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Abstract. Intelligent automation has been a source of research and debate within the 
design community for several decades. When adding intelligent automation to 
single-user systems, two critical issues must be addressed. First, sufficient 
knowledge must be acquired about the user and her context to make high-level 
inferences at runtime. Second, the automation must be useful and delivered in a 
manner that does not impair the user’s domain activity. These issues are equally 
relevant for collaborative systems. However, collaborative systems offer a potential 
solution to these problems by virtue of their privileged position as mediating 
artifacts within a collaborative process. Because coordination information must be 
exchanged through the system, there is an opportunity for the system to gain insights 
into user activities and context. Because mediating artifacts add structure to the 
information that passes through them to improve coordination, this information is 
made more accessible to standard AI algorithms. Thus, within a design solution for 
coordination problems in groupware, a solution to some of the issues with intelligent 
automation can also be found. Empirical evidence from a testbed domain is 
presented that validates this approach, along with a discussion of how the approach 
can be generalized to other collaborative systems. 

Keywords: Coordinating Representation, Intelligent Interfaces, Awareness, 
Bayesian Networks, Plan Recognition  

Introduction 

Computer systems often function as artifacts that mediate people’s activities or 
communication [1][2]. As mediating artifacts, the design of computer systems is 
intended to improve users’ work by modifying the nature of the task. A computer might 
provide structure that serves as a resource for activity [3], or it may introduce a layer of 
abstraction that transforms work in a complex domain [4].  

A difficulty in designing systems that do this effectively is that the facilities they 
provide must be designed prior to their actual use, and hence are limited to providing the 
kind of support that the designer can envision at design time. Early on, this resulted in 
systems that were only appropriate for narrow groups of end-users in constrained 
settings [5]. This problem has been a driving force for the design community, and many 
techniques have been developed to grapple with the problem. One large subfield of 
research in user interface design has sought to better understand the nature of activity 
and tool use in order to improve the work at design-time. Another large subfield has 
focused on ways to defer design decisions by anticipating many eventualities to be 



detected at runtime. Both subfields have encountered their share of difficulties, and very 
often, the methods employed by the two approaches are seen as incompatible [6]. 

In this article, a technique for the harmonious integration of recently developed 
design techniques and intelligent automation in collaborative systems is presented. This 
approach rests on the observation that structure in a mediating artifact can both simplify 
work and at the same time render a portion of the users’ runtime context interpretable for 
the computer. The solutions offered are drawn from the rich bodies of work on situated 
activity and distributed cognition.  

In the early sections of this article, an ethnographic analysis technique that guides 
the development of mediating artifacts that improve collaboration is described. The 
primary focus of this article will be to show how the coordination work that people do 
via these mediating artifacts can be used by standard AI algorithms to introduce 
automation that improves the users’ performance in a domain task. The article concludes 
with a discussion about how intelligent automation might generally be incorporated into 
collaborative systems to improve awareness, based on recent research and our 
experiences. 

Difficulties with Design 

The field of HCI has gone through many stages in its ongoing evolution [5]. At the 
outset, the design of interfaces was based upon measurements of cognitive variables in 
carefully controlled laboratory environments. These methods proved to be difficult to 
translate into real-world applications, as they were only applicable to prototypical users 
in rarified contexts. Subsequent developments in the field have led to insights that 
human activity is inherently situation dependant [7], and that the social, organizational, 
and political context often has as much to do with the acceptance of a piece of software 
as design itself [5].  

The importance of runtime context and situation-dependence raises many design 
issues. How is it possible to design artifacts for a context that is not known at design 
time? If the only constant is the dynamicity of situation, how can static software 
representations be satisfactory? Identifying the kind of structure might be usefully 
incorporated in mediating artifacts that support work activity (e.g., [3][8][9][10])  has 
been a central research focus in CSCW since Suchman’s observations about situated 
activity [7].  

Difficulties with Automation  

One way to deal with some of the above problems is to try to build interfaces that are 
sensitive to the user’s runtime needs [11][12]. These systems try to infer the user’s goals, 
context or characteristics in order to tune their behavior to use at runtime.  

In some treatments, these systems are conceived of as a collaborative partner with 
the user [13]. In order to be a good collaborator, the system must have sufficient access 
to the context and user information that will allow it to make useful and timely 
inferences about the user’s needs. Unfortunately, the computer is handicapped in this 
regard, as it can only “see” the user’s activity and context through the narrow aperture of 
the user interface. In order to overcome this problem, a user knowledge acquisition 
strategy must be designed to provide the system with access to the information needed to 
make good inferences [14].  



A fundamental problem is how to design a knowledge acquisition strategy that does 
not introduce too much work for the user or otherwise impair the usability of the system. 
Natural language interfaces might be a way to do this, but natural language 
understanding is not yet at a point where solutions are feasible for real-world systems. 
Another approach is to add a structured language to the interface so the user can express 
higher level intentions in a form the computer can understand, but this requires the user 
to manage two tasks instead of one. As the developers of one human-computer 
collaborative system noted, “it is often more efficient and natural to convey intentions by 
performing actions” ([15], page 23).  

Another approach to knowledge acquisition is to add interface structure as part of 
the task that is mediated by the system. For example, the Epsilon collaborative learning 
environment [16] requires collaborators to use sentence openers (chosen from a list) for 
every line entered into chat. This allows the system to monitor the chat and help out with 
ineffective conversations. It important, however, to balance interface structure for 
knowledge acquisition with usability concerns. Outside of work discussed in the next 
section, the authors are not aware of any rigorous methodological approach for adding 
interface structure that both supports powerful machine inferences but does not impair 
natural use of the system.  

In addition to the knowledge acquisition problem in designing intelligent automation, 
the functionality provided by the automation should be useful, and it must not interrupt 
the user or hinder domain activity. Mixed-initiative approaches, such as that proposed by 
Horvitz [17], provide some guidelines in this regard. Horvitz advocates balancing the 
cost of the interruption against the expected utility of the automation itself. This entails 
recognizing where in a task a user is, and what the information requirements for that task 
are. However, mapping interface activity to a task structure is essentially a keyhole plan 
recognition problem, which has proven difficult to do in the general case.  

Rather than grapple with the problems of identifying task boundaries in user 
interface activities, we seek to identify a more reliable and generally applicable approach 
for collaborative systems. To this end, the problem of awareness in collaborative activity 
is examined at the end of this article.  

Mediating Artifacts that Support Coordination 

The study of mediating artifacts in everyday and work activities has become widespread 
in HCI and CSCW. Suchman & Trigg [18] described the role of structured tools (e.g., 
the “complex sheet”) in coordinating the distributed activities of the staff in an airport. 
Hutchins [2] explained how artifacts allow portions of a task to be “precomputed,” 
effectively mediating communication between the designer and the user. Norman [1] has 
focused on the role an artifact plays in mediating the user’s interaction with a domain, 
transforming the domain task into a form that makes it more cognitively accessible to the 
user. Schmidt & Simone [10] describe how artifacts serve to support the articulation of 
coordinated work activity, and introduce a notation (Ariadne) for the description of 
adaptable mechanisms that coordinate workflow. Activity theorists (e.g., [19]; also see 
[20]) highlight the role of mediating structures – which may be material artifacts, but 
might also be policies, conventions, etc. – in activity systems, which encompass a much 
larger range of factors than traditional HCI treatments. 

Each of these approaches is representative of a rich and evolving line of research, 
but none provide concrete, design-level guidance that can indicate what kind of structure 
should be incorporated into a mediating artifact, or predict which artifacts will be used 



and which introduce too much work. Ethnographic methodologies informed by activity 
theory and distributed cognition do provide guidance about how we might conceptualize 
activity and the role of mediating artifacts, and draw the analyst’s attention to the need 
for mediation, but such theories stop short of explicit design recommendations for the 
artifacts themselves. 

Recently, Feinman & Alterman [21] have provided just such a design level approach. 
It draws together insights from the ethnomethodological approach of Suchman & Trigg 
[18] and the analytical techniques introduced by Hutchins[2]. It provides a methodology 
for moving from the analysis of practice to concrete recommendations for structure that 
will be useful in a particular collaborative system. This structure is instantiated in shared 
mediating artifacts that can be incorporated in an existing platform. Following Suchman 
& Trigg, these artifacts are referred to as coordinating representations (CRs). 

The methodology for designing and introducing coordinating representations is one 
solution to the design problems described above. The structure introduced to the 
interface by coordinating representations is also a solution to the knowledge acquisition 
problem. In the following, validating evidence is provided for these two claims. Finally, 
the shared information that accumulates in a coordinating representation may be well 
suited to providing awareness that is generally useful in collaborative systems.    

1. Experimental Platform 

 
Figure 1: The VesselWorld System 

To study the above problems, an experimental platform called VesselWorld (shown in 
Figure 1) was developed. VesselWorld has many features relevant to the study of 
groupware systems in general. The domain task entails varying degrees and types of 
coordination, collaborators have different roles and responsibilities, and awareness must 
be explicitly maintained. VesselWorld proved to be very challenging for its users; in 
studies, each user group was trained for two hours before data was collected, and 
performance usually didn’t stabilize until after another five hours of use. 

VesselWorld presents a relaxed WYSIWIS environment, in which three participants 
play the role of ship’s captains, and their joint goal is to remove toxic waste barrels from 
a harbor without spillage. The main interface is a shared map. Each ship has a 



geographically limited view of the harbor within this map, so each user has different 
directly observable domain information. The progression of a VesselWorld session is 
turn-based, such that every user must submit a step to the server before the server can 
evaluate the steps and update the world on each client screen. Users may plan any 
number of steps in advance, although each step can only involve objects that are 
currently visible, and only one step can be submitted to the server at a time. Users’ 
actions are not visible to one another during the planning phase of each step, so 
awareness must be explicitly maintained. Communication may occur at any point, but all 
communication occurs through a text-based chat window that is part of the system.  

Each ship has different capabilities. Two of them have cranes that can be used to lift 
toxic waste barrels from the harbor and load them onto a large barge (which has a fixed 
position). The third user is a tugboat that can be used to drag small barges from one 
place to another. For notational convenience, we adopt the convention of referring to the 
crane operators as “cranes” and the tugboat operator as the “tug.” The cranes can load 
multiple wastes onto the small barge, and at least one of them must also be present to 
unload the barrels and place them on the large barge.  

Toxic waste barrels are of different types and require different coordination 
strategies. A single crane may lift a small or medium barrel, but two cranes must join 
together to lift and carry a large barrel, and an extra large barrel may be jointly lifted but 
can only be carried on a small barge by the tug. Toxic waste barrels may require 
specialized equipment to be moved, and the cranes carry different types of equipment. 
The tug is the only actor who can determine the type of equipment a toxic waste barrel 
requires. 

The users are scored by a function that takes into account the number of steps it 
takes to remove all of the waste barrels, the number of barrels cleared, the number of 
errors (dropped waste barrels) made, and the difficulty of the problem. In all user studies, 
the users were instructed to try to maximize their score. 

To support analysis, VesselWorld logs complete interaction data that can be used to 
replay user activity. This is an important component of the methodology described in 
Alterman, et al. [22]. More details upon this portion of the methodology can be found in 
Landsman & Alterman [23]. 

2. Intelligent Automation in VesselWorld 

Planning in VesselWorld is laborious and error prone. Errors often occur due to 
forgotten plan steps or joint plans that have become unsynchronized. Errors also occur 
because of forgotten or misunderstood commitments. In early versions of the system, a 
shared component was added to address these problems [22]. The CR allowed users to 
manually specify their goals and sequence their activities; however it was never used by 
users. In exit interviews, the users explained that the component introduced too much 
work, and was too hard to use. Hence, we sought to add intelligent automation to 
VesselWorld to provide this functionality. As envisioned, a semi-automated component 
would infer each user’s goals, and make them visible to all users. Additionally, once 
these goals were identified, the system could automatically generate synchronized plans 
for users. 

In order to infer user goals, the system needs to know about the state of the domain 
(where the toxic waste barrels are and associated information). Unfortunately, it is 
assumed that the simulated world is “outside” of the system itself, so the system has no 



direct access to the domain at runtime. Furthermore, without this information, the system 
cannot automatically generate plans. Thus, as discussed above, a major hurdle in 
providing the envisioned automation was in acquiring the information necessary to infer 
user intent.  

2.1. Obtaining State Information 

At runtime, the system has access to user locations and recently executed plan steps, but 
the only source of information about toxic waste barrels is exchanged by the users via 
chat. This information is very hard for the system to interpret. 

An excerpt from chat during a typical planning session shown in Figure 2 
demonstrates this. In the dialogue, users frequently refer to wastes by their latitude and 
longitude coordinates on the shared map. In the first line of the example, Crane2 
announces a waste at “120, 420.” In lines 2-4, Crane1 asks for clarification about the 
specifics of the waste. In lines 5-6, the Tug replies (having apparently already 
investigated that toxic waste barrel) with the corrected coordinates “105, 420” and 
specific information about the barrel. In line 8, Crane2 thanks the Tug for the 
clarification, and the Tug closes the conversational turn in line 9. 

 
1. Crane2: I found a waste at 120 420 
2. Crane1: ok 
3. Crane1: what type of waste? 
4. Crane1: large,small? 
5. Tug1:   105 420 needs a dredge, i think that is where 

you are 
6. Tug1:   small 
7. Crane1: ok 
8. Crane2: Thanks for checking 
9. Tug1:   no problem 

Figure 2: Excerpt from chat during VesselWorld session 

Automatically extracting information about toxic waste barrels from chat logs would 
be very difficult; the sample dialogue illustrates some of these problems. There are three 
active participants, and conversational turns that might be used to narrow the reference 
resolution scope are hard to identify. Also problematic is that referring expressions can 
change from utterance to utterance even within the same conversational turn. For 
example, line 1 refers to the waste as “120 420” and line 5 refers to the same waste as 
“105 420.”  People can sometimes handle such ambiguities, but this is problematic for 
natural language processing algorithms. 

Rather than developing specialized algorithms to deal with the nuances of three-way, 
live chat in the VesselWorld domain, it would vastly simplify our task if users were to 
enter all the information the system needs in a structured form. Although this might 
seem to unnecessarily burden the user, the next section explains why it is reasonable for 
this domain, and describes empirical evidence supporting this claim. 

2.2. Coordinating Representations 

Coordinating representations (CRs) can be introduced to collaborative systems to 
enhance people’s ability to coordinate their activities in a joint task. Feinman & 



Alterman [21] describe an approach to developing CRs by examining collected usage 
data from an existing collaborative system for evidence of recurrent coordination 
problems, explicit talk about coordination, and emergent structure. They also detail a 
technique for analyzing the co-referencing activity of users who are engaged in a 
collaborative task. The results of this methodology are a set of recommendations for 
structure to be incorporated into the platform. This methodology was employed to 
develop coordinating representations for VesselWorld.  

One of the difficulties observed in the analysis of VesselWorld usage data was with 
users’ ability to manage information about domain objects. Some of the groups handled 
these difficulties by developing mnemonic expressions. However, users did not always 
agree on consistent expressions, and coordination errors in the maintenance of this 
information were frequent. Thus, a CR called the Object List (Figure 3) was designed to 
support the organization and naming of objects in the world, and was added to the 
VesselWorld system. 

 
Figure 3: The Object List CR. 

The Object List is a tabular WYSIWIS component that helps users to manage and 
coordinate reference and state information. Users enter and maintain all of the data in the 
Object List. Each row of data contains several fields of information about a specific 
object. The “Name” field is a free-text field, assigned by the user. The “Location” field 
may be filled in by clicking on the field and then on an object that is shown in the 
primary map (and hence has fixed structure). The “Size”, “Equipment”, “Action”, and 
“Leak” fields are filled in using drop-down menus. The “Notes” field is also a free-text 
field, and is provided so that any other relevant information about the toxic waste barrel 
may be communicated. Entries in the Object List can be displayed on the primary map 
interface as icons that are annotated with the name that is in the “Name” field at the 
coordinates in the “Location” field. 

In studies it was found that the Object List, and one other CR, were used and 
significantly improved user performance [22]. Groups that used the CRs had fewer 
errors, spent less time chatting, and on average took half the amount of time to solve 
problems. These findings demonstrate that it is possible, using the methodology 
described, to develop CRs that do not compromise the usability of the system. Rather, 
they become part of the domain activity of the users, while introducing structure that 
helps them coordinate. In using a CR, collaborators also create a structured stream of 
data about their shared context that the system can use to infer user needs.  



2.3. Information Provided by the Object List 

Use of the Object List generates two types of information that might be used for intent 
inference. One type is structured information about shared domain objects (toxic waste 
barrels). This information is not perfect – it is only entered into the Object List as users 
discover and examine wastes, and it is subject to errors, omissions, and duplication – but 
it is well-structured and can be readily used by the system.  

Another, unanticipated type of information provided is the set of names assigned by 
users to toxic waste barrels in the Object List. VesselWorld collaborators used these 
names regularly in chat to refer to objects they were planning to deal with (lift, move, or 
otherwise). Thus, these names can be used to mine chat for clues about user intentions. A 
frequency analysis of references preceding actual lifts was performed to establish the 
utility of this information.  

Table 1: Probability a reference precedes a lift at time t (in minutes) 

t-5  to t t-10 to t-5 t-15 to t-10  

Joint Single Joint Single Joint Single 

Lift .62 .42 .27 .15 .25 .08 

~Lift .15 .11 .10 .07 .08 .04 

It was found that the occurrence of references to toxic waste barrels in chat were 
predictive of lift actions for roughly a fifteen-minute window of time preceding a lift. 
Table 1 depicts the likelihood that a reference for an object will appear in chat for the 
three consecutive five minute windows preceding the lift of an object at time t. In the 
table, “Joint” and “Single” refer to whether or not a waste barrel requires both or just one 
crane to lift. In the ~Lift conditions, values reflect the likelihood some barrel is referred 
to prior to the lift of some other barrel. 

There is about a sixty percent chance that a toxic waste barrel will be referred to in 
chat in the five minutes preceding the lift if that barrel requires assistance, and about a 
forty percent chance if that barrel can be lifted singly. Prior to fifteen minutes before the 
lift, references were not a very good predictor of lift actions.  

2.4. An Intent Inference Procedure  

An intent inference procedure was developed to predict user goals, using information 
about toxic waste barrels and references to them in chat. Two Bayesian Networks (BNs) 
were developed to assess likelihoods for crane and tug goals. The analysis presented here 
is restricted to the portion of the crane network that predicts the cranes’ lift intentions. 
This BN is shown in Figure 4; it models the likelihood that an actor has the intention to 
lift (or jointly lift with the other crane) a specific toxic waste barrel based on information 
about the state of the world, including: 
! The type of equipment required for the waste barrel. 
! The size of the waste barrel (which determines whether a single crane can lift the 

barrel, or if it needs help from the other crane). 
! Whether the cranes are close to or heading towards the barrel. 
! If the crane is currently holding a barrel. 



 
Figure 4: Schematic of BN used to infer crane lift intentions 

The network also uses reference information from chat. According the results of the 
frequency analysis above, three five minute windows of chat history, with one node for 
each five minute window, are included in the network.  

A primary aim of this article is to quantify the utility of the information provided by 
collaborators for predicting user intentions during normal use of the Object List. To do 
this, the performance of the above intent inference process was compared across four 
information conditions; with complete domain information (with or without chat), and 
with information from the Object List alone (with or without chat).  

2.4.1. Evaluating Intent Inference 
Table 2: Population summary for evaluations 

Group Sessions Avg. # of wastes per 
problem Total Hours 

Group 1 10 11.7 9.9 
Group 2 6 11 8.4 
Group 3 9 14.3 9.1 
Group 4 16 14.5 8.7 
All 41 13.5 34.3 

The intent inference procedure was evaluated using a dataset spanning roughly 34 hours, 
which contained usage data from groups that used a version of VesselWorld with the 
Object List. This data is summarized in Table 2. The usage data contains information 
about all domain actions, chat, and use of the Object List. It does not however, contain 
complete and accurate information about the initial state of the domain (where each 
waste barrel is, what kind of equipment it requires, etc.). For the sake of the following 
evaluation, complete domain information was derived from the domain definition files 
that were used to initialize each session of use.  

The four information conditions compared were: 
! Complete Info – All information about toxic waste barrels (size, location, 

equipment) is known at the outset, and is correct. 
! Object List – Information about toxic waste barrels is taken from the Object List as 

it becomes available, which is subject to user errors. 
! Complete Info + Chat – The Complete Info condition, plus the occurrence of 

references in chat. This condition uses the names associated with objects in the 
Object List, but uses complete domain information in the inference process. 



! Object List + Chat – The Object List condition, plus chat reference occurrences. 
In the non-“Chat” conditions, the belief network shown in Figure 4 was used without the 
nodes specific to chat (a darker shade in the figure).  

For each information condition the network was trained (using the EM(!) algorithm 
[24]) on the complete dataset in Table 2, and then tested against the same data. Training 
and testing on the same data set is not typically appropriate for validating a particular 
machine-learning technique. However, the aim here is to establish the relative utility of 
various information sources rather than to validate the generality of the technique. 

Two performance metrics were calculated in each condition; the proportion of 
correctly guessed goals, or correct goal rate (CGR); and the proportion of guesses that 
were false, or the false positive rate (FPR). A guess is made whenever a relevant state 
variable changes. Any uninterrupted sequence of correct guesses leading up to the 
execution of the predicted goal is counted as a single correct goal. The total number of 
goals is the number of wastes lifted. Thus,  

CGR  = correct goals / total goals 
FPR = incorrect guesses / total guesses 

The results of the evaluation are presented in Table 3. A single factor ANOVA 
demonstrated that differences between groups were highly significant for CGR 
(F(131,3)=10.84, p<.0001), and significant for FPR (F(131,3)=3.98, p<.01). 

Table 3: Intent inference results for different info sources 

Condition CGR (StdDev) FPR (StdDev) 

Complete Info .83 (.14) .53 (.13) 

Object List .70 (.17) .60 (.16) 

Complete Info + Chat .87 (.12) .51 (.11) 

Object List + Chat .77 (.15) .58 (.15) 

The “Complete Info” case, in the top row of the table, provides a baseline against 
which results for the other conditions may be compared. It is a rough indicator of the 
best the intent inference procedure can do, given complete and accurate information 
about the state of the world. Across the four user groups in the dataset, the CGR for the 
“Complete Info” case ranged from .77 to .91, and there was a weak correlation between 
problem size (number of toxic wastes) and performance (r=.23), reflecting the fact that it 
is more difficult to make good guesses when there are more options to choose from. In 
general, these metrics indicate that the inference procedure is effective.  

As expected, the intent inference procedure does not perform as well with 
information from the Object List alone. However, results from the “Object List” 
condition were still good, and demonstrate that use of the Object List was reliable 
enough to be useful for intent inference.  

The “Complete Info + Chat” condition demonstrates that references add significant 
information that cannot be derived from knowledge about the state of the domain. Thus, 
regardless of access to state information (for instance, if there were intelligent sensors 
placed in the world) the Object List adds information that still improves intent inference.  

The combination of reference information from chat and domain information from 
the Object List (the “Object List + Chat” condition) improves the performance of the 
procedure to a point where it is nearly as good as with complete information alone. This 
result provides validation of the claim that, for VesselWorld, the addition of the Object 
List provides a rich source of structured information that can be used to infer users’ 



intentions. The introduction of a semi-automated component that uses this information, 
described in the next section, provides validation that this level of intent inference is 
good enough to improve the users’ domain performance. 

3. A Semi-Automated Component 

The intent inference procedure above was developed to drive a component that would 
improve users’ awareness of each other’s goals, and fix some of the difficulties they had 
in creating and coordinating plans. The component that was developed for this purpose is 
shown in (Figure 5). The top portion of the component (everything above the “Get Plan” 
button) contains the same information for each user. It displays the five most plausible 
goals calculated by the intent inference procedure for each user at any point in time. 
When a user selects from among these goals, the goal is copied into the top row of the 
component, making it apparent to others, and the user is given the option to retrieve an 
automatically generated plan. 

  

 
Figure 5: The adaptive component 

The specific function of the component is as follows: 
1. After each update to state information, (e.g., plan execution, information added to the 

Object List, a reference to an object mentioned in chat, etc.) the system updates the 
lists of plausible goals for each user.  

2. When a user selects a goal, it is copied to the top row so that all users can tell what 
was selected. The user that selected the goal is then given the option to request an 
automatically generated plan by clicking the “Get Plan” button. 

3. The system generates a plan that the user can inspect. If the goal involves other users, 
they are invited to join the plan. If all invited users accept the invitation, a plan is 
generated; if they do not, the requesting user is so informed and a plan is not 
generated. 

4. The user may then accept the plan, in which case it is copied into the user’s planning 
window for execution. If the plan is generated from correct state information (i.e. the 
Object List reflects correct state information), and no user modifies the state in such a 
way that conflicts with the generated plan, the plan will succeed. 



The component does not interrupt users. Rather, it is a resource that collaborators 
can use to monitor one another’s goals, and to generate accurate plans. We expected to 
find that the component would be heavily used, that use would result in fewer planning 
errors, and users would use it, instead of chat, to maintain awareness of each other’s 
activities. 

3.1. Evaluation 

To evaluate the component, a single 40-hour study with four teams of three people was 
performed. The players were a mix of students and local-area professionals, with varying 
degrees of computer proficiency. Each team was trained together for two hours in the 
use of the system, and then solved randomly chosen VesselWorld problems for 
approximately ten hours. To alleviate fatigue concerns, the experiment was split into 
four three-hour sessions.  

The participants were divided into two populations of two teams each, one that had 
the automated component, and one which did not. For the teams with the component, the 
inference procedure used information from the Object List and chat to infer user goals. 
The following results report on the last 5 hours of play time for each group, by which 
point user performance had stabilized.   

Use of the automated component was analyzed, and several metrics were compared 
across the two groups, including: time taken per waste barrel, number of mouse clicks; 
amount of communication; and the number of joint and single errors. Additionally, exit 
interviews were provided to determine if the component was well received, and if it was 
in fact used to stay aware of other users’ activity. All interview questions were answered 
on a seven point scale.  

The component was used. All groups used the component to generate plans within the 
system. Users confirmed a goal every 1.5 minutes (SD=46 seconds), requested a plan for 
each confirmed goal, accepted 71% of plans requested (SD=19%), and completed the 
execution of 83% (SD=6.75%) of these plans. Overall, this indicates that roughly 59% of 
confirmed goals resulted in a plan that was executed to completion.  

In answer to the question, “What did you think of the component?” the average 
survey response was 5.4 (SD=.8) (1= “Hated it”, 7= “Loved it”). To the question “How 
did the component influence the difficulty of the problems,” the average response was 
5.6 (SD=.8) (1=“Harder”, 7= “Easier”).  

For each problem solving session, one quarter of all plan steps submitted to the 
server were generated by the component (SD=8%). Finally, the component generated 
plans for 43% (SD=15%) of the domain goals it could have predicted for the cranes. It 
was not possible to obtain a similar statistic for the tug because it is difficult to recognize 
goals in the collected log files (goals for the tug are not bracketed by easy to detect plan 
steps like “LIFT” and “LOAD”).  
Joint errors were reduced. Although there was no significant change in the number of 
individual errors by groups that had the adaptive component, these groups did have 45% 
fewer joint errors (failures during joint actions) per minute (p=.069). This difference is 
not significant at the .05 level, because of the small sample size and overall low 
proportion of joint errors. However this finding corroborates prior analysis of use of the 
VesselWorld system [22], which indicated that joint errors were usually the result of 
plan submissions becoming unsynchronized. Because the component generates 



coordinated plans in advance, users may simply submit each step and be assured that 
actions will be coordinated.   
Cognitive load was reduced. The average time per waste decreased slightly for users 
with the plan-generation component, but this difference was not at all significant. With 
closer investigation though, it was found that the amount of clock time taken by users 
between steps of automatically generated plans was 57% less than in groups without the 
component (p<.01). Time taken between the submission of automatically generated plan 
steps was also less than time taken between manually generated plan steps within groups 
that had the component (52% reduction, p<.01). Furthermore, there was no significant 
difference in the number of mouse clicks per waste. Because the reduction in clock time 
for groups with the component cannot be explained by a reduction in the amount of 
interface work, we conclude that the component reduced the cognitive load of the 
collaborators. 
The component was NOT used to maintain awareness. The overall amount of chat 
was not reduced in groups that had the component. By itself, this finding does not 
necessarily indicate that the component did not improve awareness; however none of the 
survey respondents indicated that the component was used to monitor other users’ goals.  

In general, these results demonstrate that intent inference using information 
provided by the users as part of their coordination work was good enough to support 
useful automation. Furthermore, the automation resulted in improved domain 
performance and reduced cognitive load, and in this respect it was successful. However 
the component did not appear to improve users’ awareness of one another’s activities. 
The following discussion examines this result more carefully. 

4. Discussion 

This paper has presented validation for an approach to adding useful intelligent 
automation to collaborative systems. To a large degree, this approach can be readily 
applied to other collaborative systems. The analytical process that led to the 
development of the Object List in VesselWorld is a repeatable design technique that has 
been documented in detail and shown to work with other systems [22][21]. CRs 
introduce work that people are willing to do and improves their performance in a domain 
task. They also add structure to coordinating information. Others have discussed the 
potential of structured collaborative information in supporting user-sensitive runtime 
support (e.g., [9], also see [25] for a theoretical treatment). The work that was reported 
upon here provides a concrete example of how this information can be used to produce 
powerful runtime inferences, which in turn support the integration of useful automation.  

The automation added to VesselWorld addressed users’ planning needs. However, 
these needs are fairly specific to the VesselWorld domain; moreover, users did not use 
the automated component to maintain awareness, which is a more persistent problem in 
groupware environments. We examine this result more closely against the backdrop of 
existing awareness research. 

Awareness is a multi-faceted issue that is central to groupware development 
([26][27]). One difficulty with supporting awareness in collaborative settings stems from 
asymmetries in information production and consumption [28][29]. Individuals who are 
responsible for generating awareness information do not always reap its benefits, and 
consumers of awareness information cannot guide its production. An approach to this 



problem is to passively collect information about user activity, and then to make it 
available as background information that collaborators may use as necessary.  

This was the approach taken with VesselWorld. The Object List structured a portion 
of the coordinating information that was generated, enabling automated inferences about 
activity. These inferences were published as background for the shared activity. 
However, our empirical studies indicated that while this background information did not 
interfere with activity, it was not useful. Clearly, some design guidance for providing the 
right kind of awareness information is necessary. 

CRs may collect information that is well suited for supporting activity awareness, 
which is awareness of how work is embedded within the context of the overall activity 
[30]. Activity awareness is distinct from “social awareness” (awareness of who is 
around) and “action awareness” (awareness of what is happening). The term “activity” is 
used to point to an activity theoretical framework, and as such this concept of awareness 
is more richly textured than can be effectively summarized here.  

The role of activity awareness in collaborative settings becomes clearer if the role of 
context in activity is considered. In ordinary work environments, tasks cannot be neatly 
organized into preplanned episodes of behavior. New tasks appear dynamically, and 
existing tasks may bifurcate or be de-prioritized. Each time a new task is engaged, the 
relevant external information must be brought into focus and cognitive resources 
realigned accordingly in order to proceed. Upon returning to an earlier task, that task’s 
state must be recovered so that activity may proceed. Context shifts increase cognitive 
load, and each such shift is a potential loss of prior context [31][32].  

Collaborative work is characterized by rapid shifts between individual and carefully 
coordinated activity [28][27]. These shifts are partially informed by pre-defined 
workflows, but they are just as often unpredictable and opportunistic. Support for 
activity awareness in collaborative environments is one way to ameliorate some of the 
problems inherent in the continual context switching that characterizes collaborative 
activity. For example, as collaborators in a virtual environment move from a shared 
super-task to individual sub-tasks, helping them to maintain awareness of the super-task 
should help eliminate errors like forgotten commitments. The use of shared timelines in 
a collaborative learning environment as described by Carroll, et al. [30] is such an 
approach. 

The forgotten or misunderstood commitments observed in VesselWorld may be 
attributed to a lack of activity awareness. As more toxic waste barrels are found in a 
VesselWorld session, more complicated plans are formed which involve multiple 
segments - for instance, “Get the wastes in <region>” or, “Get the two Extra Large 
wastes,” which involves several sub-plans and all three users. In executing these more 
complex plans, individual users must move through several layers of context, which are 
not explicitly available in any external representation. A loss of high-level context will 
result in forgotten or mis-remembered commitments, and lack of an external 
representation of high-level context makes it difficult to catch misunderstandings early 
on.  

The automated component may not have been used to maintain awareness in 
VesselWorld because it provided information about the immediate individual goals (a 
form of action awareness) rather than the encompassing shared goal. For any given user, 
a reminder about their own current (low-level) goal is not very helpful, especially since 
the plan-generation component automatically generates plans for low-level goals. A 
reminder about other users’ low-level goals may not be useful without seeing how they 



fit into the encompassing shared task context. A more useful automation would provide 
this kind of information. 

In general, providing a background collaborative context based on passively 
gathered information can overcome asymmetries in the production and consumption of 
awareness information. One type of awareness that may be supported is about shared, 
high-level context and its relationship to individual activity. This type of awareness is 
especially important as collaborators move through various phases of coupling, because 
there is substantial opportunity to lose track of encompassing, shared context. 

Coordinating representations are useful for generating the information required to 
provide this kind of awareness because they capture and structure information that 
constitutes the users’ shared context. The computer, as a mediating artifact with 
significant abilities to summarize, sort, and synthesize structured data is in a good 
position to automatically combine and provide this information in the background. We 
conclude that while the specific automation provided in VesselWorld may not be easily 
generalized to other domains, CRs may be generally useful for supporting automated 
activity awareness. 

5. Summary 

This article has presented an approach that combines ethnographic design with 
intelligent automation in order to improve collaborative activity, and this approach has 
been validated with an example. Specific attention has been given to the utility of 
information that is generated by users in the course of their collaborative work, and it has 
been shown that, in VesselWorld, this information is nearly as good as complete 
knowledge of the state of the domain. It was shown how this information can be used to 
support useful run-time automation, in the form of planning support.  

The presented approach is built on the observation that mediating artifacts can 
structure communication to improve coordination. In adding structure to coordinating 
information, it is made accessible to autonomous algorithms. The approach may be 
generalized to other collaborative domains. With regards to the design of coordinating 
representations and the knowledge acquisition problem, there is a strong case for the 
generality of the approach to be found in existing and prior research. With regards to 
automation, existing research that guides the development of generally useful awareness 
support has been highlighted. The approach we’ve presented allows the system to 
passively monitor coordinating information that may be very useful for generating 
activity awareness. In future work, this hypothesis will be investigated more directly.  
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