ExoSnap: a Modular Approach to Semantic Synchronization and Snapshots

Liuba Shrira and Siying Dong
Department of Computer Science
Brandeis University

Waltham, MA 02454
liuba@cs.brandeis.edu

Abstract

Type-specific synchronization and consistent snapshots are
transactional storage system approaches for dealing with
transaction contention. Current approaches suffer from a lim-
itation that precludes the use of commodity storage servers
because they require to run the type-specific synchronization
code at the servers. This is a problem for “cloud computing”
systems that must rely on commodity components to exploit
economies of scale. We describe a new approach that over-
comes the limitation. The new approach splits the transaction
protocol code, the type-specific code runs outside the server,
on the client side, and the generic performance-critical code
runs in the server. New type-specific synchronization proto-
cols and new type-specific consistent snapshot protocols can
be developed without modifying the servers, providing the
ability to use commodity servers. Moreover, no new type-
specific schemes need to be invented, because the approach
derives client-side type-specific synchronization and snapshot
schemes from existing server-side schemes.

1 Introducation

“Cloud computing” systems that provide applications as ser-
vices and store application data in data centers pose a chal-
lenge for storage systems. They need to be flexible to support
application needs but must rely on commodity servers to ex-
ploit economies of scale. This position paper describes a novel
flexible way to handle transaction contention in a storage sys-
tem using commodity servers. Consider a “bargain hunting”
application running speculative transactions that explore al-
ternatives to optimize the committed choice. Such computa-
tions may run for a long time and may query large amounts of
data, including historical states. Workloads that contain long-
running update transactions and large queries suffer from con-
tention. Contention interfers with transaction commits in opti-
mistic and pessimistic concurrency systems, leading to loss of
work and resource waste.

Type-specific synchronization and consistent snapshots are
known approaches to handle transaction contention. Type-
specific synchronization (semantic locking [7]) reduces con-
tention for update transactions. Snapshot isolation [4] elimi-
nates contention for read-only queries. Back-in-time queries
running over persistent snapshots allow to access historical
states in real-time on-line [18, 17] without interfering with the
current state. Current approaches suffer from a limitation be-
cause they implement type specific synchronization and snap-
shots on the server side, requiring to run the type-specific syn-
chronization code at the servers. This precludes the use of
“commodity” servers, a “showstopper” limitation in cloud sys-
tems. To allow commodity servers, type-specific code needs
to run outside the servers so that new synchronization proto-
cols can be developed, and new applications can be deployed,
without modifying the servers. On the other hand, for ef-
ficiency reasons, snapshot mechanisms such as cache-based
copy-on-write used by high-performance database storage sys-
tems must run inside the server. Yet, snapshots and synchro-
nization mechanisms can not be implemented independently
since snapshot consistency semantics depends on the transac-
tion synchronization semantics.

We describe ExoSnap, a new transactional storage approach
that overcomes this limitation. The approach is based on
encapsulated revertable reservation objects and semantically
consistent snapshots. The reservation objects resemble seman-
tic locks (reservations) [7]. They provide tentative revertable
operations that allow to synchronize contention-prone trans-
actions in a type-specific way. Reservation objects are im-
plemented using a low-level transaction system supported by
the storage system engine running in the servers. The ap-
proach implements type-specific synchronization in a modular
way, without modifying the servers. Instead, the type-specific
code, encapsulated in the reservation objects, runs in the client
on cached state, and generic read/write concurrency control
runs in the low-level transaction system at the server, treat-
ing reservation objects as ordinary persistent objects, provid-



ing the ability to use commodity servers.

The snapshot system reflects the synchronization levels.
Low-level, type-independent snapshot system, implemented
efficiently on the server side, captures snapshots that are con-
sistent with respect to the low-level transactions. A low-level
snapshot, however, may reflect modifications that eventually
get aborted by the speculative transactions. A query access-
ing such a snapshot could observe inconsistencies. The high-
level semantic snapshot system guarantees that no inconsistent
snapshot states are observed by queries by “repairing” the low-
level snapshots “just-in-time” when a snapshot query accesses
a revertable object. The repair is type-specific and runs on the
client side. This approach supports short-lived and long-lived
snapshots providing what amounts to semantic snapshot iso-
lation queries and semantic back-in-time execution.

Semantic snapshots are a new concept but semantic syn-
chronization is an old idea, explored extensively in the mid
80’s. Remarkably, despite many (server-side) proposals no
general commercial implementations exist. We believe, the
need to modify the concurrency control and recovery systems
in the legacy server has been the primary barier. This problem
is even more acute in cloud systems. By solving the prob-
lem, our approach allows a cloud storage system to handle
contention in the most effective way for each application, tak-
ing advantage of new and existing synchronization schemes,
while providing the ability to use commodity servers.

We have prototyped an ExoSnap storage system, based on
reservation objects and semantic snapshots, and are evaluating
the prototype performance.

2 A Data Type-based Approach

Consider a regional tour service used by visitors for planning
trips on a limited budget, and by commerce organizations for
capacity planning. A visitor needs to secure reservations in 2
or 3 tours to make the trip worthwhile. He has several alterna-
tive tours he would be happy to explore. The visitor puts to-
gether an initial plan and fine-tunes it in the course of a couple
of days. To do this, he executes a “long-running bargain hunt-
ing transaction” that updates his trip by adding and removing
reservations. The regional commerce organization may moni-
tor visitor traffic by running read-only “audit transactions’ that
alert vendors of increased traffic. Similarly, it may analyze
historical reservation traffic to predict future capacity needs.

Our goal is to provide effective support for long-running
contention-prone speculative transactions accessing such ser-
vices storing persistent data. Specifically we require:

1. Ability to acquire a service reservation so that a client can
carry out speculative booking transactions and be sure the
transactions will be able to commit without conflicts.

2. A proper outcome at the end. For example, the client

should be able to commit only the bookings he ultimately
decided to finalize.

3. A proper outcome in case of failure. For example if the
client never finalizes the booking, the reservation should
be released.

We have developed a new approach based on specialized data
types to support these requirements. Importantly, our ap-
proach requires no special processing on the storage server
nodes. This is attractive because it keeps the server code as
simple as possible, enabling commodity servers. Because we
run no special code at the storage servers, our work differs
from earlier approaches.

Earlier work also made use of specialized data types to
avoid concurrency control conflicts and developed a number
of implementations of different data types [20, 9]. However,
all these approaches involved the use of specialized code run-
ning at the servers. Our approach makes it possible to use the
same implementations but without running them at the servers;
all earlier implementations can be supported by our approach.
Our approach thus allows a type-specific server-based scheme
to be transformed into a client-based scheme.

In our scheme, the persistent storage for objects resides on
storage servers while clients cache and access local copies of
these objects. A client runs top-level transactions that con-
tain within them special smaller revertible transactions (called
in literature open nested transactions). The revertible trans-
actions perform modifications to objects that are cached on a
client and are used to commit changes, e.g. trip reservations,
that may be cancelled later. They allow clients to coordinate
their changes so that conflicts are avoided. Our requirement
to not run any special code at the storage server implies that
the storage servers do not know anything about the revertible
changes. Instead, storage servers process all commit requests,
including revertible transactions, identically. Our approach,
instead, has special processing performed at the client. These
computations run on cached copies of data from the storage
server, and these copies will reflect the changes made by other
committed transactions, including both committed top-level
transactions and committed revertible transactions. Thus the
computations can observe the revertible changes of other spec-
ulative transactions and take these into account.

Our approach makes use of special types of objects. Such
an object provides the normal operations, including obtaining
or releasing a reservation for a resource. Additionally, these
objects are prepared to handle the changes committed by re-
vertible transactions. When the user calls a modification oper-
ation on such an object, the operation performs the modifica-
tion and records the execution of the operation in a log along
with a lease. The lease stores the time at which the revert-
ible operation will expire. The information about the revert-
ible modifications and their leases is part of the representation



of the object, and thus is written to the storage server when
the mobile client reconnects and the application commits the
revertible transaction. Other clients, upon connecting to the
shared storage server, will observe the revertible modification
on the special object.

When the client reconnects and is ready to commit the top-
level transaction, it must first call special confirm operation on
all objects on which it wants the revertible change to become
permanent. This operation updates the status of that change
so that it no longer appears revertible. Additionally, the trans-
action can call a special release operation to undo the mod-
ifications that are no longer of interest to it. Thus when the
top-level transaction commits, all of the objects whose modifi-
cations have been confirmed will be stored with those changes
having really happened, and objects whose changes have been
released will have those modifications dissapear. Note that
the application need not explicitly cancel (release) the changes
that are no longer needed, since these modifications will be
undone automatically when those objects are used by other
transactions after the leases expire. However, cancelling is de-
sirable since it can release the resource earlier, before their
leases expire.

Although we have described the system as if the applica-
tions must use custom-made special objects, in fact our ap-
proach allows application developers to avoid this work. In-
stead we have defined some built-in data types that provide
the needed type-specific leases and transaction support. We
have implemented two such classes, fragmentable objects and
collections.

3 ExoSnap System

We have developed a storage system for speculative transac-
tions called ExoSnap. The storage system runs high-level and
a low-level transactions. High-level transactions are the spec-
ulative transactions running computations meaningful to the
application. For example, a high-level transaction may include
renting a car, assembling several trip alternatives, and commit-
ting a final trip transaction. High-level transactions synchro-
nize in a type-specific way using the special typed reservation
objects. The correctness condition for high-level transaction is
semantic serializability.

The high-level transactions are implemented using low-
level transactions. Low-level transactions update the persistent
state. They synchronize using read/write concurrency con-
trol providing strict serializability. A high-level transaction
may commit and abort multiple low-level transactions before
comitting or aborting. A specialized protocol, described in this
section, ensures the atomicity (all-or-nothing) property of the
high-level transactions.

To avoid terminology confusion between transaction lev-
els (high-level and low-level) and the structure of transactions

within a level (top-level and nested) we refer to high-level
transactions as application and refer to low-level transactions
as base.

Base transactions Base transactions in our system are pro-
vided by the Thor client/server object storage system [11],
though we could use any caching client-server storage sys-
tem such as a SQL server replication. We have extended Thor
to support client-side nested transactions (transparent to the
server). A client runs transactions accessing the local copies
of the cached objects stored persistently in storage servers. To
commit a transaction, the client connects to the server. The
server validates the transaction using an optimistic concur-
rency control scheme OCC [1]. The scheme provides effi-
cient validation of client transaction read and write sets us-
ing object based invalidations and invalidation acknowledge-
ments. A transactions that passes server validation is commit-
ted, and its results are stored persistently at the server (without
re-executing it).

Semantic Synchronization on the Client Side Top-level
application transactions run at the client and synchronize us-
ing reservation objects. A reservation object implements type-
specific synchronization scheme on the client side. We explain
using an example how we derive such client-side scheme from
a type-specific server-side synchronization scheme.

Consider the available-slots object representing available
bookings in the tour service, and consider the write/write con-
flicts that occur when concurrent speculative transactions add
or remove reservations. These conflicts are superfluous in the
sense that, as long as there remain available slots, no matter
in what order the reservations are interleaved they produce
the same available-slots balance. A type-specific concurrency
control scheme called escrow locking [14, 10] avoids these
unneeded conflicts by exploiting the semantics of the escrow
type. An object of escrow type provides two commutative op-
erations: split(delta) and merge(delta ) . A transaction calls
the split operation to make a reservation for specified (delta)
escrow amount, and calls the merge operation to return the
unused escrow amount. As long as the in-stock balance is
positive, the escrow locking protocols allows concurent trans-
actions to interleave the split and merge operations without
conflicts.

Many type-specific concurrency schemes have been devel-
oped that allow additional concurrent operation interleaving
compared to the strict read/write concurrency control(e.g. [3,
20, 21]). In all cases the type-specific code that avoids con-
flicts runs on the server side. Any such type-specific server-
side concurrency control scheme can be transformed into a
derived scheme that performs the type-specific synchroniza-
tion actions at the clients yet allows the same operation inter-
leavings as the server-side based scheme. In the derived



scheme the server has no type-specific code, running a sim-
ple read/write concurrency control scheme. We use escrow
synchronization as our running example. The escrow type is a
representative of a general class of fragmentable objects [19].
Objects of this class have commutative operations that can be
exploited by type-specific concurrency control schemes like
escrow locking to avoid conflicts. The ubiquitous collection
types represent another large class with similarly exploitable
properties. There are many others. We use escrow because it
is simple.

Consider the server side implementation of a toor-booking
service using escrow synchronization. The service is imple-
mented by an object (service object) that exports a collection
of methods. The methods include acquire, release, and expire
operations that can be overriden by object implementation.

The object implementation consists of the procedures im-
plementing the operations and the representation for the shared
state they manipulate. The representation includes a set of out-
standing reservations and an internal available-slots balance
object that implements the escrow operations. The split(delta)
operation is called by the acquire request to obtain the reserved
escrow amount, and the merge(delta) operation is called by
the release request to return the unused escrow amount. The
merge(delta) operation is also called by the expire method that
is invoked internally by the service system when a reservation
expires.

The acquire request atomically commits the modifications
to the in-stock-balance object and inserts a record describing
the reservation into the reservation set. The reservation record
specifies the reservation expiration time, and the actions that
need to be performed if the reservation expires. These recon-
ciler actions are type-specific, they perform the inverse of the
operation invoked by the acquire request. The release and ex-
pire requests atomically commit the effects of the correspond-
ing merge operation and remove the reservation.

The synchronization code described above resembles a con-
current object with a type-specific lock manager implemented
using a monitor where monitor procedures implement the
reservation requests, and monitor state encapsulates the inter-
nal available-slots-balance object and the outstanding reser-
vation set. Within the monitor, the procedures use a simple
mutex to serialize accesses to the shared monitor state.

We obtain our special encapsulated reservation objects by
running the concurrent object on the client side. That is, by
storing the persistent monitor state at the server, caching at the
client the monitor code and state, running the monitor proce-
dures on the cached state, and replacing the mutex synchro-
nization with a concurrency control protocol (OCC) that coor-
dinates access to cached state by validating read/write conflicts
at the server.

When the client issues a reservation acquire request, the cor-
responding monitor procedure updates the client’s cached state

(the reservation set and the state of the in-stock-balance ob-
ject) to reflect the reservation and sends the modified state to
the server. If the state sent to the server is not stale, the server
can commit the request making the updated state persistent. If
the cached state is stale because another client has committed
areservation request, the server aborts the request and informs
the client. The client obtains from the server the up-to-date
monitor State, re-runs the request, and re-tries the commit with
the new state. Eventually the request will succeed.

Application Transactions The top-level application trans-
actions run at the client invoking operations on regular cached
objects and the cached encapsulated reservation objects. The
reservation operations (e.g. acquire, release and expire) are
run as base transactions nested inside the top-level transac-
tion. As mentioned, since the system serializes the base trans-
actions using optimistic concurrency control, the server will
abort a nested base transaction if the cached reservation object
state is stale, i.e. has been modified by another client. In such
case, the client refetches the new state of the reservation ob-
ject, re-executes the nested transaction on the fresh state, and
retries the commit of the nested base transaction. The commit-
ting nested transaction is retried without undoing the top-level
transaction.

A top-level transaction that commits at the server a nested
transaction (say, a nested transaction that acquires a leased es-
crow reservation) without also committing itself, exposes un-
committed effects by updating the durable copy of the escrow
object. Such transaction nesting structure, called open nest-
ing [21], violates the strict read/write serializability of the en-
closing top-level transaction but allows to coordinate the top-
level transactions among concurrent clients in a type-specific
way that avoids conflicts.

A top-level transaction may crash or abort. To ensure the
all-or-nothing property for top-level transactions, the open
nested transactions have associated compensation actions that
accompany the commit or abort of the top-level transaction.
The goal of the abort compensation is to revert the exposed ef-
fects of the open nested transactions committed by the aborted
enclosing top-level transaction. The goal of the commit com-
pensation is to ensure that exposed effects are not reverted.

The reservation objects define operations called reconcil-
ers, that revert the effect of their operations. The reconcilers
are stored in the part of the reservation object representation,
called the reconciler log. For example, the reconciler for an
operation that acquires an escrow reservation for one item,
is an escrow operation that releases the item. A reconciler
is written durably to the reconciler log when the open nested
transaction that runs the associated reservation operation com-
mits at the server.

The reconciler entry in the reconciler log can be active, de-
activated, or timed-out. The open nested transaction commits



an active reconciler that includes the lease expiration time.
The commit compensation of the enclosing parent transaction
deactivates all the active reconcilers that have been recorded
by its enclosed open nested transactions.

Top-level transactions implement compensations by regis-
tering callbacks to handlers, called reconciler handlers, pro-
vided by the reservation object. The handlers are invoked at
the client before the top-level transaction about to commit or
abort at the server, sends all its tentative uncommitted modi-
fications to the server for validation (invoking a base transac-
tion).

If a reservation operation observes a timed-out reconciler
in the reconciler log, it registers a handler for the timed-out
reconciler with the enclosing top-level transaction. This way,
commit or abbort compensation at the observing client will ex-
ecute the reconciler. The execution of such a reconciler results
in the deactivation of the corresponding durable reconciler in
the reconciler log. Note, there is no problem with concurrent
(duplicate) invocations of the same timed out reconcilers at
multiple observing clients because the base concurency con-
trol scheme serializes the nested transactions, and therefore
ensures that the first reconciler invocation that commits will
deactivate the timed-out reconciler, thus invalidating the cor-
responding reconciler log (and the reservation object) in the
other observing clients.

A top-level level transaction may be committing updates
to multiple reservation objects. The commit compensation
runs a reconciler handler for each object as a regular nested
transaction that commits (or aborts) atomically with the top-
level transaction. The commit compensation resembles re-
leasing locks at transaction commit time in read/write locking
schemes but there is an important difference. Where the re-
lease of read/write locks only affects performance, “semantic
locks” must be released atomically with the parent commit to
maintain correctness. This is because, if the enclosing tran-
sation commits and crashes without releasing, the time-out of
the reservation will revert its effects, thus violating the all-or-
nothing property of the top-level transaction whose commit
depends on acquiring the reservation.

To commit the nested transaction as part of the top-level
transaction commit, the client simply includes its read/write
sets with the parent read/write sets. If the server can not com-
mit the joint transaction because the reservation object was
stale, the client receives an invalidation for the reservation ob-
ject, refetches the new state of the object, and retries the joint
commit without aborting the enclosing transaction. If other
data (not a reservation object) was stale, the application will
need to resort to after-the-fact reconciliation for that particular
data.

4 Semantic Snapshots

ExoSnap creates low-level and high-level snapshots corre-
sponding to the transaction synchronization levels. The low-
level snapshots are created in two steps. The SNAP split
snapshot system [18] creates persistent high-frequency (after
every transaction) snapshots at each storage server node by
retaining pre-states of updated objects. A variation of Fast
Read-only Transaction protocol (FROP) by Liskov and Ro-
drigues [12] assembles a consistent distributed low-level snap-
shot out of individual server snapshots “just-in-time” when
read-only queries access snapshot objects.

The snapshots assembled by the FROP/SNAP protocol re-
flect transactionally consistent states in the low-level transac-
tion system. However low-level snapshots do not necessarily
reflect consistent states in the high-level transaction system.
This is because the snapshot system that runs inside the stor-
age engine, oblivious to the revertable object state, could cap-
ture states that reflect tentative modifications, that eventually
get aborted by the high-level transaction system. A snapshot
query, observing aborted modifications, could violate the high-
level transaction consistency.

Semantically consistent snapshots (semantic snapshots)
provide the consistency guarantees for snapshot queries and
back-in-time execution. The semantic consistency condition
that captures the correctness of semantic snapshots requires
that a snapshot reflects no tentative (uncommitted) states. The
key observation underlying the creation of semantically con-
sistent snasphots is that, given a state captured by a consis-
tent low-level snapshot, any revertable modification recorded
in a reconciler log of some revertable object corresponds to
a high-level transaction that was uncommitted at the low-
level snapshot serialization point. This is because a high-level
transaction commit makes all tentative modifications “non-
revertable”. Therefore, “repairing” the state of a revertable
object captured by a low-level snapshot by reverting (undo-
ing) all the revertable modifications (expired or not) recorded
in its reconciler log brings the object to a state that reflects a
comitted high-level transaction system state at the execution
point corresponding to the low-level snapshot.

A simple and efficient mechanism enforces semantic snap-
shot consistency. The mechanism is type-specific and there-
fore runs outside the storage system server. The mechanism
requires the revertable objects to provide a special snapshot
method. This method transparently “recovers” a consistent
snapshot state in a type-specific way “just-in-time”, so that
semantically consistent high-level snapshot state is observed
each time a query accesses a revertable object in the snapshot.
The recovery does not affect the persistent snapshot state at
the server.

The approach applies to short-lived snapshots, providing se-
mantic snapshot isolation queries, and also to long-lived his-



torical snapshots, providing semantic back-in-time execution.

5 Related work

Database studies in mid 80’s, Weikum [21], Ramamritham [2],
and others, have explored multi-level and semantic concur-
rency schemes. Weikum [21] uses “physical” low-level trans-
actions, serialized with read/write locks, and high-level “log-
ical” transactions, serialized with semantic locks. The open
nesting permits physical updates in the low-level system, with-
out committing the containing high-level transactions. The
logical conflicts and logical recovery, are handled (“‘compen-
sated”) on the server side. ExoSnap uses the same multi-level
transaction idea, albeit with an optimistic low-level transac-
tions, but moves to the client side the type-specific code for
conflict compensation, crash recovery, and lease expiration.
Moreover, the client handles type-specific snapshot support,
not considered by Weikum. A recent middleware-based im-
plementation of the J2EE Activity Service [16] uses a multi-
level system and specific semantic locks. Instead, we provide a
general framework that exploits existing server-side schemes.
We exploit escrow schemes by O’Neil [14], demarcation pro-
tocols [3], concurrent abstract objects [20], and collection
classes [13]. Recent work by Fekete et al [8] uses a promise
a mechanism similar to reservations, to exploit an interesting
new semantic property taxonomy, that we could exploit in Ex-
oSnap. In on-going work we using our client-side approach
for transfering reservations between disconnected appliances.

Semantic snapshots generalize the concepts of snapshot iso-
lation queries [4] and time-travel queries [15, 18], to handle
semantic synchronization. Graefe and Zwilling [6] propose
to combine snapshot isolation queries and server-side escrow
locking to reduce contention for indexed summary views in a
SQL database in a data wearhouse. Binder et al [5] describe
a multi-version generalized search tree data structure that sup-
ports snapshot isolation queries for web directories.

References

[1] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Efficient
Optimistic Concurrency Control Using Loosely Synchronized
Clocks. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, May 1995.

[2] B. R. Badrinath and K. Ramamritham. Semantics-based
concurrency control: beyond commutativity. ACM Trans.
Database Syst., 17(1), 1992.

[3] D. Barbarid-Milla and H. Garcia-Molina. The demarcation pro-
tocol: a technique for maintaining constraints in distributed
database systems. The VLDB Journal, 3(3):325-353, 1994.

[4] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ansi sql isolation levels. In Proceed-
ings of the 1995 ACM SIGMOD international conference on
Management of data, San Jose, California, United States, 1995.

[51

(6]
(71

[8

—_—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

W. Binder, S.Spicher, I. Constantinescu, and B. Baltings. Eval-
uation of multiversion concurrency control for web service di-
rectory. In Proceedings of International Conference on Web
Services (ICWS 2007), Salt Lake City, Utah, 2007.

G. Graefe and M. J. Zwilling. Transaction support for indexed
views. In Proceedings of ACM SIGMOD Conference, 2004.

J. Gray and A. Reuter. Transaction Processing : Concepts and
Techniques. 1993.

P. Greenfield, A. Fekete, J. Jang, D. Kuo, , and S. Nepal. Iso-
lation support for service-based applications: A position paper.
In Proceedings of Conference on Innovative Data Systems Re-
search (CIDR’07), Asilomar, CA, January 2007.

M. Herlihy. Replication methods for abstract data types. Tech-
nical Report MIT/LCS/TR-319, 1984.

A. Kumar and M. Stonebraker. Semantics based transaction
management techniques for replicated data. ACM SIGMOD
Record, 17(3):117-125, June 1988.

B. Liskov, M. Castro, L. Shrira, and A. Adya. Providing per-
sistent objects in distributed systems. In Proceedings of the
13th European Conference on Object-Oriented Programming
(ECOOP), Lisbon, Portugal, June 1999.

B. Liskov and R. Rodrigues. Transactional file systems can
be fast. In 711th ACM SIGOPS European Workshop, Leuven,
Belgium, Sept. 2004.

Y. Ni, V. Menon, A. Adl-Tabatabai, A. Hosking, R. Hudson,
E. Moss, B. Saha, and T. Shpeisman. Open nesting in software
transactional memory. In Proceedings of the PPOP, November
2007.

P. O’Neil. The escrow transaction method. ACM Transactions
Database Systems, 11(4):406-430, June 1986.

G. Ozsoyoglu and R. Snodgrass. Temporal and Real-Time
Databases: A Survey. IEEE Transactions on Knoweldge and
Data Engineering, 7(4):513-532, August 1995.

F. Prez-Sorrosal, M. Patino-Martinez, R. Jimenez-Peris, and
J. Vuckovic. Highly available long running transactions and
activities for j2ee applications. In ICDCS ’06: Proceedings of
the 26th IEEE International Conference on Distributed Com-
puting Systems, page 2, Washington, DC, USA, 2006. IEEE
Computer Society.

L. Shrira, C. van Ingen, and R. Shaull. Time travel in the virtu-
alized past: cheap fares and first class seats. In Wirtualization
Workshop, Haifa Systems and Storage Conference, Haifa, Is-
rael, 2007.

L. Shrira and H. Xu. Snap: a non-disruptive snapshot system.
In Proceedings of the 21st International Conference on Data
Engineering, Tokyo, Japan, 2005.

G. D. Walborn and P. K. Chrysanthis. Supporting semantics-
based transaction processing in mobile database applications.
In Symposium on Reliable Distributed Systems, pages 31-40,
1995.

W. E. Weihl. Local Atomicity Properties: Modular Con-
currency Control for Abstract Data Types. ACM TOPLAS,
11(2):249-283, 1989.

J. Weikum. A theoretical foundation of multi-level concurrency
control. In Proceedings of ACM PODS, 1986.



