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Abstract—We recently reported that the simple genetic
algorithm (SGA) is capable of performing a remarkable
form of sublinear computation which has a straightfor-
ward connection with the general problem of interacting
attributes in data-mining. In this paper we explain how
the SGA can leverage this computational proficiency to
perform efficient adaptation on a broad class of fitness
functions. Based on the relative ease with which a practical
fitness function might belong to this broad class, we submit
a new hypothesis about the workings of genetic algorithms.
We explain why our hypothesis is superior to the building
block hypothesis, and, by way of empirical validation, we
present the results of an experiment in which the use of a
simple mechanism called clamping dramatically improved
the performance of an SGA with uniform crossover on
large, randomly generated instances of the MAX 3-SAT
problem.

I. INTRODUCTION

Genetic algorithms are search heuristics that mimic
natural evolution. They have been applied to a wide
range of combinatorial optimization problems that are
poorly understood, or known to be NP-Hard. While so-
lutions generated by genetic algorithms are often inferior
to those yielded by problem-specific search algorithms,
in most cases specialized search algorithms are not avail-
able. When used in such situations, genetic algorithms
routinely generate usable solutions relatively quickly.

Unfortunately, the workings of genetic algorithms
(GAs) are not well understood. There are several anoma-
lies in the empirical literature that cannot be explained
by the building block hypothesis [7], [9], [15]—the most
comprehensive explanation for the adaptive capacity of
genetic algorithms to be proffered to date. Of these
anomalies, the two most serious are (i) the widely
reported efficacy of uniform crossover [21], [19], [17],
and (ii) the unexpected behavior of GAs on Royal Road

functions [16], [6]. In response to such anomalies, and
to problems with the theoretical support for the building
block hypothesis [5], [18], the building block hypothesis
is today treated with a certain amount of skepticism by
many GA theorists.

In distancing themselves from the building block
hypothesis, several GA theorists have also moved away
from the search for a single comprehensive explanation
for the adaptive capacity of genetic algorithms on prac-
tical problems, and have adopted what we shall call a
many little theories (MLT) approach. This approach is
based on the belief that a single theory about the practical
workings of genetic algorithms is infeasible because
genetic algorithms work in fundamentally different ways
depending on, amongst other things, the operators they
use, and the classes of practical optimization problems
they are applied to. The goal of the MLT approach
is to match classes of practical optimization problems
with appropriate classes of genetic algorithms. By find-
ing such matches, proponents of this approach hope,
eventually, to supply GA practitioners with the means to
determine the “right” genetic algorithm for any practical
problem.

It seems unlikely that this vision will be realized
anytime soon. For a small number of narrowly defined
classes of fitness functions, researchers have had some
success in deriving upper bounds on the expected number
of fitness queries needed to find a global optimum
(e.g. [11]). We are unaware, however, of any success
in turning such theorems into theories, even little ones,
with demonstrable practical applications. Another dissat-
isfying feature of this approach is it’s failure, to date,
to identify a computational efficiency of the genetic
algorithm. i.e. a computation of some sort that the
genetic algorithm can perform efficiently relative to other
known algorithms. Most dissatisfying perhaps, especially
to GA practitioners and would-be inventors of more
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powerful genetic algorithms, is the basic idea that a
single comprehensive account of the practical workings
of genetic algorithms is infeasible. Whether one accepts
this idea or rejects it is a matter of one’s metaphysics;
we currently know of no definitive reason for deciding
one way or the other. We should mention, however, that
a viable comprehensive theory, if one can be found,
is preferable, and that historically, scientists have been
quite successful at finding viable comprehensive theories
for large, internally diverse classes of systems. Most of
those who reject the MLT idea continue to subscribe
to some version of the building block hypothesis—
weak theoretical foundation, and outstanding anomalies
notwithstanding. The absence of a promising, compre-
hensive alternative explains the entrenchment of this
hypothesis. Presenting such an alternative is the aim of
this paper.

In a recent work [3] we reported that the simple
genetic algorithm (SGA) possesses a remarkable com-
putational proficiency—a capacity for sublinear compu-
tation which, though irrelevant to the problem of global
optimization, has straightforward connections with a cur-
rently intractable data-mining problem in computational
genetics. In this paper, we demonstrate that by applying
this computational proficiency recursively, an SGA can
perform efficient adaptation on a specific class of fitness
functions1. Based on this result we infer that by recur-
sively applying this computational proficiency, SGAs can
perform efficient adaptation on a very broad class of
fitness functions. Given the relative ease with which a
practical fitness function might belong to this class of
functions, we submit the genoclique fixing hypothesis—
a new, comprehensive hypothesis about the practical
workings of the simple genetic algorithm—and explain
why, as comprehensive hypotheses go, this hypothesis is
more promising than the building block hypothesis.

If the genoclique fixing hypothesis is sound, it
promises to precipitate significant improvements in the
genetic algorithm’s capacity for black-box combinato-
rial optimization. By way of empirical support for this
hypothesis we describe what we consider to be the first
of such improvements—a mechanism called clamping—
and present the results of an experiment in which the
use of this simple mechanism dramatically improved the
performance of a simple genetic algorithm with uniform

1We believe that the MLT community’s inability to identify a
computational efficiency of the SGA is a consequence of it’s strong
focus on global optimization. This focus seems misplaced given that
genetic algorithms are valued by practitioners, not for their capacity
for efficient global optimization, but for their capacity for efficient
adaptation.

crossover on large, randomly generated instances of the
MAX 3-SAT problem [10].

A. Terminology

We use the word ‘gene’ to refer to a genomic extent
that tends not to be broken up by crossover. This usage
accords with Johansen’s original use of this word, in
1909, to refer to a “unit of inheritance” [12] [14, p736].
By this definition, a gene is not a strictly defined entity,
but has a fading-out quality that is dependent on the
expected number of crossover points, and the way these
points tend to be distributed over a genome. There is
no equivalent concept within genetic algorithmics. The
notion of a building block [7] comes close, but since
building blocks must, by definition, have above average
fitness, whereas a gene need not, the two are not equiv-
alent. It is important to stress that our use of the word
gene differs from the way this word typical gets used
in genetic algorithmics. Genetic algorithmicists tend to
think of two adjacent genomic bits as two separate genes
regardless of the crossover operator being used [15],
[7]. We regard such bits as separate genes only when
crossover is uniform, or close to uniform, i.e. when the
expected number of crossover points is approximately
half the value of the length of a genome. When the
expected number of crossover points is significantly
lower, these bits will tend to be inherited together. In this
case we regard the two bits as two adjacent “nucleotides”
of a single gene.

To ensure a clear comparison between our hypothesis
and the building block hypothesis, we now express
the latter using the terminology we have just adopted:
The building block hypothesis assumes the existence in
the initial population of large numbers of genes with
statistically significant fitness advantages. According to
this hypothesis, adaptation in genetic algorithms is driven
by the propagation of such genes, and by the frequent
composition in offspring of co-adapted sets of individu-
ally advantageous genes that are not co-present in either
parent. To avoid confusion, it is important to clarify
that by ‘co-adapted’ we mean something other than
the existence of super-additive, or super-multiplicative
fitness interactions between the genes concerned; rather,
we mean simply that the expected fitness of a genome
carrying all the genes in the ‘co-adapted’ set is greater
than the expected fitness of a genome carrying any
individual gene in the set; the whole, in other words,
is greater than any of the parts.
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B. The Basic Idea

We have previously reported [3] that an SGA is ca-
pable of efficiently driving a set of co-adapted, unlinked
genes to fixation even though the fitness signal of this
set of genes may be weak relative to the background
noise. In driving such genes to fixation the SGA raised
the average fitness of the population by a small amount.
When any set of genes gets fixed in the population,
the representation of the problem space can be thought
to have changed. Crucially, the new representation may
contain one or more sets of co-adapted genes which
may not have had a detectable fitness signal in the old
representation. By subsequently driving one or more of
these sets to fixation, the SGA can once again “change”
it’s representation, and in doing so can create new small
sets of coadapted genes. And so on.

Each time a small set of co-adapted genes gets fixed,
the average fitness of the population will increase by an
amount that may be tiny. As the fixation of small sets
of co-adapted genes continues, however, these amounts
will begin to add up. Based on this thought experiment,
we hypothesize that adaptation in genetic algorithms is
driven by the iterated “creative fixation” of small sets of
co-adapted genes.

II. THE GENOCLIQUE FIXING HYPOTHESIS

Our hypothesis pertains to the class of recombinative
SGAs. Our model for this class is the simple genetic
algorithm with uniform crossover (UGA). We adopt this
algorithm as our model for two reasons: Firstly, under
uniform crossover the notion of a unit of inheritance, i.e.
a gene, is crisply defined—a gene corresponds exactly
with a single bit in a bitstring. This conceptual crispness
greatly simplifies our exposition. Secondly, by using suit-
ably crafted classes of fitness functions, the absence of
positional bias [4] in uniform crossover can be exploited
to demonstrate the computational efficiencies that form
the basis for our hypothesis.

A. Mathematical Preliminaries

For any positive integer `, we denote the set of all
bitstrings of length ` by B`. We denote a schema
partition [15] by a tuple consisting of the indices of
the defining positions of that schema partition—e.g.
(2, 15, 3). The order of a schema partition Γ, denoted
by o(Γ), is the number of elements in some tuple that
denotes Γ. Note that a tuple that denotes some schema
partition does not have to be ordered; therefore, schema

partitions with order greater than one can be denoted
in more than one ways. Let Γ1 and Γ2 denote two
schema partitions. We say that these schema partitions
are orthogonal if the tuples Γ1 and Γ2 have no elements
in common. For any genome g, let gi denote the ith bit
of g. For any positive integer n, let [n] denote the set
{1, . . . , n}. For any genome g of length ` and any k-tuple
x of distinct integers in [`], let Ξx(g) denote the bitstring
gx1 . . . gxk

. The denotation of a schema is dependent on
the denotation of the schema-partition that the schema
belongs to. Given a schema partition denoted by some
tuple Γ, the schemata in this partition are denoted by
bitstrings of length o(Γ). For any bits b1, . . . , bo(Γ), the
bitstring b1 . . . bo(Γ) denotes the schema consisting of the
genomes {g|ΞΓ(g) = b1 . . . bo(Γ)}. The denotation of the
relevant schema partition must always be borne in mind
when interpreting a denoted schema.

Let Γ1 = (x1, . . . , xm) and Γ2 = (y1, . . . , yn) denote
two orthogonal schema partitions, and let γ1 = a1 . . . an
and γ2 = b1 . . . bn denote schemata of Γ1 and Γ2 respec-
tively. Then the concatenation Γ1Γ2 denotes the schema
partition (x1, . . . xm, y1, . . . , yn), and the concatenation
γ1γ2 denotes the schema a1 . . . amb1 . . . bn of Γ1Γ2. We
will treat the denotation of a schema partition as a tuple
sometimes, and as the represented schema partition at
others. Likewise, we will treat the denotation of a schema
as a bitstring sometimes, and as the represented schema
at others. The sense in which we use the denotations of
schemata and schema partitions will be clear from the
context. For any m× n matrix M , and for any i ∈ [m],
let Mi: denote the n-tuple that the row ith row of M .

B. Staircase Functions

We begin by introducing a class of fitness functions
such that given some population of genomes, the co-
adaptedness small sets of bits is highly contingent upon
the fixation of other bits in the population.

Definition 1. A staircase function descriptor is a 7-tuple
(h, o, δ, σ, `, L, V ) where h, o and ` are positive integers
with ho ≥ `, δ and σ are positive real numbers, and
L and V are matrices with h rows and o columns such
that the values of V are binary digits, the elements of L
are distinct integers from the set [`], and the rows of L
are sorted in ascending order.

Let N (a, b) denote the normal distribution with mean
a and variance b. Then the function described by a
staircase function descriptor (h, o, δ, σ, `, L, V ) is the
stochastic function over the set of bitstrings of length `
given by algorithm 1. We call h, o, δ, σ, and ` the height,
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Algorithm 1:
A staircase function with descriptor
(h, o, δ, σ, `, L, V )
Input: g is a genome of length `
y =some value drawn from the distribution N (0, σ2)
for i=1 to h do

if ΞLi:(g) = Vi1 . . . Vio then
y = y + δ

else
y = y − (δ/(2o − 1))
break

end
end
return y

order, increment, noisiness and span, respectively, of the
staircase function.

For any i ∈ [h] we call the schema denoted
by Vi1 . . . Vio of the schema partition denoted by
(Li1, . . . , Lio) the ith stage of the staircase function f .
Given the matrix L of the staircase function descriptor,
the schema partition of each stage has a canonical
denotation. When the staircase function descriptor is
clear we will, in the interest of concision, assume that the
schema partition of each stage is denoted canonically. Let
γi denote the ith stage of f . We call the schema denoted
by γ1 . . . γi the ith step of f .

The steps of a staircase function are essentially a
progression of nested hyperplanes [7, p 53], with hyper-
planes of higher order and higher expected fitness nested
within hyperplanes of lower order and lower expected
fitness. By choosing an appropriate scheme for mapping
a high-dimensional hypercube onto a two dimensional
plot, it becomes possible to visualize this progression of
hyperplanes in two dimensions.

Definition 2. A fractal addressing system is a tuple
(m,n,X, Y ), where m and n are positive integers, and
X and Y are matrices with m rows and n columns
such that the elements in X and Y are distinct positive
integers from the set [2mn], i.e. each element in [2mn]
occurs either in X or in Y once and only once.

A fractal addressing system (m, o,X, Y ) determines
how the set B2mn gets mapped onto a 2mn × 2mn plot.
For any bitstring g ∈ B2mn the xy-address (a tuple of
values between 1 and 2mn) of the pixel representing g
is given by Algorithm 2.

Example: Let (h = 4, o = 2, δ = 3, σ = 1, ` =
16, L, V ) be the descriptor of a basic pivotal function

f , such that

V =


1 0
0 1
0 0
1 1


Let A = (m = 4, n = 2, X, Y ) be a fractal addressing
system such that X1: = L1:, Y1: = L2:, X2: = L3:, and
Y2: = L4:. A fractal plot of f is shown in Figure 1a.

This image was generated by querying f with every
bitstring in B16, and plotting the resulting fitness value
of each genome as a greyscale pixel at the genome’s
fractal address (under the addressing system A). The
fitness values returned by f have been scaled linearly
to span the range of possible greyscale shades. Lighter
shades signify greater fitness. The four steps of f can
easily be discerned.

Let us perform a thought experiment in which we
generate another fractal plot of f using the same address-
ing system A, but a different random number generator
seed. Because f is stochastic, the greyscale value of
any pixel in the resulting plot will then most likely be
different from that of its homolog in the plot in Figure
1a. Nevertheless, our ability to discern the steps of f
would not be affected. In the same vein, note that when
specifying A, we have not specified the values of the
last two rows of X and Y ; it is easily seen that these
values are immaterial to the discernment of the staircase
structure of f .

On the other hand, the values of the first two rows
of X and Y are highly relevant to the discernment of
this structure. Figure 1b shows a fractal plot of f that
was obtained using a fractal addressing system A′ =
(m = 4, n = 2, X ′, Y ′) such that X ′4: = L1:, Y ′4: = L2:,

Algorithm 2: The algorithm for determining the (x,
y)-address of a genome under the fractal addressing
system (m,n,X, Y ). The function bin2Int returns
the integer value of a binary string.

Input: g is a genome of length 2mn
granularity = 2mn/2n

x = 1
y = 1
for i = 1 to m do

x = x+ granularity ∗ bin2Int(ΞXi:(g))
y = y + granularity ∗ bin2Int(ΞYi:(g))
granularity = granularity/2n

end
return x, y
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Fig. 1. A fractal plot of the staircase function f under the fractal addressing systems A (left) and A′ (right)

X ′3: = L3:, and Y ′3: = L4:. Nothing remotely resembling
a staircase is visible in this plot.

The lesson here is that the discernment of the fitness
staircase inherent within a staircase function depends
critically on how one ‘looks’ at this function. In de-
termining the ‘right’ way to look at f we have used
information about the descriptor of f , specifically the
values of, h, o, and L. This information will not be
available to an algorithm which only has query access
to f .

Even if one knows the right way to look at a staircase
function, the discernment of the fitness staircase inherent
within this function can still be made difficult by a low
increment to noisiness ratio. Figure 2 lets us visualize
the decrease in the salience of the fitness staircase of f
that accompanies a decrease in the increment parameter
of this staircase function. As mentioned before, the
fitness values returned by the staircase functions are
scaled so that they span the range of possible greyscale
shades; therefore, had we kept the increment constant
and increased the noisiness parameter instead, we would
have obtained the same general result as that shown
in Figure 2. In general, a decrease in the increment to
noisiness ratio of a staircase function results in a decrease
in the ‘contrast’ between the steps of that function.

Let γ denote some schema of the schema partition
denoted by Γ. Given some (possibly stochastic) fitness
function over a genome set, we define the fitness signal
of γ, denoted SΓ(γ) to be the expected fitness of a
genome drawn from the uniform distribution over γ.
Let γ1 and γ2 be schemata of two orthogonal schema

partitions Γ1 and Γ2. We define the conditional fitness
signal of γ1 given γ2, denoted SΓ1|Γ2

(γ1 | γ2), to be the
difference between the fitness signal of γ1γ2 and the
fitness signal of γ2, i.e. SΓ1|Γ2

(γ1 | γ2) = SΓ1Γ2(γ1γ2)−
SΓ2(γ2).

Given a staircase function f with descriptor
(h, o, δ, σ, `, L, V ), we define the signal to noise ratio of
some schema γ of a schema partition Γ to be SΓ(γ)/σ.
Likewise, for any two schemata γ1 and γ2 of two
orthogonal schema partitions Γ1 and Γ2, we define the
conditional signal to noise ratio of γ1 given γ2 to be
SΓ1|Γ2

(γ1 | γ2)/σ.

For any i ∈ [h], by Lemma 1 (see appendix), the signal
to noise ratio of step i is iδ/σ. For any i ∈ {2, . . . , h},
corollary 1 of Lemma 1 states that the conditional signal
to noise ratio of stage i given step (i − 1) is δ/σ, (a
constant with respect to i). Finally, for any i ∈ [h], by
Theorem 1, the (unconditional) signal to noise ratio of
stage i is

δ

(2o)i−1σ
(1)

Clearly, this ratio decreases rapidly as i increases.

Consider an algorithm that, when given only query
access to the staircase function f , can robustly detect the
fitness signal of the first step of f , and can restrict future
sampling to this step. Observe that the conditional signal
to noise ratio of the second stage given the first step is
the same as the signal to noise ratio of the first step.
Therefore, if the algorithm restricts its fitness queries to
genomes belonging to the first step, it should be able
to detect the conditional fitness signal of the second
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Fig. 2. Fractal plots under A of two staircase functions, which differ from f only in their increments—1 (left plot) and 0.3 (right plot)
as opposed to 3.

stage given the first step, and should, therefore, be able
to identify the second step. Indeed if the algorithm is
sufficiently robust it’s recursive application need not end
with the identification of the second step; higher steps
can be identified indirectly by identifying lower steps
first.

Given expression (1), it is reasonable to suspect that
the direct identification of step i of a staircase func-
tion rapidly becomes computationally infeasible as i
increases. The analogy between physical staircases and
staircase functions should be transparent; just as it is
hard to climb higher steps of a staircase without climbing
lower steps first, it becomes computationally infeasible
to identify higher steps of a staircase function without
identifying lower steps first.

C. Hyperclimbing and Hyperscapes

When an algorithm restricts future queries to some
step of a staircase function, we say that it has climbed
that step. The idea of climbing the steps of a staircase
function can be generalized to describe the behavior of
arbitrary search algorithms on arbitrary fitness functions
(both stochastic and deterministic) over sets of strings.
We call the progressive confinement of sampling to
hyperplanes of increasing order and increasing expected
fitness hyperclimbing (short for “hyperplane-climbing”);
a search algorithm is said to have climbed some hyper-
plane γ that belongs to some hyperplane partition Γ,
if, amongst all the hyperplanes that belong to Γ, future
sampling is largely limited to the hyperplane γ.

Hyperclimbing, if it can be implemented efficiently

(a big if ), seems like a very reasonable way to perform
adaptation. Consider some practical fitness function over
the set of bitstrings B`. It is seems reasonable to assume
that there exists some low number o1, such that of the(
`
o1

)
∈ Ω(`o1) ways of partitioning the search space

into a set of hyper planes of order o1, there exists
one or more partitions—for the sake of argument let us
assume just one—such that this partition contains one
or more hyperplanes whose average fitness values are
statistically significantly above average under uniform
sampling. By restricting future sampling to one of these
hyperplanes the hyperclimbing heuristic can increase the
expected fitness of all future samples. As far as the
hyperclimbing heuristic is concerned, this hyperplane
would then comprise the entirety of the search space,
i.e. future search can be thought to occur over the space
B`−o1 . Our argument now recurses: It seems reasonable
to assume that there exists some low number o2, such
that of the

(
`−o1
o2

)
∈ Ω((` − o1)o2) ways of partitioning

the new search space into a set of hyperplanes of order
o2, there exists one or more partitions—for the sake of
argument let us assume just one—such that this partition
contains one or more hyperplanes whose average fitness
values are statistically significantly above average under
uniform sampling. By restricting future sampling to one
of these hyperplanes, the hyperclimbing heuristic would,
once again, increase the expected fitness of all future
samples. And so on.

This heuristic will continue to increase the average
fitness of the samples it generates as long as there
continues to be a way of partitioning the region of the
search space that it inhabits into a set of low-order
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hyperplanes such that at least one hyperplane in the
partition has an average fitness value that is statistically
significantly above average under uniform sampling.

Because a hyperclimbing heuristic is sensitive to the
“hyperplanar structure” of a search space, not its neigh-
borhood structure, the idea of a landscape [24], [13]
is not very helpful when thinking about the behavior
of this heuristic. Far more useful is the notion of a
hyperscape. A hyperscape is like a landscape in that
it is just a spatial representation of a fitness function.
In a hyperscape, however, the focus is placed, not
on the interplay between the fitness function and the
neighborhood structure of individual points, but on the
statistical fitness properties of individual hyperplanes,
and on the spatial relationships between hyperplanes—
lower order hyperplanes can contain higher order hyper-
planes, hyperplanes can intersect each other, and disjoint
hyperplanes that belong to the same hyperplane partition
can be regarded as parallel. The use of the concept of
a hyperscape in the genetic algorithmics literature can
be traced back to the seminal work of Holland [8],
who used this concept to reason about the dynamics
of recombinative genetic systems. While we disagree
with Holland’s conclusions, we find hyperscapes to be
invaluable in our own reasoning about the dynamics of
genetic algorithms—both recombinative and, for reasons
that will become clear in section III, non-recombinative.

D. Symmetry Analysis

In a recent work [3] we defined the class of semi-
parameterized UGAs, and exploited the symmetries of
the algorithms in this class to uncover what we consider
to be the first two computational efficiencies (albeit
highly specific ones) of the SGA to be rigorously iden-
tified. The symmetry analysis in that work sets the stage
for the symmetry analysis given below. We will show
that a semi-parameterized UGA can efficiently climb the
first few steps of the staircase functions in a particular
class of staircase functions. Remarkably the number
of queries required by the semi-parameterized UGA is
independent of the span of the functions in the class.

Let f be a staircase function with descriptor
(h, o, δ, σ, `, L, V ), we say that this function is basic if
` = ho, Lij = o(i − 1) + j, (i.e. if L is the matrix
of integers from 1 to ho laid out row-wise), and V
is a matrix of ones. If f is basic, then the last three
elements of the descriptor of f are fully determinable
from the first four; we therefore write this descriptor
as (h, o, δ, σ). Given some staircase function f with
descriptor (h, o, δ, σ, `, L, V ), we define the basic form

of f to be the (basic) staircase function with descriptor
(h, o, δ, σ).

Let f∗ be some basic staircase function with descriptor
(h, o, δ, σ), and let F be the set of all staircase functions
with basic form f∗. Let W be a semi-parameterized
UGA. For any staircase function f ∈ F , let p(t)

(f,i)(x)
be the probability that the frequency of stage i of f in
generation t of W f is x, let q(t)

(f,i)(x) be the probability
that the frequency of step i of f in generation t of W f

is x, and let r(t)
f be the probability that the average

fitness of the population of W f in generation t is
x. Then by appreciating the symmetries between the
unparameterized UGAs W f∗ and W f we can deduce the
following equalities between probability distributions:
for any generation t, and for any i ∈ [h], p(t)

(f,i) = p
(t)
(f∗,i),

q
(t)
(f,i) = q

(t)
(f∗,i), and r(t)

f = r
(t)
f∗ .

Thus, for any generation t, monte-carlo sampling from
r

(t)
f∗ is equivalent to monte-carlo sampling from r

(t)
f , and

for any i ∈ [h], monte-carlo sampling from p
(t)
(f∗,i), and

q
(t)
(f∗,i) is equivalent to monte-carlo sampling from p

(t)
(f,i),

and q(t)
(f,i) respectively.

E. Performance of UGAs on a Staircase Function

Let f1 be a staircase function with descriptor (h =
50, o = 4, δ = 0.3, σ = 1), and let U denote the
semi-parameterized UGA described in the materials and
methods section in the appendix. In order to succinctly
discuss the results of an experiment in which we applied
U to f1, we introduce the following shorthand: given
some population of genomes, the one-frequency of some
locus is the frequency of the bit 1 at that locus in the
population. Figure 3a shows that U is capable of robust
adaptation when applied to f1. Figure 4a shows that
under the action of U , the first seven stages of f1 tend
to go to fixation2 in ascending order. This entails that
the first seven steps tend to go to fixation in ascending
order. When a step gets fixed, future sampling will
largely be confined to that step—in effect, the hyperplane
associated with the step has been climbed. Animation 1,
which plots the one-frequencies of all the loci of Uf1 in
each of 500 generations, shows that the hyperclimbing
behavior of Uf1 continues beyond the first seven steps.
The capacity of U to implement hyperclimbing when
applied to f1 accounts for it’s adaptive ability on f1.

2We use the terms ‘fixation’ and ‘fixing’ loosely. Clearly, as long
as the mutation rate is non-zero, no locus can ever be said to go to
fixation in the strict sense of the word.
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(a) Performance of the UGA Uf1
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(b) Performance of the MGA Mf1

Fig. 3. The performance of the semi-parameterized UGA U (left) and the semi-parameterized MGA M (right) on the staircase function
f1 over 20 trials. The mean (across trials) of the average fitness of the population is shown in black. The mean of the best-of-population
fitness is shown in blue. The error bars show one standard error above and below the mean every 125th generation

Let f be some staircase function with basic form f1.
The conclusions reached in the previous section entail
that, had we applied U to f instead of f1, then regardless
of the span of f , we would have obtained essentially the
same results as those shown in Figures 3a and 4a. This
realization is highly remarkable from a computational
standpoint.

Consider U ’s capacity for climbing just the first stage
of f . From a computational standpoint, even just this
ability is quite remarkable because it is achieved with
an expected expenditure of queries that is constant
in the span of f . We infer that this highly specific
capacity for computational efficiency is part of a general
capacity of the SGA for efficiently performing what
we call genoclique fixing. We have previously identified
two other highly specific, but nonetheless remarkable,
computational efficiencies of the SGA that are instances
of its general capacity for efficient genoclique fixing
[3]. The results presented here suggest that SGAs can
engender robust and efficient adaptation by performing
efficient genoclique fixing recursively.

F. Mutational Drag and Clamping

Before discussing genoclique fixing, let us contem-
plate a curious aspect of the behavior of U on f1. Figure
1 shows that the growth rate of the average fitness of the

population of Uf1 decreases as evolution proceeds. To
understand this phenomenon consider some genome that
belongs to the ith step; the probability that this genome
will still belong to step i after mutation is (1 − x)io,
where x is the per-bit mutation rate. This entails that,
Uf1 becomes less able to “hold” a population within
step i as i increases. In light of this observation, we infer
that as i increases the capacity of Uf1 to be sensitive to
the conditional fitness signal of stage i+ 1 given step i
decreases. This loss in sensitivity explains the decrease in
the growth rate of the average fitness of Uf1 . We call the
“wastage” of fitness queries described here mutational
drag.

We conceived of the following mechanism for curb-
ing mutational drag in Uf1 . This mechanism relies on
parameters flagFreq ∈ [0, 0.5], unflagFreq ∈
[flagFreq, 0.5], and flagPeriod. If the one-
frequency of some locus at the beginning of some
generation is less than flagFreq, or greater than
1−flagFreq, then that locus is flagged. Once flagged,
a locus remains flagged as long as the one-frequency
of the locus is less than unflagFreq, or greater than
1− unflagFreq at the beginning of each subsequent
generation. If a flagged locus in some generation t has
remained constantly flagged for the last flagPeriod
generations, then the locus is considered to have passed
our fixation test, and is not mutated in generation t. We
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Fig. 4. The mean frequency dynamics, over 20 trials, of the first seven steps of the staircase function f1 (going from the top plot to the
bottom plot) under the action of the semi-parameterized UGA U (left), and the semi-parameterized MGA M (right). The error bars show
one standard error above and below the mean every twentieth generation

call this mechanism clamping, because we expect that
in the absence of mutation, a locus that has passed our
fixation test will quickly go to strict fixation, i.e. the one-
frequency of this locus will get “clamped” at zero or one
for the remainder of the run.

We ran a semi-parameterized UGA Uc which used the
clamping mechanism described above and was identical
to the semi-parameterized UGA U in every other way on
the staircase function f1. The clamping mechanism used
by Uc was parameterized as follows: flagFreq = 0.01,
unflagFreq = 0.1, flagPeriod=200. The perfor-
mance of Uf1c is displayed in figure 5a. Figure 5b shows
the number of loci that the clamping mechanism left
unmutated in each generation. These two figures show
that the clamping mechanism effectively allowed Uc to

climb all the steps of f1. Animation 2 shows the one-
frequency dynamics of a single run of Uf1c . The action
of the clamping mechanism can be seen in the absence
of ‘jitter’ in the one-frequencies of loci that have been
fixed for a while .

G. Genoclique Fixing

We call a small set of co-adaptive genes an genoclique.
It is important to stress two features of this definition.
Firstly, our use of the term “co-adaptive”, as opposed to
the more conventionally used “co-adapted”, is meant to
indicate that genocliques are not static entities but dy-
namic ones that can arise or fade away (become salient,
or loose saliency) as the composition of a population
of genomes changes. Secondly, note that we have made
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Fig. 5. (Left:) The performance, over 20 trials, of the semi-parameterized UGA Uc on the staircase function f1. The mean (across trials)
of the average fitness of the population is shown in black. The mean of the best-of-population fitness is shown in blue. (Right:) The mean
number of loci left unmutated by the clamping mechanism. Errorbars show one standard error above and below the mean every hundredth
generation

no commitment to the kind of linkage that must exist
between the genes in a genoclique. Linkage between
such genes can be weak, or even non-existent.

Based on the results in the previous sections, we
submit that adaptation in simple recombinative genetic
algorithms is driven by the recursive fixing of geno-
cliques. We call this the genoclique fixing hypothesis.

This hypothesis rests on assumptions about the distri-
bution of fitness that are easily seen to be weaker than
those underlying the building block hypothesis [2]—
the genoclique fixing hypothesis does not, for example,
require large numbers of genes to be individually ad-
vantageous at the outset of an evolutionary run. Note,
secondly, that genoclique fixing is intuitively a more
viable explanation than the building block hypothesis:
Because the ability of recombination to disrupt a geno-
clique declines rapidly as the genoclique goes to fixation,
it is easy to see how the fixing of genocliques can be
a robust vehicle for adaptation in recombinative genetic
systems; in comparison it is much more difficult to grasp
how synergistic composition can be a robust vehicle for
adaptation. After all, though recombination can occasion
the synergistic composition of genes, it can also occasion
the destruction of such compositions. Thirdly, note that
unlike the building block hypothesis, for which no proof
of concept has been provided in over three decades, the
genoclique fixing hypothesis is accompanied by proof of

concept (see the previous section) from the start.

H. Empricial Validation

We now present the results of an experiment in
which the use of clamping dramatically improved the
performance of a UGA on large, randomly generated
instances of the MAX 3-SAT problem. This difference
in performance strongly supports our hypothesis.

We ran two semi-parameterized UGAs—one with
clamping (Qc), and one without (Q)—on randomly
generated instances of the MAX 3-SAT problem [10]
with 10,000 binary variables and 50,000 clauses. Both
UGAs used a straightforward encoding in which each bit
of a genome represents the value of a single MAXSAT
variable. The fitness of a genome was simply the number
of clauses satisfied under the variable assignment repre-
sented by the genome. The clamping mechanism used by
Qc was parameterized as follows: flagFreq = 0.01,
unflagFreq = 0.1, flagPeriod=200. Figure 6c
shows the number of loci that this mechanism left
unmutated in each generation. By the four thousandth
generation, the clamping mechanism left on average over
2500 loci unmutated. Given any set of 2500 loci, in the
absence of clamping the chance that the 2500 loci will all
go unmutated in some genome is 0.9972500 < 5.5×10−4.
The “drag” resulting from the continued mutation of
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long-fixed loci in Q explains why this UGA was outper-
formed by Qc (Figure 6a,b). The difference between the
mean best-of-population fitness of the final generation of
Qc and the mean best-of-population fitness of the final
generation of Q was 1148.5 clauses. By all indications,
this difference would have been larger had we allowed
our trials to continue past 4000 generations.

III. ON THE FUNCTION OF RECOMBINATION

Under the building block hypothesis, the function of
recombination is clear—to drive adaptation by effecting
the synergistic composition of advantageous genes, and
co-adapted sets of advantageous genes. If genoclique
fixing, not synergistic composition, is the vehicle for
adaptation, then the function of recombination is less
transparent. If the genoclique fixing hypothesis is to be
a viable alternative to the building block hypothesis,
the advantage that recombination often confers must be
accounted for.

Under the genoclique fixing hypothesis, the widely
reported efficacy of recombination, especially strong
forms of recombination, like uniform crossover, actually
seems anomalous. As the expected number of crossover
points increases, the size of the genes in a genoclique
decreases, and the number of genes in a genoclique
therefore tends to decrease. Since genocliques with fewer
genes are less likely to be disrupted by recombination,
and since the disruption of genocliques hampers their
fixation, it seems like the fewer the expected number of
crossover points in a crossover operation, the better.

The phenomenon of hitchhiking [20], [6] seems to
offer an easy explanatory escape from this anomaly. It
is simple to see how, as the size of the genes in a
genoclique increases, some situated bit b can become
part of one or more genocliques even though it does
not contribute to the co-adaptivity of any of these geno-
cliques. If any of the genocliques go to fixation then so
will b (i.e. b will hitchhike to fixation). Now, suppose it
so happens that the complement of b is implicated in the
co-adaptivity of one or more genocliques later on in the
evolutionary run. It seems reasonable to suspect that the
prior spurious fixation of b will prevent any genocliques
containing the complement of b from going to fixation.

Since the prevalence of hitchhiking increases in in-
verse relation to the expected number of crossover
points, it seems plausible that the relative absence of
hitchhiking in UGAs can account for the widely re-
ported efficacy of uniform crossover. The prevalence of
hitchhiking will be most extreme when recombination

is entirely absent. To test our hunch about the utility
of recombination, we therefore switched off crossover
in the semi-parameterized UGA U and applied the re-
sulting semi-parameterized mutation-only simple genetic
algorithm (MGA), denoted M , to the staircase function
f1. A comparison between Animations 1, and 3 confirms
the prevalence of hitchhiking in Mf1 (note how the one-
frequencies of high-index loci rush to one or zero at
the beginning of the run even though selection is not
acting at these loci), and it’s relative absence in Uf1

(while the one-frequencies of high-index loci do diverge
from 0.5, they do so relatively slowly). Remarkably,
despite the prevalence of hitchhiking, Mf1 outperforms
Uf1 (compare Figure 3b with fig 3a). Figure 4b, and
Animation 3 show that, like Uf1 , Mf1 performs adap-
tation by implementing hyperclimbing. The difference
in performance seen when comparing Figure 3a with
Figure 3b turns out to be representative of a systematic
difference in the performance of UGAs and MGAs
on basic staircase functions. In an informal empirical
comparison of the performance of these SGAs over a
broad parametric regime we found that switching off
recombination typically improves performance.

The implications of these results for the genoclique
fixing hypothesis are mixed. On the one hand, the “easy
explanatory escape” that hitchhiking seemed to offer
turns out not to be quite so easy. If anything, the widely
observed efficacy of recombination is now more puzzling
than before.

On the other hand, the observed hyperclimbing be-
havior of MGAs on staircase functions reveals the cen-
trality of fixing to adaptation in all SGAs. To see why,
observe that the conclusions we reached by exploiting
the symmetries of unparameterized UGAs with staircase
fitness functions hold even when uniform crossover is
switched off. This realization entails that MGAs, like
UGAs, are capable of efficient hyperclimbing3. In terms
of the expected number of crossover points per crossover
operation, MGAs and UGAs occur at opposite ends
of a continuum. Since both these SGAs are capable
of efficient hyperclimbing, hyperclimbing seems well
positioned to serve as the organizing idea for the study
of adaptation in all SGAs.

3The building block hypothesis is decidedly silent when it comes to
explaining the adaptive capacity of non-recombinative genetic algo-
rithms [5, p147-155]. With the discovery that MGAs can implement
efficient hyperclimbing, these reports can now be accounted for.
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Fig. 6. (Top:) The performance, over 10 trials, of the UGA Qc (left) and the UGA Q (right), on randomly generated instances of the MAX
3-SAT problem with 10,000 variables and 50,000 clauses. Qc used clamping, whereas Q did not. The mean (across trials) of the average
fitness of the population is shown in black. The mean of the best-of-population fitness is shown in blue. (Bottom:) The mean number of loci
left unmutated by the clamping mechanism of Qc. Errorbars show one standard error above and below the mean every hundredth generation

A. Multi-Staircase Functions

Returning to the task of explaining the function of
recombination, we conjecture that staircase functions,
illuminative as they are, fail to capture some key feature
that is commonly present in fitness distributions induced
through the representational choices of GA practitioners.
We conjecture, furthermore, that hitchhiking interferes
with an MGA’s ability to exploit this feature.

Observe that when a UGA is applied to a staircase
function, genocliques will tend to become salient sequen-
tially. This need not be true when recombinative SGAs
are applied to real-world problems. Might hitchhiking
pose more of a problem when genocliques become
salient concurrently? To test this hunch we conceived of
the class of multi-staircase functions—a straightforward
generalization of the class of staircase functions.
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Algorithm 3: A multi-staircase function with de-
scriptor
(c, h, o, δ, σ, `, L(1), . . . , L(c), V (1), . . . , V (c))
Input: g is a genome of length `
y =some value drawn from the distribution N (0, σ2)
for j=1 to c do

for i=1 to h do
if
(
gL(j)

i1
= V

(j)
i1

)
∧ . . . ∧

(
gL(j)

io
= V

(j)
io

)
then

y = y + δ
else

y = y − (δ/(2o − 1))
break

end
end

end
return y

Definition 3. A multi-staircase function descriptor
is a tuple (c, h, o, δ, σ, `, L(1), . . . , L(c), V (1), . . . , V (c))
where c, h, o and ` are positive integers with cho ≤ `,
δ and σ are positive real numbers, and L(1), . . . , L(c)

and V (1), . . . , V (c) are matrices with h rows and o
columns such that the elements of L(1), . . . , L(c) are
distinct integers from the set [`] (i.e. L(k1)

i1j1
6= L

(k2)
i2j2

unless
i1 = i2 ∧ j1 = j2 ∧ k1 = k2), each row in each of the
matrices L(1), . . . , L(c) is sorted in ascending order, and
the elements of V (1), . . . , V (c) are binary digits.

The function described by a multi-staircase function
descriptor (h, o, δ, σ, `, L(1), . . . , L(c), V (1), . . . , V (c)) is
the stochastic function over the set of bitstrings of length
` given by algorithm 1. We call c the cardinality of
the multi-staircase function, Like we did with staircase
functions, we call h, o, δ, σ, and ` the height, order,
increment, noisiness and span respectively.

Our analogy between staircases and staircase functions
can be extended to apply to multi-staircase functions.
When the cardinality of a multi-staircase function is one,
a single staircase is induced; when the cardinality is two
or more, multiple staircases are induced. In the latter
case, loci belonging to the steps of a particular staircase
may be scattered amongst loci belonging to the steps of
other staircases. However, since each locus belongs to
no more than one staircase, and since the fitness benefits
of climbing separate staircases combine additively, each
staircase may be climbed independently; in other words,
the “next step” of several staircases can become salient
concurrently. The “degree” of concurrency is determined
by the cardinality of the multi-staircase function.

B. Symmetry Analysis

Let f be a multi-staircase function with descrip-
tor (c, h, o, δ, σ, `, L(1), . . . , L(c), V (1), . . . , V (c)). We say
that this function is basic if ` = cho, L(k)

ij = ho(k −
1) + o(i − 1) + j, i.e. L(k) is the matrix of integers
from (ho)(k − 1) + 1 to hok laid out row-wise, and
V is a matrix of ones. If f is basic, then the first
five elements of the descriptor of f determines the
remaining elements; we therefore write this descriptor as
(c, h, o, δ, σ). Given some multi-staircase function f with
descriptor (c, h, o, δ, σ, `, L(1), . . . , L(c), V (1), . . . , V (c)),
we define the basic form of f to be the basic multi-
staircase function (c, h, o, δ, σ).

Let f∗ be some basic staircase function with descriptor
(c, h, o, δ, σ), and let F be the set of all staircase func-
tions with basic form f∗. Let W be a semi-parameterized
UGA or a semi-parameterized MGA. For any staircase
function f ∈ F , let r(t)

f be the probability that the
average fitness of the population of W f in generation
t is x. Then by appreciating the symmetries between the
unparameterized UGAs W f∗ and W f we can deduce the
following equalities between probability distributions:
for any generation t, r(t)

f = r
(t)
f∗ . Thus, for any gener-

ation t, monte-carlo sampling from r
(t)
f∗ , is equivalent to

monte-carlo sampling from r
(t)
f .

C. Performance of a UGA and an MGA on a Multi-
Staircase Function

Let f2 denote a multi-staircase fitness function with
descriptor (c = 10, h = 50, o = 4, δ = 0.3, σ = 1).
Figure 7 shows that when applied to this function, on
average the semi-parameterized UGA U outperforms the
semi-parameterized MGA M . Animations 3 and 4 show
the one-frequency dynamics of Uf2 and Mf2 in a single
run of each. These animations qualitatively show that
Uf2 is better than Mf2 at climbing the ten staircases of
f2 in parallel. The prevalence of hitchhiking in Mf2 , and
it’s relative absence in Uf2 seems, at least qualitatively,
to account for this difference in ability.

D. Concurrent Genoclique Fixing

We emphasize that the semi-parameterized SGAs
U and M mentioned above are the same semi-
parameterized SGAs that were used in our previous
experiments. Recall that on average M outperformed U
when applied to the basic staircase function f1. This
function can be thought of as a basic multi-staircase
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Fig. 7. The performance of the semi-parameterized UGA U (left) and the semi-parameterized MGA M (right) on the multi-staircase function
f2 over 20 trials. The mean (across trials) of the average fitness of the population is shown in black. The mean of the best-of-population
fitness is shown in blue. The error bars show one standard error above and below the mean every 80th generation

function with cardinality one. When f1 is regarded as
such, the difference between it and f2 amounts solely to
a difference in cardinality. Based on these observations,
and the results mentioned above, we submit that the func-
tion of recombination in genetic algorithms is to reduce
hitchhiking; by reducing hitchhiking, recombination al-
lows the fixing of genocliques to proceed concurrently.

IV. CONCLUSION AND OUTLOOK

Many details of the new theory presented in this
paper remain to be worked out and/or expressed. For
example, the function of mutation needs to be explained
(if mutation causes drag, why use it?), and the rela-
tionship between population size and a recombinative
SGA’s capacity for efficient genoclique fixing merits
attention. Presenting a complete account of the workings
of recombinative SGAs, however, is not our aim. Rather,
we have sought to present a general account of these
workings, and to support this account in ways that make
it compelling, or, to be precise, more compelling than the
building block hypothesis—to date, the only other gen-
eral account of the practical workings of recombinative
SGAs.

Perhaps the best way to understand the difference be-
tween the building block hypothesis and the genoclique

fixing hypothesis is by focusing on the part played by
fixation in each account. In downplaying the role of
fixation, the building block hypothesis departs rather
radically from the accounts about adaptation in biolog-
ical populations that one finds in population genetics.
The building block hypothesis holds that genetic algo-
rithms work by maintaining a store of partial solutions—
advantageous genes, and coadapted sets of individually
advantageous genes—and by hierarchically assembling
these partial solutions as evolution proceeds. Crucially,
the building block hypothesis is not opposed to the
idea that an advantageous gene and it’s advantageous
bitwise complement can both persist in an evolving
population. Indeed, as Watson’s work with hierarchical if
and only if functions [22], [23] indicates, the persistence
of such alleles is expected. Because the building block
hypothesis dispenses with fixation, it needs to look to the
weakness of recombination for a vehicle for ”locking in”
adaptive gains. This hypothesis cannot, therefore, explain
the widely observed adaptive capacity of SGAs with
strong forms of recombination (e.g. uniform crossover)

In contrast, the genoclique fixing hypothesis holds that
fixation is the vehicle by which adaptive gains are locked
in. The genoclique fixing hypothesis is based on the
key realization that selection can drive a small set of
unlinked coadapted genes to fixation even as these genes
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are repeatedly separated by recombination whenever
they co-occur [3]. Once such a set of genes—what we
call a genoclique—has gone to fixation, recombination
looses it’s power to disrupt this set, and the fitness
advantage that the genoclique confers, even if it is only a
small increase in expected fitness, gets locked in. Since
recombination is not required to “protect” genocliques
as they go to fixation, the genoclique fixing hypothesis
has no problem in accounting for the adaptive capacity
of UGAs. So, while the building block hypothesis can
only account for the adaptive capacity of SGAs with
small numbers of crossover points, the genoclique fixing
hypothesis can account for the adaptive capacity of any
recombinative SGA.

The genoclique fixing hypothesis can be thought of as
a particular instantiation of a more general unified theory
about the practical workings of all SGAs, including ones
that do not use crossover. In section II-C we introduced
the idea of a hyperclimbing heuristic. This heuristic is
sensitive, not to the local features of a search space, but
to fitness properties of the hyperplanes of the space. The
hyperclimbing heuristic is therefore not susceptible to
the typical problems affecting local search algorithms
(e.g. entrapment in the fitness basins of local optima).
While hyperclimbing seems like a reasonable way to
perform adaptive search, the moment one factors in
what appears to be the high cost, in terms of time and
fitness queries, of implementing this heuristic, it quickly
looses it’s shine. Our exciting discovery—the crux of this
paper—is that simple genetic algorithms can implement
hyperclimbing efficiently.

On the problems studied, we found that an SGA with
uniform crossover, and an SGA without crossover can
both perform efficient hyperclimbing. Uniform crossover
and no crossover are, in terms of expected number of
crossover points, at opposite ends of the “crossover con-
tinuum” of an SGA. We therefore infer that a capacity for
efficient hyperclimbing underlies the adaptive capacity of
all SGAs. We believe that this idea—the hyperclimbing
thesis—can serve as a platform for the unified study of
adaptation in all genetic algorithms.
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APPENDIX

MATERIALS AND METHODS

The semi-parameterized SGA denoted by U was im-
plemented with an SGA that is faithful to the specifi-
cation for a simple genetic algorithm given by Mitchell
[15, p 10] in every way, except for the following two:

1) In each generation, right after evaluating the fitness
of all individuals, our SGA used sigma scaling [15,
p 167] to adjust the fitness of each individual, and
used this adjusted fitness when selecting the par-
ents of that generation. Suppose f (t)

x is the fitness
of some individual x in some generation t, and
suppose the average fitness and standard deviation
of the fitness of the individuals in generation t

are given by f (t) and σ(t) respectively, then the
adjusted fitness of x in generation t is given by
h

(t)
x where, if σ(t) = 0 then h(t)

x = 1, otherwise,

h(t)
x = min(0, 1 +

f
(t)
x − f (t)

σ(t)
)

2) The SGA used universal stochastic stochastic sam-
pling [1] [15, p 166] to select parents.

Selection was fitness-proportionate. The population
size was 500. Bit-flip mutation with a mutation rate of
0.003 per bit was used. The probability of crossover was
one.

The population size of the semi-parameterized UGAs
Qc and Q was 200. Qc used clamping (described in the
main text), whereas Q did not. Other than the population
size, and the use of clamping, Qc and Q were the same
in every way to the semi-parameterized UGA U . The
SGA used to implement the semi-parameterized SGAs
described above was written in Matlab and is available
for download4.

PROOFS

Lemma 1. For any staircase function with descriptor
(h, o, δ, σ, `, L, V ), and any integer i ∈ [h], the fitness
signal of step i is iδ.

PROOF: The proof is by induction on i. The base
case, when i = h is easily seen to be true. For any
k ∈ {2, . . . , h}, we assume that the hypothesis holds
for i = k, and prove that it holds for i = k − 1. For

4The SGA and all fitness functions used in this paper can be down-
loaded from http://www.cs.brandeis.edu/∼kekib/GAWorkingsMatlab.
zip

any j ∈ [h], let γj denote stage j, and let Γj be the
canonical denotation of the schema partition containing
γj . The fitness signal of step k − 1 is given by

1
2o

SΓ1...Γk
(γ1 . . . γk) +

∑
ψ∈Γk\{γk}

SΓ1...Γk
(γ1 . . . γk−1ψ)


=
δk

2o
+

2o − 1
2o

(
δ(k − 1)− δ

2o − 1

)
where the first term of the right hand side follows from
the inductive hypothesis. Manipulation of the right hand
side yields

δk + (2o − 1)δ(k − 1)− δ
2o

which upon further manipulation yields (k − 1)δ �

Corallary 1. For any i ∈ {2, . . . , h}, the conditional
signal to noise ratio of stage i given step i− 1 is δ/σ

PROOF The conditional signal to noise ratio of stage
i given step i− 1 is given by

SΓi|Γ1...Γi−1
(γi|γ1 . . . γi−1)/σ

= (SΓ1...Γi
(γ1 . . . γi)− SΓ1...Γi−1(γ1 . . . γi−1))/σ

= (iδ − (i− 1)δ)/σ

= δ/σ �

Theorem 1. For any staircase function with descriptor
(h, o, δ, σ, `, L, V ), and any integer i ∈ [h], the fitness
signal of stage i is δ/(2o)i−1.

PROOF: For any j ∈ [h], let γj denote stage j, and let
Γj be the canonical denotation of the partition containing
γj . We first prove the following claim

Claim 1. For any i ∈ [h],∑
ξ1∈Γ1...Γi\{γ1...γi}

SΓ1...Γi
(ξ) = −iδ

The proof of the claim follows by induction on i. The
proof for the base case (i = 1) is as follows:∑

ξ∈Γ1\{γ1}

SΓ1(ξ) = (2o − 1)
(
−δ

2o − 1

)
= −δ

For any k ∈ [h−1] we assume that the hypothesis holds
for i = k and prove that it holds for i = k + 1.∑

ξ1∈Γ1...Γi\{γ1...γk+1}

SΓ1...Γk+1(ξ)

http://www.cs.brandeis.edu/~kekib/GAWorkingsMatlab.zip
http://www.cs.brandeis.edu/~kekib/GAWorkingsMatlab.zip
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=
∑

ψ∈Γk+1\{γk+1}

SΓ1...Γk+1(γ1 . . . γkψ) +

∑
ξ∈Γ1...Γk\{γ1...γk}

∑
ψ∈Γk+1

SΓ1...Γk+1(ξψ)

=
∑

ψ∈Γk+1\{γk+1}

SΓ1...Γk+1(γ1 . . . γkψ) +

∑
ψ∈Γk+1

∑
ξ∈Γ1...Γk\{γ1...γk}

SΓ1...Γk+1(ξψ)

= (2o − 1)SΓ1...Γk+1(γ1 . . . γk) +

2o

 ∑
ξ∈Γ1...Γk\{γ1...γk}

SΓ1...Γk+1(ξ)


where the last equality follows from the definition of
a staircase function. Using Lemma 1 and the inductive
hypothesis, the right hand side of this expression can be
seen to equal

(2o − 1)
(
δk − δ

2o − 1

)
− 2oδk

which upon some simple manipulation yields −δ(k+1).

For a proof of the theorem, observe that stage 1
and step 1 are the same schema. So, by Lemma 1,

SΓ1(γ1) = δ. Thus the theorem holds for i = 1. For
any i ∈ {2, . . . , h},

SΓk
(γi) =

1
(2o)i−1

(
SΓ1...Γi

(γ1 . . . γi) +

∑
ξ∈Γ1...Γi−1\{γ1...γi−1}

SΓ1...Γi
(ξγk)



=
1

(2o)i−1

(
SΓ1...Γi

(γ1 . . . γi) +

∑
ξ∈Γ1...Γi−1\{γ1...γi−1}

SΓ1...Γi−1(ξ)


where the last equality follows from the definition of
a staircase function. Using Lemma 1 and Claim 1, the
right hand side of this equality can be seen to equal

iδ − (i− 1)δ
(2o)i−1

=
δ

(2o)i−1
�
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Animation 1: [Click on image to play] The one-frequency dynamics of each locus of the UGA Uf1 over the first
500 generations of a single run . (If the animation does not work please download the full version of this manuscript
from www.cs.brandeis.edu/∼kekib/GAWorkings.html)

www.cs.brandeis.edu/~kekib/GAWorkings.html
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Animation 2: [Click on image to play] The one-frequency dynamics of each locus of the UGA Uf1c over the first
500 generations of a single run. (If the animation does not work please download the full version of this manuscript
from www.cs.brandeis.edu/∼kekib/GAWorkings.html)

www.cs.brandeis.edu/~kekib/GAWorkings.html
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Animation 3: [Click on image to play] A visualization of the one-frequency dynamics of each locus over the first
500 generations of a single run of the MGA Mf1 . (If the animation does not work please download the full version
of this manuscript from www.cs.brandeis.edu/∼kekib/GAWorkings.html)

www.cs.brandeis.edu/~kekib/GAWorkings.html
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Animation 4: [Click on image to play] A visualization of the one-frequency dynamics of each locus over the first
500 generations of a single run of the UGA Uf2 . (If the animation does not work please download the full version
of this manuscript from www.cs.brandeis.edu/∼kekib/GAWorkings.html)

www.cs.brandeis.edu/~kekib/GAWorkings.html
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Animation 5: [Click on image to play] A visualization of the one-frequency dynamics of each locus over the first
500 generations of a single run of the MGA Mf2 . (If the animation does not work please download the full version
of this manuscript from www.cs.brandeis.edu/∼kekib/GAWorkings.html)

www.cs.brandeis.edu/~kekib/GAWorkings.html
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