
1

Two Remarkable Computational Competencies of
The Simple Genetic Algorithm

Keki M. Burjorjee
Computer Science Department

Brandeis University
Waltham, MA 02454

kekib@cs.brandeis.edu
May 28, 2009

Abstract—Since the inception of genetic algorithmics the
identification of computational efficiencies of the simple
genetic algorithm (SGA) has been an important goal. In
this paper we distinguish between a computational compe-
tency of the SGA—an efficient, but narrow computational
ability—and a computational proficiency of the SGA—a
computational ability that is both efficient and broad. Till
date, attempts to deduce a computational proficiency of the
SGA have been unsuccessful. It may, however, be possible
to infer a computational proficiency of the SGA from a
set of related computational competencies that have been
deduced. With this in mind we deduce two computational
competencies of the SGA. These competencies, when con-
sidered together, point toward a remarkable computational
proficiency of the SGA. This proficiency is pertinent to a
general problem that is closely related to a well-known
data-mining problem at the cutting edge of computational
genetics.

Index Terms—genetic algorithms, theory, symmetry,
epistasis, data-mining, active learning, QTL

I. INTRODUCTION

When applied to combinatorial optimization problems
that are poorly understood, or known to be NP-Hard,
simple genetic algorithms (SGAs) frequently evolve us-
able solutions after evaluating a relatively small number
of samples. At a general level it seems reasonable to
presume that SGAs owe their adaptive prowess to a ca-
pacity for performing one or more kinds of computation
relatively efficiently, i.e. robustly and scalably relative
to other known algorithms. The identification of such
computational efficiencies—the source of the remarkable
adaptive capacity of SGAs—has been a goal since the
inception of the field of genetic algorithmics.

The early genetic algorithmics literature (pre 1990s)
is marked by spirited debates about the purported ef-
ficiency with which SGAs “process” schemata (for a
review see [18, p119-127], [7, p114-119],[27, p74-78]).

Claims about the computational efficiency of SGAs made
during this period were supported almost entirely by
theoretical arguments, or to be more precise, quasi-
theoretical arguments—though these arguments made
use of mathematics, i.e. they were deductive in parts,
the amount of a priori and a posteriori speculation
involved was substantial. These claims were rarely, if
ever, backed up by empirical support. To the best of
our knowledge no bold claim about the computational
efficiency of the SGA made during this period has been
empirically supported in a convincing fashion.

Instead, when empirical tests were conducted, a large
gap was discovered between the claimed efficiency of
the SGA, and it’s actual performance. The Royal Roads
experiments [19], [8] in particular proved to be a water-
shed in the history of genetic algorithmics. On a class
of fitness functions called Royal Roads that were tailor-
made to play to a much vaunted computational efficiency
of the genetic algorithm—its capacity for building block
identification and composition—a random mutation hill-
climber seemed to need far fewer fitness evaluations
to find the global optimum [8], [17]. Following the
publication of these results, many researchers declared
the SGA inefficient, and began inventing algorithms
geared towards the explicit implementation of the ab-
stract process described in the building block hypothesis
[12, p 55] [14], [25], [26].

The publication of the Royal Roads experiments was
the first of two major developments that seem to have
cooled the search for computational efficiencies of the
SGA. The second development was the publication of
the no free lunch (NFL) theorems for optimization [31].
After deriving one of the the most general NFL theorems
obtained till date, Igel and Toussaint [15] conclude that
in all likelihood NFL does not apply to the practice of
black-box optimization. This conclusion certainly seems
to be borne out by the empirical record; in the practice of



2

black-box optimization, free lunches seem to be aplenty.
Unfortunately, for much too long, the NFL theorem has
subliminally, if not overtly, been regarded as “proof” that
the opposite is true. This belief entails that when an SGA
outperforms random search (or for that matter, pick-the-
worst-neighbor search) on some black-box optimization
problem in practice, it does so because of a fortuitous
pairing between problem and algorithm. If this is so, then
any advantage over random search that accrues when a
genetic algorithm is used for black-box optimization in
practice can be ascribed to fortune rather than to some
innate computational efficiency of the genetic algorithm.

Through both of the aforementioned developments,
the simple genetic algorithm has continued to be fre-
quently, and successfully used to perform black-box
optimization in fields ranging from finance to operations
research to electrical engineering. The identification of
one or more computational efficiencies of the SGA
still promises to help us understand the reason for it’s
success.

A. Computational Competencies and Proficiencies

To demonstrate an efficiency of some computational
system one typically shows that the system can scalably
and robustly solve some problem—typically the problem
that the system was explicitly designed to solve. But what
about computational systems that aren’t explicitly de-
signed to solve some well-defined problem (e.g. brains,
genetic algorithms)? While we may conjecture that some
of these systems are capable of efficient computation,
expressing this sentiment rigorously is far from simple.
A fundamental difficulty lies in identifying a general
problem such that one can derive impressive bounds on
the computational complexity of the system when it is
applied to the problem.

Suppose, instead, one succeeds in identifying a set
of specific problems for which impressive computational
bounds can be derived. Even if the problems in this set
are highly specific, it may be possible, by noting similari-
ties between the problems, to intuitively infer the outlines
of a more general problem that the system can tackle
efficiently. To distinguish between a computational sys-
tem’s ability to efficiently tackle some vaguely defined
general problem, and it’s proven ability to efficiently
solve some well-defined specific problem, we refer to
the former ability as a computational proficiency, and
the latter ability as a computational competency.

In this paper we identify two computational compe-
tencies of the SGA. That is, we identify two specific
problems, and show that the SGA can solve each prob-

lem very efficiently—certainly more efficiently than the
“mainstream” computational technique for solving these
problems. When these two competencies are considered
together, they point unmistakably towards a powerful
computational proficiency of the SGA. Remarkably, the
general problem that this proficiency is concerned with is
closely related to a well-known statistical problem at the
cutting edge of computational genetics having to do with
the identification of epistatically interacting quantitative
trait loci (QTLs).

B. Epistatically Interacting QTLs

Consider a phenotypic trait for which there exists a
single polymorphic locus1, such that allele substitutions
at this locus result in large changes in the phenotypic
trait. Many such traits have been identified (e.g. seed
color in pea-plants, eye color in fruit flies, presence of
sickle cell anemia, presence of cystic fibrosis). In most
cases, however, changes in a phenotypic trait are more
fine-grained, and are influenced by allele substitutions at
several polymorphic loci. Such traits are called complex
or quantitative, and the loci that influence them are called
quantitative trait loci. An important goal of modern
genetics is the identification of quantitative trait loci for
traits of interest, e.g. the oil content of corn seeds [13,
p164], grain weight in rice plants [32], and of course,
susceptibility to common diseases with complex genetic
underpinnings (cancer, diabetes, schizophrenia etc.)

A popular technique for identifying loci that affect
quantitative traits is called genome scanning. Given the
genomes of a set of individuals and the corresponding
values of a particular quantitative trait, genomic loci
are visited one by one to determine which loci have a
statistically significant effect on the trait when averaged
over all other loci. Geneticists distinguish between the
main effect of a locus and its interaction effect with other
loci. Frankel and Shork [9] distinguish between the two
as follows:

“A main effect is the average effect of a
[locus] taken over all other [loci]. Main effects
ultimately emerge when one is studying, or
mapping, a [locus] either in isolation or with-
out regard to other [loci]. Interaction effects are
those attributable to the simultaneous influence
of two or more [loci]. Most contemporary data
analysis and statistical modeling strategies for
genome scan investigations assess the signifi-
cance of only the main effects of potential trait
loci.”.

1A locus with multiple alleles



3

(a)

Locus A Marginal Values
0 1

Locus B 0 +0.2 −0.2 0.0
1 −0.2 +0.2 0.0

Marginal Values 0.0 0.0

(b)

A B C Marginal Values
0 0 0 +0.18
0 0 1 −0.06
0 1 0 −0.06
0 1 1 −0.06
1 0 0 −0.06
1 0 1 −0.06
1 1 0 −0.06
1 1 1 +0.18

TABLE I
MARGINAL VALUES OF TWO (TOP TABLE) AND THREE (BOTTOM

TABLE) BI-ALLELIC INTERACTING LOCI. NONE OF THE LOCI
HAVE MAIN EFFECTS

Frankel and Shork then eloquently explain why inter-
action effects have not received much attention, and point
out the peril of concentrating solely on main effects:

“There are, of course, many scientific reasons
which in part account for this main effect
‘bias’ and these reasons all derive from dif-
ficulties surrounding the statistical treatment
of epistatic effects . . . Given these difficulties,
it is easy to see why epistatic effects have
been neglected in favor of main effects in
complex trait analysis investigations. Unfor-
tunately, however, there exists the possibility
that a [locus’s] effect might only be detected
within a framework that accommodates epis-
tasis. Thus, for example, a [locus’s] true main
effect might be too small to detect with any
reasonable statistical power and sample size,
and yet it might enter into a critical epistatic
effect with a second [locus].” [9]

It is easy to see how a group of loci can interact even
though no locus in this group has a main effect. Table
I(a) shows how this might happen when two loci A and
B interact (for the sake of simplicity we have assumed
bi-allelic haploid genomes). Note how neither of these

loci have main effects (the marginal value of each allele
of each locus is zero) even though they clearly influence
the trait in question. Table I(b) shows how three bi-allelic
loci A, B, and C can interact epistatically on a trait, yet
have no main effect. The reader can check that the the
marginal value of each allele of each locus is zero.) In
fact for any non-empty set of loci {A1, . . . , An}, and
any set of bits {b1, . . . , bn}, one can construct a similar
table by letting the marginal values of two genotypes
b1 . . . bn, and b1 . . . bn be some value δ and letting the
marginal values of all other genotypes be − 2δ

2n−2 (This
observation will come in handy in our definition of type
1 pivotal functions in section III).

If loci that interact also have statistically significant
main effects then these loci will be detected by genome
wide scans for main effects. Once detected, the interac-
tions between the loci can be mapped. If, however, loci
that interactively influence a quantitative trait have no
main effects (or if their their main effects are statistically
insignificant) then, as Frankel and Shork have explained,
one will not detect such loci unless one explicitly uses an
investigative technique that “accommodates epistasis”.

Main effects can be detected by visiting loci one at a
time and testing for differentiated marginals (marginals
with non-zero marginal values). Let us call this strategy
differentiated marginal testing (DMT). To the best of
our knowledge, the only sure way to accommodate for
epistasis between loci when main effects are absent,
is to visit multi-locus combinations, and to test the
(multivariable) marginal of each such combination for
differentiation. We shall call this approach combinatorial
differentiated marginal testing, or combinatorial DMT
for short. The computational intractability of combinato-
rial DMT, even for small combination sizes, is discussed
in a recent article by Moore [20]. Moore remarks:

“Identifying the optimal combination of [loci]
from an astronomical number of possible com-
binations is computationally infeasible, espe-
cially when the [loci] do not have independent
[i.e. main] effects. The following example il-
lustrates the computational magnitude of the
problem. Let’s assume that 106 [loci] have
been measured. Let’s also assume that 1,000
computational evaluations can be completed
in one second on a single processor and that
1,000 processors are available for use. Exhaus-
tively evaluating all of the approximately 4.9×
1011 two-way combinations of [loci] would
require approximately 5.7 days. Exhaustively
evaluating all of the approximately 1.6× 1017



4

three-way combinations of [loci] would require
1,929,007 years. This of course assumes a
best-case scenario in which the genetic model
of interest consists of only two or three impor-
tant attributes or genetic variations.”

The problem described above (see also [22], and [21]) is
a specific instance of the general problem of identifying
interacting attributes in data-mining [10].

In this paper we focus on generative versions of two
specific problems having to do with the identification of
interacting-attributes. Crucially, main effects are entirely
absent in both problems. By “generative” we mean
that the value of any synthesized data point can be
queried—like in active learning. The first problem can
only be solved by a combinatorial DMT strategy that
tests attributes in combinations of two or more. The
running time of such a strategy is therefore quadratic
in the number of attributes. The second problem can
only be solved by a combinatorial DMT strategy that
tests attributes in combinations of four or more; the time
required by this strategy is therefore Ω(`4), where ` is
the number of attributes of an instance of the problem.
We will show that both the first and the second problem
can be solved robustly by an SGA in time that is linear
with respect to the number of attributes. Moreover, we
will show that in both cases, the query complexity2 of the
SGA is constant with respect to the number of attributes.

II. OUR MODE OF ANALYSIS

This paper is somewhat unusual as foundational stud-
ies of genetic algorithms go in that experiments play
a primary role in our mode analysis. Experiments are
typically used in foundational GA research either to
confirm behavior predicted by formal models, or to draw
attention to phenomena not predicted by prevailing theo-
ries (e.g. [28], [19], [8], [17]). The use of experiments as
a primary tool of analysis is, however, typically avoided
because of the problem of specificity.

One can identify two kinds of specificity. First, as
GAs are stochastic processes, any observations about the

2Because fitness evaluation is by far the most time consuming part
of a typical GA run, genetic algorithmicists often use the term time
complexity to refer to the relationship between a parameter of some
problem and the number of fitness evaluations required by a GA to
solve the problem. In this paper we use the term query complexity
instead. Our usage of this term is in line it’s usage in theoretical
computer science (the fitness function of a GA can be thought of
as an oracle that gets “queried” by the GA). We use the term time
complexity as it is typically used in computer science—to refer to the
relationship between a problem parameter and the number of “basic
steps” required to solve the problem.

behavior of a GA during some run are, strictly speaking,
only valid for the integer used to seed the random
number generator. Of course, one can easily circumvent
this problem by running the GA several times with
different seeds. Doing so allows one to build confidence
that observed effects are not artifacts of some random
seed. In most cases it is straightforward to quantify this
confidence using statistics.

The second kind of specificity is more problematic.
Strictly speaking, an experimental result only pertains to
the parameter values used in the experiment. In practice
it may be possible, by changing a parameter while
holding all others constant, to glean the relationship
between that parameter and some aspect of GA behavior.
However, if our aim is to be rigorous, then the extrapo-
lation involved in this approach is less than ideal. In this
paper we circumvent the problem with the second kind
of specificity by exploiting the symmetries of the SGAs
we construct. In doing so we obtain quantitative results
from a single experiment for an infinite set of problem
instances.

While the use of symmetry arguments is new to GA
research, symmetry arguments have long been exploited
in other fields of science, such as physics and chem-
istry. Indeed, according to the theoretical physicist E. T.
Jaynes “almost the only known exact results in atomic
and nuclear structure are those which we can deduce
by symmetry arguments, using the methods of group
theory”[16, p331-332].

One does not, however, need to venture so far afield
in order to find an example of a symmetry argument.
Let Bn denote the set of bitstrings of length n. For any
bitstring g, let g denote the bitwise complement of g (for
example, 1011 = 0100). Let ` be some positive integer,
and let f be some fitness function over B` such that
for any bitstring g ∈ B`, f(g) = f(g) (for example, if
` = 4 and f(1011) = 2.75, then f(0100) = 2.75). Let
G be some finite population SGA with fitness function
f , such that the initial generation of G is drawn from the
uniform distribution over the set B`. For any generation
t, let p(t)(g) denote the probability that some bitstring
g ∈ B` will be in the population of G in generation t.
Then by appreciating the symmetry of the situation, we
can deduce that for any generation t, and any bitstring
g ∈ B`, p(t)(g) = p(t)(g).

This result holds regardless of the size of the pop-
ulation, the mutation and crossover rates, the mutation
and crossover operators used, and the way in which the
SGA G scales the fitness values of individuals (if it does)
and performs selection. In fact, this result holds even if



5

f is stochastic (i.e. if f returns different values when
applied to the same genome) as long as for any genome
g, the values of f(g) and f(g) are drawn from the
same distribution. Since mathematical models of genetic
algorithms with finite populations (e.g. [24]) tend to be
unwieldy, a formal proof of the above, i.e. a proof within
some formal axiomatic system, would be quite involved
and would be relatively inaccessible. “The great power
of symmetry arguments lies just in the fact that they
are not deterred by any amount of complication in the
details”, writes Jaynes [16, p331]. Symmetry arguments,
in other words, allow one to cut through complications
that might hobble other forms of reasoning.

Jaynes stresses, as do we, that symmetry arguments
rely not on ‘equal ignorance’, but on ‘positive knowledge
of symmetry’. For instance, going back to the example
above, if we cannot be sure that the initial population of
G is drawn from the uniform distribution over B`, then
for any generation t, and any bitstring g, we would, in a
sense, be ‘equally ignorant’ of the values of p(t)(g) and
p(t)(g). Our ‘equal ignorance’ does not, of course, entail
that these two values are the same.

But what constitutes ‘positive knowledge of symme-
try’? This question, like the question “what constitutes
beauty?”, has no direct answer. Historically, the appre-
ciation of a symmetry by a community of theorists well
versed in “the art” was enough to constitute ‘positive
knowledge’ of that symmetry. Interestingly, over the
last two centuries, mathematicians have largely agreed
to eschew all non-sentential symmetries in their formal
communication; these days, only certain types of sym-
metry between sentential forms are acknowledged. At
the beginning of this deep shift in the communication
of mathematics, Euclidian geometry was one of the only
fields of mathematics that had an axiomatic foundation
[23]. By the end of the shift, “new as well old branches
of mathematics . . . were supplied with what appeared to
be adequate sets of axioms” [23]. An obvious benefit
of this shift is a reduction in the number of mistakes
communicated. The rarely acknowledged cost is the
impedance of timely and accessible communication of
results derived through the insightful exploitation of non-
sentential forms of symmetry.

III. TYPE 1 PIVOTAL FUNCTIONS

We begin by defining a class of fitness functions with
bitstring inputs such that when any of these functions is
queried with an infinite set of samples drawn from a uni-
form distribution over it’s domain, no locus has a main
effect, even though some loci may interact epistatically

with others. For reasons that will soon become clear we
call the members of this class pivotal functions.

For any positive integer n, let [n] denote the set of
positive integers {1, . . . , n}. For any n-tuple x and any
i ∈ [n] let xi denote the ith element of x. For any
bitstring s let si denote the ith symbol of s. For any bit
b let b denote the complement of b. Let N (µ, σ2) denote
the normal distribution with mean µ and variance σ2.

Definition 1. Let ψ = (o, σ, δ, `, L, V ) be a 6-tuple such
that o is a positive integer, σ and δ are non-negative
real numbers, ` is a positive integer greater than o, V
is an o-tuple of binary values, and L is an o-tuple of
distinct positive integers in [`] sorted in ascending order.
A type 1 pivotal function with descriptor ψ is a stochastic
function f over the set of bitstrings of length ` which
behaves as follows: for any input bitstring g, if (gL1 =
V1)∧ . . .∧ (gLo

= Vo) or (gL1 = V1)∧ . . .∧ (gLo
= Vo)

then f returns a value drawn from N (δ, σ2), otherwise
f returns a value drawn from N (− 2δ

2o−2 , σ
2).

We call o, δ, σ, ` and V the order, increment, noisi-
ness, and span of a pivotal function respectively. When
a pivotal function is queried with some bitstring, the
distribution from which the result is drawn pivots upon
the values of the bitstring at the pivotal loci given by
L, and the pivotal values given by V—hence the name
pivotal function. If we assume that a type 1 pivotal
function is queried with samples drawn from the uniform
distribution over the function’s domain, then the expected
marginal value of each allele of any individual locus is
zero. This is what we mean when we say that no locus
has a main effect. The increment parameter δ determines
the strength of the expected multilocus marginal values
of the pivotal loci.

Let f be a type 1 pivotal function with descriptor
(o = 3, σ = 1, δ = 0.18, `, L, V ). The pdfs of
N (− 2δ

2o−2 , σ
2) and N (δ, σ2) are shown in Figure 1.

Consider the task of robustly recovering the indices of
the pivotal loci (i.e. the values of L) given only the
values of o, σ, δ and `, and query access to the function
f . Because of the stochastic nature of f , as long as there
is any overlap between the two pdfs there will always
be some probability of error. The large overlap between
the two pdfs shown in Figure 1 make the minimization
of this error expensive as ` gets large (say 106). But
it is the absence of main effects that really makes this
problem thorny. A DMT strategy that visits loci one-
by-one clearly will not work because none of the loci
have main effects. Such a strategy only begins to hold
promise if loci are visited in combinations of two or
more. The number of such combinations however scales



6

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

Fig. 1. The pdfs of two normal distributions with standard deviation
1, and means -0.06 (grey) and 0.18 (black)

at least quadratically with `.

We will show that an SGA with uniform crossover
can identify the pivotal loci of f relatively robustly (with
less than a 0.005 chance of misclassification per locus)
in time that is linear in `, and with some number of
queries that is constant with respect to `.

A. Symmetry Analysis

For our purposes a semi-parameterized SGA is an
SGA with just two “parameters”: a positive integer
` which specifies the length of the genomes, and a
fitness function over the set of bitstrings B`. Two semi-
parameterized SGAs are considered to be distinct if they
differ in their crossover rates, say, or in the selection
schemes that they use. It is important to clarify that the
per-bit mutation rate of a semi-parameterized SGA is
not dependent on the genome length. For any positive
integer `, any semi-parameterized SGA G and any fitness
function f over B`, we use the “oracle notation” of theo-
retical computer science to denote the (unparameterized)
SGA that results when the length of the bitstrings of G
is fixed at `, and the fitness function that G queries is
set to f ; specifically, we denote this SGA by Gf .

For any positive integer n let Υn denote the set
{0, 1

n ,
2
n , . . . ,

n−1
n , 1}. Let us call the frequency of 1’s

and 0’s in a population at some locus k in some genera-
tion t the one-frequency and zero-frequency respectively
of locus k in generation t. For any unparameterized SGA
A with population size N , let 1(t)

(A,i) : ΥN → [0, 1] be a
probability mass function such that, for any x ∈ ΥN ,
1(t)

(A,i)(x) is the probability that the one-frequency of
locus i after t generations of running A is x. Likewise
let 0(t)

(A,i) : ΥN → [0, 1] be a probability mass function

such that, for any x ∈ ΥN , 0(t)
(A,i)(x) is the probability

that the zero-frequency of locus i after t generations of
running A is x. We call such distributions one- and zero-
frequency distributions. Finally, let ⇑(t)

(A,i) and ⇓(t)
(A,i) be

random variables that give the one- and zero-frequencies,
respectively, of locus i in generation t. Clearly then,
the probability mass functions of ⇑(t)

(A,i), and ⇓(t)
(A,i) are

1(t)
(A,i) and 0(t)

(A,i) respectively. Note that for any x ∈ ΥN ,

0(t)
(A,i)(x) = 1(t)

(A,i)(1−x), and 1(t)
(A,i)(x) = 0(t)

(A,i)(1−x).

Proposition 1. Let G be a semi-parameterized SGA, and
let f be a type 1 pivotal function. Then for any locus k
of Gf , and for any generation t

(a) 1(t)
(Gf ,k) = 0(t)

(Gf ,k)

(b) E
[
⇑(t)

(Gf ,k)

]
= E

[
⇓(t)

(Gf ,k)

]
= 1

2

ARGUMENT: For any generation t, and any locus k,
Part (a) follows by consideration of the symmetry be-
tween 1(t)

(Gf ,k), and 0(t)
(Gf ,k) induced by the type 1 pivotal

function f . Part (b) follows from part (a) and the claim
that for any unparameterized SGA A, any locus i of A,
and for any generation t, E

[
⇑(t)

(A,i)

]
+E

[
⇓(t)

(A,i)

]
= 1.

For a proof of the claim note that if N is the size of the
population of G, then for any generation t, and for any
locus i,∑

z∈ΥN

0(t)
(A,i)(z)z =

∑
z∈ΥN

0(t)
(A,i)(1− z)(1− z)

So, ∑
x∈ΥN

1(t)
(A,i)(x)x+

∑
y∈ΥN

0(t)
(A,i)(y)y

=
∑
x∈ΥN

1(t)
(A,i)(x)x+ 0(t)

(A,i)(1− x)(1− x)

=
∑
x∈ΥN

1(t)
(A,i)(x)x+ 1(t)

(A,i)(x)(1− x)

=
∑
x∈ΥN

1(t)
(A,i)(x)

= 1

Note that proposition 1 holds for any type 1 pivotal
function, and a semi-parameterized SGA with any pop-
ulation size, any commonly used selection operator (e.g.
rank, tournament, fitness proportional etc.), any of the
typical crossover and mutation operators, any mutation
and crossover rates, and any fitness scaling scheme.
Imagine having to prove all of this without appealing to
the symmetries of SGAs with type 1 pivotal functions.

Uniform crossover [1], if present, adds yet another
exploitable symmetry. This form of crossover was pop-
ularized by Syswerda [28], who showed that uni-
form crossover can outperform one-point and two-point



7

crossover on problems ranging from simple (e.g. one
max) to complex (the travelling salesperson problem).
A large amount of evidence for the practical utility of
uniform crossover has since accumulated. Syswerda also
observed that any homologous crossover operation can
be represented by a probability distribution over the set
of binary masks. Only in the case of uniform crossover,
however, can the mask of a crossover operation be given
by a string of independent identically distributed random
binary variables. This absence of positional bias [6] is a
crucial property of uniform crossover that we will exploit
forthwith. For the sake of brevity we call an SGA with
uniform crossover a UGA.

Definition 2. Let f be a type 1 pivotal function with
descriptor (o, δ, σ, `, L, V ). Then the basic form of f
is a type 1 pivotal function with descriptor (o, δ, σ, o +
1, (1, . . . , o), (1, . . . , 1)).

According to this definition if some function f∗ is the
basic form of some type 1 pivotal function f with order
o then the span of f∗ is o + 1. The first o loci of any
input to f∗ will be pivotal, the last locus of any input
to f∗ will be non-pivotal, and the pivotal values used by
f∗ are all ones, We say that a type 1 pivotal function f
with descriptor (o, δ, σ, L, V ) is basic if the basic form
of f is f . Since the last three elements of the descriptor
of f are then derivable from the first three, we write this
descriptor as (o, δ, σ).

Proposition 2. Let A be a semi-parameterized UGA,
let f be a type 1 pivotal function with descriptor
(o, δ, σ, `, L, V ), and let f∗ be the basic form of f . Then,
for any generation t,

(a) For any pivotal locus k, 1(t)
(Af ,k) = 1(t)

(Af∗ ,1)

(b) For any non-pivotal locus k, 1(t)
(Af ,k) = 1(t)

(Af∗ ,o+1)

In other words the one-frequency distribution of any
pivotal locus of Af in some generation t is same as the
one-frequency distribution of the first locus of Af

∗
in

generation t, and the one-frequency distribution of any
non-pivotal locus of Af in generation t is the same as
the one-frequency distribution of the last locus of Af

∗

in generation t.

ARGUMENT: Let f ′ be a type 1 pivotal function with
descriptor (o, δ, σ, `, L, (1, . . . , 1)) . We shortly present
four claims. Part (a) of proposition 2 follows from claim
1(a), claim 2, claim 4 and proposition 1(a). Part (b) of
the above proposition follows from claim 1(b) and claim
3.

Claim 1. For any generation t, we have the following:

(a) For any i ∈ [o], if Vi = 1, then 1(t)

(Af′ ,Li)
= 1(t)

(Af ,Li)
,

otherwise 1(t)

(Af′ ,Li)
= 0(t)

(Af ,Li)
.

(b) For any generation t, and any non-pivotal locus k
of Af

′
, 1(t)

(Af′ ,k)
= 1(t)

(Af ,k)

Claim 2. For any generation t, and any i ∈ [o],

1(t)
(Af∗ ,i)

= 1(t)

(Af′ ,Li)

Claim 3. For any generation t, and any non-pivotal
locus k of Af , 1(t)

(Af∗ ,o+1)
= 1(t)

(Af′ ,k)

Claim 4. For any generation t,

1(t)
(Af∗ ,1)

= 1(t)
(Af∗ ,2)

= . . . = 1(t)
(Af∗ ,o)

Claim 1 follows from the observation that in any
generation the population of Af can be “changed into”
the population of Af

′
and vice versa by a simple 0↔ 1

relabeling of all genomic bits at those pivotal loci of A
whose corresponding pivotal values are 0.

Claims 2 follows by consideration of the symmetry
between loci L1, . . . , Lo of Af

′
and loci 1, . . . , o of

Af
∗

respectively. Claim 3 follows by consideration of
the symmetry between any non-pivotal locus of Af

′
and

locus o+ 1 of Af
∗
. These symmetries follows from the

absence of positional bias in uniform crossover and from
the definition of the ladder functions f∗ and f ′.

To make these symmetries manifest, we offer the two
“vertical views” shown in Figure 2. Figure 2(a) shows
a hypothetical population of Af

′
with three pivotal loci

(whose locations are marked by shaded columns). Given
the definition of the fitness function of Af

′
, it is easy

to see that the fitness of any genome depends only
upon the value of that genome’s bits at the pivotal loci.
Thus only the bits in the shaded columns of Figure
2(a) matter in determining a genome’s fitness, and by
extension its chance of being selected (note that this
is true regardless of the selection scheme used). Figure
2(b) shows a “vertical view” of a hypothetical uniform
crossover operation in Af

′
. Two genomes, x and y,

have been selected for uniform crossover. The crossover
mask m is represented as a string of random binary
variables. The values of these variables determines the
bits of the child z. Because crossover is uniform, the
random variables in m are independent and identically
distributed.

Claim 4 follows from the symmetry that exists be-
tween each of the first o loci of Af

∗
. This symmetry

follows from the absence of positional bias in uniform
crossover, and from the definition of the fitness function
used by Af

∗
. �



8

1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0
0 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 0
1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 1 0
1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1
1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0
1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

(a) “Vertical view” of a hypothetical population. Each row is a genome

x = 1 0 0 1 0 0 1 1 1 0 1 0 1 1 0 0 1 0
m = X1 X2 X3 X4 X5 X6 X7 X8 X9 X10X11X12X13X14X16X16X17X18

y = 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 1 0 1
z = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

(b) “Vertical view” of a hypothetical crossover operation

Fig. 2. Subfigure (a) shows a “vertical view” of a hypothetical population. Each row is a genome. The shaded columns show the positions
of three hypothetical pivotal loci. By the definition of a type 1 pivotal function (see text), only the bits in the shaded columns matter during
selection. Subfigure (b) shows a “vertical view” of a hypothetical crossover operation. Two parents, x and y are about to undergo uniform
crossover which will yield a child z. The bits of z will be determined by the values of the independent identically distributed random binary
variables that comprise the mask m.

By proposition 2(a), for any pivotal locus k of Af ,
drawing monte-carlo samples from 1(t)

(Af∗,1) is equivalent

to drawing monte-carlo samples from 1(t)
(Af ,k). And by

proposition 2(b), for any non-pivotal locus k of Af ,
drawing monte-carlo samples from 1(t)

(Af∗ ,o+1)
is equiv-

alent to drawing monte-carlo samples from 1(t)
(Af ,k).

B. Experiment 1

Let W denote the semi-parameterized UGA described
in the materials and methods section in the appendix,
and let f∗1 denote a basic type 1 pivotal function with
descriptor (o = 3, δ = 0.18, σ = 1). Figure 3 shows
the one-frequency dynamics of the first and last locus of
W f∗1 in each of 3000 runs. In all 3000 runs the first locus
went to fixation3 by the 200th generation, whereas the
one-frequency of the last locus in the 200th generation
was always between 0.9 and 0.1.

In order to clearly describe the rest of our findings
we develop the following notation. We denote a schema

3We use the term ‘fixation’ loosely. Clearly, as long as the mutation
rate is non zero, no locus can ever be said to go to fixation in the
strict sense of the word.

partition [18] by a tuple consisting of the indices of
the defining positions of that schema partition—e.g.
(2, 15, 3). The order of a schema partition Γ, denoted
by o(Γ), is the number of elements in some tuple that
denotes Γ. The denotation of a schema is dependent on
the denotation of the schema-partition that the schema
belongs to. For any genome g, let gi denote the ith bit of
g. Given a schema partition denoted by some tuple Γ, the
schemata in this partition are denoted by binary strings
of length o(Γ). Let b1, . . . , bo(Γ) be some bits. Then,
b1 . . . bo(Γ) denotes the schema consisting of the genomes
{g|gΓ1

= b1 ∧ . . . ∧ gΓo(Γ) = bo(Γ)}. The denotation of
the relevant schema partition must always be borne in
mind when interpreting a denoted schema..

In addition to the findings reported above, we found
that 200 generations into each run of W f∗1 , either the
schema 000, or the schema 111, of the schema partition
(1, 2, 3), dominated the population. The average fraction
of the population that belonged to the dominant schema
at the end of 200 generations was 0.9563 (with standard
error 1.56× 10−4).

Given the conclusions of our symmetry analysis, the
result shown in Figure 3 provides us with a window into



9

Fig. 3. The one-frequency dynamics of the first (left) and fourth (right) loci of the UGA W f∗1

the frequency dynamics of any UGA W f1 , where f1 is a
type 1 pivotal function whose basic form is f∗1 . We infer
that the pivotal loci of W f1 will tend to go to fixation by
the 200th generation. We also infer that the divergence
from 0.5 of the one-frequencies of the non-pivotal loci
of W f1 will tend not to be not extreme.

We now explain the behavior of W f1 that we have just
deduced. Note that while this discussion is speculative
and imprecise, it is entirely tangential to our aim of
identifying computational competencies of the SGA. The
one-frequency dynamics of the non-pivotal loci of W f1

is easily explained by the notion of drift. To understand
the frequency dynamics of the pivotal loci, it helps to
go back to the “vertical views” presented in Figure 2.
Observe that discounting the effect of sampling error,
only selection and mutation have an effect on the compo-
sition of the bit-pool of each locus4. Crucially, crossover
does not change the composition of these bit-pools. Now,
let x1, x2, and x3 denote the indices of the pivotal loci
of W f1 , and, without loss of generality, suppose that
the pivotal values of the first, second, and third pivotal
loci are 0, 1, and 0 respectively. Consider the frequency
dynamics of the schema 010 of the schema partition
〈x1, x2, x3〉. The probability of generating genomes of
type 010 in some generation is highly (though not com-
pletely) dependent upon the composition of the bit-pools
of the pivotal loci in the previous generation. A genome

4Changes in the one and zero frequencies of a locus can be
visualized as changes in the composition of a pool of bits. The bit-
pool metaphor is especially useful in conjunction with the “vertical
view” of a population presented in figure 2(a); each column can be
thought of as a pool of bits

of type 010, once generated, will tend to be preferentially
selected over all other genomes except those that belong
to the “sibling” schema 101. Thus, regardless of what
happens during crossover, once generated, a genome of
type 010 will tend to increase the frequency of 0, 1,
and 0 in the bit-pools of the first, second, and third
pivotal loci respectively. This makes conditions more
favorable for the generation of genomes of type 010
in future generations. Of course, the same argument
applies to genomes of type 101. Now, given that the
alleles 1 and 0 are, in a sense,“rivals” of each other at
each locus, the schemata 010 and 101 “compete” for
dominance of the bit-pools of each of the pivotal loci.
One of these schemata eventually manages to gain an
edge in “pulling” the composition of the bit-pools of
all three pivotal loci far enough in it’s favor that a self-
reinforcing loop that heavily favors the future generation
of the victorious schema then ensues.

In light of this analysis, one can conclude that the
building block hypothesis [11], [18], [14] takes an
overly-grim view of the disruption of fit low-order
schemata with high defining-lengths. This view misses
the fact that the “debris” from the disruption of such a
schema changes the composition of the bit-pools at the
defining positions of that schema in a way that favors the
future generation of genomes belonging to the schema.

C. A Computational Competency of the SGA

Consider Algorithm 1. The results of our experiment
with W f∗ suggest that when CLASSIFYLOCI 200 is
applied to f1, it will classify each locus of f1 fairly



10

Algorithm 1: CLASSIFYLOCI n

Input: a type 1 or type 2 pivotal function f
`=span of f
pivotalLoci ={}
nonPivotalLoci ={}
P = population of W f after n generations
for i = 1 to ` do

x = one-frequency of locus i in population P
if 0.1 ≤ x and x ≤ 0.9 then

nonpivotalLoci = nonPivotalLoci ∪ {i}
else

pivotalLoci = pivotalLoci ∪ {i}
end

end
return pivotalLoci, nonPivotalLoci

accurately. Let us quantify this accuracy. Note that in all
3000 runs of W f∗1 , by the end of the 200th generation,
the one-frequency of the first locus was outside the
interval [0.1, 0.9], and the one-frequency of the last locus
was inside this interval. Let a be the probability that the
one-frequency of the first locus of W f∗1 will be inside
[0.1 0.9] at the end of the 200th generation. Let H0 be
the hypothesis that a ≥ 0.005. If H0 is true then the
probability that the one-frequency of the first locus will
be outside [0.1, 0.9] at the end of the 200th generation in
each of 3000 runs (as observed in the above experiment)
is less than (1 − 0.005)3000 < 3 × 10−7. Therefore we
reject H0 at the 3 × 10−7 level of significance. Now
consider the hypothesis that with probability greater than
or equal to 0.005 the one-frequency of the last locus of
W f∗1 will be outside the interval [0.1,0.9] at the end of
200 generations. Using very similar reasoning we reject
this hypothesis at the 3×10−7 level of significance. Thus,
with probability of error less than three in ten million, the
following statement is true: for any locus k of f1, there
is less than a 0.005 probability that CLASSIFYLOCI 200
will misclassify locus k.

Note that `, may be any positive integer greater than
3. There are

(
`
3

)
∈ Ω(`3) possible combinations of the

three pivotal indices5. Remarkably, CLASSIFYLOCI 200
achieves the level of robustness mentioned above (p <
0.005 per locus) in time that is linear in `, after making
some number of fitness evaluations that is constant with
respect to `

IV. TYPE 2 PIVOTAL FUNCTIONS

If the order o of a type 1 pivotal function is greater
than one, then even though no individual locus will have

5To obtain this bound we have used the inequality (n/k)k ≤
(

n
k

)
.

See [29].

differentiated marginal effects, certain combinations of
two loci, will have differentiated (multilocus) marginal
effects (specifically, those combinations in which both
loci are pivotal). Thus for any o > 1, loci can be
classified as pivotal or non-pivotal with a fixed level
of robustness using a combinatorial DMT strategy that
visits some number of two-locus combinations that is
quadratic in the span of the pivotal function6. Type 2
pivotal functions are expressly defined so that for any
even order o, and any positive integer m < o, no
combination of m loci will have differentiated marginal
effects.

Let ⊕ denote the exclusive-or operator (also the binary
addition modulo 2 operator). Type 2 pivotal functions are
defined as follows:

Definition 3. Let ψ = (o, σ, δ, `, L) be a 5-tuple such
that o is a positive even integer, σ and δ are positive real
numbers, ` is a positive integer greater than o, and L is
an o-tuple of positive integers in [`] sorted in ascending
order. A type 2 pivotal function with descriptor ψ is a
stochastic function f which behaves as follows: for any
input bitstring g, if gL1 ⊕ . . .⊕ gLo

= 1 then f returns a
value drawn from N (δ, σ2), otherwise f returns a value
drawn from N (−δ, σ2).

The order of a type 2 pivotal function is always even;
furthermore, no pivotal values are associated with the
pivotal loci.

Let f be some type 2 pivotal function with span `.
Observe that for any bitstring g of length `, f(g) = f(g).
Observe also that as ⊕ is associative and commutative,
the order in which it is applied to the pivotal bits of some
bitstring is immaterial. Both of these observations reveal
symmetries of f that we will exploit forthwith. These
symmetries can also be seen in Table II, which shows
the marginal of the pivotal loci of some type 2 pivotal
function with increment δ, and order four.

Finally observe that for any type 2 pivotal function
with order o, the multilocus marginal of any combination
of m < o alleles of distinct loci will not be differentiated.
Thus the time complexity of a combinatorial DMT
strategy that robustly identifies the pivotal loci is Ω(`o).

Let f be a type 2 pivotal function with descriptor (o =
4, δ = 0.25, σ = 1, `, L). We now show that a UGA
can identify the pivotal loci of f relatively robustly (with
less than a 0.005 chance of misclassification per locus)

6As o increases, the constant associated with this scaling relation-
ship will increase very quickly. Nevertheless for any fixed value of o,
the number of combinations that must be visited scales quadratically
with the span of a type 1 pivotal function.



11

A B C D
Expected

Marginal Values
0 0 0 0 −δ
0 0 0 1 +δ
0 0 1 0 +δ
0 0 1 1 −δ
0 1 0 0 +δ
0 1 0 1 −δ
0 1 1 0 −δ
0 1 1 1 +δ
1 0 0 0 +δ
1 0 0 1 −δ
1 0 1 0 −δ
1 0 1 1 +δ
1 1 0 0 −δ
1 1 0 1 +δ
1 1 1 0 +δ
1 1 1 1 −δ

TABLE II
THE EXPECTED MARGINAL OF THE PIVOTAL LOCI OF A TYPE 2

PIVOTAL FUNCTION

in time that is linear in `, and with some number of
queries that is constant with respect to `. Our approach
is almost identical to the approach we took in Section III,
where we showed a similar result for a class of pivotal
functions of type 1.

A. Symmetry Analysis

We define the basic form of a type 2 pivotal function
as follows:

Definition 4. Let f be some type 2 pivotal function with
descriptor (o, δ, σ, `, L). We define the basic form of f to
be a type 2 pivotal function with descriptor (o, δ, σ, o+
1, (1, . . . , o))

Let f be a type II pivotal function with descriptor
(o, δ, σ, `, L, V ). We say that f is basic if the basic form
of f is f . Since the last two elements of the descriptor
of f are derivable from the first three, we write this
descriptor as (o, δ, σ).

Proposition 3. Let A be a semi-parameterized UGA,
let f be a type 2 pivotal function with descriptor
(o, δ, σ, `, L, V ), and let f∗ be the basic form of f . Then,
for any generation t,

(a) For any pivotal locus k, 1(t)
(Af ,k) = 1(t)

(Af∗ ,1)

(b) For any non-pivotal locus k, 1(t)
(Af ,k) = 1(t)

(Af∗ ,o+1)

This proposition is almost word-for-word identical to
Proposition 2. Likewise the argument for this proposi-
tion, is very similar to the argument for Proposition 2.

We omit this argument on the assumption that it will
be clear to readers who have digested the argument for
Proposition 2.

By proposition 3(a), for any pivotal locus k of Af ,
drawing monte-carlo samples from 1(t)

(Af∗,1) is equivalent

to drawing monte-carlo samples from 1(t)
(Af ,k). And by

proposition 3(b), for any non-pivotal locus k of Af ,
drawing monte-carlo samples from 1(t)

(Af∗ ,o+1)
is equiv-

alent to drawing monte-carlo samples from 1(t)
(Af ,k).

B. Experiment 2

Recall that W denotes the semi-parameterized UGA
described in the materials and methods section in the ap-
pendix. Let f∗2 denote a basic type 2 pivotal function with
descriptor (o = 4, δ = 0.25, σ = 1). We executed 3000
runs of the UGA W f∗2 . The one-frequency dynamics of
the first and last loci in each run is plotted in Figure
4. In all 3000 runs the first locus went to fixation by
generation 1000, whereas the one-frequency of the last
locus in generation 1000 was always between 0.9 and
0.1. We found that 1000 generations into each run the
population was dominated by some schema b1b2b3b4 of
the schema partition (1, 2, 3, 4) with b1⊕b2⊕b3⊕b4 = 1.
On average the fraction of the population that belonged
to the dominant schema in generation 1000 was 0.9634
(with standard error 1.22× 10−4).

Let f2 be a type 2 pivotal function with span ` such
that the basic form of f2 is f∗2 . The conclusions of our
symmetry analysis of type 2 pivotal fitness functions,
and the result shown in Figure 4 provide us with a
window into the frequency dynamics of all pivotal and
non-pivotal loci of W f2 .

C. A Second Computational Competency of the SGA

Based on arguments that are almost identical to the
ones in section III-C we conclude, with probability of
error less than three in ten million, that the following
statement is true: For any locus of f2, the probability that
the locus will be misclassified by CLASSIFYLOCI 1000
is less than a 0.005. There are

(
`
4

)
∈ Ω(`4) possi-

ble configurations of the pivotal indices. Remarkably,
CLASSIFYLOCI 1000 achieves the level of robustness
mentioned above (p < 0.005 per locus) in time that
is linear in `, after making some number of fitness
evaluations that is constant with respect to `.

It merits mentioning that both the computational com-
petencies showcased in this paper are essentially invisi-
ble to analytic approaches in which an infinite population



12

Fig. 4. The one-frequency dynamics of the first (left) and fifth (right) loci of the UGA W f∗2

is assumed (e.g. [30], [4], [3]). This is because without
some kind of symmetry breaking, the one and zero
frequencies of the pivotal loci will not depart from 1/2.
The role of symmetry breaking is performed here by
sampling error which is absent in infinite population
models of genetic algorithms.

V. CONCLUSION

This paper can be viewed as a response of sorts
to the nihilism that the no free lunch theorems [31]
have inspired. As mentioned in the introduction, no free
lunch theorems are frequently, if subliminally, regarded
as “proof” that in the practice of black-box optimization,
one search algorithm is as good as another. If this is
indeed the case, then genetic algorithms have no special
advantage over other search algorithms; the fortuitous
paring of optimization problem with search algorithm is
all. Effort toward the identification of computational ef-
ficiencies underlying the genetic algorithm’s capacity for
practical blackbox optimization then seems misplaced.

Nihilism of this sort is puzzling given the frequency
with which genetic algorithms are successfully applied
as black-box optimization algorithms in practice. The
importance accorded to Wolpert and Mcready’s results
seems to be a reaction, or rather, an overreaction, to the
empirical discovery of serious flaws [19], [8], [17] in
certain widely accepted statements about the computa-
tional efficiency of the simple genetic algorithm; these
statements came to be regarded as fact because of an un-
clear demarcation between mathematical deduction and
speculation in the early genetic algorithmics literature
[5].

It is important to emphasize that the problem was
not speculation itself but the blurring of the boundary
between deduction and speculation. If the mistakes of
the past are not to be revisited, this boundary must be
clearly maintained at all times. Accordingly, we have
distinguished between a computational competency of
the SGA—a specific computational efficiency that can be
derived deductively7—and a computational proficiency
of the SGA—a general computational efficiency that is
inferred inductively from a set of related computational
competencies.

In this paper we have derived two closely related
computational competencies of the SGA. The general
domain in which these competencies lie is noteworthy.
A central explanandum of the field of genetic algorith-
mics, and indeed, of the field of evolutionary biology,
is the persistence of adaptation in sexually evolving
populations despite the ubiquity of epistatic interactions
between unlinked genomic loci. That the SGA can, in
particular cases, robustly and scalably “identify” small
numbers of unlinked epistatically interacting loci with
no main effects, and moreover, that the SGA does so by
sending specific genotypes with above average fitness
to fixation, is likely to be material to theories about
the adaptive prowess of both the genetic algorithm and
natural evolution.

7We clarify here that we offer the symmetry arguments presented
in this paper as deductive arguments. These results have, of course,
not been derived within some formal axiomatic system. However, to
argue that this automatically makes our arguments non-deductive is
to argue that deduction played a very limited role in mathematics
before the nineteenth century.



13

REFERENCES

[1] D.H. Ackley. A connectionist machine for genetic hillclimbing.
Kluwer Academic Publishers, 1987.

[2] James E. Baker. Adaptive selection methods for genetic
algorithms. In John J. Grefenstette, editor, Proceedings of the
First International Conference on Genetic Algorithms and Their
Applications. Lawrence Erlbaum Associates, Publishers, 1985.

[3] Keki Burjorjee. Sufficient conditions for coarse-graining evo-
lutionary dynamics. In Foundations of Genetic Algorithms 9
(FOGA IX), 2007.

[4] Keki Burjorjee and Jordan B. Pollack. A general coarse-
graining framework for studying simultaneous inter-population
constraints induced by evolutionary operations. In GECCO
2006: Proceedings of the 8th annual conference on Genetic
and evolutionary computation. ACM Press, 2006.

[5] Keki M. Burjorjee. The fundamental problem with the building
block hypothesis. CoRR, abs/0810.3356, 2008.

[6] L.J. Eshelman, R.A. Caruana, and J.D. Schaffer. Biases in
the crossover landscape. Proceedings of the third international
conference on Genetic algorithms table of contents, pages 10–
19, 1989.

[7] David B. Fogel. Evolutionary Computation: Toward a New
Philosophy of Machine Intelligence. IEEE Press, NY, 2000.

[8] Stephanie Forrest and Melanie Mitchell. Relative building-block
fitness and the building-block hypothesis. In L. Darrell Whitley,
editor, Foundations of Genetic Algorithms 2, pages 109–126,
San Mateo, CA, 1993. Morgan Kaufmann.

[9] W. N. Frankel and N. J. Schork. Who’s afraid of epistasis.
Nature Genetics, 14:371–373, 1996.

[10] A.A. Freitas. Understanding the Crucial Role of Attribute
Interaction in Data Mining. Artificial Intelligence Review,
16(3):177–199, 2001.

[11] David E. Goldberg. Genetic Algorithms in Search, Optimization
& Machine Learning. Addison-Wesley, Reading, MA, 1989.

[12] David E. Goldberg. The Design Of Innovation. Kluwer
Academic Publishers, 2002.

[13] Daniel L. Hartl. A Primer Of Population Genetics. Harvard
University Press, 2000.

[14] John H. Holland. Building blocks, cohort genetic algorithms,
and hyperplane-defined functions. Evolutionary Computation,
8(4):373–391, 2000.

[15] Christian Igel and Marc Toussaint. Recent
results on no-free-lunch theorems for optimization,
March 31 2003. Comment: 10 pages, LaTeX, see
http://www.neuroinformatik.rub.de/PROJECTS/SONN/.

[16] E.T. Jaynes. Probability Theory: The Logic of Science. Cam-
bridge University Press, 2007.

[17] M. Mitchell, J.H. Holland, and S. Forrest. When Will a Genetic
Algorithm Outperform Hill Climbing? Advances in Neural
Information Processing Systems, pages 51–51, 1994.

[18] Melanie Mitchell. An Introduction to Genetic Algorithms. The
MIT Press, Cambridge, MA, 1996.

[19] Melanie Mitchell, Stephanie Forrest, and John H. Holland. The
royal road for genetic algorithms: Fitness landscapes and GA
performance. In F. J. Varela and P. Bourgine, editors, Proc. of
the First European Conference on Artificial Life, pages 245–
254, Cambridge, MA, 1992. MIT Press.

[20] Jason Moore. The critical need for computation in human genet-
ics. http://www.reviews.com/hottopic/hottopic essay 07.cfm,
2008.

[21] Jason H. Moore and M.D. Ritchie. The challenges of whole-
genome approaches to common diseases. Journal of the
American Medical Association, 291:1642–1643, 2004.

[22] J.H. Moore. The Ubiquitous Nature of Epistasis in Determining
Susceptibility to Common Human Diseases. Hum Hered,
56:73–82, 2003.

[23] Nagel, E. and Newman, J. R. Gödel’s Proof. New York Univ.
Press, 2001.

[24] A.E. Nix and M.D. Vose. Modeling genetic algorithms with
Markov chains. Annals of Mathematics and Artificial Intelli-
gence, 5(1):79–88, 1992.

[25] M. Pelikan. Hierarchical Bayesian Optimization Algorithms.
Springer Verlag, 2005.

[26] Martin Pelikan, Kumara Sastry, and Erick Cantú-Paz, editors.
Scalable Optimization via Probabilistic Modeling, volume 33
of Studies in Computational Intelligence. Springer, 2006.

[27] C.R. Reeves and J.E. Rowe. Genetic Algorithms: Principles
and Perspectives: a Guide to GA Theory. Kluwer Academic
Publishers, 2003.

[28] G. Syswerda. Uniform crossover in genetic algorithms. In
J. D. Schaffer, editor, Proceeding of the Third International
Conference on Genetic Algorithms. Morgan Kaufmann, 1989.

[29] R. L. Rivest T. H. Cormen, C. H. Leiserson. Introduction to
Algorithms. McGraw-Hill, 1990.

[30] Michael D. Vose and Gunar E. Liepins. Punctuated equlibria in
genetic search. Complex Systems, 5(1):31–44, February 1991.

[31] David H. Wolpert and William G. Macready. No free lunch
theorems for optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67–82, April 1997.

[32] Y. Xing, Y. Tan, J. Hua, X. Sun, C. Xu, and Q. Zhang.
Characterization of the main effects, epistatic effects and their
environmental interactions of QTLs on the genetic basis of
yield traits in rice. TAG Theoretical and Applied Genetics,
105(2):248–257, 2002.

APPENDIX

MATERIALS AND METHODS

The arguments in this paper rest not just on the
qualitative behavior of the semi-parameterized UGA we
used, but on aspects of it’s quantitative behavior. It is
therefore necessary to describe this UGA in sufficient
detail that these aspects can be reproduced. While we
believe that the description given below is sufficient to
reproduce all quantitative aspects of the behavior of our
UGA that are relevant to our proofs, small differences
in implementation may interfere with reproducibility.
We therefore release the Matlab code for the semi-
parameterized UGA that we used. This code, along with
the code for the pivotal fitness functions used is available
for download8.

The semi-parameterized UGA we used (denoted by W
in this paper) implements the specification for a simple
genetic algorithm given by Mitchell [18, p 10], with two
exceptions:

1) In each generation, right after evaluating the fitness
of all individuals, our UGA used sigma scaling
[18, p 167] to adjust the fitness of each individual,

8http://cs.brandeis.edu/∼kekib/competenciesMatlab.zip

http://cs.brandeis.edu/~kekib/competenciesMatlab.zip


14

and used this adjusted fitness when selecting the
parents of that generation. Suppose f

(t)
x is the

fitness of some individual x in some generation t,
and suppose the average fitness and standard devi-
ation of the fitness of the individuals in generation
t are given by f (t) and σ(t) respectively, then the
adjusted fitness of x in generation t is given by
h

(t)
x where, if σ(t) = 0 then h(t)

x = 1, otherwise,

h(t)
x = min(0, 1 +

f
(t)
x − f (t)

σ(t)
)

2) The SGA used universal stochastic sampling [2]
[18, p 166] to select parents.

Selection is fitness-proportionate. the population size
is 1500, the probability of crossover is one, and bit-flip
mutation with a mutation rate of 0.003 per bit is used.


	Introduction
	Computational Competencies and Proficiencies
	Epistatically Interacting QTLs

	Our Mode of Analysis
	Type 1 Pivotal Functions
	Symmetry Analysis
	Experiment 1
	A Computational Competency of the SGA

	Type 2 Pivotal Functions
	Symmetry Analysis
	Experiment 2
	A Second Computational Competency of the SGA

	Conclusion
	References
	Appendix

