
Interactive Data Exploration based on
User Relevance Feedback

Kyriaki Dimitriadou∗ Olga Papaemmanouil∗ and Yanlei Diao†
∗ Brandeis University, Waltham, MA, USA, † University of Massachusetts Amherst, Amherst, MA, USA,

∗{kiki,olga}@cs.brandeis.edu, †yanlei@cs.umass.edu

Abstract—Interactive Data Exploration (IDE) applications typ-
ically involve users that aim to discover interesting objects by it-
eratively executing numerous ad-hoc exploration queries. There-
fore, IDE can easily become an extremely labor and resource
intensive process. To support these applications, we introduce a
framework that assists users by automatically navigating them
through the data set and allows them to identify relevant objects
without formulating data retrieval queries. Our approach relies
on user relevance feedback on data samples to model user
interests and strategically collects more samples to refine the
model while minimizing the user effort. The system leverages
decision tree classifiers to generate an effective user model that
balances the trade-off between identifying all relevant objects
and reducing the size of final returned (relevant and irrelevant)
objects. Our preliminary experimental results demonstrate that
we can predict linear patterns of user interests (i.e., range queries)
with high accuracy while achieving interactive performance.

I. INTRODUCTION

Interactive Data Exploration (IDE) refers to a class of
applications in which users strive to discover interesting
data objects by iteratively executing queries using varying
predicates [1]. Example cases can be found in the scientific
domain, such as analysis of astrophysical surveys (e.g., [2])
or of financial data, etc. Here, scientists are not always able
to express their data interests precisely as they do not have
upfront an understanding of the exact attributes that should be
used to formulate a query that collects all relevant information.
Query formulation hence becomes a highly labor intensive
process where one executes numerous selection queries us-
ing iteratively different predicates. The exploration may take
anywhere between days to weeks to draw conclusions since
users need to examine 100s-1000s of data objects, asses their
relevance to their interest and then rewrite the query to balance
the trade-off between collecting all relevant information and
reducing the size of returned data.

To support IDE applications, we propose a framework
that eliminates the need for the user to formulate his own
queries, but instead automatically builds these data extraction
queries for him. The user engages in a “conversation” with
the system by characterizing a set of strategically collected
samples, as relevant or irrelevant to him. The user’s feedback
is incorporated into a classification model that predicts relevant
to the user data objects. This model is then used to formulate
an extraction query that retrieves the set of data matching
the user’s interest. The framework iteratively improves the
effectiveness of the model by collecting in each iteration new

samples to be labeled by the user and which are used to
generate a new more accurate model.

While existing classification algorithms (e.g., [3]) can be
used to implement the data classification and incorporate
relevance feedback in the classification process (e.g., [4]),
these approaches assume that training sets are available a
priori or provided incrementally by a third party and hence
they do not focus on identifying which data samples to
acquire and label. The active learning community has also
proposed solutions that maximize the learning outcome while
minimizing the number of samples shown to the user but these
techniques are domain specific (e.g., document ranking [5],
image retrieval [6], etc.) and they sample small data sets with
negligible data acquisition costs. Therefore, they cannot offer
interactive performance on big data sets.

To address these challenges for relational databases, our
framework closely integrates classification model learning
(from existing labeled samples) and effective data exploration
and sample acquisition (deciding new data areas to sample).
Specifically, we introduce an automatic interactive data ex-
ploration framework that navigates the user through the data
space by requesting his relevance feedback on data samples.
We propose data exploration techniques that leverage the clas-
sification properties of decision trees to predict objects/areas
of interest and progressively improve the effectiveness of these
predictions, while striving to minimize the user’s effort. These
techniques aim to identify linear patterns of user interests (i.e.,
patterns that result in point or range queries).

The rest of the paper is organized as follows. In Section II
we provide an overview of our framework. We introduce our
space exploration approach in Section III. Section IV presents
our promising preliminary experimental results, Section V
discusses the related work and we conclude in Section VI.

II. AIDE FRAMEWORK OVERVIEW

Our IDE framework is depicted in Figure 1. An initial
sample set is selected and the iterative data exploration is
initiated: the user provides his feedback on the sample set
by labeling data objects as either relevant or irrelevant to
him (User Relevance Feedback). The labeled samples are the
training set of a classification algorithm that generates a model
to characterize the user interests (Data Classification). In the
next iteration, new labeled samples are incorporated to the
training set and a new classification model is built. Given the
current classification model, we identify promising data areas

!"#$%&''

()%*+&,'

-./0#1#$2"'

31,4''

5,&,6%".,'

7,,89%.:'

;%<%''

=&%11#>.%$2"'

?+%.,'

()+&24%$2"'

@0,4A'

724*0&%$2"''

?%*+&,''

()<4%.$2"'

Initial

Samples

Relevant Samples

Irrelevant Samples
User

Model

?%*+&,'-./0#1#$2"'

New

Samples

 Data Extraction Query

User

Model

Iterative Data Exploration

;%<%9%1,'

Fig. 1: Interactive Data Exploration Framework.

to be sampled further and can improve the effectiveness of
our system (Space Exploration). Finally, we retrieve the next
sample set from the new exploration data areas and we present
them to the user for feedback (Sample Extraction).

The above steps are executed iteratively aiming to converge
to a model that captures the user interests, i.e., eliminates
irrelevant objects while it identifies a high percentage of
relevant objects. At any time, the user can “translate” the final
classification model into a query expression. This query will
retrieve from the underlying database all objects characterized
as relevant by the user model (Query Formulation). The
steering process is terminated when the user terminates the
process explicitly, e.g., when reaching a satisfactory output
result set or when he does not wish to continue labeling
samples. Therefore, users decide on the effort they are willing
to invest on the exploration process (e.g., number of samples
they label) while our framework tries to make the best use
of these available “resources” and provide the best possible
prediction for the user’s interests. Intuitively, the more samples
we will have available the more accurate the final user model
will be. However, showing a higher number of samples to the
user increases not only the user’s effort but also the sample
extraction time, i.e., the user’s wait time.

Classification Model Our framework relies on decision tree
classifiers (e.g., [3]) to identify linear patterns of user interests
(e.g., range queries). Decision trees produce classification
models that predict the class of an unclassified object based
on input labeled training data. Their major advantage is that
they provide easy to interpret models that describe the features
characterizing relevant and irrelevant objects. For example, in
SDSS [2], a decision tree may characterize as relevant objects
satisfying the conditions: (red ≤ 13.2∧10.3 < green ≤ 11.5)
and (13.2 < red ≤ 14.1 ∧ 9.53 ≤ green ≤ 10) . Hence,
it is straightforward to formulate the data extraction query:
select * from galaxy where (red ≤ 13.2
and green >10.3 and green ≤ 11.5) or (red
> 13.2 and red ≤ 14.1 and green ≥ 9.53
and green ≤ 10).

III. SPACE EXPLORATION

Our main research focus is to optimize the effectiveness of
the data exploration while minimizing the number of samples
we present to the user. We assume that user interests can be
captured by range queries, i.e., relevant objects are clustered
in one or more areas in the data space. Therefore, our goal

is to discover relevant areas and propose to the user queries
that select either a single relevant area (conjunctive queries)
or multiple ones (disjunctive queries).

Our framework incorporates three exploration steps. First
we focus on collecting samples from unexplored yet areas aim-
ing to identify interesting objects (Object Discovery). In the
second step we strive to identify relevant areas from already
known relevant objects (Misclassified Samples Exploitation).
Finally, given a set of predicted relevant areas, we refine their
boundaries to further improve the accuracy of our predictions
(Boundary Exploitation).

A. Relevant Object Discovery

The object discovery phase operates on a hierarchical explo-
ration grid and it aims to identify new interesting data objects.
Specifically, our system creates off-line a set of grids G and
each grid has a different granularity, allowing us to “zoom
in/out” into specific areas when needed. We refer to each grid
as an exploration level and as we move to lower levels we
have a higher number of smaller grid cells. Exploration-levels
have d dimensions, one for each attribute the user elected to
focus for his exploration and are generated by dividing the
normalized domain of each attribute to equal width ranges.

The object discovery phase starts from a given exploration
level and retrieves one tuple located close to the center of
each grid cell in that level. Specifically, for each grid cell,
we identify the “virtual” center of the cell with coordinates
(a1, a2, ..., an) and we retrieve a single random tuple with
distance γ < β along each dimension from this center. The
smaller the γ parameter the more uniformly distributed our
collected samples are across the domain space.

In the first iteration we show to the user one tuple for each
cell of the given exploration level. By default we start with
the higher exploration grid and we gradually move to more
detailed levels. If the retrieved tuple in a cell is relevant to the
user, then we skip this cell in the next object discovery phase.
Otherwise, in the next iteration, we use the lower exploration
level for this specific cell. While the user is willing to label
more samples the phase will continue zooming in each cell
and collecting samples around their centers.

B. Misclassified Sample Exploitation

This phase operates under the assumption that relevant
objects will be clustered together, and hence its goal is to
“convert” relevant objects returned from the object discovery
phase to “relevant areas”. To achieve that, it collects samples
around relevant objects that the classifier has not yet translated
to relevant areas, i.e., it has misclassified as irrelevant (false
negatives).

Let us assume that in the i-th iteration the training set
Ti has m false negatives based on the classifier Ci. Then,
in the next iteration we collect f samples around each false
negative. Our experimental results showed that f should be set
to a small number since higher values will increase the user
effort without improving the exploration outcome and in our
experiments is set to 25 tuples. These samples are retrieved

!"####!$%&'#"(&)*+'#

!"####,-.'#"(&)*+'#

/
0
-)
1
.
,'
#/
#2
(
3
$
)4
#

/0-)1.,'#5#2(3$)4#

$6,.$%#-'%'+$4,###

$-'$H(0'2#%)4'8#

"-'2)6,'2##

-'%'+$4,#$-'$#

!4####!$%&'#4'9$*+'#

!4#

3)&6%$&&):'2#

&$3"%)49#

$-'$#7&(%)2#%)4'8#

!#####,-.'#4'9$*+'#

!##

!##

$"% $"%

$"%!"#

!"# !"#

!"#

!##

$"%

!##

!##

$"%

$"%

;#

###1(.42$-<#&$3"%)49#$-'$##

###!(-#$0-)1.,'#/#

<#

<#

;#

Fig. 2: Boundary exploration for the relevant areas A and D.

randomly from a normalized distance y on each dimension
from each false negative sample, as shown in Figure 2 where
one relevant area out of the two has been predicted (and
only partially). The closer the value y is to the width of the
relevant area the misclassified sample belongs to, the higher
the probability to collect relevant objects than irrelevant ones.

C. Boundary Exploitation

Given a set of discovered relevant areas, the boundary
exploitation phase aims to refine the boundaries of these areas
and therefore to improve the effectiveness of the classification
model. Figure 2 demonstrates a motivating example, where
a predicted relevant area partially overlaps with the actual
relevant area. These leads to false positives: irrelevant objects
that the decision tree has classified as relevant.

Formally, we represent the decision tree classifier Ci as
a set of hyper-rectangles in a multidimensional space and
we iteratively refine the predicates that define these hyper-
rectangles by collecting samples around their boundaries. Let
us assume the decision tree has revealed k d-dimensional
relevant areas. Our experimental results demonstrated that this
phase has the smallest impact on the effectiveness measure
of our model: a non discovered relevant area can reduce our
accuracy more than a partially discovered relevant area. Hence,
we constrain the number of samples we retrieve during this
phase to αmax. This allows us to utilize better the user’s
effort as he will provide feedback mostly on samples generated
from the previous two, more effective phases. Furthermore,
our goal is to distribute an equal amount of user effort to
refine each boundary. Since we have k relevant areas each
with d boundaries, we collect αmax/(k× d) random samples
across the domain of each attribute ti making sure that the
distance of ti’s value is less than x from the boundary of
the relevant area. The parameter x affects the convergence
to the actual boundary and it should be adaptively set to the
expected difference between the actual and predicted value
for the sampling attribute. Figure 2 shows the sampling areas
around the boundaries for attribute A of the predicted area.

IV. PRELIMINARY EXPERIMENTAL RESULTS

We implemented our framework on JVM 1.7 and our under-
lying data space was drawn from the SDSS database [2]. We
used a database size of 11GB and our exploration space had
two attributes. Specifically, we used two uniformly distributed

numerical attributes rowc and colc of the PhotoObjAll
table. A covering index was also used on both of these
attributes. Finally, all our experiments were run on an Intel
PowerEdge R320 server with a 32GB RAM. The desicion tree
algorithm we used is CART [3].

We focused on predicting range queries (target queries) and
we varied their complexity based on the number of disjunctive
predicates they include (number of relevant areas). The diver-
sity of our target query set is driven by the query characteristics
we observed in the SDSS benchmark [2]. Specifically, 90% of
their queries select a single area, while 10% selects only four
(4) relevant areas. Our experiments cover even more complex
queries of 3, 5 and 7 relevant areas.

Given a target query, we simulate the user by executing the
query to collect the exact set of relevant tuples. We rely on
this set to label the collected samples depending on whether
they are included in it. We also use this set to evaluate the
accuracy of our final predicted extraction query. We measure
accuracy using the F -measure of our final prediction. This
metric calculates the harmonic mean of precision and recall.
Achieving a good precision will eliminate irrelevant objects
from the retrieved data set while a good recall will ensure that
our final query can retrieve a good percentage of the relevant
to the user objects. We assume that the user is willing to label
N samples in total and we report the F -measure we converge
to when we reach this number. Our approach achieves high
accuracy for the most common queries of one area while it
can predict, given a reasonable number of samples, complex
queries with a higher number of relevant areas.

Effectiveness Figure 3(a) shows the accuracy when we
increase the query complexity and the number of relevant areas
we are trying to discover ranges between one (1) and seven
(7). Naturally, labeling more samples improves in all cases
the accuracy. Our approach performs very well for common
conjunctive queries: for one relevant area we need only 200
samples to reach an accuracy higher than 60%. To accurately
predict highly complex disjunctive queries more samples are
needed. However, even for complex queries of seven (7) areas
we achieve an accuracy of 63% or higher when the user labels
at least 600 samples. This is an improvement over the 1000s
of objects users have to review if they have to manually assess
the quality of their exploration queries (e.g., the output size of
our target queries ranges between 13, 957− 99, 671 objects).

Efficiency Figure 3(b) shows the time overhead of our
exploration process (seconds per iteration) as the user labels
more samples. This includes the time of the space exploration,
data classification and sample extraction steps. In all cases,
extracting more samples increases the exploration time. Fur-
thermore, the complexity of the target queries affects the over-
head of the system. It takes less time per iteration to discover
fewer relevant areas, since searching for more relevant areas
leads to more false negative samples and thus to more sample
extraction queries in the misclassified exploitation phase. Our
time overhead is acceptable: for an average of 10 iterations we
had 2.1 secs in average per iteration for common queries of 1
area, while the average time is 9.2 secs for the most complex

0

0.2

0.4

0.6

0.8

1

200 400 600 800 1000 1200 1400 1600

F-
m

ea
su

re

Number of Samples

1-Area 3-Areas 5-Areas 7-Areas

(a) Effectiveness (F -measure).

0

5

10

15

20

200 400 600 800 1000 1200 1400 1600

Ti
m

e
(s

ec
)

Number of Samples

1-Area 3-Areas 5-Areas 7-Areas

(b) Efficiency (time per iteration).

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7

F-
m

ea
su

re

Number of Relevant Areas

Auto-800 Random-800 Random-Grid-800

Auto-1600 Random-1600 Random-Grid-1600

(c) Comparison to random exploration.

Fig. 3: Evaluation results for increasing query complexity (number of relevant areas) and varying number of samples.

queries of 7 areas.
Random Exploration We compared our approach (Auto)

with two alternatives. Random does a random selection of
samples in the data space, receives user feedback and then
builds a classification model. In Random-Grid the sample
selection is done randomly within each cell of our exploration
grid (and not around the cell center as Auto). This provides a
better distribution of samples across the exploration space than
Random. We also set the number of samples to be N = 800
and N = 1600 to ensure that both random techniques can
predict complex queries. Figure 3(c) shows that we deliver
better results in all cases and our accuracy is close to 95% for
1600 samples and 80% for 800 samples in average. In all cases
(except AUTO-1600) increasing the query complexity reduces
the accuracy since it becomes more difficult to discover objects
of interest within all areas while keeping the number of
samples constant. Having more samples (i.e., 1600) allows all
techniques to achieve a higher F -measure.

V. RELATED WORK

A related body of work proposed the“Query-By-Example”
framework [7] and query formulation interfaces [8]. These
systems do not model user interests and cannot retrieve
“similar” objects. Query relaxation techniques have also been
proposed for supporting data exploration [9], [10]. These
solutions adjust the query parameters to reach a cardinality
goal and therefore do not characterize user interests.

Various sampling techniques have been proposed for ap-
proximate query processing [11], [12]. Instead, our sampling
aims to improve our prediction of the user interests. In [13]
they facilitate query formulation using past SQL query tem-
plates. In [14] they use collaborative filtering to provide query
recommendations. These systems do not focus on predicting
“similar” data objects. Idreos et al. [15] propose a system
for interactive data processing tasks aiming to improve data
analysis tasks. [16] explores the data space based on statistical
properties of the data and provides suggestions for further
exploration. Our system is different since we rely on the expert
user’s feedback to provide query suggestions. Finally, [17]
learns conjunctions of quantified Horn expressions over nested
relations, which differ from our target SQL queries.

VI. CONCLUSIONS & FUTURE WORK

In this paper we proposed an iterative framework that assists
users in discovering interesting linear patterns and eliminates

expensive ad hoc exploratory queries. Our solution relies on
a seamless integration of classification and data management
algorithms that collectively strive to match the user’s interests
while minimizing the number of samples presented to him.
Our results are positive: we can deliver highly accurate query
predictions within acceptable wait time.

We have built an initial prototype and we aim to deploy it
as a public service operating on scientific data [2]. This will
help us better debug our system as well as collect real usage
scenarios for further experimentation. We also plan to expand
our research agenda towards two dimensions. First, incorporate
optimizations that reduce the user’s feedback effort especially
for complex disjunctive queries. Second, develop techniques
that allow for high scalability with the data space size as well
as the dimensionality of the exploration space.

REFERENCES

[1] U. Çetintemel et all, “Query steering for interactive data exploration,”
in CIDR, 2013.

[2] “Sloan Digital Sky Survey,” http://www.sdss.org/.
[3] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification

and Regression Trees, 1984.
[4] X. S. Zhou and T. Huang, “Relevance Feedback in Image retrieval: A

comprehensive review,” Multimedia System, vol. 8, no. 2, 2003.
[5] I. Ruthven et al, “A survey on the use of relevance feedback for infor-

mation access systems,” The Knowledge Engineering Review, vol. 18,
no. 2, 2003.

[6] N. Panda, K.-S. Goh, and E. Y. Chang, “Active learning in very large
databases,” Multimedia Tools Appl., vol. 31, no. 3, 2006.

[7] M. M. Zloof, “Query-by-example: operations on hierarchical data bases,”
in National Computer Conference and Exposition, 1976.

[8] C. Ahlberg et al, “Dynamic queries for information exploration: an
implementation and evaluation,” in CHI ’92, 1992.

[9] S. Chaudhuri, “Generalization and a framework for query modification,”
in ICDE, 1990.

[10] C. Mishra and N. Koudas, “Interactive query refinement,” in EDBT,
2009.

[11] S. Agarwal et al, “Blink and it’s done: interactive queries on very large
data,” in VLDB, 2012.

[12] L. Sidirourgos, M. Kersten, and P. Boncz, “SciBORQ: Scientific data
management with Bounds On Runtime and Quality,” in CIDR, 2011.

[13] N. Khoussainova et al, “A Case for A Collaborative Query Management
System,” in CIDR, 2009.

[14] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis, “Query Recommenda-
tions for Interactive Database Exploration,” in SSDBM, 2009.

[15] M. L. Kersten et al, “The Researcher’s Guide to the Data Deluge:
Querying a Scientific Database in Just a Few Seconds,” PVLDB, vol. 4,
no. 12, 2011.

[16] T. Sellam and M. L. Kersten, “Meet Charles, big data query advisor,”
in CIDR, 2013.

[17] A. Abouzied et al, “Learning and verifying quantified boolean queries
by example,” in PODS, 2013.

