Cursing and Recursing
CS21b: Structure and Interpretation of Computer Programs
Spring Term, 2016
Computing Square Roots -- a “fast path” to a real program

...an example of the use of recursion,
 a beginning methodology of program design,
 and a use and explanation of lexical scoping of variables...

Recall: `sqrt(x)` is the value y such that \(y^2 = x \)

\((a \text{ DECLARATIVE DEFINITION [what is]} -- \text{by contrast, programs are IMPERATIVE DEFINITIONS [how to}}) \)

"Wishful thinking" method of programming

\[
\text{(define (sqrt-iter guess x)}
 \text{(if (good-enough? guess x)}
 \text{guess}
 \text{(sqrt-iter (improve-guess guess x) x) }}))
\]

Now, we need code for \(\text{good-enough?} \) and \(\text{improve-guess} \) ...
(define (sqrt-iter guess x)
 (if (good-enough? guess x)
 guess
 (sqrt-iter (improve-guess guess x) x)))

(define (good-enough? guess x)
 (< (abs (- (square guess) x)) .001))

Now we use Newton's Method to generate new guesses:

initial guess: \(g = 1 \)
next, better guess: \(g' \) (a function of \(g \)) = \((g + x/g)/2 \)

Why does this method work?? The "square box" argument...

Claim (to be shown): This approximation method gains one bit of accuracy for every iteration...

(define (improve-guess guess x)
 (average guess (/ x guess)))

(define (sqrt x) (sqrt-iter 1 x))

[1 is the initial guess...]

To compute \(\sqrt{n} \), start with an initial guess \(g \) (say, \(g = n \)). If you think \(g \) is good enough (i.e., \(g^2 \) is close enough to \(n \)), then stop. Otherwise, replace \(g \) by the improved guess \(I(g) \), where we define \(I(x) = \frac{1}{2}(x + \frac{n}{x}) \).

Stated alternatively, we compute \(g, I(g), I(I(g)), I(I(I(g))), \ldots \) until we have found a good enough approximation to \(\sqrt{n} \).

Claim: If \(x \geq \sqrt{n} \), then \(I(x) \geq \sqrt{n} \) also.

Observe that the stated conclusion is equivalent to the following:

\[
I(x) \geq \sqrt{n} \quad \equiv \quad \frac{1}{2}(x + \frac{n}{x}) \geq \sqrt{n} \\
\iff (x + \frac{n}{x}) \geq 2\sqrt{n} \\
\iff x^2 - 2\sqrt{n}x + n \geq 0.
\]

The quadratic describes a parabola \(ax^2 + bx + c \) opening upwards, and takes its minimum value at \(x = -\frac{b}{2a} = \frac{2\sqrt{n}}{2} = \sqrt{n} \), at which point its value is 0.
Claim:
If \(x \geq \sqrt{n} \), then
\[
\frac{I(x) - \sqrt{n}}{x - \sqrt{n}} \leq 1/2
\]

Note that the inequality is equivalent to the following:
\[
\frac{\frac{1}{2}(x + \frac{n}{x}) - \sqrt{n}}{x - \sqrt{n}} \leq 1/2 \iff x + \frac{n}{x} - 2\sqrt{n} \leq x - \sqrt{n}
\]
\[\iff x + \frac{n}{x} \leq x + \sqrt{n}\]
\[\iff \frac{n}{x} \leq \sqrt{n}\]
\[\iff \sqrt{n} = \frac{n}{\sqrt{n}} \leq x\]

Because the last inequality is true (by assumption), so is the first (the one we wanted to prove).
(define (sqrt-iter guess x)
 (if (good-enough? guess x)
 guess
 (sqrt-iter (improve-guess guess x) x)))

(define (good-enough? guess x)
 (< (abs (- (square guess) x)) .001))

(define (improve-guess guess x)
 (average guess (/ x guess)))

(define (sqrt x) (sqrt-iter 1 x))

Substitution model:

(sqrt 2)
(sqrt-iter 1 2)
(if (good-enough? 1 2) 1 (sqrt-iter (improve-guess 1 2) 2))
(sqrt-iter (improve-guess 1 2) 2)
(sqrt-iter (average 1 (/ 2 1)) 2)
(sqrt-iter 1.5 2)
...
(sqrt-iter 1.41666666666667 2)
...

[recall the answer is 1.4142...]
Naming and the environment

Idea: the names of formal parameters ("internal variables") don’t matter, but the names of external variables do matter.

(Notice the binding [definition] of a parameter, as opposed to the occurrence giving its use...)

So which are the same? Use the substitution model to find out:

\[
\begin{align*}
(\text{define } (\text{square } x) & \ (\ast \ x \ x)) \\
(\text{define } (\text{square } z) & \ (\ast \ z \ z)) \\
(\text{define } (\text{squareplus } x) & \ (+ \ (\ast \ x \ x) \ y)) \\
(\text{define } (\text{squareplus } z) & \ (+ \ (\ast \ z \ z) \ y)) \\
(\text{define } (\text{squareplus } x) & \ (+ \ (\ast \ x \ x) \ y)) \\
(\text{define } (\text{squareplus } z) & \ (+ \ (\ast \ z \ z) \ w))
\end{align*}
\]

Try \(\text{square } 5\)

Try \(\text{squareplus } 10\)

Where do the values of the external, free variables come from?
Block structure---as supported by the substitution model...

Idea: when \((\sqrt{2})\) is evaluated, 2 is substituted for \(x\) in the three definitions, which are *internal* to \(\sqrt{\cdot}\).

```
(define (sqrt x)
    (define (good-enough? guess)
        (< (abs (- (square guess) x)) .001))
    (define (improve-guess guess)
        (average guess (/ x guess)))
    (define (sqrt-iter guess)
        (if (good-enough? guess)
            guess
            (sqrt-iter (improve-guess guess))))
    (sqrt-iter 1))
```
(define (sqrt x)
 (define (good-enough? guess)
 (< (abs (- (square guess) x)) .001))
 (define (improve-guess guess)
 (average guess (/ x guess)))
 (define (sqrt-iter guess)
 (if (good-enough? guess)
 guess
 (sqrt-iter (improve-guess guess))))
 (sqrt-iter 1))

Evaluating (sqrt 2) in the substitution model, we get:

 (define (good-enough? guess)
 (< (abs (- (square guess) 2)) .001))
 (define (improve-guess guess)
 (average guess (/ 2 guess)))
 (define (sqrt-iter guess)
 (if (good-enough? guess)
 guess
 (sqrt-iter (improve-guess guess))))
 (sqrt-iter 1))
Block structure: another version...

(define (sqrt x)
 (define (sqrt-iter guess)
 (define (good-enough?) a procedure with no parameters!
 (< (abs (- (square guess) x))
 .001))
 (define (improve-guess) ...and another one...
 (average guess (/ x guess)))
 (if (good-enough?)
 guess
 (sqrt-iter (improve-guess))))
 (sqrt-iter 1))
(define (sqrt x)
 (define (sqrt-iter guess)
 (define (good-enough?) a procedure with no parameters!
 (< (abs (- (square guess) x))
 .001))
 (define (improve-guess) ...and another one...
 (average guess (/ x guess)))
 (if (good-enough?)
 guess
 (sqrt-iter (improve-guess)))
 (sqrt-iter 1))

(sqrt 2) evaluates to:

 (define (sqrt-iter guess)
 (define (good-enough?)
 (< (abs (- (square guess) 2))
 .001))
 (define (improve-guess)
 (average guess (/ 2 guess)))
 (if (good-enough?)
 guess
 (sqrt-iter (improve-guess)))
 (sqrt-iter 1)
(define (sqrt-iter guess)
 (define (good-enough?) a procedure with no parameters!
 (< (abs (~- (square guess) 2))
 .001))
 (define (improve-guess) ...and another one...
 (average guess (~2 guess))
 (if (good-enough?)
 guess
 (sqrt-iter (improve-guess))))

(sqrt-iter 1) evaluates to

(define (good-enough?)
 (< (abs (~- (square 1) 2))
 .001))
(define (improve-guess)
 (average 1 (~2 1))
 (if (good-enough?)
 1
 (sqrt-iter (improve-guess))))

and (if ...) evaluates to (sqrt-iter 1.5)
Commands versus expressions...

Commands do something (read-eval-print, input and output), and the order in which you execute commands matters (e.g., pie à la mode, with ice cream on top).

Expressions (read-eval-print) evaluate to something, and the order in which you evaluate expressions basically doesn’t matter---you should get the same answer, though perhaps with different efficiency...

Commands “change the world”, expressions only “observe” the world. Example: a bank account function (deposit \(n \)), returning a balance, versus (factorial \(n \)).
Scheme: First you **curse**, then you **recurse**...

That old sawhorse: computing factorials:

\[
\begin{align*}
0! &= 1 \\
n! &= n \times (n-1)!
\end{align*}
\]

```
(define (factorial n)
  (if (= n 0)
    1
    (* n (factorial (- n 1))))
)
```

;Value: factorial

```
(factorial 5)
```

;Value: 120
Substitution model:

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (- n 1)))))

(factorial 5)
(if (= 5 0) 1 (* 5 (factorial (- 5 1))))
(* 5 (factorial (- 5 1)))
...

Note the **special form** (why?)
(if <predicate> <consequent> <alternative>)

Evaluation rule for (if ...):

1. Evaluate <predicate>;
2. If evaluation returns #t (true), entire expression evaluates to what <consequent> evaluates to;
3. Otherwise, entire expression evaluates to what <alternative> evaluates to.
Substitution model:

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (- n 1))))
)

(factorial 5)
(if (= 5 0) 1 (* 5 (factorial (- 5 1))))
(* 5 (factorial (- 5 1)))
...
(* 5 (factorial 4))
...
(* 5 (* 4 (factorial 3)))
...
(* 5 (* 4 (* 3 (* 2 (* 1 (factorial 0))))))
(* 5 (* 4 (* 3 (* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))))))
(* 5 (* 4 (* 3 (* 2 (* 1 1)))))
(* 5 (* 4 (* 3 (* 2 1))))
(* 5 (* 4 (* 3 2)))
(* 5 (* 4 6))
(* 5 24)
120
Time and space resources

(factorial 5)
(if (= 5 0) 1 (* 5 (factorial (- 5 1))))
(* 5 (factorial (- 5 1))
(* 5 (factorial 4))
...
(* 5 (* 4 (factorial 3)))
...
(* 5 (* 4 (* 3 (* 2 (* 1 (factorial 0))))))
(* 5 (* 4 (* 3 (* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))))
(* 5 (* 4 (* 3 (* 2 (* 1 1)))))
(* 5 (* 4 (* 3 (* 2 1))))
(* 5 (* 4 (* 3 2)))
(* 5 (* 4 6))
(* 5 24)
120

Time = vertical axis; Space = horizontal axis Why?

This computational process is linear in time and space -- horizontal, vertical grow linearly with parameter.
Alternative iterative version of factorial:

(define (fact-iter prod n)
 (if (= n 0)
 prod
 (fact-iter (* prod n) (- n 1))))
;Value: fact-iter

(define (factorial n) (fact-iter 1 n))
;Value: factorial

(factorial 5)
(fact-iter 1 5)
(if (= 5 0) 1 (fact-iter (* 1 5) (- 5 1)))
(fact-iter 5 4)
(if (= 4 0) 5 (fact-iter (* 5 4) (- 4 1)))
(fact-iter 20 3)
...
(fact-iter 60 2)
...
(fact-iter 120 1)
...
(fact-iter 120 0)
(if (= 0 0) 120 (fact-iter (* 120 0) (- 0 1)))
120

This process is
Linear time, constant space
Why?
Another belabored example of recursion: Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 145, ...

(define (fib n)
 (if (< n 2)
 n
 (+ (fib (- n 1)) (fib (- n 2)))))

;Value: fib

(fib 10)
;Value: 55

(fib 5)
(+ (fib 4) (fib 3))
(+ (+ (fib 3) (fib 2)) (+ (fib 2) (fib 1)))
(+ (+ (+ (fib 2) (fib 1)) (+ (fib 1) (fib 0)))
 (+ (+ (fib 1) (fib 0)) 1))
(+ (+ (+ (fib 1) (fib 0)) (fib 1)) (+ (fib 1) (fib 0)))
(+ (+ (fib 1) (fib 0)) 1))

(fib n) grows exponentially in n, around \((1/\sqrt{5}) \left[\left(1+\sqrt{5}\right)/2\right]^n\) --- recall \(\sqrt{5} = 2.236\ldots\)

How many calls to \((\text{fib} \ 0)\) or \((\text{fib} \ 1)\) --- also exponential!!

\(C(n) = C(n-1) + C(n-2)\quad C(0) = C(1) = 1\quad [F(n) \text{ “shifted over” by } 1]\)
Iterative Fibonacci numbers (why does it work? what is it doing?)

```
(define (fib-iter a b count max)
    (if (= count max)
        b
        (fib-iter b (+ a b) (1+ count) max)))
;Value: fib-iter

(define (fib n) (fib-iter 1 0 0 n))
;Value: fib

(fib 10)
;Value: 55
```

Substitution model:

```
(fib 10)
(fib-iter 1 0 0 10)
(if (= 0 10) 0 (fib-iter 0 (+ 1 0) (1+ 0) 10))
(fib-iter 0 1 1 10)
(if (= 1 10) 1 (fib-iter 1 (+ 0 1) (1+ 1) 10))
(fib-iter 1 1 2 10)
(if (= 2 10) 1 (fib-iter 1 (+ 1 1) (1+ 2) 10))
(fib-iter 1 2 3 10)
(fib-iter 2 3 4 10)
(fib-iter 3 5 5 10)
...
(fib-iter 34 55 10 10)
55
```

Analysis: linear time, constant space (why)?
Another example: Fast exponential

\[b^0 = 1 \]
\[b^{2n} = (b^n)^2 \]
\[b^{2n+1} = b \times b^{2n} \]

```
(define (expt b n)
    (cond ((= n 0) 1)
          ((even? n) (square (expt b (/ n 2))))
          (else (* b (expt b (- n 1))))))
```

;Value: expt

```
(expt 2 3)
```
;Value: 8

Note use of conditional cond ... a nested if, with a catchall else clause ...
Substitution model: (leaving b indeterminate)

```
(expt b 11)
```
Fast exponential: substitution model (leaving b indeterminate)

(define (expt b n)
 (cond ((= n 0) 1)
 ((even? n) (square (expt b (/ n 2))))
 (else (* b (expt b (- n 1))))))

;Value: expt

(expt b 11)
(* b (expt b 10))
(* b (square (expt b 5)))
(* b (square (* b (expt b 4))))
(* b (square (* b (square (expt b 2)))))
(* b (square (* b (square (square (expt b 1))))))
(* b (square (* b (square (square (square (* b (expt b 0))))))))
(* b (square (* b (square (square (* b 1))))))
(* b (square (* b (square (square b)))))
(* b (square (* b (square b^2))))
(* b (square (* b b^4)))
(* b (square b^5))
(* b b^10)
b^{11}

Analysis: logarithmic time and space
Iterative version of fast exponentiation:

```
(define (expt-iter acc b e)
  (cond ((= e 0) acc)
        ((even? e) (expt-iter acc (square b) (/ e 2)))
        (else (expt-iter (* acc b) b (- e 1))))))
;Value: expt-iter
```

```
(define (expt b e) (expt-iter 1 b e))
;Value: expt
```

```
(expt 2 3)
;Value: 8
```

Termination variant: every call to `expt-iter` decreases e

Substitution model:

```
(expt b 11)
(expt-iter 1 b 11)
(expt-iter b b 10)
(expt-iter b b^2 5)
(expt-iter b^3 b^2 4)
(expt-iter b^3 b^4 2)
(expt-iter b^3 b^8 1)
(expt-iter b^{11} b^8 0)
b^{11}
```

Correctness invariant:

```
(expt-iter acc b e) = acc * b^e
(by induction!)
```

Analysis: logarithmic time, constant space
Using fast exponentiation to derive a fast Fibonacci algorithm

\[
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{k+1} \\
F_k
\end{pmatrix}
=
\begin{pmatrix}
F_{k+2} \\
F_{k+1}
\end{pmatrix}
\]

Idea: to compute \(F_k \), take square matrix \(M \) above, compute \(M^{k-1} \)

\[
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{k-1}
\begin{pmatrix}
1 \\
0
\end{pmatrix}
=
\begin{pmatrix}
F_k \\
F_{k-1}
\end{pmatrix}
\]

(define (matrix-expt b n)
 (cond ((= n 0) 1)
 ((even? n)
 (matrix-square (matrix-expt b (/ n 2)))))
 (else
 (matrix-* b (matrix-expt b (- n 1))))))
Why this works...

\[
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
F_2 & F_1 \\
F_1 & F_0
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_k & F_{k-1} \\
F_{k-1} & F_{k-2}
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
F_{k+1} & F_k \\
F_k & F_{k-1}
\end{pmatrix}
\]
Another logarithmic way to compute Fibonacci numbers...

\[\phi = \frac{1 + \sqrt{5}}{2} \quad \text{ (} \phi + 1 = \phi^2 \text{)} \]

\[F_k = \frac{\phi^k - (1 - \phi)^k}{\sqrt{5}} \quad \text{(proof by induction)} \]

Since the \(k \)th number is defined by an exponential (in \(k \)), we can compute it in \(O(\log k) \) time...
Conclusion:

Combining the clever multiplication (logarithmic time in exponent) with 2x2 matrix multiplication (constant time), we get a **logarithmic** time algorithm for computing Fibonacci numbers -- this a reduction from the original **exponential** time algorithm.

Is this really true? What cost assumptions are we making? (Think about size of numbers, cost of multiplying and adding big integers --- which we've considered to be "constant time".)
Tail Recursion and the Actor Model

Euclid’s algorithm for computing greatest common divisors:

(define (gcd a b)
 (if (= b 0)
 a
 (gcd b (remainder a b))))

Substitution model:

(gcd 21 13)
(gcd 13 8)
(gcd 8 5)
(gcd 5 3)
(gcd 3 2)
(gcd 2 1)
(gcd 1 0)

Where have you seen these numbers before?
Correctness

\[
\text{(define (gcd a b)}
\text{ (if (= b 0)
\text{ a
\text{ (gcd b (remainder a b))))})
\]

Why does this algorithm terminate? Observe that if \(b < a \), then
\[
b + \text{rem}(a, b) < a + b.
\]

Why does \text{gcd} give the right answer? Observe that if \(a = kb + r \), then
\[
gcd(a, b) = gcd(kb + r, b) = gcd(b, r).
\]

Why does \text{gcd} give the answer in \(O(\log a + \log b) \) iterations? Observe that the number of bits decreases:
\[
|b| + |\text{rem}(a, b)| < |a| + |b|
\]
Tail recursion: no work builds up

(define (gcd a b)
 (if (= b 0)
 a
 (gcd b (remainder a b))))

(gcd 21 13)
(gcd 13 8)
(gcd 8 5)
(gcd 5 3)
(gcd 3 2)
(gcd 2 1)
(gcd 1 0)
1

(Proof by example) that
(gcd F_{k+1} F_k)=1

This recursion takes \(k+O(1) \) steps -- but \(F_k \) is about \(1.6^k \) -- thus \(\Omega(\log n) \) steps are required by gcd.
Tail recursion

There are different syntactic kinds of recursion. The tail recursive version is easier to implement.

(define (fact n)
 (if (= n 0)
 1
 (* n (fact (- n 1))))

(fact 5)
(* 5 (fact 4))
(* 5 (* 4 (fact 3))
(* 5 (* 4 (* 3 (fact 2))))
(* 5 (* 4 (* 3 (* 2 (fact 1))))
(* 5 (* 4 (* 3 (* 2 (* 1 (fact 0))))))
(* 5 (* 4 (* 3 (* 2 (* 1 1))))))
...

ordinary recursion: work builds up...
Tail recursion

There are different syntactic kinds of recursion. The tail recursive version is easier to implement.

\[
\text{(define (fact-iter n a)}
\text{(if (= n 0)}
\text{ a)

\text{((- n 1)}
\text{ (* n a)))})
\]

tail recursion: no work builds up...

(fact-iter 5 1)
(fact-iter 4 5)
(fact-iter 3 20)
(fact-iter 2 60)
(fact-iter 1 120)
(fact 0 120)
120
recursive
delayed work
recursive call
tail recursive

\[
\text{fact 5) = 5! = 120}
\]
\[
\text{fact 4) = 4! = 24}
\]
\[
\text{fact 3) = 3! = 6}
\]
\[
\text{fact 2) = 2! = 2}
\]
\[
\text{fact 1) = 1! = 1}
\]
\[
\text{fact 0) = 0! = 1}
\]

\[
\text{fact-iter 5 1)
\]
\[
\text{fact-iter 4 5)
\]
\[
\text{fact-iter 3 20)
\]
\[
\text{fact-iter 2 60)
\]
\[
\text{fact-iter 1 120)
\]
\[
\text{fact-iter 0 120)
\]

why the procedural redundancy here?
recursive

(fact 5)
(* 5 □) 120
(* 6 24) 120
(* 4 □) 24
(* 4 6) 24
(fact 4)
(* 3 □) 6
(* 3 2) 6
(fact 3)
(* 2 □) 2
(* 2 1) 2
(fact 2)
(* 1 □) 1
(* 1 1) 1
(fact 1)
(* 1 □) 1
(* 1 1) 1
(fact 0)

(there’s really only one “process”)

tail recursive

(fact-iter 5 1)
(fact-iter 4 5)
(fact-iter 3 20)
(fact-iter 2 60)
(fact-iter 1 120)
(fact-iter 0 120)
“What is that lambda thing?”

(define (square x) (* x x))

or, if you prefer...

(define square (lambda (x) (* x x)))

The reason you give names to things is so that you can refer to them repeatedly...