken (the actions are explained in the parenthesis) :

nnδ#wXβ ⇒̄
nv

vnδ#wxβ (pop n and push v)

nv̄δ#wXβ ⇒̄
nv

δ#wxβ (pop n and v̄) vnδ#wXβ ⇒̄
nv

vn̄vnδ#wxβ (push n̄ and v) nδ#wXβ ⇒
[n]v

vnδ#wxβ ( check and push)

We exemplify how GIGs can generate similar structural descriptions as HPSGs do in a very

oversimplified and abstract way. We will ignore many details and try give an rough idea on how the

transmission of features can be carried out from the lexical items by the GIG stack, obtaining very

similar structural descriptions.

Head-Subj-Schema

Figure 6.17 depicts the tree structure corresponding to the Head-Subject Schema in HPSG [61].

H

HEAD 1

2 HEAD

< >

SUBJ

SUBJ 

SUBJ 

1

2< >

Figure 6.17: Head-Subject Schema

(1)

2666666666666666666664

S

266664 L |C

266664
HEAD 1

SUBJ 〈〉

COMPS 3

377775
377775

D

26666666664
HEAD DTR

2666664 S |L |

2666664
HEAD 1

SUBJ

�
2

�
COMPS 3

3777775
3777775

COMP-DTR

�
S 2

�

37777777775

3777777777777777777775
Figure 6.18 shows an equivalent structural description corresponding to the GIG productions and

derivation shown in the next example (which might correspond to an intransitive verb). The arrows

indicate how the transmission of features is encoded in the leftmost derivation order, an how the

elements contained in the stack can be correlated to constituents or lexical items (terminal symbols)

in a constituent recognition process.

Example 27 (intransitive verb) XP → Y P XP XP → X Y P → Y X →̄
nv

x Y →
n

y
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x

X

XP

 XP

YP

Y

y

[n..]

[n..]

[..]

[v..]

[v..]

[v..]

Figure 6.18: Head-Subject in GIG format

#XP ⇒ #Y PXP ⇒ #yXP ⇒ n#Y XP ⇒ n#yX ⇒ v#yx

Head-Comps-Schema

2666666666664
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264 HEAD 1

SUBJ 2

COMPS 3

375375
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26664 HEAD DTR

264 S |L |

264 HEAD 1
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�

4 , 3
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�
S 4

�
37775

3777777777775

HEAD

1HEAD

< 2 >

H

<      >
1

3, n

C C
1

n-2

3 n

2

COMP

COMP

Figure 6.19: Head-Comps Schema tree representation

Figure 6.19 shows the tree structure corresponding to the Head-Complement schema in HPSG.

The following GIG productions generate the structural description corresponding to figure 6.20,

where the initial configuration of the stack is assumed to be [n]:

Example 28 (transitive verb) .

XP → X CP CP → Y CP X →̄
nvn̄

x CP → ε Y →
n

y

The derivation:

n#XP ⇒ n#XCP ⇒ n̄v#xCP ⇒ n̄v#xY CP ⇒ v#xyCP ⇒ v#xy

The productions of example 29 (which uses some of the productions corresponding to the previous

schemas) generate the structural description represented in figure 6.21, corresponding to the deriva-
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CP

 XP

X

x CPY

y

[n]

[n v]

[n v]

ε 
[ v ]

[ v ]

[ v ]

Figure 6.20: Head-Comp in GIG format

tion given in example 29. We show the contents of the stack when each lexical item is introduced in

the derivation.

Example 29 (SLASH in GIG format) .

XP → Y P XP XP → X CP XP → X XP

CP → Y P CP X →̄
nvn̄

hates CP → ε

X →̄
nv̄

know X →̄
nvv̄

claims

Y P →
n

Kim|Sandy|Dana|we

A derivation of ‘Kim we know Sandy claims Dana hates’:

#XP ⇒ #Y P XP ⇒ n#Kim XP ⇒
n#Kim Y P XP ⇒ nn#Kim we XP ⇒
nn#Kim we X XP ⇒ v̄n#Kim we know XP ⇒
v̄n#Kim we know Y P XP ⇒
nv̄n#Kim we know Sandy XP ⇒
nv̄n#Kim we know Sandy X XP ⇒
v̄n#Kim we know Sandy claims XP ⇒
v̄n#Kim we know Sandy claims Y P XP ⇒
nv̄n#Kim we know Sandy claims Dana XP

∗⇒
#Kim we know Sandy claims Dana hates

Finally the last example and figure 6.22 shows how coordination combined with SLASH can be

encoded by a GIG.
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X

YP XP

XP

XP

XP

XP

 XP

XP

X

YP

X

YP

YP [n]

[nn]

[ n v n ]

[ n v n ]

[ ]

we

know

Sandy

claims

Dana

hates

Kim

ε

[n]

CP

[ v n ]

[ v n ]

[ ]

Figure 6.21: SLASH in GIG format

Example 30 (SLASH and Coordination2) .

XP → Y P XP XP → X CP XP → X XP

CP → Y P CP CP → ε X →
[nv̄n]c

visit

X →̄
nvn̄

talk to C → and CXP → XP CXP

CXP → C XP X →̄
nv̄

did Y P →
n

Who|you

A derivation of ‘Who did you visit and talk to’:

#XP ⇒ #Y P XP ⇒ n#Who XP ⇒
n#Who Y P XP ⇒ v̄n#Who did XP ⇒
v̄n#Who did Y P XP ⇒ nv̄n#Who did you CXP ⇒
nv̄n#Who did you XP CXP ⇒
cnv̄n#Who did you visit CXP ⇒
cnv̄n#Who did you visit C XP ⇒
nv̄n#Who did you visit and XP

∗⇒
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#Who did you visit and talk to

[ ]

XP

XP

 XP

XPYP

[nv]
X

did

Who

you

YP

visit

CXP

CXP

and

C

XP

talk to

[ n v n ]

ε

ε

[ n v n]

[ ]

[n]

[ n v n ]

CP

[ c n v n ]

Figure 6.22: SLASH and coordination in GIG format



Chapter 7

Conclusions and Future Work

We have presented LR-2PDAS, GIGs, GILs and their properties. We showed the equivalence of

LR-2PDA and GIGs. However we did not discuss the (possible) equivalence of sLR-2PDAs and

trGIGs. We presented a Chomsky-Schützenberger representation theorem for GILs. We showed

the descriptive power of GIGs regarding the three phenomena concerning natural language context

sensitivity: reduplication, multiple agreements and crossed agreements. We introduced trGIGs (and

sLR-2PDAs) which are more restricted than GIGs. We conjectured that trGIGs are not able to

capture reduplication phenomena, and that are more limited regarding crossed agreements. An Earley

type algorithm for the recognition problem of GILs was presented with a bounded polynomial time

result O(n6 ) and O(n4 ) space. We analyzed the algorithm providing an account of grammar-size,

time-complexity and space complexity properties. The proof of correctness of this algorithm was also

presented using the Parsing Schemata framework. A proof of semilinearity showed that GILs share

mildly context sensitive properties. The strong similarity between GIGs and LIGs suggests that LILs

might be included in GILs. However, it might be difficult to prove it, or it might not be the case and

both languages turn out to be incomparable. We also showed that both the weak and the strong

descriptive power of GIGs is beyond LIGs. We presented a comparison of the structural descriptions

that LIGs and GIGs can be generate. We have shown that GIGs generate structural descriptions

for the copy and multiple dependency languages which can not be generated by LIGs. Finally, we

have shown also that the extra power that characterizes GIGs, corresponds to the ability of GIGs to

125
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generate dependent paths without copying the stack but distributing the control in different paths

through the leftmost derivation order. We have shown also that those non-local relationships which

are usually encoded in HPSGs as feature transmission can be encoded in GIGs using its stack,

exploiting the ability of GIGs to encode dependencies through connected dependent paths and not

only through a spine.

7.1 Future Work

The results described in the previous section are encouraging enough to continue further work

concerning Global Index Languages. We mention now some of the issues that might be addressed

in future research.

We have not addressed most of the decision problems, except the emptiness problem, which

follows as a corollary from the semi-linearity property, and the membership problem. We have

established some coarse-grain relations with other families of languages (CFLs and CSLs). The

relationships between GILs LILs and ILs is still an open question. GILs and GCSLs are incomparable

but trGILs might be a properly included in GCSLs. The similarity of GIGs and counter automata,

coupled context-free grammars among other formalisms, should be addressed.

A candidate pumping lemma for GILs was suggested, however it is not clear to us if such a

pumping lemma would provide an additional tool beyond the result already obtained on semilinearity.

We defined deterministic LR-2PDAs and deterministic GILs, and we gave an algorithm to parse

LR(k) GILs. However, we did not explore the properties of the class of deterministic GILs. They

seem to be a proper subset of GILs and they also seem to be closed under complementation (which

could be proved following the proof for CFLs); however, the proof should be considered in detail.

We also mentioned the issue of ambiguity and we defined GILs with deterministic indexing. In this

case, it is harder to determine whether GILs with deterministic indexing are a proper subset of the

Global Index Languages. Although they do seem to be, this class might not have any theoretical

import besides the fact that the recognition problem is in O(n3 ).

We gave an Earley algorithm for GIGs , however there are other variations on Earley’s algorithm

that were not considered and that might improve the impact of the grammar size on the parsing
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complexity. There are also some details on the introduction of indices which would improve its

performance. Another alternative to be considered is extension of the LR(k) algorithm to generalized

LR(k) à la Tomita. If a Chomsky Normal Form for GILs is obtainable, a CYK bottom-up algorithm

could be considered.

We considered some of the issues related to Natural Language from a formal and abstract point of

view, i.e. language sets and structural descriptions. In the same perspective it might be interesting to

see if GILs are able to describe some phenomena that are beyond mildly-context sensitive power (e.g.

scrambling). Also, we only compared GILs with LIGs; there are other formalisms to be considered.

Minimalist Grammars [78] share some common properties with GILs. It would be interesting to

determine if minimalist grammars can be compiled into GILs.

In the area of practical applications, it would be interesting to implement the HPSG compilation

ideas. Another relevant question is how much of TAG systems can be compiled into GIGs and how

do the performances compare. It should be noted that the capabilities of TAGs to define extended

domains of locality might be lost in the compilation process.

We mentioned in the introduction some of the approaches to use generative grammars as models

of biological phenomena. The capabilities of GIGs to generate the multiple copies language (or

multiple repeats in the biology terminology) as well as crossing dependencies (or pseudo-knots)

might be used in the computational analysis of sequence data.
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