Grammar Synthesis

as an Approach for Solving the

Inverse Protein Folding Problem
Kapil Mehra

Advisor: Jacques Cohen
Submitted for Senior Honors

to the Computer Science Department

at

Brandeis University

May, 2001

Abstract
This thesis represents an undergraduate research project conducted between the summer of 2000 and the 2001 academic year at Brandeis University in the field of computational molecular biology (also referred to as bio-informatics). This description is primarily directed to computer scientists who would like to become familiar with an important problem in the field of bio-informatics, that of protein folding. The research accomplished in this project can be broadly categorized into two phases:

· The Biological Aspect of the Protein Folding Problem: This phase was primary conducted during the summer of 2000 with funding from the Richter Research Award. We were interested in studying the structural properties of proteins and the Protein Folding problem. The focus was on studying methods for understanding the folding problem and searching online databases and tools to predict protein shape. A large part of the work involved online database querying and developing scripts to automate this process.

· The Computer Science Aspect Focusing on the Modelization of the Protein Folding Problem: This phase was primarily conducted during the academic year of 2001. Using our background knowledge of Computer Science as well as what we had learnt from our previous work, we wanted to test the validity of a computer model for protein shape prediction.

Section 1 of the thesis provides background information on proteins and the folding problem. The section also defines our goals as well as the problems addressed in this thesis. Section 2 describes some of the existing work on which this thesis is based. In Section 3 we present the work performed through the course of our research. It comprises two areas: Automating and simplifying online database lookup and using machine learning on the results from our computer model. The machine learning approach used in this project is the synthesis of finite state grammars or automata from a set of positive and negative examples. Section 4 contains suggestions for future work. Finally, a series of appendices contain relevant information such as programs, DFA recognizers and shapes that were considered in this work.

Contents

	1
	Central Themes and Motivations
	3

	1.1
	Research Goals...
	3

	1.2
	Background on Proteins..
	3

	1.3
	The Protein Folding Problem ..
	4

	1.4
	The Inverse Protein Folding Problem..
	6

	
	
	

	2
	Study of Existing Work
	7

	2.1
	X-Ray Crystallography and NMR..
	7

	2.2
	Protein Threading...
	7

	2.3
	Ab-initio Methods addressing the Inverse Protein Folding Problem.............................
	9

	
	2.3.1 Kleinberg’s Algorithm ..
	9

	
	2.3.2 The NEC method and the Lattice Model by Jian Zhang
	10

	
	
	

	3
	Thesis Results
	12

	3.1
	Online Protein Databases and Prediction Tools ...
	12

	
	3.1.1 Relevant Protein Strings...
	12

	
	3.1.2 Protein Investigation Results ..
	14

	3.2
	Finite State Grammar Synthesis Using Results from the Lattice Model
	15

	
	
	

	4
	Topics for Future Work
	19

	4.1
	Expansion from the Lattice Model to Three Dimensional Protein Molecules...................
	19

	4.2
	Structure Prediction from Partial Strings ..
	21

	4.3
	Interval-Based Constraints Language and the Inverse Protein Folding Problem................
	21

	4.4
	Progol and the Inverse Protein Folding Problem ..
	21

	
	
	

	A
	38 SAPs From The Lattice Model After Symmetry Elimination
	23

	
	
	

	B
	Modified version of Jian Zhang’s C code to extract SAP Strings
	25

	
	
	

	C
	Java Program to Create Datasets for FSA Synthesis
	33

	
	
	

	D
	Java Program to Create Input file for Graphviz
	36

	
	
	

	E
	Partial Selection of DFA recognizers for SAP Landscapes
	38

	
	
	

	F
	Perl Scripts to automate querying of Structure Prediction Websites
	42

	
	
	

	Bibliography
	
	46

Section 1

Central Themes and Motivations

This section contains descriptions of our main goals, background knowledge on proteins and definitions for the problems addressed in this project. The ultimate goal of this area of bio-informatics is to discover efficient methods to deduce the structure or shape (the two words are used interchangeably in this context) of a protein molecule, given its constituent parts.

1.1
Research Goals
We had the following three main goals in mind:

· Investigating the existing approaches available to solve the Protein Folding Problem and the Inverse Protein Folding Problem using two candidate protein strings that were given to us by Professors Gregory Petsko and Dagmar Ringe. They intended to study these two proteins in detail; we wanted to provide them with additional information regarding the proteins using computational techniques.

· Making innovative suggestions on techniques for addressing the Inverse Protein Folding Problem.

· Presenting our results in an accessible manner that may be useful for future investigations.

1.2
Background on Proteins

Proteins are organic compounds that make up living organisms and are essential to their functioning. Physically, a protein is a chain of simpler molecules called amino acids, of which 20 different types occur in nature. A protein may be built by as few as 100 amino acids or by as many as 5000.

We found it appropriate to use a pseudo prolog-type declarative language to illustrate relevant definitions in this thesis. “%” signs indicate descriptive comments. The variables of a clause (or alternatively the parameters of a procedure) are denoted as a “+” when they are known data and a “-” when they are the results of computations.

Let s: protein string, where

s((A|C|D|E|F|G|H|I|K|L|M|N|P|Q|R|S|T|V|W|Z)*

The above capital letters are the common abbreviations of the 20 amino acids that form each protein. A protein is generally represented as a string of these 20 letters; this type of string representation is referred to as the protein’s primary sequence or primary structure. Proteins actually fold in three dimensions, presenting secondary and tertiary structures. Folding here simply means acquiring a shape. The secondary structure of a protein is the local structure (sub-shapes such as alpha helices or beta sheets) of linear segments of the backbone atoms without regard to the conformation of side chains. The actual three-dimensional arrangement of atoms within the protein is known as its tertiary structure. Every protein has a unique shape, which it (almost) always folds into.

Learning the function of every protein is the ultimate goal of studying protein structure. The shape of a protein by and large determines its function, which is why the ability to predict protein shapes has generated so much interest. We have entered the post-genomic era; the task of mapping the complete human DNA sequence has been concluded. DNA or Deoxyribonucleic acids are the recipes for building proteins that are used by the living cell. A consequence of this mapping is that we have access to the huge inventory of proteins used by the human body as well as their primary structures.

If we can efficiently discover the shapes of these proteins, we will eventually be able to infer how each protein functions. This will enable the targeting of specific processes that affect health and disease. Drug discovery and development will also benefit enormously.

The team responsible for developing Deep Blue, the computer system that defeated world chess champion Gary Kasparov, is currently working on the protein-folding problem. This involvement is a testament to the importance of research in this field.

1.3
The Protein Folding Problem

The Protein Folding Problem: Given a protein’s primary structure, describe its tertiary structure i.e. describe the shape it naturally folds into.

This has proven to be an extremely hard problem. A very large number of factors need to be taken into consideration when solving this problem and no efficient and reliable solution has been found as yet. Figure 1-1 is a picture of a protein molecule that was studied using NMR techniques (see Section 2.1). The picture has been preprocessed and only presents the important parts of the core of the molecule. It still, however, provides an idea of the degree of complexity being dealt with.

[image: image1.jpg]g bt e e
(~40,000) (a few thausand)

Let s: Protein Primary structure (sequence of amino acids)

 (: Protein Tertiary structure (3-D protein structure)

Protein Folding Problem:

%PFP(+,-)

PFP(s, ().

1.4
The Inverse Protein Folding Problem

It has been observed that often proteins with different primary sequences have very similar shapes. In fact, in the human body alone, there are around 40,000 valid sequences of amino acids corresponding to genes while it is estimated that there may only be a few thousand shapes that those proteins fold into (see Figure 1-2). These observations have led researchers to propose The Inverse Protein Folding Problem. With this approach, instead of trying to predict the structure of a protein from its sequence, we try to match a known structure to the protein sequence whose structure we are attempting to determine.

Inverse Protein Folding Problem:

%IPFP(-,+)

IPFP(s, ().

[image: image18.png]

Section 2

Summary of Existing Work

This section describes different techniques for the prediction of protein shape that we researched and in some cases refined for this project. Protein shape can be studied by empirical observational techniques or by computer-based prediction algorithms. Within the latter family of techniques, there exist two broad methodologies: one that uses previous knowledge of protein shape and one that starts from scratch without any previous domain knowledge.

Amino acids may be roughly classified into two types: Hydrophobic (H) or Polar (P). Hydrophobicity is a property of an amino acid that specifies a preference to be placed on the "inside" of the protein. Alternatively, a polar amino acid preferentially occupies a position on the surface of the protein. An alternative way to represent a protein string from that defined in Section 1.2 is to use a string containing only the letters “H” and “P”, with “H” representing hydrophobic amino acids and “P” representing polar amino acids. While this is clearly a simplification, it has been found that modeling a protein using only two amino acid types captures properties significant to protein shape. The prediction methods described in Section 2.3 use this property of amino acids to make predictions about protein shape.

Let sHP: protein string,

where sHP((H|P)*
2.1
X-Ray Crystallography and NMR

Traditionally, shapes of proteins are determined using experimental methods such as X-ray crystallography or Nuclear Magnetic Resonance (NMR), which are time consuming. Determining the shape of a single protein using such methods may take several months and requires repeated attempts. Clearly much faster methods of determining protein shape such as computational techniques are required.

2.2
Protein Threading

Protein Threading is an enticing approach to solving the Inverse Protein Folding problem. Given a database of protein sequences and their corresponding shapes, consider a new protein sequence, compare it with every protein in the database and obtain a list of structures that most probably describe its shape. There exist a large set of possible alignments between any two protein sequences. The technique is therefore a precise combinatorial optimization problem. Every threading result has a score indicating the similarity ratio. Scores range from 0 (worst) to 1 (best).

Figure 2-1 provides an explanation of protein threading. It also highlights the fact that protein threading is a highly combinatorial technique. It mechanically searches through all possible solutions, returning optimal structures along with a score of the closeness of each match.

Let us compare the following two strings having approximately the same length, assuming each corresponds to a protein. The x’s, y’s and o’s correspond to different substructures in space that the amino acids form such as alpha helices or beta sheets (these two are technical terms for sub-shapes found within proteins, see “Secondary Structure” in Section 1.2).

String 1 : o x x x o o o o x x x x o o o y y y o

 \ \ \ \ \ \ \ \ \ \

String 2 : x a x x x a a a a a x x x a a a a y a a

String 1 is from a database of known proteins so we know the boundaries of its substrings. String 2 is the one we are attempting to thread and so we must try to determine its substring boundaries. In String 2, an "a" may refer to x, y, or o. We have a few clues about the structure of String 2 by studying its protein sequence (hence the string contains some x’s and y’s in addition to a’s).

The goal is to select the values for the letters marked "a" in String 2 so that it matches String 1 as well as possible. Obviously there are many different sequences that can be proposed to fill in the blanks for String 2. We can judge how good of a match a proposed sequence is by counting the total number of matched x's, y's and o’s. The larger the number of matches, the greater the similarity of the shape of the protein being threaded to the proposed shape. A score can be assigned to the quality of the match between the two strings based on the number of matched letters. A solution to the example has been presented above with lines drawn to match the two strings as best as possible.

Figure 2-1

Figure 2-1 is obviously a simplification of the actual threading process. It should be noted that at times, the second string may have gaps that cannot be matched with the first protein, which adds to the problem’s complexity.

Protein Threading:

Let x: input protein string

 s: comparison protein string

 (: tertiary structure of s

 SR: Similarity Ratio (Score), where 0<SR>1.0

%THREAD(+,+,+,-)

THREAD(x, s, (, SR)

Note: THREAD is NP-hard

2.3
Ab initio Methods addressing the Inverse Protein Folding Problem

Ab initio methods do not use previous domain knowledge like Protein Threading but start from scratch, using heuristic techniques to find ideal shapes. They try to find optimal shapes that maximize the number of polar amino acids on the surface and hydrophobic acids in the core of the structure.

2.3.1
Kleinberg’s Algorithm

Professor Jon Kleinberg from Cornell University has proposed a polynomial approximate algorithm: given a structure [image: image2.png]

, determine an HP string that is a potential candidate for having [image: image3.png]

 as the folded structure (See Figure 2-2). Kleinberg therefore provides an approximate solution to the Inverse Protein Folding problem. He uses a Fitness Function [image: image4.png]

 defined as:

[image: image5.png]B(S)=a Y gld)+B Y s

§,jeSmi<i—2 ic8u

[image: image6.png]

 and β are constants; the sum of d(i,j) corresponds to the distances between space coordinates of the nodes, and si corresponds to the nodes that are in the surface of the given [image: image7.png]

. SH denotes the set of numbers i such that the ith position of the sequence S is H (Hydrophobic).

The Kleinberg algorithm per se does not solve the Inverse Protein Folding Problem since it only provides one possible HP string that conforms to the queried shape. An ideal solution would list the primary sequences of all proteins that fold to the input shape.

Kleinberg’s Algorithm:

%Kleinberg(-,+)

Kleinberg(sHP , ().

Note: Complexity(Kleinberg) = O(n3)

 Kleinberg

HPHPPPHPHPHPHHHHPPP…

2.3.2
The NEC method and the Lattice Model by Jian Zhang

We have used data from a Lattice Model for Protein Folding investigated by Jian Zhang at Brandeis University. The model is based on work done at the NEC laboratory in Princeton and provides a simplified version of possible protein shapes. Zhang’s model is more feasible to work with in terms of computational expense due to its simplified nature.

Given n shapes and 2m HP strings, the NEC method uses brute force search to match each of the 2m strings to one of the n shapes. Instead of using a 3x3x3 lattice like the NEC researchers in Princeton, Zhang employed a 4x4 two-dimensional lattice. Zhang used a Prolog program to determine all unique shapes or Self Avoiding Paths, referred to from hereon as SAPs, for this model. It turned out that there were a total of 38 SAPs after symmetry elimination. These 38 SAPs are presented in Appendix A.

Given a 4x4 lattice, there are 216 or 65,536 HP strings that can be mapped onto it. This mapping is performed by using an energy function E(P,S) where P is a SAP and S is a 16 digit binary string representing a protein. Given a string S and a SAP path P, E is computed as follows:

[image: image8.png]E(P,S) =Y P(i,j)

Y]

where P(i,j) = 3 if i and j are both hydrophobic; P(i,j) = 1 if i and j are one hydrophobic and one polar; P(i,j) = 0 for all other pairs.

Every binary String S is exhaustively matched with all the 38 SAPs and the one with minimal energy E is selected. A side note is in order: if a binary string optimally matches two or more SAPs, we disregard it because in nature, every protein predominantly folds to only one unique shape. It turned out that only 28,648 strings optimally matched a unique SAP while 36,888 optimally matched more than one SAP. Figures 2-2 and 2-3 show the distribution of the mapping done using the NEC energy method. Below is a small sample of the strings mapping to SAP 22 and SAP 15.

Strings mapping to SAP 22

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1

0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0

Strings mapping to SAP 15

0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0

0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0

0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1

0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0

1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0

1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0

1 1 0 1 0 0 0 1 0 0 1 0 0 0 1 0

1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0

1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0

Figure 2-2

	SAP #
	Number of Sequences Mapped
	SAP #
	Number of Sequences Mapped
	SAP #
	Number of Sequences Mapped

	1
	1358
	14
	1025
	27
	300

	2
	232
	15
	23
	28
	151

	3
	276
	16
	98
	29
	137

	4
	564
	17
	617
	30
	394

	5
	560
	18
	976
	31
	639

	6
	851
	19
	489
	32
	1053

	7
	1116
	20
	1520
	33
	1040

	8
	449
	21
	846
	34
	230

	9
	667
	22
	2214
	35
	325

	10
	1361
	23
	1650
	36
	1519

	11
	490
	24
	253
	37
	1760

	12
	549
	25
	103
	38
	1819

	13
	791
	26
	203
	
	

Figure 2-3

[image: image9.wmf]0

500

1000

1500

2000

2500

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

SAP Number

Number of Sequences Mapped

Section 3

Thesis Results

This section presents the work that has been performed during this research project. Section 3.1 describes the phase that involved specific proteins and the biology aspect of the problem while Section 3.2 describes the phase more directly involved with computer science concepts and techniques.

3.1
Online Protein Databases and Prediction Tools

Professor Cohen and I wanted to help Professors Gregory Petsko and Dagmar Ringe at the Rosenstiel Center in Brandeis University with research they were conducting on two particular proteins.

Professors Petsko and Ringe specialize in the study of protein structure through traditional observation-based techniques such as X-Ray crystallography. It may be recalled from Section 2.1 that these methods require a significant time investment. It is therefore only worthwhile to study the structure of a given protein if one is reasonably sure that the structure is unique and as yet undiscovered.

An interesting consequence of studying protein threading algorithms is that at times, a given protein sequence may be input which produces very low scores when matched with all known protein shapes. In such a case, the protein may have a shape which is as yet undiscovered. Professors Petsko and Ringe wanted us to use bio-informatics techniques to investigate the proteins they were interested in to see if we could undoubtedly map them to a known shape. It is worthwhile to note here that we could possibly have reported a false negative i.e. the protein may actually have had a known shape but our methods may have failed to discover it. On the other hand if we did find a positive result i.e. if we could confidently say that the protein string would fold to a particular known structure, we would save them the time investment of investigating the structure of the protein.

3.1.1
Relevant Protein Strings

Professors Petsko and Ringe were interested in studying the following proteins:

· Serine Racemase

· Lysine Aminomutase

The online search for serine racemase yielded the following two different sequences:

/product="serine racemase" (SOURCE: House mouse)
(NOTE: Referred to as Mammalian Serine Racemase from hereon)

"MCAQYCISFADVEKAHINIQDSIHLTPVLTSSILNQIAGRNLFFKCELFQKTGSFKIRGALNAIRGLIPDTPEEKPKAVVTHSSGNHGQALTYAAKLEGIPAYIVVPQTAPNCKKLAIQAYGASIVYCDPSDESREKVTQRIMQETEGILVHPNQEPAVIAGQGTIALEVLNQVPLVDALVVPVGGGGMVAGIAITIKALKPSVKVYAAEPSNADDCYQSKLKGELTPNLHPPETIADGVKSSIGLNTWPIIRDLVDDVFTVTEDEIKYATQLVWGRMKLLIEPTAGVALAAVLSQHFQTVSPEVKNVCIVLSGGNVDLTSLNWVGQAERPAPYQTVSV"

(339 characters)

/product="serine racemase" (SOURCE: Enterococcus faecalis)

(NOTE: Referred to as Bacterial Serine Racemase from hereon)

"MTKNESYSGIDYFRFIAALLIVAIHTSPLFSFSETGNFIFTRIVAPVAVPFFFMTSGFFLISRYTCNAEKLGAFIKKTTLIYGVAILLYIPINVYNGYFKMDNLLPNIIKDIVFDGTLYHLWYLPASIIGAAIAWYLVKKVHYRKAFLIASILYIIGLFGDSYYGIVKSVSCLNVFYNLIFQLTDYTRNGIFFAPIFFVLGGYISDSPNRYRKKNYIRIYSLFCLMFGKTLTLQHFDIQKHDSMYVLLLPSVWCLFNLLLHFRGKRRTGLRTISLDQLYHSSVYDCCNTIVCAELLHLQSLLVENSLVHYIAVCFASVVLAVVITALLSSLKPKKAKHTADTDRAYLEINLNNLEHNVNTLQKAMSPKCELMAVVKAEAYGHGMYEVTTYFEPIGVFYLAVATIDEGIRLRKYGIFSEILILGYTSPSRAKELCKFELTQTLIDYRYLLLLNKQGYDIKAHIKIDTGMHRLGFSTEDKDKILAAFFLKHIKVAGIFTHLCAADSLEEKEVAFTNKPIGSFYKVLDWPKSSGLNIPKVNIQTSYGLWNIQSWNVIYQSGVALYGVLRSTNDKTKLETDLRACSFLKAKVVLIRKIKQGGSVGYSRAFTATRDSLIAILPIGYADGFPRNLSCGNSYVLIGGRQAPIVGKICMDQLAVDVTDIPNVKTGSIATLIGKDGKEEITAPMVAESAESITNELLSRMEHRLNIIRRA”

(711 characters)

The search for Lysine Aminomutase yielded 3 different results.

/product="L-lysine 2,3-aminomutase"

(NOTE: The Main Protein Sequence)

"MINRRYELFKDVSDADWNDWRWQVRNRIETVEELKKYIPLTKEEEEGVAQCVKSLRMAITPYYLSLIDPNDPNDPVRKQAIPTALELNKAAADLEDPLHEDTDSPVPGLTHRYPDRVLLLITDMCSMYCRHCTRRRFAGQSDDSMPMERIDKAIDYIRNTPQVRDVLLSGGDALLVSDETLEYIIAKLREIPHVEIVRIGSRTPVVLPQRITPELVNMLKKYHPVWLNTHFNHPNEITEESTRACQLLADAGVPLGNQSVLLRGVNDCVHVMKELVNKLVKIRVRPYYIYQCDLSLGLEHFRTPVSKGIEIIEGLRGHTSGYCVPTFVVDAPGGGGKTPVMPNYVISQSHDKVILRNFEGVITTYSEPINYTPGCNCDVCTGKKKVHKVGVAGLLNGEGMALEPVGLERNKRHVQE"

(416 chars)

/product="D-lysine 5,6-aminomutase alpha subunit"

(NOTE: Protein Subunit)

"MESKLNLDFNLVEKARAKAKAIAIDTQEFIEKHTTVTVERAVCRLLGIDGVDTDEVPLPNIVVDHIKENNGLNLGAAMYIANAVLNTGKTPQEIAQAISAGELDLTKLPMKDLFEVKTKALSMAKETVEKIKNNRSIRESRFEEYGDKSGPLLYVIVATGNIYEDITQAVAAAKQGADVIAVIRTTGQSLLDYVPYGATTEGFGGTYATQENFRLMREALDKVGAEVGKYIRLCNYCSGLCMPEIAAMGAIERLDVMLNDALYGILFRDINMQRTMIDQNFSRIINGFAGVIINTGEDNYLTTADAFEEAHTVLASQFINEQFALLAGLPEEQMGLGHAFEMDPELKNGFLYELSQAQMAREIFPKAPLKYMPPTKFMTGNIFKGHIQDALFNMVTIMTNQRIHLLGMLTEALHTPFMSDRALSIENAQYIFNNMESISEEIQFKEDGLIQKRAGFVLEKANELLEEIEQLGLFDTLEKGIFGGVKRPKDGGKGLNGVVSKDENYYNPFVELMLNK"

(516 chars)

/product="D-lysine 5,6-aminomutase beta subunit"
(NOTE: Protein Subunit)

"MSSGLYSMEKKEFDKVLDLERVKPYGDTMNDGKVQLSFTLPLKNNERSAEAAKQIALKMGLEEPSVVMQQSLDEEFTFFVVYGNFVQSVNYNEIHVEAVNSEILSMEETDEYIKENIGRKIVVVGASTGTDAHTVGIDAIMNMKGYAGHYGLERYEMIDAYNLGSQVANEDFIKKAVELEADVLLVSQTVTQKNVHIQNMTHLIELLEAEGLRDRFVLLCGGPRINNEIAKELGYDAGFGPGRFADDVATFAVKTLNDRMNS"

(262 char)

3.1.2
Protein Investigation Results

We investigated the proteins extensively using a large variety of net-based computational resources. I maintained a web site that was frequently updated containing the results of the research. The site contains a valuable collection of links to other websites and net-based tools of interest to researchers in the field of computational molecular biology.

The following is the URL to the web site:

http://www.cs.brandeis.edu/~kapilm/richter/richter1.htm
The site may be opened using any web browser such as Internet Explorer or Netscape Navigator (the site is best viewed using Internet Explorer 5.x). The specific results of the various tests conducted during the course of this research have not been attached to this thesis as a result of their large size. All the results are available online at the above URL.

The site contains the following:

· The results of various predictions on the secondary and tertiary structures of the proteins as well as three-dimensional models of proteins that have at least marginally similar shapes (exact ratios of similarity may be found at the website).

· A comprehensive collection of websites and tools that allow secondary and tertiary structure prediction given the primary structure of a protein. This set of tools should be useful to anyone doing similar research. In particular it should be helpful to individuals planning on carrying this research beyond the lattice model to real proteins (see Section 4).

· A collection of Perl scripts we wrote to automate querying of the above-mentioned websites with protein strings. These scripts are very useful for doing similar research. Each script allows users to submit a text file with a list of primary structures of the proteins they are interested in studying. The script then automatically accesses the appropriate site on the net, submits all the user’s proteins as queries and fetches the results for the user either as an HTML page or via email (depending on the site being queried). These scripts alleviate the problem of manually inputting large protein strings into query pages. They are particularly convenient (given the slow response time of the prediction sites) if one has a large list of strings to be queried. These scripts should also be useful to individuals planning on carrying this research beyond the lattice model to real proteins (see Section 4). The Perl code for 4 of the scripts may be found in Appendix F. Further information is available at:

http://www.cs.brandeis.edu/~kapilm/richter/scripts/scripts.htm
· The web site includes a design prototype for a program that automatically generates scripts similar to those mentioned above. This program would require any web-based query form URL as input and would automatically generate a Perl script to automate querying of the URL site.

· Information gathered using the above scripts could be conveniently stored in a database. The web site contains a simple design prototype for such a database. Tools such as SQL (Structured Query Language) could be used to efficiently query large amounts of protein data from the database.

· Information on graphical viewing programs, used to view and manipulate the three-dimensional structures of molecules such as proteins on computers.

3.2
Finite State Grammar Synthesis Using Results from the Lattice Model

The Lattice Model described in Section 2.3.2 is an effective approach to studying the Inverse Protein Folding problem. Figures 2-2 and 2-3 provided us with a list of the number of HP strings that mapped to each SAP. Professor Kleinberg brings up an interesting question in his paper. Consider the set Ω of all sequences that are optimal for a given SAP. If S and S’ are both sequences in Ω, then is there a chain of one-point mutations transforming S to S’, so that all intermediate sequences in this transformation lie in Ω as well? Such a chain represents a hypothesized evolutionary “trajectory” by which S and S’ diverged, with the property that all intermediate sequences on this trajectory retained a strong propensity to fold to the target structure. The set Ω, therefore, may be representative of an evolutionary fitness landscape for the given SAP. We were interested in creating recognizers for the landscapes of each of the 38 SAPs in Zhang’s lattice model. By using Finite State Grammars to describe each SAP landscape, the lookup cost to determine what shape a given string folds to would be reduced to linear time. We used machine-learning programs from the Abbadingo One competition to generate these recognizers. Abbadingo One was a competition to promote the development of new and better algorithms to learn from given training data of both positive and negative examples. The programs developed for the Abbadingo competition generate DFAs (Deterministic Finite Automatons) as output after examining the training datasets.

We experimented with several of the Abbadingo DFA learning programs and eventually decided to use a program named “red-blue”. This heuristic program uses the blue-fringe control strategy and Rodney Price's evidence heuristic for merge ordering (See “Results of the Abbadingo One DFA Learning Competition and a New Evidence Driven State Merging Algorithm” in the Bibliography). The primary reason for selecting red-blue was because of the time it took to learn from a dataset as compared to the other programs. Some of the exact DFA learning programs (i.e. programs that give consistent results with given training datasets) could take upwards of 48 hours to produce a recognizer for a single shape while red-blue would find a recognizer using the same dataset in under 10 minutes.
In order to create datasets for the red-blue program to find recognizers for each SAP, we modified Jian Zhang’s program by adding functions to generate every string mapping to each SAP. For each SAP the functions return an output file in Abbadingo input format with every string matching the SAP listed as a positive example and all the strings mapping to the other SAPs as negative examples. The modified C code with the additional functions can be found in Appendix B.

We noticed that the size of the recognizer DFA generated by the red-blue program increased with the number of negative examples that were included in the learning set. We were interested in investigating how the DFA size grows with increase in negative examples as well as to check if the total number of states in the DFA leveled off after a certain number of negative examples were included in the learning set.

In order to test this hypothesis we created a Java program that takes two numbers s and n as input (where s is the number of the SAP to be recognized and n is the number of negative examples to include in the learning set). The program output is a dataset file for shape s in Abbadingo input format. The dataset file contains every string mapping to SAP s as positive examples as well as n negative examples taken randomly from the set of strings folding to SAPs other than s.

Negative examples are randomly chosen using the following procedure: For each negative example to be generated, first a random number r1 between 1 and 38 (corresponding to the number of SAPs) is chosen. A check is done to make sure the number is not that of the SAP for which the dataset file is being created (i.e. r1<>s). Then a second random number r2 between 1 and the number of strings mapping to SAP r1 is generated. The r2th string from SAP r1 is selected as the negative example. This process is iteratively repeated n times to generate the desired amount of negative examples. The code for this Java program may be found in Appendix C.

We generated 28 dataset files for SAP 1 with negative examples increasing at a rate of 1000 per file. Nested loops were used to automate the dataset generation process. The variance of the number of states in the resulting recognizer DFA for SAP 1 with increasing number of negative examples has been shown in Figures 3-1 and 3-2. A similar tapering off of recognizer DFA states was found for all the SAPs examined. The curve from Figure 3-2 shows that there is a threshold in the number of negative examples after which the number of DFA states increases very slowly.

Figure 3-1

	Number of

Negative Examples
	Number of States

in DFA Recognizer
	Number of

Negative Examples
	Number of States

in DFA Recognizer

	0
	1
	14000
	217

	1000
	115
	15000
	227

	2000
	152
	16000
	220

	3000
	159
	17000
	226

	4000
	165
	18000
	221

	5000
	190
	19000
	228

	6000
	196
	21000
	225

	7000
	206
	22000
	233

	8000
	194
	23000
	233

	9000
	198
	24000
	238

	10000
	197
	25000
	231

	11000
	204
	26000
	239

	12000
	219
	27000
	238

	13000
	230
	
	

Figure 3-2

[image: image10.wmf]DFA recognizer for SAP 1

0

50

100

150

200

250

300

Number of Negative Examples

Number of States

Given an input dataset to learn from, the red-blue program returns the resulting DFA in Abbadingo output format. This is a simple text format that is awkward to be read by humans, particularly for large DFAs. In order to overcome this problem, we conducted an online search and found a convenient graph-drawing tool by AT&T research labs called Graphviz. We built a Java program that takes the text DFA-output from the red-blue program and transforms it into Graphviz input file format. The code for this Java program may be found in Appendix D.

Using the files generated by the Java program in Appendix D as input, Graphviz generated visual representations of recognizers for each of the 38 SAP landscapes belonging to the Lattice Model. A small selection of these DFAs has been presented in Appendix E. The start state in these representations is 0. Accepting states (signifying that the string does map to the SAP) are demarcated with double circles.

Section 4

Topics for Future Work

The work done in this thesis provides some interesting ideas concerning the Inverse Protein Folding Problem. This section discusses some possible topics for future research.

4.1 Expansion from the Lattice Model to Three Dimensional Protein Molecules

We used a two-dimensional Lattice Model instead of real three-dimensional proteins in this thesis due to the overwhelming amount of computer time required to work with three-dimensional shapes. The next step would be to take a known shape S from the online Protein Data Bank or PDB (http://www.rcsb.org/pdb/) and run threading programs to find a list of protein strings that naturally acquire shape S. One can then find the hydrophobicity and polarity of each of the constituent amino acids of the proteins threaded to shape S i.e. convert the primary structures to HP strings. An interesting experiment at this point would be to apply Kleinberg’s algorithm on S to see if the resulting string is compatible with the threading results.

Machine learning programs like red-blue can be used to build recognizers for the landscape yielded by S. These programs may also be used to try and deduce the outer limits of hydrophobicity and polarity for each constituent amino acid within which the molecule retains shape S. One may attempt to study any existing relationships between the proteins such as patterns of mutation from one molecule to the next as Kleinberg mentions. The resulting patterns or grammar generated by the machine learning programs could be used to understand how members of certain classes of proteins, all forming the same shape, are related (possibly having evolved as the result of a set of gradual mutations).

For a given shape (i (PDB, find all matched protein sequences sj

using THREAD((i, sj, SR)
Where Similarity Ratio (1.0

Convert every sj to a corresponding hj

where hj ((H|P)*
Construct set HP where for every i, HP(hj (HP

Using the same (i, find Kleinberg((i, SHP)

Check if SHP (HP.

Use Machine Learning programs to build a recognizer R for the given shape S:

 %ML(+,-)

 ML(HP, R).

One possible shape to begin with is presented in Figure 4-1. The ID section corresponds to the PDB identification number for the protein. One can use the PDB to actually download the structure files for these proteins and view them using the programs described in Section 3.1.2. The various websites and tools from Section 3.1.2 could be used to find more candidate strings.

Figure 4-1

	ID
	Z-Score
	RMSD(Å)
	Seq.(%)
	Aligned / Size
	Gap
	Exp.
	Name

	1BRQ:_
	Query
	 X-Ray
	RETINOL BINDING PROTEIN (APO FORM)

	1BRP:_
Neighbors
	7.2
	0.4
	100.0
	182 / 182
	0
	X-Ray
	RETINOL BINDING PROTEIN (HOLO FORM)

	1HBQ:_
Neighbors
	7.2
	0.6
	93.7
	182 / 183
	0
	X-Ray
	RETINOL BINDING PROTEIN (APO FORM) (APO BRBP)

	1ERB:_
Neighbors
	7.2
	0.6
	93.1
	182 / 183
	0
	X-Ray
	RETINOL BINDING PROTEIN COMPLEX WITH N-ETHYL RETINAMIDE (N-ETHYL RETINAMIDE-RBP)

	1HBP:_
Neighbors
	7.2
	0.6
	93.1
	182 / 183
	0
	X-Ray
	RETINOL BINDING PROTEIN (HOLO FORM) (HOLO BRBP)

	1RBP:_
Neighbors
	7.2
	0.6
	100.0
	182 / 182
	0
	X-Ray
	RETINOL BINDING PROTEIN

	1FEM:_
Neighbors
	7.2
	0.6
	93.1
	182 / 183
	0
	X-Ray
	RETINOL BINDING PROTEIN COMPLEXED WITH RETINOIC ACID (RETINOIC ACID-RBP)

	1FEN:_
Neighbors
	7.2
	0.6
	93.1
	182 / 183
	0
	X-Ray
	RETINOL BINDING PROTEIN COMPLEXED WITH AXEROPHTHENE (AXEROPHTHENE-RBP)

	1FEL:_
Neighbors
	7.2
	0.6
	93.1
	182 / 183
	0
	X-Ray
	RETINOL BINDING PROTEIN COMPLEXED WITH FENRETINIDE (FENRETINIDE-RBP)

	1AQB:_
Neighbors
	7.2
	0.7
	93.7
	182 / 183
	0
	X-Ray
	MOL_ID: 1; MOLECULE: RETINOL-BINDING PROTEIN; CHAIN: NULL; SYNONYM: RBP

	1RLB:E
Neighbors
	7.2
	0.7
	92.5
	174 / 174
	0
	X-Ray
	MOL_ID: 1; MOLECULE: TRANSTHYRETIN; CHAIN: A, B, C, D; SYNONYM: PREALBUMIN; MOL_

	1RLB:F
Neighbors
	7.2
	0.7
	92.5
	174 / 174
	0
	X-Ray
	MOL_ID: 1; MOLECULE: TRANSTHYRETIN; CHAIN: A, B, C, D; SYNONYM: PREALBUMIN; MOL_

	1QAB:F
Neighbors
	7.2
	0.9
	98.2
	179 / 180
	0
	X-Ray
	MOL_ID: 1; MOLECULE: TRANSTHYRETIN; CHAIN: A; SYNONYM: PREALBUMIN; BIOLOGICAL_UN

4.2 Structure Prediction from Partial Strings

While transferring from a two-dimensional model to three dimensions is a more immediate goal to be accomplished, a more long-term goal would be to move from using input queries consisting of complete primary sequences to queries containing only partial sequences. It would be interesting to be able to predict a list of all possible protein shapes and the specific sub-structures within those shapes that the partial sequences fold to.

It would also be interesting to consider a particular subshape within the SAPs in Zhang’s model and determine the Finite State Machines describing the subshape for each SAP. One could then check if the FSMs are isomorphic for the subshape.

4.3 Interval-Based Constraints Language and the Inverse Protein Folding Problem

An Interval-Based Constraint language by Suresh Kalathur, a former Ph. D. student at Brandeis University, could be used to minimize Kleinberg’s energy equation (see Section 2.3.1) for any given shape [image: image11.png]

. Applying the Interval-Based Constraints Language to the Kleinberg formula for a given [image: image12.png]

 should yield a string similar to the following example:

[1..1] [1..0] [1..0] [0..0] [1..1] [1..1] [1..0] [1..0] [1..0] [1..0] [1..1] [0..0] [1..0] [1..0] [0..0] [1..0]

Note: 1 and 0 refer to Hydrophobic and Polar molecules.

An output such as the one above provides us with a list of strings that best satisfy Kleinberg’s fitness function for [image: image13.png]

. One can use this approach with the SAPs portrayed in Appendix A.

4.4 Progol and the Inverse Protein Folding Problem

Progol is a machine learning language by Professor Stephen Muggleton of York University. It uses Inductive Logic Programming with a general-to-specific search for solutions using positive and optional negative data. Mode declarations are used to define clauses within the language to be learnt. For details see:

http://www-users.cs.york.ac.uk/~stephen/index.html
Progol may be used in addition to the FSA generation programs such as red-blue to recognize landscapes pertaining to specific protein shapes.

Appendix A

38 SAPs From The Lattice Model After Symmetry Elimination

structure 1:

-- *--*

| | | |

* * * *

| | | |

* * * *

| | | |

* *--* *

structure 2:

-- *--*

| | | |

* * * *

| | |

* * *--*

| | |

* *--*--*

structure 3:

-- *--*

| | |

* * *--*

| | |

* * *--*

| | |

* *--*--*

structure 4:

-- *--*

| | | |

* * * *

| | | |

* * * *

| | |

* *--*--*

structure 5:

-- *--*

| | | |

* * * *

| | | |

* *--* *

| |

* *--*--*

structure 6:

-- *--*

| | |

* *--* *

| | |

* *--* *

| | |

* *--*--*

structure 7:

-- *--*

| | | |

* *--* *

| |

* *--*--*

| |

* *--*--*

structure 8:

-- *--*

| | | |

* *--* *

| |

* *--* *

| | |

* *--*--*

structure 9:

-- *--*

| | | |

* *--* *

| |

* *--* *

| | | |

* * *--*

structure 10:

----*--*

| |

* *--*--*

| |

* * *--*

| | | |

* *--* *

structure 11:

----*--*

| |

* *--*--*

| |

* * *--*

| | |

* *--*--*

structure 12:

----*--*

| |

* *--*--*

| |

* *--*--*

| |

* *--*--*

structure 13:

----*--*

| |

* * *--*

| | |

* * *--*

| | |

* *--*--*

structure 14:

----*--*

| |

* *--* *

| | | |

* * *--*

| |

* *--*--*

structure 15:

----*--*

| |

* *--* *

| | | |

* * * *

| | |

* *--*--*

structure 16:

----*--*

| |

* *--* *

| | |

* *--* *

| | |

* *--*--*

structure 17:

----*--*

| |

* *--* *

| | | |

* * * *

| | | |

* * *--*

structure 18:

----*--*

| |

----* *

 |

-- *--*

| | |

* *--*--*

structure 19:

----*--*

| |

-- *--*

 |

-- *--*

| | |

* *--*--*

structure 20:

* *--*--*

| | |

-- *--*

 |

-- *--*

| | |

* *--*--*

structure 21:

----*--*

| |

----* *

 | |

-- * *

| | |

* *--*--*

structure 22:

----*--*

| |

-- *--*

 | |

-- *--*

| |

* *--*--*

structure 23:

----*--*

| |

----* *

 | |

----* *

| |

* *--*--*

structure 24:

----*--*

| |

-- *--*

 | |

* * * *

| | | |

-- *--*

structure 25:

----*--*

| |

-- *--*

 | |

* * *--*

| | |

-- *--*

structure 26:

----*--*

| |

-- * *

 | | |

* * * *

| | | |

-- *--*

structure 27:

----*--*

| |

* *--* *

 | | |

* * * *

| | | |

-- *--*

structure 28:

----*--*

| |

----* *

 |

* *--* *

| | | |

-- *--*

structure 29:

-- *--*

| | | |

* *--* *

 |

* *--* *

| | | |

-- *--*

structure 30:

----*--*

| |

----* *

 | |

* *--* *

| | |

-- *--*

structure 31:

----*--*

| |

-- *--*

 |

* *--*--*

| |

----*--*

structure 32:

----*--*

| |

* *--*--*

 |

* *--*--*

| |

----*--*

structure 33:

----*--*

| |

-- *--*

 | |

* * *--*

| |

----*--*

structure 34:

----*--*

| |

-- * *

 | | |

* *--* *

| |

----*--*

structure 35:

----*--*

| |

----* *

 | |

* *--* *

| |

----*--*

structure 36:

----*--*

| |

-- *--*

 |

-- *--*

| |

----*--*

structure 37:

----*--*

| |

----* *

 | |

-- * *

| |

----*--*

structure 38:

-- *--*

| | | |

* * * *

| | | |

* * * *

| |

----*--*

Appendix B

Modified version of Jian Zhang’s C code to extract SAP Strings

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include <limits.h>

#define HHENERGY 3

#define HPENERGY 1

#define SEQLENGTH 16 //This is a 16-node lattice

#define SEQMAX 65535

char boole;

//

// The data structures:

//

char *unsigned_char_to_text(int val)

{

 unsigned int usc = (unsigned int)val;

 unsigned int mask = UINT_MAX - (UINT_MAX >> 1);

 static char result [sizeof(int) *CHAR_BIT + 1];

char *store = result;

 while (mask)

 {

 *store++ = (char)('0' + ((usc & mask) != 0));

mask >>= 1;

 }

 *store = '\0';

 return result;

}

/***

 * This is the sequence

 ***/

char Seq[16] = {0,0,0,0,

 0,0,0,0,

 0,0,0,0,

 0,0,0,0};

/**

 * This represents a list of sequence which maps to

 * a particular structure

 **/

struct seqlist;

struct seqlist {

 struct seqlist *next;

 unsigned int sequence;

 unsigned int energy;

};

/***

 * This represents a list of all the neighboring residues

 * in a particular structure

 ***/

struct contact;

struct contact {

 struct contact *next;

 int i;

 int j;

};

/***

 * This represents a list of the structures. Each

 * one contains the following information:

 * 1. The index of the structure

 * 2. An array of residues in the structure and their coordination

 * 3. A list of neighboring residues

 * 4. A list of sequences

 * 5. the number sequences mapped to the structure

 * 6. the minimal energy

 ***/

struct shapeset;

struct shapeset {

 int index;

 int seqcount;

 int kmapseq;

 int Xs[SEQLENGTH]; //An array of residues X coordinates

 int Ys[SEQLENGTH]; //An array of residues Y coordinates

 double energy;

 struct shapeset * next;

 struct contact * clist; //A list of neighboring residues

 struct seqlist * slist; //A list of sequences

};

//

// The util functions for read in structures and printing out result

// and some manipulations functions for the above data structure

//

unsigned int ReadLine(FILE* f, char b[], size_t size)

{

 unsigned int i = 0;

 char c;

 c=fgetc(f);

 while(c!='\n' && c != EOF && iXs[pos] = atoi(token);

 token = strtok (NULL, delimiters);

 element->Ys[pos] = atoi(token);

 pos++;

 }

 token = strtok (NULL, delimiters);

 }

 return index;

}

void GetContact(char cts[], struct shapeset * element)

{

 const char delimiters[] = "(),";

 char* token;

 int pos = 0;

 struct contact * nct;

 token = strtok (cts, delimiters);

 token = strtok (NULL, delimiters);

 while (token) {

 if (token[0] != ' ' && token[0] != ']') {

 nct = (struct contact *)

 calloc(1, sizeof(struct contact));

 nct->i = atoi(token);

 token = strtok (NULL, delimiters);

 nct->j = atoi(token);

 pos++;

 if (!element->clist) element->clist = nct;

 else {

 struct contact * tail = element->clist;

 while (tail->next) tail = tail->next;

 tail->next = nct;

 }

 }

 token = strtok (NULL, delimiters);

 }

}

void ReadConformation(char * filename, struct shapeset **set)

{

 FILE * f = fopen(filename, "r");

 char line[256];

 int i;

 struct shapeset * nset;

 i = ReadLine(f, line, 256);

 while (line[0] != '$') {

 nset = (struct shapeset *)

 calloc(1,sizeof(struct shapeset));

 nset->index = GetResidues(line, nset);

 ReadLine(f, line, 256);

 GetContact(line, nset);

 if (!*set) *set = nset;

 else {

 struct shapeset *current = *set;

 while (current->next) current = current->next;

 current->next = nset;

 }

 i = ReadLine(f,line,256);

 }

 fclose(f);

}

//

// NEW AND MODIFIED CODE

// KAPIL MEHRA

//

void PrintCount(struct shapeset *shapes, FILE *output)

{

if (boole=='t')

{

printf("out1");

boole='f';

fprintf(output, "%d %d\n", shapes->seqcount, 2);

PrintOut(shapes->slist, output);

 if (shapes->next) PrintCount(shapes->next, output);

}

else

{

printf("out2");

PrintOut2(shapes->slist, output);

 if (shapes->next) PrintCount(shapes->next, output);

}

}

int PrintOut(struct seqlist *seq, FILE *output)

{

int i;

char *c;

c=unsigned_char_to_text(seq->sequence);

//printf(c[0]);

//printf("\n");

fprintf(output, "1 16 ");

for(i=16; inext) PrintOut(seq->next, output);

}

int PrintOut2(struct seqlist *seq, FILE *output)

{

int i;

char *c;

c=unsigned_char_to_text(seq->sequence);

fprintf(output, "0 16 ");

for(i=16; inext) PrintOut2(seq->next, output);

}

void PrintSeq(struct seqlist *seq, FILE *output)

{

 if (seq->next) PrintSeq(seq->next, output);

}

void MakeSeq()

{

 char inc = 1;

 int i = 0;

 while (inc) {

 if (Seq[i]) {

 Seq[i] = 0;

 i++;

 }

 else {

 Seq[i] = 1;

 inc = 0;

 }

 }

}

void CleanSeq()

{

 int i;

 for(i=0; inext)

 CleanList(sl->next);

 free(sl);

}

void CleanShape(struct shapeset *shape)

{

 shape->energy = 100;

 if (shape->slist) CleanList(shape->slist);

 shape->slist = NULL;

 if (shape->next) CleanShape(shape->next);

}

///

// Symmetry detection functions

///

int IsSame(int X1s[], int Y1s[], int X2s[], int Y2s[])

{

 int res = 1;

 int i;

 for (i=0; iXs[SEQLENGTH-1-i];

 YReverse[i] = shape2->Ys[SEQLENGTH-1-i];

 }

 if (IsXYSymmetry(shape1->Xs, shape1->Ys, shape2->Xs, shape2->Ys) ||

 IsSame(shape1->Xs, shape1->Ys, XReverse, YReverse) ||

 IsXYSymmetry(shape1->Xs, shape1->Ys, XReverse, YReverse) ||

 IsRXYSymmetry(shape1->Xs, shape1->Ys, XReverse, YReverse) ||

 IsXSymmetry(shape1->Xs, shape1->Ys, XReverse, YReverse) ||

 IsYSymmetry(shape1->Xs, shape1->Ys, XReverse, YReverse) ||

 IsRotation(shape1->Xs, shape1->Ys, XReverse, YReverse)

) return 1;

 return 0;

}

//

// Compute NEC energy and mapping sequences to structure.

//

/**

 * Compute the NEC energy

 **/

int ComputeNECEnergy(struct shapeset *shapes)

{

 int E = 0;

 struct contact *cs = shapes->clist;

/*

int t;

for (t=0; ti-1] && Seq[cs->j-1])

 E += HHENERGY;

 else if (Seq[cs->i-1] || Seq[cs->j-1])

 E += HPENERGY;

 while (cs->next) {

 cs = cs->next;

 if (Seq[cs->i-1] && Seq[cs->j-1])

 E += HHENERGY;

 else if (Seq[cs->i-1] || Seq[cs->j-1])

 E += HPENERGY;

 }

 return -E;

}

int FindMinValue(struct shapeset *shape)

{

 int MinE, TmpE;

 MinE = ComputeNECEnergy(shape);

 shape->energy = MinE;

 while (shape->next) {

 shape = shape->next;

 TmpE = ComputeNECEnergy(shape);

 shape->energy = TmpE;

 if (TmpEsequence = sequence;

 news->energy = energy;

 if (!shape->slist) shape->slist = news;

 else {

 sl = shape->slist;

 while (sl->next) sl = sl->next;

 sl->next = news;

 }

 shape->seqcount ++;

}

void FindShape(struct shapeset *shape, int MinE, int Sequence)

{

int t;

 struct shapeset *themini = NULL;

 int i = 0;

 if (shape->energy == MinE)

 themini = shape;

 while (shape->next) {

 shape = shape->next;

 if (shape->energy == MinE) {

 if (!themini) themini = shape;

 else {

 themini = NULL;

 break;

 }

 }

 }

 if (themini) {

//for (t=0; tclist;

 for (i=0; iXs[i],

 shapes->Ys[i]);

 while (cl) {

 hydrop += Seq[cl->i-1] * Seq[cl->j-1];

 cl = cl->next;

 }

 return Alpha*hydrop + Belta*surp;

}

void FindMinSequence(int sequence, struct shapeset *shapes) {

 double energy;

 energy = CompKEnergy(shapes);

 if (!shapes->slist) {

 shapes->slist =

 (struct seqlist*)calloc(1,sizeof(struct seqlist));

 shapes->slist->sequence = sequence;

 shapes->energy = energy;

 } else if (energy == shapes->energy) {

 struct seqlist *sl =

 (struct seqlist*)calloc(1,sizeof(struct seqlist));

 sl->sequence = sequence;

 sl->next = shapes->slist;

 shapes->slist = sl;

 } else if (energy < shapes->energy) {

 CleanList(shapes->slist);

 shapes->slist =

 (struct seqlist*)calloc(1,sizeof(struct seqlist));

 shapes->slist->sequence = sequence;

 shapes->energy = energy;

 }

}

void KMinMap (struct shapeset *shapes)

{

 int seqval = 0;

 struct shapeset *shape = shapes;

 CleanSeq();

 CleanShape(shapes);

 while(shape) {

 FindMinSequence (seqval, shape);

 shape = shape->next;

 }

 for (seqval = 1; seqvalnext;

 }

 }

}

///

// Modified Main function to generate SAP strings

///

int main(int argc, char **argv)

{

 struct shapeset *shapes = NULL;

 FILE *NECRes = fopen("nec.txt", "w");

 FILE *KBRes = fopen("kbr.txt", "w");

 FILE *KERes = fopen("ker.txt", "w");

 ReadConformation("shapes.txt", &shapes);

 MapSequence(shapes);

boole='t';

 PrintCount(shapes, NECRes);

}

Appendix C

Java Program to Create Datasets for FSA Synthesis

import java.io.*;

import java.util.*;

public class makesets

{

//Reads input from a file and stores it in M

//Array ref contains the total number of strings belonging to each SAP

int ref[] = new int[] {0,1358,232,276,564,560,851,1116,449,667,1361,490,549,791,1025,23,98,617,976,489,1520,846,2214,1650,253,103,203,300,151,137,394,639,1053,1040,230,325,1519,1760,1819};

int i,r1,r2,k,shape;

String infile, outfile,s;

public void test() throws IOException

{

try {

BufferedWriter w= new BufferedWriter(new FileWriter("test.doc", false));

BufferedReader input= new BufferedReader(new FileReader("s1.in"));

input.readLine();

for (i=1; i<=ref[1]; i++) {

s=input.readLine();

//System.out.println(s);

w.write(s);

w.newLine();

}

input.close();

BufferedReader input2= new BufferedReader(new FileReader("s1.in"));

for (i=1; i<=2; i++) {

s=input2.readLine();

}

s=input2.readLine();

w.write("0"+s.substring(1));

w.close();

}

catch (FileNotFoundException e)

{

System.err.println("Error: Input.txt file not found");

}

}

public void generate(int k, int shape) throws IOException

{

Integer K= new Integer(k);

Integer SHAPE= new Integer(shape);

infile= "s"+SHAPE.toString()+".in";

outfile= "s"+SHAPE.toString()+"_"+K.toString()+".in";

BufferedWriter w= new BufferedWriter(new FileWriter(outfile, false));

w.write(k+ref[shape]+" 2");

w.newLine();

//copy file here

try

 {

BufferedReader input= new BufferedReader(new FileReader(infile));

input.readLine();

for (i=1; i<=ref[shape]; i++) {

w.write(input.readLine());

w.newLine();

}

}

catch (FileNotFoundException e)

{

System.err.println("Error: Input.txt file not found");

}

// Done copying file

int count;

count=1;

Random RANDY = new Random();

while (count<=k) {

r1 = Math.abs (RANDY.nextInt()) % 38 + 1;

if (!(r1==0 || r1==shape))

{count++;

 Integer R1= new Integer(r1);

 r2=Math.abs (RANDY.nextInt()) % ref[r1] + 1;

// System.out.println(r1+"-->"+r2);

//Get the sequence: seq

infile= "s"+R1.toString()+".in";

BufferedReader input2= new BufferedReader(new FileReader(infile));

for (i=1; i<=r2; i++)

s=input2.readLine();

s=input2.readLine();

w.write("0"+s.substring(1));

w.newLine();

input2.close();

}

}

w.close();

}

public static void main(String[] args) throws IOException

{

makesets run=new makesets();

int t;

//generates a series of dataset files for SAP1

for (t=0; t<=28648+1001; t=t+1000)

run.generate(t,1);

}

}

Appendix D

Java Program to Create Input file for Graphviz

import java.io.*;

import java.util.*;

public class convert

{

//reads input from a file and stores it in M

public void getInput(String inp, String out) throws IOException

{

{

BufferedWriter w= new BufferedWriter(new FileWriter(out, false));

w.write("digraph G {");

w.newLine();

w.write("size = \"10,10\";");

w.newLine();

try

 {

BufferedReader input= new BufferedReader(new FileReader(inp));

StringTokenizer s= new StringTokenizer(input.readLine());

String State= new String();

String Final = new String();

while (input.ready()) {

s= new StringTokenizer(input.readLine());

State=s.nextToken();

Final=s.nextToken();

if (Final.equals("1")) {w.write(State + " [shape=doublecircle];");

w.newLine();}

w.write(State + " -> " + s.nextToken() + " [label = \"" + "0" + "\"];");

w.newLine();

w.write(State + " -> " + s.nextToken() + " [label = \"" + "1" + "\"];");

w.newLine();

}

}

catch (FileNotFoundException e)

{

System.err.println("Error: Input.txt file not found");

}

w.write("}");

w.close();

}

}

public static void main(String[] args) throws IOException

{

convert run=new convert();

run.getInput("s1.out","dfa1.dot");

}

}

Appendix E

Partial Selection of DFA recognizers for SAP Landscapes

DFA Recognizer for SAP 2

[image: image14.png]

DFA Recognizer for SAP 3

[image: image15.png]

DFA Recognizer for SAP 15

[image: image16.png]

DFA Recognizer for SAP 28

[image: image17.png]

Appendix F

Perl Scripts to automate querying of Structure Prediction Websites
Script for Blast search using the NPSA site

(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_blast.html) :

#!/usr/bin/perl -w

use LWP::UserAgent;

use HTTP::Request::Common qw(POST);

open (PSTRINGS, "pstrings.txt") || die "Protein string file missing!";

@proteins=;

close (PSTRINGS);

my $url = 'http://pbil.ibcp.fr/cgi-bin/simsearch_blast.pl';

my $ua = LWP::UserAgent->new();

my $req = HTTP::Request->new(POST => $url);

open (OUTPUT, ">output.htm");

foreach $protein (@proteins)

{

chomp($protein);

print "$protein\n";

$req->content_type('application/x-www-form-urlencoded');

$req->content("optp=blastp&optd=SWISSPROT%2BSPTrEMBL&title=PerlScript+Protein¬ice=$protein");

my $res = $ua->request($req);

print OUTPUT $res->as_string ;

print "Blast Search Result Written\n"

}

Script for Secondary Structure prediction consensus using the NPSA site

(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_seccons.html) :

#!/usr/local/bin/perl -w

use LWP::UserAgent;

use HTTP::Request::Common qw(POST);

open (PSTRINGS, "pstrings.txt") || die "Protein string file missing!";

@proteins=;

close (PSTRINGS);

my $url = 'http://pbil.ibcp.fr/cgi-bin/secpred_consensus.pl';

my $ua = LWP::UserAgent->new();

my $req = HTTP::Request->new(POST => $url);

open (OUTPUT, ">output.htm");

foreach $protein (@proteins)

{

chomp($protein);

print "$protein\n";

$req->content_type('application/x-www-form-urlencoded');

$req-> content("secpredmeth=SOPM&secpredmeth=HNN&secpredmeth=DPM&secpredmeth=DSC&secpredmeth=GOR4&secpredmeth=PHD&secpredmeth=PREDA&secpredmeth=SIMPA96&title=PerlScript+Protein¬ice=$protein&ali_width=70&gor1const=1&gor1dch=40&gor1dce=35&gor1dct=0&gor1dcc=0&sopmstates=4&sopmthreshold=8&sopmwidth=17&sopmastates=4&sopmathreshold=8&sopmawidth=17");

my $res = $ua->request($req);

print OUTPUT $res->as_string ;

print "Secondary Structure Prediction Recorded\n"

}

#secpredmeth=MLRC&secpredmeth=DPM+CHECKED&secpredmeth=DSC+CHECKED&secpredmeth=GOR1&secpredmeth=GO#R3&secpredmeth=GOR4+CHECKED&secpredmeth=PHD+CHECKED&secpredmeth=PREDA+CHECKED&secpredmeth=SIMPA9#6+CHECKED

Script for querying the 123D+ threading program

(http://www-lmmb.ncifcrf.gov/~nicka/123D.html) :

#!/usr/local/bin/perl -w

use LWP::UserAgent;

use HTTP::Request::Common qw(POST);

$em = &promptUser("Enter the email address to send the results to ");

open (PSTRINGS, "pstrings.txt") || die "Protein string file missing!";

@proteins=;

close (PSTRINGS);

my $url = 'http://www77.ncifcrf.gov:7747/cgi-bin/123D+face';

my $ua = LWP::UserAgent->new();

my $req = HTTP::Request->new(POST => $url);

open (OUTPUT, ">output.htm");

foreach $protein (@proteins)

{

chomp($protein);

print "$protein\n";

$req->content_type('application/x-www-form-urlencoded');

$req->content("name=PerlScript+Protein&seq=$protein&altype=fit&matrix=gonnet&showal=yes&mdd=yes&gapeo=10&gape=1.0&email=$em");

my $res = $ua->request($req);

print OUTPUT $res->as_string ;

print "123D+ Query Submitted\n"

}

sub promptUser {

 local($promptString,$defaultValue) = @_;

 if ($defaultValue) {

 print $promptString, "[", $defaultValue, "]: ";

 } else {

 print $promptString, ": ";

 }

 $| = 1; # force a flush after our print

 $_ = ; # get the input from STDIN (presumably the keyboard)

 chomp;

 if ("$defaultValue") {

 return $_ ? $_ : $defaultValue; # return $_ if it has a value

 } else {

 return $_;

 }

}

Script for the querying GenTHREADER threading program

(http://insulin.brunel.ac.uk/psipred/) :

#!/usr/local/bin/perl -w

use LWP::UserAgent;

use HTTP::Request::Common qw(POST);

$em = &promptUser("Enter the email address to send the results to ");

open (PSTRINGS, "pstrings.txt") || die "Protein string file missing!";

@proteins=;

close (PSTRINGS);

my $url = 'http://insulin.brunel.ac.uk/cgi-bin/psipred/psipred.cgi';

my $ua = LWP::UserAgent->new();

my $req = HTTP::Request->new(POST => $url);

open (OUTPUT, ">output.htm");

foreach $protein (@proteins)

{

chomp($protein);

print "$protein\n";

$req->content_type('application/x-www-form-urlencoded');

$req-> content("Email=$em&Sequence=$protein&Subject=PerlScript+Protein&Program=mgenthreader");

my $res = $ua->request($req);

print OUTPUT $res->as_string ;

print "GenTHREADER Query Submitted\n"

}

sub promptUser {

 local($promptString,$defaultValue) = @_;

 if ($defaultValue) {

 print $promptString, "[", $defaultValue, "]: ";

 } else {

 print $promptString, ": ";

 }

 $| = 1; # force a flush after our print

 $_ = ; # get the input from STDIN (presumably the keyboard)

 chomp;

 if ("$defaultValue") {

 return $_ ? $_ : $defaultValue; # return $_ if it has a value

 } else {

 return $_;

 }

}

Bibliography

Kleinberg, J. (1999), ‘Efficient Algorithms for Protein Sequence Design and the Analysis of Certain Evolutionary Fitness Landscapes’ Proc. 3rd ACM RECOMB Intl. Conference on Computational Molecular Biology.

Lang, K. (1998), Evidence Driven State Merging with Search, NEC Research Institute.

Lang, K. Pearlmutter, B. Price R. (1998), Results of the Abbadingo One DFA Learning Competition and a New Evidence Driven State Merging Algorithm.

Muggleton, S. (1995), Inverse entailment and Progol, New Generation Computing.

Setubal, J. Meidanis, J. (1997), Introduction to Computational Molecular Biology, PWS Publishing Company.

Zhang, J. (2000), Simple Lattice Model of Protein Folding and the Inverse Folding Problem, PhD thesis, Brandeis University.
Figure 1-1

Figure 1-2

Protein Shape

One HP Sequence

Figure 2-2

_1050191740.xls
Chart1

		1358

		232

		276

		564

		560

		851

		1116

		449

		667

		1361

		490

		549

		791

		1025

		23

		98

		617

		976

		489

		1520

		846

		2214

		1650

		253

		103

		203

		300

		151

		137

		394

		639

		1053

		1040

		230

		325

		1519

		1760

		1819

SAP Number

Number of Sequences Mapped

Sheet1

		

		SAP #		# of Sequences Mapped		SAP #		# of Sequences Mapped		SAP #		# of Sequences Mapped

		1		1358		14		1025		27		300

		2		232		15		23		28		151

		3		276		16		98		29		137

		4		564		17		617		30		394

		5		560		18		976		31		639

		6		851		19		489		32		1053

		7		1116		20		1520		33		1040

		8		449		21		846		34		230

		9		667		22		2214		35		325

		10		1361		23		1650		36		1519

		11		490		24		253		37		1760

		12		549		25		103		38		1819

		13		791		26		203

		1		1358

		2		232

		3		276

		4		564

		5		560

		6		851

		7		1116

		8		449

		9		667

		10		1361

		11		490

		12		549

		13		791

		14		1025

		15		23

		16		98

		17		617

		18		976

		19		489

		20		1520

		21		846

		22		2214

		23		1650

		24		253

		25		103

		26		203

		27		300

		28		151

		29		137

		30		394

		31		639

		32		1053

		33		1040

		34		230

		35		325

		36		1519

		37		1760

		38		1819

Sheet1

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

SAP Number

Number of Sequences Mapped

Sheet2

		

Sheet3

		

_1050191156.xls
Chart1

		1

		115

		152

		159

		165

		190

		196

		206

		194

		198

		197

		204

		219

		230

		217

		227

		220

		226

		221

		228

		225

		233

		233

		238

		231

		239

		238

Number of Negative Examples

Number of States

DFA recognizer for SAP 1

s1_results

		SET 1

		0		1

		1000		113

		2000		137

		3000		142

		4000		161

		5000		180

		6000		193

		7000		200

		8000		199

		9000		192

		10000		219

		11000		201

		12000		199

		13000		227

		14000		227

		15000		218

		16000		217

		17000		215

		18000		221

		19000		223

		21000		242

		22000		234

		23000		248

		24000		225

		25000		239

		26000		241

		27000		242

		SET 2

		0		1

		1000		115

		2000		152

		3000		159

		4000		165

		5000		190

		6000		196

		7000		206

		8000		194

		9000		198

		10000		197

		11000		204

		12000		219

		13000		230

		14000		217

		15000		227

		16000		220

		17000		226

		18000		221

		19000		228

		21000		225

		22000		233

		23000		233

		24000		238

		25000		231

		26000		239

		27000		238

s1_results

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Shape 1 - Set 1

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

		0

Shape 1 - Set 2

