
Automatic User Steering for Interactive Data
Exploration

Kyriaki Dimitriadou

Brandeis University, Waltham, MA, USA
{kiki}@cs.brandeis.edu

Expected Graduation date: 2016
Supervised by Olga Papaemmanouil

Abstract—The amount of data that have flooded databases
during the last few years have created several new problems for
the data management community to address. One of the most
prominent is the discovery of new and interesting information
that is hidden in the underlying big data sets. As of now, in order
to explore these data sets users begin with a few general queries,
study their output and iteratively issue more specific ones until
they discover interesting information. This is an onerous process
that requires time and effort. In this thesis we are developing
an automatic data exploration framework that will make the
discovery of new information in a vast data space both effective
and efficient. Our system asks users for their relevance feedback
on strategically collected samples in an interactive manner, steers
them towards the interesting parts of the database and eventually
formulates the query that retrieves their data of interest. Our
preliminary results are encouraging and allow us to persevere in
the development of such a system.

I. INTRODUCTION

Traditionally, data management applications are designed
around the archetype that users have a clear and precise idea
of their dataset and know exactly the knowledge they want
to gain out of their data. However, as the amount of data
increases scientists do not have such a clear understanding
of the underlying database. Thus a new type of applications
has emerged, namely Interactive Data Exploration (IDE) ap-
plications, where users iteratively issue multiple queries with
varying predicates until they are led to discover interesting
information. These ”exploratory sessions” can last many hours
and even days and can be detrimental to human productivity
and resource conservation.

As an example of an IDE application, the Sloan Digital
Sky Survey [1] which maps the sky, has gathered up to now
approximately 1328 TB of data and includes information for
around 260 million stars and 208 million galaxies. To make
sense of this data scientists start with a few general queries
with high selectivity, study the query results, refine their
queries based on those results and decide what their next query
will be. They iteratively perform this long-running, multi-step
process until they are satisfied with their findings, in which
case they can draw their final conclusions.

There are several problems in the above process that
scientists have to deal with. Due to the vast exploration
space, scientists do not clearly comprehend the contents of
the database and thus it becomes very difficult to identify
the exact data objects they are interested in. Furthermore,

writing a query to retrieve the interesting data can still be
hard when the schema of the database and the data itself
are very complex or when the user has poor query writing
skills. In addition to that, due to the lack of proper tuning
user queries have a long response time which slows down the
process of exploration. Finally, manually reviewing returned
query results and identifying the relevant data objects before
making a decision about the next steps further increases the
user effort and overall overhead of the exploration process
because query replies can be too large and/or unsatisfying.

Motivated by these problems we envision a system that will
address the above challenges of big data exploration and will
eliminate the need for expensive ad-hoc exploratory queries. In
a nutshell, our system will navigate users through the database
and will steer them towards the “trajectories” of the data that
are of most interest to them. To achieve that, the system
will iteratively ask the users for their relevance feedback
on selected tuples, will generate a model that predicts their
interests using machine learning algorithms and will finally
formulate a selection query that retrieves all the relevant data
to their search.

Our research aims to integrate machine learning algorithms
and database optimization techniques in the task of interactive
data exploration. While machine learning algorithms can be
used to model user interests, they are not concerned with how
to steer users along interesting trajectories or how to minimize
the cost of data acquisition to improve the user interactive
experience. Our system addresses these drawbacks by lever-
aging the unique characteristics of exploration workloads. In
this thesis we will develop a suite of algorithms and techniques
that draw insights from machine learning algorithms to guide
the exploration of a big data space, and leverage the knowledge
of exploration patterns to optimize query processing inside the
database.

II. APPROACH

Our system explores the data space by iteratively showing to
the user strategically selected tuples and letting the user decide
if those are interesting or not to him. After the user classifies
these tuples, the system uses machine learning techniques and
specifically, decision trees, to classify the rest of the data
space to interesting and non-interesting areas and formulates a
query that projects the user’s interests based on the information

!"#$%&''

(%)*&+'

,-./#0#$1"'

20+3''

4+&+5%"-+'

6++78%-9'

:%;%''

<&%00#=-%$1"'

(*%-+'

>?*&13%$1"'

@/+3A'

613)/&%$1"''

(%)*&+''

>?;3%-$1"'

Initial

Samples

Relevant Samples

Irrelevant Samples
User

Model

(%)*&+',-./#0#$1"'

New

Samples

 Data Extraction Query

User

Model

Iterative Data Exploration

:%;%8%0+'

Fig. 1: Automatic Interactive Data Exploration Framework.

that he has provided. In each iteration, the system strives to
select the appropriate tuples to show to the user aiming to
improve the accuracy of the formulated query. The user can
explicitly stop this process whenever he feels satisfied with
the query that the system has formulated. In the next section
we provide a more detailed description of the various steps of
our framework (Figure 1).

A. Interactive Automatic Data Exploration

Initially, the system chooses a first batch of samples from
the entire data space to show to the user (Initial Sample
Acquisition) and the user is asked to provide his feedback on
this set of samples (User Relevance Feedback). Our relevance
feedback system is binary; an item can only be classified as
relevant or irrelevant.

The labeled samples are used as an input (training set) to
our data classification algorithm. Our system uses a decision
tree algorithm to predict a model that classifies the whole
database as relevant/irrelevant to the user based on that training
set (Data Classification). The model that the decision tree
generates is expressed in simple classification rules which can
be then interpreted to a query that selects the objects that are
relevant to the user’s search. In Figure 2 we can see an example
decision tree based on the SDSS data and its translation to a
selection query. This decision tree is generated for a user that
is interested in galaxies with brightness in the red wavelength
between 13.55 and 14.82 and in the green wavelength smaller
than 13.74. For the moment we assume numerical attributes,
while future work will focus on categorical data as well.

At this point, the user could possibly stop the process if
he was satisfied with the query that the system formulated in
this iteration. If that is not the case, then the system needs to
build a more accurate query to reflect the user’s interest. To
achieve that the system needs more feedback from the user on
a different set of samples.

Selecting this next batch of samples is crucial; these samples
need to be the most informative and accuracy yielding samples
in the whole data space. In order to find them, the system
launches a series of space exploration steps (explained below)
with each step returning the appropriate samples from the
database (Space Exploration). After the system identifies the
new sampling set, it presents it to the user for labeling, at
which point a decision tree is generated based on all of the
samples that the user has labeled up to this iteration.

red'

red<=14.82'red>14.82'

red'Irrelevant'

Irrelevant'green'

red<13.55'red>=13.55'

green<=13.74'

Relevant'Irrelevant'

green>13.74'

SELECT&*&FROM&galaxy&WHERE&red<=&14.82&AND&red>=&13.55&AND&green<=13.74&
''

Fig. 2: Translation of a decision tree to a selection query.

When the iterative process completes, the system translates
the final model built by the decision tree classifier into the
user’s extraction query that retrieves all the data that are
characterized as relevant to him.

B. Space Exploration Phases

In order to efficiently and effectively explore the data space
the system deploys three phases which build upon each other;
the Object Discovery phase, the Misclassified Exploitation
phase and the Boundary Refinement phase.

Object Discovery Phase The objective of this phase is to
identify new interesting data objects from unexplored areas of
the data space. These objects need to be well distributed in the
data space so that the user can examine representative tuples
from as many different areas as possible.

To achieve this we divide the data space into g equal width
grids where each grid defines a different data area and we
select one random tuple close to the center of each grid to
represent this area to the user for labeling. The number of
grids we are going to construct depends on the number of
samples we want to spend on this phase. If our exploration
space consists of d attributes and the number of samples we
have for this phase is n then we want to break down the
domain of each attribute into b = d

√
n equal width ranges to

build the g grids (here g = n since we select one tuple from
each grid).

For our system, we keep a pre-built set of grids with
different values for b to satisfy users that wish to invest
different levels of effort in the system. If a user has labeled
all the samples for the grids built with value b0 and he wishes
to further explore in more depth the data space then we carry
on to present the user with the next set of tuples drawn from
the grids where b1 > b0.

Misclassified Exploitation Phase The previous phase iden-
tifies single points of interests, one per each grid explored. The
Misclassified Exploitation phase leverages this information in
order to turn these points of interest into areas of interest by
increasing the relevant samples in our training set.

Typically, the classification rules that a decision tree outputs
contain a prediction error, meaning that a subset of the training
samples will be misclassified, i.e., the decision tree assigns
them to the opposite class. It is usually the case that points of
interest discovered from the previous phase get misclassified
as irrelevant because the irrelevant class dominates our sample
set. Therefore, we need to reinforce our training set with more

tuples that are similar to the interesting misclassified tuples
(false negatives) in order to provide enough information to
the decision tree to formulate the interesting areas.

In our framework, we measure similarity in terms of dis-
tance; we assume that interesting tuples will be located close
to each other in the data space forming interesting areas. Thus,
this phase selects a number of random tuples around each false
negative sample to present to the user. In this fashion, we strive
to increase in the next iteration our training set with samples
from the relevant class by having the user examine and classify
objects that are similar to his interesting ones.

Boundary Refinement This last step adds samples to our
training set that improve the accuracy of an already built
decision tree by striving to refine the boundaries that separate
the two different classes of data (relevant and irrelevant).

To achieve this we represent boundaries as hyperectangles
in a multidimensional space defined by the classification
rules of the decision tree and we aim to iteratively refine
these boundaries by selecting samples that belong to both
classes. Such samples are located around the boundaries of
the formulated relevant hyperectangles. Therefore, given a set
of boundaries we collect random samples across the domain of
each attribute in our data space making sure that each sample
is in close proximity to the boundary of the relevant area. This
approach is applied across all the boundaries of the relevant
hyperectangles, allowing us to shrink/expand each dimension
of the relevant areas.

Our optimizations include dynamically regulating the num-
ber s of samples we gather around each boundary and pro-
gressively adapting our sampling areas in each iteration. As
the percentage of change of a boundary increases from one
iteration to the other so does s since this reveals that the
boundary is not correctly defined yet and we need more
samples to refine it. Moreover, we avoid sampling areas that
have high overlap in between iterations in order to present the
user varying samples from different data areas. In this way we
increase the accuracy of the final query we formulate for him.

III. PRELIMINARY RESULTS

Queries We performed a preliminary set of experiments on
a real data set drawn from the Sloan Digital Sky Survey [1].
For our experimental purposes we studied the query workload
issued to the SDSS database over a period of time. We ob-
served that 90% of the queries issued to the database selected
one single area of interest and that the predicates used in these
queries had an average coverage of 3.4% of their domain. Thus
in our target query set we included queries that select one area
with domain coverage (i.e., relevant area size) between 1-9%.
Specifically, we experimented with small, medium and large
relevant areas. Small areas have attribute ranges with average
width of 1-3% of their normalized domain, while medium
areas have width 4-6% and large ones have 7-9%.

Experimental Setup We implemented our framework on
JVM 1.7 and run our experiments on an Intel PowerEdge R320
server with 32GB RAM. The database size we used is 11GB
and our exploration space had 2 attributes. A covering index

0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000 1200 1400 1600

F-
m

ea
su

re

Number of Samples

Small Medium Large

Fig. 3: Predicted query accuracy for increasing complexity of one
relevant area.

was also used that included these attributes. The database we
used is MySQL 5.5.32.

Evaluation Metrics In our experiments we measure effec-
tiveness using the F -measure metric which is the harmonic
mean of the recall (i.e., percent of relevant objects we retrieve)
and precision (i.e., percent of irrelevant objects we retrieve)
of our final extraction query. In our experiments we report the
F -measure we converge to when the use has classified up to
N number of tuples.

User Simulation Given a target query, we simulate the user
by executing the query to collect the exact target set of relevant
tuples. We use this set to label the new sample set we extract in
each iteration as relevant or irrelevant depending on whether
they are included in it or not. Moreover we use this set to
evaluate the accuracy of our final predicted extraction queries.

Results Our preliminary results are really encouraging.
Figure 3 reveals the F -measure of our predicted query when
we increase the target query complexity by varying the size of
the relevant area from large to medium and small. Naturally,
labeling more samples improves in all cases the accuracy. As
we can see with only 200 tuples we achieve an F -measure
higher than 60% and with labeling 400 samples we reach an F -
measure higher than 89% for the less complex case of a large
relevant area. As the query complexity increases the user needs
to label more samples (at least 800 for small areas and 600
for medium areas) to get highly accurate predictions (greater
than 82%) but even an acceptable set of 400 samples offers
accuracy higher than 60% in all cases. These numbers show
a great improvement over the thousands of objects scientists
need to review before ending up with their final query that
selects their data of interest (in our experiments our target
query selectivities range between 2, 957− 26, 817 objects).

The results regarding the user’s wait time in between
iterations are also motivating. Our system performs better
when the size of the relevant area is small with an average of
1.2 secs wait time per iteration. As the size of the relevant area
increases to medium the average time per iteration increases to
1.5 secs and finally when the size of the relevant area is large
the overhead raises to an average of 1.8 secs. This small extra
time when we are dealing with less complex queries leads to a
higher accuracy. Due to space limitation we omit this graph.

IV. CHALLENGES & FUTURE DIRECTIONS

In this section we briefly sketch some of the future direc-
tions we plan to undertake in our research.

Interactivity Providing an interactive experience to the user
is a prerequisite for our system. Since each of our three
exploration phases (Section II-B) increases our labeled sample
set with new tuples using queries to retrieve them from the
database, these queries need to return results as fast as possible
in order for the user’s wait time in between iterations to
be minimal. One direction we plan to take to achieve that
is sampling. The queries for all of our three phases select
random tuples from different areas of the data space. The
amount of data that exist in those areas is not important to
our cause as long as a few exist for the user to label. In fact,
the less data that exist in the data space the faster our queries
are going to run. Therefore, this offers us a great chance to
study various sampling techniques to minimize the volume
of the data and expedite our queries but without a loss in the
accuracy of the final query we formulate for the user. Although
sampling has been studied before in order to approximately
answer queries ([2], [3], [4]) it presents a new challenge in
our setting since the query workload that our phases generate
is unique and different from what previous works in the field
have studied.

Past User Interactions Past user interactions with the
system create a wealth of information that if studied and used
carefully could possibly help with the “exploratory sessions”
of new users. For example, if we deem that the exploration
paths (queries that are generated in each iteration) of two
users are similar then we can use the knowledge we have
gained from the first user to jump ahead in the exploratory
session of the other user and predict data trajectories or more
attributes that could be interesting to him. Furthermore, user
interaction histories could be used to proactively fetch and
cache samples from the database and in that way speed up
the data exploration of new users. Multiple aspects of query
workloads as a sequence have been studied in the past ([5],
[6]) however within our framework we have the chance to
develop new optimization algorithms that harness interaction
histories to facilitate interactive data exploration.

Understanding the Query Output A significant part in the
exploration process is to help the user understand the data that
the predicted query is selecting for him. This is important in
order to assist the user in drawing conclusions regarding the
selected data. Furthermore, it would help him label the next
set of samples if he is not satisfied with his conclusions and he
wishes to continue the process. Towards this goal the system
should provide insightful statistics about the areas that the user
is interested in such as the average of specific columns, min,
max, sum etc., based on indications by the user or previous
similar queries related to these areas, helping him in that
way to get a clearer view of the data the formulated query
has selected for him. Although query suggestions based on
previous queries have been studied before ([7]), we believe
that turning those previous queries to useful information
about the predicted areas and doing so interactively, offers a
promising research direction. Furthermore, retrieving statistics
regarding the formulated areas means issuing more queries to
the database, which will be a challenge to achieve without

affecting the user’s wait time in between iterations.
Data Visualization Data visualization is a natural extension

of an exploration system such as the one described here. When
coming to graphical interface, graphs and images are easier
to mentally grasp than raw text and numbers. Therefore, a
research challenge would be to try to visualize samples and
present them for labeling to the user in an easily comprehen-
sible format. For example, data that deal with geographical
information could be presented to the user as points on a
map or data that contain chronological information could be
directly visualized as points on a time chart. Data visualization
has seen significant support by the data management commu-
nity ([8]), however the main challenge in our setting would be
to try and integrate data visualization into our system given
its interactive and multi-dimensional character.

V. RELATED WORK

A related body of work focuses on the development of
“Query-By-Example” [9] and front-end interfaces that assist
in query formulation [10]. These systems do not attempt
to understand user interests and to retrieve “similar” data
tuples. Query relaxation techniques have also been proposed
for database exploration [11], [12], [13], [14]. These solutions
focus on adjusting the query parameters to reach a cardinality
goal and therefore cannot characterize user interests or reduce
the number of tuples shown to the user for labeling. Moreover,
relevance feedback techniques have been studied in the field
of active learning but they target different types of data
(ranking of documents (e.g., [15]), image retrieval [16]) and
usually examine each sample in the database [17] before
presenting it to the user which is not feasible in the case of
an interactive system. In [18] they facilitate query formulation
using past SQL query templates. Idreos et al. [19] present a
vision towards a system for interactive data processing tasks
that reduces the time spent on data analysis. These works
do not focus on predicting user interests or “similar” data
tuples. In [20] they require the user to specify in advance the
attributes and value assignments used to learn queries, which
are assumptions we cannot make in our work. Finally, our
vision for automatic, interactive navigation in databases was
first introduced in [21].

VI. CONCLUSIONS

We described an automatic data exploration system that
is crucial for identifying interesting data objects in huge
and complex datasets that one encounters in many big data
applications. Our system significantly reduces human effort on
data exploration as users are methodically steered through the
data by providing their feedback on selected samples. Such au-
tomated steering, fully exploiting user interests while grounded
in rigorous learning theory, assists users in discovering new
interesting data patterns. It also eliminates expensive ad-hoc
exploratory queries, leading to further improvements in user
productivity and resource conservation.

REFERENCES

[1] “Sloan Digital Sky Survey,” http://www.sdss.org/.
[2] B. Babcock et al, “Dynamic sample selection for approximate query

processing,” in SIGMOD, 2003.
[3] S. Agarwal et al, “Blink and it’s done: interactive queries on very large

data,” in VLDB, 2012.
[4] L. Sidirourgos, M. Kersten, and P. Boncz, “SciBORQ: Scientific data

management with Bounds On Runtime and Quality,” in CIDR, 2011.
[5] S. Agrawal, E. Chu, and V. R. Narasayya, “Automatic physical design

tuning: workload as a sequence,” in SIGMOD, 2006, pp. 683–694.
[6] I. T. Bowman and K. Salem, “Semantic Prefetching of Correlated Query

Sequences,” in ICDE, 2007, pp. 1284–1288.
[7] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis, “Query Recommenda-

tions for Interactive Database Exploration,” in SSDBM, 2009.
[8] C. Stolte et al, “Polaris: A System for Query, Analysis and Visualization

of Multi-dimensional Relational Databases,” IEEE Transactions on
Visualization and Computer Graphics, vol. 8, pp. 52–65, 2002.

[9] M. M. Zloof, “Query-by-example: operations on hierarchical data bases,”
in National Computer Conference and Exposition, 1976.

[10] C. Ahlberg et al, “Dynamic queries for information exploration: an
implementation and evaluation,” in CHI ’92, 1992.

[11] S. Chaudhuri, “Generalization and a framework for query modification,”
in ICDE, 1990.

[12] C. Mishra and N. Koudas, “Interactive query refinement,” in EDBT,
2009.

[13] N. Koudas, C. Li, A. Tung, and R. Vernica, “Relaxing join and selection
queries,” in VLDB, 2006.

[14] A. Kadlag, A. V. Wanjari, J. Freire, and J. R. Haritsa, “Supporting
Exploratory Queries in Databases,” in DASFAA, 2004.

[15] I. Ruthven et al, “A survey on the use of relevance feedback for infor-
mation access systems,” The Knowledge Engineering Review, vol. 18,
no. 2, 2003.

[16] N. Panda, K.-S. Goh, and E. Y. Chang, “Active learning in very large
databases,” Multimedia Tools Appl., vol. 31, no. 3, 2006.

[17] Y. Chen and S. Mani, “Active learning for unbalanced data in the
challenge with multiple models and biasing.” Journal of Machine
Learning Research - Proceedings Track, vol. 16, pp. 113–126, 2011.

[18] N. Khoussainova et al, “A Case for A Collaborative Query Management
System,” in CIDR, 2009.

[19] M. L. Kersten et al, “The Researcher’s Guide to the Data Deluge:
Querying a Scientific Database in Just a Few Seconds,” PVLDB, vol. 4,
no. 12, 2011.

[20] A. Abouzied et al, “Learning and verifying quantified boolean queries
by example,” in PODS, 2013.

[21] U. Çetintemel et all, “Query steering for interactive data exploration,”
in CIDR, 2013.

