
Dining
philosophers:

An exercise in message
passing and state

CS21b: Structure and
Interpretation of

 Computer Programs

Spring Term, 2015
Raphael, The School of Athens

Dining philosophers:

Seat n philosophers around a table.
One fork between each philosopher.
Philosophers either think (away from table)...

...or eat (arrive at preassigned seat, pick
 up fork to left and right, start eating).

Shared resource: the forks.

Parable: how do independent, asynchronous
parallel processes share resources?

Deadlock!

How to make a philosopher

(define (make-philosopher name)
 (let ((left-fork '())
 (right-fork '())
 (what-i-am-doing 'thinking))
 (define (eating?) (eq? what-i-am-doing 'eating))
 (define (thinking?) (eq? what-i-am-doing 'thinking))
 (define (thinker m)
 (cond
 ((eq? m 'name) (list 'philosopher name))
 ((eq? m 'thinking?) (thinking?))
 ((eq? m 'eating?) (eating?))
 ((eq? m 'status)
 (list 'philosopher name
 (list '(left fork) (left-fork 'name))
 (list '(right fork) (right-fork 'name))
 (list 'what-i-am-doing? what-i-am-doing)))
 ((eq? m 'load-left-fork)
 (lambda (fork)
 (set! left-fork fork)
 'left-fork-loaded))
 ((eq? m 'load-right-fork)
 (lambda (fork)
 (set! right-fork fork)
 'right-fork-loaded)) ;; to be continued

 ((eq? m 'think!)
 ; You can only start thinking if you are currently eating
 (if (eating?)
 (begin
 ((left-fork 'put-down!) thinker)
 ((right-fork 'put-down!) thinker)
 (set! what-i-am-doing 'thinking)
 (list 'philosopher name 'thinking))
 ; If you are not eating, you are already thinking
 (cons (list 'philosopher name)
 '(already thinking!))))
 ;; to be continued

 ((eq? m 'eat!)
 ; You can only start eating if you are currently thinking
 (if (thinking?)
 (if ((left-fork 'grab!) thinker)
 (if ((right-fork 'grab!) thinker)
 ; Both forks successfully grabbed
 (begin
 (set! what-i-am-doing 'eating)
 (list 'philosopher name 'eating))

 ; Grabbed left OK, but right fork already
 ; taken...

 ; So you failed:
 ; put left fork down, keep thinking...
 (begin
 ((left-fork 'put-down!) thinker)
 'i-am-hungry-but-still-thinking))
 ; Failed to grab left fork...
 'i-am-hungry-but-still-thinking)
 ; If you are not thinking, you are already eating
 (cons (list 'philosopher name) '(already eating!))))
 (else (error "What ?"))))
 thinker))

How to make a fork

(define (make-fork name)
 (let ((left-philosopher '())
 (right-philosopher '())
 (fork-held-by '()))
 (define (fork-raised?) (not (null? fork-held-by)))
 (define (fork m)
 (cond
 ((eq? m 'name) (list 'fork name))
 ((eq? m 'status) (list
 (fork 'name)
 (list '(left-philosopher)
 (left-philosopher 'name))
 (list '(right-philosopher)
 (right-philosopher 'name))
	

 	

 	

 (list '(fork raised?) (fork-raised?))))
 ((eq? m 'load-left-philosopher)
 (lambda (thinker)
 (set! left-philosopher thinker)
 'left-philosopher-loaded))
 ((eq? m 'load-right-philosopher)
 (lambda (thinker)
 (set! right-philosopher thinker)
 'right-philosopher-loaded))
 ;; to be continued

 ((eq? m 'grab!)
 (lambda (thinker)
 (if (or (fork-raised?)
 (and (not (equal? thinker left-philosopher))
 (not (equal? thinker right-philosopher))))
 #f
 (begin (set! fork-held-by thinker)
 #t))))
 ((eq? m 'put-down!)
 (lambda (thinker)
 (if (or (not fork-raised?)
 (not (equal? thinker fork-held-by)))
 'fork-cannot-be-put-down
 (begin (set! fork-held-by '())
 'fork-put-down))))
 (else (error "What ?"))))
 fork))

(define (make-table n)
 (let ((count (integers-from 1 n)))
 (let ((thinkers
 (map (lambda (x) (make-philosopher x)) count))
 (forks
 (map (lambda (x) (make-fork x)) count)))
 (linkup thinkers forks)
 (cons thinkers forks))))

(define (linkup thinkers forks)
 (define (link t-list f-list)
 (let ((first-thinker (car t-list))
 (left-fork (car f-list))
 (right-fork (cadr f-list)))
 ((first-thinker 'load-left-fork) left-fork)
 ((first-thinker 'load-right-fork) right-fork)
 ((left-fork 'load-right-philosopher) first-thinker)
 ((right-fork 'load-left-philosopher) first-thinker)
 (if (not (null? (cdr t-list)))
 (link (cdr t-list) (cdr f-list)))))
 (link thinkers (cons (last forks) forks)))

Claim: Four philosophers will
not deadlock.

Q: What if one philosopher keeps
eating and thinking and eating and
thinking, real fast?

A: The neighboring philosophers get
locked out of eating...

Fairness of scheduling

