Cursing and Recursing

CS21b: Structure and Interpretation of Computer Programs

Spring Term, 2015
Computing Square Roots -- a “fast path” to a real program

...an example of the use of recursion,
 a beginning methodology of program design,
 and a use and explanation of lexical scoping of variables...

Recall: \sqrt{x} is the value y such that $y^2 = x$

(a DECLARATIVE DEFINITION [what is] -- by contrast, programs are
IMPERATIVE DEFINITIONS [how to])

"Wishful thinking" method of programming

(define (sqrt-iter guess x)
 (if (good-enough? guess x)
 guess
 (sqrt-iter (improve-guess guess x) x)))

Now, we need code for good-enough? and improve-guess ...
(define (sqrt-iter guess x)
 (if (good-enough? guess x)
 guess
 (sqrt-iter (improve-guess guess x) x)))

(define (good-enough? guess x)
 (< (abs (- (square guess) x)) .001))

Now we use Newton's Method to generate new guesses:

initial guess: g= 1
next, better guess: g' (a function of g) = (g + x/g)/2

Why does this method work?? The "square box" argument...

Claim (to be shown): This approximation method gains one bit of accuracy for every iteration...

(define (improve-guess guess x)
 (average guess (/ x guess)))

(define (sqrt x) (sqrt-iter 1 x))

[1 is the initial guess...]
To compute \sqrt{n}, start with an initial guess g (say, $g = n$). If you think g is good enough (i.e., g^2 is close enough to n), then stop. Otherwise, replace g by the improved guess $I(g)$, where we define $I(x) = \frac{1}{2}(x + \frac{n}{x})$.

Stated alternatively, we compute $g, I(g), I(I(g)), I(I(I(g))), \ldots$ until we have found a good enough approximation to \sqrt{n}.

Claim: If $x \geq \sqrt{n}$, then $I(x) \geq \sqrt{n}$ also.

Observe that the stated conclusion is equivalent to the following:

\[
I(x) \geq \sqrt{n} \quad \equiv \quad \frac{1}{2}(x + \frac{n}{x}) \geq \sqrt{n}
\]

\[
\iff \quad (x + \frac{n}{x}) \geq 2\sqrt{n}
\]

\[
\iff \quad x^2 - 2\sqrt{n}x + n \geq 0.
\]

The quadratic describes a parabola $ax^2 + bx + c$ opening upwards, and takes its minimum value at $x = -\frac{b}{2a} = \frac{2\sqrt{n}}{2} = \sqrt{n}$, at which point its value is 0.
Claim:
If \(x \geq \sqrt{n} \), then

\[
\frac{I(x) - \sqrt{n}}{x - \sqrt{n}} \leq 1/2
\]

Note that the inequality is equivalent to the following:

\[
\frac{\frac{1}{2}(x + \frac{n}{x}) - \sqrt{n}}{x - \sqrt{n}} \leq 1/2 \iff x + \frac{n}{x} - 2\sqrt{n} \leq x - \sqrt{n}
\]

\(\iff x + \frac{n}{x} \leq x + \sqrt{n} \)

\(\iff \frac{n}{x} \leq \sqrt{n} \)

\(\iff \sqrt{n} = \frac{n}{\sqrt{n}} \leq x \)

Because the last inequality is true (by assumption), so is the first (the one we wanted to prove).
(define (sqrt-iter guess x)
 (if (good-enough? guess x)
 guess
 (sqrt-iter (improve-guess guess x) x)))

(define (good-enough? guess x)
 (< (abs (- (square guess) x)) .001))

(define (improve-guess guess x)
 (average guess (/ x guess)))

(define (sqrt x) (sqrt-iter 1 x))

Substitution model:

(sqrt 2)
(sqrt-iter 1 2)
(if (good-enough? 1 2) 1 (sqrt-iter (improve-guess 1 2) 2))
(sqrt-iter (improve-guess 1 2) 2)
(sqrt-iter (average 1 (/ 2 1)) 2)
(sqrt-iter 1.5 2)
...
(sqrt-iter 1.416666666667 2)
...

[recall the answer is 1.4142...]
Naming and the environment

Idea: the names of formal parameters ("internal variables") don’t matter, but the names of external variables do matter.

(Notice the binding [definition] of a parameter, as opposed to the occurrence giving its use...)

So which are the same? Use the substitution model to find out:

```
(define (square x) (* x x))
(define (square z) (* z z))
```

Try (square 5)

```
(define (squareplus x) (+ (* x x) y))
(define (squareplus z) (+ (* z z) y))
```

Try (squareplus 10)

```
(define (squareplus x) (+ (* x x) y))
(define (squareplus z) (+ (* z z) w))
```

Where do the values of the external, free variables come from?
Block structure---as supported by the substitution model...

Idea: when \((\sqrt{2})\) is evaluated, 2 is substituted for \(x\) in the three definitions, which are internal to \(\sqrt\).

```
(define (sqrt x)
    (define (good-enough? guess)
        (< (abs (- (square guess) x)) .001))
    (define (improve-guess guess)
        (average guess (/ x guess)))
    (define (sqrt-iter guess)
        (if (good-enough? guess)
            guess
            (sqrt-iter (improve-guess guess)))
    (sqrt-iter 1))
```
(define (sqrt x)
 (define (good-enough? guess)
 (< (abs (- (square guess) x)) .001))
 (define (improve-guess guess)
 (average guess (/ x guess)))
 (define (sqrt-iter guess)
 (if (good-enough? guess)
 guess
 (sqrt-iter (improve-guess guess))))
 (sqrt-iter 1))

Evaluating (sqrt 2) in the substitution model, we get:

(define (good-enough? guess)
 (< (abs (- (square guess) 2)) .001))
(define (improve-guess guess)
 (average guess (/ 2 guess)))
(define (sqrt-iter guess)
 (if (good-enough? guess)
 guess
 (sqrt-iter (improve-guess guess))))

(sqrt-iter 1))
Block structure: another version...

(define (sqrt x)
 (define (sqrt-iter guess)
 (define (good-enough?) a procedure with no parameters!
 (< (abs (- (square guess) x))
 .001))
 (define (improve-guess) ...and another one...
 (average guess (/ x guess)))
 (if (good-enough?)
 guess
 (sqrt-iter (improve-guess)))
 (sqrt-iter 1))
(define (sqrt x)
 (define (sqrt-iter guess)
 (define (good-enough?) a procedure with no parameters!
 (< (abs (- (square guess) x))
 .001))
 (define (improve-guess) ...and another one...
 (average guess (/ x guess)))
 (if (good-enough?)
 guess
 (sqrt-iter (improve-guess))))
 (sqrt-iter 1))

(sqrt 2) evaluates to:

 (define (sqrt-iter guess)
 (define (good-enough?)
 (< (abs (- (square guess) 2))
 .001))
 (define (improve-guess)
 (average guess (/ 2 guess)))
 (if (good-enough?)
 guess
 (sqrt-iter (improve-guess))))
 (sqrt-iter 1)
(define (sqrt-iter guess)
 (define (good-enough?) a procedure with no parameters!
 (< (abs (- (square guess) 2))
 .001))
 (define (improve-guess) ...and another one...
 (average guess (/ 2 guess)))
 (if (good-enough?)
 guess
 (sqrt-iter (improve-guess))))

(sqrt-iter 1) evaluates to

(define (good-enough?)
 (< (abs (- (square 1) 2))
 .001))
(define (improve-guess)
 (average 1 (/ 2 1)))
(if (good-enough?)
 1
 (sqrt-iter (improve-guess))))

and (if ...) evaluates to (sqrt-iter 1.5)
Commands versus expressions...

Commands do something (read-eval-print, input and output), and the order in which you execute commands matters (e.g., pie à la mode, with ice cream on top).

Expressions (read-eval-print) evaluate to something, and the order in which you evaluate expressions basically doesn’t matter---you should get the same answer, though perhaps with different efficiency...

Commands “change the world”, expressions only “observe” the world. Example: a bank account function (deposit n), returning a balance, versus (factorial n).
Scheme: First you curse, then you recurse...

That old sawhorse: computing factorials:

\[0! = 1 \]
\[n! = n \times (n-1)! \]

```
(define (factorial n)
  (if (= n 0)
      1
      (* n (factorial (- n 1)))))

(factorial 5)
;Value: 120
```
Substitution model:

(define (factorial n)
 (if (= n 0)
 1
 (* n (factorial (- n 1)))))

(factorial 5)
(if (= 5 0) 1 (* 5 (factorial (- 5 1))))
(* 5 (factorial (- 5 1)))
...

Note the special form (why?)
(if <predicate> <consequent> <alternative>)
Evaluation rule for (if ...) :

1. Evaluate <predicate> ;
2. If evaluation returns #t (true), entire expression evaluates to what
<consequent> evaluates to;
3. Otherwise, entire expression evaluates to what <alternative> evaluates to.
Substitution model:

\[
\text{(define (factorial n)} \\
\text{ (if (= n 0) 1 (\text{(* n (factorial (- n 1))))})}
\]

\[
\text{(factorial 5)} \\
\text{(if (= 5 0) 1 (* 5 (factorial (- 5 1))))} \\
\text{(* 5 (factorial (- 5 1)))} \\
\ldots \\
\text{(* 5 (factorial 4))} \\
\ldots \\
\text{(* 5 (* 4 (factorial 3)))} \\
\ldots \\
\text{(* 5 (* 4 (* 3 (* 2 (* 1 (factorial 0))))))} \\
\text{(* 5 (* 4 (* 3 (* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1))))))))})} \\
\text{(* 5 (* 4 (* 3 (* 2 (* 1 1))))}) \\
\text{(* 5 (* 4 (* 3 (* 2 1))))} \\
\text{(* 5 (* 4 (* 3 2))}) \\
\text{(* 5 (* 4 6))} \\
\text{(* 5 24)} \\
120\]
Time and space resources

(factorial 5)
(if (= 5 0) 1 (* 5 (factorial (- 5 1))))
(* 5 (factorial (- 5 1))
(* 5 (factorial 4))
...
(* 5 (* 4 (factorial 3)))
...
(* 5 (* 4 (* 3 (* 2 (* 1 (factorial 0))))))
(* 5 (* 4 (* 3 (* 2 (* 1 (if (= 0 0) 1 (* 0 (factorial (- 0 1)))))))))
(* 5 (* 4 (* 3 (* 2 (* 1 1)))))
(* 5 (* 4 (* 3 (* 2 1))))
(* 5 (* 4 (* 3 2)))
(* 5 (* 4 6))
(* 5 24)
120

Time = vertical axis; Space = horizontal axis Why?

This computational process is linear in time and space -- horizontal, vertical grow linearly with parameter.
Alternative iterative version of factorial:

(define (fact-iter prod n)
 (if (= n 0)
 prod
 (fact-iter (* prod n) (- n 1))))
;Value: fact-iter

(define (factorial n) (fact-iter 1 n))
;Value: factorial

(factorial 5)
(fact-iter 1 5)
(if (= 5 0) 1 (fact-iter (* 1 5) (- 5 1)))
(fact-iter 5 4)
(if (= 4 0) 5 (fact-iter (* 5 4) (- 4 1)))
(fact-iter 20 3)
...
(fact-iter 60 2)
...
(fact-iter 120 1)
...
(fact-iter 120 0)
(if (= 0 0) 120 (fact-iter (* 120 0) (- 0 1)))
120

This process is Linear time, constant space
Why?
Another belabored example of recursion: Fibonacci numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 145, ...

(define (fib n)
 (if (< n 2)
 n
 (+ (fib (- n 1)) (fib (- n 2)))))

(fib 10)
;Value: 55

(fib 5)
(+ (fib 4) (fib 3))
(+ (+ (fib 3) (fib 2)) (+ (fib 2) (fib 1)))
(+ (+ (+ (fib 2) (fib 1)) (+ (fib 1) (fib 0)))
 (+ (+ (fib 1) (fib 0)) 1))
(+ (+ (+ (+ (fib 1) (fib 0)) (fib 1)) (+ (fib 1) (fib 0)))
 (+ (+ (fib 1) (fib 0)) 1))

(fib n) grows exponentially in n, around \((1/\sqrt{5}) [(1+\sqrt{5})/2]^n\) --- recall \(\sqrt{5}= 2.236\ldots\)

How many calls to (fib 0) or (fib 1) --- also exponential!!

\(C(n)= C(n-1) + C(n-2)\) \(C(0)=C(1)=1\) \([F(n) \text{ “shifted over” by } 1!]\)
Iterative Fibonacci numbers (why does it work? what is it doing?)

(define (fib-iter a b count max)
 (if (= count max)
 b
 (fib-iter b (+ a b) (1+ count) max)))
;Value: fib-iter

(define (fib n) (fib-iter 1 0 0 n))
;Value: fib

(fib 10)
;Value: 55

Substitution model:

(fib 10)
(fib-iter 1 0 0 10)
(if (= 0 10) 0 (fib-iter 0 (+ 1 0) (1+ 0) 10))
(fib-iter 0 1 1 10)
(if (= 1 10) 1 (fib-iter 1 (+ 0 1) (1+ 1) 10))
(fib-iter 1 1 2 10)
(if (= 2 10) 1 (fib-iter 1 (+ 1 1) (1+ 2) 10))
(fib-iter 1 2 3 10)
(fib-iter 2 3 4 10)
(fib-iter 3 5 5 10)
...
(fib-iter 34 55 10 10)
55

Analysis: linear time, constant space (why)?
Another example: Fast exponential

\[b^0 = 1 \]
\[b^{2n} = (b^n)^2 \]
\[b^{2n+1} = b \times b^{2n} \]

```scheme
(define (expt b n)
  (cond ((= n 0) 1)
        ((even? n) (square (expt b (/ n 2))))
        (else (* b (expt b (- n 1)))))))

;Value: expt

(expt 2 3)
;Value: 8
```

Note use of conditional `cond` ... a nested `if`, with a catchall `else` clause ...
Substitution model: (leaving \(b \) indeterminate)

```scheme
(expt b 11)
```
Fast exponential: substitution model (leaving b indeterminate)

(define (expt b n)
 (cond ((= n 0) 1)
 ((even? n) (square (expt b (/ n 2)))
 (else (* b (expt b (- n 1)))))))

;Value: expt

(expt b 11)
(* b (expt b 10))
(* b (square (expt b 5)))
(* b (square (* b (expt b 4))))
(* b (square (* b (square (expt b 2))))))
(* b (square (* b (square (square (expt b 1)))))))
(* b (square (* b (square (square (square (expt b 0))))))))
(* b (square (* b (square (square (* b 1))))))
(* b (square (* b (square (square b))))))
(* b (square (* b (square b^2)))))
(* b (square (* b b^4)))
(* b (square b^5))
(* b b^{10})

b^{11}

Analysis: logarithmic time and space
Iterative version of fast exponentiation:

(define (expt-iter acc b e)
 (cond ((= e 0) acc)
 ((even? e) (expt-iter acc (square b) (/ e 2)))
 (else (expt-iter (* acc b) b (- e 1)))))
;Value: expt-iter

(define (expt b e) (expt-iter 1 b e))
;Value: expt

(expt 2 3)
;Value: 8

Termination variant: every call to expt-iter decreases e

Substitution model:

(expt b 11)
(expt-iter 1 b 11)
(expt-iter b b 10)
(expt-iter b b\^2 5)
(expt-iter b^3 b^2 4)
(expt-iter b^3 b^4 2)
(expt-iter b^3 b^8 1)
(expt-iter b^{11} b^8 0)
\[b^{11}\]

Correctness invariant:

(expt-iter acc b e) = acc*b^e
(by induction!)

Analysis: logarithmic time, constant space
Using fast exponentiation to derive a fast Fibonacci algorithm

\[
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{k+1} \\
F_{k}
\end{pmatrix}
=
\begin{pmatrix}
F_{k+2} \\
F_{k+1}
\end{pmatrix}
\]

Idea: to compute \(F_k \), take square matrix \(M \) above, compute \(M^{k-1} \)

\[
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
^{k-1}
\begin{pmatrix}
1 \\
0
\end{pmatrix}
=
\begin{pmatrix}
F_k \\
F_{k-1}
\end{pmatrix}
\]

(define (matrix-expt b n)
 (cond ((= n 0) 1)
 ((even? n)
 (matrix-square (matrix-expt b (/ n 2))))
 (else
 (matrix-* b (matrix-expt b (- n 1)))))))
Why this works...

\[
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
F_2 & F_1 \\
F_1 & F_0
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_k & F_{k-1} \\
F_{k-1} & F_{k-2}
\end{pmatrix}
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
=
\begin{pmatrix}
F_{k+1} & F_k \\
F_k & F_{k-1}
\end{pmatrix}
\]
Another logarithmic way to compute Fibonacci numbers...

\[
\phi = \frac{1+\sqrt{5}}{2} \quad \text{(proof by induction)}
\]

\[
F_k = \frac{\phi^k - (1 - \phi)^k}{\sqrt{5}}
\]

Since the \(k \)th number is defined by an exponential (in \(k \)), we can compute it in \(O(\log k) \) time...
Conclusion:

Combining the clever multiplication (logarithmic time in exponent) with 2x2 matrix multiplication (constant time), we get a logarithmic time algorithm for computing Fibonacci numbers -- this a reduction from the original exponential time algorithm.

Is this really true? What cost assumptions are we making? (Think about size of numbers, cost of multiplying and adding big integers --- which we've considered to be "constant time".)
Tail Recursion and the Actor Model

Euclid’s algorithm for computing greatest common divisors:

```
(define (gcd a b)
  (if (= b 0)
      a
      (gcd b (remainder a b))))
```

Substitution model:

```
(gcd 21 13)
(gcd 13 8)
(gcd 8 5)
(gcd 5 3)
(gcd 3 2)
(gcd 2 1)
(gcd 1 0)
```

Where have you seen these numbers before?
Correctness

(define (gcd a b)
 (if (= b 0)
 a
 (gcd b (remainder a b))))

Why does this algorithm terminate? Observe that if \(b < a \), then
\[
b + \text{rem}(a, b) < a + b.
\]

Why does \(\text{gcd} \) give the right answer? Observe that if
\(a = kb + r \), then
\[
\text{gcd}(a, b) = \text{gcd}(kb + r, b) = \text{gcd}(b, r).
\]

Why does \(\text{gcd} \) give the answer in \(O(\log a + \log b) \) iterations? Observe that the number of bits decreases:
\[
|b| + |\text{rem}(a, b)| < |a| + |b|
\]
Tail recursion: no work builds up

\[
(\text{define } (\text{gcd } a b) \\
 (\text{if } (= b 0) \\
 a \\
 (\text{gcd } b (\text{remainder } a b))))
\]

\[
(\text{gcd } 21 13) \\
(\text{gcd } 13 8) \\
(\text{gcd } 8 5) \\
(\text{gcd } 5 3) \\
(\text{gcd } 3 2) \\
(\text{gcd } 2 1) \\
(\text{gcd } 1 0) \\
1
\]

(Proof by example) that \((\text{gcd } F_{k+1} F_k) = 1\)

This recursion takes \(k + O(1)\) steps -- but \(F_k\) is about \(1.6^k\) -- thus \(\Omega(\log n)\) steps are required by \text{gcd}.
Tail recursion

There are different syntactic kinds of recursion. The tail recursive version is easier to implement.

(define (fact n)
 (if (= n 0)
 1
 (* n (fact (- n 1)))))

(fact 5)
(* 5 (fact 4))
(* 5 (* 4 (fact 3))
(* 5 (* 4 (* 3 (fact 2)))
(* 5 (* 4 (* 3 (* 2 (fact 1)))))
(* 5 (* 4 (* 3 (* 2 (* 1 (fact 0)))))))
(* 5 (* 4 (* 3 (* 2 (* 1 1)))))
...

ordinary recursion: work builds up...
Tail recursion

There are different syntactic kinds of recursion. The tail recursive version is easier to implement.

\[
\text{(define (fact-iter n a)} \\
\quad \text{(if (= n 0)} \\
\quad \quad a \\
\quad \quad \text{(fact-iter (- n 1)} \\
\quad \quad \quad (* n a))))
\]

\[
\begin{align*}
(\text{fact-iter} & \ 5 \ 1) \\
(\text{fact-iter} & \ 4 \ 5) \\
(\text{fact-iter} & \ 3 \ 20) \\
(\text{fact-iter} & \ 2 \ 60) \\
(\text{fact-iter} & \ 1 \ 120) \\
(\text{fact} & \ 0 \ 120) \\
120
\end{align*}
\]
recursive

\[(\text{fact} \ 5) \]
\[(*) 5 1 \]
\[1 \]
\[(*) 1 1 \]
\[1 \]
\[(*) 0 1 \]
\[1 \]
\[(*) 2 1 \]
\[2 \]
\[(*) 3 2 \]
\[6 \]
\[(*) 4 6 \]
\[24 \]
\[(*) 5 24 \]
\[120 \]

tail recursive

\[(\text{fact-iter} \ 5 \ 1) \]
\[120 \]
\[(\text{fact-iter} \ 4 \ 5) \]
\[120 \]
\[(\text{fact-iter} \ 3 \ 20) \]
\[120 \]
\[(\text{fact-iter} \ 2 \ 60) \]
\[120 \]
\[(\text{fact-iter} \ 1 \ 120) \]
\[120 \]
\[(\text{fact-iter} \ 0 \ 120) \]

why the procedural redundancy here?
recursive

(fact 5)
(* 5 1)
24
(fact 4)
(* 4 1)
6
(fact 3)
(* 3 1)
2
(fact 2)
(* 2 1)
1
(fact 1)
(* 1 1)
1
(fact 0)

120

120

(fact-iter 5 1)
(fact-iter 4 5)
(fact-iter 3 20)
(fact-iter 2 60)
(fact-iter 1 120)
(fact-iter 0 120)

120

tail recursive

(there’s really only one “process”)
“What is that lambda thing?”

(define (square x) (* x x))

or, if you prefer...

(define square (lambda (x) (* x x)))

The reason you give names to things is so that you can refer to them repeatedly...