A General Coarse-Graining Framework for Studying Simultaneous Inter-Population Constraints Induced by Evolutionary Operations

Keki Burjorjee & Jordan B. Pollack

DEMO Lab
Computer Science Department
Brandeis University

July 10, 2006
Assume there is some population in some evolutionary system (GA, GP, ES, etc.)

- Call it p

Suppose that either selection or variation is applied to p

- Call the resulting population q

What are the constraints on the composition of q?
Assume there is some population in some evolutionary system (GA, GP, ES, etc.)

- Call it \(p \)

Suppose that either selection or variation is applied to \(p \)

- Call the resulting population \(q \)

\[
p \xrightarrow{\mathcal{W}} q
\]

What are the constraints on the composition of \(q \)?
What are the constraints on the composition of q?

- Can q be any population?
- (Clearly) No. Its composition will be constrained by
 - The composition of p
 - Which evolutionary operation \mathcal{W} is

Terminology

- p: pre-operative population of \mathcal{W}
- q: post-operative population of \mathcal{W}

An inter-population constraint is a constraint that an evolutionary operation induces between any pre and post operative populations.
What are the constraints on the composition of q?

Can q be any population?

(Clearly) No. Its composition will be constrained by the composition of p.

An inter-population constraint is a constraint that an evolutionary operation induces between any pre and post operative populations.
Introduction

Elements of the General Coarsegraining Framework
Inter-Pop. Constraints Induced by Selection And Variation
Reduction to a Framework for Studying Population Marginals

Inter-Population Constraints

What are the constraints on the composition of q?
Can q be any population?
(Clearly) No. Its composition will be constrained by
 The composition of p
 Which evolutionary operation \mathcal{W} is

Terminology
 p: pre-operative population of \mathcal{W}
 q: post-operative population of \mathcal{W}

An inter-population constraint is a constraint that an
evolutionary operation induces between any pre and post
operative populations

$p \xrightarrow{\mathcal{W}} q$
What are the constraints on the composition of q?
Can q be any population?
(Clearly) No. Its composition will be constrained by
- The composition of p
- Which evolutionary operation \mathcal{W} is

Terminology
- p: pre-operative population of \mathcal{W}
- q: post-operative population of \mathcal{W}

An inter-population constraint is a constraint that an evolutionary operation induces between any pre and post operative populations
What are the constraints on the composition of q?
Can q be any population?
(Clearly) No. Its composition will be constrained by
- The composition of p
- Which evolutionary operation \mathcal{W} is

Terminology
- p: pre-operative population of \mathcal{W}
- q: post-operative population of \mathcal{W}

An inter-population constraint is a constraint that an evolutionary operation induces between any pre and post operative populations
The Schema Theoretic approach is to:

1. Define a grammar for specifying schemata, then
2. Derive a schema theorem that describes how evolutionary operations alter the frequencies of schemata

The conditions for applicability of each schema theorem are very strict.

Each theory applicable only when

- Genotypes are of a particular datastructure
- Particular variation operators are used
- Schemata are defined in a particular way

The results of each schema theorem do not carry over when any of these change.
Schema Theoretic Approach to Deriving Inter-population Constraints

- The Schema Theoretic approach is to:
 1. Define a grammar for specifying schemata, then
 2. Derive a schema theorem that describes how evolutionary operations alter the frequencies of schemata

- The conditions for applicability of each schema theorem are very strict

- Each theory applicable only when
 - Genotypes are of a particular datastructure
 - Particular variation operators are used
 - Schemata are defined in a particular way

- The results of each schema theorem do not carry over when any of these change
Schema Theoretic Approach to Deriving Inter-population Constraints

- The Schema Theoretic approach is to:
 1. Define a grammar for specifying schemata, then
 2. Derive a schema theorem that describes how evolutionary operations alter the frequencies of schemata

- The conditions for applicability of each schema theorem are very strict

- Each theory applicable only when
 - Genotypes are of a particular datastructure
 - Particular variation operators are used
 - Schemata are defined in a particular way

- The results of each schema theorem do not carry over when any of these change
The Schema Theoretic approach is to:

1. Define a grammar for specifying schemata, then
2. Derive a schema theorem that describes how evolutionary operations alter the frequencies of schemata

The conditions for applicability of each schema theorem are very strict.

Each theory applicable only when

- Genotypes are of a particular datastructure
- Particular variation operators are used
- Schemata are defined in a particular way

The results of each schema theorem do not carry over when any of these change.
The Schema Theoretic approach is to:

1. Define a grammar for specifying schemata, then
2. Derive a schema theorem that describes how evolutionary operations alter the frequencies of schemata

The conditions for applicability of each schema theorem are very strict.

Each theory applicable only when:

- Genotypes are of a particular datastructure
- Particular variation operators are used
- Schemata are defined in a particular way

The results of each schema theorem do not carry over when any of these change.
The Schema Theoretic approach is to:

1. Define a grammar for specifying schemata, then
2. Derive a schema theorem that describes how evolutionary operations alter the frequencies of schemata

The conditions for applicability of each schema theorem are very strict.

Each theory applicable only when:

- Genotypes are of a particular datastructure
- Particular variation operators are used
- Schemata are defined in a particular way

The results of each schema theorem do not carry over when any of these change.
Schema Theoretic Approach to Deriving Inter-population Constraints

- The Schema Theoretic approach is to:
 1. Define a grammar for specifying schemata, then
 2. Derive a schema theorem that describes how evolutionary operations alter the frequencies of schemata

- The **conditions for applicability** of each schema theorem are very strict.

- Each theory applicable *only* when
 - Genotypes are of a particular datastructure
 - Particular variation operators are used
 - Schemata are defined in a particular way

- The **results** of each schema theorem do *not* carry over when any of these change
A Different Technique for Deriving Inter-Population Constraints

- Form Invariant Commutation: a different technique for deriving inter-population constraints
- Uses coarse-grainings
- A coarse-graining is just a function from the genotype set to some set
 - e.g. if G is a genotype set and K is some set then $\beta : G \rightarrow K$ is a coarse-graining
A Different Technique for Deriving Inter-Population Constraints

- Form Invariant Commutation: a different technique for deriving inter-population constraints
- Uses coarse-grainings
- A coarse-graining is just a function from the genotype set to some set
 - e.g. if G is a genotype set and K is some set then $\beta : G \rightarrow K$ is a coarse-graining
A Different Technique for Deriving Inter-Population Constraints

- Form Invariant Commutation: a different technique for deriving inter-population constraints
- Uses coarse-grainings
- A coarse-graining is just a function from the genotype set to some set
 - e.g. if G is a genotype set and K is some set then $\beta : G \rightarrow K$ is a coarse-graining
A Different Technique for Deriving Inter-Population Constraints

- Form Invariant Commutation: a different technique for deriving inter-population constraints
- Uses coarse-grainings
- A coarse-graining is just a function from the genotype set to some set
 - e.g. if G is a genotype set and K is some set then $\beta : G \to K$ is a coarse-graining
An Abstract Coarse-Graining Framework

- Present a framework that uses form invariant commutation to obtain theorems about the inter-population constraints induced by evolutionary operations.
- Framework is *abstract* in that unlike various schema theories, applicability of theorems in this framework is *not* limited by:
 - a specific genotypic datastructure, or
 - specific variation operators, or
 - a specific grammar for defining schemata.
- Rather, applicability of results is limited by whether an *abstract relationship* exists between the variation operators and coarse-grainings used.
 - Relationship is called *Ambivalence*.
An Abstract Coarse-Graining Framework

Present a framework that uses form invariant commutation to obtain theorems about the inter-population constraints induced by evolutionary operations.

Framework is *abstract* in that unlike various schema theories, applicability of theorems in this framework is *not* limited by:

- a specific genotypic datastructure, or
- specific variation operators, or
- a specific grammar for defining schemata.

Rather, applicability of results is limited by whether an abstract relationship exists between the variation operators and coarse-grainings used.

Relationship is called Ambivalence.
An Abstract Coarse-Graining Framework

- Present a framework that uses form invariant commutation to obtain theorems about the inter-population constraints induced by evolutionary operations.
- Framework is *abstract* in that unlike various schema theories, applicability of theorems in this framework is *not* limited by:
 - a specific genotypic datastructure, or
 - specific variation operators, or
 - a specific grammar for defining schemata
- Rather, applicability of results is limited by whether an *abstract relationship* exists between the variation operators and coarse-grainings used.
- Relationship is called Ambivalence.
An Abstract Coarse-Graining Framework

- Present a framework that uses form invariant commutation to obtain theorems about the inter-population constraints induced by evolutionary operations.
- Framework is *abstract* in that unlike various schema theories, the applicability of theorems in this framework is *not* limited by:
 - a specific genotypic datastructure, or
 - specific variation operators, or
 - a specific grammar for defining schemata.
- Rather, the applicability of results is limited by whether an abstract relationship exists between the variation operators and coarse-grainings used.
 - Relationship is called Ambivalence.
An Abstract Coarse-Graining Framework

- Present a framework that uses form invariant commutation to obtain theorems about the inter-population constraints induced by evolutionary operations
- Framework is *abstract* in that unlike various schema theories applicability of theorems in this framework is *not* limited by
 - a specific genotypic datastructure, or
 - specific variation operators, or
 - a specific grammar for defining schemata
- Rather applicability of results is limited by whether an abstract relationship exists between the variation operators and coarse-grainings used
 - Relationship is called Ambivalence
An Abstract Coarse-Graining Framework

- Present a framework that uses form invariant commutation to obtain theorems about the inter-population constraints induced by evolutionary operations
- Framework is abstract in that unlike various schema theories, applicability of theorems in this framework is not limited by:
 - a specific genotypic datastructure, or
 - specific variation operators, or
 - a specific grammar for defining schemata
- Rather, applicability of results is limited by whether an abstract relationship exists between the variation operators and coarse-grainings used
 - Relationship is called Ambivalence
An Abstract Coarse-Graining Framework

- Present a framework that uses form invariant commutation to obtain theorems about the inter-population constraints induced by evolutionary operations.
- Framework is *abstract* in that unlike various schema theories, applicability of theorems in this framework is *not* limited by:
 - a specific genotypic datastructure, or
 - specific variation operators, or
 - a specific grammar for defining schemata.
- Rather applicability of results is limited by whether an abstract relationship exists between the variation operators and coarse-grainings used.
 - Relationship is called *Ambivalence*
Benefits of this Framework

- Given some
 - fitness proportional evolutionary system, and some
 - coarse-graining

 Easy to determine whether this framework is useful for deriving inter-population constraints
 - Just check if the ambivalence relationship holds

- Determination of whether schema analysis is useful typically proceeds by “trying to do the schema analysis”

- Once it is determined that this framework is useful, burden of analysis is greatly reduced
 - The “grunt work” is done by the “machinery” of the framework

- Framework accommodates multi-parent variation operators in a natural way

- For the set of fixed length bitstring GAs with ‘common’ variation operations
 - General framework reduces to a specific framework for analyzing the effect of one evolutionary step on the marginal distributions of populations
Benefits of this Framework

- Given some
 - fitness proportional evolutionary system, and some
 - coarse-graining

 Easy to determine whether this framework is useful for deriving inter-population constraints

 - Just check if the ambivalence relationship holds

- Determination of whether schema analysis is useful typically proceeds by “trying to do the schema analysis”

- Once it is determined that this framework is useful, burden of analysis is greatly reduced

 - The “grunt work” is done by the “machinery” of the framework

- Framework accommodates multi-parent variation operators in a natural way

- For the set of fixed length bitstring GAs with ‘common’ variation operations

 - General framework reduces to a specific framework for analyzing the effect of one evolutionary step on the marginal distributions of population marginals
Given some
 - fitness proportional evolutionary system, and some
 - coarse-graining

Easy to determine whether this framework is useful for deriving inter-population constraints
 - Just check if the ambivalence relationship holds

Determination of whether schema analysis is useful typically proceeds by “trying to do the schema analysis”

Once it is determined that this framework is useful, burden of analysis is greatly reduced
 - The “grunt work” is done by the “machinery” of the framework

Framework accommodates multi-parent variation operators in a natural way

For the set of fixed length bitstring GAs with ‘common’ variation operations
 - General framework reduces to a specific framework for analyzing the effect of one evolutionary step on the marginal distributions of populations
Given some fitness proportional evolutionary system, and some coarse-graining. Easy to determine whether this framework is useful for deriving inter-population constraints.

- Just check if the ambivalence relationship holds.

Determination of whether schema analysis is useful typically proceeds by “trying to do the schema analysis”.

Once it is determined that this framework is useful, burden of analysis is greatly reduced.

- The “grunt work” is done by the “machinery” of the framework.

Framework accommodates multi-parent variation operators in a natural way.

For the set of fixed length bitstring GAs with ‘common’ variation operations.

- General framework reduces to a specific framework for analyzing the effect of one evolutionary step on the marginal distributions of populations.
Benefits of this Framework

- Given some
 - fitness proportional evolutionary system, and some
 - coarse-graining

Easy to determine whether this framework is useful for deriving inter-population constraints
 - Just check if the ambivalence relationship holds

- Determination of whether schema analysis is useful typically proceeds by “trying to do the schema analysis”

- Once it is determined that this framework is useful, burden of analysis is greatly reduced
 - The “grunt work” is done by the “machinery” of the framework

- Framework accommodates multi-parent variation operators in a natural way

- For the set of fixed length bitstring GAs with ‘common’ variation operations
 - General framework reduces to a specific framework for analyzing the effect of one evolutionary step on the marginal distributions of populations
Use a transmission functions (Altenberg 1994) to model any stochastic variation function

- that takes n genotypes as parents, and
- produces 1 genotype as a child

Example: $T(g|g_1, \ldots, g_n)$ is the probability that some variation operation produces g as a child given parents g_1, \ldots, g_n.
Use a transmission functions (Altenberg 1994) to model any stochastic variation function that takes n genotypes as parents, and produces 1 genotype as a child.

Example: $T(g|g_1, \ldots, g_n)$ is the probability that some variation operation produces g as a child given parents g_1, \ldots, g_n.
Modeling Populations and Operations on Populations

- Populations modeled as real valued distributions over the genotype set.
 - Distribution values sum to 1
- Evolutionary operations are modeled as \textit{parameterized} mathematical operators
 - Take genotypic distributions as input and produce genotypic distributions as output
 - Parameter objects used by the operator in the calculation of output
Modeling the Effect of Variation on Populations

- Effect of any variation function modeled by T on some population p is given by the variation operator \mathcal{V}_T

If $p' = \mathcal{V}_T(p)$, then p' is as follows: For any genotype g,

$$p'(g) = \sum_{(g_1, \ldots, g_m) \in \prod_1^m G} T(g|g_1, \ldots, g_m) \prod_{i=1}^m p(g_i)$$
Effect of fitness proportional selection on some population p using any fitness function f given by the selection operator S_f

If $p' = S_f(p)$, then p' is as follows: For any genotype g,

$$p'(g) = \frac{f(g)p(g)}{\mathcal{E}_f(p)}$$

where \mathcal{E}_f is the weighted average fitness of p
Coarse-graining Terminology and Notation

For any coarsegraining \(\beta : G \to K \):
- Call co-domain \(K \) the \(\beta \)-theme set
- Call the elements of \(K \) \(\beta \)-themes

For any \(g \in G, k \in K \) such that \(\beta(g) = k \), say that \(g \) \(\beta \)-instantiates \(k \):
- \(\langle k \rangle_\beta \) denotes the set of all \(g \in G \) that \(\beta \)-instantiate \(k \)
- Call \(\langle k \rangle_\beta \) the \(\beta \)-theme class of \(k \)
Projection Operator

- Let $\beta : G \to K$ be a coarsegraining.
- A projection operator Ξ_{β} ‘projects’ a distribution p_G over G ‘through’ β to create a distribution $p_K = \Xi_{\beta}(p_G)$ over the theme set.

For any $k \in K$,

$$p_K(k) = \sum_{g \in (k)_\beta} p(g)$$
Let $\beta : G \rightarrow K$ be a coarsegraining.

A projection operator Ξ_β ‘projects’ a distribution p_G over G ‘through’ β to create a distribution $p_K = \Xi_\beta(p_G)$ over the theme set.

For any $k \in K$, $p_K(k) = \sum_{g \in \langle k \rangle_\beta} p(g)$.
A Technique for Obtaining Inter-Population Constraints

Form Invariant Commutation

- $\beta : G \rightarrow K$ some coarsegraining
- \mathcal{W} a parameterizable operator parameterized by some object x such that
- for any population p_G such that

Then we've obtained a single inter population constraint for the operator \mathcal{W}_x

Call y the quotient parameter

Okay for the y quotient parameter to depend on p_G

- As long as the nature of this dependence is well understood

A single inter-population constraint is good . . .
A Technique for Obtaining Inter-Population Constraints

Form Invariant Commutation

- $\beta : G \rightarrow K$ some coarsegraining
- \mathcal{W} a parameterizable operator parameterized by some object x
 such that
- for any population p_G such that

\ldots

- Then we’ve obtained a single inter population constraint for
 the operator \mathcal{W}_x
- Call y the \textit{quotient parameter}
 Okay for the y quotient parameter to depend on p_G
 - As long as the nature of this dependence is well understood

A single inter-population constraint is good \ldots
A Technique for Obtaining Inter-Population Constraints

Form Invariant Commutation

- $\beta : G \rightarrow K$ some coarsegraining
- \mathcal{W} a parameterizable operator parameterized by some object x such that
- for any population p_G such that

$$p_G \xrightarrow{\mathcal{W}_x} p'_G$$

- Then we’ve obtained a single inter population constraint for the operator \mathcal{W}_x
- Call y the quotient parameter
 Okay for the y quotient parameter to depend on p_G
 - As long as the nature of this dependence is well understood

A single inter-population constraint is good . . .
A Technique for Obtaining Inter-Population Constraints

Form Invariant Commutation

- $\beta : G \rightarrow K$ some coarsegraining
- \mathcal{W} a parameterizable operator parameterized by some object x
 such that
- for any population p_G such that

\[
\begin{align*}
 p_G & \xrightarrow{\mathcal{W}_x} p'_G \\
 p_K & \xrightarrow{\mathcal{W}_y} p'_K \\
\end{align*}
\]

- Then we've obtained a single inter population constraint for the operator \mathcal{W}_x
- Call y the *quotient parameter*
 Okay for the y quotient parameter to depend on p_G
 - As long as the nature of this dependence is well understood

A single inter-population constraint is good . . .
A Technique for Obtaining Inter-Population Constraints

Form Invariant Commutation

\[\beta : G \rightarrow K \] some coarsegraining

\(\mathcal{W} \) a parameterizable operator parameterized by some object \(x \) such that

for any population \(p_G \) such that

\[p_G \xrightarrow{\mathcal{W}_x} p'_G \]

\[\Xi_{\beta} \]

\[p_K \xrightarrow{\mathcal{W}_y} p'_K \]

Then we’ve obtained a single inter-population constraint for the operator \(\mathcal{W}_x \)

Call \(y \) the *quotient parameter*

Okay for the \(y \) quotient parameter to depend on \(p_G \)

As long as the nature of this dependence is well understood

A single inter-population constraint is good . . .
A Technique for Obtaining Inter-Population Constraints

Form Invariant Commutation

- \(\beta : G \rightarrow K \) some coarsegraining
- \(\mathcal{W} \) a parameterizable operator parameterized by some object \(x \) such that
- for any population \(p_G \) such that

\[
\begin{align*}
p_G & \xrightarrow{\mathcal{W}_x} p'_G \\
\Xi_\beta & \xleftarrow{\mathcal{W}_y} p_K & \xrightarrow{\mathcal{W}_y} p'_K
\end{align*}
\]

- Then we’ve obtained a single inter population constraint for the operator \(\mathcal{W}_x \)
- Call \(y \) the *quotient parameter*
 Okay for the \(y \) quotient parameter to depend on \(p_G \)
 - As long as the nature of this dependence is well understood
A Technique for Obtaining Inter-Population Constraints

Form Invariant Commutation

- \(\beta : G \to K \) some coarsegraining
- \(\mathcal{W} \) a parameterizable operator parameterized by some object \(x \) such that
- for any population \(p_G \) such that

\[
\begin{aligned}
\beta & : G \to K \\
\mathcal{W} & : \text{a parameterizable operator parameterized by } x \\
\Xi & : \text{some coarsegraining}
\end{aligned}
\]

\[
\begin{array}{c}
p_G \xleftarrow{\Xi_\beta} p_K \xrightarrow{\mathcal{W}_x} p'_G \\
p_K \xrightarrow{\mathcal{W}_y} p'_K \xleftarrow{\Xi_\beta}
\end{array}
\]

- Then we've obtained a single inter population constraint for the operator \(\mathcal{W}_x \)
- Call \(y \) the *quotient parameter*
 - Okay for the \(y \) quotient parameter to depend on \(p_G \)
 - As long as the nature of this dependence is well understood

A single inter-population constraint is good . . .
A Technique for Obtaining Inter-Population Constraints

More inter-population constraints give more information.

- if β_1, \ldots, β_n induce different partitions over the genotype set
- Call these *simultaneous* constraints
More inter-population constraints give more information.

\[
\begin{align*}
\text{if } \beta_1, \ldots, \beta_n \text{ induce different partitions over the genotype set} & \\
\text{Call these } \textit{simultaneous} \text{ constraints}
\end{align*}
\]
Selectional Constraints Theorem

For any coarse-graining $\beta : G \rightarrow K$ and any population p_G,

$$p_G \xrightarrow{S_f} p_G'$$

$\Xi_\beta \xrightarrow{p_K} \leftarrow p_K' \xleftarrow{\Xi_\beta}$

$F(\beta, p_G) : K \rightarrow \mathbb{R}^+$ is called the β-theme fitness function of p_G

- It assigns to each theme $k \in K$ the weighted average fitness of all genotypes that β-instantiate k
- $F(\beta, p_G)$ depends on p_G, but that’s okay since we understand the (simple) nature of this dependence
Selectional Constraints Theorem

For any coarse-graining $\beta : G \rightarrow K$ and any population p_G,

\[
\begin{align*}
 p_G \xrightarrow{S_f} &\quad p'_G \\
 \Xi &\quad p_K \rightarrow p'_K & S_{F(\beta,p_G)}
\end{align*}
\]

- $F(\beta,p_G) : K \rightarrow \mathbb{R}^+$ is called the \textit{\(\beta\)-theme fitness function} of p_G
- It assigns to each theme $k \in K$ the weighted average fitness of all genotypes that β-instantiate k
- $F(\beta,p_G)$ depends on p_G, but that’s okay since we understand the (simple) nature of this dependence
Selectional Constraints Theorem

For any coarse-graining $\beta : G \rightarrow K$ and any population p_G,

\[
\begin{array}{c}
 p_G \xrightarrow{S_f} p'_G \\
 \Xi_\beta \rightarrow p_K \xrightarrow{S_{F(\beta, p_G)}} p'_K \\
\end{array}
\]

- $F(\beta, p_G) : K \rightarrow \mathbb{R}^+$ is called the β-theme fitness function of p_G
- It assigns to each theme $k \in K$ the weighted average fitness of all genotypes that β-instantiate k
- $F(\beta, p_G)$ depends on p_G, but that’s okay since we understand the (simple) nature of this dependence
Selectional Constraints Theorem

For any coarse-graining $\beta : G \to K$ and any population p_G,

\[
p_G \xrightarrow{S_f} p'_G
\]

\[
\Xi_\beta \xrightarrow{\cong} \xi_\beta
\]

\[
p_K \xrightarrow{S_{F(\beta, p_G)}} p'_K
\]

- $F_{(\beta, p_G)} : K \to \mathbb{R}^+$ is called the β-theme fitness function of p_G.
- It assigns to each theme $k \in K$ the weighted average fitness of all genotypes that β-instantiate k.
- $F_{(\beta, p_G)}$ depends on p_G, but that’s okay since we understand the (simple) nature of this dependence.
Selectional Constraints Theorem

For any coarse-graining $\beta : G \rightarrow K$ and any population p_G,

$$F_{(\beta, p_G)} : K \rightarrow \mathbb{R}^+$$ is called the β-theme fitness function of p_G

- It assigns to each theme $k \in K$ the weighted average fitness of all genotypes that β-instantiate k
- $F_{(\beta, p_G)}$ depends on p_G, but that’s okay since we understand the (simple) nature of this dependence
Simultaneous Selectional Constraints

▶ Result of the selection constraints theorem is valid for any coarse-graining
▶ So its easy to obtain simultaneous selectional constraints
▶ For any coarsegrainings β_1, \ldots, β_n, and any population p_G,

\[
p_G \xrightarrow{\Xi_{\beta_1}} p_{\beta_1} K_1 \xrightarrow{S_{F(\beta_1, p_G)}} p'_{K_1} \\
\vdots \\
p_G \xrightarrow{\Xi_{\beta_n}} p_{\beta_n} K_n \xrightarrow{S_{F(\beta_n, p_G)}} p'_{K_n}
\]
Simultaneous Selectional Constraints

- Result of the selection constraints theorem is valid for any coarse-graining.
- So it's easy to obtain simultaneous selectional constraints.
- For any coarse grainings β_1, \ldots, β_n, and any population p_G,

\[
p_G \xrightarrow{S_f} p'_G \xrightarrow{\Xi_{\beta_1}} \cdots \xrightarrow{\Xi_{\beta_n}} p_{K_1} \xrightarrow{S_{F(\beta_1,p_G)}} p'_{K_1} \xrightarrow{\Xi_{\beta_2}} \cdots \xrightarrow{\Xi_{\beta_n}} p_{K_2} \xrightarrow{S_{F(\beta_2,p_G)}} p'_{K_2} \xrightarrow{\Xi_{\beta_n}} \cdots \xrightarrow{\Xi_{\beta_n}} \cdots \xrightarrow{S_{F(\beta_n,p_G)}} p'_{K_n}
\]
What about Variation?

- Inter-population constraints easy to derive for the selection operator
 - *Any* coarse-graining can be used
- Matters not so simple in the case of variation
- Introduce a relationship between a transmission function and a coarse-graining called *ambivalence*
- When ambivalence is satisfied derivation of an inter-population variational constraint using the coarse-graining is possible
What about Variation?

- Inter-population constraints easy to derive for the selection operator
 - *Any* coarse-graining can be used
- Matters not so simple in the case of variation
 - Introduce a relationship between a transmission function and a coarse-graining called *ambivalence*
 - When ambivalence is satisfied derivation of an inter-population variational constraint using the coarse-graining is possible
What about Variation?

- Inter-population constraints easy to derive for the selection operator
 - *Any* coarse-graining can be used
- Matters not so simple in the case of variation
- Introduce a relationship between a transmission function and a coarse-graining called *ambivalence*
- When ambivalence is satisfied derivation of an inter-population variational constraint using the coarse-graining is possible
What about Variation?

- Inter-population constraints easy to derive for the selection operator
 - Any coarse-graining can be used
- Matters not so simple in the case of variation
- Introduce a relationship between a transmission function and a coarse-graining called *ambivalence*
- When ambivalence is satisfied derivation of an inter-population variational constraint using the coarse-graining is possible
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Say that T is *ambivalent* under β.

An Ambivalent 2-parent transmission function T
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β.
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is *ambivalent under* β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β.
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function \(T \)

Say that \(T \) is ambivalent under \(\beta \)
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is ambivalent under β
Ambivalence by Example

An Ambivalent 2-parent transmission function T

Say that T is *ambivalent under* β
Projection of an Ambivalent Transmission function

- T an ambivalent under some coarse-graining $\beta : G \rightarrow K$,
- β-projection of T, denoted T^β, is a transmission function over K.
Projection of an Ambivalent Transmission function

- \(T \) an ambivalent under some coarse-graining \(\beta : G \rightarrow K \),
- \(\beta \)-projection of \(T \), denoted \(T^\beta \), is a transmission function over \(K \).
Projection of an Ambivalent Transmission function

- T an ambivalent under some coarse-graining $\beta : G \rightarrow K$,
- β-projection of T, denoted \overrightarrow{T}^β, is a transmission function over K
Projection of an Ambivalent Transmission function

- T an ambivalent under some coarse-graining $\beta : G \rightarrow K$,

- β-projection of T, denoted T^β, is a transmission function over K
Projection of an Ambivalent Transmission function

- T an ambivalent under some coarse-graining $\beta : G \rightarrow K$,
- β-projection of T, denoted T^{β}, is a transmission function over K
Projection of an Ambivalent Transmission function

- \(T \) an ambivalent under some coarse-graining \(\beta : G \rightarrow K \),
- \(\beta \)-projection of \(T \), denoted \(T^{\beta} \), is a transmission function over \(K \)
Projection of an Ambivalent Transmission function

- T an ambivalent under some coarse-graining $\beta : G \rightarrow K$,
- β-projection of T, denoted $\overrightarrow{T_\beta}$, is a transmission function over K
An Example of Ambivalence
Variational Constraints Theorem

- Given
 - Coarse-graining $\beta : G \rightarrow K$
 - And transmission function T
- Such that T is ambivalent under β
- For any population p_G

\[\begin{align*}
p_G \xrightarrow{\nu_T} p'_G \\
\Xi_\beta \xrightarrow{T_\beta} p_K \xrightarrow{\nu_T} p'_K \\
\Xi_\beta
\end{align*}\]
Let \(G \) be a set of fixed length bitstrings

- Schema partitioning: A function that maps any genotype to its values at some fixed set of locii.
 - Example: \(\beta_{1,3} \) maps any genotype to its 1\(^{st}\) and 3\(^{rd}\) bits
- Schema partitionings induce schema partitions on the genotype set
- Example continuation: let \(G \) be the set of bitstrings of length 8
 - Then \(\beta_{1,3} \) induces the schema partition #**#***** over \(G \)
Schema Partitionings

- Let G be a set of fixed length bitstrings
- Schema partitioning: A function that maps any genotype to its values at some fixed set of locii.
 - Example: $\beta_{1,3}$ maps any genotype to its 1^{st} and 3^{rd} bits
- Schema partitionings induce schema partitions on the genotype set
- Example continuation: let G be the set of bitstrings of length 8
 - Then $\beta_{1,3}$ induces the schema partition #**#**** over G
Let G be a set of fixed length bitstrings

Schema partitioning: A function that maps any genotype to its values at some fixed set of locii.

- Example: $\beta_{1,3}$ maps any genotype to its 1^{st} and 3^{rd} bits

Schema partitionings induce schema partitions on the genotype set

Example continuation: let G be the set of bitstrings of length 8

- Then $\beta_{1,3}$ induces the schema partition #**#***** over G
Let G be a set of fixed length bitstrings.

Schema partitioning: A function that maps any genotype to its values at some fixed set of locii.

- Example: $\beta_{1,3}$ maps any genotype to its 1^{st} and 3^{rd} bits.

Schema partitionings induce schema partitions on the genotype set.

Example continuation: let G be the set of bitstrings of length 8.

- Then $\beta_{1,3}$ induces the schema partition #**####** over G.
If genotypes are bitstrings of fixed length
If the variation operation consists of some combination of
 ▶ n-point crossover
 ▶ Uniform crossover
 ▶ Canonical mutation
 ▶ Probability of mutation is constant for each bit
Variation is ambivalent under any schema partitioning
Any schema partitioning can be used to derive a variational constraint
Simultaneous Constraints for GA Variation Operations Using Schema Partitionings

For any schema partitionings β_1, \ldots, β_n, and any common GA variation operators represented by T
In a common GA, any schema partitioning \(\beta \) gives us both a selectional constraint and a variational constraint. ‘Concatenating’ these constraints we obtain:

\[
p_G \xrightarrow{S_f} p'_G \xrightarrow{\nu_T} p''_G
\]

Projection of a population through a schema partitioning is essentially a marginalization operation. Thus for a GA with common variation operations the general framework reduces to a specific framework for studying the effect of one evolutionary step on population marginals.
In a common GA, any schema partitioning β gives us both a selectional constraint and a variational constraint.

‘Concatenating’ these constraints we obtain:

$$p_G \xrightarrow{S_f} p'_G \xrightarrow{\nu_T} p''_G$$

Projection of a population through a schema partitioning is essentially a marginalization operation.

Thus for a GA with common variation operations the general framework reduces to a specific framework for studying the effect of one evolutionary step on population marginals.
In a common GA, any schema partitioning β gives us both a selectional constraint and a variational constraint. ‘Concatenating’ these constraints we obtain

\[
p_G \xrightarrow{S_f} p'_G \xrightarrow{\nu_T} p''_G
\]

\[
p_K \xrightarrow{S_{F(\beta, p_G)}} p'_K \xrightarrow{\nu_{\beta \rightarrow T}} p''_K
\]

Projection of a population through a schema partitioning is essentially a marginalization operation. Thus for a GA with common variation operations the general framework reduces to a specific framework for studying the effect of one evolutionary step on population marginals.