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Preface: General Chair

When I asked what General Chairs are supposed to worry about, the main advice I got was this: Make
sure the Program Co-Chairs are in the same time zone. Well, what’s fun about that? Between Istanbul,
Singapore, and Los Angeles, we could easily solve problems in real time; by the time Kemal arrived at
the office after breakfast, Hwee Tou was just back from lunch, and I was done carrying out the late-night
raid on my own refrigerator. No problem.

I’d like to start by thanking everyone who submitted research work to ACL-05. I’d especially like to
thank researchers new to the field – this is a great time to be in computational linguistics. Excellent
research is one of the Two Critical Ingredients of a successful ACL conference.

Program Co-ChairsHwee Tou NgandKemal Oflazer deserve our gratitude for putting an immense
amount of work into the main session program. They and the Area Chairs got a large number of
submissions this year, and the program is diverse and exciting. Thanks also toErika Barragan-Nunez
for arranging the program committee meeting in California.

Stefan Riezler assembled a program of five excellent tutorials to begin the meeting, andMirella
Lapata organized the workshop program, assisted byMark Dras , Mary Harper , Dan Klein, and
Shuly Winter . Masaaki NagataandTed Pedersenput together a high-quality demo session, including
software systems from all over the world.

Jason Eisnerand Philipp Koehn put in a tremendous amount of thought, effort, and persistence
into publications. Each time ACL doubles the number of papers, the work way more than doubles.
Mark Johnson, as sponsorship chair, requested that the money be shown to him (and it was!), so
thanks very much to the sponsors, and to Mark.Richard Wicentowski took on two chair roles –
exhibits and publicity – the latter of which included writing the useful ACL-05 newsletters forwarded
by ubiquifamousPriscilla Rasmussen.

Regina Barzilay, Chris Callison-Burch andStephen Wanorganized the Student Research Workshop
(and thanks again to all the students who submitted their research).Richard Powergraciously agreed to
do pre-submission mentoring for authors. The ACL Executive Committee provided help on a number
of issues and responded quickly to questions – thank you,Martha Palmer , Jun’ichi Tsujii , Mark
Steedman, Kathy McCoy , Sandee Carberry, Johanna Moore, Priscilla Rasmussen, Annie Zaenen,
Walter Daelemans, andKeh-Yih Su.

Dragomir Radev went far beyond the call of duty as Local Arrangements Chair. He raised and solved
lots of strategic issues, followed up on every wire and cable, and cajoled other ACL chairs into solving
important problems fast. I believe he may even be responsible for the weather and for making sure
your luggage arrived on the same day you did. Thanks to the whole local team:Rich Thomason,
Steve Abney, Joyce Chai, San Duanmu, Kurt Godden , Acrisio Pires, Martha Pollack , Keith van
der Linden, Rick Lewis, Sara Schwartz, andBill Vlisides, and toJames Sweeney, who served as
the conference webmaster. On behalf of Dragomir, please let me thank the University of Michigan’s
School of Information, Department of Electrical Engineering and Computer Science, and Department
of Linguistics for their support. Dragomir also arranged the banquet at the Henry Ford Museum, where
ACL PresidentMartha Palmer will no doubt make an excellent speech – that’s of course the Other
Critical Ingredient of a successful ACL.
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Finally, I’d also like to thank all the other folks who helped create ACL-05, including student volunteers,
exhibitors, tutorialists, and everyone else not listed here.

To ACL attendees: thanks for coming, and please have a good conference!

Kevin Knight
ACL-05 General Chair
May 9, 2005
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Preface: Program Co-Chairs

Exciting research in computational linguistics is being pursued vigorously all over the world. This year,
we received a record number of 423 submissions. The program committee accepted 77 papers, for an
acceptance rate of 18%, continuing the tradition of the annual ACL conference as being one of the most
competitive and selective conferences. Of the accepted papers, 42 are from North America, 18 from
Europe and the Middle East, and 17 from Asia and Australia.

We would like to express our heartfelt gratitude to all the authors who submitted their papers, to the
231 program committee members who worked tirelessly to review all submissions, and to the ten Area
Chairs who oversaw the review process, collated the reviews, led discussions on papers with conflicting
reviews, and solicited additional reviews for controversial papers. The Program Committee Co-Chairs
and the area chairs then met for two days at the program committee meeting held at USC/ISI to select
the final set of accepted papers. We would like to thankKevin Knight , the General Conference Chair,
who made available USC/ISI as the meeting venue, and his assistantErika Barragan-Nunez who took
care of the meeting arrangements and logistics.

The ACL-05 main program lasts three days, and includes plenary sessions, three parallel paper sessions,
demo and poster sessions, and the student research workshop. We are grateful to ProfessorJustine
Cassell(Northwestern University) and ProfessorMichael Jordan (University of California, Berkeley)
who have kindly accepted our invitation to present invited talks at the conference.

The ACL-05 conference will also feature the ACL Lifetime Achievement Award. This prestigious
award is presented to a most distinguished researcher for his or her pioneering work in computational
linguistics. Past distinguished recipients of this award areAravind Joshi, Makoto Nagao, andKaren
Spärck-Jones. The recipient of this award in 2005 will be announced at a special plenary session at
ACL-05, followed by a special lecture by the award recipient. ACL-05 will also continue the tradition of
presenting the Best Paper Award to an outstanding paper. This award will be announced in the plenary
session at the end of the conference.

A conference like ACL would not succeed without the many volunteers who offer their generous help.
We deeply appreciate the advice and support ofKevin Knight , General Conference Chair,Dragomir
Radev, Local Arrangements Chair, and the Local Arrangements Committee. We are also grateful to
the ACL Executive Committee for their guidance, andWalter DaelemansandMarilyn Walker , ACL-
04 Program Co-Chairs, for sharing their experience. We would also like to thankJason Eisnerand
Philipp Koehn, Publication Co-Chairs, for putting together the proceedings of this conference.

We wish you an enjoyable time at ACL-05!

Hwee Tou Ng and Kemal Oflazer
ACL-05 Program Co-Chairs
May 12, 2005
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Abstract

In machine learning, whether one can
build a more accurate classifier by using
unlabeled data (semi-supervised learning)
is an important issue. Although a num-
ber of semi-supervised methods have been
proposed, their effectiveness on NLP tasks
is not always clear. This paper presents
a novel semi-supervised method that em-
ploys a learning paradigm which we call
structural learning. The idea is to find
“what good classifiers are like” by learn-
ing from thousands of automatically gen-
erated auxiliary classification problems on
unlabeled data. By doing so, the common
predictive structure shared by the multiple
classification problems can be discovered,
which can then be used to improve perfor-
mance on the target problem. The method
produces performance higher than the pre-
vious best results on CoNLL’00 syntac-
tic chunking and CoNLL’03 named entity
chunking (English and German).

1 Introduction

In supervised learning applications, one can often
find a large amount of unlabeled data without diffi-
culty, while labeled data are costly to obtain. There-
fore, a natural question is whether we can use unla-
beled data to build a more accurate classifier, given
the same amount of labeled data. This problem is
often referred to assemi-supervised learning.

Although a number of semi-supervised methods
have been proposed, their effectiveness on NLP
tasks is not always clear. For example,co-training

(Blum and Mitchell, 1998) automatically bootstraps
labels, and such labels are not necessarily reliable
(Pierce and Cardie, 2001). A related idea is to
useExpectation Maximization(EM) to impute la-
bels. Although useful under some circumstances,
when a relatively large amount of labeled data is
available, the procedure often degrades performance
(e.g. Merialdo (1994)). A number of bootstrap-
ping methods have been proposed for NLP tasks
(e.g. Yarowsky (1995), Collins and Singer (1999),
Riloff and Jones (1999)). But these typically assume
a very small amount of labeled data and have not
been shown to improve state-of-the-art performance
when a large amount of labeled data is available.

Our goal has been to develop a general learning
framework for reliably using unlabeled data to im-
prove performance irrespective of the amount of la-
beled data available. It is exactly this important and
difficult problem that we tackle here.

This paper presents a novel semi-supervised
method that employs a learning framework called
structural learning(Ando and Zhang, 2004), which
seeks to discover sharedpredictive structures(i.e.
what good classifiers for the task are like) through
jointly learning multiple classification problems on
unlabeled data. That is, we systematically create
thousands of problems (calledauxiliary problems)
relevant to the target task using unlabeled data, and
train classifiers from the automatically generated
‘training data’. We learn the commonality (or struc-
ture) of such many classifiers relevant to the task,
and use it to improve performance on the target task.
One example of such auxiliary problems forchunk-
ing tasks is to ‘mask’ a word and predict whether
it is “people” or not from the context, like language
modeling. Another example is to predict the pre-
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diction of some classifier trained for the target task.
These auxiliary classifiers can be adequately learned
since we have very large amounts of ‘training data’
for them, which we automatically generate from a
very large amount of unlabeled data.

The contributions of this paper are two-fold. First,
we present a novel robust semi-supervised method
based on a new learning model and its application
to chunking tasks. Second, we report higher per-
formance than the previous best results on syntactic
chunking (the CoNLL’00 corpus) and named entity
chunking (the CoNLL’03 English and German cor-
pora). In particular, our results are obtained by us-
ing unlabeled data as theonly additional resource
while many of the top systems rely on hand-crafted
resources such as large name gazetteers or even rule-
based post-processing.

2 A Model for Learning Structures

This work uses a linear formulation of structural
learning. We first briefly review a standard linear
prediction model and then extend it for structural
learning. We sketch an optimization algorithm us-
ing SVD and compare it to related methods.

2.1 Standard linear prediction model

In the standard formulation of supervised learning,
we seek apredictorthat maps an input vectorx 2 X
to the corresponding outputy 2 Y. Linear predic-
tion modelsare based on real-valued predictors of
the formf(x) = wTx, wherew is called aweight
vector. For binary problems, the sign of the linear
prediction gives the class label. Fork-way classi-
fication (with k > 2), a typical method iswinner
takes all, where we train one predictor per class and
choose the class with the highest output value.

A frequently used method for finding an accurate
predictor f̂ is regularizedempirical risk minimiza-
tion (ERM), which minimizes an empirical loss of
the predictor (with regularization) on then training
examplesf(Xi; Yi)g:f̂ = argminf  nXi=1 L(f(Xi); Yi) + r(f)! :L(�) is a loss functionto quantify the difference
between the predictionf(Xi) and the true outputYi, andr(�) is a regularization term to control the

model complexity. ERM-based methods for dis-
criminative learning are known to be effective for
NLP tasks such as chunking (e.g. Kudoh and Mat-
sumoto (2001), Zhang and Johnson (2003)).

2.2 Linear model for structural learning

We present a linear prediction model for structural
learning, which extends the traditional model to
multiple problems. Specifically, we assume that
there exists alow-dimensional predictive structure
shared by multiple prediction problems. We seek to
discover this structure throughjoint empirical risk
minimizationover the multiple problems.

Considerm problems indexed bỳ2 f1; : : : ;mg,
each withn` samples(Xì ; Y `i ) indexed by i 2f1; : : : ; n`g. In our joint linear model, a predictor
for problem` takes the following formf`(�;x) = wT̀x+ vT̀�x ; ��T = I ; (1)

where we useI to denote the identity matrix. Ma-
trix � (whose rows are orthonormal) is the common
structure parametershared by all the problems;w`
andv` are weight vectors specific to each predic-
tion problem`. The idea of this model is to dis-
cover a common low-dimensional predictive struc-
ture (shared by them problems) parameterized by
the projection matrix�. In this setting, the goal of
structural learning may also be regarded aslearning
a good feature map�x — a low-dimensional fea-
ture vector parameterized by�.

In joint ERM, we seek� (and weight vectors) that
minimizes the empirical risk summed over all the
problems:[�̂; ff̂`g℄ = argmin�;ff`g mX̀=1 nX̀i=1 L(f`(�;Xì); Yì )n` + r(f`)! :

(2)

It can be shown that using joint ERM, we can reli-
ably estimate the optimal joint parameter� as long
asm is large (even when eachn` is small). This is
the key reason why structural learning is effective.
A formal PAC-style analysis can be found in (Ando
and Zhang, 2004).

2.3 Alternating structure optimization (ASO)

The optimization problem (2) has a simple solution
using SVD when we choose square regularization:
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r(f`) = �kw`k22 , where the regularization parame-
ter � is given. For clarity, letu` be a weight vector
for problem` such that:u` = w` + �Tv` : Then,
(2) becomes the minimization of the joint empirical
risk written as:mX̀=1 nX̀i=1 L(uT̀Xì ; Yì )n` + �ku` ��Tv`k22! : (3)

This minimization can be approximately solved by
the following alternating optimization procedure:� Fix (�; fv`g), and findm predictorsfu`g that

minimizes the joint empirical risk (3).� Fix m predictorsfu`g, and find(�; fv`g) that
minimizes the joint empirical risk (3).� Iterate until a convergence criterion is met.

In the first step, we trainm predictors independently.
It is the second step that couples all the problems. Its
solution is given by the SVD (singular value decom-
position) of the predictor matrixU = [u1; : : : ;um℄:
the rows of the optimum� are given by the most sig-
nificant left singular vectors1 of U. Intuitively, the
optimum� captures the maximal commonality of
them predictors (each derived fromu`). Thesem
predictors are updated using the new structure ma-
trix � in the next iteration, and the process repeats.

Figure 1 summarizes the algorithm sketched
above, which we call thealternating structure op-
timization (ASO)algorithm. The formal derivation
can be found in (Ando and Zhang, 2004).

2.4 Comparison with existing techniques

It is important to note that this SVD-based ASO
(SVD-ASO) procedure is fundamentally different
from the usual principle component analysis (PCA),
which can be regarded as dimension reduction in the
data spaceX . By contrast, the dimension reduction
performed in the SVD-ASO algorithm is on thepre-
dictor space(a set of predictors). This is possible
because we observe multiple predictors from multi-
ple learning tasks. If we regard the observed predic-
tors as sample points of the predictor distribution in

1In other words,� is computed so that the best low-rank
approximation ofU in the least square sense is obtained by
projectingU onto the row space of�; see e.g. Golub and Loan
(1996) for SVD.

Input : training dataf(Xì ; Yì )g (` = 1; : : : ; m)
Parameters: dimensionh and regularization param�
Output : matrix� with h rows
Initialize : u` = 0 (` = 1 : : :m), and arbitrary�
iterate

for ` = 1 tom do
With fixed� andv` = �u`, solve forŵ`:ŵ` = argminw` hPn`i=1 L(wT̀Xì+(vT̀�)Xì ;Yì )n`+�kw`k22�
Letu` = ŵ` +�Tv`

endfor
Compute the SVD ofU = [u1; : : : ;um℄.
Let the rows of� be theh left singular vectors ofU

corresponding to theh largest singular values.
until converge

Figure 1: SVD-based Alternating Structure Optimization
(SVD-ASO) Algorithm

the predictor space (corrupted with estimation error,
or noise), then SVD-ASO can be interpreted as find-
ing the “principle components” (or commonality)
of these predictors (i.e., “what good predictors are
like”). Consequently the methoddirectly looks for
low-dimensional structures with the highest predic-
tive power. By contrast, the principle components of
input data in the data space (which PCA seeks) may
not necessarily have the highest predictive power.

The above argument also applies to the fea-
ture generation from unlabeled data using LSI (e.g.
Ando (2004)). Similarly, Miller et al. (2004) used
word-cluster memberships induced from an unanno-
tated corpus as features for named entity chunking.
Our work is related but more general, because we
can explore additional information from unlabeled
data using many different auxiliary problems. Since
Miller et al. (2004)’s experiments used a proprietary
corpus, direct performance comparison is not pos-
sible. However, our preliminary implementation of
the word clustering approach did not provide any
improvement on our tasks. As we will see, our start-
ing performance is already high. Therefore the addi-
tional information discovered by SVD-ASO appears
crucial to achieve appreciable improvements.

3 Semi-supervised Learning Method

For semi-supervised learning, the idea is tocreate
many auxiliary prediction problems (relevant to the
task) from unlabeled data so that we can learn the
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shared structure� (useful for the task) using the
ASO algorithm. In particular, we want to create aux-
iliary problems with the following properties:� Automatic labeling: we need to automatically

generate various “labeled” data for the auxil-
iary problems from unlabeled data.� Relevancy: auxiliary problems should be re-
lated to the target problem. That is, they should
share a certain predictive structure.

The final classifier for the target task is in the form
of (1), a linear predictor for structural learning. We
fix � (learned from unlabeled data through auxil-
iary problems) and optimize weight vectorsw andv
on the given labeled data. We summarize this semi-
supervised learning procedure below.

1. Create training dataeZ` = f(eXj ; eYj̀ )g for each

auxiliary problem̀ from unlabeled datafeXjg.

2. Compute� from f eZ`g through SVD-ASO.

3. Minimize the empirical risk on the labeled data:f̂ = argminfPni=1 L(f(�;Xi);Yi)n + �kwk22,
wheref(�;x) = wTx+ vT�x as in (1).

3.1 Auxiliary problem creation

The idea is to discover useful features (which do
not necessarily appear in the labeled data) from the
unlabeled data through learning auxiliary problems.
Clearly, auxiliary problems more closely related to
the target problem will be more beneficial. However,
even if some problems are less relevant, they will not
degrade performance severely since they merely re-
sult in some irrelevant features (originated from ir-
relevant�-components), which ERM learners can
cope with. On the other hand, potential gains from
relevant auxiliary problems can be significant. In
this sense, our method is robust.

We present two general strategies for generat-
ing useful auxiliary problems: one in a completely
unsupervised fashion, and the other in a partially-
supervised fashion.

3.1.1 Unsupervised strategy

In the first strategy, we regard some observable
substructures of the input dataX as auxiliary class
labels, and try to predict these labels using other
parts of the input data.

Ex 3.1 Predict words. Create auxiliary problems
by regarding the word at each position as an auxil-
iary label, which we want to predict from the context.
For instance, predict whether a word is “Smith” or
not from its context. This problem is relevant to,
for instance, named entity chunking since knowing
a word is “Smith” helps to predict whether it is part
of a name. One binary classification problem can be
created for each possible word value (e.g., “IBM”,
“he”, “get”, � � � ). Hence, many auxiliary problems
can be obtained using this idea.

More generally, given a feature representation
of the input data, we may mask some features as
unobserved, and learn classifiers to predict these
‘masked’ features based on other features that are
not masked. The automatic-labeling requirement is
satisfied since the auxiliary labels are observable to
us. To create relevant problems, we should choose
to (mask and) predict features that have good cor-
relation to the target classes, such as words on text
tagging/chunking tasks.

3.1.2 Partially-supervised strategy

The second strategy is motivated by co-training.
We use two (or more) distinct feature maps:�1
and�2. First, we train a classifierF1 for the tar-
get task, using the feature map�1 and the labeled
data. The auxiliary tasks are to predict the behavior
of this classifierF1 (such as predicted labels) on the
unlabeled data, by using the other feature map�2.
Note that unlike co-training, we only use the classi-
fier as a means of creating auxiliary problems that
meet the relevancy requirement, instead of using it
to bootstrap labels.

Ex 3.2 Predict the top-k choices of the classifier.
Predict the combination ofk (a few) classes to whichF1 assigns the highest output (confidence) values.
For instance, predict whetherF1 assigns the highest
confidence values toCLASS1 andCLASS2 in this or-
der. By settingk = 1, the auxiliary task is simply to
predict the label prediction of classifierF1. By set-
ting k > 1, fine-grained distinctions (related to in-
trinsic sub-classes of target classes) can be learned.
From a-way classification problem,!=(� k)! bi-
nary prediction problems can be created.
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4 Algorithms Used in Experiments

Using auxiliary problems introduced above, we
study the performance of our semi-supervised learn-
ing method on named entity chunking and syntac-
tic chunking. This section describes the algorithmic
aspects of the experimental framework. The task-
specific setup is described in Sections 5 and 6.

4.1 Extension of the basic SVD-ASO algorithm

In our experiments, we use an extension of SVD-
ASO. In NLP applications, features have natural
grouping according to their types/origins such as
‘current words’, ‘parts-of-speech on the right’, and
so forth. It is desirable to perform a localized op-
timization for each of such natural feature groups.
Hence, we associate each feature group with a sub-
matrix of structure matrix�. The optimization al-
gorithm for this extension is essentially the same as
SVD-ASO in Figure 1, but with the SVD step per-
formed separately for each group. See (Ando and
Zhang, 2004) for the precise formulation. In ad-
dition, we regularize only those components ofw`
which correspond to the non-negative part ofu`.
The motivation is that positive weights are usually
directly related to the target concept, while negative
ones often yield much less specific information rep-
resenting ‘the others’. The resulting extension, in
effect, only uses the positive components ofU in
the SVD computation.

4.2 Chunking algorithm, loss function, training
algorithm, and parameter settings

As is commonly done, we encode chunk informa-
tion into word tags to cast the chunking problem to
that of sequential word tagging. We perform Viterbi-
style decoding to choose the word tag sequence that
maximizes the sum of tagging confidence values.

In all settings (including baseline methods), the
loss function is a modification of the Huber’s ro-
bust loss for regression:L(p; y) = max(0; 1 �py)2 if py � �1; and�4py otherwise; with square
regularization (� = 10�4). One may select other
loss functions such as SVM or logistic regression.
The specific choice is not important for the purpose
of this paper. The training algorithm isstochastic
gradient descent, which is argued to perform well
for regularized convex ERM learning formulations

(Zhang, 2004).
As we will show in Section 7.3, our formulation

is relatively insensitive to the change inh (row-
dimension of the structure matrix). We fixh (for
each feature group) to 50, and use it in all settings.

The most time-consuming process is the train-
ing of m auxiliary predictors on the unlabeled data
(computingU in Figure 1). Fixing the number of
iterations to a constant, it runs in linear tom and
the number of unlabeled instances and takes hours
in our settings that use more than 20 million unla-
beled instances.

4.3 Baseline algorithms

Supervised classifier For comparison, we train a
classifier using the same features and algorithm, but
without unlabeled data (� = 0 in effect).

Co-training We test co-training since our idea of
partially-supervised auxiliary problems is motivated
by co-training. Our implementation follows the
original work (Blum and Mitchell, 1998). The two
(or more) classifiers (with distinct feature maps) are
trained with labeled data. We maintain a pool ofq
unlabeled instances by random selection. The clas-
sifier proposes labels for the instances in this pool.
We chooses instances for each classifier with high
confidence while preserving the class distribution
observed in the initial labeled data, and add them
to the labeled data. The process is then repeated.
We exploreq=50K, 100K, s=50,100,500,1K, and
commonly-used feature splits: ‘current vs. context’
and ‘current+left-context vs. current+right-context’.

Self-training Single-view bootstrapping is some-
times calledself-training. We test the basic self-
training2, which replaces multiple classifiers in the
co-training procedure with a single classifier that
employs all the features.

co/self-training oracle performance To avoid the
issue of parameter selection for the co- and self-
training, we report their best possibleoracle perfor-
mance, which is the best F-measure number among
all the co- and self-training parameter settings in-
cluding the choice of the number of iterations.

2We also tested “self-training with bagging”, which Ng and
Cardie (2003) used for co-reference resolution. We omit results
since it did not produce better performance than the supervised
baseline.
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� words, parts-of-speech (POS), character types,
4 characters at the beginning/ending in a 5-word window.� words in a 3-syntactic chunk window.� labels assigned to two words on the left.� bi-grams of the current word and the label on the left.� labels assigned to previous occurrences of the current
word.

Figure 2:Feature types for named entity chunking. POS and
syntactic chunk information is provided by the organizer.

5 Named Entity Chunking Experiments

We report named entity chunking performance on
the CoNLL’03 shared-task3 corpora (English and
German). We choose this task because the original
intention of this shared task was to test the effec-
tiveness of semi-supervised learning methods. How-
ever, it turned out that none of the top performing
systems used unlabeled data. The likely reason is
that the number of labeled data is relatively large
(>200K), making it hard to benefit from unlabeled
data. We show that our ASO-based semi-supervised
learning method (hereafter,ASO-semi) can produce
results appreciably better than all of the top systems,
by using unlabeled data as theonly additional re-
source. In particular, we do not use any gazetteer
information, which was used in all other systems.

The CoNLL corpora are annotated with four types
of named entities: persons, organizations, locations,
and miscellaneous names (e.g., “World Cup”). We
use the official training/development/test splits. Our
unlabeled data sets consist of 27 million words (En-
glish) and 35 million words (German), respectively.
They were chosen from the same sources – Reuters
and ECI Multilingual Text Corpus – as the provided
corpora but disjoint from them.

5.1 Features

Our feature representation is a slight modification of
a simpler configuration (without any gazetteer) in
(Zhang and Johnson, 2003), as shown in Figure 2.
We use POS and syntactic chunk information pro-
vided by the organizer.

5.2 Auxiliary problems

As shown in Figure 3, we experiment with auxiliary
problems from Ex 3.1 and 3.2: “Predict current (or
previous or next) words”; and “Predicttop-2choices

3http://cnts.uia.ac.be/conll2003/ner

# of aux. Auxiliary Features used for
problems labels learning aux problems

1000 previous words all but previous words
1000 current words all but current words
1000 next words all but next words

72 F1’s top-2 choices �2 (all but left context)
72 F2’s top-2 choices �1 (left context)
72 F3’s top-2 choices �4 (all but right context)
72 F4’s top-2 choices �3 (right context)

Figure 3: Auxiliary problems used for named entity chunk-
ing. 3000 problems ‘mask’ words and predict them from the
other features on unlabeled data. 288 problems predict classi-
fierFi ’s predictions on unlabeled data, whereFi is trained with
labeled data using feature map�i. There are 72 possible top-2
choices from 9 classes (beginning/inside of four types of name
chunks and ‘outside’).

of the classifier” using feature splits ‘left context vs.
the others’ and ‘right context vs. the others’. For
word-prediction problems, we only consider the in-
stances whose current words are either nouns or ad-
jectives since named entities mostly consist of these
types. Also, we leave out all but at most 1000 bi-
nary prediction problems of each type that have the
largest numbers of positive examples to ensure that
auxiliary predictors can be adequately learned with
a sufficiently large number of examples. The results
we report are obtained by using all the problems in
Figure 3 unless otherwise specified.

5.3 Named entity chunking results

methods test diff. from supervised
data F prec. recall F

English, small (10K examples) training set
ASO-semi dev. 81.25 +10.02 +7.00 +8.51

co/self oracle 73.10 +0.32 +0.39 +0.36
ASO-semi test 78.42 +9.39 +10.73 +10.10

co/self oracle 69.63 +0.60 +1.95 +1.31
English, all (204K) training examples

ASO-semi dev. 93.15 +2.25 +3.00 +2.62
co/self oracle 90.64 +0.04 +0.20 +0.11

ASO-semi test 89.31 +3.20 +4.51 +3.86
co/self oracle 85.40 �0.04 �0.05 �0.05

German, all (207K) training examples
ASO-semi dev. 74.06 +7.04 +10.19 +9.22

co/self oracle 66.47 �2.59 +4.39 +1.63
ASO-semi test 75.27 +4.64 +6.59 +5.88

co/self oracle 70.45 �1.26 +2.59 +1.06

Figure 4: Named entity chunking results. No gazetteer. F-
measure and performance improvements over the supervised
baseline in precision, recall, and F. For co- and self-training
(baseline), theoracleperformance is shown.

Figure 4 shows results in comparison with the su-
pervised baseline in six configurations, each trained
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with one of three sets of labeled training examples: a
small English set (10K examples randomly chosen),
the entire English training set (204K), and the entire
German set (207K), tested on either the development
set or test set. ASO-semi significantly improves both
precision and recall in all the six configurations, re-
sulting in improved F-measures over the supervised
baseline by +2.62% to +10.10%.

Co- and self-training, at theiroracle performance,
improve recall but often degrade precision; con-
sequently, their F-measure improvements are rela-
tively low: �0.05% to +1.63%.

Comparison with top systems As shown in Fig-
ure 5, ASO-semi achieves higher performance than
the top systems on both English and German
data. Most of the top systems boost performance
by external hand-crafted resources such as: large
gazetteers4; a large amount (2 million words) of
labeleddata manually annotated with finer-grained
named entities (FIJZ03); and rule-based post pro-
cessing (KSNM03). Hence, we feel that our results,
obtained by using unlabeled data as the only addi-
tional resource, are encouraging.

System Eng. Ger. Additional resources
ASO-semi 89.31 75.27 unlabeled data
FIJZ03 88.76 72.41 gazetteers; 2M-word labeled

data (English)
CN03 88.31 65.67 gazetteers (English); (also

very elaborated features)
KSNM03 86.31 71.90 rule-based post processing

Figure 5: Named entity chunking. F-measure on the test
sets. Previous best results: FIJZ03 (Florian et al., 2003),CN03
(Chieu and Ng, 2003), KSNM03 (Klein et al., 2003).

6 Syntactic Chunking Experiments

Next, we report syntactic chunking performance on
the CoNLL’00 shared-task5 corpus. The training
and test data sets consist of the Wall Street Journal
corpus (WSJ) sections 15–18 (212K words) and sec-
tion 20, respectively. They are annotated with eleven
types of syntactic chunks such as noun phrases. We

4Whether or not gazetteers are useful depends on their cov-
erage. A number of top-performing systems used their own
gazetteers in addition to the organizer’s gazetteers and reported
significant performance improvements (e.g., FIJZ03, CN03,
and ZJ03).

5http://cnts.uia.ac.be/conll2000/chunking

� uni- and bi-grams of words and POS in a 5-token window.� word-POS bi-grams in a 3-token window.� POS tri-grams on the left and right.� labels of the two words on the left and their bi-grams.� bi-grams of the current word and two labels on the left.

Figure 6:Feature types for syntactic chunking. POS informa-
tion is provided by the organizer.

prec. recall F�=1
supervised 93.83 93.37 93.60
ASO-semi 94.57 94.20 94.39 (+0.79)

co/self oracle 93.76 93.56 93.66 (+0.06)

Figure 7:Syntactic chunking results.

use the WSJ articles in 1991 (15 million words) from
the TREC corpus as the unlabeled data.

6.1 Features and auxiliary problems

Our feature representation is a slight modification of
a simpler configuration (without linguistic features)
in (Zhang et al., 2002), as shown in Figure 6. We
use the POS information provided by the organizer.
The types of auxiliary problems are the same as in
the named entity experiments. For word predictions,
we exclude instances of punctuation symbols.

6.2 Syntactic chunking results

As shown in Figure 7, ASO-semi improves both pre-
cision and recall over the supervised baseline. It
achieves94:39% in F-measure, which outperforms
the supervised baseline by0:79%. Co- and self-
training again slightly improve recall but slightly de-
grade precision at their oracle performance, which
demonstrates that it is not easy to benefit from unla-
beled data on this task.

Comparison with the previous best systems As
shown in Figure 8, ASO-semi achieves performance
higher than the previous best systems. Though the
space constraint precludes providing the detail, we
note that ASO-semi outperforms all of the previ-
ous top systems in both precision and recall. Unlike
named entity chunking, the use of external resources
on this task is rare. An exception is the use of out-
put from a grammar-based full parser as features in
ZDJ02+, which our system does not use. KM01
and CM03 boost performance by classifier combina-
tions. SP03 trains conditional random fields for NP
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all NP description
ASO-semi 94.39 94.70 +unlabeled data
KM01 93.91 94.39 SVM combination
CM03 93.74 94.41 perceptron in two layers
SP03 – 94.38 conditional random fields
ZDJ02 93.57 93.89 generalized Winnow
ZDJ02+ 94.17 94.38 +full parser output

Figure 8: Syntactic chunking F-measure. Comparison with
previous best results: KM01 (Kudoh and Matsumoto, 2001),
CM03 (Carreras and Marquez, 2003), SP03 (Sha and Pereira,
2003), ZDJ02 (Zhang et al., 2002).

(noun phrases) only. ASO-semi produces higher NP
chunking performance than the others.

7 Empirical Analysis

7.1 Effectiveness of auxiliary problems

English named entity         German named entity
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w/ "Predict (previous, current, or next) words"
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w/ "Predict words" + "Predict top-2 choices"

Figure 9:Named entity F-measure produced by using individ-
ual types of auxiliary problems. Trained with the entire training
sets and tested on the test sets.

Figure 9 shows F-measure obtained by comput-
ing � from individual types of auxiliary problems
on named entity chunking. Both types – “Predict
words” and “Predict top-2 choices of the classifier”
– are useful, producing significant performance im-
provements over the supervised baseline. The best
performance is achieved when� is produced from
all of the auxiliary problems.

7.2 Interpretation of �
To gain insights into the information obtained from
unlabeled data, we examine the� entries associated
with the feature ‘current words’, computed for the
English named entity task. Figure 10 shows the fea-
tures associated with the entries of� with the largest
values, computed from the 2000 unsupervised aux-
iliary problems: “Predict previous words” and “Pre-
dict next words”. For clarity, the figure only shows

row# Features corresponding to Interpretation
significant� entries

4 Ltd, Inc, Plc, International, organizations
Ltd., Association, Group, Inc.

7 Co, Corp, Co., Company, organizations
Authority, Corp., Services

9 PCT, N/A, Nil, Dec, BLN, no names
Avg, Year-on-year, UNCH

11 New, France, European, San, locations
North, Japan, Asian, India

15 Peter, Sir, Charles, Jose, Paul,persons
Lee, Alan, Dan, John, James

26 June, May, July, Jan, March, months
August, September, April

Figure 10: Interpretation of� computed from word-
prediction (unsupervised) problems for named entity chunking.

words beginning with upper-case letters (i.e., likely
to be names in English). Our method captures the
spirit of predictive word-clustering but is more gen-
eral and effective on our tasks.

It is possible to develop a general theory to show
that the auxiliary problems we use are helpful under
reasonable conditions. The intuition is as follows.
Suppose we split the features into two parts�1 and�2 and predict�1 based on�2. Suppose features
in �1 are correlated to the class labels (but not nec-
essarily correlated among themselves). Then, the
auxiliary prediction problems are related to the tar-
get task, and thus can reveal useful structures of�2.
Under some conditions, it can be shown that features
in �2 with similar predictive performance tend to
map to similar low-dimensional vectors through�.
This effect can be empirically observed in Figure 10
and will be formally shown elsewhere.

7.3 Effect of the� dimension
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Figure 11:F-measure in relation to the row-dimension of�.
English named entity chunking, test set.

Recall that throughout the experiments, we fix the
row-dimension of� (for each feature group) to 50.
Figure 11 plots F-measure in relation to the row-
dimension of�, which shows that the method is rel-
atively insensitive to the change of this parameter, at
least in the range which we consider.
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8 Conclusion

We presented a novel semi-supervised learn-
ing method that learns the most predictive low-
dimensional feature projection from unlabeled data
using the structural learning algorithm SVD-ASO.
On CoNLL’00 syntactic chunking and CoNLL’03
named entity chunking (English and German), the
method exceeds the previous best systems (includ-
ing those which rely on hand-crafted resources) by
using unlabeled data as the only additional resource.

The key idea is to create auxiliary problems au-
tomatically from unlabeled data so that predictive
structures can be learned from that data. In practice,
it is desirable to create as many auxiliary problems
as possible, as long as there is some reason to be-
lieve in their relevancy to the task. This is because
the risk is relatively minor while the potential gain
from relevant problems is large. Moreover, the aux-
iliary problems used in our experiments are merely
possible examples. One advantage of our approach
is that one may design a variety of auxiliary prob-
lems to learn various aspects of the target problem
from unlabeled data. Structural learning provides a
framework for carrying out possible new ideas.
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Abstract

Conditional Random Fields (CRFs) have
been applied with considerable success to
a number of natural language processing
tasks. However, these tasks have mostly
involved very small label sets. When
deployed on tasks with larger label
sets, the requirements for computational
resources mean that training becomes
intractable.

This paper describes a method for train-
ing CRFs on such tasks, using error cor-
recting output codes (ECOC). A number
of CRFs are independently trained on the
separate binary labelling tasks of distin-
guishing between a subset of the labels
and its complement. During decoding,
these models are combined to produce a
predicted label sequence which is resilient
to errors by individual models.

Error-correcting CRF training is much
less resource intensive and has a much
faster training time than a standardly
formulated CRF, while decoding
performance remains quite comparable.
This allows us to scale CRFs to previously
impossible tasks, as demonstrated by our
experiments with large label sets.

1 Introduction

Conditional random fields (CRFs) (Lafferty et
al., 2001) are probabilistic models for labelling
sequential data. CRFs are undirected graphical

models that define a conditional distribution over
label sequences given an observation sequence.
They allow the use of arbitrary, overlapping,
non-independent features as a result of their global
conditioning. This allows us to avoid making
unwarranted independence assumptions over the
observation sequence, such as those required by
typical generative models.

Efficient inference and training methods exist
when the graphical structure of the model forms
a chain, where each position in a sequence is
connected to its adjacent positions. CRFs have been
applied with impressive empirical results to the
tasks of named entity recognition (McCallum and
Li, 2003), simplified part-of-speech (POS) tagging
(Lafferty et al., 2001), noun phrase chunking (Sha
and Pereira, 2003) and extraction of tabular data
(Pinto et al., 2003), among other tasks.

CRFs are usually estimated using gradient-based
methods such as limited memory variable metric
(LMVM). However, even with these efficient
methods, training can be slow. Consequently, most
of the tasks to which CRFs have been applied are
relatively small scale, having only a small number
of training examples and small label sets. For
much larger tasks, with hundreds of labels and
millions of examples, current training methods
prove intractable. Although training can potentially
be parallelised and thus run more quickly on large
clusters of computers, this in itself is not a solution
to the problem: tasks can reasonably be expected
to increase in size and complexity much faster
than any increase in computing power. In order to
provide scalability, the factors which most affect the
resource usage and runtime of the training method
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must be addressed directly – ideally the dependence
on the number of labels should be reduced.

This paper presents an approach which enables
CRFs to be used on larger tasks, with a significant
reduction in the time and resources needed for
training. This reduction does not come at the cost
of performance – the results obtained on benchmark
natural language problems compare favourably,
and sometimes exceed, the results produced from
regular CRF training. Error correcting output
codes (ECOC) (Dietterich and Bakiri, 1995) are
used to train a community of CRFs on binary
tasks, with each discriminating between a subset
of the labels and its complement. Inference is
performed by applying these ‘weak’ models to an
unknown example, with each component model
removing some ambiguity when predicting the label
sequence. Given a sufficient number of binary
models predicting suitably diverse label subsets, the
label sequence can be inferred while being robust
to a number of individual errors from the weak
models. As each of these weak models are binary,
individually they can be efficiently trained, even
on large problems. The number of weak learners
required to achieve good performance is shown to
be relatively small on practical tasks, such that the
overall complexity of error-correcting CRF training
is found to be much less than that of regular CRF
training methods.

We have evaluated the error-correcting CRF on
the CoNLL 2003 named entity recognition (NER)
task (Sang and Meulder, 2003), where we show
that the method yields similar generalisation perfor-
mance to standardly formulated CRFs, while requir-
ing only a fraction of the resources, and no increase
in training time. We have also shown how the error-
correcting CRF scales when applied to the larger
task of POS tagging the Penn Treebank and also
the even larger task of simultaneously noun phrase
chunking (NPC) and POS tagging using the CoNLL
2000 data-set (Sang and Buchholz, 2000).

2 Conditional random fields

CRFs are undirected graphical models used to spec-
ify the conditional probability of an assignment of
output labels given a set of input observations. We
consider only the case where the output labels of the

model are connected by edges to form a linear chain.
The joint distribution of the label sequence, y, given
the input observation sequence, x, is given by

p(y|x) =
1

Z(x)
exp

T+1
∑

t=1

∑

k

λkfk(t,yt−1,yt,x)

where T is the length of both sequences and λk are
the parameters of the model. The functions fk are
feature functions which map properties of the obser-
vation and the labelling into a scalar value. Z(x)
is the partition function which ensures that p is a
probability distribution.

A number of algorithms can be used to find the
optimal parameter values by maximising the log-
likelihood of the training data. Assuming that the
training sequences are drawn IID from the popula-
tion, the conditional log likelihood L is given by

L =
∑

i

log p(y(i)|x(i))

=
∑

i







T (i)+1
∑

t=1

∑

k

λkfk(t,y
(i)
t−1,y

(i)
t ,x(i))

− log Z(x(i))
}

where x(i) and y(i) are the ith observation and label
sequence. Note that a prior is often included in the
L formulation; it has been excluded here for clar-
ity of exposition. CRF estimation methods include
generalised iterative scaling (GIS), improved itera-
tive scaling (IIS) and a variety of gradient based
methods. In recent empirical studies on maximum
entropy models and CRFs, limited memory variable
metric (LMVM) has proven to be the most efficient
method (Malouf, 2002; Wallach, 2002); accord-
ingly, we have used LMVM for CRF estimation.

Every iteration of LMVM training requires the
computation of the log-likelihood and its deriva-
tive with respect to each parameter. The partition
function Z(x) can be calculated efficiently using
dynamic programming with the forward algorithm.
Z(x) is given by

∑

y αT (y) where α are the forward
values, defined recursively as

αt+1(y) =
∑

y′

αt(y
′) exp

∑

k

λkfk(t + 1, y′, y,x)
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The derivative of the log-likelihood is given by

∂L

∂λk

=
∑

i







T (i)+1
∑

t=1

fk(t,y
(i)
t−1,y

(i)
t ,x(i))

−
∑

y

p(y|x(i))
T (i)+1
∑

t=1

fk(t,yt−1,yt,x
(i))







The first term is the empirical count of feature k,
and the second is the expected count of the feature
under the model. When the derivative equals zero –
at convergence – these two terms are equal. Evalu-
ating the first term of the derivative is quite simple.
However, the sum over all possible labellings in the
second term poses more difficulties. This term can
be factorised, yielding
∑

t

∑

y′,y

p(Yt−1 = y′, Yt = y|x(i))fk(t, y
′, y,x(i))

This term uses the marginal distribution over pairs of
labels, which can be efficiently computed from the
forward and backward values as

αt−1(y
′) exp

∑

k λkfk(t, y
′, y,x(i))βt(y)

Z(x(i))

The backward probabilities β are defined by the
recursive relation

βt(y) =
∑

y′

βt+1(y
′) exp

∑

k

λkfk(t + 1, y, y′,x)

Typically CRF training using LMVM requires
many hundreds or thousands of iterations, each of
which involves calculating of the log-likelihood
and its derivative. The time complexity of a single
iteration is O(L2NTF ) where L is the number
of labels, N is the number of sequences, T is
the average length of the sequences, and F is
the average number of activated features of each
labelled clique. It is not currently possible to state
precise bounds on the number of iterations required
for certain problems; however, problems with a
large number of sequences often require many more
iterations to converge than problems with fewer
sequences. Note that efficient CRF implementations
cache the feature values for every possible clique
labelling of the training data, which leads to a
memory requirement with the same complexity of
O(L2NTF ) – quite demanding even for current
computer hardware.

3 Error Correcting Output Codes

Since the time and space complexity of CRF
estimation is dominated by the square of the number
of labels, it follows that reducing the number
of labels will significantly reduce the complexity.
Error-correcting coding is an approach which recasts
multiple label problems into a set of binary label
problems, each of which is of lesser complexity than
the full multiclass problem. Interestingly, training a
set of binary CRF classifiers is overall much more
efficient than training a full multi-label model. This
is because error-correcting CRF training reduces
the L2 complexity term to a constant. Decoding
proceeds by predicting these binary labels and then
recovering the encoded actual label.

Error-correcting output codes have been used for
text classification, as in Berger (1999), on which the
following is based. Begin by assigning to each of the
m labels a unique n-bit string Ci, which we will call
the code for this label. Now train n binary classi-
fiers, one for each column of the coding matrix (con-
structed by taking the labels’ codes as rows). The j th

classifier, γj , takes as positive instances those with
label i where Cij = 1. In this way, each classifier
learns a different concept, discriminating between
different subsets of the labels.

We denote the set of binary classifiers as
Γ = {γ1, γ2, . . . , γn}, which can be used for
prediction as follows. Classify a novel instance x

with each of the binary classifiers, yielding a n-bit
vector Γ(x) = {γ1(x), γ2(x), . . . , γn(x)}. Now
compare this vector to the codes for each label. The
vector may not exactly match any of the labels due
to errors in the individual classifiers, and thus we
chose the actual label which minimises the distance
argmini∆(Γ(x), Ci). Typically the Hamming
distance is used, which simply measures the number
of differing bit positions. In this manner, prediction
is resilient to a number of prediction errors by the
binary classifiers, provided the codes for the labels
are sufficiently diverse.

3.1 Error-correcting CRF training

Error-correcting codes can also be applied to
sequence labellers, such as CRFs, which are capable
of multiclass labelling. ECOCs can be used with
CRFs in a similar manner to that given above for
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classifiers. A series of CRFs are trained, each
on a relabelled variant of the training data. The
relabelling for each binary CRF maps the labels
into binary space using the relevant column of the
coding matrix, such that label i is taken as a positive
for the jth model example if Cij = 1.

Training with a binary label set reduces the time
and space complexity for each training iteration to
O(NTF ); the L2 term is now a constant. Pro-
vided the code is relatively short (i.e. there are
few binary models, or weak learners), this translates
into considerable time and space savings. Coding
theory doesn’t offer any insights into the optimal
code length (i.e. the number of weak learners).
When using a very short code, the error-correcting
CRF will not adequately model the decision bound-
aries between all classes. However, using a long
code will lead to a higher degree of dependency
between pairs of classifiers, where both model simi-
lar concepts. The generalisation performance should
improve quickly as the number of weak learners
(code length) increases, but these gains will diminish
as the inter-classifier dependence increases.

3.2 Error-correcting CRF decoding

While training of error-correcting CRFs is simply
a logical extension of the ECOC classifier method
to sequence labellers, decoding is a different mat-
ter. We have applied three decoding different strate-
gies. The Standalone method requires each binary
CRF to find the Viterbi path for a given sequence,
yielding a string of 0s and 1s for each model. For
each position t in the sequence, the tth bit from
each model is taken, and the resultant bit string
compared to each of the label codes. The label
with the minimum Hamming distance is then cho-
sen as the predicted label for that site. This method
allows for error correction to occur at each site, how-
ever it discards information about the uncertainty of
each weak learner, instead only considering the most
probable paths.

The Marginals method of decoding uses the
marginal probability distribution at each position
in the sequence instead of the Viterbi paths. This
distribution is easily computed using the forward
backward algorithm. The decoding proceeds as
before, however instead of a bit string we have a
vector of probabilities. This vector is compared

to each of the label codes using the L1 distance,
and the closest label is chosen. While this method
incorporates the uncertainty of the binary models, it
does so at the expense of the path information in the
sequence.

Neither of these decoding methods allow the
models to interact, although each individual weak
learner may benefit from the predictions of the
other weak learners. The Product decoding method
addresses this problem. It treats each weak model
as an independent predictor of the label sequence,
such that the probability of the label sequence given
the observations can be re-expressed as the product
of the probabilities assigned by each weak model.
A given labelling y is projected into a bit string for
each weak learner, such that the ith entry in the
string is Ckj for the jth weak learner, where k is
the index of label yi. The weak learners can then
estimate the probability of the bit string; these are
then combined into a global product to give the
probability of the label sequence

p(y|x) =
1

Z ′(x)

∏

j

pj(bj(y)|x)

where pj(q|x) is the predicted probability of q given
x by the jth weak learner, bj(y) is the bit string
representing y for the jth weak learner and Z ′(x)
is the partition function. The log probability is
∑

j

{Fj(bj(y), x) · λj − log Zj(x)} − log Z ′(x)

where Fj(y, x) =
∑T+1

t=1 fj(t,yt−1,yt,x). This log
probability can then be maximised using the Viterbi
algorithm as before, noting that the two log terms are
constant with respect to y and thus need not be eval-
uated. Note that this decoding is an equivalent for-
mulation to a uniformly weighted logarithmic opin-
ion pool, as described in Smith et al. (2005).

Of the three decoding methods, Standalone
has the lowest complexity, requiring only a binary
Viterbi decoding for each weak learner. Marginals
is slightly more complex, requiring the forward
and backward values. Product, however, requires
Viterbi decoding with the full label set, and many
features – the union of the features of each weak
learner – which can be quite computationally
demanding.
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3.3 Choice of code

The accuracy of ECOC methods are highly depen-
dent on the quality of the code. The ideal code
has diverse rows, yielding a high error-correcting
capability, and diverse columns such that the weak
learners model highly independent concepts. When
the number of labels, k, is small, an exhaustive
code with every unique column is reasonable, given
there are 2k−1 − 1 unique columns. With larger
label sets, columns must be selected with care to
maximise the inter-row and inter-column separation.
This can be done by randomly sampling the column
space, in which case the probability of poor separa-
tion diminishes quickly as the number of columns
increases (Berger, 1999). Algebraic codes, such as
BCH codes, are an alternative coding scheme which
can provide near-optimal error-correcting capabil-
ity (MacWilliams and Sloane, 1977), however these
codes provide no guarantee of good column separa-
tion.

4 Experiments

Our experiments show that error-correcting CRFs
are highly accurate on benchmark problems with
small label sets, as well as on larger problems with
many more labels, which would be otherwise prove
intractable for traditional CRFs. Moreover, with a
good code, the time and resources required for train-
ing and decoding can be much less than that of the
standardly formulated CRF.

4.1 Named entity recognition

CRFs have been used with strong results on the
CoNLL 2003 NER task (McCallum, 2003) and thus
this task is included here as a benchmark. This data
set consists of a 14,987 training sentences (204,567
tokens) drawn from news articles, tagged for per-
son, location, organisation and miscellaneous enti-
ties. There are 8 IOB-2 style labels.

A multiclass (standardly formulated) CRF was
trained on these data using features covering word
identity, word prefix and suffix, orthographic tests
for digits, case and internal punctuation, word
length, POS tag and POS tag bigrams before and
after the current word. Only features seen at least
once in the training data were included in the model,
resulting in 450,345 binary features. The model was

Model Decoding MLE Regularised
Multiclass 88.04 89.78
Coded standalone 88.23∗ 88.67†

marginals 88.23∗ 89.19
product 88.69∗ 89.69

Table 1: F1 scores on NER task.

trained without regularisation and with a Gaussian
prior. An exhaustive code was created with all
127 unique columns. All of the weak learners
were trained with the same feature set, each having
around 315,000 features. The performance of the
standard and error-correcting models are shown in
Table 1. We tested for statistical significance using
the matched pairs test (Gillick and Cox, 1989) at
p < 0.001. Those results which are significantly
better than the corresponding multiclass MLE or
regularised model are flagged with a ∗, and those
which are significantly worse with a †.

These results show that error-correcting CRF
training achieves quite similar performance to the
multiclass CRF on the task (which incidentally
exceeds McCallum (2003)’s result of 89.0 using
feature induction). Product decoding was the
better of the three methods, giving the best
performance both with and without regularisation,
although this difference was only statistically
significant between the regularised standalone and
the regularised product decoding. The unregularised
error-correcting CRF significantly outperformed
the multiclass CRF with all decoding strategies,
suggesting that the method already provides some
regularisation, or corrects some inherent bias in the
model.

Using such a large number of weak learners is
costly, in this case taking roughly ten times longer
to train than the multiclass CRF. However, much
shorter codes can also achieve similar results. The
simplest code, where each weak learner predicts
only a single label (a.k.a. one-vs-all), achieved an
F score of 89.56, while only requiring 8 weak learn-
ers and less than half the training time as the multi-
class CRF. This code has no error correcting capa-
bility, suggesting that the code’s column separation
(and thus interdependence between weak learners)
is more important than its row separation.
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An exhaustive code was used in this experiment
simply for illustrative purposes: many columns
in this code were unnecessary, yielding only a
slight gain in performance over much simpler
codes while incurring a very large increase in
training time. Therefore, by selecting a good subset
of the exhaustive code, it should be possible to
reduce the training time while preserving the strong
generalisation performance. One approach is to
incorporate skew in the label distribution in our
choice of code – the code should minimise the
confusability of commonly occurring labels more
so than that of rare labels. Assuming that errors
made by the weak learners are independent, the
probability of a single error, q, as a function of the
code length n can be bounded by

q(n) ≤ 1 −
∑

l

p(l)

b
hl−1

2
c

∑

i=0

(

n

i

)

p̂i(1 − p̂)n−i

where p(l) is the marginal probability of the label l,
hl is the minimum Hamming distance between l and
any other label, and p̂ is the maximum probability
of an error by a weak learner. The performance
achieved by selecting the code with the minimum
loss bound from a large random sample of codes
is shown in Figure 1, using standalone decoding,
where p̂ was estimated on the development set. For
comparison, randomly sampled codes and a greedy
oracle are shown. The two random sampled codes
show those samples where no column is repeated,
and where duplicate columns are permitted (random
with replacement). The oracle repeatedly adds to the
code the column which most improves its F1 score.
The minimum loss bound method allows the per-
formance plateau to be reached more quickly than
random sampling; i.e. shorter codes can be used,
thus allowing more efficient training and decoding.

Note also that multiclass CRF training required
830Mb of memory, while error-correcting training
required only 380Mb. Decoding of the test set
(51,362 tokens) with the error-correcting model
(exhaustive, MLE) took between 150 seconds for
standalone decoding and 173 seconds for integrated
decoding. The multiclass CRF was much faster,
taking only 31 seconds, however this time difference
could be reduced with suitable optimisations.
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Figure 1: NER F1 scores for standalone decoding
with random codes, a minimum loss code and a
greedy oracle.

Coding Decoding MLE Regularised
Multiclass 95.69 95.78
Coded - 200 standalone 95.63 96.03

marginals 95.68 96.03
One-vs-all product 94.90 96.57

Table 2: POS tagging accuracy.

4.2 Part-of-speech Tagging

CRFs have been applied to POS tagging, however
only with a very simple feature set and small training
sample (Lafferty et al., 2001). We used the Penn
Treebank Wall Street Journal articles, training on
sections 2–21 and testing on section 24. In this
task there are 45,110 training sentences, a total of
1,023,863 tokens and 45 labels.

The features used included word identity, prefix
and suffix, whether the word contains a number,
uppercase letter or a hyphen, and the words one
and two positions before and after the current word.
A random code of 200 columns was used for this
task. These results are shown in Table 2, along with
those of a multiclass CRF and an alternative one-vs-
all coding. As for the NER experiment, the decod-
ing performance levelled off after 100 bits, beyond
which the improvements from longer codes were
only very slight. This is a very encouraging char-
acteristic, as only a small number of weak learners
are required for good performance.
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The random code of 200 bits required 1,300Mb
of RAM, taking a total of 293 hours to train and
3 hours to decode (54,397 tokens) on similar
machines to those used before. We do not have
figures regarding the resources used by Lafferty et
al.’s CRF for the POS tagging task and our attempts
to train a multiclass CRF for full-scale POS tagging
were thwarted due to lack of sufficient available
computing resources. Instead we trained on a
10,000 sentence subset of the training data, which
required approximately 17Gb of RAM and 208
hours to train.

Our best result on the task was achieved using
a one-vs-all code, which reduced the training
time to 25 hours, as it only required training 45
binary models. This result exceeds Lafferty et al.’s
accuracy of 95.73% using a CRF but falls short of
Toutanova et al. (2003)’s state-of-the-art 97.24%.
This is most probably due to our only using a
first-order Markov model and a fairly simple feature
set, where Tuotanova et al. include a richer set of
features in a third order model.

4.3 Part-of-speech Tagging and Noun Phrase
Segmentation

The joint task of simultaneously POS tagging and
noun phrase chunking (NPC) was included in order
to demonstrate the scalability of error-correcting
CRFs. The data was taken from the CoNLL 2000
NPC shared task, with the model predicting both the
chunk tags and the POS tags. The training corpus
consisted of 8,936 sentences, with 47,377 tokens
and 118 labels.

A 200-bit random code was used, with the follow-
ing features: word identity within a window, pre-
fix and suffix of the current word and the presence
of a digit, hyphen or upper case letter in the cur-
rent word. This resulted in about 420,000 features
for each weak learner. A joint tagging accuracy of
90.78% was achieved using MLE training and stan-
dalone decoding. Despite the large increase in the
number of labels in comparison to the earlier tasks,
the performance also began to plateau at around 100
bits. This task required 220Mb of RAM and took a
total of 30 minutes to train each of the 200 binary
CRFs, this time on Pentium 4 machines with 1Gb
RAM. Decoding of the 47,377 test tokens took 9,748

seconds and 9,870 seconds for the standalone and
marginals methods respectively.

Sutton et al. (2004) applied a variant of the CRF,
the dynamic CRF (DCRF), to the same task, mod-
elling the data with two interconnected chains where
one chain predicted NPC tags and the other POS
tags. They achieved better performance and train-
ing times than our model; however, this is not a
fair comparison, as the two approaches are orthogo-
nal. Indeed, applying the error-correcting CRF algo-
rithms to DCRF models could feasibly decrease the
complexity of the DCRF, allowing the method to be
applied to larger tasks with richer graphical struc-
tures and larger label sets.

In all three experiments, error-correcting CRFs
have achieved consistently good generalisation per-
formance. The number of weak learners required
to achieve these results was shown to be relatively
small, even for tasks with large label sets. The time
and space requirements were lower than those of a
traditional CRF for the larger tasks and, most impor-
tantly, did not increase substantially when the num-
ber of labels was increased.

5 Related work

Most recent work on improving CRF performance
has focused on feature selection. McCallum (2003)
describes a technique for greedily adding those
feature conjuncts to a CRF which significantly
improve the model’s log-likelihood. His experi-
mental results show that feature induction yields a
large increase in performance, however our results
show that standardly formulated CRFs can perform
well above their reported 73.3%, casting doubt
on the magnitude of the possible improvement.
Roark et al. (2004) have also employed feature
selection to the huge task of language modelling
with a CRF, by partially training a voted perceptron
then removing all features that the are ignored
by the perceptron. The act of automatic feature
selection can be quite time consuming in itself,
while the performance and runtime gains are often
modest. Even with a reduced number of features,
tasks with a very large label space are likely to
remain intractable.
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6 Conclusion

Standard training methods for CRFs suffer greatly
from their dependency on the number of labels,
making tasks with large label sets either difficult
or impossible. As CRFs are deployed more widely
to tasks with larger label sets this problem will
become more evident. The current ‘solutions’ to
these scaling problems – namely feature selection,
and the use of large clusters – don’t address the
heart of the problem: the dependence on the square
of number of labels.

Error-correcting CRF training allows CRFs to be
applied to larger problems and those with larger
label sets than were previously possible, without
requiring computationally demanding methods such
as feature selection. On standard tasks we have
shown that error-correcting CRFs provide compa-
rable or better performance than the standardly for-
mulated CRF, while requiring less time and space to
train. Only a small number of weak learners were
required to obtain good performance on the tasks
with large label sets, demonstrating that the method
provides efficient scalability to the CRF framework.

Error-correction codes could be applied to
other sequence labelling methods, such as the
voted perceptron (Roark et al., 2004). This may
yield an increase in performance and efficiency
of the method, as its runtime is also heavily
dependent on the number of labels. We plan to
apply error-correcting coding to dynamic CRFs,
which should result in better modelling of naturally
layered tasks, while increasing the efficiency and
scalability of the method. We also plan to develop
higher order CRFs, using error-correcting codes to
curb the increase in complexity.
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Abstract

Recent work on Conditional Random
Fields (CRFs) has demonstrated the need
for regularisation to counter the tendency
of these models to overfit. The standard
approach to regularising CRFs involves a
prior distribution over the model parame-
ters, typically requiring search over a hy-
perparameter space. In this paper we ad-
dress the overfitting problem from a dif-
ferent perspective, by factoring the CRF
distribution into a weighted product of in-
dividual “expert” CRF distributions. We
call this model a logarithmic opinion
pool (LOP) of CRFs (LOP-CRFs). We ap-
ply the LOP-CRF to two sequencing tasks.
Our results show that unregularised expert
CRFs with an unregularised CRF under
a LOP can outperform the unregularised
CRF, and attain a performance level close
to the regularised CRF. LOP-CRFs there-
fore provide a viable alternative to CRF
regularisation without the need for hyper-
parameter search.

1 Introduction

In recent years, conditional random fields (CRFs)
(Lafferty et al., 2001) have shown success on a num-
ber of natural language processing (NLP) tasks, in-
cluding shallow parsing (Sha and Pereira, 2003),
named entity recognition (McCallum and Li, 2003)
and information extraction from research papers
(Peng and McCallum, 2004). In general, this work
has demonstrated the susceptibility of CRFs to over-
fit the training data during parameter estimation. As

a consequence, it is now standard to use some form
of overfitting reduction in CRF training.

Recently, there have been a number of sophisti-
cated approaches to reducing overfitting in CRFs,
including automatic feature induction (McCallum,
2003) and a full Bayesian approach to training and
inference (Qi et al., 2005). These advanced meth-
ods tend to be difficult to implement and are of-
ten computationally expensive. Consequently, due
to its ease of implementation, the current standard
approach to reducing overfitting in CRFs is the use
of a prior distribution over the model parameters,
typically a Gaussian. The disadvantage with this
method, however, is that it requires adjusting the
value of one or more of the distribution’s hyper-
parameters. This usually involves manual or auto-
matic tuning on a development set, and can be an ex-
pensive process as the CRF must be retrained many
times for different hyperparameter values.

In this paper we address the overfitting problem
in CRFs from a different perspective. We factor the
CRF distribution into a weighted product of indi-
vidual expert CRF distributions, each focusing on
a particular subset of the distribution. We call this
model a logarithmic opinion pool (LOP) of CRFs
(LOP-CRFs), and provide a procedure for learning
the weight of each expert in the product. The LOP-
CRF framework is “parameter-free” in the sense that
it does not involve the requirement to adjust hyper-
parameter values.

LOP-CRFs are theoretically advantageous in that
their Kullback-Leibler divergence with a given dis-
tribution can be explicitly represented as a function
of the KL-divergence with each of their expert dis-
tributions. This provides a well-founded framework
for designing new overfitting reduction schemes:
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look to factorise a CRF distribution as a set of di-
verse experts.

We apply LOP-CRFs to two sequencing tasks in
NLP: named entity recognition and part-of-speech
tagging. Our results show that combination of un-
regularised expert CRFs with an unregularised stan-
dard CRF under a LOP can outperform the unreg-
ularised standard CRF, and attain a performance
level that rivals that of the regularised standard CRF.
LOP-CRFs therefore provide a viable alternative to
CRF regularisation without the need for hyperpa-
rameter search.

2 Conditional Random Fields

A linear chain CRF defines the conditional probabil-
ity of a state or label sequence s given an observed
sequence o via1:

p(s |o) =
1

Z(o)
exp

(

T+1

∑
t=1

∑
k

λk fk(st−1,st ,o, t)

)

(1)

where T is the length of both sequences, λk are pa-
rameters of the model and Z(o) is the partition func-
tion that ensures (1) represents a probability distri-
bution. The functions fk are feature functions rep-
resenting the occurrence of different events in the
sequences s and o.

The parameters λk can be estimated by maximis-
ing the conditional log-likelihood of a set of labelled
training sequences. The log-likelihood is given by:

L (λ ) = ∑
o,s

p̃(o,s) log p(s |o;λ )

= ∑
o,s

p̃(o,s)

[

T+1

∑
t=1

λ · f(s,o, t)

]

− ∑
o

p̃(o) logZ(o;λ )

where p̃(o,s) and p̃(o) are empirical distributions
defined by the training set. At the maximum like-
lihood solution the model satisfies a set of feature
constraints, whereby the expected count of each fea-
ture under the model is equal to its empirical count
on the training data:

1In this paper we assume there is a one-to-one mapping be-
tween states and labels, though this need not be the case.

Ep̃(o,s)[ fk]−Ep(s|o)[ fk] = 0, ∀k

In general this cannot be solved for the λk in
closed form so numerical routines must be used.
Malouf (2002) and Sha and Pereira (2003) show
that gradient-based algorithms, particularly limited
memory variable metric (LMVM), require much
less time to reach convergence, for some NLP tasks,
than the iterative scaling methods (Della Pietra et
al., 1997) previously used for log-linear optimisa-
tion problems. In all our experiments we use the
LMVM method to train the CRFs.

For CRFs with general graphical structure, calcu-
lation of Ep(s|o)[ fk] is intractable, but for the linear
chain case Lafferty et al. (2001) describe an efficient
dynamic programming procedure for inference, sim-
ilar in nature to the forward-backward algorithm in
hidden Markov models.

3 Logarithmic Opinion Pools

In this paper an expert model refers a probabilistic
model that focuses on modelling a specific subset of
some probability distribution. The concept of com-
bining the distributions of a set of expert models via
a weighted product has previously been used in a
range of different application areas, including eco-
nomics and management science (Bordley, 1982),
and NLP (Osborne and Baldridge, 2004).

In this paper we restrict ourselves to sequence
models. Given a set of sequence model experts, in-
dexed by α , with conditional distributions pα(s |o)
and a set of non-negative normalised weights wα , a
logarithmic opinion pool 2 is defined as the distri-
bution:

pLOP(s |o) =
1

ZLOP(o) ∏
α

[pα(s |o)]wα (2)

with wα ≥ 0 and ∑α wα = 1, and where ZLOP(o) is
the normalisation constant:

ZLOP(o) = ∑
s

∏
α

[pα(s |o)]wα (3)

2Hinton (1999) introduced a variant of the LOP idea called
Product of Experts, in which expert distributions are multiplied
under a uniform weight distribution.
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The weight wα encodes our confidence in the opin-
ion of expert α .

Suppose that there is a “true” conditional distri-
bution q(s | o) which each pα(s | o) is attempting to
model. Heskes (1998) shows that the KL divergence
between q(s | o) and the LOP, can be decomposed
into two terms:

K(q, pLOP) = E −A (4)

= ∑
α

wαK (q, pα)−∑
α

wαK (pLOP, pα)

This tells us that the closeness of the LOP model
to q(s | o) is governed by a trade-off between two
terms: an E term, which represents the closeness
of the individual experts to q(s | o), and an A term,
which represents the closeness of the individual
experts to the LOP, and therefore indirectly to each
other. Hence for the LOP to model q well, we desire
models pα which are individually good models of q
(having low E) and are also diverse (having large A).

3.1 LOPs for CRFs

Because CRFs are log-linear models, we can see
from equation (2) that CRF experts are particularly
well suited to combination under a LOP. Indeed, the
resulting LOP is itself a CRF, the LOP-CRF, with
potential functions given by a log-linear combina-
tion of the potential functions of the experts, with
weights wα . As a consequence of this, the nor-
malisation constant for the LOP-CRF can be calcu-
lated efficiently via the usual forward-backward al-
gorithm for CRFs. Note that there is a distinction be-
tween normalisation constant for the LOP-CRF, ZLOP

as given in equation (3), and the partition function of
the LOP-CRF, Z. The two are related as follows:

pLOP(s |o) =
1

ZLOP(o) ∏
α

[pα(s |o)]wα

=
1

ZLOP(o) ∏
α

[

Uα(s |o)

Zα(o)

]wα

=
∏α [Uα(s |o)]wα

ZLOP(o)∏α [Zα(o)]wα

where Uα = exp∑T+1
t=1 ∑k λαk fαk(st−1,st ,o, t) and so

logZ(o) = logZLOP(o)+∑
α

wα logZα(o)

This relationship will be useful below, when we de-
scribe how to train the weights wα of a LOP-CRF.

In this paper we will use the term LOP-CRF
weights to refer to the weights wα in the weighted
product of the LOP-CRF distribution and the term
parameters to refer to the parameters λαk of each
expert CRF α .

3.2 Training LOP-CRFs

In our LOP-CRF training procedure we first train
the expert CRFs unregularised on the training data.
Then, treating the experts as static pre-trained mod-
els, we train the LOP-CRF weights wα to maximise
the log-likelihood of the training data. This training
process is “parameter-free” in that neither stage in-
volves the use of a prior distribution over expert CRF
parameters or LOP-CRF weights, and so avoids the
requirement to adjust hyperparameter values.

The likelihood of a data set under a LOP-CRF, as
a function of the LOP-CRF weights, is given by:

L(w) = ∏
o,s

pLOP(s |o;w) p̃(o,s)

= ∏
o,s

[

1
ZLOP(o;w) ∏

α
pα(s |o)wα

]p̃(o,s)

After taking logs and rearranging, the log-
likelihood can be expressed as:

L (w) = ∑
o,s

p̃(o,s)∑
α

wα log pα(s |o)

− ∑
o

p̃(o) logZLOP(o;w)

= ∑
α

wα ∑
o,s

p̃(o,s) log pα(s |o)

+ ∑
α

wα ∑
o

p̃(o) logZα(o)

− ∑
o

p̃(o) logZ(o;w)

For the first two terms, the quantities that are mul-
tiplied by wα inside the (outer) sums are indepen-
dent of the weights, and can be evaluated once at the
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beginning of training. The third term involves the
partition function for the LOP-CRF and so is a func-
tion of the weights. It can be evaluated efficiently as
usual for a standard CRF.

Taking derivatives with respect to wβ and rear-
ranging, we obtain:

∂L (w)

∂wβ
= ∑

o,s
p̃(o,s) log pβ (s |o)

+ ∑
o

p̃(o) logZβ (o)

− ∑
o

p̃(o)EpLOP(s|o)

[

∑
t

logUβ t(o,s)
]

where Uβ t(o,s) is the value of the potential function
for expert β on clique t under the labelling s for ob-
servation o. In a way similar to the representation
of the expected feature count in a standard CRF, the
third term may be re-written as:

−∑
o

∑
t

∑
s′,s′′

pLOP(st−1 = s′,st = s′′,o) logUβ t(s
′
,s′′,o)

Hence the derivative is tractable because we can use
dynamic programming to efficiently calculate the
pairwise marginal distribution for the LOP-CRF.

Using these expressions we can efficiently train
the LOP-CRF weights to maximise the log-
likelihood of the data set.3 We make use of the
LMVM method mentioned earlier to do this. We
will refer to a LOP-CRF with weights trained using
this procedure as an unregularised LOP-CRF.

3.2.1 Regularisation
The “parameter-free” aspect of the training pro-

cedure we introduced in the previous section relies
on the fact that we do not use regularisation when
training the LOP-CRF weights wα . However, there
is a possibility that this may lead to overfitting of
the training data. In order to investigate this, we
develop a regularised version of the training proce-
dure and compare the results obtained with each. We

3We must ensure that the weights are non-negative and nor-
malised. We achieve this by parameterising the weights as func-
tions of a set of unconstrained variables via a softmax transfor-
mation. The values of the log-likelihood and its derivatives with
respect to the unconstrained variables can be derived from the
corresponding values for the weights wα .

use a prior distribution over the LOP-CRF weights.
As the weights are non-negative and normalised we
use a Dirichlet distribution, whose density function
is given by:

p(w) =
Γ(∑α θα)

∏α Γ(θα) ∏
α

wθα−1
α

where the θα are hyperparameters.

Under this distribution, ignoring terms that are
independent of the weights, the regularised log-
likelihood involves an additional term:

∑
α

(θα −1) logwα

We assume a single value θ across all weights. The
derivative of the regularised log-likelihood with
respect to weight wβ then involves an additional
term 1

wβ
(θ − 1). In our experiments we use the

development set to optimise the value of θ . We will
refer to a LOP-CRF with weights trained using this
procedure as a regularised LOP-CRF.

4 The Tasks

In this paper we apply LOP-CRFs to two sequence
labelling tasks in NLP: named entity recognition
(NER) and part-of-speech tagging (POS tagging).

4.1 Named Entity Recognition

NER involves the identification of the location and
type of pre-defined entities within a sentence and is
often used as a sub-process in information extrac-
tion systems. With NER the CRF is presented with
a set of sentences and must label each word so as to
indicate whether the word appears outside an entity
(O), at the beginning of an entity of type X (B-X) or
within the continuation of an entity of type X (I-X).

All our results for NER are reported on the
CoNLL-2003 shared task dataset (Tjong Kim Sang
and De Meulder, 2003). For this dataset the en-
tity types are: persons (PER), locations (LOC),
organisations (ORG) and miscellaneous (MISC).
The training set consists of 14,987 sentences and
204,567 tokens, the development set consists of
3,466 sentences and 51,578 tokens and the test set
consists of 3,684 sentences and 46,666 tokens.
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4.2 Part-of-Speech Tagging

POS tagging involves labelling each word in a sen-
tence with its part-of-speech, for example noun,
verb, adjective, etc. For our experiments we use the
CoNLL-2000 shared task dataset (Tjong Kim Sang
and Buchholz, 2000). This has 48 different POS
tags. In order to make training time manageable4,
we collapse the number of POS tags from 48 to 5
following the procedure used in (McCallum et al.,
2003). In summary:

• All types of noun collapse to category N.

• All types of verb collapse to category V.

• All types of adjective collapse to category J.

• All types of adverb collapse to category R.

• All other POS tags collapse to category O.

The training set consists of 7,300 sentences and
173,542 tokens, the development set consists of
1,636 sentences and 38,185 tokens and the test set
consists of 2,012 sentences and 47,377 tokens.

4.3 Expert sets

For each task we compare the performance of the
LOP-CRF to that of the standard CRF by defining
a single, complex CRF, which we call a monolithic
CRF, and a range of expert sets.

The monolithic CRF for NER comprises a num-
ber of word and POS tag features in a window of
five words around the current word, along with a
set of orthographic features defined on the current
word. These are based on those found in (Curran and
Clark, 2003). Examples include whether the cur-
rent word is capitalised, is an initial, contains a digit,
contains punctuation, etc. The monolithic CRF for
NER has 450,345 features.

The monolithic CRF for POS tagging comprises
word and POS features similar to those in the NER
monolithic model, but over a smaller number of or-
thographic features. The monolithic model for POS
tagging has 188,448 features.

Each of our expert sets consists of a number of
CRF experts. Usually these experts are designed to

4See (Cohn et al., 2005) for a scaling method allowing the
full POS tagging task with CRFs.

focus on modelling a particular aspect or subset of
the distribution. As we saw earlier, the aim here is
to define experts that model parts of the distribution
well while retaining mutual diversity. The experts
from a particular expert set are combined under a
LOP-CRF and the weights are trained as described
previously.

We define our range of expert sets as follows:

• Simple consists of the monolithic CRF and a
single expert comprising a reduced subset of
the features in the monolithic CRF. This re-
duced CRF models the entire distribution rather
than focusing on a particular aspect or subset,
but is much less expressive than the monolithic
model. The reduced model comprises 24,818
features for NER and 47,420 features for POS
tagging.

• Positional consists of the monolithic CRF and
a partition of the features in the monolithic
CRF into three experts, each consisting only of
features that involve events either behind, at or
ahead of the current sequence position.

• Label consists of the monolithic CRF and a
partition of the features in the monolithic CRF
into five experts, one for each label. For NER
an expert corresponding to label X consists
only of features that involve labels B-X or I-
X at the current or previous positions, while for
POS tagging an expert corresponding to label
X consists only of features that involve label
X at the current or previous positions. These
experts therefore focus on trying to model the
distribution of a particular label.

• Random consists of the monolithic CRF and a
random partition of the features in the mono-
lithic CRF into four experts. This acts as a
baseline to ascertain the performance that can
be expected from an expert set that is not de-
fined via any linguistic intuition.

5 Experiments

To compare the performance of LOP-CRFs trained
using the procedure we described previously to that
of a standard CRF regularised with a Gaussian prior,
we do the following for both NER and POS tagging:
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• Train a monolithic CRF with regularisation us-
ing a Gaussian prior. We use the development
set to optimise the value of the variance hyper-
parameter.

• Train every expert CRF in each expert set with-
out regularisation (each expert set includes the
monolithic CRF, which clearly need only be
trained once).

• For each expert set, create a LOP-CRF from
the expert CRFs and train the weights of the
LOP-CRF without regularisation. We compare
its performance to that of the unregularised and
regularised monolithic CRFs.

• To investigate whether training the LOP-CRF
weights contributes significantly to the LOP-
CRF’s performance, for each expert set we cre-
ate a LOP-CRF with uniform weights and com-
pare its performance to that of the LOP-CRF
with trained weights.

• To investigate whether unregularised training
of the LOP-CRF weights leads to overfitting,
for each expert set we train the weights of the
LOP-CRF with regularisation using a Dirich-
let prior. We optimise the hyperparameter in
the Dirichlet distribution on the development
set. We then compare the performance of the
LOP-CRF with regularised weights to that of
the LOP-CRF with unregularised weights.

6 Results

6.1 Experts

Before presenting results for the LOP-CRFs, we
briefly give performance figures for the monolithic
CRFs and expert CRFs in isolation. For illustration,
we do this for NER models only. Table 1 shows F
scores on the development set for the NER CRFs.
We see that, as expected, the expert CRFs in iso-
lation model the data relatively poorly compared to
the monolithic CRFs. Some of the label experts, for
example, attain relatively low F scores as they focus
only on modelling one particular label. Similar be-
haviour was observed for the POS tagging models.

Expert F score

Monolithic unreg. 88.33
Monolithic reg. 89.84

Reduced 79.62

Positional 1 86.96
Positional 2 73.11
Positional 3 73.08

Label LOC 41.96
Label MISC 22.03
Label ORG 29.13
Label PER 40.49

Label O 60.44

Random 1 70.34
Random 2 67.76
Random 3 67.97
Random 4 70.17

Table 1: Development set F scores for NER experts

6.2 LOP-CRFs with unregularised weights
In this section we present results for LOP-CRFs with
unregularised weights. Table 2 gives F scores for
NER LOP-CRFs while Table 3 gives accuracies for
the POS tagging LOP-CRFs. The monolithic CRF
scores are included for comparison. Both tables il-
lustrate the following points:

• In every case the LOP-CRFs outperform the
unregularised monolithic CRF

• In most cases the performance of LOP-CRFs
rivals that of the regularised monolithic CRF,
and in some cases exceeds it.

We use McNemar’s matched-pairs test (Gillick
and Cox, 1989) on point-wise labelling errors to ex-
amine the statistical significance of these results. We
test significance at the 5% level. At this threshold,
all the LOP-CRFs significantly outperform the cor-
responding unregularised monolithic CRF. In addi-
tion, those marked with ∗ show a significant im-
provement over the regularised monolithic CRF.
Only the value marked with † in Table 3 significantly
under performs the regularised monolithic. All other
values a do not differ significantly from those of the
regularised monolithic CRF at the 5% level.

These results show that LOP-CRFs with unreg-
ularised weights can lead to performance improve-
ments that equal or exceed those achieved from a
conventional regularisation approach using a Gaus-
sian prior. The important difference, however, is that
the LOP-CRF approach is “parameter-free” in the
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Expert set Development set Test set

Monolithic unreg. 88.33 81.87
Monolithic reg. 89.84 83.98

Simple 90.26 84.22∗

Positional 90.35 84.71∗

Label 89.30 83.27
Random 88.84 83.06

Table 2: F scores for NER unregularised LOP-CRFs

Expert set Development set Test set

Monolithic unreg. 97.92 97.65
Monolithic reg. 98.02 97.84

Simple 98.31∗ 98.12∗

Positional 98.03 97.81
Label 97.99 97.77

Random 97.99 97.76†

Table 3: Accuracies for POS tagging unregularised
LOP-CRFs

sense that each expert CRF in the LOP-CRF is un-
regularised and the LOP weight training is also un-
regularised. We are therefore not required to search
a hyperparameter space. As an illustration, to ob-
tain our best results for the POS tagging regularised
monolithic model, we re-trained using 15 different
values of the Gaussian prior variance. With the
LOP-CRF we trained each expert CRF and the LOP
weights only once.

As an illustration of a typical weight distribution
resulting from the training procedure, the positional
LOP-CRF for POS tagging attaches weight 0.45 to
the monolithic model and roughly equal weights to
the other three experts.

6.3 LOP-CRFs with uniform weights

By training LOP-CRF weights using the procedure
we introduce in this paper, we allow the weights to
take on non-uniform values. This corresponds to
letting the opinion of some experts take precedence
over others in the LOP-CRF’s decision making. An
alternative, simpler, approach would be to com-
bine the experts under a LOP with uniform weights,
thereby avoiding the weight training stage. We
would like to ascertain whether this approach will
significantly reduce the LOP-CRF’s performance.
As an illustration, Table 4 gives accuracies for LOP-
CRFs with uniform weights for POS tagging. A sim-
ilar pattern is observed for NER. Comparing these
values to those in Tables 2 and 3, we can see that in

Expert set Development set Test set

Simple 98.30 98.12
Positional 97.97 97.79

Label 97.85 97.73
Random 97.82 97.74

Table 4: Accuracies for POS tagging uniform LOP-
CRFs

general LOP-CRFs with uniform weights, although
still performing significantly better than the unreg-
ularised monolithic CRF, generally under perform
LOP-CRFs with trained weights. This suggests that
the choice of weights can be important, and justifies
the weight training stage.

6.4 LOP-CRFs with regularised weights
To investigate whether unregularised training of the
LOP-CRF weights leads to overfitting, we train
the LOP-CRF with regularisation using a Dirich-
let prior. The results we obtain show that in most
cases a LOP-CRF with regularised weights achieves
an almost identical performance to that with unreg-
ularised weights, and suggests there is little to be
gained by weight regularisation. This is probably
due to the fact that in our LOP-CRFs the number
of experts, and therefore weights, is generally small
and so there is little capacity for overfitting. We con-
jecture that although other choices of expert set may
comprise many more experts than in our examples,
the numbers are likely to be relatively small in com-
parison to, for example, the number of parameters in
the individual experts. We therefore suggest that any
overfitting effect is likely to be limited.

6.5 Choice of Expert Sets
We can see from Tables 2 and 3 that the performance
of a LOP-CRF varies with the choice of expert set.
For example, in our tasks the simple and positional
expert sets perform better than those for the label
and random sets. For an explanation here, we re-
fer back to our discussion of equation (5). We con-
jecture that the simple and positional expert sets
achieve good performance in the LOP-CRF because
they consist of experts that are diverse while simulta-
neously being reasonable models of the data. The la-
bel expert set exhibits greater diversity between the
experts, because each expert focuses on modelling a
particular label only, but each expert is a relatively
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poor model of the entire distribution and the corre-
sponding LOP-CRF performs worse. Similarly, the
random experts are in general better models of the
entire distribution but tend to be less diverse because
they do not focus on any one aspect or subset of it.
Intuitively, then, we want to devise experts that pro-
vide diverse but accurate views on the data.

The expert sets we present in this paper were
motivated by linguistic intuition, but clearly many
choices exist. It remains an important open question
as to how to automatically construct expert sets for
good performance on a given task, and we intend to
pursue this avenue in future research.

7 Conclusion and future work

In this paper we have introduced the logarithmic
opinion pool of CRFs as a way to address overfit-
ting in CRF models. Our results show that a LOP-
CRF can provide a competitive alternative to con-
ventional regularisation with a prior while avoiding
the requirement to search a hyperparameter space.

We have seen that, for a variety of types of expert,
combination of expert CRFs with an unregularised
standard CRF under a LOP with optimised weights
can outperform the unregularised standard CRF and
rival the performance of a regularised standard CRF.

We have shown how these advantages a LOP-
CRF provides have a firm theoretical foundation in
terms of the decomposition of the KL-divergence
between a LOP-CRF and a target distribution, and
how this provides a framework for designing new
overfitting reduction schemes in terms of construct-
ing diverse experts.

In this work we have considered training the
weights of a LOP-CRF using pre-trained, static ex-
perts. In future we intend to investigate cooperative
training of LOP-CRF weights and the parameters of
each expert in an expert set.
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Abstract

The limited coverage of lexical-semantic re-
sources is a significant problem forNLP sys-
tems which can be alleviated by automati-
cally classifying the unknown words. Su-
persense taggingassigns unknown nouns one
of 26 broad semantic categories used by lex-
icographers to organise their manual inser-
tion into WORDNET. Ciaramita and Johnson
(2003) present a tagger which uses synonym
set glosses as annotated training examples. We
describe an unsupervised approach, based on
vector-space similarity, which does not require
annotated examples but significantly outper-
forms their tagger. We also demonstrate the use
of an extremely large shallow-parsed corpus for
calculating vector-space semantic similarity.

1 Introduction

Lexical-semantic resources have been applied successful
to a wide range of Natural Language Processing (NLP)
problems ranging from collocation extraction (Pearce,
2001) and class-based smoothing (Clark and Weir, 2002),
to text classification (Baker and McCallum, 1998) and
question answering (Pasca and Harabagiu, 2001). In par-
ticular, WORDNET (Fellbaum, 1998) has significantly in-
fluenced research inNLP.

Unfortunately, these resource are extremely time-
consuming and labour-intensive to manually develop and
maintain, requiring considerable linguistic and domain
expertise. Lexicographers cannot possibly keep pace
with language evolution: sense distinctions are contin-
ually made and merged, words are coined or become
obsolete, and technical terms migrate into the vernacu-
lar. Technical domains, such as medicine, require sepa-
rate treatment since common words often take on special
meanings, and a significant proportion of their vocabu-
lary does not overlap with everyday vocabulary. Bur-
gun and Bodenreider (2001) compared an alignment of

WORDNET with the UMLS medical resource and found
only a very small degree of overlap. Also, lexical-
semantic resources suffer from:

bias towards concepts and senses from particular topics.
Some specialist topics are better covered in WORD-
NET than others, e.g.dog has finer-grained distinc-
tions thancat andworm although this does not re-
flect finer distinctions in reality;

limited coverage of infrequent words and senses. Cia-
ramita and Johnson (2003) found that common
nouns missing from WORDNET 1.6 occurred every
8 sentences in theBLLIP corpus. By WORDNET 2.0,
coverage has improved but the problem of keeping
up with language evolution remains difficult.

consistencywhen classifying similar words into cate-
gories. For instance, the WORDNET lexicographer
file for ionosphere (location) is different to exo-
sphere and stratosphere (object), two other layers
of the earth’s atmosphere.

These problems demonstrate the need for automatic or
semi-automatic methods for the creation and mainte-
nance of lexical-semantic resources. Broad semantic
classification is currently used by lexicographers to or-
ganise the manual insertion of words into WORDNET,
and is an experimental precursor to automatically insert-
ing words directly into the WORDNET hierarchy. Cia-
ramita and Johnson (2003) call thissupersense tagging
and describe a multi-class perceptron tagger, which uses
WORDNET’s hierarchical structure to create many anno-
tated training instances from the synset glosses.

This paper describes an unsupervised approach to su-
persense tagging that does not require annotated sen-
tences. Instead, we use vector-space similarity to re-
trieve a number of synonyms for each unknown common
noun. The supersenses of these synonyms are then com-
bined to determine the supersense. This approach sig-
nificantly outperforms the multi-class perceptron on the
same dataset based on WORDNET 1.6 and 1.7.1.
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LEX-FILE DESCRIPTION

act acts or actions
animal animals
artifact man-made objects
attribute attributes of people and objects
body body parts
cognition cognitive processes and contents
communication communicative processes and contents
event natural events
feeling feelings and emotions
food foods and drinks
group groupings of people or objects
location spatial position
motive goals
object natural objects (not man-made)
person people
phenomenon natural phenomena
plant plants
possession possession and transfer of possession
process natural processes
quantity quantities and units of measure
relation relations between people/things/ideas
shape two and three dimensional shapes
state stable states of affairs
substance substances
time time and temporal relations

Table 1: 25 noun lexicographer files in WORDNET

2 Supersenses

There are 26 broad semantic classes employed by lex-
icographers in the initial phase of inserting words into
the WORDNET hierarchy, calledlexicographer files(lex-
files). For the noun hierarchy, there are 25 lex-files and a
file containing the top level nodes in the hierarchy called
Tops. Other syntactic classes are also organised using
lex-files: 15 for verbs, 3 for adjectives and 1 for adverbs.

Lex-files form a set of coarse-grained sense distinc-
tions within WORDNET. For example,company appears
in the following lex-files in WORDNET 2.0: group, which
coverscompany in the social, commercial and troupe
fine-grained senses; andstate, which covers companion-
ship. The names and descriptions of the noun lex-files
are shown in Table 1. Some lex-files map directly to
the top level nodes in the hierarchy, calledunique begin-
ners, while others are grouped together as hyponyms of
a unique beginner (Fellbaum, 1998, page 30). For exam-
ple, abstraction subsumes the lex-filesattribute, quantity,
relation, communication andtime.

Ciaramita and Johnson (2003) call the noun lex-file
classessupersenses. There are 11 unique beginners in
the WORDNET noun hierarchy which could also be used
as supersenses. Ciaramita (2002) has produced a mini-
WORDNET by manually reducing the WORDNET hier-
archy to 106 broad categories. Ciaramita et al. (2003)
describe how the lex-files can be used as root nodes in a
two level hierarchy with the WORDNET synsets appear-

ing directly underneath.
Other alternative sets of supersenses can be created by

an arbitrary cut through the WORDNET hierarchy near
the top, or by using topics from a thesaurus such as
Roget’s (Yarowsky, 1992). These topic distinctions are
coarser-grained than WORDNET senses, which have been
criticised for being too difficult to distinguish even for
experts. Ciaramita and Johnson (2003) believe that the
key sense distinctions are still maintained by supersenses.
They suggest that supersense tagging is similar to named
entity recognition, which also has a very small set of cat-
egories with similar granularity (e.g.location andperson)
for labelling predominantly unseen terms.

Supersense tagging can provide automated or semi-
automated assistance to lexicographers adding words to
the WORDNET hierarchy. Once this task is solved suc-
cessfully, it may be possible to insert words directly
into the fine-grained distinctions of the hierarchy itself.
Clearly, this is the ultimate goal, to be able to insert
new terms into lexical resources, extending the structure
where necessary. Supersense tagging is also interesting
for many applications that use shallow semantics, e.g. in-
formation extraction and question answering.

3 Previous Work

A considerable amount of research addresses structurally
and statistically manipulating the hierarchy of WORD-
NET and the construction of new wordnets using the con-
cept structure from English. Forlexical FreeNet, Beefer-
man (1998) adds over 350 000 collocation pairs (trigger
pairs) extracted from a 160 million word corpus of broad-
cast news using mutual information. The co-occurrence
window was 500 words which was designed to approxi-
mate average document length.

Caraballo and Charniak (1999) have explored deter-
mining noun specificity from raw text. They find that
simple frequency counts are the most effective way of
determining the parent-child ordering, achieving 83% ac-
curacy over types ofvehicle, food andoccupation. The
other measure they found to be successful was the en-
tropy of the conditional distribution of surrounding words
given the noun. Specificity ordering is a necessary step
for building a noun hierarchy. However, this approach
clearly cannot build a hierarchy alone. For instance,en-
tity is less frequent than many concepts it subsumes. This
suggests it will only be possible to add words to an ex-
isting abstract structure rather than create categories right
up to the unique beginners.

Hearst and Scḧutze (1993) flatten WORDNET into 726
categories using an algorithm which attempts to min-
imise the variance in category size. These categories are
used to label paragraphs with topics, effectively repeat-
ing Yarowsky’s (1992) experiments using the their cat-
egories rather than Roget’s thesaurus. Schütze’s (1992)
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WordSpace system was used to add topical links, such
as betweenball, racquet andgame (the tennis problem).
Further, they also use the same vector-space techniques
to label previously unseen words using the most common
class assigned to the top 20 synonyms for that word.

Widdows (2003) uses a similar technique to insert
words into the WORDNET hierarchy. He first extracts
synonyms for the unknown word using vector-space sim-
ilarity measures based on Latent Semantic Analysis and
then searches for a location in the hierarchy nearest to
these synonyms. This same technique as is used in our
approach to supersense tagging.

Ciaramita and Johnson (2003) implement a super-
sense tagger based on the multi-class perceptron classi-
fier (Crammer and Singer, 2001), which uses the standard
collocation, spelling and syntactic features common in
WSD and named entity recognition systems. Their insight
was to use the WORDNET glosses as annotated training
data and massively increase the number of training in-
stances using the noun hierarchy. They developed an effi-
cient algorithm for estimating the model over hierarchical
training data.

4 Evaluation

Ciaramita and Johnson (2003) propose a very natural
evaluation for supersense tagging: inserting the extra
common nouns that have been added to a new version
of WORDNET. They use the common nouns that have
been added to WORDNET 1.7.1 since WORDNET 1.6 and
compare this evaluation with a standard cross-validation
approach that uses a small percentage of the words from
their WORDNET 1.6 training set for evaluation. Their
results suggest that the WORDNET 1.7.1 test set is sig-
nificantly harder because of the large number of abstract
category nouns, e.g.communication and cognition, that
appear in the 1.7.1 data, which are difficult to classify.

Our evaluation will use exactly the same test sets as
Ciaramita and Johnson (2003). The WORDNET 1.7.1 test
set consists of 744 previously unseen nouns, the majority
of which (over 90%) have only one sense. The WORD-
NET 1.6 test set consists of several cross-validation sets
of 755 nouns randomly selected from theBLLIP train-
ing set used by Ciaramita and Johnson (2003). They
have kindly supplied us with the WORDNET 1.7.1 test set
and one cross-validation run of the WORDNET 1.6 test
set. Our development experiments are performed on the
WORDNET 1.6 test set with one final run on the WORD-
NET 1.7.1 test set. Some examples from the test sets are
given in Table 2 with their supersenses.

5 Corpus

We have developed a 2 billion word corpus, shallow-
parsed with a statisticalNLP pipeline, which is by far the

WORDNET 1.6 WORDNET 1.7.1
NOUN SUPERSENSE NOUN SUPERSENSE

stock index communication week time
fast food food buyout act
bottler group insurer group
subcompact artifact partner person
advancer person health state
cash flow possession income possession
downside cognition contender person
discounter artifact cartel group
trade-off act lender person
billionaire person planner artifact

Table 2: Example nouns and their supersenses

largestNLP processed corpus described in published re-
search. The corpus consists of theBritish National Cor-
pus (BNC), the Reuters Corpus Volume 1(RCV1), and
most of the Linguistic Data Consortium’s news text col-
lected since 1987:Continuous Speech Recognition III
(CSR-III ); North American News Text Corpus(NANTC);
the NANTC Supplement(NANTS); and theACQUAINT

Corpus. The components and their sizes including punc-
tuation are given in Table 3. TheLDC has recently re-
leased theEnglish Gigawordcorpus which includes most
of the corpora listed above.

CORPUS DOCS. SENTS. WORDS

BNC 4 124 6.2M 114M
RCV1 806 791 8.1M 207M
CSR-III 491 349 9.3M 226M
NANTC 930 367 23.2M 559M
NANTS 942 167 25.2M 507M
ACQUAINT 1 033 461 21.3M 491M

Table 3: 2 billion word corpus statistics

We have tokenized the text using the Grok-OpenNLP
tokenizer (Morton, 2002) and split the sentences using
MXTerminator (Reynar and Ratnaparkhi, 1997). Any
sentences less than 3 words or more than 100 words long
were rejected, along with sentences containing more than
5 numbers or more than 4 brackets, to reduce noise. The
rest of the pipeline is described in the next section.

6 Semantic Similarity

Vector-space models of similarity are based on thedistri-
butional hypothesisthat similar words appear in similar
contexts. This hypothesis suggests that semantic simi-
larity can be measured by comparing the contexts each
word appears in. In vector-space models eachheadword
is represented by a vector of frequency counts record-
ing the contexts that it appears in. The key parameters
are the context extraction method and the similarity mea-
sure used to compare context vectors. Our approach to
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vector-space similarity is based on the SEXTANT system
described in Grefenstette (1994).

Curran and Moens (2002b) compared several context
extraction methods and found that the shallow pipeline
and grammatical relation extraction used in SEXTANT

was both extremely fast and produced high-quality re-
sults. SEXTANT extracts relation tuples(w, r,w′) for
each noun, wherew is the headword,r is the relation type
andw′ is the other word. The efficiency of the SEXTANT

approach makes the extraction of contextual information
from over 2 billion words of raw text feasible. We de-
scribe the shallow pipeline in detail below.

Curran and Moens (2002a) compared several differ-
ent similarity measures and found that Grefenstette’s
weighted JACCARD measure performed the best:∑

min(wgt(w1, ∗r, ∗w′),wgt(w2, ∗r, ∗w′))∑
max(wgt(w1, ∗r, ∗w′),wgt(w2, ∗r, ∗w′))

(1)

wherewgt(w, r, w′) is the weight function for relation
(w, r, w′). Curran and Moens (2002a) introduced the
TTEST weight function, which is used in collocation ex-
traction. Here, the t-test compares the joint and product
probability distributions of the headword and context:

p(w, r, w′)− p(∗, r, w′)p(w, ∗, ∗)√
p(∗, r, w′)p(w, ∗, ∗)

(2)

where∗ indicates a global sum over that element of the
relation tuple. JACCARD and TTEST produced better
quality synonyms than existing measures in the literature,
so we use Curran and Moen’s configuration for our super-
sense tagging experiments.

6.1 Part of Speech Tagging and Chunking

Our implementation of SEXTANT uses a maximum en-
tropy POS tagger designed to be very efficient, tagging
at around 100 000 words per second (Curran and Clark,
2003), trained on the entire Penn Treebank (Marcus et al.,
1994). The only similar performing tool is theTrigrams
‘n’ Tags tagger (Brants, 2000) which uses a much simpler
statistical model. Our implementation uses a maximum
entropy chunker which has similar feature types to Koel-
ing (2000) and is also trained on chunks extracted from
the entire Penn Treebank using the CoNLL 2000 script.
Since the Penn Treebank separatesPPs and conjunctions
from NPs, they are concatenated to match Grefenstette’s
table-based results, i.e. the SEXTANT always prefers noun
attachment.

6.2 Morphological Analysis

Our implementation usesmorpha , the Sussex morpho-
logical analyser (Minnen et al., 2001), which is imple-
mented usinglex grammars for both affix splitting and
generation.morpha has wide coverage – nearly 100%

RELATION DESCRIPTION

adj noun–adjectival modifier relation
dobj verb–direct object relation
iobj verb–indirect object relation
nn noun–noun modifier relation
nnprep noun–prepositional head relation
subj verb–subject relation

Table 4: Grammatical relations from SEXTANT

against theCELEX lexical database (Minnen et al., 2001)
– and is very efficient, analysing over 80 000 words per
second.morpha often maintains sense distinctions be-
tween singular and plural nouns; for instance:specta-
cles is not reduced tospectacle, but fails to do so in
other cases:glasses is converted toglass. This inconsis-
tency is problematic when using morphological analysis
to smooth vector-space models. However, morphological
smoothing still produces better results in practice.

6.3 Grammatical Relation Extraction

After the raw text has beenPOS tagged and chunked,
the grammatical relation extraction algorithm is run over
the chunks. This consists of five passes over each sen-
tence that first identify noun and verb phrase heads and
then collect grammatical relations between each common
noun and its modifiers and verbs. A global list of gram-
matical relations generated by each pass is maintained
across the passes. The global list is used to determine if a
word is already attached. Once all five passes have been
completed this association list contains all of the noun-
modifier/verb pairs which have been extracted from the
sentence. The types of grammatical relation extracted by
SEXTANT are shown in Table 4. For relations between
nouns (nn andnnprep), we also create inverse relations
(w′, r′, w) representing the fact thatw′ can modifyw.
The 5 passes are described below.
Pass 1: Noun Pre-modifiers

This pass scansNPs, left to right, creating adjectival
(adj) and nominal (nn) pre-modifier grammatical rela-
tions (GRs) with every noun to the pre-modifier’s right,
up to a preposition or the phrase end. This corresponds to
assuming right-branching noun compounds. Within each
NP only theNP andPPheads remain unattached.
Pass 2: Noun Post-modifiers

This pass scansNPs, right to left, creating post-modifier
GRs between the unattached heads ofNPs andPPs. If
a preposition is encountered between the noun heads, a
prepositional noun (nnprep) GR is created, otherwise an
appositional noun (nn) GR is created. This corresponds
to assuming right-branchingPP attachment. After this
phrase only theNP head remains unattached.
Tense Determination

The rightmost verb in eachVP is considered the head. A
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VP is initially categorised asactive. If the head verb is a
form of be then theVP becomesattributive. Otherwise,
the algorithm scans theVP from right to left: if an auxil-
iary verb form ofbe is encountered theVP becomespas-
sive; if a progressive verb (exceptbeing) is encountered
theVP becomesactive.

Only the noun heads on either side ofVPs remain
unattached. The remaining three passes attach these to
the verb heads as either subjects or objects depending on
the voice of theVP.
Pass 3: Verb Pre-Attachment

This pass scans sentences, right to left, associating the
first NP head to the left of theVP with its head. If theVP

is active, a subject (subj) relation is created; otherwise,
a direct object (dobj) relation is created. For example,
antigen is the subject ofrepresent.
Pass 4: Verb Post-Attachment

This pass scans sentences, left to right, associating the
first NP or PP head to the right of theVP with its head.
If the VP was classed asactive and the phrase is anNP

then a direct object (dobj) relation is created. If theVP

was classed aspassive and the phrase is anNP then a
subject (subj) relation is created. If the following phrase
is a PP then an indirect object (iobj) relation is created.
The interaction between the head verb and the preposi-
tion determine whether the noun is an indirect object of
a ditransitive verb or alternatively the head of aPP that is
modifying the verb. However, SEXTANT always attaches
thePP to the previous phrase.
Pass 5: Verb Progressive Participles

The final step of the process is to attach progressive verbs
to subjects and objects (without concern for whether they
are already attached). Progressive verbs can function as
nouns, verbs and adjectives and once again a naı̈ve ap-
proximation to the correct attachment is made. Any pro-
gressive verb which appears after a determiner or quan-
tifier is considered a noun. Otherwise, it is a verb and
passes 3 and 4 are repeated to attach subjects and objects.

Finally, SEXTANT collapses thenn, nnprep andadj re-
lations together into a single broad noun-modifier gram-
matical relation. Grefenstette (1994) claims this extractor
has a grammatical relation accuracy of 75% after manu-
ally checking 60 sentences.

7 Approach

Our approach uses voting across the known supersenses
of automatically extracted synonyms, to select a super-
sense for the unknown nouns. This technique is simi-
lar to Hearst and Schütze (1993) and Widdows (2003).
However, sometimes the unknown noun does not appear
in our 2 billion word corpus, or at least does not appear
frequently enough to provide sufficient contextual infor-
mation to extract reliable synonyms. In these cases, our

SUFFIX EXAMPLE SUPERSENSE

-ness remoteness attribute
-tion, -ment annulment act
-ist, -man statesman person
-ing, -ion bowling act
-ity viscosity attribute
-ics, -ism electronics cognition
-ene, -ane, -ine arsine substance
-er, -or, -ic, -ee, -an mariner person
-gy entomology cognition

Table 5: Hand-coded rules for supersense guessing

fall-back method is a simple hand-coded classifier which
examines the unknown noun and makes a guess based on
simple morphological analysis of the suffix. These rules
were created by inspecting the suffixes of rare nouns in
WORDNET 1.6. The supersense guessing rules are given
in Table 5. If none of the rules match, then the default
supersenseartifact is assigned.

The problem now becomes how to convert the ranked
list of extracted synonyms for each unknown noun into
a single supersense selection. Each extracted synonym
votes for its one or more supersenses that appear in
WORDNET 1.6. There are many parameters to consider:

• how many extracted synonyms to use;
• how to weight each synonym’s vote;
• whether unreliable synonyms should be filtered out;
• how to deal with polysemous synonyms.

The experiments described below consider a range of op-
tions for these parameters. In fact, these experiments are
so quick to run we have been able to exhaustively test
many combinations of these parameters. We have exper-
imented with up to 200 voting extracted synonyms.

There are several ways to weight each synonym’s con-
tribution. The simplest approach would be to give each
synonym the same weight. Another approach is to use
the scores returned by the similarity system. Alterna-
tively, the weights can use the ranking of the extracted
synonyms. Again these options have been considered
below. A related question is whether to use all of the
extracted synonyms, or perhaps filter out synonyms for
which a small amount of contextual information has been
extracted, and so might be unreliable.

The final issue is how to deal with polysemy. Does ev-
ery supersense of each extracted synonym get the whole
weight of that synonym or is it distributed evenly between
the supersenses like Resnik (1995)? Another alternative
is to only consider unambiguous synonyms with a single
supersense in WORDNET.

A disadvantage of this similarity approach is that it re-
quires full synonym extraction, which compares the un-
known word against a large number of words when, in

30



SYSTEM WN 1.6 WN 1.7.1

Ciaramita and Johnson baseline 21% 28%
Ciaramita and Johnson perceptron 53% 53%
Similarity based results 68% 63%

Table 6: Summary of supersense tagging accuracies

fact, we want to calculate the similarity to a small number
of supersenses. This inefficiency could be reduced sig-
nificantly if we consider only very high frequency words,
but even this is still expensive.

8 Results

We have used the WORDNET 1.6 test set to experi-
ment with different parameter settings and have kept the
WORDNET 1.7.1 test set as a final comparison of best
results with Ciaramita and Johnson (2003). The experi-
ments were performed by considering all possible config-
urations of the parameters described above.

The following voting options were considered for each
supersense of each extracted synonym: the initial vot-
ing weight for a supersense could either be a constant
(IDENTITY ) or the similarity score (SCORE) of the syn-
onym. The initial weight could then be divided by the
number of supersenses to share out the weight (SHARED).
The weight could also be divided by the rank (RANK) to
penalise supersenses further down the list. The best per-
formance on the 1.6 test set was achieved with theSCORE

voting, without sharing or ranking penalties.
The extracted synonyms are filtered before contribut-

ing to the vote with their supersense(s). This filtering in-
volves checking that the synonym’s frequency and num-
ber of contexts are large enough to ensure it is reliable.
We have experimented with a wide range of cutoffs and
the best performance on the 1.6 test set was achieved us-
ing a minimum cutoff of 5 for the synonym’s frequency
and the number of contexts it appears in.

The next question is how many synonyms are consid-
ered. We considered using just the nearest unambiguous
synonym, and the top 5, 10, 20, 50, 100 and 200 syn-
onyms. All of the top performing configurations used 50
synonyms. We have also experimented with filtering out
highly polysemous nouns by eliminating words with two,
three or more synonyms. However, such a filter turned
out to make little difference.

Finally, we need to decide when to use the similarity
measure and when to fall-back to the guessing rules. This
is determined by looking at the frequency and number of
attributes for the unknown word. Not surprisingly, the
similarity system works better than the guessing rules if
it has any information at all.

The results are summarised in Table 6. The accuracy
of the best-performing configurations was 68% on the

WORDNET 1.6 WORDNET 1.7.1
SUPERSENSE N P R F N P R F

Tops 2 0 0 0 1 50 100 67
act 84 60 74 66 86 53 73 61

animal 16 69 56 62 5 33 60 43
artifact 134 61 86 72 129 57 76 65

attribute 32 52 81 63 16 44 69 54
body 8 88 88 88 5 50 40 44

cognition 31 56 45 50 41 70 34 46
communication 66 80 56 66 57 58 44 50

event 14 83 36 50 10 80 40 53
feeling 8 70 88 78 1 0 0 0
food 29 91 69 78 12 67 67 67

group 27 75 22 34 26 50 4 7
location 43 81 30 44 13 40 15 22
motive 0 0 0 0 1 0 0 0
object 17 73 47 57 13 75 23 35
person 155 76 89 82 207 81 86 84

phenomenon 3 100 100 100 9 0 0 0
plant 11 80 73 76 0 0 0 0

possession 9 100 22 36 16 78 44 56
process 2 0 0 0 9 50 11 18
quantity 12 80 33 47 5 0 0 0
relation 2 100 50 67 0 0 0 0
shape 1 0 0 0 0 0 0 0
state 21 48 48 48 28 50 39 44

substance 24 58 58 58 44 63 73 67
time 5 100 60 75 10 36 40 38

Overall 756 68 68 68 744 63 63 63

Table 7: Breakdown of results by supersense

WORDNET 1.6 test set with several other parameter com-
binations described above performing nearly as well. On
the previously unused WORDNET 1.7.1 test set, our accu-
racy is 63% using the best system on the WORDNET 1.6
test set. By optimising the parameters on the 1.7.1 test
set we can increase that to 64%, indicating that we have
not excessively over-tuned on the 1.6 test set. Our results
significantly outperform Ciaramita and Johnson (2003)
on both test sets even though our system is unsupervised.
The large difference between our 1.6 and 1.7.1 test set
accuracy demonstrates that the 1.7.1 set is much harder.

Table 7 shows the breakdown in performance for each
supersense. The columns show the number of instances
of each supersense with the precision, recall and f-score
measures as percentages. The most frequent supersenses
in both test sets wereperson, attribute and act. Of the
frequent categories,person is the easiest supersense to
get correct in both the 1.6 and 1.7.1 test sets, followed
by food, artifact and substance. This is not surprising
since these concrete words tend to have very fewer other
senses, well constrained contexts and a relatively high
frequency. These factors are conducive for extracting re-
liable synonyms.

These results also support Ciaramita and Johnson’s
view that abstract concepts likecommunication, cognition
andstate are much harder. We would expect thelocation
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supersense to perform well since it is quite concrete, but
unfortunately our synonym extraction system does not
incorporate proper nouns, so many of these words were
classified using the hand-built classifier. Also, in the data
from Ciaramita and Johnson all of the words are in lower
case, so no sensible guessing rules could help.

9 Other Alternatives and Future Work

An alternative approach worth exploring is to create con-
text vectors for the supersense categories themselves and
compare these against the words. This has the advantage
of producing a much smaller number of vectors to com-
pare against. In the current system, we must compare a
word against the entire vocabulary (over 500 000 head-
words), which is much less efficient than a comparison
against only 26 supersense context vectors.

The question now becomes how to construct vectors
of supersenses. The most obvious solution is to sum the
context vectors across the words which have each su-
persense. However, our early experiments suggest that
this produces extremely large vectors which do not match
well against the much smaller vectors of each unseen
word. Also, the same questions arise in the construc-
tion of these vectors. How are words with multiple su-
persenses handled? Our preliminary experiments suggest
that only combining the vectors for unambiguous words
produces the best results.

One solution would be to take the intersection between
vectors across words for each supersense (i.e. to find the
common contexts that these words appear in). However,
given the sparseness of the data this may not leave very
large context vectors. A final solution would be to con-
sider a large set of thecanonical attributes(Curran and
Moens, 2002a) to represent each supersense. Canonical
attributes summarise the key contexts for each headword
and are used to improve the efficiency of the similarity
comparisons.

There are a number of problems our system does not
currently handle. Firstly, we do not include proper names
in our similarity system which means that location enti-
ties can be very difficult to identify correctly (as the re-
sults demonstrate). Further, our similarity system does
not currently incorporate multi-word terms. We over-
come this by using the synonyms of the last word in
the multi-word term. However, there are 174 multi-word
terms (23%) in the WORDNET 1.7.1 test set which we
could probably tag more accurately with synonyms for
the whole multi-word term. Finally, we plan to imple-
ment a supervised machine learner to replace the fall-
back method, which currently has an accuracy of 37%
on the WORDNET 1.7.1 test set.

We intend to extend our experiments beyond the Cia-
ramita and Johnson (2003) set to include previous and

more recent versions of WORDNET to compare their dif-
ficulty, and also perform experiments over a range of cor-
pus sizes to determine the impact of corpus size on the
quality of results.

We would like to move onto the more difficult task
of insertion into the hierarchy itself and compare against
the initial work by Widdows (2003) using latent seman-
tic analysis. Here the issue of how to combine vec-
tors is even more interesting since there is the additional
structure of the WORDNET inheritance hierarchy and the
small synonym sets that can be used for more fine-grained
combination of vectors.

10 Conclusion

Our application of semantic similarity to supersense tag-
ging follows earlier work by Hearst and Schütze (1993)
and Widdows (2003). To classify a previously unseen
common noun our approach extracts synonyms which
vote using their supersenses in WORDNET 1.6. We have
experimented with several parameters finding that the
best configuration uses 50 extracted synonyms, filtered
by frequency and number of contexts to increase their re-
liability. Each synonym votes for each of its supersenses
from WORDNET 1.6 using the similarity score from our
synonym extractor.

Using this approach we have significantly outper-
formed the supervised multi-class perceptron Ciaramita
and Johnson (2003). This paper also demonstrates the
use of a very efficient shallowNLP pipeline to process
a massive corpus. Such a corpus is needed to acquire
reliable contextual information for the often very rare
nouns we are attempting to supersense tag. This appli-
cation of semantic similarity demonstrates that an unsu-
pervised methods can outperform supervised methods for
someNLP tasks if enough data is available.
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Abstract

Word Sense Disambiguation suffers from
a long-standing problem of knowledge ac-
quisition bottleneck. Although state of the
art supervised systems report good accu-
racies for selected words, they have not
been shown to be promising in terms of
scalability. In this paper, we present an ap-
proach for learning coarser and more gen-
eral set of concepts from a sense tagged
corpus, in order to alleviate the knowl-
edge acquisition bottleneck. We show that
these general concepts can be transformed
to fine grained word senses using simple
heuristics, and applying the technique for
recent SENSEVAL data sets shows that our
approach can yield state of the art perfor-
mance.

1 Introduction

Word Sense Disambiguation (WSD) is the task of
determining the meaning of a word in a given con-
text. This task has a long history in natural language
processing, and is considered to be an intermediate
task, success of which is considered to be important
for other tasks such as Machine Translation, Lan-
guage Understanding, and Information Retrieval.

Despite a long history of attempts to solve WSD
problem by empirical means, there is not any clear
consensus on what it takes to build a high perfor-
mance implementation of WSD. Algorithms based
on Supervised Learning, in general, show better per-
formance compared to unsupervised systems. But

they suffer from a serious drawback: the difficulty
of acquiring considerable amounts of training data,
also known asknowledge acquisition bottleneck. In
the typical setting, supervised learning needs train-
ing data created for each and every polysemous
word; Ng (1997) estimates an effort of 16 person-
years for acquiring training data for 3,200 significant
words in English. Mihalcea and Chklovski (2003)
provide a similar estimate of an 80 person-year ef-
fort for creating manually labelled training data for
about 20,000 words in a common English dictionary.

Two basic approaches have been tried as solu-
tions to the lack of training data, namely unsu-
pervised systems and semi-supervised bootstrapping
techniques. Unsupervised systems mostly work
on knowledge-based techniques, exploiting sense
knowledge encoded in machine-readable dictionary
entries, taxonomical hierarchies such as WORD-
NET (Fellbaum, 1998), and so on. Most of the
bootstrapping techniques start from a few ‘seed’ la-
belled examples, classify some unlabelled instances
using this knowledge, and iteratively expand their
knowledge using information available within newly
labelled data. Some others employ hierarchical rel-
atives such as hypernyms and hyponyms.

In this work, we present another practical alterna-
tive: we reduce the WSD problem to a one of finding
generic semantic class of a given word instance. We
show that learning such classes can help relieve the
problem of knowledge acquisition bottleneck.

1.1 Learning senses as concepts

As the semantic classes we propose learning, we
use WORDNET lexicographer file identifiers corre-
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sponding to each fine-grained sense. By learning
these generic classes, we show that we can reuse
training data, without having to rely on specific
training data for each word. This can be done be-
cause the semantic classes are common to words
unlike senses; for learning the properties of a given
class, we can use the data from various words. For
instance, the nouncrane falls into two semantic
classesANIMAL andARTEFACT. We can expect the
words such aspelicanandeagle(in the bird sense)
to have similar usage patterns to those ofANIMAL

sense ofcrane, and to provide common training ex-
amples for that particular class.

For learning these classes, we can make use of any
training example labelled with WORDNET senses
for supervised WSD, as we describe in section 3.1.

Once the classification is done for an instance, the
resulting semantic classes can be transformed into
finer grained senses using some heuristical mapping,
as we show in the next sub section. This would not
guarantee a perfect conversion because such a map-
ping can miss some finer senses, but as we show in
what follows, this problem in itself does not prevent
us from attaining good performance in a practical
WSD setting.

1.2 Information loss in coarse grained senses

As an empirical verification of the hypothesis that
we can still build effective fine-grained sense dis-
ambiguators despite the loss of information, we an-
alyzed the performance of a hypothetical coarse
grained classifier that can perform at 100% accu-
racy. As the general set of classes, we used WORD-
NET unique beginners, of which there are 25 for
nouns, and 15 for verbs.

To simulate this classifier on SENSEVAL English
all-words tasks’ data (Edmonds and Cotton, 2001;
Snyder and Palmer, 2004), we mapped the fine-
grained senses from official answer keys to their
respective beginners. There is an information loss
in this mapping, because each unique beginner can
typically include more than one sense. To see how
this ‘classifier’ fares in a fine-grained task, we can
map the ‘answers’ back to WORDNET fine-grained
senses by picking up the sense with the lowest sense
number that falls within each unique beginner. In
principal, this is the most likely sense within the
class, because WORDNET senses are said to be
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Figure 1: Performance of a hypothetical coarse-
grained classifier, output mapped to fine-grained
senses, on SENSEVAL English all-words tasks.

ordered in descending order of frequency. Since
this sense is not necessarily the same as the origi-
nal sense of the instance, the accuracy of the fine-
grained answers will be below 100%.

Figure 1 shows the performance of this trans-
formed fine-grained classifier (CG) for nouns and
verbs with SENSEVAL-2 and 3 English all words
task data (marked as S2 and S3 respectively),
along with the baseline WORDNET first sense (BL),
and the best-performer classifiers at each SENSE-
VAL excercise (CL), SMUaw (Mihalcea, 2002) and
GAMBL-AW (Decadt et al., 2004) respectively.

There is a considerable difference in terms of im-
provement over baseline, between the state-of-the-
art systems and the hypothetical optimal coarse-
grained system. This shows us that there is an im-
provement in performance that we can attain over
the state-of-the-art, if we can create a classifier for
even a very coarse level of senses, with sufficiently
high accuracy. We believe that the chances for such
a high accuracy in a coarse-grained sense classifier
is better, for several reasons:

• previously reported good performance for
coarse grained systems (Yarowsky, 1992)

• better availability of data, due to the possibil-
ity of reusing data created for different words.
For instance, labelled data for the noun‘crane’
is not found in SEMCOR corpus at all, but
there are more than 1000 sample instances for
the conceptANIMAL , and more than 9000 for
ARTEFACT.
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• higher inter-annotator agreement levels and
lower corpus/genre dependencies in train-
ing/testing data due to coarser senses.

1.3 Overall approach

Basically, we assume that we can learn the ‘con-
cepts’, in terms of WORDNET unique beginners, us-
ing a set of data labelled with these concepts, re-
gardless of the actual word that is labelled. Hence,
we can use a generic data set that is large enough,
where various words provide training examples for
these concepts, instead of relying upon data from the
examples of the same word that is being classified.

Unfortunately, simply labelling each instance
with its semantic class and then using standard su-
pervised learning algorithms did not work well. This
is probably because the effectiveness of the feature
patterns often depend on the actual word being dis-
ambiguated and not just its semantic class. For ex-
ample, the phrase‘run the newspaper’effectively
indicates that‘newspaper’belongs to the seman-
tic classGROUP. But ‘run the tape’ indicates that
‘tape’ belongs to the semantic classARTEFACT. The
collocation ‘run the’ is effective for indicating the
GROUP sense only for‘newspaper’and closely re-
lated words such as‘department’or ‘school’.

In this experiment, we use a k-nearest neighbor
classifier. In order to allow training examples of
different words from the same semantic class to
effectively provide information for each other, we
modify the distance between instances in a way
that makes the distance between instances of simi-
lar words smaller. This is described in Section 3.

The rest of the paper is organized as follows: In
section 2, we discuss several related work. We pro-
ceed on to a detailed description of our system in
section 3, and discuss the empirical results in section
4, showing that our representation can yield state of
the art performance.

2 Related Work

Using generic classes as word senses has been
done several times in WSD, in various contexts.
Resnik (1997) described a method to acquire a set
of conceptual classes for word senses, employing
selectional preferences, based on the idea that cer-
tain linguistic predicates constraint the semantic in-
terpretation of underlying words into certain classes.

The method he proposed could acquire these con-
straints from a raw corpus automatically.

Classification proposed by Levin (1993) for Eng-
lish verbs remains a matter of interest. Although
these classes are based on syntactic properties unlike
those in WORDNET, it has been shown that they can
be used in automatic classifications (Stevenson and
Merlo, 2000). Korhonen (2002) proposed a method
for mapping WORDNET entries into Levin classes.

WSD System presented by Crestan et al. (2001)
in SENSEVAL-2 classified words into WORD-
NET unique beginners. However, their approach
did not use the fact that the primes are common for
words, and training data can hence be reused.

Yarowsky (1992) used Roget’s Thesaurus cate-
gories as classes for word senses. These classes dif-
fer from those mentioned above, by the fact that they
are based on topical context rather than syntax or
grammar.

3 Basic Design of the System

The system consists of three classifiers, built using
local context, part of speech and syntax-based rela-
tionships respectively, and combined with the most-
frequent sense classifier by using weighted major-
ity voting. Our experiments (section 4.3) show that
building separate classifiers from different subsets
of features and combining them works better than
building one classifier by concatenating the features
together.

For training and testing, we used publicly avail-
able data sets, namely SEMCOR corpus (Miller et
al., 1993) and SENSEVAL English all-words task
data. In order to evaluate the systems performance
in vivo, we mapped the outputs of our classifier to
the answers given in the key. Although we face a
penalty here due to the loss of granularity, this ap-
proach allows a direct comparison of actual usability
of our system.

3.1 Data

As training corpus, we used Brown-1 and Brown-
2 parts of SEMCOR corpus; these parts have all of
their open-class words tagged with corresponding
WORDNET senses. A part of the training corpus was
set aside as the development corpus. This part was
selected by randomly selecting a portion of multi-
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class words (600 instances for each part of speech)
from the training data set. As labels, the seman-
tic class (lexicographic file number) was extracted
from the sense key of each instance. Testing data
sets from SENSEVAL-2 and SENSEVAL-3 English
all-words tasks were used as testing corpora.

3.2 Features

The feature set we selected was fairly simple; As
we understood from our initial experiments, wide-
window context features and topical context were
not of much use for learning semantic classes from
a multi-word training data set. Instead of general-
izing, wider context windows add to noise, as seen
from validation experiments with held-out data.

Following are the features we used:

3.2.1 Local context

This is a window ofn words to the left, andn
words to the right, wheren ∈ {1, 2, 3} is a parame-
ter we selected via cross validation.1

Punctuation marks were removed and all words
were converted into lower case. The feature vec-
tor was calculated the same way for both nouns and
verbs. The window did not exceed the boundaries
of a sentence; when there were not enough words to
either side of the word within the window, the value
NULLwas used to fill the remaining positions.

For instance, for the noun‘companion’ in sen-
tence (given with POS tags)

‘Henry/NNP peered/VBD doubtfully/RB
at/IN his/PRP$ drinking/NN compan-
ion/NN through/IN bleary/JJ ,/, tear-
filled/JJ eyes/NNS ./.’

the local context feature vector is[at,
his, drinking, through, bleary,
tear-filled] , for window sizen = 3. Notice
that we did not consider the hyphenated words as
two words, when the data files had them annotated
as a single token.

3.2.2 Part of speech

This consists of parts of speech for a window of
n words to both sides of word (excluding the word

1Validation results showed that a window of two words to
both sides yields the best performance for both local context and
POS features.n = 2 is the size we used in actual evaluation.

Feature Example Value
nouns

Subject - verb [art] represents a culture represent
Verb - object He sells his [art] sell
Adjectival modifiers the ancient [art] of runes ancient
Prepositional connectors academy of folk [art] academy of
Post-nominal modifiers the [art] of fishing of fishing

verbs
Subject - verb He [sells] his art he
Verb - object He [sells] his art art
Infinitive connector He will [sell] his art he
Adverbial modifier He can [paint] well well
Words in split infinitives to boldly [go] boldly

Table 1: Syntactic relations used as features. The
target word is shown inside [brackets]

itself), with quotation signs and punctuation marks
ignored. For SEMCOR files, existing parts of speech
were used; for SENSEVAL data files, parts of speech
from the accompanying Penn-Treebank parsed data
files were aligned with the XML data files. The
value vector is calculated the same way as the lo-
cal context, with the same constraint on sentence
boundaries, replacing vacancies withNULL.

As an example, for the sentence we used in the
previous example, the part-of-speech vector with
context sizen = 3 for the verbpeeredis [NULL,
NULL, NNP, RB, IN, PRP$] .

3.2.3 Syntactic relations with the word

The words that hold several kinds of syntactic re-
lations with the word under consideration were se-
lected. We used Link Grammar parser due to Sleator
and Temperley (1991) because of the information-
rich parse results produced by it.

Sentences in SEMCOR corpus files and the SEN-
SEVAL files were parsed with Link parser, and words
were aligned with links. A given instance of a word
can have more than one syntactic features present.
Each of these features was considered as a binary
feature, and a vector of binary values was con-
structed, of which each element denoted a unique
feature found in the test set of the word.

Each syntactic pattern feature falls into either of
two typescollocationor relation:

Collocation features Collocation features are
such features that connect the word under consid-
eration to another word, with a preposition or an in-
finitive in between — for instance, the phrase‘art
of change-ringing’for the wordart. For these fea-
tures, the feature value consists of two words, which
are connected to the given word either from left or

37



from right, in a given order. For the above example,
the feature value is[ ∼.of.change-ringing] ,
where∼ denotes the placeholder for word under
consideration.

Relational features Relational features represent
more direct grammatical relationships, such as
subject-verb or noun-adjective, the word under con-
sideration has with surrounding words. When
encoding the feature value, we specified the re-
lation type and the value of the feature in the
given instance. For instance, in the phrase‘Henry
peered doubtfully’, the adverbial modifier feature
for the verb ‘peered’ is encoded as[adverb-mod
doubtfully] .

A description of the relations for each part of
speech is given in the table 1.

3.3 Classifier and instance weighting

The classifier we used was TiMBL, a memory based
learner due to Daelemans et al. (2003). One reason
for this choice was that memory based learning has
shown to perform well in previous word sense dis-
ambiguation tasks, including some best performers
in SENSEVAL, such as (Hoste et al., 2001; Decadt
et al., 2004; Mihalcea and Faruque, 2004). Another
reason is that TiMBL supported exemplar weights, a
necessary feature for our system for the reasons we
describe in the next section.

One of the salient features of our system is that it
does not consider every example to be equally im-
portant. Due to the fact that training instances from
different instances can provide confusing examples,
as shown in section 1.3, such an approach cannot be
trusted to give good performance; we verified this
by our own findings through empirical evaluations
as shown in section 4.2.

3.3.1 Weighting instances with similarity

We use a similarity based measure to assign
weights to training examples. In the method we use,
these weights are used to adjust the distances be-
tween the test instance and the example instances.
The distances are adjusted according to the formula

∆E(X, Y ) =
∆(X, Y )
ewX + ε

,

where∆E(X, Y ) is the adjusted distance between
instanceY and exampleX, ∆(X, Y ) is the original

distance,ewX is the exemplar weight of instanceX.
The small constantε is added to avoid division by
zero.

There are various schemes used to measure inter-
sense similarity. Our experiments showed that the
measure defined by Jiang and Conrath (1997) (JCn)
yields best results. Results for various weighting
schemes are discussed in section 4.2.

3.3.2 Instance weighting explained

The exemplar weights were derived from the fol-
lowing method:

1. pick a labelled examplee, and extract its sense
se and semantic classce.

2. if the classce is a candidate for the current test
word w, i.e. w has any senses that fall into
ce, find out the most frequent sense ofw, sce

w ,
within ce. We define the most frequent sense
within a class as the sense that has the lowest
WORDNET sense number within that class. If
none of the senses ofw fall into ce, we ignore
that example.

3. calculate the relatedness measure betweense

and sce
w , using whatever the similarity metric

being considered. This is the exemplar weight
for examplee.

In the implementation, we used freely available
WordNet::Similarity package (Pedersen et
al., 2004).2

3.4 Classifier optimization

A part of SEMCOR corpus was used as a validation
set (see section 3.1). The rest was used as training
data in validation phase. In the preliminary experi-
ments, it was seen that the generally recommended
classifier options yield good enough performance,
although variations of switches could improve per-
formance slightly in certain cases. Classifier op-
tions were selected by a search over the available
option space for only three basic classifier parame-
ters, namely, number of nearest neighbors, distance
metric and feature weighting scheme.

2WordNet::Similarity is a perl package available
freely under GNU General Public Licence. http://wn-
similarity.sourceforge.net.
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Classifier Senseval-2 Senseval-3
Baseline 0.617 0.627
POS 0.616 0.614
Local context 0.627 0.633
Synt. Pat 0.620 0.612
Concatenated 0.609 0.611
Combined 0.631 0.643

Table 2: Results of baseline, individual, and com-
bined classifiers: recall measures for nouns and
verbs combined.

4 Results

In what follows, we present the results of our ex-
periments in various test cases.3 We combined the
three classifiers and the WORDNET first-sense clas-
sifier through simple majority voting. For evaluating
the systems with SENSEVAL data sets, we mapped
the outputs of our classifiers to WORDNET senses
by picking the most-frequent sense (the one with the
lowest sense number) within each of the class. This
mapping was used in all tests. For all evaluations,
we used SENSEVAL official scorer.

We could use the setting only for nouns and verbs,
because the similarity measures we used were not
defined for adjectives or adverbs, due to the fact that
hypernyms are not defined for these two parts of
speech. So we list the initial results only for nouns
and verbs.

4.1 Individual classifiers vs. combination

We evaluated the results of the individual classifiers
before combination. Only local context classifier
could outperform the baseline in general, although
there is a slight improvement with the syntactic pat-
tern classifier on SENSEVAL-2 data.

The results are given in the table 2, together
with the results of voted combination, and baseline
WORDNET first sense. Classifier shown as ‘con-
catenated’ is a single classifier trained from all of
these feature vectors concatenated to make a sin-
gle vector. Concatenating features this way does not
seem to improve performance. Although exact rea-
sons for this are not clear, this is consistent with pre-

3Note that the experiments and results are reported for SEN-
SEVAL data for comparison purposes, and were not involved in
parameter optimization, which was done with the development
sample.

Senseval-2 Senseval-3
No similarity used 0.608 0.599
Resnik 0.540 0.522
JCn 0.631 0.643

Table 3: Effect of different similarity schemes on
recall, combined results for nouns and verbs

Senseval-2 Senseval-3
SM 0.631 0.643
GW 0.634 0.649
LW 0.641 0.650

Table 4: Improvement of performance with classifier
weighting. Combined results for nouns and verbs
with voting schemes Simple Majority (SM), Global
classifier weights (GW) and local weights (LW).

vious observations (Hoste et al., 2001; Decadt et al.,
2004) that combining classifiers, each using differ-
ent features, can yield good performance.

4.2 Effect of similarity measure

Table 3 shows the effect of JCn and Resnik simi-
larity measures, along with no similarity weighting,
for the combined classifier. It is clear that proper
similarity measure has a major impact on the perfor-
mance, with Resnik measure performing worse than
the baseline.

4.3 Optimizing the voting process

Several voting schemes were tried for combining
classifiers. Simple majority voting improves perfor-
mance over baseline. However, previously reported
results such as (Hoste et al., 2001) and (Decadt et al.,
2004) have shown that optimizing the voting process
helps improve the results. We used a variation of
Weighted Majority Algorithm (Littlestone and War-
muth, 1994). The original algorithm was formulated
for binary classification tasks; however, our use of it
for multi-class case proved to be successful.

We used the held-out development data set for ad-
justing classifier weights. Originally, all classifiers
have the same weight of 1. With each test instance,
the classifier builds the final output considering the
weights. If this output turns out to be wrong, the
classifiers that contributed to the wrong answer get
their weights reduced by some factor. We could ad-
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Senseval-2 Senseval-3
System 0.777 0.806
Baseline 0.756 0.783

Table 5: Coarse grained results

just the weights locally or globally; In global setting,
the weights were adjusted using a random sample
of held-out data, which contained different words.
These weights were used for classifying all words
in the actual test set. In local setting, each classifier
weight setting was optimized for individual words
that were present in test sets, by picking up random
samples of the same word from SEMCOR .4 Table 4
shows the improvements with each setting.

Coarse grained (at semantic-class level) results
for the same system are shown in table 5. Baseline
figures reported are for the most-frequent class.

4.4 Final results on SENSEVAL data

Here, we list the performance of the system with ad-
jectives and adverbs added for the ease of compar-
ison. Due to the facts mentioned at the beginning
of this section, our system was not applicable for
these parts of speech, and we classified all instances
of these two POS types with their most frequent
sense. We also identified the multi-word phrases
from the test documents. These phrases generally
have a unique sense in WORDNET ; we marked
all of them with their first sense without classify-
ing them. All the multiple-class instances of nouns
and verbs were classified and converted to WORD-
NET senses by the method described above, with lo-
cally optimized classifier voting.

The results of the systems are shown in tables 7
and 8. Our system’s results in both cases are listed
as Simil-Prime, along with the baseline WORD-
NET first sense (including multi-word phrases and
‘U’ answers), and the two best performers’ results
reported.5 These results compare favorably with the
official results reported in both tasks.

4Words for which there were no samples in SEMCOR were
classified using a weight of 1 for all classifiers.

5The differences of the baseline figures from the previously
reported figures are clearly due to different handling of multi-
word phrases, hyphenated words, and unknown words in each
system. We observed by analyzing the answer keys that even
better baseline figures are technically possible, with better tech-
niques to identify these special cases.

Senseval-2 Senseval-3
Micro Average < 0.0001 < 0.0001
Macro Average 0.0073 0.0252

Table 6: One tailed paired t-test significance levels
of results:P (T 6 t)

System Recall
SMUaw (Mihalcea, 2002) 0.690
Simil-Prime 0.664
Baseline (WORDNET first sense) 0.648
CNTS-Antwerp(Hoste et al., 2001) 0.636

Table 7: Results for SENSEVAL-2 English all words
data for all parts of speech and fine grained scoring.

Significance of results To verify the significance
of these results, we used one-tailed paired t-test, us-
ing results of baseline WORDNET first sense and
our system as pairs. Tests were done both at micro-
average level and macro-average level, (considering
test data set as a whole and considering per-word av-
erage). Null hypothesis was that there is no signif-
icant improvement over the baseline. Both settings
yield good significance levels, as shown in table 6.

5 Conclusion and Future Work

We analyzed the problem ofKnowledge Acquisition
Bottleneckin WSD, proposed using a general set of
semantic classes as a trade-off, and discussed why
such a system is promising. Our formulation al-
lowed us to use training examples from words dif-
ferent from the actual word being classified. This
makes the available labelled data reusable for differ-
ent words, relieving the above problem. In order to
facilitate learning, we introduced a technique based
on word sense similarity.

The generic classes we learned can be mapped to

System Recall
Simil-Prime 0.661
GAMBL-AW-S (Decadt et al., 2004) 0.652
SenseLearner(Mihalcea and Faruque, 2004) 0.646
Baseline (WORDNET first sense) 0.642

Table 8: Results for SENSEVAL-3 English all words
data for all parts of speech and fine grained scoring.
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finer grained senses with simple heuristics. Through
empirical findings, we showed that our system can
attain state of the art performance, when applied to
standard fine-grained WSD evaluation tasks.

In the future, we hope to improve on these results:
Instead of using WORDNET unique beginners, using
more natural semantic classes based on word usage
would possibly improve the accuracy, and finding
such classes would be a worthwhile area of research.
As seen from our results, selecting correct similarity
measure has an impact on the final outcome. We
hope to work on similarity measures that are more
applicable in our task.
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Abstract

We describean automatic Word Sense
Disambiguation(WSD) systemthat dis-
ambiguatesverb sensesusing syntactic
and semanticfeaturesthat encodeinfor-
mationaboutpredicateargumentsandse-
mantic classes. Our systemperformsat
thebestpublishedaccuracy ontheEnglish
verbsof Senseval-2. We alsoexperiment
with using the gold-standardpredicate-
argumentlabels from PropBankfor dis-
ambiguatingfine-grainedWordNetsenses
and course-grainedPropBankframesets,
and show that disambiguationof verb
sensescanbe further improved with bet-
terextractionof semanticroles.

1 Introduction

A word can have different meaningsdepending
on the context in which it is used. Word Sense
Disambiguation(WSD) is the task of determining
the correct meaning(“sense”) of a word in con-
text, andseveralefforts have beenmadeto develop
automaticWSD systems. Early work on WSD
(Yarowsky, 1995)was successfulfor easily distin-
guishablehomonyms like bank, which have multi-
pleunrelatedmeanings.While homonymsarefairly
tractable,highly polysemousverbs,which have re-
lated but subtly distinct senses,posethe greatest
challengefor WSD systems(Palmeret al., 2001).

Verbsaresyntacticallycomplex, andtheir syntax
is thoughtto be determinedby their underlyingse-
mantics(Grimshaw, 1990;Levin, 1993).Levin verb

classes,for example,are basedon the ability of a
verb to occur in pairs of syntacticframes(diathe-
sisalternations);differentsensesof averbbelongto
different verb classes,which have different setsof
syntacticframesthat aresupposedto reflectunder-
lying semanticcomponentsthatconstrainallowable
arguments.If this is true, thenthe correctsenseof
a verb shouldbe revealed(at leastpartially) in its
arguments.

In this paperwe show that the performanceof
automaticWSD systemscan be improved by us-
ing richer linguistic featuresthat captureinforma-
tion aboutpredicateargumentsand their semantic
classes. We describeour approachto automatic
WSD of verbsusing maximumentropy modelsto
combineinformationfrom lexical collocations,syn-
tax, and semanticclassconstraintson verb argu-
ments. The systemperformsat the bestpublished
accuracy on the English verbs of the Senseval-2
(Palmer et al., 2001) exercise on evaluating au-
tomatic WSD systems. The Senseval-2 verb in-
stanceshavebeenmanuallytaggedwith theirWord-
Net senseandcomeprimarily from the PennTree-
bankWSJ.TheWSJcorpushasalsobeenmanually
annotatedfor predicateargumentsaspart of Prop-
Bank (Kingsbury andPalmer, 2002),andthe inter-
sectionof PropBankandSenseval-2 formsa corpus
containing gold-standardannotationsof WordNet
sensesandPropBanksemanticrole labels.Thispro-
videsa uniqueopportunityto investigatetherole of
predicateargumentsin verb sensedisambiguation.
We show that our system’s accuracy improvessig-
nificantlyby addingfeaturesfrom PropBank,which
explicitly encodesthe predicate-argumentinforma-
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tion that our original setof syntacticandsemantic
classfeaturesattemptedto capture.

2 Basic automatic system

Our WSD systemwasbuilt to combineinformation
from many differentsources,usingasmuchlinguis-
tic knowledge as could be gatheredautomatically
by NLP tools. In particular, our goal was to see
theextent to which sense-taggingof verbscouldbe
improved by addingfeaturesthat captureinforma-
tion aboutpredicate-arguments and selectionalre-
strictions.

We usedtheMallet toolkit (McCallum,2002)for
learningmaximumentropy modelswith Gaussian
priors for all our experiments. In order to extract
the linguistic featuresnecessaryfor the models,all
sentencescontainingthetargetword wereautomat-
ically part-of-speech-tagged using a maximumen-
tropy tagger(Ratnaparkhi,1998)andparsedusing
the Collins parser(Collins, 1997). In addition,an
automaticnamedentity tagger(Bikel et al., 1997)
wasrun on the sentencesto mappropernounsto a
smallsetof semanticclasses.1

2.1 Topical features

Wecategorizedthepossiblemodelfeaturesinto top-
ical featuresand several types of local contextual
features. Topical featuresfor a verb in a sentence
look for the presenceof keywords occurringany-
where in thesentenceandany surroundingsentences
provided ascontext (usuallyoneor two sentences).
Thesefeaturesaresupposedto show thedomainin
whichtheverbis beingused,sincesomeverbsenses
areusedin only certaindomains. The set of key-
words is specificto eachverb lemmato be disam-
biguatedandis determinedautomaticallyfrom train-
ing datasoasto minimizetheentropy of theproba-
bility of thesensesconditionedon thekeyword. All
alphabeticcharactersare converted to lower case.
Wordsoccuringlessthantwice in the training data
or that are in a stoplist2 of pronouns,prepositions,
andconjunctionsareignored.

1Theinclusionor omissionof aparticularcompany or prod-
uct implies neitherendorsementnor criticism by NIST. Any
opinions,findings,andconclusionsexpressedarethe authors’
own anddonot necessarilyreflectthoseof NIST.

2http://www.d.umn.edu/˜tpederse/Group01/
WordNet/words.txt

2.2 Local features

The local featuresfor a verb � in a particularsen-
tencetend to look only within the smallestclause
containing� . They include collocational features
requiring no linguistic preprocessingbeyond part-
of-speechtagging,syntactic featuresthatcapturere-
lationsbetweenthe verb andits complements,and
semantic featuresthatincorporateinformationabout
nounclassesfor subjectsandobjects:

Collocational features: Collocationalfeaturesre-
fer to orderedsequencesof part-of-speechtagsor
word tokensimmediatelysurrounding� . They in-
clude:

� unigrams:words����� , ����� , �	� , ��
�� , ��
�� and
partsof speech� ��� , � ��� , � � , � 
�� , � 
�� , where�� and� � areat position� relative to �

� bigrams: ����������� , ��������
�� , ��
�����
�� ;
� ��� � ��� , � ��� � 
�� , � 
�� � 
��

� trigrams: ����������������� , ��������������
�� ,��������
�����
�� , ��
�����
�����
�� ; � ��� � ��� � ��� ,
� ��� � ��� � 
�� , � ��� � 
�� � 
�� , � 
�� � 
�� � 
��

Syntactic features: Thesystemusesheuristicsto
extractsyntacticelementsfrom theparsefor thesen-
tencecontaining� . Let commanderVP bethelow-
estVP thatdominates� andthatis not immediately
dominatedby anotherVP, and let headVP be the
lowestVP dominating� (SeeFigure1). Thenwe
definethe subject of � to be the leftmost NP sib-
ling of commanderVP, anda complement of � to
be a nodethat is a child of the headVP, excluding
NPswhoseheadis a numberor a nounfrom a list
of commontemporalnouns(“week”, “tomorrow”,
“Monday”, etc.). Thesystemextractsthefollowing
binarysyntacticfeatures:

� Is thesentencepassive?

� Is therea subject,direct object (leftmost NP
complementof � ), indirectobject(secondleft-
mostNPcomplementof � ), or clausalcomple-
ment(S complementof � )?

� What is the word (if any) that is the particle
or headof thesubject,directobject,or indirect
object?
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S

NP

John

(commander)VP

VB

had

(head)VP

VB

pulled

NP

theblanket

PP

acrossthecarpet

S

to createstatic

Figure1: Exampleparsetreefor � =“pulled”, from whichis extractedthesyntacticfeatures:morph=normal
subj dobj sent-comp subj=john dobj=blanket prep=across across-obj=carpet.

� If thereis a PPcomplement,whatis theprepo-
sition,andwhatis theobjectof thepreposition?

Semantic features:

� What is theNamedEntity tag(PERSON,OR-
GANIZATION, LOCATION, UNKNOWN)
for eachpropernounin thesyntacticpositions
above?

� WhatarethepossibleWordNetsynsetsandhy-
pernyms for eachnoun in the syntacticposi-
tions above? (Nounsarenot explicitly disam-
biguated;all possiblesynsetsand hypernyms
for thenounareincluded.)

This setof local featuresrelieson accessto syn-
tactic structureas well as semanticclassinforma-
tion, andattemptsto model richer linguistic infor-
mation about predicatearguments. However, the
heuristicsfor extracting the syntactic featuresare
ableto identify subjectsandobjectsof only simple
clauses.Theheuristicsalsodo not differentiatebe-
tweenargumentsandadjuncts;for example,thefea-
ture sent-comp is intendedto identify clausalcom-
plementssuchasin (S (NP Mary) (VP (VB called)
(S him a bastard))),but Figure1 shows how a pur-
poseclausecanbe mistakenly labeledasa clausal
complement.

2.3 Evaluation

We testedthe systemon the 1806test instancesof
the29verbsfrom theEnglishlexical sampletaskfor
Senseval-2 (Palmeret al., 2001). Accuracy wasde-
finedto bethefractionof theinstancesfor whichthe
systemgotthecorrectsense.All significancetesting
betweendifferentaccuracieswasdoneusinga one-
tailedz-test,assumingabinomialdistribution of the
successes;differencesin accuracy wereconsidered
to besignificantif ��������������� .

In Senseval-2, sensesinvolving multi-word con-
structionscouldbeidentifieddirectly from thesense
tagsthemselves,andtheheadword andsatellitesof
multi-word constructionswereexplicitly marked in
the training and test data. We trainedone model
for eachof the verbsand useda filter to consider
only phrasalsenseswhenever therewere satellites
of multi-word constructionsmarkedin thetestdata.

Feature Accuracy
co 0.571
co+syn 0.598
co+syn+sem 0.625

Table 1: Accuracy of systemon Senseval-2 verbs
usingtopical featuresanddifferentsubsetsof local
features.

Table1 shows the accuracy of the systemusing
topical featuresand different subsetsof local fea-
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tures.Addingfeaturesfrom richerlinguisticsources
always improves accuracy. Adding lexical syntac-
tic (“syn”) featuresimprovesaccuracy significantly
over using just collocational(“co”) features(���
��������� ). Whensemanticclass(“sem”) featuresare
added,theimprovementis alsosignificant.

Adding topical information to all the local fea-
turesimprovesaccuracy, but not significantly;when
thetopicalfeaturesareremovedtheaccuracy of our
systemfalls only slightly, to 62.0%. Sensesbased
on domainor topic occur rarely in the Senseval-2
corpus. Most of the informationprovided by topi-
cal featuresalreadyseemto becapturedby thelocal
featuresfor thefrequentsenses.

Features Accuracy
co+syn 0.598
co+syn+ne 0.597
co+syn+wn 0.623
co+syn+ne+wn 0.625

Table2: Accuracy of systemon Senseval-2 verbs,
using topical featuresand different subsetsof se-
manticclassfeatures.

Semanticclass information plays a significant
role in sensedistinctions. Table 2 shows the
relative contribution of adding only named en-
tity tagsto the collocationalandsyntacticfeatures
(“co+syn+ne”), versusadding only the WordNet
classes(“co+syn+wn”), versusaddingboth named
entity and WordNet classes(“co+syn+ne+wn”).
Addingall possibleWordNetnounclassfeaturesfor
argumentscontributesa largenumberof parameters
to themodel,but this useof WordNetwith no sepa-
ratedisambiguationof nounargumentsprovesto be
very useful. In fact, the useof WordNet for com-
mon nounsproves to be even morebeneficialthan
the useof a namedentity taggerfor propernouns.
Givenenoughdata,themaximumentropy modelis
ableto assignhighweightsto thecorrecthypernyms
of thecorrectnounsenseif they representdefining
selectionalrestrictions.

Incorporatingtopical keywordsaswell ascollo-
cational,syntactic,andsemanticlocal features,our
systemachieves 62.5%accuracy. This is in com-
parisonto the61.1%accuracy achievedby (Leeand
Ng, 2002),which hasbeenthebestpublishedresult
on thiscorpus.

3 PropBank semantic annotations

OurWSDsystemusesheuristicsto attemptto detect
predicateargumentsfrom parsedsentences.How-
ever, recognitionof predicateargumentstructuresis
not straightforward,becausea naturallanguagewill
have several different syntacticrealizationsof the
samepredicateargumentrelations.

PropBankis a corpusin which verbsare anno-
tatedwith semantictags, including coarse-grained
sensedistinctions and predicate-argument struc-
tures. PropBankaddsa layer of semanticannota-
tion to the PennWall StreetJournalTreebankII.
An importantgoalis to provideconsistentpredicate-
argumentstructuresacrossdifferent syntacticreal-
izationsof thesameverb. Polysemousverbsarealso
annotatedwith different framesets. Framesettags
arebasedondifferencesin subcategorizationframes
andcorrespondto acoarsenotionof wordsenses.

A verb’s semanticargumentsin PropBankare
numberedbeginningwith 0. Arg0 is roughlyequiv-
alentto thethematicroleof Agent,andArg1usually
correspondstoThemeorPatient;however, argument
labelsarenot necessarilyconsistentacrossdifferent
sensesof thesameverb,or acrossdifferentverbs,as
thematicrolesareusually taken to be. In addition
to thecore,numberedarguments,verbscantakeany
of asetof general,adjunct-like arguments(ARGM),
whoselabelsare derived from the Treebankfunc-
tional tags(DIRection,LOCation,etc.).

PropBank provides manual annotation of
predicate-argumentinformationfor a large number
of verb instancesin the Senseval-2 dataset. The
intersection of PropBank and Senseval-2 forms
a corpus containing gold-standard annotations
of fine-grained WordNet senses, coarse-grained
PropBank framesets,and PropBank role labels.
The combinationof such gold-standardsemantic
annotationsprovides a unique opportunity to in-
vestigatethe role of predicate-argumentfeaturesin
word sensedisambiguation,for bothcoarse-grained
framesetsandfine-grainedWordNetsenses.

3.1 PropBank features

We conductedexperimentson the effect of using
featuresfrom PropBank for sense-taggingverbs.
Both PropBankrole labels and PropBankframe-
setswereused. In the caseof role labels,only the
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gold-standardlabelsfound in PropBankwereused,
becausethe best automaticsemanticrole labelers
only performatabout84%precisionand75%recall
(Pradhanetal., 2004).

FromthePropBankannotationfor eachsentence,
we extractedthefollowing features:

1. Labels of the semantic roles: rel, ARG0,
ARG1, ARG2-WITH, ARG2, ..., ARGM-
LOC, ARGM-TMP, ARGM-NEG, ...

2. Syntactic labels of the constituentinstantiat-
ing eachsemanticrole: ARG0=NP, ARGM-
TMP=PP, ARG2-WITH=PP, ...

3. Head word of each constituent in (2):
rel=called,sats=up,ARG0=company, ARGM-
TMP=day, ...

4. Semantic classes (named entity tag,
WordNet hypernyms) of the nouns in
(3): ARGOsyn=ORGANIZATION, AR-
GOsyn=16185,ARGM-TMPsyn=13018,...

When a numberedrole appearsin a preposi-
tionalphrase(e.g.,ARG2-WITH),wetakethe“head
word” to be theobjectof thepreposition.If a con-
stituentinstantiatingsomesemanticrole is a trace,
we take theheadof its referentinstead.

� [ �! #" � Mr. Bush]has[ $&%(' called][ �! #" �)��*,+ $ for
anagreementby next Septemberat thelatest].

For example, the PropBank features that we
extractfor thesentenceabove are:
arg0 arg0=busharg0syn=personarg0syn=1740...
rel rel=called
arg1-for arg1 arg1=agreementarg1syn=12865...

3.2 Role labels for frameset tagging

We collectedall instancesof the Senseval-2 verbs
from thePropBankcorpus.Only 20 of theseverbs
hadmorethanoneframesetin thePropBankcorpus,
resulting in 4887 instancesof polysemousverbs.
The instancesfor eachword were partitionedran-
domlyinto 10equalparts,andthesystemwastested
on each part after being trained on the remain-
ing nine. For these20 verbswith more than one
PropBankframesettag,choosingthemostfrequent
framesetgivesabaselineaccuracy of 76.0%.

The sentenceswere automatically pos-tagged
with the Ratnaparki tagger and parsedwith the
Collins parser. We extractedlocal contextual fea-
turesasfor WordNetsense-taggingandusedthelo-
cal featuresto train our WSD systemon thecoarse-
grainedsense-taggingtaskof automaticallyassign-
ing PropBankframesettags.We testedtheeffect of
usingonly collocationalfeatures(“co”) for frameset
tagging,as well as using only PropBankrole fea-
tures(“pb”) or only our original syntactic/semantic
features(“synsem”) for this task, and found that
thecombinationof collocationalfeatureswith Prop-
Bank featuresworked best. The systemhas the
worst performanceon the word strike, which hasa
highnumberof framesetsandalow numberof train-
ing instances.Table3 shows theperformanceof the
systemon differentsubsetsof local features.

Feature Accuracy
baseline 0.760
co 0.853
synsem 0.859
co+synsem 0.883
pb 0.901
co+pb 0.908
co+synsem+pb 0.907

Table 3: Accuracy of systemon frameset-tagging
task for verbswith more than one frameset,using
differenttypesof local features(notopicalfeatures);
all featuresexceptpbwereextractedfrom automati-
cally pos-taggedandparsedsentences.

We obtainedan overall accuracy of 88.3%using
our original local contextual features.However, the
system’s performanceimproved significantlywhen
we usedonly PropBankrole features,achieving an
accuracy of 90.1%. Furthermore,addingcolloca-
tional featuresand heuristically extractedsyntac-
tic/semanticfeaturesto thePropBankfeaturesdonot
provide additionalinformationandaffectstheaccu-
racy of frameset-taggingonly negligibly. It is not
surprisingthat for thecoarse-grainedsense-tagging
task of assigningthe correct PropBank frameset
tag to a verb, using the PropBankrole labels is
betterthansyntactic/semanticfeaturesheuristically
extractedfrom parsesbecausetheseheuristicsare
meantto capturethe predicate-argument informa-
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tion that is encodedmoredirectly in the PropBank
role labels.

Even when the original local features were
extracted from the gold-standardpos-taggedand
parsedsentencesof the PennTreebank,the system
performedsignificantlyworsethanwhenPropBank
role featureswereused.This suggeststhatmoreef-
fort shouldbeappliedto improving theheuristicsfor
extractingsyntacticfeatures.

We also experimentedwith adding topical fea-
turesand ARGM featuresfrom PropBank. In all
cases,theseadditionalfeaturesreducedoverall ac-
curacy, but the difference was never significant
(�.-��/����0���� ). Topicalfeaturesdo not helpbecause
framesettagsare basedon differencesin subcate-
gorizationframesand not on the domainor topic.
ARGM featuresdo not help becausethey aresup-
posedlyuseduniformly acrossverbsandframesets.

3.3 Role labels for WordNet sense-tagging

We experimentedwith using PropBankrole labels
for fine-grainedWordNet sense-tagging. While
ARGM featuresare not useful for coarse-grained
frameset-tagging,somesensedistinctionsin Word-
Net arebasedon adverbial modifiers,suchas“li ve
well” or “servessomeonewell.” Therefore,we in-
cludedPropBankARGM featuresin ourmodelsfor
WordNetsense-taggingto capturea wider rangeof
linguisticbehavior. We lookedat the2571instances
of 29 Senseval-2 verbsthatwerein bothSenseval-2
andthePropBankcorpus.

Features Accuracy
co 0.628
synsem 0.638
co+synsem 0.666
pb 0.656
co+pb 0.681
co+synsem+pb 0.694

Table 4: Accuracy of systemon WordNet sense-
taggingfor instancesin both Senseval-2 andProp-
Bank,usingdifferenttypesof local features(no top-
ical features).

Table 4 shows the accuracy of the systemon
WordNet sense-taggingusing different subsetsof
features;all featuresexceptpb wereextractedfrom
automaticallypos-taggedandparsedsentences.By

addingPropBankrole featuresto our original local
featureset, accuracy rose from 0.666 to to 0.694
on this subsetof theSenseval-2 verbs(�1�2������3�� );
the extractionof syntacticfeaturesfrom the parsed
sentencesis againnot successfullycapturingall the
predicate-argument information that is explicit in
PropBank.

The verb “match” illustrateswhy accuracy im-
proves using additional PropBank features. As
shown in Figure 2, the matchedobjectsmay oc-
cur in different grammaticalrelationswith respect
to theverb(subject,directobject,objectof a prepo-
sition), but they eachhave an ARG1 semanticrole
label in PropBank.3 Furthermore,only one of the
matchedobjectsneedsto be specified,asin Exam-
ple 3 wherethesecondmatchedobject(presumably
thecompany’s prices)is unstated.Our heuristicsdo
not handlethesealternations,andcannotdetectthat
thesyntacticsubjectin Example1 hasadifferentse-
manticrole thanthesubjectof Example3.

Rolesetmatch.01 “match”:
Arg0: personperformingmatch
Arg1: matchingobjects
Ex1: [ 4!576 � thewallpaper][ 8:9<; matched][ 475!6 � the
paint]
Ex2: [ 475!6 � Thearchitect][ 8:9<; matched][ 4!576 � the
paint] [ 4 8<= �)�?>A@CBED with thewallpaper]
Ex3: [ 475!6 � Thecompany] [ 8:9<; matched][ 4!576 � Ko-
dak’s higherprices]

Figure2: PropBankrolesetfor “match”

Our basicWSD system(usinglocal featuresex-
tractedfrom automaticparses)confusedWordNet
Sense1 with Sense4:

1. match,fit, correspond,check,jibe, gibe, tally,
agree – (be compatible, similar or consis-
tent; coincide in their characteristics;“The
two storiesdon’t agreein many details”; “The
handwritingcheckswith the signatureon the
check”;“Thesuspect’sfingerprintsdon’t match
thoseon thegun”)

4. equal, touch, rival, match – (be equal to in
3PropBankannotationfor “match” allows multiple ARG1

labels,onefor eachof the matchingobjects. Otherverbsthat
have morethana singleARG1 in PropBankinclude: “attach,
bolt, coincide,connect,differ, fit, link, lock, pin, tack,tie.”
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quality or ability; “Nothing canrival cottonfor
durability”; “Your performancedoesn’t even
touch that of your colleagues”; “Her persis-
tenceand ambition only matchesthat of her
parents”)

Thesensesaredifferentiatedin that thematching
objects(ARG1) in Sense4 have somequantifiable
characteristicthat canbe measuredon somescale,
whereasthosein Sense1 aremoregeneral. Gold-
standardPropBankannotationof ARG1 allows the
systemto generalizeover thesemanticclassesof the
argumentsanddistinguishthesetwo sensesmoreac-
curately.

3.4 Frameset tags for WordNet sense-tagging

PropBankframesettags(eithergold-standardor au-
tomatically tagged)were incorporatedas features
in our WSD systemto seeif knowing the coarse-
grainedsensetagswouldbeusefulin assigningfine-
grainedWordNet sensetags. A framesettag for
the instancewasappendedto eachfeature;this ef-
fectively partitionsthe featureset accordingto the
coarse-grainedsenseprovided by the frameset.To
automatically tag an instanceof a verb with its
frameset,thesetof all instancesof theverbin Prop-
Bank was partitioned into 10 subsets,and an in-
stancein onesubsetwastaggedby training a max-
imum entropy model on the instancesin the other
nine subsets. Various local featureswere consid-
ered,andthesamefeaturetypeswereusedto train
the framesettaggerand the WordNet sensetagger
thatusedtheautomatically-assigned frameset.

For the 20 Senseval-2 verbsthat had more than
oneframesetin PropBank,weextractedall instances
that were in both Senseval-2 andPropBank,yield-
ing 1468 instances. We examined the effect of
incorporatingthegold-standardPropBankframeset
tagsinto our maximumentropy modelsfor these20
verbsby partitioningtheinstancesaccordingto their
framesettag. Table5 shows a breakdown of theac-
curacy by featuretype. Adding the gold-standard
framesettag (“*fset”) to our original local features
(“orig”) did not increasethe accuracy significantly.
However, the increasein accuracy (from 59.7%to
62.8%) was significant when theseframesettags
wereincorporatedinto themodelthatusedbothour
original featuresandall thePropBankfeatures.

Feature Accuracy
orig 0.564
orig*fset 0.587
orig+pb 0.597
(orig+pb)*fset 0.628

Table 5: Accuracy of systemon WordNet sense-
taggingof 20 Senseval-2 verbswith morethanone
frameset,with and without gold-standardframeset
tag.

However, partitioningthe instancesusingtheau-
tomatically generatedframesettagshasno signif-
icant effect on the system’s performance;the in-
formation provided by the automaticallyassigned
coarse-grainedsensetag is alreadyencodedin the
featuresusedfor fine-grainedsense-tagging.

4 Related Work

Our approachof usingrich linguistic featurescom-
binedin asinglemaximumentropy framework con-
trastswith that of (Florian et al., 2002). Their fea-
ture spacewasmuchlike ours,but did not include
semanticclassfeaturesfor nouncomplements.With
this more impoverished feature set, they experi-
mentedwith combiningdiverseclassifiersto achieve
an improvementof 2.1% over all parts of speech
(noun,verb,adjective) in theSenseval-2lexical sam-
pletask;however, thisimprovementwasoveranini-
tial accuracy of 56.6%onverbs,indicatingthattheir
performanceis still below oursfor verbs.

(Lee andNg, 2002)exploredthe relative contri-
bution of differentknowledgesourcesandlearning
algorithmsto WSD; they usedSupportVectorMa-
chines(SVM) and includedlocal collocationsand
syntacticrelations,andalsofound that addingsyn-
tactic featuresimproved accuracy. Our featuresare
similar to theirs, but we addedsemanticclassfea-
turesfor theverbarguments.We foundthatthedif-
ferencein machinelearningalgorithmsdid not play
a large role in performance;whenwe usedour fea-
turesin SVM we obtainedalmostno differencein
performanceover using maximumentropy models
with Gaussianpriors.

(Gomez, 2001) describedan algorithm using
WordNet to simultaneouslydetermineverb senses
andattachmentsof prepositionalphrases,andiden-
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tify thematicrolesandadjuncts;our work is differ-
ent in that it is trainedon manually annotatedcor-
porato show therelevanceof semanticrolesfor verb
sensedisambiguation.

5 Conclusion

We have shown that disambiguationof verb senses
can be improved by leveraginginformation about
predicateargumentsandtheir semanticclasses.Our
systemperformsat the bestpublishedaccuracy on
the English verbs of Senseval-2 even though our
heuristics for extracting syntactic featuresfail to
identify all andonly the argumentsof a verb. We
show that associatingWordNet semanticclasses
with nounsis beneficialevenwithoutexplicit disam-
biguationof thenounsensesbecause,givenenough
data,maximumentropy modelsare able to assign
high weightsto the correcthypernyms of the cor-
rect noun senseif they representdefining selec-
tional restrictions. Knowledge of gold-standard
predicate-argumentinformationfrom PropBankim-
proves WSD on both coarse-grainedsenses(Prop-
Bank framesets)andfine-grainedWordNetsenses.
Furthermore, partitioning instancesaccording to
their gold-standardframesettags,which arebased
on differencesin subcategorizationframes,alsoim-
provesthesystem’s accuracy on fine-grainedWord-
Net sense-tagging.Our experimentssuggestthat
sensedisambiguationfor verbs can be improved
through more accurateextraction of featuresrep-
resentinginformationsuchasthat containedin the
framesetsand predicateargumentstructuresanno-
tatedin PropBank.
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Abstract

To improve the interaction between students
and an intelligent tutoring system, we devel-
oped two Natural Language generators, that we
systematically evaluated in a three way com-
parison that included the original system as
well. We found that the generator which intu-
itively produces the best language does engen-
der the most learning. Specifically, it appears
that functionalaggregation is responsible for
the improvement.

1 Introduction

The work we present in this paper addresses three
issues: evaluation of Natural Language Generation
(NLG) systems, the place of aggregation in NLG,
and NL interfaces for Intelligent Tutoring Systems.

NLG systems have been evaluated in various
ways, such as via task efficacy measures, i.e., mea-
suring how well the users of the system perform on
the task at hand (Young, 1999; Carenini and Moore,
2000; Reiter et al., 2003). We also employed task
efficacy, as we evaluated the learning that occurs
in students interacting with an Intelligent Tutoring
System (ITS) enhanced with NLG capabilities. We
focused on sentence planning, and specifically, on
aggregation. We developed two different feedback
generation engines, that we systematically evaluated
in a three way comparison that included the orig-
inal system as well. Our work is novel for NLG
evaluation in that we focus on one specific com-
ponent of the NLG process, aggregation. Aggrega-
tion pertains to combining two or more of the mes-
sages to be communicated into one sentence (Reiter
and Dale, 2000). Whereas it is considered an es-

sential task of an NLG system, its specific contri-
butions to the effectiveness of the text that is even-
tually produced have rarely been assessed (Harvey
and Carberry, 1998). We found that syntactic aggre-
gation does not improve learning, but that what we
call functionalaggregation does. Further, we ran a
controlled data collection in order to provide a more
solid empirical base for aggregation rules than what
is normally found in the literature, e.g. (Dalianis,
1996; Shaw, 2002).

As regards NL interfaces for ITSs, research on the
next generation of ITSs (Evens et al., 1993; Litman
et al., 2004; Graesser et al., 2005) explores NL as
one of the keys to bridging the gap between cur-
rent ITSs and human tutors. However, it is still not
known whether the NL interaction between students
and an ITS does in fact improve learning. We are
among the first to show that this is the case.

We will first discuss DIAG, the ITS shell we are
using, and the two feedback generators that we de-
veloped,DIAG-NLP1andDIAG-NLP2 . Since the
latter is based on a corpus study, we will briefly de-
scribe that as well. We will then discuss the formal
evaluation we conducted and our results.

2 Natural Language Generation for DIAG

DIAG (Towne, 1997) is a shell to build ITSs based
on interactive graphical models that teach students to
troubleshoot complex systems such as home heating
and circuitry. A DIAG application presents a student
with a series of troubleshooting problems of increas-
ing difficulty. The student testsindicatorsand tries
to infer which faulty part (RU) may cause the abnor-
mal states detected via the indicator readings. RU
stands forreplaceable unit, because the only course
of action for the student to fix the problem is to re-
place faulty components in the graphical simulation.
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Figure 1: The furnace system

Fig. 1 shows the furnace, one subsystem of the home
heating system in our DIAG application. Fig. 1 in-
cludes indicators such as the gauge labeled Water
Temperature, RUs, and complex modules (e.g., the
Oil Burner) that contain indicators and RUs. Com-
plex components are zoomable.

At any point, the student can consult the tutor
via the Consult menu (cf. the Consult button in
Fig. 1). There are two main types of queries:Con-
sultInd(icator) and ConsultRU. ConsultIndqueries
are used mainly when an indicator shows an ab-
normal reading, to obtain a hint regarding which
RUs may cause the problem. DIAG discusses the
RUs that should be most suspected given the symp-
toms the student has already observed.ConsultRU
queries are mainly used to obtain feedback on the di-
agnosis that a certain RU is faulty. DIAG responds
with an assessment of that diagnosis and provides
evidence for it in terms of the symptoms that have
been observed relative to that RU.

The original DIAG system (DIAG-orig) uses very
simple templates to assemble the text to present to
the student. The top parts of Figs. 2 and 3 show the
replies provided byDIAG-orig to a ConsultIndon
the Visual Combustion Check, and to aConsultRu
on theWater Pump.

The highly repetitive feedback byDIAG-orig
screams for improvements based on aggregation
techniques. Our goal in developingDIAG-NLP1
and DIAG-NLP2 was to assess whether simple,
rapidly deployable NLG techniques would lead to

measurable improvements in the student’s learning.
Thus, in both cases it is still DIAG that performs
content determination, and provides toDIAG-NLP1
andDIAG-NLP2 a file in which the facts to be com-
municated are written – afact is the basic unit of
information that underlies each of the clauses in a
reply by DIAG-orig. The only way we altered the
interaction between student and system is the ac-
tual language that is presented in the output win-
dow. InDIAG-NLP1 we mostly explored using syn-
tactic aggregation to improve the feedback, whereas
DIAG-NLP2 is corpus-based and focuses on func-
tional aggregation. In bothDIAG-NLP1 andDIAG-
NLP2 , we use EXEMPLARS (White and Cald-
well, 1998), an object-oriented, rule-based genera-
tor. The rules (calledexemplars) are meant to cap-
ture an exemplary way of achieving a communica-
tive goal in a given context. EXEMPLARS selects
rules by traversing the exemplar specialization hi-
erarchy and evaluating the applicability conditions
associated with each exemplar.

The visual combustion check is igniting which is abnormal
(normal is combusting).
Oil Nozzle always

produces this abnormality when it fails.
Oil Supply Valve always

produces this abnormality when it fails.
Oil pump always

produces this abnormality when it fails.
Oil Filter always

produces this abnormality when it fails.
System Control Module sometimes

produces this abnormality when it fails.
Ignitor Assembly never

produces this abnormality when it fails.
Burner Motor always

produces this abnormality when it fails.

The visual combustion check indicator is igniting.
This is abnormal.
Normal is combusting.

Within the furnace system,
this is sometimes caused if

the System Control Module has failed.

Within the Oil Burner
this is never caused if

the Ignitor Assembly has failed.
In contrast, this is always caused if

the Burner Motor, Oil Filter, Oil Pump,
Oil Supply Valve, or Oil Nozzle has failed.

The combustion is abnormal.
In the oil burner, check the units along the path of the oil and
the burner motor.

Figure 2: Answers toConsultIndby DIAG-orig,
DIAG-NLP1andDIAG-NLP2
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Water pump is a very poor suspect.
Some symptoms you have seen conflict with that theory.
Water pump sound was normal.
This normal indication never results when this unit fails.
Visual combustion check was igniting.
This abnormal indication never results when this unit fails.
Burner Motor RMP Gauge was 525.
This normal indication never results when this unit fails.

The Water pump is a very poor suspect.
Some symptoms you have seen conflict with that theory.

The following indicators never display normally
when this unit fails.
Within the furnace system,

the Burner Motor RMP Gauge is 525.
Within the water pump and safety cutoff valve,

the water pump sound indicator is normal.

The following indicators never display abnormally
when this unit fails.
Within the fire door sight hole,

the visual combustion check indicator is igniting.

The water pump is a poor suspect since the water pump
sound is ok.
You have seen that the combustion is abnormal.
Check the units along the path of the oil and the electrical
devices.

Figure 3: Answers toConsultRuby DIAG-orig,
DIAG-NLP1 andDIAG-NLP2

2.1 DIAG-NLP1 : Syntactic aggregation

DIAG-NLP11 (i) introduces syntactic aggregation
(Dalianis, 1996; Huang and Fiedler, 1996; Reape
and Mellish, 1998; Shaw, 2002) and what we call
structural aggregation, namely, grouping parts ac-
cording to the structure of the system; (ii) gener-
ates some referring expressions; (iii) models a few
rhetorical relations; and (iv) improves the format of
the output.

The middle parts of Figs. 2 and 3 show the revised
output produced byDIAG-NLP1 . E.g., in Fig. 2 the
RUs of interest are grouped by the system modules
that contain them (Oil Burner and Furnace System),
and by the likelihood that a certain RU causes the
observed symptoms. In contrast to the original an-
swer, the revised answer highlights that theIgnitor
Assemblycannot cause the symptom.

In DIAG-NLP1 , EXEMPLARS accesses the
SNePS Knowledge Representation and Reasoning
System (Shapiro, 2000) for static domain informa-
tion.2 SNePS makes it easy to recognize structural

1DIAG-NLP1 actually augments and refines the first feed-
back generator we created for DIAG,DIAG-NLP0 (Di Eugenio
et al., 2002).DIAG-NLP0 only covered (i) and (iv).

2In DIAG, domain knowledge is hidden and hardly acces-

similarities and use shared structures. Using SNePS,
we can examine the dimensional structure of an ag-
gregation and its values to give preference to aggre-
gations with top-level dimensions that have fewer
values, to give summary statements when a dimen-
sion has many values that are reported on, and to
introduce simple text structuring in terms of rhetor-
ical relations, inserting relations likecontrastand
concessionto highlight distinctions between dimen-
sional values (see Fig. 2, middle).

DIAG-NLP1 uses the GNOME algorithm (Kib-
ble and Power, 2000) to generate referential expres-
sions. Importantly, using SNePS propositions can
be treated as discourse entities, added to the dis-
course model and referred to (seeThis is ... caused
if ... in Fig. 2, middle). Information about lexical
realization, and choice of referring expression is en-
coded in the appropriate exemplars.

2.2 DIAG-NLP2 : functional aggregation

In the interest of rapid prototyping,DIAG-NLP1
was implemented without the benefit of a corpus
study. DIAG-NLP2 is the empirically grounded
version of the feedback generator. We collected
23 tutoring interactions between a student using the
DIAG tutor on home heating and two human tutors,
for a total of 272 tutor turns, of which 235 in re-
ply to ConsultRUand 37 in reply toConsultInd(the
type of student query is automatically logged). The
tutor and the student are in different rooms, sharing
images of the same DIAG tutoring screen. When
the student consults DIAG, the tutor sees, in tabular
form, the information that DIAG would use in gen-
erating its advice — the same “fact file” that DIAG
gives toDIAG-NLP1andDIAG-NLP2— and types
a response that substitutes for DIAG’s. The tutor is
presented with this information because we wanted
to uncover empirical evidence for aggregation rules
in our domain. Although we cannot constrain the tu-
tor to mention only the facts that DIAG would have
communicated, we can analyze how the tutor uses
the information provided by DIAG.

We developed a coding scheme (Glass et al.,
2002) and annotated the data. As the annotation was
performed by a single coder, we lack measures of
intercoder reliability. Thus, what follows should be
taken as observations rather than as rigorous find-
ings – useful observations they clearly are, since

sible. Thus, in bothDIAG-NLP1 andDIAG-NLP2 we had to
build a small knowledge base that contains domain knowledge.
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DIAG-NLP2 is based on these observations and its
language fosters the most learning.

Our coding scheme focuses on four areas. Fig. 4
shows examples of some of the tags (the SCM is the
System Control Module). Each tag has from one to
five additional attributes (not shown) that need to be
annotated too.
Domain ontology. We tag objects in the domain
with their classindicator, RU and their states, de-
noted byindicationandoperationality, respectively.
Tutoring actions. They include (i)Judgment. The
tutor evaluates what the student did. (ii)Problem
solving. The tutor suggests the next course of ac-
tion. (iii) The tutor impartsDomain Knowledge.
Aggregation. Objects may befunctional aggre-
gates, such asthe oil burner, which is a system com-
ponent that includes other components;linguistic
aggregates, which include plurals and conjunctions;
or asummaryover several unspecified indicators or
RUs. Functional/linguistic aggregateandsummary
tags often co-occur, as shown in Fig. 4.
Relation to DIAG’s output. Contrary to all other
tags, in this case we annotate the input that DIAG
gave the tutor. We tag its portions asincluded / ex-
cluded / contradicted, according to how it has been
dealt with by the tutor.

Tutors provide explicit problem solving directions
in 73% of the replies, and evaluate the student’s ac-
tion in 45% of the replies (clearly, they do both in
28% of the replies, as in Fig. 4). As expected, they
are much more concise than DIAG, e.g., they never
mention RUs that cannot or are not as likely to cause
a certain problem, such as, respectively, theignitor
assemblyandthe SCMin Fig. 2.

As regards aggregation, 101 out of 551 RUs, i.e.
18%, are labelled as summary; 38 out of 193 indica-
tors, i.e. 20%, are labelled as summary. These per-
centages, though seemingly low, represent a consid-
erable amount of aggregation, since in our domain
some items have very little in common with others,
and hence cannot be aggregated. Further, tutors ag-
gregate parts functionally rather than syntactically.
For example, the same assemblage of parts, i.e., oil
nozzle, supply valve, pump, filter, etc., can be de-
scribed asthe other items on the fuel lineor asthe
path of the oil flow.

Finally, directness– an attribute on theindica-
tor tag – encodes whether the tutor explicitly talks
about the indicator (e.g.,The water temperature

gauge reading is low), or implicitly via the object
to which the indicator refers (e.g.,the water is too
cold). 110 out of 193 indicators, i.e. 57%, are
marked asimplicit, 45, i.e. 41%, asexplicit, and 2%
are not marked for directness (the coder was free to
leave attributes unmarked). This, and the 137 occur-
rences ofindication, prompted us to refer to objects
and their states, rather than to indicators (as imple-
mented by Steps 2 in Fig. 5, and 2(b)i, 3(b)i, 3(c)i in
Fig. 6, which generateThe combustion is abnormal
andThe water pump sound is OKin Figs. 2 and 3).

2.3 Feedback Generation inDIAG-NLP2

In DIAG-NLP1 the fact file provided by DIAG is
directly processed by EXEMPLARS. In contrast, in
DIAG-NLP2 a planning module manipulates the in-
formation before passing it to EXEMPLARS. This
module decides which information to include ac-
cording to the type of query the system is respond-
ing to, and produces one or moreSentence Structure
objects. These are then passed to EXEMPLARS
that transforms them into Deep Syntactic Structures.
Then, a sentence realizer, RealPro (Lavoie and Ram-
bow, 1997), transforms them into English sentences.

Figs. 5 and 6 show the control flow inDIAG-
NLP2 for feedback generation forConsultIndand
ConsultRU. Step 3a in Fig. 5 chooses, among all
the RUs that DIAG would talk about, only those
that would definitely result in the observed symp-
tom. Step 2 in the AGGREGATE procedure in Fig. 5
uses a simple heuristic to decide whether and how to
use functional aggregation. For each RU, its possi-
ble aggregators and the numbern of units it covers
are listed in a table (e.g.,electrical devicescovers
4 RUs, ignitor, photoelectric cell, transformerand
burner motor). If a group of REL-RUs containsk
units that a certain aggregatorAggcovers, ifk < n

2 ,
Aggwill not be used; ifn2 ≤ k < n, Aggpreceded
by some ofwill be used; ifk = n, Aggwill be used.

DIAG-NLP2 does not use SNePS, but a relational
database storing relations, such as the ISA hierarchy
(e.g.,burner motorIS-A RU), information about ref-
erents of indicators (e.g.,room temperature gauge
REFERS-TOroom), and correlations between RUs
and the indicators they affect.

3 Evaluation

Our empirical evaluation is a three group, between-
subject study: one group interacts withDIAG-orig,
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[judgment [replaceable−unit the ignitor] is a poor suspect] since [indication combustion is working] during startup. The problem is
that the SCM is shutting the system off during heating.
[domain−knowledge The SCM reads[summary [linguistic−aggregate input signals from sensors]] and uses the signals to determine
how to control the system.]
[problem−solving Check the sensors.]

Figure 4: Examples of a coded tutor reply

1. IND← queried indicator
2. Mention the referent of IND and its state
3. IF IND reads abnormal,

(a) REL-RUs← choose relevant RUs
(b) AGGR-RUs← AGGREGATE(REL-RUs)
(c) Suggest to check AGGR-RUs

AGGREGATE(RUs)

1. Partition REL-RUs into subsets by system structure
2. Apply functional aggregation to subsets

Figure 5: DIAG-NLP2 : Feedback generation for
ConsultInd

one withDIAG-NLP1 , one withDIAG-NLP2 . The
75 subjects (25 per group) were all science or engi-
neering majors affiliated with our university. Each
subject read some short material about home heat-
ing, went through one trial problem, then continued
through the curriculum on his/her own. The curricu-
lum consisted of three problems of increasing dif-
ficulty. As there was no time limit, every student
solved every problem. Reading materials and cur-
riculum were identical in the three conditions.

While a subject was interacting with the system,
a log was collected including, for each problem:
whether the problem was solved; total time, and time
spent reading feedback; how many and which in-
dicators and RUs the subject consults DIAG about;
how many, and which RUs the subject replaces. We
will refer to all the measures that were automatically
collected asperformance measures.

At the end of the experiment, each subject was ad-
ministered a questionnaire divided into three parts.
The first part (the posttest) consists of three ques-
tions and tests what the student learned about the
domain. The second part concerns whether subjects
remember their actions, specifically, the RUs they
replaced. We quantify the subjects’ recollections in
terms of precision and recall with respect to the log
that the system collects. We expect precision and re-
call of the replaced RUs to correlate withtransfer,
namely, to predict how well a subject is able to ap-
ply what s/he learnt about diagnosing malfunctions

1. RU← queried RU
REL-IND← indicator associated to RU

2. IF RU warrants suspicion,
(a) state RU is a suspect
(b) IF student knows that REL-IND is abnormal

i. remind him of referent of REL-IND and
its abnormal state

ii. suggest to replace RU
(c) ELSE suggest to check REL-IND

3. ELSE
(a) state RU is not a suspect
(b) IF student knows that REL-IND is normal

i. use referent of REL-IND and its normal state
to justify judgment

(c) IF student knows of abnormal indicators OTHER-INDs
i. remind him of referents of OTHER-INDs

and their abnormal states
ii. FOR each OTHER-IND

A. REL-RUs← RUs associated with OTHER-IND
B. AGGR-RUs← AGGREGATE(REL-RUs)
∪ AGGR-RUs

iii. Suggest to check AGGR-RUs

Figure 6: DIAG-NLP2 : Feedback generation for
ConsultRU

to new problems. The third part concerns usability,
to be discussed below.

We found that subjects who usedDIAG-NLP2
had significantly higher scores on the posttest, and
were significantly more correct (higher precision)
in remembering what they did. As regards perfor-
mance measures, there are no so clear cut results.
As regards usability, subjects preferDIAG-NLP1 /2
to DIAG-orig, however results are mixed as regards
which of the two they actually prefer.

In the tables that follow, boldface indicates sig-
nificant differences, as determined by an analysis of
variance performed via ANOVA, followed by post-
hoc Tukey tests.

Table 1 reports learning measures, average across
the three problems.DIAG-NLP2 is significantly
better as regards PostTest score (F = 10.359, p =
0.000), and RU Precision (F = 4.719, p =
0.012). Performance on individual questions in the
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DIAG-orig DIAG-NLP1 DIAG-NLP2
PostTest 0.72 0.69 0.90
RU Precision 0.78 0.70 0.91
RU Recall .53 .47 .40

Table 1: Learning Scores

Figure 7: Scores on PostTest questions

PostTest3 is illustrated in Fig. 7. Scores inDIAG-
NLP2 are always higher, significantly so on ques-
tions 2 and 3 (F = 8.481, p = 0.000, andF =
7.909, p = 0.001), and marginally so on question 1
(F = 2.774, p = 0.069).4

D-Orig D-NLP1 D-NLP2
Total Time 30’17” 28’34” 34’53”
RU Replacements 8.88 11.12 11.36
ConsultInd 22.16 6.92 28.16
Avg. Reading Time 8” 14” 2”
ConsultRU 63.52 45.68 52.12
Avg. Reading Time 5” 4” 5”

Table 2: Performance Measures

Table 2 reports performance measures, cumula-
tive across the three problems, other than average
reading times. Subjects don’t differ significantly in
the time they spend solving the problems, or in the
number ofRU replacementsthey perform. DIAG’s
assumption (known to the subjects) is that there is
only one broken RU per problem, but the simula-
tion allows subjects to replace as many as they want
without any penalty before they come to the correct
solution. The trend onRU replacementsis opposite
what we would have hoped for: when repairing a
real system, replacing parts that are working should
clearly be kept to a minimum, and subjects replace

3The three questions are: 1. Describe the main subsystems
of the furnace. 2. What is the purpose of (a) the oil pump (b)
the system control module? 3. Assume the photoelectric cell is
covered with enough soot that it could not detect combustion.
What impact would this have on the system?

4The PostTest was scored by one of the authors, following
written guidelines.

fewer parts inDIAG-orig.
The next four entries in Table 2 report the number

of queries that subjects ask, and the average time it
takes subjects to read the feedback. The subjects
ask significantly fewerConsultIndin DIAG-NLP1
(F = 8.905, p = 0.000), and take significantly less
time readingConsultInd feedback inDIAG-NLP2
(F = 15.266, p = 0.000). The latter result is
not surprising, since the feedback inDIAG-NLP2 is
much shorter than inDIAG-orig andDIAG-NLP1 .
Neither the reason not the significance of subjects
asking many fewerConsultIndof DIAG-NLP1 are
apparent to us – it happens forConsultRUas well,
to a lesser, not significant degree.

We also collected usability measures. Although
these are not usually reported in ITS evaluations,
in a real setting students should be more willing to
sit down with a system that they perceive as more
friendly and usable. Subjects rate the system along
four dimensions on a five point scale: clarity, useful-
ness, repetitiveness, and whether it ever misled them
(the scale is appropriately arranged: the highest clar-
ity but the lowest repetitiveness receive 5 points).
There are no significant differences on individual
dimensions. Cumulatively,DIAG-NLP2 (at 15.08)
slightly outperforms the other two (DIAG-orig at
14.68 andDIAG-NLP1 at 14.32), however, the dif-
ference is not significant (highest possible rating is
20 points).

prefer neutral disprefer
DIAG-NLP1 to DIAG-orig 28 5 17
DIAG-NLP2 to DIAG-orig 34 1 15
DIAG-NLP2 to DIAG-NLP1 24 1 25

Table 3: User preferences among the three systems

prefer neutral disprefer
Consult Ind. 8 1 16
Consult RU 16 0 9

Table 4:DIAG-NLP2 versusDIAG-NLP1

natural concise clear contentful
DIAG-NLP1 4 8 10 23
DIAG-NLP2 16 8 11 12

Table 5: Reasons for system preference

Finally,5 on paper, subjects compare two pairs of
versions of feedback: in each pair, the first feedback

5Subjects can also add free-form comments. Only few did
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is generated by the system they just worked with,
the second is generated by one of the other two sys-
tems. Subjects say which version they prefer, and
why (they can judge the system along one or more
of four dimensions: natural, concise, clear, content-
ful). The first two lines in Table 3 show that subjects
prefer the NLP systems toDIAG-orig (marginally
significant, χ2 = 9.49, p < 0.1). DIAG-NLP1
andDIAG-NLP2 receive the same number of pref-
erences; however, a more detailed analysis (Table 4)
shows that subjects preferDIAG-NLP1 for feed-
back toConsultInd, but DIAG-NLP2 for feedback
to ConsultRu(marginally significant,χ2 = 5.6, p <
0.1). Finally, subjects findDIAG-NLP2 more nat-
ural, but DIAG-NLP1 more contentful (Table 5,
χ2 = 10.66, p < 0.025).

4 Discussion and conclusions

Our work touches on three issues: aggregation, eval-
uation of NLG systems, and the role of NL inter-
faces for ITSs.

In much work on aggregation (Huang and Fiedler,
1996; Horacek, 2002), aggregation rules and heuris-
tics are shown to be plausible, but are not based on
any hard evidence. Even where corpus work is used
(Dalianis, 1996; Harvey and Carberry, 1998; Shaw,
2002), the results are not completely convincing be-
cause we do not know for certain the content to be
communicated from which these texts supposedly
have been aggregated. Therefore, positing empir-
ically based rules is guesswork at best. Our data
collection attempts at providing a more solid em-
pirical base for aggregation rules; we found that tu-
tors exclude significant amounts of factual informa-
tion, and use high degrees of aggregation based on
functionality. As a consequence, while part of our
rules implement standard types of aggregation, such
as conjunction via shared participants, we also intro-
duced functional aggregation (seeconceptualaggre-
gation (Reape and Mellish, 1998)).

As regards evaluation, NLG systems have been
evaluated e.g. by using human judges to assess the
quality of the texts produced (Coch, 1996; Lester
and Porter, 1997; Harvey and Carberry, 1998); by
comparing the system’s performance to that of hu-
mans (Yeh and Mellish, 1997); or through task ef-
ficacy measures, i.e., measuring how well the users

so, and the distribution of topics and of evaluations is too broad
to be telling.

of the system perform on the task at hand (Young,
1999; Carenini and Moore, 2000; Reiter et al.,
2003). The latter kind of studies generally contrast
different interventions, i.e. a baseline that does not
use NLG and one or more variations obtained by pa-
rameterizing the NLG system. However, the evalu-
ation does not focus on a specific component of the
NLG process, as we did here for aggregation.

Regarding the role of NL interfaces for ITSs, only
very recently have the first few results become avail-
able, to show that first of all, students do learn when
interacting in NL with an ITS (Litman et al., 2004;
Graesser et al., 2005). However, there are very few
studies like ours, that evaluate specific features of
the NL interaction, e.g. see (Litman et al., 2004). In
our case, we did find that different features of the NL
feedback impact learning. Although we contend that
this effect is due to functional aggregation, the feed-
back in DIAG-NLP2 changed along other dimen-
sions, mainly using referents of indicators instead of
indicators, and being more strongly directive in sug-
gesting what to do next. Of course, we cannot ar-
gue that our best NL generator is equivalent to a hu-
man tutor – e.g., dividing the number ofConsultRU
andConsultIndreported in Sec. 2.2 by the number
of dialogues shows that students ask about 10Con-
sultRusand 1.5ConsultIndper dialogue when in-
teracting with a human, many fewer than those they
pose to the ITSs (cf. Table 2) (regrettably we did not
administer a PostTest to students in the human data
collection). We further discuss the implications of
our results for NL interfaces for ITSs in a compan-
ion paper (Di Eugenio et al., 2005).

The DIAG project has come to a close. We are
satisfied that we demonstrated that even not overly
sophisticated NL feedback can make a difference;
however, the fact thatDIAG-NLP2 has the best lan-
guage and engenders the most learning prompts us
to explore more complex language interactions. We
are pursuing new exciting directions in a new do-
main, that of basic data structures and algorithms.
We are investigating what distinguishes expert from
novice tutors, and we will implement our findings
in an ITS that tutors in this domain.
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Abstract 

In this paper we present a new approach to 
controlling the behaviour of a natural lan-
guage generation system by correlating in-
ternal decisions taken during free generation 
of a wide range of texts with the surface sty-
listic characteristics of the resulting outputs, 
and using the correlation to control the gen-
erator. This contrasts with the generate-and-
test architecture adopted by most previous 
empirically-based generation approaches, 
offering a more efficient, generic and holis-
tic method of generator control. We illus-
trate the approach by describing a system in 
which stylistic variation (in the sense of 
Biber (1988)) can be effectively controlled 
during the generation of short medical in-
formation texts.  

1 Introduction 
This paper1 is concerned with the problem of con-
trolling the output of natural language generation 
(NLG) systems. In many application scenarios the 
generator’s task is underspecified, resulting in mul-
tiple possible solutions (texts expressing the de-
sired content), all equally good to the generator, 
but not equally appropriate for the application. 
Customising the generator directly to overcome 
this generally leads to ad-hoc, non-reusable solu-
tions. A more modular approach is a generate-and-
test architecture, in which all solutions are gener-
ated, and then ranked or otherwise selected accord-
ing to their appropriateness in a separate post-
                                                           
1  Paiva and Evans (2004) provides an overview of our 

framework and detailed comparison with previous 
approaches to stylistic control (like Hovy (1988), 
Green and DiMarco (1993) and Langkilde-Geary 
(2002)). This paper provides a more detailed account 
of the system and reports additional experimental re-
sults. 

process. Such architectures have been particularly 
prominent in the recent development of empiri-
cally-based approaches to NLG, where generator 
outputs can be selected according to application 
requirements acquired directly from human sub-
jects (e.g.  Walker et al. (2002)) or statistically 
from a corpus (e.g. Langkilde-Geary (2002)). 
However, this approach suffers from a number of 
drawbacks: 

1. It requires generation of all, or at least 
many solutions (often hundreds of thou-
sands), expensive both in time and space, 
and liable to lead to unnecessary interac-
tions with other components (e.g. knowl-
edge bases) in complex systems. Recent 
advances in the use of packed representa-
tions ameliorate some of these issues, but 
the basic need to compare a large number 
of solutions in order to rank them remains. 

2. The ‘ test’  component generally does not 
give fine-grained control — for example, 
in a statistically-based system it typically 
measures how close a text is to some sin-
gle notion of ideal (actually, statistically 
average) output. 

3. Use of an external filter does not combine 
well with any control mechanisms within 
the generator: e.g. controlling combinato-
rial explosion of modifier attachment or 
adjective order. 

In this paper we present an empirically-based 
method for controlling a generator which over-
comes these deficiencies. It controls the generator 
internally, so that it can produce just one (locally) 
optimal solution; it employs a model of language 
variation, so that the generator can be controlled 
within a multidimensional space of possible vari-
ants; its view of the generator is completely holis-
tic, so that it can accommodate any other control 
mechanisms intrinsic to the generation task.  
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To illustrate our approach we describe a system 
for controlling ‘style’  in the sense of Biber (1988) 
during the generation of short texts giving instruc-
tions about doses of medicine. The paper continues 
as follows. In §2 we describe our overall approach. 
We then present the implemented system (§3) and 
report on our experimental evaluation (§4). We end 
with a discussion of conclusions and future direc-
tions (§5). 

2 Overview of the Approach 
Our overall approach has two phases: (1) offline 
calculation of the control parameters, and 
(2) online application to generation. In the first 
phase we determine a set of correlation equations, 
which capture the relationship between surface 
linguistic features of generated texts and the inter-
nal generator decisions that gave rise to those texts 
(see figure 1). In the second phase, these correla-
tions are used to guide the generator to produce 
texts with particular surface feature characteristics 
(see figure 2).  
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Figure 1: Offline processing  

The starting point is a corpus of texts which 
represents all the variability that we wish to cap-
ture. Counts for (surface) linguistic features from 
the texts in the corpus are obtained, and a factor 
analysis is used to establish dimensions of varia-
tion in terms of these counts: each dimension is 
defined by a weighted sum of scores for particular 
features, and factor analysis determines the combi-
nation that best accounts for the variability across 
the whole corpus. This provides a language varia-
tion model which can be used to score a new text 
along each of the identified dimensions, that is, to 
locate the text in the variation space determined by 
the corpus. 

The next step is to take a generator which can 
generate across the range of variation in the cor-

pus, and identify within it the key choice points 
(CP1, CP2, … CPn) in its generation of a text. We 
then allow the generator to freely generate all pos-
sible texts from one or more inputs. For each text 
so generated we record (a) the text’s score accord-
ing to the variation model and (b) the set of deci-
sions made at each of the selected choice points in 
the generator. Finally, for a random sample of the 
generated texts, a statistical correlation analysis is 
undertaken between the scores and the correspond-
ing generator decisions, resulting in correlation 
equations which predict likely variation scores 
from generator decisions. 
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Figure 2: Online processing 

In the second phase, the generator is adapted to 
use the correlation equations to conduct a best-first 
search of the generation space. As well as the usual 
input, the generator is supplied with target scores 
for each dimension of variation. At each choice 
point, the correlation equations are used to predict 
which choice is most likely to move closer to the 
target score for the final text. 

This basic architecture makes no commitment to  
what is meant by ‘variation’ , ‘ linguistic features’ , 
‘generator choice points’ , or even ‘NLG system’ . 
The key ideas are that a statistical analysis of sur-
face features of a corpus of texts can be used to 
define a model of variation; this model can then be 
used to control a generator; and the model can also 
be used to evaluate the generator’s performance. In 
the next section we describe a concrete instantia-
tion of this architecture, in which ‘variation’  is sty-
listic variation as characterised by a collection of 
shallow lexical and syntactic features. 

3 An Implemented System 
In order to evaluate the effectiveness of this gen-
eral approach, we implemented a system which 
attempts to control style of text generated as de-
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fined by Biber (1988) in short text (typically 2-3 
sentences) describing medicine dosage instruc-
tions. 

3.1 Factor Analysis 
Biber characterised style in terms of very shallow 
linguistic features, such as presence of pronouns, 
auxiliaries, passives etc. By using factor analysis 
techniques he was able to determine complex cor-
relations between the occurrence and non-
occurrence of such features in text, which he used 
to characterise different styles of text.2  

We adopted the same basic methodology, ap-
plied to a smaller more consistent corpus of just 
over 300 texts taken from proprietary patient in-
formation leaflets. Starting with around 70 surface 
linguistic features as variables, our factor analysis 
yielded two main factors (each containing linguis-
tic features grouped in positive and negative corre-
lated subgroups) which we used as our dimensions 
of variation. We interpreted these dimensions as 
follows (this is a subjective process — factor 
analysis does not itself provide any interpretation 
of factors): dimension 1 ranges from texts that try 
to involve the reader (high positive score) to text 
that try to be distant from the reader (high negative 
score); dimension 2 ranges from texts with more 
pronominal reference and a higher proportion of 
certain verbal forms (high positive score) to text 
that use full nominal reference (high negative 
score).3 

3.2 Generator Architecture 
The generator was constructed from a mixture of 
existing components and new implementation, us-
ing a fairly standard overall architecture as shown 
in figure 3. Here, dotted lines show the control 
flow and the straight lines show data flow — the 
choice point annotations are described below. 

The input constructor takes an input specifica-
tion and, using a background database of medicine 
information, creates a network of concepts and re-

                                                           
2 Some authors (e.g. Lee (1999)) have criticised Biber 

for making assumptions about the validity and gener-
alisability of his approach to English language as a 
whole. Here, however, we use his methodology to 
characterise whatever variation exists without need-
ing to make any broader claims. 

3  Full details of the factor analysis can be found in 
(Paiva 2000). 

lations (see figure 4) using a schema-based ap-
proach (McKeown, 1985).  

input 
constructor 
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network 

network 
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referring 
expression 

NP pruning 

realiser 

initial input networks 

sentence-size networks 

subnetwork chosen 

referring expression net 

pruned network 

sentence 

input 
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choice 
point 1: 
number of 
sentences 

choice 
point 2: 
type of 
referring 
expression 

choice 
point 3: 
choice of 
mapping 
rule 

 

Figure 3: Generator architecture with choice points 

Each network is then split into subnetworks by 
the split network module. This partitions the net-
work by locating ‘proposition’  objects (marked 
with a double-lined box in figure 4) which have no 
parent and tracing the subnetwork reachable from 
each one. We call these subnetworks propnets. In 
figure 4, there are two propnets, rooted in [1:take] 
and [9:state] — proposition [15:state] is not a root 
as it can be reached from [1:take]. A list of all pos-
sible groupings of these propnets is obtained4, and 
one of the possible combinations is passed to the 
network ordering module. This is the first source 
of non-determinism in our system, marked as 
choice point one in figure 3. A combination of 
subnetworks will be material for the realisation of 
one paragraph and each subnetwork will be real-
ised as one sentence. 

                                                           
4  For instance, with three propnets (A, B and C) the list 

of combinations would be [(A,B,C), (A,BC), (AB, C), 
(AC,B), (ABC)]. 
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Figure 4: Example of semantic network produced by the 

input constructor5 

The network ordering module receives a combi-
nation of subnetworks and orders them based on 
the number of common elements between each 
subnetwork. The strategy is to try to maximise the 
possibility of having a smooth transition from one 
sentence to the next in accordance with Centering 
Theory (Grosz et al., 1995), and so increase the 
possibility of having a pronoun generated. 

The referring expression module receives one 
subnetwork at a time and decides, for each object 
that is of type [thing], which type of referring ex-
pression will be generated. The module is re-used 
from the Riches system (Cahill et al., 2001) and it 
generates either a definite description or a pronoun. 
This is the second source of non-determinism in 
our system, marked as choice point two in figure 3. 
Referring expression decisions are recorded by 
introducing additional nodes into the network, as 
shown for example in figure 5 (a fragment of the 
network in figure 4, with the additional nodes). 

NP pruning is responsible for erasing from a re-
ferring expression subnetwork all the nodes that 
can be transitively reached from a node marked to 
be pronominalised. This prevents the realiser from 
trying to express the information twice. In figure 5, 
[7:dose] is marked to be pronominalised, so the 
concepts [11:of] and [3:medicine] do not need to be 
realised, so they are pruned. 

                                                           
5 Although some of the labels in this figure look like 

words, they bear no direct relation to words in the 
surface text — for example, ‘of’  may be realised as a 
genitive construction or a possessive.  

3:medicine 

7:dose 

11:of 

arg0 

arg0 

21:pronoun refexp 

22:definite refexp 

 
Figure 5: Referring expressions and pruning 

The realiser is a re-implementation of Nicolov’s 
(1999) generator, extended to use the wide-
coverage lexicalised grammar developed in the 
LEXSYS project (Carroll et al., 2000), with further 
semantic extensions for the present system. It se-
lects grammar rules by matching their semantic 
patterns to subnetworks of the input, and tries to 
generate a sentence consuming the whole input. In 
general there are several rules linking each piece of 
semantics to its possible realisation, so this is our 
third, and most prolific, source of non-determinism 
in the architecture, marked as choice point three in 
figure 3. 

A few examples of outputs for the input repre-
sented in figure 4 are: 

the dose of the patient 's medicine is taken twice a 
day. it is two grams. 

the two-gram dose of the patient 's medicine is 
taken twice a day. 

the patient takes the two-gram dose of the patient 's 
medicine twice a day. 

From a typical input corresponding to 2-3 sen-
tences, this generator will generate over a 1000 
different texts. 

3.3 Tracing Generator Behaviour 
In order to control the generator’s behaviour we 
first allow it to run freely, recording a ‘ trace’  of the 
decisions it makes at each choice point during the 
production of each text. Although there are only 
three choice points in figure 3, the control structure 
included two loops: an outer loop which ranges 
over the sequence of propnets, generating a sen-
tence for each one, and an inner loop which ranges 
over subnetworks of a propnet as realisation rules 
are chosen. So the decision structure for even a 
small text may be quite complex.  

In the experiments reported here, the trace of the 
generation process is simply a record of the num-
ber of times each decision (choice point, and what 
choice was made) occurred. Paiva (2004) discusses 
more complex tracing models, where the context of 
each decision (for example, what the preceding 
decision was) is recorded and used in the correla-
tion. However the best results were obtained using 
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just the simple decision-counting model (perhaps 
in part due to data sparseness for more complex 
models). 

3.4 Correlating Decisions with Text Features 
By allowing the generator to freely generate all 
possible output from a single input, we recorded a 
set of <trace, text> pairs ranging across the full 
variation space. From these pairs we derived corre-
sponding <decision-count, factor-score> pairs, to 
which we applied a very simple correlational tech-
nique, multivariate linear regression analysis, 
which is used to find an estimator function for a 
linear relationship (i.e., one that can be approxi-
mated by a straight line) from the data available for 
several variables (Weisberg, 1985).  In our case we 
want to predict the value for a score in a stylistic 
dimension (SSi) based on a configuration of gen-
erator decisions (GDj) as seen in equation 1.  

(eq. 1) SSi = x0 + x1GD1 + … + xnGDn + ε 6 

We used three randomly sampled data sets of 
1400, 1400 and 5000 observations obtained from a 
potential base of about 1,400,000 different texts 
that could be produced by our generator from a 
single input. With each sample, we obtained a re-
gression equation for each stylistic dimension 
separately. In the next subsections we will present 
the final results for each of the dimensions sepa-
rately. 

Regression on Stylistic Dimension 1 
For the regression model on the first stylistic di-
mension (SS1), the generator decisions that were 
used in the regression analysis7 are: imperative 
with one object sentences (IMP_VNP), V_NP_PP 
agentless passive sentences (PAS_VNPP), V_NP by-
passives (BYPAS_VN), and N_PP clauses (NPP) and 
these are all decisions that happen in the realiser, 
i.e., at the third choice point in the architecture. 
This resulted in the regression equation shown in 
equation 2.  

                                                           
6 SSi represents a stylistic score and is the dependent 

variable or criterion in the regression analysis; the 
GDj’ s represent generator decisions and are called the 
independent variables or predictors; the xj’s are 
weights, and ε is the error. 

7 The process of determining the regression takes care 
of eliminating the variables (i.e. generator decisions) 
that are not useful to estimate the stylistic dimensions. 

(eq. 2)  
SS1 = 6.459 − (1.460∗NPP) − (1.273*BYPAS_VN) 
 − (1.826∗PAS_VNPP) + (1.200∗IMP_VNP)8 

The coefficients for the regression on SS1 are 
unstandardised coefficients, i.e. the ones that are 
used when dealing with raw counts for the genera-
tor decisions.  

The coefficient of determination (R2), which 
measures the proportion of the variance of the de-
pendent variable about its mean that is explained 
by the independent variables, had a reasonably 
high value (.895)9 and the analysis of variance ob-
tained an F test of 1701.495. 

One of the assumptions that this technique as-
sumes is the linearity of the relation between the 
dependent and the independent variables (i.e., in 
our case, between the stylistic scores in a dimen-
sion and the generator decisions). The analysis of 
the residuals resulted in a graph that had some 
problems but that resembled a normal graph (see 
(Paiva, 2004) for more details). 

Regression on Stylistic Dimension 2 
For the regression model on the second stylistic 
dimension (SS2) the variables that we used were: 
the number of times a network was split (SPLIT-

NET), generation of a pronoun (RE_PRON), auxil-
iary verb (VAUX), noun with determiner (NOUN), 
transitive verb (VNP), and agentless passive 
(PAS_VNP) — the first type of decision happens in 
the split network module (our first choice point); 
the second, in the referring expression module 
(second choice point); and the rest in the realiser 
(third choice point).  

The main results for this model are as follows: 
the coefficient of determination (R2) was .959 and 
the analysis of variance obtained an F test 
of 2298.519. The unstandardised regression coeffi-
cients for this model can be seen in eq. 3.  

(eq. 3) 
SS2 = − 27.208 − (1.530∗VNP) + (2.002∗RE_PRON) 
 − (.547∗NOUN) + (.356∗VAUX) 
 + (.860∗SPLITNET) + (.213∗PAS_VNP)10 

                                                           
8  This specific equation came from the sample with 

5,000 observations — the equations obtained from 
the other samples are very similar to this one. 

9  All the statistical results presented in this paper are 
significant at the 0.01 level (two-tailed). 

10 This specific equation comes from one of the samples 
of 1,400 observations. 
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With this second model we did not find any prob-
lems with the linearity assumptions as the analysis 
of the residuals gave a normal graph. 

4 Controlling the Generator 
These regression equations characterise the way in 
which generator decisions influence the final style 
of the text (as measured by the stylistic factors). In 
order to control the generator, the user specifies a 
target stylistic score for each dimension of the text 
to be generated. At each choice point during gen-
eration, all possible decisions are collected in a list 
and the regression equations are used to order 
them. The equations allow us to estimate the sub-
sequent values of SS1 and SS2 for each of the pos-
sible decisions, and the decisions are ordered 
according to the distance of the resulting scores 
from the target scores — the closer the score, the 
better the decision.  

Hence the search algorithm that we are using 
here is the best-first search, i.e., the best local solu-
tion according to an evaluation function (which in 
this case is the Euclidian distance from the target 
and the resulted value obtained by using the re-
gression equation) is tried first but all the other 
local solutions are kept in order so backtracking is 
possible. 

In this paper we report on tests of two internal 
aspects of the system11. First we wish to know how 
good the generator is at hitting a user-specified 
target — i.e., how close are the scores given by the 
regression equations for the first text generated to 
the user’s input target scores. Second, we wish to 
know how good the regression equation scores are 
at modelling the original stylistic factors — i.e., we 
want to compare the regression scores of an output 
text with the factor analysis scores. We address 
these questions across the whole of the two-
dimensional stylistic space, by specifying a rectan-
gular grid of scores spanning the whole space, and 
asking the generator to produce texts for each grid 
point from the same semantic input specification. 

                                                           
11  We are not dealing with external (user) evaluation of 

the system and of the stylistic dimensions we ob-
tained — this was left for future work. Nonetheless, 
Sigley (1997) showed that the dimensions obtained 
with factor analysis and people’s perception have a 
high correlation. 
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Figure 6: Target scores for the texts 

In this case we divided the scoring space with 
an 8 by 10 grid pattern as shown in figure 6.12 Each 
point specifies the target scores for each text that 
should be generated (the number next to each point 
is an identifier of each text). For instance, text 
number 1 was targeted at coordinate (−7, −44), 
whereas text number 79 was targeted at coordinate 
(+7, −28). 

4.1 Comparing Target Points and Regression 
Scores 

In the first part of this experiment we wanted to 
know how close to the user-specified target coor-
dinates the resulting regression scores of the first 
generated text were. This can be done in two dif-
ferent ways. The first is to plot the resulting regres-
sion scores (see figure 7) and visually check if it 
mirrors the grid-shape pattern of the target points 
(figure 6) — this can be done by inspecting the text 
identifiers13. This can be a bit misleading because 
there will always be variation around the target 
point that was supposed to be achieved (i.e., there 
is a margin for error) and this can blur the com-
parison unfavourably.  

                                                           
12 The range for each scale comes from the maximum 

and minimum values for the factors obtained in the 
samples of generated texts. 

13 Note that some texts obtained the same regression 
score and, in the statistical package, only one was 
numbered. Those instances are: 1 and 7; 18 and 24; 
22 and 28. 
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Figure 7: Texts scored by using the  

regression equation 

A more formal comparison can be made by plot-
ting the target points versus the regression results 
for each dimension separately and obtaining a cor-
relation measure between these values. These cor-
relations are shown in figure 8 for SS1 (left) and 
SS2 (right). The degree of correlation (R2) between 
the values of target and regression points is 0.9574 
for SS1 and 0.942 for SS2, which means that the 
search mechanism is working very satisfactorily on 
both dimensions.14  
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Figure 8: Plotting target points versus regression results 

on SS1 (left) and SS2 (right) 

4.2 Comparing Target Points and Stylistic 
Scores 

In the second part of this experiment we wanted to 
know whether the regression equations were doing 
the job they were supposed to do by comparing the 
regression scores with stylistic scores obtained 
(from the factor analysis) for each of the generated 
texts. In figure 9 we plotted the texts in a graph in 
accordance with their stylistic scores (once again, 
some texts occupy the same point so they do not 
appear).  

                                                           
14  All the correlational figures (R2) presented for this 

experiment are significant at the 0.01 level (two-
tailed). 
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Figure 9: Texts scored using the two stylistic dimension 

obtained in our factor analysis 

In the ideal situation, the generator would have 
produced texts with the perfect regression scores 
and they would be identical to the stylistic scores, 
so the graph in the figure 9 would be like a grid-
shape one as in figure 6. However we have already 
seen in figure 7, that this is not the case for the re-
lation between the target coordinates and the re-
gression scores. So we did not expect the plot of 
stylistic scores 1 (SS1) against stylistic scores 2 
(SS2) to be a perfect grid. 

Figure 10 (left-hand side) shows the relation be-
tween the target points and the scores obtained 
from the original factor equation of SS1. The value 
of R2, which represents their correlation, is high 
(0.9458), considering that this represents the possi-
ble accumulation of errors of two stages: from the 
target to the regression scores, and then from the 
regression to the actual factor scores. On the right 
of figure 10 we can see the plotting of the target 
points and their respective factor scores on SS2. 
The correlation obtained is also reasonably high 
(R2 = 0.9109). 
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Figure 10: Plotting target points versus factor scores on 

SS1 (left) and SS2 (right) 

5 Discussion and Future Work 
These results demonstrate that it is possible to pro-
vide effective control of a generator correlating 
internal generator behaviour with characteristics of 
the resulting texts. It is important to note that these 
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two sets of variables (generator decision and sur-
face features) are in principle quite independent of 
each other. Although in some cases there are 
strong correlations (for example, the generator’s 
use of a ‘passive’  rule, correlates with the occur-
rence of passive participles in the text), in others  
the relationship is much less direct (for example, 
the choice of how many subnetworks to split a net-
work into, i.e., SPLITNET, does not correspond to 
any feature in the factor analysis), and the way in-
dividual features combine into significant factors 
may be quite different.  

Another feature of our approach is that we do 
not assume some pre-defined notion of parameters 
of variation – variation is characterised completely 
by a corpus (in contrast to approaches which use a 
corpus to characterise a single style). The disad-
vantage of this is that variation is not grounded in 
some ‘ intuitive’  notion of style: the interpretation 
of the stylistic dimensions is subjective and tenta-
tive. However, as no comprehensive computation-
ally realisable theory of style yet exists, we believe 
that this approach has considerable promise for 
practical, empirically-based stylistic control. 

The results reported here also make us think that 
a possible avenue for future work is to explore the 
issue of what types of problems the generalisation 
induced by our framework (which will be dis-
cussed below) can be applied to. This paper dealt 
with an application to stylistic variation but, in 
theory, the approach can be applied to any kind of 
process to which there is a sorting function that can 
impose an order, using a measurable scale (e.g., 
ranking), onto the outputs of another process.  

Schematically the approach can be abstracted to 
any sort of problem of the form shown in fig-
ure 11. Here there is a producer process outputting 
a large number of solutions. There is also a sorter 
process which will classify those solutions in a cer-
tain order. The numerical value associated with the 
output by the sorter can be correlated with the de-
cisions the producer took to generate the output. 
The same correlation and control mechanism used 
in this paper can be introduced in the producer 
process, making it controllable with respect to the 
sorting dimension. 
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Figure 11: The producer-sorter scheme. 
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Abstract

We describe a new sentence realization
framework for text-to-text applications.
This framework uses IDL-expressions as
a representation formalism, and a gener-
ation mechanism based on algorithms for
intersecting IDL-expressions with proba-
bilistic language models. We present both
theoretical and empirical results concern-
ing the correctness and efficiency of these
algorithms.

1 Introduction

Many of today’s most popular natural language ap-
plications – Machine Translation, Summarization,
Question Answering – are text-to-text applications.
That is, they produce textual outputs from inputs that
are also textual. Because these applications need
to produce well-formed text, it would appear nat-
ural that they are the favorite testbed for generic
generation components developed within the Natu-
ral Language Generation (NLG) community. Over
the years, several proposals of generic NLG systems
have been made: Penman (Matthiessen and Bate-
man, 1991), FUF (Elhadad, 1991), Nitrogen (Knight
and Hatzivassiloglou, 1995), Fergus (Bangalore
and Rambow, 2000), HALogen (Langkilde-Geary,
2002), Amalgam (Corston-Oliver et al., 2002), etc.
Instead of relying on such generic NLG systems,
however, most of the current text-to-text applica-
tions use other means to address the generation need.
In Machine Translation, for example, sentences are

produced using application-specific “decoders”, in-
spired by work on speech recognition (Brown et
al., 1993), whereas in Summarization, summaries
are produced as either extracts or using task-specific
strategies (Barzilay, 2003). The main reason for
which text-to-text applications do not usually in-
volve generic NLG systems is that such applica-
tions do not have access to the kind of informa-
tion that the input representation formalisms of cur-
rent NLG systems require. A machine translation or
summarization system does not usually have access
to deep subject-verb or verb-object relations (such
as ACTOR, AGENT, PATIENT, POSSESSOR, etc.)
as needed by Penman or FUF, or even shallower
syntactic relations (such as subject, object,
premod, etc.) as needed by HALogen.

In this paper, following the recent proposal
made by Nederhof and Satta (2004), we argue
for the use of IDL-expressions as an application-
independent, information-slim representation lan-
guage for text-to-text natural language generation.
IDL-expressions are created from strings using four
operators: concatenation ( � ), interleave ( � ), disjunc-
tion ( � ), and lock ( � ). We claim that the IDL
formalism is appropriate for text-to-text generation,
as it encodes meaning only via words and phrases,
combined using a set of formally defined operators.
Appropriate words and phrases can be, and usually
are, produced by the applications mentioned above.
The IDL operators have been specifically designed
to handle natural constraints such as word choice
and precedence, constructions such as phrasal com-
bination, and underspecifications such as free word
order.
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CFGs
via intersection with
Deterministic

Non−deterministic
via intersection with
probabilistic LMs

Word/Phrase
based

Fergus, Amalgam

Nitrogen, HALogen

FUF, PENMAN

NLG System

(Nederhof&Satta 2004)
IDL

Representation
(formalism)

Semantic,
few meanings

Syntactically/
Semantically
grounded

 Syntactic
dependencies

Representation
(computational)

Linear

Exponential

Linear

Deterministic

Generation
(mechanism)

Non−deterministic
via intersection with
probabilistic LMs

Non−deterministic
via intersection with
probabilistic LMs

(this paper)
IDL

Linear

Generation
(computational)

Optimal Solution
Efficient Run−time

Efficient Run−time
Optimal Solution

Efficient Run−time
All Solutions

Efficient Run−time
Optimal Solution

Linear Linear

based
Word/Phrase

Table 1: Comparison of the present proposal with
current NLG systems.

In Table 1, we present a summary of the repre-
sentation and generation characteristics of current
NLG systems. We mark by � characteristics that are
needed/desirable in a generation component for text-
to-text applications, and by � characteristics that
make the proposal inapplicable or problematic. For
instance, as already argued, the representation for-
malism of all previous proposals except for IDL is
problematic ( � ) for text-to-text applications. The
IDL formalism, while applicable to text-to-text ap-
plications, has the additional desirable property that
it is a compact representation, while formalisms
such as word-lattices and non-recursive CFGs can
have exponential size in the number of words avail-
able for generation (Nederhof and Satta, 2004).

While the IDL representational properties are all
desirable, the generation mechanism proposed for
IDL by Nederhof and Satta (2004) is problematic
( � ), because it does not allow for scoring and
ranking of candidate realizations. Their genera-
tion mechanism, while computationally efficient, in-
volves intersection with context free grammars, and
therefore works by excluding all realizations that are
not accepted by a CFG and including (without rank-
ing) all realizations that are accepted.

The approach to generation taken in this paper
is presented in the last row in Table 1, and can be
summarized as a � tiling of generation character-
istics of previous proposals (see the shaded area in
Table 1). Our goal is to provide an optimal gen-
eration framework for text-to-text applications, in
which the representation formalism, the generation
mechanism, and the computational properties are all
needed and desirable ( � ). Toward this goal, we

present a new generation mechanism that intersects
IDL-expressions with probabilistic language mod-
els. The generation mechanism implements new al-
gorithms, which cover a wide spectrum of run-time
behaviors (from linear to exponential), depending on
the complexity of the input. We also present theoret-
ical results concerning the correctness and the effi-
ciency input IDL-expression) of our algorithms.

We evaluate these algorithms by performing ex-
periments on a challenging word-ordering task.
These experiments are carried out under a high-
complexity generation scenario: find the most prob-
able sentence realization under an n-gram language
model for IDL-expressions encoding bags-of-words
of size up to 25 (up to 10

���
possible realizations!).

Our evaluation shows that the proposed algorithms
are able to cope well with such orders of complex-
ity, while maintaining high levels of accuracy.

2 The IDL Language for NLG

2.1 IDL-expressions

IDL-expressions have been proposed by Nederhof
& Satta (2004) (henceforth N&S) as a representa-
tion for finite languages, and are created from strings
using four operators: concatenation ( � ), interleave
( � ), disjunction ( � ), and lock ( � ). The semantics of
IDL-expressions is given in terms of sets of strings.

The concatenation ( � ) operator takes two argu-
ments, and uses the strings encoded by its argu-
ment expressions to obtain concatenated strings that
respect the order of the arguments; e.g., � ��� en-
codes the singleton set �	�
��� . The  nterleave ( � )
operator interleaves the strings encoded by its argu-
ment expressions; e.g., ����� �������	� encodes the set
�	���
�������������
����� . The � isjunction ( � ) operator al-
lows a choice among the strings encoded by its ar-
gument expressions; e.g., ����������� encodes the set
�	������� . The  ock ( � ) operator takes only one ar-
gument, and “locks-in” the strings encoded by its
argument expression, such that no additional mate-
rial can be interleaved; e.g., ��� �!��� �����"���	� encodes
the set �	���
�����
���
� .

Consider the following IDL-expression:
���$#&%('�)*)$+,� ��� �!�.-0/�1 �*2(35476�8
%�1�3"6��"� �9�.-0/�1 ��:"'"2�-�40;
1�6���� �< 1�3�1 �=3�1�)>1?'�6�1?@�� �.A	�
The concatenation ( � ) operator captures precedence
constraints, such as the fact that a determiner like
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the appears before the noun it determines. The lock
( � ) operator enforces phrase-encoding constraints,
such as the fact that the captives is a phrase which
should be used as a whole. The disjunction ( � ) op-
erator allows for multiple word/phrase choice (e.g.,
the prisoners versus the captives), and the inter-
leave ( � ) operator allows for word-order freedom,
i.e., word order underspecification at meaning repre-
sentation level. Among the strings encoded by IDL-
expression 1 are the following:

finally the prisoners were released
the captives finally were released
the prisoners were finally released

The following strings, however, are not part of the
language defined by IDL-expression 1:

the finally captives were released
the prisoners were released
finally the captives released were

The first string is disallowed because the � oper-
ator locks the phrase the captives. The second string
is not allowed because the � operator requires all its
arguments to be represented. The last string violates
the order imposed by the precedence operator be-
tween were and released.

2.2 IDL-graphs

IDL-expressions are a convenient way to com-
pactly represent finite languages. However, IDL-
expressions do not directly allow formulations of
algorithms to process them. For this purpose, an
equivalent representation is introduced by N&S,
called IDL-graphs. We refer the interested reader to
the formal definition provided by N&S, and provide
here only an intuitive description of IDL-graphs.

We illustrate in Figure 1 the IDL-graph corre-
sponding to IDL-expression 1. In this graph, ver-
tices ��� and ��� are called initial and final, respec-
tively. Vertices ��� , � � with in-going

�
-labeled edges,

and �	� , � � � with out-going 
 -labeled edges, for ex-
ample, result from the expansion of the � operator,
while vertices ��� , �� with in-going � -labeled edges,
and ��� , �	� � with out-going � -labeled edges result
from the expansion of the � operator. Vertices � �
to ��� and �	��� to �	� � result from the expansion of
the two � operators, respectively. These latter ver-
tices are also shown to have rank 1, as opposed to
rank 0 (not shown) assigned to all other vertices.

The ranking of vertices in an IDL-graph is needed
to enforce a higher priority on the processing of the
higher-ranked vertices, such that the desired seman-
tics for the lock operator is preserved.

With each IDL-graph � ����� we can associate a fi-
nite language: the set of strings that can be generated
by an IDL-specific traversal of � ����� , starting from
��� and ending in ��� . An IDL-expression � and its
corresponding IDL-graph � ����� are said to be equiv-
alent because they generate the same finite language,
denoted � ����� .

2.3 IDL-graphs and Finite-State Acceptors

To make the connection with the formulation of our
algorithms, in this section we link the IDL formal-
ism with the more classical formalism of finite-state
acceptors (FSA) (Hopcroft and Ullman, 1979). The
FSA representation can naturally encode precedence
and multiple choice, but it lacks primitives corre-
sponding to the interleave ( � ) and lock ( � ) opera-
tors. As such, an FSA representation must explic-
itly enumerate all possible interleavings, which are
implicitly captured in an IDL representation. This
correspondence between implicit and explicit inter-
leavings is naturally handled by the notion of a cut
of an IDL-graph � ����� .

Intuitively, a cut through � ����� is a set of vertices
that can be reached simultaneously when traversing
� ����� from the initial node to the final node, follow-
ing the branches as prescribed by the encoded  , � ,
and  operators, in an attempt to produce a string in
�9����� . More precisely, the initial vertex �	� is consid-
ered a cut (Figure 2 (a)). For each vertex in a given
cut, we create a new cut by replacing the start ver-
tex of some edge with the end vertex of that edge,
observing the following rules:

� the vertex that is the start of several edges la-
beled using the special symbol

�
is replaced

by a sequence of all the end vertices of these
edges (for example, ����� � is a cut derived from
��� (Figure 2 (b))); a mirror rule handles the spe-
cial symbol 
 ;

� the vertex that is the start of an edge labeled us-
ing vocabulary items or � is replaced by the end
vertex of that edge (for example, ����� � , ����� � ,
����� � , ������� are cuts derived from ����� � , ����� � ,
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Figure 1: The IDL-graph corresponding to the IDL-
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Figure 2: Cuts of the IDL-graph in Figure 1 (a-d). A
non-cut is presented in (e).

� � ��� , and � � � � , respectively, see Figure 2 (c-
d)), only if the end vertex is not lower ranked
than any of the vertices already present in the
cut (for example, � ����� is not a cut that can be
derived from ������� , see Figure 2 (e)).

Note the last part of the second rule, which restricts
the set of cuts by using the ranking mechanism. If
one would allow � � � � to be a cut, one would imply
that finally may appear inserted between the words
of the locked phrase the prisoners.

We now link the IDL formalism with the FSA for-
malism by providing a mapping from an IDL-graph
� ����� to an acyclic finite-state acceptor

� ����� . Be-
cause both formalisms are used for representing fi-
nite languages, they have equivalent representational
power. The IDL representation is much more com-
pact, however, as one can observe by comparing the
IDL-graph in Figure 1 with the equivalent finite-
state acceptor

� ����� in Figure 3. The set of states of� ����� is the set of cuts of � ����� . The initial state of
the finite-state acceptor is the state corresponding to
cut ��� , and the final states of the finite-state acceptor
are the state corresponding to cuts that contain �	� .
In what follows, we denote a state of

� ����� by the
name of the cut to which it corresponds. A transi-
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Figure 3: The finite-state acceptor corresponding to
the IDL-graph in Figure 1.

tion labeled � in
� ����� between state � ���������� �	�
 ����� �����

and state � � � �� ����� � � �
 ����� � � ��  occurs if there is an edge
� ���
 ��� ����� �
 � in � ����� . For the example in Figure 3,
the transition labeled were between states � �	���	��� 
and � ����� ���  occurs because of the edge labeled were
between nodes � ��� and �	��� (Figure 1), whereas the
transition labeled finally between states � � ���	���  and
� � � � ���  occurs because of the edge labeled finally be-
tween nodes ��� and �	� (Figure 1). The two represen-
tations � ����� and

� ����� are equivalent in the sense
that the language generated by IDL-graph � ����� is
the same as the language accepted by FSA

� ����� .
It is not hard to see that the conversion from the

IDL representation to the FSA representation de-
stroys the compactness property of the IDL formal-
ism, because of the explicit enumeration of all possi-
ble interleavings, which causes certain labels to ap-
pear repeatedly in transitions. For example, a tran-
sition labeled finally appears 11 times in the finite-
state acceptor in Figure 3, whereas an edge labeled
finally appears only once in the IDL-graph in Fig-
ure 1.

3 Computational Properties of
IDL-expressions

3.1 IDL-graphs and Weighted Finite-State
Acceptors

As mentioned in Section 1, the generation mecha-
nism we propose performs an intersection of IDL-
expressions with n-gram language models. Follow-
ing (Mohri et al., 2002; Knight and Graehl, 1998),
we implement language models using weighted
finite-state acceptors (wFSA). In Section 2.3, we
presented a mapping from an IDL-graph � ����� to a
finite-state acceptor

� ����� . From such a finite-state
acceptor

� ����� , we arrive at a weighted finite-state
acceptor � ����� , by splitting the states of

� ����� ac-
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cording to the information needed by the language
model to assign weights to transitions. For ex-
ample, under a bigram language model ��� , state
� �	� �	���  in Figure 3 must be split into three differ-
ent states, � 2�3"4*6�8
%,1�3"6 ��� � � ���  , �>:?'52�-�4*;�156 ��� � � ���  , and
� #&%('�)*)$+(���	� �	���  , according to which (non-epsilon)
transition was last used to reach this state. The
transitions leaving these states have the same la-
bels as those leaving state � ��� �	���  , and are now
weighted using the language model probability dis-
tributions ����� � ��� 2(3"4*6�8�%�1�3"6�� , �	��� � ��� :?'"2�-�40;
1�6
� , and
� ��� � ��� #&%('
)0) + � , respectively.

Note that, at this point, we already have a naı̈ve
algorithm for intersecting IDL-expressions with n-
gram language models. From an IDL-expression � ,
following the mapping ��
 � ������
 � ������

� ����� , we arrive at a weighted finite-state accep-
tor, on which we can use a single-source shortest-
path algorithm for directed acyclic graphs (Cormen
et al., 2001) to extract the realization corresponding
to the most probable path. The problem with this al-
gorithm, however, is that the premature unfolding of
the IDL-graph into a finite-state acceptor destroys
the representation compactness of the IDL repre-
sentation. For this reason, we devise algorithms
that, although similar in spirit with the single-source
shortest-path algorithm for directed acyclic graphs,
perform on-the-fly unfolding of the IDL-graph, with
a mechanism to control the unfolding based on the
scores of the paths already unfolded. Such an ap-
proach has the advantage that prefixes that are ex-
tremely unlikely under the language model may be
regarded as not so promising, and parts of the IDL-
expression that contain them may not be unfolded,
leading to significant savings.

3.2 Generation via Intersection of
IDL-expressions with Language Models

Algorithm IDL-NGLM-BFS The first algorithm
that we propose is algorithm IDL-NGLM-BFS in
Figure 4. The algorithm builds a weighted finite-
state acceptor � corresponding to an IDL-graph
� incrementally, by keeping track of a set of ac-
tive states, called ' :	-�4*;�1 . The incrementality comes
from creating new transitions and states in � orig-
inating in these active states, by unfolding the IDL-
graph � ; the set of newly unfolded states is called %���8
) @ . The new transitions in � are weighted ac-

IDL-NGLM-BFS � � � ��� �
1 ' :	-�4*;�1�� �	� �����  �
2 ��'���� A
3 while � '��
4 do  %���8
) @�� UNFOLDIDLG ��' : -�40;
1 � �=�
5 EVALUATENGLM �  %���8
)>@�� ��� �
6 if FINALIDLG �  %���8
)>@�� � �
7 then ��'������
8 ' :	-�4*;�1��  %���8�) @
9 return ' :	-�4*;�1

Figure 4: Pseudo-code for intersecting an IDL-graph
� with an n-gram language model ��� using incre-
mental unfolding and breadth-first search.

cording to the language model. If a final state of
� is not yet reached, the while loop is closed by
making the  %���8�) @ set of states to be the next set of
' :	-�4*;�1 states. Note that this is actually a breadth-
first search (BFS) with incremental unfolding. This
algorithm still unfolds the IDL-graph completely,
and therefore suffers from the same drawback as the
naı̈ve algorithm.

The interesting contribution of algorithm
IDL-NGLM-BFS, however, is the incremental
unfolding. If, instead of line 8 in Figure 4, we
introduce mechanisms to control which  %���8�) @
states become part of the ' : -�40;
1 state set for the
next unfolding iteration, we obtain a series of more
effective algorithms.

Algorithm IDL-NGLM-A � We arrive at algo-
rithm IDL-NGLM-A � by modifying line 8 in Fig-
ure 4, thus obtaining the algorithm in Figure 5. We
use as control mechanism a priority queue, '�6�- '
3�� ,
in which the states from  % ��8
)>@ are PUSH-ed, sorted
according to an admissible heuristic function (Rus-
sell and Norvig, 1995). In the next iteration, ' : -�40;
1
is a singleton set containing the state POP-ed out
from the top of the priority queue.

Algorithm IDL-NGLM-BEAM We arrive at al-
gorithm IDL-NGLM-BEAM by again modifying
line 8 in Figure 4, thus obtaining the algorithm in
Figure 6. We control the unfolding using a prob-
abilistic beam !"1�'#" , which, via the BEAMSTATES

function, selects as ' : -�40;
1 states only the states in
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IDL-NGLM-A � � � � ��� �
1 ' :	-�4*;�1�� �	� �����  �
2 ��'���� A
3 while � '��
4 do  %���8
) @�� UNFOLDIDLG ��' : -�40;
1 � �=�
5 EVALUATENGLM �  %���8
)>@�� ��� �
6 if FINALIDLG �  %���8
)>@�� � �
7 then ��'������
8 for each 65- '�- 1 in  %���8
)>@

do PUSH ��'�6�- '
3#� ��65- '�- 1��
' : -�40;
1�� POP ��'
65- '
3#� �

9 return ' :	-�4*;�1

Figure 5: Pseudo-code for intersecting an IDL-graph
� with an n-gram language model ��� using incre-
mental unfolding and A � search.

IDL-NGLM-BEAM � � � ��� � !"1�'#" �
1 ' :	-�4*;�1�� �	� �����  �
2 ��'���� A
3 while � '��
4 do  %���8
) @�� UNFOLDIDLG ��' : -�40;
1 � �=�
5 EVALUATENGLM �  %���8
)>@�� ��� �
6 if FINALIDLG �  %���8
)>@�� � �
7 then ��'������
8 ' :	-�4*;�1�� BEAMSTATES �  %���8
) @�� !?1?'#" �
9 return ' :	-�4*;�1

Figure 6: Pseudo-code for intersecting an IDL-graph
� with an n-gram language model ��� using incre-
mental unfolding and probabilistic beam search.

 %���8
) @ reachable with a probability higher or equal
to the current maximum probability times the prob-
ability beam !?1?'#" .

3.3 Computing Admissible Heuristics for
IDL-expressions

The IDL representation is ideally suited for com-
puting accurate admissible heuristics under lan-
guage models. These heuristics are needed by the
IDL-NGLM-A � algorithm, and are also employed
for pruning by the IDL-NGLM-BEAM algorithm.

For each state
�

in a weighted finite-state accep-
tor � corresponding to an IDL-graph � , one can
efficiently extract from � – without further unfold-

ing – the set1 of all edge labels that can be used to
reach the final states of � . This set of labels, de-
noted �������	�
 , is an overestimation of the set of fu-
ture events reachable from

�
, because the labels un-

der the � operators are all considered. From ��� �����

and the � -1 labels (when using an � -gram language
model) recorded in state

�
we obtain the set of label

sequences of length � -1. This set, denoted ���� 
 , is
an (over)estimated set of possible future condition-
ing events for state

�
, guaranteed to contain the most

cost-efficient future conditioning events for state
�

.
Using ���� 
 , one needs to extract from ��� �����
 the
set of most cost-efficient future events from under
each � operator. We use this set, denoted ��� 
 , to
arrive at an admissible heuristic for state

�
under a

language model ��� , using Equation 2:
� � � ����� ���������! #"%$'& �)( �+*, �����.-+��� � ��� �0/ � 12/���� (2)

If
� � � � � is the true future cost for state

�
, we guar-

antee that
� � � �43 � ��� � � from the way ��� 
 and

���� 
 are constructed. Note that, as it usually hap-
pens with admissible heuristics, we can make

� � � �
come arbitrarily close to

� ��� � � , by computing in-
creasingly better approximations ���� 
 of ���� �
 .
Such approximations, however, require increasingly
advanced unfoldings of the IDL-graph � (a com-
plete unfolding of � for state

�
gives ���� 
 �

���� �
 , and consequently
� � � �5� � ��� � � ). It fol-

lows that arbitrarily accurate admissible heuristics
exist for IDL-expressions, but computing them on-
the-fly requires finding a balance between the time
and space requirements for computing better heuris-
tics and the speed-up obtained by using them in the
search algorithms.

3.4 Formal Properties of IDL-NGLM
algorithms

The following theorem states the correctness of our
algorithms, in the sense that they find the maximum
probability path encoded by an IDL-graph under an
n-gram language model.

Theorem 1 Let � be an IDL-expression, G( � )
its IDL-graph, and W( � ) its wFSA under
an n-gram language model LM. Algorithms
IDL-NGLM-BFS and IDL-NGLM-A � find the

1Actually, these are multisets, as we treat multiply-occurring
labels as separate items.
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path of maximum probability under LM. Algorithm
IDL-NGLM-BEAM finds the path of maximum
probability under LM, if all states in W( � ) along
this path are selected by its BEAMSTATES function.

The proof of the theorem follows directly from the
correctness of the BFS and A � search, and from the
condition imposed on the beam search.

The next theorem characterizes the run-time com-
plexity of these algorithms, in terms of an input IDL-
expression � and its corresponding IDL-graph � �����
complexity. There are three factors that linearly in-
fluence the run-time complexity of our algorithms:� is the maximum number of nodes in � ����� needed
to represent a state in

� ����� – � depends solely on � ;� is the maximum number of nodes in � ����� needed
to represent a state in � ����� – � depends on � and
� , the length of the context used by the � -gram lan-
guage model; and

�
is the number of states of � �����

–
�

also depends on � and � . Of these three factors,�
is by far the predominant one, and we simply call�
the complexity of an IDL-expression.

Theorem 2 Let � be an IDL-expression, � ����� its
IDL-graph,

� ����� its FSA, and � ����� its wFSA
under an n-gram language model. Let � � � ����� 
be the set of states of

� ����� , and � � � ����� 
the set of states of � ����� . Let also � �
( �+* , ����� �
	����� � 1 � , � � ( �+* , ����� ��	����� � 1 � , and� � ��� � � �����  � . Algorithms IDL-NGLM-BFS
and IDL-NGLM-BEAM have run-time complexity� � ��� � � . Algorithm IDL-NGLM-A � has run-time
complexity

� � ��� � " $'& � � .
We omit the proof here due to space constraints. The
fact that the run-time behavior of our algorithms is
linear in the complexity of the input IDL-expression
(with an additional log factor in the case of A �
search due to priority queue management) allows us
to say that our algorithms are efficient with respect
to the task they accomplish.

We note here, however, that depending on the
input IDL-expression, the task addressed can vary
in complexity from linear to exponential. That
is, for the intersection of an IDL-expression � �

��� � � � ����� � ��� � (bag of � words) with a trigram lan-
guage model, we have � ������� � , � ����� � ����� ,� � 1

�
��1�� A , and therefore a

� � � � 1 � � com-
plexity. This exponential complexity comes as no
surprise given that the problem of intersecting an n-

gram language model with a bag of words is known
to be NP-complete (Knight, 1999). On the other
hand, for intersecting an IDL-expression � � � � �
����� � � � (sequence of � words) with a trigram lan-
guage model, we have � ����� � A , � ����� � � , and� � � , and therefore an

� � ��� generation algorithm.
In general, for IDL-expressions for which � is

bounded, which we expect to be the case for most
practical problems, our algorithms perform in poly-
nomial time in the number of words available for
generation.

4 Evaluation of IDL-NGLM Algorithms

In this section, we present results concerning
the performance of our algorithms on a word-
ordering task. This task can be easily defined as
follows: from a bag of words originating from
some sentence, reconstruct the original sentence as
faithfully as possible. In our case, from an original
sentence such as “the gifts are donated by amer-
ican companies”, we create the IDL-expression ! ��" �

���.-0/�1 � ��4 ��-06
�	@ 8
%('�- 1?@��	:?8#"92�' % 4 156���!�+(�	'
3?1 �	' " 1�354�:"'�% � �
!$##��" , from which some algorithm realizes a sen-
tence such as “donated by the american companies
are gifts”. Note the natural way we represent in
an IDL-expression beginning and end of sentence
constraints, using the � operator. Since this is
generation from bag-of-words, the task is known to
be at the high-complexity extreme of the run-time
behavior of our algorithms. As such, we consider it
a good test for the ability of our algorithms to scale
up to increasingly complex inputs.

We use a state-of-the-art, publicly available
toolkit2 to train a trigram language model using
Kneser-Ney smoothing, on 10 million sentences
(170 million words) from the Wall Street Journal
(WSJ), lower case and no final punctuation. The test
data is also lower case (such that upper-case words
cannot be hypothesized as first words), with final
punctuation removed (such that periods cannot be
hypothesized as final words), and consists of 2000
unseen WSJ sentences of length 3-7, and 2000 un-
seen WSJ sentences of length 10-25.

The algorithms we tested in this experiments were
the ones presented in Section 3.2, plus two baseline
algorithms. The first baseline algorithm, L, uses an

2http://www.speech.sri.com/projects/srilm/
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inverse-lexicographic order for the bag items as its
output, in order to get the word the on sentence ini-
tial position. The second baseline algorithm, G, is
a greedy algorithm that realizes sentences by maxi-
mizing the probability of joining any two word se-
quences until only one sequence is left.

For the A � algorithm, an admissible cost is com-
puted for each state

�
in a weighted finite-state au-

tomaton, as the sum (over all unused words) of the
minimum language model cost (i.e., maximum prob-
ability) of each unused word when conditioning over
all sequences of two words available at that particu-
lar state for future conditioning (see Equation 2, with
��� 
 � ���������
 ). These estimates are also used by
the beam algorithm for deciding which IDL-graph
nodes are not unfolded. We also test a greedy ver-
sion of the A � algorithm, denoted A �
 , which con-
siders for unfolding only the nodes extracted from
the priority queue which already unfolded a path of
length greater than or equal to the maximum length
already unfolded minus � (in this notation, the A �
algorithm would be denoted A �� ). For the beam al-
gorithms, we use the notation B � to specify a proba-
bilistic beam of size � , i.e., an algorithm that beams
out the states reachable with probability less than the
current maximum probability times � .

Our first batch of experiments concerns bags-of-
words of size 3-7, for which exhaustive search is
possible. In Table 2, we present the results on the
word-ordering task achieved by various algorithms.
We evaluate accuracy performance using two auto-
matic metrics: an identity metric, ID, which mea-
sures the percent of sentences recreated exactly, and
BLEU (Papineni et al., 2002), which gives the ge-
ometric average of the number of uni-, bi-, tri-, and
four-grams recreated exactly. We evaluate the search
performance by the percent of Search Errors made
by our algorithms, as well as a percent figure of Es-
timated Search Errors, computed as the percent of
searches that result in a string with a lower proba-
bility than the probability of the original sentence.
To measure the impact of using IDL-expressions for
this task, we also measure the percent of unfolding
of an IDL graph with respect to a full unfolding. We
report speed results as the average number of sec-
onds per bag-of-words, when using a 3.0GHz CPU
machine under a Linux OS.

The first notable result in Table 2 is the savings

ALG ID BLEU Search Unfold Speed

(%) Errors (%) (%) (sec./bag)

L 2.5 9.5 97.2 (95.8) N/A .000
G 30.9 51.0 67.5 (57.6) N/A .000
BFS 67.1 79.2 0.0 (0.0) 100.0 .072
A � 67.1 79.2 0.0 (0.0) 12.0 .010
A � � 60.5 74.8 21.1 (11.9) 3.2 .004
A �� 64.3 77.2 8.5 (4.0) 5.3 .005
B ��� � 65.0 78.0 9.2 (5.0) 7.2 .006
B ��� � 66.6 78.8 3.2 (1.7) 13.2 .011

Table 2: Bags-of-words of size 3-7: accuracy (ID,
BLEU), Search Errors (and Estimated Search Errors), space
savings (Unfold), and speed results.

achieved by the A � algorithm under the IDL repre-
sentation. At no cost in accuracy, it unfolds only
12% of the edges, and achieves a 7 times speed-
up, compared to the BFS algorithm. The savings
achieved by not unfolding are especially important,
since the exponential complexity of the problem is
hidden by the IDL representation via the folding
mechanism of the � operator. The algorithms that
find sub-optimal solutions also perform well. While
maintaining high accuracy, the A �� and B ��� � algo-
rithms unfold only about 5-7% of the edges, at 12-14
times speed-up.

Our second batch of experiments concerns bag-
of-words of size 10-25, for which exhaustive search
is no longer possible (Table 3). Not only exhaustive
search, but also full A � search is too expensive in
terms of memory (we were limited to 2GiB of RAM
for our experiments) and speed. Only the greedy
versions A � � and A �� , and the beam search using tight
probability beams (0.2-0.1) scale up to these bag
sizes. Because we no longer have access to the string
of maximum probability, we report only the per-
cent of Estimated Search Errors. Note that, in terms
of accuracy, we get around 20% Estimated Search
Errors for the best performing algorithms (A �� and
B ��� � ), which means that 80% of the time the algo-
rithms are able to find sentences of equal or better
probability than the original sentences.

5 Conclusions

In this paper, we advocate that IDL expressions
can provide an adequate framework for develop-
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ALG ID BLEU Est. Search Speed

(%) Errors (%) (sec./bag)

L 0.0 1.4 99.9 0.0
G 1.2 31.6 83.6 0.0
A � � 5.8 47.7 34.0 0.7
A �� 7.4 51.2 21.4 9.5
B ��� � 9.0 52.1 23.3 7.1
B ��� � 12.2 52.6 19.9 36.7

Table 3: Bags-of-words of size 10-25: accuracy (ID,
BLEU), Estimated Search Errors, and speed results.

ing text-to-text generation capabilities. Our contri-
bution concerns a new generation mechanism that
implements intersection between an IDL expression
and a probabilistic language model. The IDL for-
malism is ideally suited for our approach, due to
its efficient representation and, as we show in this
paper, efficient algorithms for intersecting, scoring,
and ranking sentence realizations using probabilistic
language models.

We present theoretical results concerning the cor-
rectness and efficiency of the proposed algorithms,
and also present empirical results that show that
our algorithms scale up to handling IDL-expressions
of high complexity. Real-world text-to-text genera-
tion tasks, such as headline generation and machine
translation, are likely to be handled graciously in this
framework, as the complexity of IDL-expressions
for these tasks tends to be lower than the complex-
ity of the IDL-expressions we worked with in our
experiments.
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Abstract

This paper defines a generative probabilis-
tic model of parse trees, which we call
PCFG-LA. This model is an extension of
PCFG in which non-terminal symbols are
augmented with latent variables. Fine-
grained CFG rules are automatically in-
duced from a parsed corpus by training a
PCFG-LA model using an EM-algorithm.
Because exact parsing with a PCFG-LA is
NP-hard, several approximations are de-
scribed and empirically compared. In ex-
periments using the Penn WSJ corpus, our
automatically trained model gave a per-
formance of 86.6% (F � , sentences � 40
words), which is comparable to that of an
unlexicalized PCFG parser created using
extensive manual feature selection.

1 Introduction

Variants of PCFGs form the basis of several broad-
coverage and high-precision parsers (Collins, 1999;
Charniak, 1999; Klein and Manning, 2003). In those
parsers, the strong conditional independence as-
sumption made in vanilla treebank PCFGs is weak-
ened by annotating non-terminal symbols with many
‘features’ (Goodman, 1997; Johnson, 1998). Exam-
ples of such features are head words of constituents,
labels of ancestor and sibling nodes, and subcatego-
rization frames of lexical heads. Effective features
and their good combinations are normally explored
using trial-and-error.

This paper defines a generative model of parse
trees that we call PCFG with latent annotations
(PCFG-LA). This model is an extension of PCFG
models in which non-terminal symbols are anno-
tated with latent variables. The latent variables work
just like the features attached to non-terminal sym-
bols. A fine-grained PCFG is automatically induced
from parsed corpora by training a PCFG-LA model
using an EM-algorithm, which replaces the manual
feature selection used in previous research.

The main focus of this paper is to examine the
effectiveness of the automatically trained models in
parsing. Because exact inference with a PCFG-LA,
i.e., selection of the most probable parse, is NP-hard,
we are forced to use some approximation of it. We
empirically compared three different approximation
methods. One of the three methods gives a perfor-
mance of 86.6% (F � , sentences � 40 words) on the
standard test set of the Penn WSJ corpus.

Utsuro et al. (1996) proposed a method that auto-
matically selects a proper level of generalization of
non-terminal symbols of a PCFG, but they did not
report the results of parsing with the obtained PCFG.
Henderson’s parsing model (Henderson, 2003) has a
similar motivation as ours in that a derivation history
of a parse tree is compactly represented by induced
hidden variables (hidden layer activation of a neu-
ral network), although the details of his approach is
quite different from ours.

2 Probabilistic model

PCFG-LA is a generative probabilistic model of
parse trees. In this model, an observed parse tree
is considered as an incomplete data, and the corre-
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Figure 1: Tree with latent annotations &(' )+* (com-
plete data) and observed tree & (incomplete data).

sponding complete data is a tree with latent annota-
tions. Each non-terminal node in the complete data
is labeled with a complete symbol of the form ,-' ./* ,
where , is the non-terminal symbol of the corre-
sponding node in the observed tree and . is a latent
annotation symbol, which is an element of a fixed
set 0 .

A complete/incomplete tree pair of the sentence,
“the cat grinned,” is shown in Figure 2. The com-
plete parse tree, &(' )+* (left), is generated through
a process just like the one in ordinary PCFGs, but
the non-terminal symbols in the CFG rules are anno-
tated with latent symbols, )2143�. �65 .87 5:9:9:9<; . Thus,
the probability of the complete tree ( &(' )+* ) is= 3>&-' )?* ;
1A@"3CB$' .D�E* ;�FHG 3CB�' .I�E*KJML = ' . 7 *�N = ' .POK* ;
FQG 3RL = ' .P7K*KJMST&-' .8UK*VLW' .YXK* ;
FQG 3RS?&(' .PUK*KJ[Z]\8^ ;�F_G 3RL`' .8X<*KJMa<bcZ ;
FQG 3CN = ' . O *KJdNe' .8fg* ;�FHG 3CNe' .PfK*KJihcj�kClmlD^6n ;g5

where @"3CB�' . � * ; denotes the probability of an occur-
rence of the symbol B$' . � * at a root node and G 3�j ;
denotes the probability of a CFG rule j . The proba-
bility of the observed tree

= 3>& ; is obtained by sum-
ming

= 3>&(' )+* ; for all the assignments to latent an-
notation symbols, ) := 3>& ; 1poq �Er�s oq �tr�s_u:u:u oq % r�s

= 3>&(' )+* ;g9 (1)

Using dynamic programming, the theoretical
bound of the time complexity of the summation in
Eq. 1 is reduced to be proportional to the number of
non-terminal nodes in a parse tree. However, the cal-
culation at node l still has a cost that exponentially
grows with the number of l ’s daughters because we
must sum up the probabilities of v 0wvyx{z � combina-
tions of latent annotation symbols for a node with

n daughters. We thus took a kind of transforma-
tion/detransformation approach, in which a tree is
binarized before parameter estimation and restored
to its original form after parsing. The details of the
binarization are explained in Section 4.

Using syntactically annotated corpora as training
data, we can estimate the parameters of a PCFG-
LA model using an EM algorithm. The algorithm
is a special variant of the inside-outside algorithm
of Pereira and Schabes (1992). Several recent work
also use similar estimation algorithm as ours, i.e,
inside-outside re-estimation on parse trees (Chiang
and Bikel, 2002; Shen, 2004).

The rest of this section precisely defines PCFG-
LA models and briefly explains the estimation algo-
rithm. The derivation of the estimation algorithm is
largely omitted; see Pereira and Schabes (1992) for
details.

2.1 Model definition

We define a PCFG-LA | as a tuple | 1} L�~t� 5 L�� 5 0 5t�-5 @ 5EG�� , where

L ~{��� a set of observable non-terminal symbols

L�� � a set of terminal symbols

0 � a set of latent annotation symbols

� � a set of observable CFG rules

@"3R,(' .Y* ; � the probability of the occurrence

of a complete symbol ,(' .Y* at a root node

G 3�j ; � the probability of a rule j�� � ' 0�* 9
We use , 5t�e5:9:9:9 for non-terminal symbols inL�~t� ; � �:5 ��7 5:9:9:9 for terminal symbols in L(� ;

and . 5E�P5:9:9:9 for latent annotation symbols in 0 .L�~t�<' 0�* denotes the set of complete non-terminal
symbols, i.e., L(~{�<' 0�*I1���,(' .Y*�v�,d��L�~{� 5 .���0�� .
Note that latent annotation symbols are not attached
to terminal symbols.

In the above definition, � is a set of CFG rules
of observable (i.e., not annotated) symbols. For
simplicity of discussion, we assume that � is a
CNF grammar, but extending to the general case
is straightforward. � ' 0�* is the set of CFG rules
of complete symbols, such as N+' ./*�J grinned orB$' .Y*KJML = ' � *�N = ' ��* . More precisely,

� ' 0�*P1i��3R,(' .Y*mJ�� ; v�3R,HJ[� ; � �-� .���0����
��3R,-' ./*KJ � ' � *��T' ��* ; v�3R,�J � � ; � �-� . 5E�P5 �?��0�� 9
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We assume that non-terminal nodes in a parse tree& are indexed by integers k�1�� 5:9:9:9�5E� , starting
from the root node. A complete tree is denoted by&(' )+* , where ) 1 3�. �65:9:9:9�5 .Y¡ ; �d0 ¡ is a vec-
tor of latent annotation symbols and .m¢ is the latent
annotation symbol attached to the k -th non-terminal
node.

We do not assume any structured parametrizations
in G and @ ; that is, each G 3�j ; 3�j£� � ' 0_* ; and@"3R,-' ./* ; 3R,-' ./*��_L ~{� ' 0�* ; is itself a parameter to be
tuned. Therefore, an annotation symbol, say, . , gen-
erally does not express any commonalities among
the complete non-terminals annotated by . , such as,-' ./* 5t� ' ./* 5 ^6Z�a .

The probability of a complete parse tree &-' )?* is
defined as

= 3>&(' )+* ; 1A@"3R, � ' . � * ; ¤¥ r�¦¨§�© ªY« G 3�j ;g5 (2)

where , � ' . � * is the label of the root node of &(' )+*
and S(¬D ®Q¯ denotes the multiset of annotated CFG
rules used in the generation of &(' )+* . We have the
probability of an observable tree & by marginalizing
out the latent annotation symbols in &(' )+* :

= 3>& ; 1 o° r�s	± @"3R,���' .I�E* ; ¤¥ r�¦¨§�© ª/« G 3�j ;g5 (3)

where � is the number of non-terminal nodes in & .

2.2 Forward-backward probability

The sum in Eq. 3 can be calculated using a dynamic
programming algorithm analogous to the forward al-
gorithm for HMMs. For a sentence � � ��7 9:9:9 �$²
and its parse tree & , backward probabilities ³ ¢¬ 3�. ;
are recursively computed for the k -th non-terminal
node and for each .A�´0 . In the definition below,L ¢ ��L�~t� denotes the non-terminal label of the k -th
node.

µ If node k is a pre-terminal node above a termi-
nal symbol ��¶ , then ³ ¢¬ 3�. ; 1 G 3RL ¢ ' ./*·J��	¶ ; .

µ Otherwise, let ¸ and ¹ be the two daughter
nodes of k . Then

³ ¢¬ 3�. ; 1 oq{º6» q�¼ r�s
G 3RL ¢ ' ./*KJ�L�¶�' .�¶K*VL(½�' .P½6* ;F ³ ¶ ¬ 3�.�¶ ; ³ ½¬ 3�.P½ ;g9

Using backward probabilities,
= 3>& ; is calculated as= 3>& ; 1¿¾ q � r�s @"3RL � ' . � * ; ³ �¬ 3�. �K; .

We define forward probabilities À ¢¬ 3�. ; , which are
used in the estimation described below, as follows:

µ If node k is the root node (i.e., k = 1), thenÀ ¢¬ 3�. ; 1A@"3RL ¢ ' .Y* ; .
µ If node k has a right sibling ¹ , let ¸ be the

mother node of k . Then

À ¢¬ 3�. ; 1 oq{º<» q�¼ r�s
G 3RL�¶c' .Á¶K*KJML ¢ ' .Y*VL�½Á' .8½�* ;F À ¶¬ 3�.�¶ ; ³ ½¬ 3�.P½ ;g9

µ If node k has a left sibling, À ¢¬ 3�. ; is defined
analogously.

2.3 Estimation

We now derive the EM algorithm for PCFG-LA,
which estimates the parameters Â�1�3 G"5 @ ; . Let Ã[1�:& �65 &·7 5:9:9:9 � be the training set of parse trees andL ¢� 5:9:9:9�5 L ¢¡�Ä be the labels of non-terminal nodes in&·¢ . Like the derivations of the EM algorithms for
other latent variable models, the update formulas for
the parameters, which update the parameters from Â
to Â�Å�1Æ3 G Å 5 @·Å ; , are obtained by constrained opti-
mization of ÇT3RÂ Å v Â ; , which is defined as

ÇT3RÂ Å v Â ; 1 o¬ Ä rÉÈ o® Ä r�s ± Ä
=�Ê 3R) ¢ v & ¢�;�ËÍÌ�Î =�Ê]Ï 3>& ¢ ' ) ¢ * ;g5

where
=�Ê

and
=�Ê Ï

denote probabilities under Â andÂ Å , and
= 3R)�v & ; is the conditional probability of la-

tent annotation symbols given an observed tree & ,
i.e.,

= 3R)�v & ; 1 = 3>&-' )?* ;EÐ = 3>& ; . Using the La-
grange multiplier method and re-arranging the re-
sults using the backward and forward probabilities,
we obtain the update formulas in Figure 2.

3 Parsing with PCFG-LA

In theory, we can use PCFG-LAs to parse a given
sentence � by selecting the most probable parse:

&·ÑÓÒ]Ô�Õ¨1AÖ�× Î�Ø ÖÉÙ¬ r�Ú¨ÛÝÜmÞ = 3>&-v � ; 1AÖ�× Î�Ø ÖÉÙ¬ r�Ú¨ÛßÜ·Þ = 3>& ;g5 (4)

where àT3�� ; denotes the set of possible parses for� under the observable grammar � . While the opti-
mization problem in Eq. 4 can be efficiently solved
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Figure 2: Parameter update formulas.

for PCFGs using dynamic programming algorithms,
the sum-of-products form of

= 3>& ; in PCFG-LA
models (see Eq. 2 and Eq. 3) makes it difficult to
apply such techniques to solve Eq. 4.

Actually, the optimization problem in Eq. 4 is NP-
hard for general PCFG-LA models. Although we
omit the details, we can prove the NP-hardness by
observing that a stochastic tree substitution grammar
(STSG) can be represented by a PCFG-LA model in
a similar way to one described by Goodman (1996a),
and then using the NP-hardness of STSG parsing
(Simaán, 2002).

The difficulty of the exact optimization in Eq. 4
forces us to use some approximations of it. The rest
of this section describes three different approxima-
tions, which are empirically compared in the next
section. The first method simply limits the number
of candidate parse trees compared in Eq. 4; we first
create N-best parses using a PCFG and then, within
the N-best parses, select the one with the highest
probability in terms of the PCFG-LA. The other two
methods are a little more complicated, and we ex-
plain them in separate subsections.

3.1 Approximation by Viterbi complete trees

The second approximation method selects the best
complete tree & Å ' ) Å * , that is,

& Å ' ) Å *·1 Ö�× Î�Ø ÖÉÙ¬ r�Ú¨ÛÝÜmÞ » ® r�s�� ª � = 3>&(' )+* ;g9 (5)

We call & ÅÓ' )+ÅÝ* a Viterbi complete tree. Such a tree
can be obtained in �T3tv ��v U ; time by regarding the
PCFG-LA as a PCFG with annotated symbols.1

The observable part of the Viterbi complete
tree &þÅÓ' )eÅß* (i.e., & Å ) does not necessarily coin-
cide with the best observable tree &¨ÑÓÒ]ÔCÕ in Eq. 4.
However, if &mÑÓÒ]Ô�Õ has some ‘dominant’ assign-
ment � to its latent annotation symbols such
that

= 3>&mÑÓÒ]ÔCÕt' ��* ; � = 3>&mÑÓÒ�Ô�Õ ; , then
= 3>& Å ;!�= 3>&mÑÓÒ�Ô�Õ ; because

= 3>&mÑÓÒ]ÔCÕt' �_* ; � = 3>&þÅÓ' )eÅÝ* ; and= 3>& Å ' ) Å * ; � = 3>& Å ; , and thus & Å and &mÑÓÒ]Ô�Õ are al-
most equally ‘good’ in terms of their marginal prob-
abilities.

3.2 Viterbi parse in approximate distribution

In the third method, we approximate the true dis-
tribution

= 3>&-v � ; by a cruder distribution ÇT3>&�v � ; ,
and then find the tree with the highest Ç?3>&-v � ; in
polynomial time. We first create a packed repre-
sentation of àT3�� ; for a given sentence � .2 Then,
the approximate distribution ÇT3>&�v � ; is created us-
ing the packed forest, and the parameters in ÇT3>&-v � ;
are adjusted so that ÇT3>&-v � ; approximates

= 3>&-v � ;
as closely as possible. The form of ÇT3>&�v � ; is that
of a product of the parameters, just like the form of
a PCFG model, and it enables us to use a Viterbi al-
gorithm to select the tree with the highest ÇT3>&�v � ; .

A packed forest is defined as a tuple
}
" 5$#É� . The

first component,
"
, is a multiset of chart items of the

form 3R, 5 ³ 5 ^ ; . A chart item 3R, 5 ³ 5 ^ ; � " indicates
that there exists a parse tree in à�3�� ; that contains a
constituent with the non-terminal label , that spans

1For efficiency, we did not actually parse sentences with%�� &��
but selected a Viterbi complete tree from a packed rep-

resentation of candidate parses in the experiments in Section 4.
2In practice, fully constructing a packed representation of' â ��ë

has an unrealistically high cost for most input sentences.
Alternatively, we can use a packed representation of a subset
of
' â ��ë

, which can be obtained by parsing with beam thresh-
olding, for instance. An approximate distribution (

â �)� ��ë
on

such subsets can be derived in almost the same way as one for
the full

' â ��ë
, but the conditional distribution,

� â �*� � ë
, is re-

normalized so that the total mass for the subset sums to 1.
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Figure 3: Two parse trees and packed representation
of them.

from the ³ -th to ^ -th word in � . The second compo-
nent, # , is a function on

"
that represents dominance

relations among the chart items in
"
; # 3�k ; is a set of

possible daughters of k if k is not a pre-terminal node,
and # 3�k ; 12�6�þ½�� if k is a pre-terminal node above��½ . Two parse trees for a sentence � 1 � � ��7K��U
and a packed representation of them are shown in
Figure 3.

We require that each tree &M��à�3�� ; has a unique
representation as a set of connected chart items in"

. A packed representation satisfying the uniqueness
condition is created using the CKY algorithm with
the observable grammar � , for instance.

The approximate distribution, ÇT3>&-v � ; , is defined
as a PCFG, whose CFG rules � Ü is defined as� Ü 1 ��3�k�J : ; vIk-� " � : � # 3�k ; � . We use ;�3�j ;
to denote the rule probability of rule j � � Ü and
; ¥ 3�k ; to denote the probability with which k-� " is
generated as a root node. We define Ç?3>&-v � ; as

ÇT3>&-v � ; 1<; ¥ 3�k �K; ¡¤½6= � ;�3�k�½ J>:�½ ;g5
where the set of connected items �6k �65:9:9:9�5 kC¡��@? "
is the unique representation of & .

To measure the closeness of approximation byÇT3>&�v � ; , we use the ‘inclusive’ KL-divergence,A�B 3 = vÍv Ç ; (Frey et al., 2000):

A�B 3 = vÍv Ç ; 1 o¬ r�Ú¨ÛÝÜmÞ
= 3>&�v � ;�ËÍÌ�Î = 3>&-v � ;ÇT3>&-v � ; 9

Minimizing
A�B 3 = vÍv Ç ; under the normalization

constraints on ; ¥ and ; yields closed form solutions
for ; ¥ and ; , as shown in Figure 4.=

in and
=

out in Figure 4 are similar to ordinary in-
side/outside probabilities. We define

=
in as follows:

µ If k�1 3R, 5 ¹ 5 ¹ ; � " is a pre-terminal node
above �þ½ , then

=
in 3�kg' .Y* ; 1 G 3R,-' ./*IJ���½ ; .

µ Otherwise,

=
in 3�kg' .Y* ; 1 o¶ ½ rDC{Û ¢ Þ oE�» F r�s

G 3R,-' ./*KJ � ¶�' � *���½�' ��* ;F = in 3Í¸8' � * ; = in 3Ó¹m' ��* ;g5
where � ¶ and ��½ denote non-terminal symbols
of chart items ¸ and ¹ .

The outside probability,
=

out, is calculated using
=

in

and PCFG-LA parameters along the packed struc-
ture, like the outside probabilities for PCFGs.

Once we have computed ;�3�kmJG: ; and ; ¥ 3�k ; , the
parse tree & that maximizes ÇT3>&-v � ; is found using
a Viterbi algorithm, as in PCFG parsing.

Several parsing algorithms that also use inside-
outside calculation on packed chart have been pro-
posed (Goodman, 1996b; Simaán, 2003; Clark and
Curran, 2004). Those algorithms optimize some
evaluation metric of parse trees other than the pos-
terior probability

= 3>&-v � ; , e.g., (expected) labeled
constituent recall or (expected) recall rate of depen-
dency relations contained in a parse. It is in contrast
with our approach where (approximated) posterior
probability is optimized.

4 Experiments

We conducted four sets of experiments. In the first
set of experiments, the degree of dependency of
trained models on initialization was examined be-
cause EM-style algorithms yield different results
with different initial values of parameters. In the
second set of experiments, we examined the rela-
tionship between model types and their parsing per-
formances. In the third set of experiments, we com-
pared the three parsing methods described in the pre-
vious section. Finally, we show the result of a pars-
ing experiment using the standard test set.

We used sections 2 through 20 of the Penn WSJ
corpus as training data and section 21 as heldout
data. The heldout data was used for early stop-
ping; i.e., the estimation was stopped when the rate
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Figure 4: Optimal parameters of approximate distribution Ç .
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VXW VZY [ \ZW \]Y

Figure 5: Original subtree.

of increase in the likelihood of the heldout data be-
came lower than a certain threshold. Section 22 was
used as test data in all parsing experiments except
in the final one, in which section 23 was used. We
stripped off all function tags and eliminated empty
nodes in the training and heldout data, but any other
pre-processing, such as comma raising or base-NP
marking (Collins, 1999), was not done except for
binarizations.

4.1 Dependency on initial values

To see the degree of dependency of trained mod-
els on initializations, four instances of the same
model were trained with different initial values of
parameters.3 The model used in this experiment was
created by CENTER-PARENT binarization and v 0wv
was set to 16. Table 1 lists training/heldout data log-
likelihood per sentence (LL) for the four instances
and their parsing performances on the test set (sec-
tion 22). The parsing performances were obtained
using the approximate distribution method in Sec-
tion 3.2. Different initial values were shown to affect
the results of training to some extent (Table 1).

3The initial value for an annotated rule probability,á âäã � �É�	å ç�� è6�ßé�� êg�ßë
, was created by randomly multiplying

the maximum likelihood estimation of the corresponding PCFG
rule probability,

� âäã åiç�éQë
, as follows:

á âäã � �É��åiç�� è:� é�� êg�ßëYì_íQî �ï�^._ � âäã åiç�éQë 	
where ` is a random number that is uniformly distributed in�badcfe4g 17	 cfe0g 1 � and

í ï is a normalization constant.

1 2 3 4 average hji
training LL -115 -114 -115 -114 -114 h 0.41
heldout LL -114 -115 -115 -114 -114 h 0.29

LR 86.7 86.3 86.3 87.0 86.6 h 0.27
LP 86.2 85.6 85.5 86.6 86.0 h 0.48

Table 1: Dependency on initial values.

CENTER-PARENT CENTER-HEADU
V W k UmlDn
VZY k Umopn
k Umopn
[ \ZW

\qY

U
V W k [ lrn
VZY k [ o]n
k [ opn
[ \ZW

\qY

LEFT RIGHTU
VXW k Umn
VZY k Umn
[ k Umn
\ W \ Y

U
k Umn

k Umn
k Umn
V W V Y

[
\ZW
\qY

Figure 6: Four types of binarization (H: head daugh-
ter).

4.2 Model types and parsing performance

We compared four types of binarization. The orig-
inal form is depicted in Figure 5 and the results are
shown in Figure 6. In the first two methods, called
CENTER-PARENT and CENTER-HEAD, the head-
finding rules of Collins (1999) were used. We ob-
tained an observable grammar � for each model by
reading off grammar rules from the binarized train-
ing trees. For each binarization method, PCFG-LA
models with different numbers of latent annotation
symbols, v 0wv�1M� 5$s�5ut�5$v , and �3w , were trained.
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Figure 7: Model size vs. parsing performance.

The relationships between the number of param-
eters in the models and their parsing performances
are shown in Figure 7. Note that models created
using different binarization methods have different
numbers of parameters for the same v 0wv . The pars-
ing performances were measured using F � scores of
the parse trees that were obtained by re-ranking of
1000-best parses by a PCFG.

We can see that the parsing performance gets bet-
ter as the model size increases. We can also see that
models of roughly the same size yield similar perfor-
mances regardless of the binarization scheme used
for them, except the models created using LEFT bi-
narization with small numbers of parameters ( v 0Wvc1� and s ). Taking into account the dependency on ini-
tial values at the level shown in the previous exper-
iment, we cannot say that any single model is supe-
rior to the other models when the sizes of the models
are large enough.

The results shown in Figure 7 suggest that we
could further improve parsing performance by in-
creasing the model size. However, both the memory
size and the training time are more than linear in v 0wv ,
and the training time for the largest ( v 0wv�1[�3w ) mod-
els was about 15 hours for the models created us-
ing CENTER-PARENT, CENTER-HEAD, and LEFT
and about 20 hours for the model created using
RIGHT. To deal with larger (e.g., v 0wv = 32 or 64)
models, we therefore need to use a model search that
reduces the number of parameters while maintaining
the model’s performance, and an approximation dur-
ing training to reduce the training time.
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N-best re-ranking
Viterbi complete tree
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Figure 8: Comparison of parsing methods.

4.3 Comparison of parsing methods

The relationships between the average parse time
and parsing performance using the three parsing
methods described in Section 3 are shown in Fig-
ure 8. A model created using CENTER-PARENT
with v 0Wvc1[�3w was used throughout this experiment.

The data points were made by varying config-
urable parameters of each method, which control the
number of candidate parses. To create the candi-
date parses, we first parsed input sentences using a
PCFG4, using beam thresholding with beam widthx . The data points on a line in the figure were cre-
ated by varying x with other parameters fixed. The
first method re-ranked the L -best parses enumerated
from the chart after the PCFG parsing. The two lines
for the first method in the figure correspond to L
= 100 and L = 300. In the second and the third
methods, we removed all the dominance relations
among chart items that did not contribute to any
parses whose PCFG-scores were higher than y = max,
where

=
max is the PCFG-score of the best parse in

the chart. The parses remaining in the chart were the
candidate parses for the second and the third meth-
ods. The different lines for the second and the third
methods correspond to different values of y .

The third method outperforms the other two meth-
ods unless the parse time is very limited (i.e., z 1

4The PCFG used in creating the candidate parses is roughly
the same as the one that Klein and Manning (2003) call a
‘markovised PCFG with vertical order = 2 and horizontal or-
der = 1’ and was extracted from Section 02-20. The PCFG itself
gave a performance of 79.6/78.5 LP/LR on the development set.
This PCFG was also used in the experiment in Section 4.4.
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{
40 words LR LP CB 0 CB

This paper 86.7 86.6 1.19 61.1
Klein and Manning (2003) 85.7 86.9 1.10 60.3

Collins (1999) 88.5 88.7 0.92 66.7
Charniak (1999) 90.1 90.1 0.74 70.1{

100 words LR LP CB 0 CB
This paper 86.0 86.1 1.39 58.3

Klein and Manning (2003) 85.1 86.3 1.31 57.2
Collins (1999) 88.1 88.3 1.06 64.0

Charniak (1999) 89.6 89.5 0.88 67.6

Table 2: Comparison with other parsers.

sec is required), as shown in the figure. The superi-
ority of the third method over the first method seems
to stem from the difference in the number of can-
didate parses from which the outputs are selected.5

The superiority of the third method over the second
method is a natural consequence of the consistent
use of

= 3>& ; both in the estimation (as the objective
function) and in the parsing (as the score of a parse).

4.4 Comparison with related work

Parsing performance on section 23 of the WSJ cor-
pus using a PCFG-LA model is shown in Table 2.
We used the instance of the four compared in the
second experiment that gave the best results on the
development set. Several previously reported results
on the same test set are also listed in Table 2.

Our result is lower than the state-of-the-art lex-
icalized PCFG parsers (Collins, 1999; Charniak,
1999), but comparable to the unlexicalized PCFG
parser of Klein and Manning (2003). Klein and
Manning’s PCFG is annotated by many linguisti-
cally motivated features that they found using ex-
tensive manual feature selection. In contrast, our
method induces all parameters automatically, except
that manually written head-rules are used in bina-
rization. Thus, our method can extract a consider-
able amount of hidden regularity from parsed cor-
pora. However, our result is worse than the lexical-
ized parsers despite the fact that our model has ac-
cess to words in the sentences. It suggests that cer-
tain types of information used in those lexicalized

5Actually, the number of parses contained in the packed for-
est is more than 1 million for over half of the test sentences
when | = /u} î  and ` ì /u} î � , while the number of parses for
which the first method can compute the exact probability in a
comparable time (around 4 sec) is only about 300.

parsers are hard to be learned by our approach.
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Abstract

This paper reports the development of log-
linear models for the disambiguation in
wide-coverage HPSG parsing. The esti-
mation of log-linear models requires high
computational cost, especially with wide-
coverage grammars. Using techniques to
reduce the estimation cost, we trained the
models using 20 sections of Penn Tree-
bank. A series of experiments empiri-
cally evaluated the estimation techniques,
and also examined the performance of the
disambiguation models on the parsing of
real-world sentences.

1 Introduction

Head-Driven Phrase Structure Grammar (HPSG)
(Pollard and Sag, 1994) has been studied extensively
from both linguistic and computational points of
view. However, despite research on HPSG process-
ing efficiency (Oepen et al., 2002a), the application
of HPSG parsing is still limited to specific domains
and short sentences (Oepen et al., 2002b; Toutanova
and Manning, 2002). Scaling up HPSG parsing to
assess real-world texts is an emerging research field
with both theoretical and practical applications.

Recently, a wide-coverage grammar and a large
treebank have become available for English HPSG
(Miyao et al., 2004). A large treebank can be used as
training and test data for statistical models. There-
fore, we now have the basis for the development and
the evaluation of statistical disambiguation models
for wide-coverage HPSG parsing.

The aim of this paper is to report the development
of log-linear models for the disambiguation in wide-
coverage HPSG parsing, and their empirical evalua-
tion through the parsing of the Wall Street Journal of
Penn Treebank II (Marcus et al., 1994). This is chal-
lenging because the estimation of log-linear models
is computationally expensive, and we require solu-
tions to make the model estimation tractable. We
apply two techniques for reducing the training cost.
One is the estimation on a packed representation of
HPSG parse trees (Section 3). The other is the filter-
ing of parse candidates according to a preliminary
probability distribution (Section 4).

To our knowledge, this work provides the first re-
sults of extensive experiments of parsing Penn Tree-
bank with a probabilistic HPSG. The results from
the Wall Street Journal are significant because the
complexity of the sentences is different from that of
short sentences. Experiments of the parsing of real-
world sentences can properly evaluate the effective-
ness and possibility of parsing models for HPSG.

2 Disambiguation models for HPSG

Discriminative log-linear models are now becom-
ing a de facto standard for probabilistic disambigua-
tion models for deep parsing (Johnson et al., 1999;
Riezler et al., 2002; Geman and Johnson, 2002;
Miyao and Tsujii, 2002; Clark and Curran, 2004b;
Kaplan et al., 2004). Previous studies on prob-
abilistic models for HPSG (Toutanova and Man-
ning, 2002; Baldridge and Osborne, 2003; Malouf
and van Noord, 2004) also adopted log-linear mod-
els. HPSG exploits feature structures to represent
linguistic constraints. Such constraints are known
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to introduce inconsistencies in probabilistic models
estimated using simple relative frequency (Abney,
1997). Log-linear models are required for credible
probabilistic models and are also beneficial for in-
corporating various overlapping features.

This study follows previous studies on the proba-
bilistic models for HPSG. The probability, ������, of
producing the parse result � from a given sentence �
is defined as

������ �
�

��
������� ����

�
�

����� ������� ���

�� �
�

���� ���

����
���� ����

�
�

����
�� ������

�� ����

where ������� is a reference distribution (usually as-
sumed to be a uniform distribution), and � ��� is a set
of parse candidates assigned to �. The feature func-
tion ����� �� represents the characteristics of � and �,
while the corresponding model parameter ����� �� is
its weight. Model parameters that maximize the log-
likelihood of the training data are computed using a
numerical optimization method (Malouf, 2002).

Estimation of the above model requires a set of
pairs ���� � ����, where �� is the correct parse for sen-
tence �. While �� is provided by a treebank, � ��� is
computed by parsing each � in the treebank. Pre-
vious studies assumed � ��� could be enumerated;
however, the assumption is impractical because the
size of � ��� is exponentially related to the length
of �. The problem of exponential explosion is in-
evitable in the wide-coverage parsing of real-world
texts because many parse candidates are produced to
support various constructions in long sentences.

3 Packed representation of HPSG parse
trees

To avoid exponential explosion, we represent � ���
in a packed form of HPSG parse trees. A parse tree
of HPSG is represented as a set of tuples ��� 	� 
�,
where �� 	� and 
 are the signs of mother, left daugh-
ter, and right daughter, respectively1. In chart pars-
ing, partial parse candidates are stored in a chart, in
which phrasal signs are identified and packed into an
equivalence class if they are determined to be equiv-
alent and dominate the same word sequence. A set

1For simplicity, only binary trees are considered. Extension
to unary and �-ary (� � �) trees is trivial.

Figure 1: Chart for parsing “he saw a girl with a
telescope”

of parse trees is then represented as a set of relations
among equivalence classes.

Figure 1 shows a chart for parsing “he saw a
girl with a telescope”, where the modifiee (“saw”
or “girl”) of “with” is ambiguous. Each feature
structure expresses an equivalence class, and the ar-
rows represent immediate-dominance relations. The
phrase, “saw a girl with a telescope”, has two trees
(A in the figure). Since the signs of the top-most
nodes are equivalent, they are packed into an equiv-
alence class. The ambiguity is represented as two
pairs of arrows that come out of the node.

Formally, a set of HPSG parse trees is represented
in a chart as a tuple ������ ��, where � is a set
of equivalence classes, �� � � is a set of root
nodes, and � � � � ���� is a function to repre-
sent immediate-dominance relations.

Our representation of the chart can be interpreted
as an instance of a feature forest (Miyao and Tsujii,
2002; Geman and Johnson, 2002). A feature for-
est is an “and/or” graph to represent exponentially-
many tree structures in a packed form. If � ��� is
represented in a feature forest, ����� ���� can be esti-
mated using dynamic programming without unpack-
ing the chart. A feature forest is formally defined as
a tuple, ������ �� Æ�, where  is a set of conjunc-
tive nodes, � is a set of disjunctive nodes, � � 

is a set of root nodes2, � � � � �� is a conjunctive
daughter function, and Æ �  � �� is a disjunctive

2For the ease of explanation, the definition of root node is
slightly different from the original.
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Figure 2: Packed representation of HPSG parse trees
in Figure 1

daughter function. The feature functions ����� �� are
assigned to conjunctive nodes.

The simplest way to map a chart of HPSG parse
trees into a feature forest is to map each equivalence
class � � � to a conjunctive node � �  . How-
ever, in HPSG parsing, important features for dis-
ambiguation are combinations of a mother and its
daughters, i.e., ��� 	� 
�. Hence, we map the tuple
���� �	� ���, which corresponds to ��� 	� 
�, into a
conjunctive node.

Figure 2 shows (a part of) the HPSG parse trees
in Figure 1 represented as a feature forest. Square
boxes are conjunctive nodes, dotted lines express a
disjunctive daughter function, and solid arrows rep-
resent a conjunctive daughter function.

The mapping is formally defined as follows.

�  � ����� �	� ������ � � � �	� �� � ��

��	� ��� � �����	,

� � � �,

� � � ����� �	� ������ � �� � ���� �	� ��� �
	,

� � � ����� �������� � � � ���� �

����� �	� �����	� �� � ����	� ��� � �����		,
and

� Æ � ������ �	� ���� ��	� ��	������ �	� ��� � 	.

Figure 3: Filtering of lexical entries for “saw”

4 Filtering by preliminary distribution

The above method allows for the tractable estima-
tion of log-linear models on exponentially-many
HPSG parse trees. However, despite the develop-
ment of methods to improve HPSG parsing effi-
ciency (Oepen et al., 2002a), the exhaustive parsing
of all sentences in a treebank is still expensive.

Our idea is that we can omit the computation
of parse trees with low probabilities in the estima-
tion stage because � ��� can be approximated with
parse trees with high probabilities. To achieve this,
we first prepared a preliminary probabilistic model
whose estimation did not require the parsing of a
treebank. The preliminary model was used to reduce
the search space for parsing a training treebank.

The preliminary model in this study is a unigram
model, 	������ �

�

�� ��	���� where � � � is a

word in the sentence �, and 	 is a lexical entry as-
signed to �. This model can be estimated without
parsing a treebank.

Given this model, we restrict the number of lexi-
cal entries used to parse a treebank. With a thresh-
old � for the number of lexical entries and a thresh-
old � for the probability, lexical entries are assigned
to a word in descending order of probability, until
the number of assigned entries exceeds �, or the ac-
cumulated probability exceeds �. If the lexical en-
try necessary to produce the correct parse is not as-
signed, it is additionally assigned to the word.

Figure 3 shows an example of filtering lexical en-
tries assigned to “saw”. With � � 
���, four lexical
entries are assigned. Although the lexicon includes
other lexical entries, such as a verbal entry taking a
sentential complement (� � 
�
� in the figure), they
are filtered out. This method reduces the time for
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RULE the name of the applied schema
DIST the distance between the head words of the

daughters
COMMA whether a comma exists between daughters

and/or inside of daughter phrases
SPAN the number of words dominated by the phrase
SYM the symbol of the phrasal category (e.g. NP, VP)

WORD the surface form of the head word
POS the part-of-speech of the head word
LE the lexical entry assigned to the head word

Table 1: Templates of atomic features

parsing a treebank, while this approximation causes
bias in the training data and results in lower accu-
racy. The trade-off between the parsing cost and the
accuracy will be examined experimentally.

We have several ways to integrate 	� with the esti-
mated model ����� ����. In the experiments, we will
empirically compare the following methods in terms
of accuracy and estimation time.

Filtering only The unigram probability 	� is used
only for filtering.

Product The probability is defined as the product of
	� and the estimated model �.

Reference distribution 	� is used as a reference dis-
tribution of �.

Feature function �� 	� is used as a feature function
of �. This method was shown to be a gener-
alization of the reference distribution method
(Johnson and Riezler, 2000).

5 Features

Feature functions in the log-linear models are de-
signed to capture the characteristics of ���� �	� ���.
In this paper, we investigate combinations of the
atomic features listed in Table 1. The following
combinations are used for representing the charac-
teristics of the binary/unary schema applications.

�binary �

� RULE,DIST,COMMA�

SPAN	� SYM	�WORD	� POS	� LE	�

SPAN�� SYM��WORD�� POS�� LE�

�

�unary � �RULE,SYM,WORD,POS,LE�

In addition, the following is for expressing the con-
dition of the root node of the parse tree.

�root � �SYM,WORD,POS,LE�

Figure 4: Example features

Figure 4 shows examples: �root is for the root
node, in which the phrase symbol is S and the
surface form, part-of-speech, and lexical entry of
the lexical head are “saw”, VBD, and a transitive
verb, respectively. �binary is for the binary rule ap-
plication to “saw a girl” and “with a telescope”,
in which the applied schema is the Head-Modifier
Schema, the left daughter is VP headed by “saw”,
and the right daughter is PP headed by “with”,
whose part-of-speech is IN and the lexical entry is
a VP-modifying preposition.

In an actual implementation, some of the atomic
features are abstracted (i.e., ignored) for smoothing.
Table 2 shows a full set of templates of combined
features used in the experiments. Each row rep-
resents a template of a feature function. A check
means the atomic feature is incorporated while a hy-
phen means the feature is ignored.

Restricting the domain of feature functions to
���� �	� ��� seems to limit the flexibility of feature
design. Although it is true to some extent, this does
not necessarily mean the impossibility of incorpo-
rating features on nonlocal dependencies into the
model. This is because a feature forest model does
not assume probabilistic independence of conjunc-
tive nodes. This means that we can unpack a part of
the forest without changing the model. Actually, in
our previous study (Miyao et al., 2003), we success-
fully developed a probabilistic model including fea-
tures on nonlocal predicate-argument dependencies.
However, since we could not observe significant im-
provements by incorporating nonlocal features, this
paper investigates only the features described above.
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Table 2: Feature templates for binary schema (left), unary schema (center), and root condition (right)

Avg. length LP LR UP UR F-score
Section 22 (� 40 words) 20.69 87.18 86.23 90.67 89.68 86.70
Section 22 (� 100 words) 22.43 86.99 84.32 90.45 87.67 85.63
Section 23 (� 40 words) 20.52 87.12 85.45 90.65 88.91 86.27
Section 23 (� 100 words) 22.23 86.81 84.64 90.29 88.03 85.71

Table 3: Accuracy for development/test sets

6 Experiments

We used an HPSG grammar derived from Penn
Treebank (Marcus et al., 1994) Section 02-21
(39,832 sentences) by our method of grammar de-
velopment (Miyao et al., 2004). The training data
was the HPSG treebank derived from the same por-
tion of the Penn Treebank3. For the training, we
eliminated sentences with no less than 40 words and
for which the parser could not produce the correct
parse. The resulting training set consisted of 33,574
sentences. The treebanks derived from Sections 22
and 23 were used as the development (1,644 sen-
tences) and final test sets (2,299 sentences). We
measured the accuracy of predicate-argument de-
pendencies output by the parser. A dependency is
defined as a tuple ������ �� ���, where � is the
predicate type (e.g., adjective, intransitive verb), ��
is the head word of the predicate, � is the argument
label (MODARG, ARG1, ..., ARG4), and �� is the
head word of the argument. Labeled precision/recall
(LP/LR) is the ratio of tuples correctly identified by
the parser, while unlabeled precision/recall (UP/UR)
is the ratio of �� and �� correctly identified re-
gardless of � and �. The F-score is the harmonic
mean of LP and LR. The accuracy was measured by
parsing test sentences with part-of-speech tags pro-

3The programs to make the grammar and the tree-
bank from Penn Treebank are available at http://www-
tsujii.is.s.u-tokyo.ac.jp/enju/.

vided by the treebank. The Gaussian prior was used
for smoothing (Chen and Rosenfeld, 1999), and its
hyper-parameter was tuned for each model to max-
imize the F-score for the development set. The op-
timization algorithm was the limited-memory BFGS
method (Nocedal and Wright, 1999). All the follow-
ing experiments were conducted on AMD Opteron
servers with a 2.0-GHz CPU and 12-GB memory.

Table 3 shows the accuracy for the develop-
ment/test sets. Features occurring more than twice
were included in the model (598,326 features). Fil-
tering was done by the reference distribution method
with � � �
 and � � 
���. The unigram model
for filtering was a log-linear model with two feature
templates, �WORD� POS� LE� and �POS� LE� (24,847
features). Our results cannot be strictly compared
with other grammar formalisms because each for-
malism represents predicate-argument dependencies
differently; for reference, our results are competi-
tive with the corresponding measures reported for
Combinatory Categorial Grammar (CCG) (LP/LR
= 86.6/86.3) (Clark and Curran, 2004b). Different
from the results of CCG and PCFG (Collins, 1999;
Charniak, 2000), the recall was clearly lower than
precision. This results from the HPSG grammar
having stricter feature constraints and the parser not
being able to produce parse results for around one
percent of the sentences. To improve recall, we need
techniques of robust processing with HPSG.
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LP LR
Estimation
time (sec.)

Filtering only 34.90 23.34 702
Product 86.71 85.55 1,758
Reference dist. 87.12 85.45 655
Feature function 84.89 83.06 1,203

Table 4: Estimation method vs. accuracy and esti-
mation time

�� � F-score Estimation
time (sec.)

Parsing
time
(sec.)

Memory
usage
(MB)

5, 0.80 84.31 161 7,827 2,377
5, 0.90 84.69 207 9,412 2,992
5, 0.95 84.70 240 12,027 3,648
5, 0.98 84.81 340 15,168 4,590

10, 0.80 84.79 164 8,858 2,658
10, 0.90 85.77 298 13,996 4,062
10, 0.95 86.27 654 25,308 6,324
10, 0.98 86.56 1,778 55,691 11,700
15, 0.80 84.68 180 9,337 2,676
15, 0.90 85.85 308 14,915 4,220
15, 0.95 86.68 854 32,757 7,766

Table 5: Filtering threshold vs. accuracy and esti-
mation time

Table 4 compares the estimation methods intro-
duced in Section 4. In all of the following exper-
iments, we show the accuracy for the test set (�
40 words) only. Table 4 revealed that our simple
method of filtering caused a fatal bias in training
data when a preliminary distribution was used only
for filtering. However, the model combined with a
preliminary model achieved sufficient accuracy. The
reference distribution method achieved higher accu-
racy and lower cost. The feature function method
achieved lower accuracy in our experiments. A pos-
sible reason is that a hyper-parameter of the prior
was set to the same value for all the features includ-
ing the feature of the preliminary distribution.

Table 5 shows the results of changing the filter-
ing threshold. We can determine the correlation be-
tween the estimation/parsing cost and accuracy. In
our experiment, � 
 �
 and � 
 
��
 seem neces-
sary to preserve the F-score over ���
.

Figure 5 shows the accuracy for each sentence
length. It is apparent from this figure that the ac-
curacy was significantly higher for shorter sentences
(� 10 words). This implies that experiments with
only short sentences overestimate the performance
of parsers. Sentences with at least 10 words are nec-
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Figure 6: Corpus size vs. accuracy

essary to properly evaluate the performance of pars-
ing real-world texts.

Figure 6 shows the learning curve. A feature set
was fixed, while the parameter of the prior was op-
timized for each model. High accuracy was attained
even with small data, and the accuracy seemed to
be saturated. This indicates that we cannot further
improve the accuracy simply by increasing training
data. The exploration of new types of features is
necessary for higher accuracy.

Table 6 shows the accuracy with difference fea-
ture sets. The accuracy was measured by removing
some of the atomic features from the final model.
The last row denotes the accuracy attained by the
preliminary model. The numbers in bold type rep-
resent that the difference from the final model was
significant according to stratified shuffling tests (Co-
hen, 1995) with p-value � 
�
�. The results indicate
that DIST, COMMA, SPAN, WORD, and POS features
contributed to the final accuracy, although the dif-
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Features LP LR # features
All 87.12 85.45 623,173

–RULE 86.98 85.37 620,511
–DIST 86.74 85.09 603,748

–COMMA 86.55 84.77 608,117
–SPAN 86.53 84.98 583,638
–SYM 86.90 85.47 614,975

–WORD 86.67 84.98 116,044
–POS 86.36 84.71 430,876
–LE 87.03 85.37 412,290

–DIST,SPAN 85.54 84.02 294,971
–DIST,SPAN,

COMMA 83.94 82.44 286,489
–RULE,DIST,
SPAN,COMMA 83.61 81.98 283,897

–WORD,LE 86.48 84.91 50,258
–WORD,POS 85.56 83.94 64,915

–WORD,POS,LE 84.89 83.43 33,740
–SYM,WORD,

POS,LE 82.81 81.48 26,761
None 78.22 76.46 24,847

Table 6: Accuracy with different feature sets

ferences were slight. In contrast, RULE, SYM, and
LE features did not affect the accuracy. However,
if each of them was removed together with another
feature, the accuracy decreased drastically. This im-
plies that such features had overlapping information.

Table 7 shows the manual classification of the
causes of errors in 100 sentences randomly chosen
from the development set. In our evaluation, one
error source may cause multiple errors of dependen-
cies. For example, if a wrong lexical entry was as-
signed to a verb, all the argument dependencies of
the verb are counted as errors. The numbers in the
table include such double-counting. Major causes
were classified into three types: argument/modifier
distinction, attachment ambiguity, and lexical am-
biguity. While attachment/lexical ambiguities are
well-known causes, the other is peculiar to deep
parsing. Most of the errors cannot be resolved by
features we investigated in this study, and the design
of other features is crucial for further improvements.

7 Discussion and related work

Experiments on deep parsing of Penn Treebank have
been reported for Combinatory Categorial Grammar
(CCG) (Clark and Curran, 2004b) and Lexical Func-
tional Grammar (LFG) (Kaplan et al., 2004). They
developed log-linear models on a packed represen-
tation of parse forests, which is similar to our rep-
resentation. Although HPSG exploits further com-
plicated feature constraints and requires high com-

Error cause # of errors
Argument/modifier distinction 58

temporal noun 21
to-infinitive 15
others 22

Attachment 53
prepositional phrase 18
to-infinitive 10
relative clause 8
others 17

Lexical ambiguity 42
participle/adjective 15
preposition/modifier 14
others 13

Comma 19
Coordination 14
Noun phrase identification 13
Zero-pronoun resolution 9
Others 17

Table 7: Error analysis

putational cost, our work has proved that log-linear
models can be applied to HPSG parsing and attain
accurate and wide-coverage parsing.

Clark and Curran (2004a) described a method of
reducing the cost of parsing a training treebank in
the context of CCG parsing. They first assigned to
each word a small number of supertags, which cor-
respond to lexical entries in our case, and parsed su-
pertagged sentences. Since they did not mention the
probabilities of supertags, their method corresponds
to our “filtering only” method. However, they also
applied the same supertagger in a parsing stage, and
this seemed to be crucial for high accuracy. This
means that they estimated the probability of produc-
ing a parse tree from a supertagged sentence.

Another approach to estimating log-linear mod-
els for HPSG is to extract a small informative sam-
ple from the original set � ��� (Osborne, 2000).
Malouf and van Noord (2004) successfully applied
this method to German HPSG. The problem with
this method was in the approximation of exponen-
tially many parse trees by a polynomial-size sample.
However, their method has the advantage that any
features on a parse tree can be incorporated into the
model. The trade-off between approximation and lo-
cality of features is an outstanding problem.

Other discriminative classifiers were applied to
the disambiguation in HPSG parsing (Baldridge and
Osborne, 2003; Toutanova et al., 2004). The prob-
lem of exponential explosion is also inevitable for
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their methods. An approach similar to ours may be
applied to them, following the study on the learning
of a discriminative classifier for a packed represen-
tation (Taskar et al., 2004).

As discussed in Section 6, exploration of other
features is indispensable to further improvements.
A possible direction is to encode larger contexts of
parse trees, which were shown to improve the accu-
racy (Toutanova and Manning, 2002; Toutanova et
al., 2004). Future work includes the investigation of
such features, as well as the abstraction of lexical
dependencies like semantic classes.
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Abstract

We present an effective training al-
gorithm for linearly-scored dependency
parsers that implements online large-
margin multi-class training (Crammer and
Singer, 2003; Crammer et al., 2003) on
top of efficient parsing techniques for de-
pendency trees (Eisner, 1996). The trained
parsers achieve a competitive dependency
accuracy for both English and Czech with
no language specific enhancements.

1 Introduction

Research on training parsers from annotated data
has for the most part focused on models and train-
ing algorithms for phrase structure parsing. The
best phrase-structure parsing models represent gen-
eratively the joint probabilityP (x,y) of sentence
x having the structurey (Collins, 1999; Charniak,
2000). Generative parsing models are very conve-
nient because training consists of computing proba-
bility estimates from counts of parsing events in the
training set. However, generative models make com-
plicated and poorly justified independence assump-
tions and estimations, so we might expect better per-
formance from discriminatively trained models, as
has been shown for other tasks like document classi-
fication (Joachims, 2002) and shallow parsing (Sha
and Pereira, 2003). Ratnaparkhi’s conditional max-
imum entropy model (Ratnaparkhi, 1999), trained
to maximize conditional likelihoodP (y|x) of the
training data, performed nearly as well as generative

models of the same vintage even though it scores
parsing decisions in isolation and thus may suffer
from the label bias problem (Lafferty et al., 2001).

Discriminatively trained parsers that score entire
trees for a given sentence have only recently been
investigated (Riezler et al., 2002; Clark and Curran,
2004; Collins and Roark, 2004; Taskar et al., 2004).
The most likely reason for this is that discrimina-
tive training requires repeatedly reparsing the train-
ing corpus with the current model to determine the
parameter updates that will improve the training cri-
terion. The reparsing cost is already quite high
for simple context-free models withO(n3) parsing
complexity, but it becomes prohibitive for lexical-
ized grammars withO(n5) parsing complexity.

Dependency trees are an alternative syntactic rep-
resentation with a long history (Hudson, 1984). De-
pendency trees capture important aspects of func-
tional relationships between words and have been
shown to be useful in many applications includ-
ing relation extraction (Culotta and Sorensen, 2004),
paraphrase acquisition (Shinyama et al., 2002) and
machine translation (Ding and Palmer, 2005). Yet,
they can be parsed inO(n3) time (Eisner, 1996).
Therefore, dependency parsing is a potential “sweet
spot” that deserves investigation. We focus here on
projective dependency trees in which a word is the
parent of all of its arguments, and dependencies are
non-crossing with respect to word order (see Fig-
ure 1). However, there are cases where crossing
dependencies may occur, as is the case for Czech
(Hajič, 1998). Edges in a dependency tree may be
typed (for instance to indicate grammatical func-
tion). Though we focus on the simpler non-typed
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root John hit the ball with the bat

Figure 1: An example dependency tree.

case, all algorithms are easily extendible to typed
structures.

The following work on dependency parsing is
most relevant to our research. Eisner (1996) gave
a generative model with a cubic parsing algorithm
based on an edge factorization of trees. Yamada and
Matsumoto (2003) trained support vector machines
(SVM) to make parsing decisions in a shift-reduce
dependency parser. As in Ratnaparkhi’s parser, the
classifiers are trained on individual decisions rather
than on the overall quality of the parse. Nivre and
Scholz (2004) developed a history-based learning
model. Their parser uses a hybrid bottom-up/top-
down linear-time heuristic parser and the ability to
label edges with semantic types. The accuracy of
their parser is lower than that of Yamada and Mat-
sumoto (2003).

We present a new approach to training depen-
dency parsers, based on the online large-margin
learning algorithms of Crammer and Singer (2003)
and Crammer et al. (2003). Unlike the SVM
parser of Yamada and Matsumoto (2003) and Ratna-
parkhi’s parser, our parsers are trained to maximize
the accuracy of the overall tree.

Our approach is related to those of Collins and
Roark (2004) and Taskar et al. (2004) for phrase
structure parsing. Collins and Roark (2004) pre-
sented a linear parsing model trained with an aver-
aged perceptron algorithm. However, to use parse
features with sufficient history, their parsing algo-
rithm must prune heuristically most of the possible
parses. Taskar et al. (2004) formulate the parsing
problem in the large-margin structured classification
setting (Taskar et al., 2003), but are limited to pars-
ing sentences of 15 words or less due to computation
time. Though these approaches represent good first
steps towards discriminatively-trained parsers, they
have not yet been able to display the benefits of dis-
criminative training that have been seen in named-
entity extraction and shallow parsing.

Besides simplicity, our method is efficient and ac-
curate, as we demonstrate experimentally on English

and Czech treebank data.

2 System Description

2.1 Definitions and Background

In what follows, the generic sentence is denoted by
x (possibly subscripted); theith word of x is de-
noted byxi. The generic dependency tree is denoted
by y. If y is a dependency tree for sentencex, we
write (i, j) ∈ y to indicate that there is a directed
edge from wordxi to wordxj in the tree, that is,xi

is the parent ofxj . T = {(xt,yt)}
T
t=1 denotes the

training data.
We follow the edge based factorization method of

Eisner (1996) and define the score of a dependency
tree as the sum of the score of all edges in the tree,

s(x,y) =
∑

(i,j)∈y

s(i, j) =
∑

(i,j)∈y

w · f(i, j)

where f(i, j) is a high-dimensional binary feature
representation of the edge fromxi to xj. For exam-
ple, in the dependency tree of Figure 1, the following
feature would have a value of1:

f(i, j) =

{

1 if xi=‘hit’ and xj=‘ball’
0 otherwise.

In general, any real-valued feature may be used, but
we use binary features for simplicity. The feature
weights in the weight vectorw are the parameters
that will be learned during training. Our training al-
gorithms are iterative. We denote byw(i) the weight
vector after theith training iteration.

Finally we define dt(x) as the set of possi-
ble dependency trees for the input sentencex and
bestk(x; w) as the set ofk dependency trees in dt(x)
that are given the highest scores by weight vectorw,
with ties resolved by an arbitrary but fixed rule.

Three basic questions must be answered for mod-
els of this form: how to find the dependency treey

with highest score for sentencex; how to learn an
appropriate weight vectorw from the training data;
and finally, what feature representationf(i, j) should
be used. The following sections address each of
these questions.

2.2 Parsing Algorithm

Given a feature representation for edges and a
weight vectorw, we seek the dependency tree or
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h1 h1 h2 h2

⇒

s h1 h1 r r+1 h2 h2 t

h1

h1 h2 h2

⇒

s h1 h1 h2 h2 t

h1

h1

s h1 h1 t

Figure 2:O(n3) algorithm of Eisner (1996), needs to keep 3 indices at any given stage.

trees that maximize the score function,s(x,y). The
primary difficulty is that for a given sentence of
lengthn there are exponentially many possible de-
pendency trees. Using a slightly modified version of
a lexicalized CKY chart parsing algorithm, it is pos-
sible to generate and represent these sentences in a
forest that isO(n5) in size and takesO(n5) time to
create.

Eisner (1996) made the observation that if the
head of each chart item is on the left or right periph-
ery, then it is possible to parse inO(n3). The idea is
to parse the left and right dependents of a word inde-
pendently and combine them at a later stage. This re-
moves the need for the additional head indices of the
O(n5) algorithm and requires only two additional
binary variables that specify the direction of the item
(either gathering left dependents or gathering right
dependents) and whether an item is complete (avail-
able to gather more dependents). Figure 2 shows
the algorithm schematically. As with normal CKY
parsing, larger elements are created bottom-up from
pairs of smaller elements.

Eisner showed that his algorithm is sufficient for
both searching the space of dependency parses and,
with slight modification, finding the highest scoring
tree y for a given sentencex under the edge fac-
torization assumption. Eisner and Satta (1999) give
a cubic algorithm for lexicalized phrase structures.
However, it only works for a limited class of lan-
guages in which tree spines are regular. Further-
more, there is a large grammar constant, which is
typically in the thousands for treebank parsers.

2.3 Online Learning

Figure 3 gives pseudo-code for the generic online
learning setting. A single training instance is con-
sidered on each iteration, and parameters updated
by applying an algorithm-specific update rule to the
instance under consideration. The algorithm in Fig-
ure 3 returns anaveraged weight vector: an auxil-
iary weight vectorv is maintained that accumulates

Training data:T = {(xt, yt)}
T

t=1

1. w0 = 0; v = 0; i = 0

2. for n : 1..N

3. for t : 1..T

4. w(i+1) = updatew(i) according to instance(xt, yt)

5. v = v + w(i+1)

6. i = i + 1

7. w = v/(N ∗ T )

Figure 3: Generic online learning algorithm.

the values ofw after each iteration, and the returned
weight vector is the average of all the weight vec-
tors throughout training. Averaging has been shown
to help reduce overfitting (Collins, 2002).

2.3.1 MIRA

Crammer and Singer (2001) developed a natural
method for large-margin multi-class classification,
which was later extended by Taskar et al. (2003) to
structured classification:

min ‖w‖
s.t. s(x,y) − s(x,y′) ≥ L(y,y′)
∀(x,y) ∈ T , y

′ ∈ dt(x)

whereL(y,y′) is a real-valued loss for the treey′

relative to the correct treey. We define the loss of
a dependency tree as the number of words that have
the incorrect parent. Thus, the largest loss a depen-
dency tree can have is the length of the sentence.

Informally, this update looks to create a margin
between the correct dependency tree and each incor-
rect dependency tree at least as large as the loss of
the incorrect tree. The more errors a tree has, the
farther away its score will be from the score of the
correct tree. In order to avoid a blow-up in the norm
of the weight vector we minimize it subject to con-
straints that enforce the desired margin between the
correct and incorrect trees1.

1The constraints may be unsatisfiable, in which case we can
relax them with slack variables as in SVM training.
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The Margin Infused Relaxed Algorithm
(MIRA) (Crammer and Singer, 2003; Cram-
mer et al., 2003) employs this optimization directly
within the online framework. On each update,
MIRA attempts to keep the norm of the change to
the parameter vector as small as possible, subject to
correctly classifying the instance under considera-
tion with a margin at least as large as the loss of the
incorrect classifications. This can be formalized by
substituting the following update into line4 of the
generic online algorithm,

min
∥

∥w(i+1) − w(i)
∥

∥

s.t. s(xt,yt)− s(xt,y
′) ≥ L(yt,y

′)
∀y

′ ∈ dt(xt)

(1)

This is a standard quadratic programming prob-
lem that can be easily solved using Hildreth’s al-
gorithm (Censor and Zenios, 1997). Crammer and
Singer (2003) and Crammer et al. (2003) provide
an analysis of both the online generalization error
and convergence properties of MIRA. In equation
(1), s(x,y) is calculated with respect to the weight
vector after optimization,w(i+1).

To apply MIRA to dependency parsing, we can
simply see parsing as a multi-class classification
problem in which each dependency tree is one of
many possible classes for a sentence. However, that
interpretation fails computationally because a gen-
eral sentence has exponentially many possible de-
pendency trees and thus exponentially many margin
constraints.

To circumvent this problem we make the assump-
tion that the constraints that matter for large margin
optimization are those involving the incorrect trees
y
′ with the highest scoress(x,y′). The resulting

optimization made by MIRA (see Figure 3, line 4)
would then be:

min
∥

∥w(i+1) − w(i)
∥

∥

s.t. s(xt,yt) − s(xt,y
′) ≥ L(yt,y

′)

∀y
′ ∈ bestk(xt; w(i))

reducing the number of constraints to the constantk.
We tested various values ofk on a development data
set and found that small values ofk are sufficient to
achieve close to best performance, justifying our as-
sumption. In fact, ask grew we began to observe a
slight degradation of performance, indicating some

overfitting to the training data. All the experiments
presented here usek = 5. The Eisner (1996) algo-
rithm can be modified to find thek-best trees while
only adding an additionalO(k log k) factor to the
runtime (Huang and Chiang, 2005).

A more common approach is to factor the struc-
ture of the output space to yield a polynomial set of
local constraints (Taskar et al., 2003; Taskar et al.,
2004). One such factorization for dependency trees
is

min
∥

∥w(i+1) − w(i)
∥

∥

s.t. s(l, j) − s(k, j) ≥ 1
∀(l, j) ∈ yt, (k, j) /∈ yt

It is trivial to show that if theseO(n2) constraints
are satisfied, then so are those in (1). We imple-
mented this model, but found that the required train-
ing time was much larger than thek-best formu-
lation and typically did not improve performance.
Furthermore, thek-best formulation is more flexi-
ble with respect to the loss function since it does not
assume the loss function can be factored into a sum
of terms for each dependency.

2.4 Feature Set

Finally, we need a suitable feature representation
f(i, j) for each dependency. The basic features in
our model are outlined in Table 1a and b. All fea-
tures are conjoined with the direction of attachment
as well as the distance between the two words being
attached. These features represent a system of back-
off from very specific features over words and part-
of-speech tags to less sparse features over just part-
of-speech tags. These features are added for both the
entire words as well as the5-gram prefix if the word
is longer than5 characters.

Using just features over the parent-child node
pairs in the tree was not enough for high accuracy,
because all attachment decisions were made outside
of the context in which the words occurred. To solve
this problem, we added two other types of features,
which can be seen in Table 1c. Features of the first
type look at words that occur between a child and
its parent. These features take the form of a POS
trigram: the POS of the parent, of the child, and of
a word in between, for all words linearly between
the parent and the child. This feature was particu-
larly helpful for nouns identifying their parent, since
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a)
Basic Uni-gram Features
p-word, p-pos
p-word
p-pos
c-word, c-pos
c-word
c-pos

b)

Basic Big-ram Features
p-word, p-pos, c-word, c-pos
p-pos, c-word, c-pos
p-word, c-word, c-pos
p-word, p-pos, c-pos
p-word, p-pos, c-word
p-word, c-word
p-pos, c-pos

c)

In Between POS Features
p-pos, b-pos, c-pos
Surrounding Word POS Features
p-pos, p-pos+1, c-pos-1, c-pos
p-pos-1, p-pos, c-pos-1, c-pos
p-pos, p-pos+1, c-pos, c-pos+1
p-pos-1, p-pos, c-pos, c-pos+1

Table 1: Features used by system. p-word: word of parent nodein dependency tree. c-word: word of child
node. p-pos: POS of parent node. c-pos: POS of child node. p-pos+1: POS to the right of parent in sentence.
p-pos-1: POS to the left of parent. c-pos+1: POS to the right of child. c-pos-1: POS to the left of child.
b-pos: POS of a word in between parent and child nodes.

it would typically rule out situations when a noun
attached to another noun with a verb in between,
which is a very uncommon phenomenon.

The second type of feature provides the local con-
text of the attachment, that is, the words before and
after the parent-child pair. This feature took the form
of a POS4-gram: The POS of the parent, child,
word before/after parent and word before/after child.
The system also used back-off features to various tri-
grams where one of the local context POS tags was
removed. Adding these two features resulted in a
large improvement in performance and brought the
system to state-of-the-art accuracy.

2.5 System Summary

Besides performance (see Section 3), the approach
to dependency parsing we described has several
other advantages. The system is very general and
contains no language specific enhancements. In fact,
the results we report for English and Czech use iden-
tical features, though are obviously trained on differ-
ent data. The online learning algorithms themselves
are intuitive and easy to implement.

The efficientO(n3) parsing algorithm of Eisner
allows the system to search the entire space of de-
pendency trees while parsing thousands of sentences
in a few minutes, which is crucial for discriminative
training. We compare the speed of our model to a
standard lexicalized phrase structure parser in Sec-
tion 3.1 and show a significant improvement in pars-
ing times on the testing data.

The major limiting factor of the system is its re-
striction to features over single dependency attach-
ments. Often, when determining the next depen-

dent for a word, it would be useful to know previ-
ous attachment decisions and incorporate these into
the features. It is fairly straightforward to modify
the parsing algorithm to store previous attachments.
However, any modification would result in an as-
ymptotic increase in parsing complexity.

3 Experiments

We tested our methods experimentally on the Eng-
lish Penn Treebank (Marcus et al., 1993) and on the
Czech Prague Dependency Treebank (Hajič, 1998).
All experiments were run on a dual 64-bit AMD
Opteron 2.4GHz processor.

To create dependency structures from the Penn
Treebank, we used the extraction rules of Yamada
and Matsumoto (2003), which are an approximation
to the lexicalization rules of Collins (1999). We split
the data into three parts: sections 02-21 for train-
ing, section 22 for development and section 23 for
evaluation. Currently the system has6, 998, 447 fea-
tures. Each instance only uses a tiny fraction of these
features making sparse vector calculations possible.
Our system assumes POS tags as input and uses the
tagger of Ratnaparkhi (1996) to provide tags for the
development and evaluation sets.

Table 2 shows the performance of the systems
that were compared. Y&M2003 is the SVM-shift-
reduce parsing model of Yamada and Matsumoto
(2003), N&S2004 is the memory-based learner of
Nivre and Scholz (2004) and MIRA is the the sys-
tem we have described. We also implemented an av-
eraged perceptron system (Collins, 2002) (another
online learning algorithm) for comparison. This ta-
ble compares onlypure dependency parsers that do
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English Czech
Accuracy Root Complete Accuracy Root Complete

Y&M2003 90.3 91.6 38.4 - - -
N&S2004 87.3 84.3 30.4 - - -

Avg. Perceptron 90.6 94.0 36.5 82.9 88.0 30.3
MIRA 90.9 94.2 37.5 83.3 88.6 31.3

Table 2: Dependency parsing results for English and Czech.Accuracy is the number of words that correctly
identified their parent in the tree.Root is the number of trees in which the root word was correctly identified.
For Czech this is f-measure since a sentence may have multiple roots.Complete is the number of sentences
for which the entire dependency tree was correct.

not exploit phrase structure. We ensured that the
gold standard dependencies of all systems compared
were identical.

Table 2 shows that the model described here per-
forms as well or better than previous comparable
systems, including that of Yamada and Matsumoto
(2003). Their method has the potential advantage
that SVM batch training takes into account all of
the constraints from all training instances in the op-
timization, whereas online training only considers
constraints from one instance at a time. However,
they are fundamentally limited by their approximate
search algorithm. In contrast, our system searches
the entire space of dependency trees and most likely
benefits greatly from this. This difference is am-
plified when looking at the percentage of trees that
correctly identify the root word. The models that
search the entire space will not suffer from bad ap-
proximations made early in the search and thus are
more likely to identify the correct root, whereas the
approximate algorithms are prone to error propaga-
tion, which culminates with attachment decisions at
the top of the tree. When comparing the two online
learning models, it can be seen that MIRA outper-
forms the averaged perceptron method. This differ-
ence is statistically significant,p < 0.005 (McNe-
mar test on head selection accuracy).

In our Czech experiments, we used the depen-
dency trees annotated in the Prague Treebank, and
the predefined training, development and evaluation
sections of this data. The number of sentences in
this data set is nearly twice that of the English tree-
bank, leading to a very large number of features —
13, 450, 672. But again, each instance uses just a
handful of these features. For POS tags we used the
automatically generated tags in the data set. Though
we made no language specific model changes, we

did need to make some data specific changes. In par-
ticular, we used the method of Collins et al. (1999) to
simplify part-of-speech tags since the rich tags used
by Czech would have led to a large but rarely seen
set of POS features.

The model based on MIRA also performs well on
Czech, again slightly outperforming averaged per-
ceptron. Unfortunately, we do not know of any other
parsing systems tested on the same data set. The
Czech parser of Collins et al. (1999) was run on a
different data set and most other dependency parsers
are evaluated using English. Learning a model from
the Czech training data is somewhat problematic
since it contains some crossing dependencies which
cannot be parsed by the Eisner algorithm. One trick
is to rearrange the words in the training set so that
all trees are nested. This at least allows the train-
ing algorithm to obtain reasonably low error on the
training set. We found that this did improve perfor-
mance slightly to83.6% accuracy.

3.1 Lexicalized Phrase Structure Parsers

It is well known that dependency trees extracted
from lexicalized phrase structure parsers (Collins,
1999; Charniak, 2000) typically are more accurate
than those produced by pure dependency parsers
(Yamada and Matsumoto, 2003). We compared
our system to the Bikel re-implementation of the
Collins parser (Bikel, 2004; Collins, 1999) trained
with the same head rules of our system. There are
two ways to extract dependencies from lexicalized
phrase structure. The first is to use the automatically
generated dependencies that are explicit in the lex-
icalization of the trees, we call this systemCollins-
auto. The second is to take just the phrase structure
output of the parser and run the automatic head rules
over it to extract the dependencies, we call this sys-
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English
Accuracy Root Complete Complexity Time

Collins-auto 88.2 92.3 36.1 O(n5) 98m 21s
Collins-rules 91.4 95.1 42.6 O(n5) 98m 21s

MIRA-Normal 90.9 94.2 37.5 O(n3) 5m 52s
MIRA-Collins 92.2 95.8 42.9 O(n5) 105m 08s

Table 3: Results comparing our system to those based on the Collins parser. Complexity represents the
computational complexity of each parser andTime the CPU time to parse sec. 23 of the Penn Treebank.

temCollins-rules. Table 3 shows the results compar-
ing our system,MIRA-Normal, to the Collins parser
for English. All systems are implemented in Java
and run on the same machine.

Interestingly, the dependencies that are automati-
cally produced by the Collins parser are worse than
those extracted statically using the head rules. Ar-
guably, this displays the artificialness of English de-
pendency parsing using dependencies automatically
extracted from treebank phrase-structure trees. Our
system falls in-between, better than the automati-
cally generated dependency trees and worse than the
head-rule extracted trees.

Since the dependencies returned from our system
are better than those actually learnt by the Collins
parser, one could argue that our model is actu-
ally learning to parse dependencies more accurately.
However, phrase structure parsers are built to max-
imize the accuracy of the phrase structure and use
lexicalization as just an additional source of infor-
mation. Thus it is not too surprising that the de-
pendencies output by the Collins parser are not as
accurate as our system, which is trained and built to
maximize accuracy on dependency trees. In com-
plexity and run-time, our system is a huge improve-
ment over the Collins parser.

The final system in Table 3 takes the output of
Collins-rules and adds a feature toMIRA-Normal
that indicates for given edge, whether the Collins
parser believed this dependency actually exists, we
call this systemMIRA-Collins. This is a well known
discriminative training trick — using the sugges-
tions of a generative system to influence decisions.
This system can essentially be considered a correc-
tor of the Collins parser and represents a significant
improvement over it. However, there is an added
complexity with such a model as it requires the out-
put of theO(n5) Collins parser.

k=1 k=2 k=5 k=10 k=20
Accuracy 90.73 90.82 90.88 90.92 90.91

Train Time 183m 235m 627m 1372m 2491m

Table 4: Evaluation ofk-best MIRA approximation.

3.2 k-best MIRA Approximation

One question that can be asked is how justifiable is
the k-best MIRA approximation. Table 4 indicates
the accuracy on testing and the time it took to train
models withk = 1, 2, 5, 10, 20 for the English data
set. Even though the parsing algorithm is propor-
tional to O(k log k), empirically, the training times
scale linearly withk. Peak performance is achieved
very early with a slight degradation aroundk=20.
The most likely reason for this phenomenon is that
the model is overfitting by ensuring that even un-
likely trees are separated from the correct tree pro-
portional to their loss.

4 Summary

We described a successful new method for training
dependency parsers. We use simple linear parsing
models trained with margin-sensitive online training
algorithms, achieving state-of-the-art performance
with relatively modest training times and no need
for pruning heuristics. We evaluated the system on
both English and Czech data to display state-of-the-
art performance without any language specific en-
hancements. Furthermore, the model can be aug-
mented to include features over lexicalized phrase
structure parsing decisions to increase dependency
accuracy over those parsers.

We plan on extending our parser in two ways.
First, we would add labels to dependencies to rep-
resent grammatical roles. Those labels are very im-
portant for using parser output in tasks like infor-
mation extraction or machine translation. Second,
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we are looking at model extensions to allow non-
projective dependencies, which occur in languages
such as Czech, German and Dutch.
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Abstract

In order to realize the full potential of
dependency-based syntactic parsing, it is
desirable to allow non-projective depen-
dency structures. We show how a data-
driven deterministic dependency parser,
in itself restricted to projective structures,
can be combined with graph transforma-
tion techniques to produce non-projective
structures. Experiments using data from
the Prague Dependency Treebank show
that the combined system can handle non-
projective constructions with a precision
sufficient to yield a significant improve-
ment in overall parsing accuracy. This
leads to the best reported performance for
robust non-projective parsing of Czech.

1 Introduction

It is sometimes claimed that one of the advantages
of dependency grammar over approaches based on
constituency is that it allows a more adequate treat-
ment of languages with variable word order, where
discontinuous syntactic constructions are more com-
mon than in languages like English (Mel’čuk,
1988; Covington, 1990). However, this argument
is only plausible if the formal framework allows
non-projective dependency structures, i.e. structures
where a head and its dependents may correspond
to a discontinuous constituent. From the point of
view of computational implementation this can be
problematic, since the inclusion of non-projective

structures makes the parsing problem more com-
plex and therefore compromises efficiency and in
practice also accuracy and robustness. Thus, most
broad-coverage parsers based on dependency gram-
mar have been restricted to projective structures.
This is true of the widely used link grammar parser
for English (Sleator and Temperley, 1993), which
uses a dependency grammar of sorts, the probabilis-
tic dependency parser of Eisner (1996), and more
recently proposed deterministic dependency parsers
(Yamada and Matsumoto, 2003; Nivre et al., 2004).
It is also true of the adaptation of the Collins parser
for Czech (Collins et al., 1999) and the finite-state
dependency parser for Turkish by Oflazer (2003).

This is in contrast to dependency treebanks, e.g.
Prague Dependency Treebank (Hajič et al., 2001b),
Danish Dependency Treebank (Kromann, 2003),
and the METU Treebank of Turkish (Oflazer et al.,
2003), which generally allow annotations with non-
projective dependency structures. The fact that pro-
jective dependency parsers can never exactly repro-
duce the analyses found in non-projective treebanks
is often neglected because of the relative scarcity of
problematic constructions. While the proportion of
sentences containing non-projective dependencies is
often 15–25%, the total proportion of non-projective
arcs is normally only 1–2%. As long as the main
evaluation metric is dependency accuracy per word,
with state-of-the-art accuracy mostly below 90%,
the penalty for not handling non-projective construc-
tions is almost negligible. Still, from a theoretical
point of view, projective parsing of non-projective
structures has the drawback that it rules out perfect
accuracy even as an asymptotic goal.
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Figure 1: Dependency graph for Czech sentence from the Prague Dependency Treebank1

There exist a few robust broad-coverage parsers
that produce non-projective dependency structures,
notably Tapanainen and Järvinen (1997) and Wang
and Harper (2004) for English, Foth et al. (2004)
for German, and Holan (2004) for Czech. In addi-
tion, there are several approaches to non-projective
dependency parsing that are still to be evaluated in
the large (Covington, 1990; Kahane et al., 1998;
Duchier and Debusmann, 2001; Holan et al., 2001;
Hellwig, 2003). Finally, since non-projective con-
structions often involve long-distance dependencies,
the problem is closely related to the recovery of
empty categories and non-local dependencies in
constituency-based parsing (Johnson, 2002; Dienes
and Dubey, 2003; Jijkoun and de Rijke, 2004; Cahill
et al., 2004; Levy and Manning, 2004; Campbell,
2004).

In this paper, we show how non-projective depen-
dency parsing can be achieved by combining a data-
driven projective parser with special graph transfor-
mation techniques. First, the training data for the
parser is projectivized by applying a minimal num-
ber of lifting operations (Kahane et al., 1998) and
encoding information about these lifts in arc labels.
When the parser is trained on the transformed data,
it will ideally learn not only to construct projective
dependency structures but also to assign arc labels
that encode information about lifts. By applying an
inverse transformation to the output of the parser,
arcs with non-standard labels can be lowered to their
proper place in the dependency graph, giving rise

1The dependency graph has been modified to make the final
period a dependent of the main verb instead of being a depen-
dent of a special root node for the sentence.

to non-projective structures. We call this pseudo-
projective dependency parsing, since it is based on a
notion of pseudo-projectivity (Kahane et al., 1998).

The rest of the paper is structured as follows.
In section 2 we introduce the graph transformation
techniques used to projectivize and deprojectivize
dependency graphs, and in section 3 we describe the
data-driven dependency parser that is the core of our
system. We then evaluate the approach in two steps.
First, in section 4, we evaluate the graph transfor-
mation techniques in themselves, with data from the
Prague Dependency Treebank and the Danish De-
pendency Treebank. In section 5, we then evaluate
the entire parsing system by training and evaluating
on data from the Prague Dependency Treebank.

2 Dependency Graph Transformations

We assume that the goal in dependency parsing is to
construct a labeled dependency graph of the kind de-
picted in Figure 1. Formally, we define dependency
graphs as follows:

1. LetR = {r1, . . . , rm} be the set of permissible
dependency types (arc labels).

2. A dependency graph for a string of words
W = w1· · ·wn is a labeled directed graph
D = (W,A), where

(a) W is the set of nodes, i.e. word tokens in
the input string, ordered by a linear prece-
dence relation<,

(b) A is a set of labeled arcs(wi, r, wj), where
wi, wj ∈W , r ∈ R,

(c) for everywj ∈W , there is at most one arc
(wi, r, wj) ∈ A.
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Figure 2: Projectivized dependency graph for Czech sentence

3. A graphD = (W,A) is well-formed iff it is
acyclic and connected.

If (wi, r, wj) ∈ A, we say thatwi is the head ofwj

andwj a dependent ofwi. In the following, we use
the notationwi

r→ wj to mean that(wi, r, wj) ∈ A;
we also usewi → wj to denote an arc with unspeci-
fied label andwi →∗ wj for the reflexive and transi-
tive closure of the (unlabeled) arc relation.

The dependency graph in Figure 1 satisfies all the
defining conditions above, but it fails to satisfy the
condition of projectivity (Kahane et al., 1998):

1. An arcwi→wk is projective iff, for every word
wj occurring betweenwi andwk in the string
(wi <wj <wk or wi >wj >wk), wi →∗ wj .

2. A dependency graphD = (W,A) is projective
iff every arc inA is projective.

The arc connecting the headjedna(one) to the de-
pendentZ (out-of) spans the tokenje (is), which is
not dominated byjedna.

As observed by Kahane et al. (1998), any (non-
projective) dependency graph can be transformed
into a projective one by a lifting operation, which
replaces each non-projective arcwj → wk by a pro-
jective arcwi → wk such thatwi →∗ wj holds in
the original graph. Here we use a slightly different
notion of lift, applying to individual arcs and moving
their head upwards one step at a time:

L IFT(wj → wk) =

{
wi → wk if wi → wj

undefined otherwise

Intuitively, lifting an arc makes the wordwk depen-
dent on the headwi of its original headwj (which is

unique in a well-formed dependency graph), unless
wj is a root in which case the operation is undefined
(but thenwj → wk is necessarily projective if the
dependency graph is well-formed).

Projectivizing a dependency graph by lifting non-
projective arcs is a nondeterministic operation in the
general case. However, since we want to preserve
as much of the original structure as possible, we
are interested in finding a transformation that in-
volves a minimal number of lifts. Even this may
be nondeterministic, in case the graph contains sev-
eral non-projective arcs whose lifts interact, but we
use the following algorithm to construct a minimal
projective transformationD′ = (W,A′) of a (non-
projective) dependency graphD = (W,A):

PROJECTIVIZE(W , A)
1 A′ ← A
2 while (W,A′) is non-projective
3 a← SMALLEST-NONP-ARC(A′)
4 A′ ← (A′ − {a}) ∪ {L IFT(a)}
5 return (W,A′)

The function SMALLEST-NONP-ARC returns the
non-projective arc with the shortest distance from
head to dependent (breaking ties from left to right).
Applying the function PROJECTIVIZE to the graph
in Figure 1 yields the graph in Figure 2, where the
problematic arc pointing toZ has been lifted from
the original headjedna to the ancestorje. Using
the terminology of Kahane et al. (1998), we say that
jednais thesyntactic headof Z, while je is its linear
headin the projectivized representation.

Unlike Kahane et al. (1998), we do not regard a
projectivized representation as the final target of the
parsing process. Instead, we want to apply an in-
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Lifted arc label Path labels Number of labels
Baseline d p n
Head d↑h p n(n + 1)
Head+Path d↑h p↓ 2n(n + 1)
Path d↑ p↓ 4n

Table 1: Encoding schemes (d = dependent,h = syntactic head,p = path;n = number of dependency types)

verse transformation to recover the underlying (non-
projective) dependency graph. In order to facilitate
this task, we extend the set of arc labels to encode
information about lifting operations. In principle, it
would be possible to encode the exact position of the
syntactic head in the label of the arc from the linear
head, but this would give a potentially infinite set of
arc labels and would make the training of the parser
very hard. In practice, we can therefore expect a
trade-off such that increasing the amount of infor-
mation encoded in arc labels will cause an increase
in the accuracy of the inverse transformation but a
decrease in the accuracy with which the parser can
construct the labeled representations. To explore this
tradeoff, we have performed experiments with three
different encoding schemes (plus a baseline), which
are described schematically in Table 1.

The baseline simply retains the original labels for
all arcs, regardless of whether they have been lifted
or not, and the number of distinct labels is therefore
simply the numbern of distinct dependency types.2

In the first encoding scheme, calledHead, we use
a new labeld↑h for each lifted arc, whered is the
dependency relation between the syntactic head and
the dependent in the non-projective representation,
andh is the dependency relation that the syntactic
head has to its own head in the underlying structure.
Using this encoding scheme, the arc fromje to Z
in Figure 2 would be assigned the label AuxP↑Sb
(signifying an AuxP that has been lifted from a Sb).
In the second scheme,Head+Path, we in addition
modify the label of every arc along the lifting path
from the syntactic to the linear head so that if the
original label isp the new label isp↓. Thus, the arc
from je to jednawill be labeledSb↓ (to indicate that
there is a syntactic head below it). In the third and
final scheme, denotedPath, we keep the extra infor-

2Note that this is a baseline for the parsing experiment only
(Experiment 2). For Experiment 1 it is meaningless as a base-
line, since it would result in 0% accuracy.

mation on path labels but drop the information about
the syntactic head of the lifted arc, using the labeld↑
instead ofd↑h (AuxP↑ instead of AuxP↑Sb).

As can be seen from the last column in Table 1,
both Head andHead+Path may theoretically lead
to a quadratic increase in the number of distinct arc
labels (Head+Pathbeing worse thanHead only by
a constant factor), while the increase is only linear in
the case ofPath. On the other hand, we can expect
Head+Pathto be the most useful representation for
reconstructing the underlying non-projective depen-
dency graph. In approaching this problem, a vari-
ety of different methods are conceivable, including
a more or less sophisticated use of machine learn-
ing. In the present study, we limit ourselves to an
algorithmic approach, using a deterministic breadth-
first search. The details of the transformation proce-
dure are slightly different depending on the encod-
ing schemes:

• Head: For every arc of the formwi
d↑h−→ wn,

we search the graph top-down, left-to-right,
breadth-first starting at the head nodewi. If we

find an arcwl
h−→ wm, called atarget arc, we

replacewi
d↑h−→ wn by wm

d−→ wn; otherwise

we replacewi
d↑h−→ wn by wi

d−→ wn (i.e. we
let the linear head be the syntactic head).

• Head+Path: Same asHead, but the search

only follows arcs of the formwj
p↓−→ wk and a

target arc must have the formwl
h↓−→ wm; if no

target arc is found,Head is used as backoff.

• Path: Same asHead+Path, but a target arc

must have the formwl
p↓−→ wm and no out-

going arcs of the formwm
p′↓−→ wo; no backoff.

In section 4 we evaluate these transformations with
respect to projectivized dependency treebanks, and
in section 5 they are applied to parser output. Before
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Feature type Top−1 Top Next Next+1 Next+2 Next+3
Word form + + + +
Part-of-speech + + + + + +
Dep type of head +

leftmost dep + +
rightmost dep +

Table 2: Features used in predicting the next parser action

we turn to the evaluation, however, we need to intro-
duce the data-driven dependency parser used in the
latter experiments.

3 Memory-Based Dependency Parsing

In the experiments below, we employ a data-driven
deterministic dependency parser producing labeled
projective dependency graphs,3 previously tested on
Swedish (Nivre et al., 2004) and English (Nivre and
Scholz, 2004). The parser builds dependency graphs
by traversing the input from left to right, using a
stack to store tokens that are not yet complete with
respect to their dependents. At each point during the
derivation, the parser has a choice between pushing
the next input token onto the stack – with or with-
out adding an arc from the token on top of the stack
to the token pushed – and popping a token from the
stack – with or without adding an arc from the next
input token to the token popped. More details on the
parsing algorithm can be found in Nivre (2003).

The choice between different actions is in general
nondeterministic, and the parser relies on a memory-
based classifier, trained on treebank data, to pre-
dict the next action based on features of the cur-
rent parser configuration. Table 2 shows the features
used in the current version of the parser. At each
point during the derivation, the prediction is based
on six word tokens, the two topmost tokens on the
stack, and the next four input tokens. For each to-
ken, three types of features may be taken into ac-
count: the word form; the part-of-speech assigned
by an automatic tagger; and labels on previously as-
signed dependency arcs involving the token – the arc
from its head and the arcs to its leftmost and right-
most dependent, respectively. Except for the left-

3The graphs satisfy all the well-formedness conditions given
in section 2 except (possibly) connectedness. For robustness
reasons, the parser may output a set of dependency trees instead
of a single tree.

most dependent of the next input token, dependency
type features are limited to tokens on the stack.

The prediction based on these features is ak-
nearest neighbor classification, using theIB1 algo-
rithm andk = 5, the modified value difference met-
ric (MVDM) and class voting with inverse distance
weighting, as implemented in the TiMBL software
package (Daelemans et al., 2003). More details on
the memory-based prediction can be found in Nivre
et al. (2004) and Nivre and Scholz (2004).

4 Experiment 1: Treebank Transformation

The first experiment uses data from two dependency
treebanks. The Prague Dependency Treebank (PDT)
consists of more than 1M words of newspaper text,
annotated on three levels, the morphological, ana-
lytical and tectogrammatical levels (Hajič, 1998).
Our experiments all concern the analytical annota-
tion, and the first experiment is based only on the
training part. The Danish Dependency Treebank
(DDT) comprises about 100K words of text selected
from the Danish PAROLE corpus, with annotation
of primary and secondary dependencies (Kromann,
2003). The entire treebank is used in the experiment,
but only primary dependencies are considered.4 In
all experiments, punctuation tokens are included in
the data but omitted in evaluation scores.

In the first part of the experiment, dependency
graphs from the treebanks were projectivized using
the algorithm described in section 2. As shown in
Table 3, the proportion of sentences containing some
non-projective dependency ranges from about 15%
in DDT to almost 25% in PDT. However, the over-
all percentage of non-projective arcs is less than 2%
in PDT and less than 1% in DDT. The last four

4If secondary dependencies had been included, the depen-
dency graphs would not have satisfied the well-formedness con-
ditions formulated in section 2.
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# Lifts in projectivization
Data set # Sentences % NonP # Tokens % NonP 1 2 3 >3
PDT training 73,088 23.15 1,255,333 1.81 93.79 5.60 0.51 0.11
DDT total 5,512 15.48 100,238 0.94 79.49 13.28 4.36 2.87

Table 3: Non-projective sentences and arcs in PDT and DDT (NonP = non-projective)

Data set Head H+P Path
PDT training (28 labels) 92.3 (230) 99.3 (314) 97.3 (84)
DDT total (54 labels) 92.3 (123) 99.8 (147) 98.3 (99)

Table 4: Percentage of non-projective arcs recovered correctly (number of labels in parentheses)

columns in Table 3 show the distribution of non-
projective arcs with respect to the number of lifts
required. It is worth noting that, although non-
projective constructions are less frequent in DDT
than in PDT, they seem to be more deeply nested,
since only about 80% can be projectivized with a
single lift, while almost 95% of the non-projective
arcs in PDT only require a single lift.

In the second part of the experiment, we applied
the inverse transformation based on breadth-first
search under the three different encoding schemes.
The results are given in Table 4. As expected, the
most informative encoding,Head+Path, gives the
highest accuracy with over 99% of all non-projective
arcs being recovered correctly in both data sets.
However, it can be noted that the results for the least
informative encoding,Path, are almost comparable,
while the third encoding,Head, gives substantially
worse results for both data sets. We also see that
the increase in the size of the label sets forHead
and Head+Path is far below the theoretical upper
bounds given in Table 1. The increase is gener-
ally higher for PDT than for DDT, which indicates a
greater diversity in non-projective constructions.

5 Experiment 2: Memory-Based Parsing

The second experiment is limited to data from PDT.5

The training part of the treebank was projectivized
under different encoding schemes and used to train
memory-based dependency parsers, which were run
on the test part of the treebank, consisting of 7,507

5Preliminary experiments using data from DDT indicated
that the limited size of the treebank creates a severe sparse data
problem with respect to non-projective constructions.

sentences and 125,713 tokens.6 The inverse trans-
formation was applied to the output of the parsers
and the result compared to the gold standard test set.

Table 5 shows the overall parsing accuracy at-
tained with the three different encoding schemes,
compared to the baseline (no special arc labels) and
to training directly on non-projective dependency
graphs. Evaluation metrics used are Attachment
Score (AS), i.e. the proportion of tokens that are at-
tached to the correct head, and Exact Match (EM),
i.e. the proportion of sentences for which the depen-
dency graph exactly matches the gold standard. In
the labeled version of these metrics (L) both heads
and arc labels must be correct, while the unlabeled
version (U) only considers heads.

The first thing to note is that projectivizing helps
in itself, even if no encoding is used, as seen from
the fact that the projective baseline outperforms the
non-projective training condition by more than half
a percentage point on attachment score, although the
gain is much smaller with respect to exact match.
The second main result is that the pseudo-projective
approach to parsing (using special arc labels to guide
an inverse transformation) gives a further improve-
ment of about one percentage point on attachment
score. With respect to exact match, the improvement
is even more noticeable, which shows quite clearly
that even if non-projective dependencies are rare on
the token level, they are nevertheless important for
getting the global syntactic structure correct.

All improvements over the baseline are statisti-
cally significant beyond the 0.01 level (McNemar’s

6The part-of-speech tagging used in both training and testing
was the uncorrected output of an HMM tagger distributed with
the treebank; cf. Hajič et al. (2001a).
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Encoding UAS LAS UEM LEM
Non-projective 78.5 71.3 28.9 20.6
Baseline 79.1 72.0 29.2 20.7
Head 80.1 72.8 31.6 22.2
Head+Path 80.0 72.8 31.8 22.4
Path 80.0 72.7 31.6 22.0

Table 5: Parsing accuracy (AS = attachment score, EM = exact match; U = unlabeled, L = labeled)

Unlabeled Labeled
Encoding P R F P R F
Head 61.3 54.1 57.5 55.2 49.8 52.4
Head+Path 63.9 54.9 59.0 57.9 50.6 54.0
Path 58.2 49.5 53.4 51.0 45.7 48.2

Table 6: Precision, recall and F-measure for non-projective arcs

test). By contrast, when we turn to a comparison
of the three encoding schemes it is hard to find any
significant differences, and the overall impression is
that it makes little or no difference which encoding
scheme is used, as long as there is some indication
of which words are assigned their linear head instead
of their syntactic head by the projective parser. This
may seem surprising, given the experiments reported
in section 4, but the explanation is probably that the
non-projective dependencies that can be recovered at
all are of the simple kind that only requires a single
lift, where the encoding of path information is often
redundant. It is likely that the more complex cases,
where path information could make a difference, are
beyond the reach of the parser in most cases.

However, if we consider precision, recall and F-
measure on non-projective dependencies only, as
shown in Table 6, some differences begin to emerge.
The most informative scheme,Head+Path, gives
the highest scores, although with respect toHead
the difference is not statistically significant, while
the least informative scheme,Path – with almost the
same performance on treebank transformation – is
significantly lower (p < 0.01). On the other hand,
given that all schemes have similar parsing accuracy
overall, this means that thePath scheme is the least
likely to introduce errors on projective arcs.

The overall parsing accuracy obtained with the
pseudo-projective approach is still lower than for the
best projective parsers. Although the best published
results for the Collins parser is 80% UAS (Collins,

1999), this parser reaches 82% when trained on the
entire training data set, and an adapted version of
Charniak’s parser (Charniak, 2000) performs at 84%
(Jan Hajǐc, pers. comm.). However, the accuracy is
considerably higher than previously reported results
for robust non-projective parsing of Czech, with a
best performance of 73% UAS (Holan, 2004).

Compared to related work on the recovery of
long-distance dependencies in constituency-based
parsing, our approach is similar to that of Dienes
and Dubey (2003) in that the processing of non-local
dependencies is partly integrated in the parsing pro-
cess, via an extension of the set of syntactic cate-
gories, whereas most other approaches rely on post-
processing only. However, while Dienes and Dubey
recognize empty categories in a pre-processing step
and only let the parser find their antecedents, we use
the parser both to detect dislocated dependents and
to predict either the type or the location of their syn-
tactic head (or both) and use post-processing only to
transform the graph in accordance with the parser’s
analysis.

6 Conclusion

We have presented a new method for non-projective
dependency parsing, based on a combination of
data-driven projective dependency parsing and
graph transformation techniques. The main result is
that the combined system can recover non-projective
dependencies with a precision sufficient to give a
significant improvement in overall parsing accuracy,
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especially with respect to the exact match criterion,
leading to the best reported performance for robust
non-projective parsing of Czech.
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Abstract 

This paper suggests refinements for the 
Distributional Similarity Hypothesis. Our 
proposed hypotheses relate the distribu-
tional behavior of pairs of words to lexical 
entailment – a tighter notion of semantic 
similarity that is required by many NLP 
applications. To automatically explore the 
validity of the defined hypotheses we de-
veloped an inclusion testing algorithm for 
characteristic features of two words, which 
incorporates corpus and web-based feature 
sampling to overcome data sparseness. The 
degree of hypotheses validity was then em-
pirically tested and manually analyzed with 
respect to the word sense level. In addition, 
the above testing algorithm was exploited 
to improve lexical entailment acquisition. 

1 Introduction 

Distributional Similarity between words has been 
an active research area for more than a decade. It is 
based on the general idea of Harris' Distributional 
Hypothesis, suggesting that words that occur 
within similar contexts are semantically similar 
(Harris, 1968). Concrete similarity measures com-
pare a pair of weighted context feature vectors that 
characterize two words (Church and Hanks, 1990; 
Ruge, 1992; Pereira et al., 1993; Grefenstette, 
1994; Lee, 1997; Lin, 1998; Pantel and Lin, 2002; 
Weeds and Weir, 2003). 
    As it turns out, distributional similarity captures 
a somewhat loose notion of semantic similarity 
(see Table 1). It does not ensure that the meaning 
of one word is preserved when replacing it with 
the other one in some context. 

However, many semantic information-oriented 
applications like Question Answering, Information 
Extraction and Paraphrase Acquisition require a 
tighter similarity criterion, as was also demon-
strated by papers at the recent PASCAL Challenge 
on Recognizing Textual Entailment (Dagan et al., 
2005). In particular, all these applications need to 
know when the meaning of one word can be in-
ferred (entailed) from another word, so that one 
word could substitute the other in some contexts. 
This relation corresponds to several lexical seman-
tic relations, such as synonymy, hyponymy and 
some cases of meronymy. For example, in Ques-
tion Answering, the word company in a question 
can be substituted in the text by firm (synonym), 
automaker (hyponym) or division (meronym). Un-
fortunately, existing manually constructed re-
sources of lexical semantic relations, such as 
WordNet, are not exhaustive and comprehensive 
enough for a variety of domains and thus are not 
sufficient as a sole resource for application needs1. 
    Most works that attempt to learn such concrete 
lexical semantic relations employ a co-occurrence 
pattern-based approach (Hearst, 1992; Ravi-
chandran and Hovy, 2002; Moldovan et al., 2004). 
Typically, they use a set of predefined lexico-
syntactic patterns that characterize specific seman-
tic relations. If a candidate word pair (like com-
pany-automaker) co-occurs within the same 
sentence satisfying a concrete pattern (like " 
…companies, such as automakers"), then it is ex-
pected that the corresponding semantic relation 
holds between these words (hypernym-hyponym in 
this example). 
    In recent work (Geffet and Dagan, 2004) we 
explored the correspondence between the distribu-
tional characterization of two words (which may 
hardly co-occur, as is usually the case for syno-

                                                           
1
We found that less than 20% of the lexical entailment relations extracted by our 

method appeared as direct or indirect WordNet relations (synonyms, hyponyms 
or meronyms). 
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nyms) and the kind of tight semantic relationship 
that might hold between them. We formulated a 
lexical entailment relation that corresponds to the 
above mentioned substitutability criterion, and is 
termed meaning entailing substitutability (which 
we term here for brevity as lexical entailment). 
Given a pair of words, this relation holds if there 
are some contexts in which one of the words can 
be substituted by the other, such that the meaning 
of the original word can be inferred from the new 
one. We then proposed a new feature weighting 
function (RFF) that yields more accurate distribu-
tional similarity lists, which better approximate the 
lexical entailment relation. Yet, this method still 
applies a standard measure for distributional vector 
similarity (over vectors with the improved feature 
weights), and thus produces many loose similari-
ties that do not correspond to entailment. 
    This paper explores more deeply the relationship 
between distributional characterization of words 
and lexical entailment, proposing two new hy-
potheses as a refinement of the distributional simi-
larity hypothesis. The main idea is that if one word 
entails the other then we would expect that virtu-
ally all the characteristic context features of the 
entailing word will actually occur also with the 
entailed word. 
     To test this idea we developed an automatic 
method for testing feature inclusion between a pair 
of words. This algorithm combines corpus statis-
tics with a web-based feature sampling technique. 
The web is utilized to overcome the data sparse-
ness problem, so that features which are not found 
with one of the two words can be considered as 
truly distinguishing evidence.  
    Using the above algorithm we first tested the 
empirical validity of the hypotheses. Then, we 
demonstrated how the hypotheses can be leveraged 
in practice to improve the precision of automatic 
acquisition of the entailment relation. 

 

2 Background  

2.1 Implementations of Distr ibu-
tional  Similar ity 

This subsection reviews the relevant details of ear-
lier methods that were utilized within this paper.  

In the computational setting contexts of words 
are represented by feature vectors. Each word w is 
represented by a feature vector, where an entry in 
the vector corresponds to a feature f. Each feature 
represents another word (or term) with which w co-
occurs, and possibly specifies also the syntactic 
relation between the two words as in (Grefenstette, 
1994; Lin, 1998; Weeds and Weir, 2003). Pado 
and Lapata (2003) demonstrated that using syntac-
tic dependency-based vector space models can help 
distinguish among classes of different lexical rela-
tions, which seems to be more difficult for tradi-
tional “bag of words” co-occurrence-based models. 

A syntactic feature is defined as a triple <term, 
syntactic_relation, relation_direction> (the direc-
tion is set to 1, if the feature is the word’s modifier 
and to 0 otherwise). For example, given the word 
“company” the feature <earnings_report, gen, 0>  
(genitive) corresponds to the phrase “company’s 
earnings report” , and <profit, pcomp, 0> (preposi-
tional complement) corresponds to “ the profit of 
the company” . Throughout this paper we used syn-
tactic features generated by the Minipar depend-
ency parser (Lin, 1993).  
    The value of each entry in the feature vector is 
determined by some weight function weight(w,f), 
which quantifies the degree of statistical associa-
tion between the feature and the corresponding 
word. The most widely used association weight 
function is (point-wise) Mutual Information (MI) 
(Church and Hanks, 1990; Lin, 1998; Dagan, 2000; 
Weeds et al., 2004). 

<=> element, component <=> gap, spread *       town, airpor t <=   loan, mor tgage 

=>   government, body *       warplane, bomb <=> program, plan *       tank, warplane 

*       match, winner  =>   bill, program <=   conflict, war  =>   town, location    

Table 1: Sample of the data set of top-40 distributionally similar word pairs produced by the RFF-
based method of (Geffet and Dagan, 2004). Entailment judgments are marked by the arrow direction, 
with '* ' denoting no entailment.  
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    Once feature vectors have been constructed, the 
similarity between two words is defined by some 
vector similarity metric. Different metrics have 
been used, such as weighted Jaccard (Grefenstette, 
1994; Dagan, 2000), cosine (Ruge, 1992), various 
information theoretic measures (Lee, 1997), and 
the widely cited and competitive (see (Weeds and 
Weir, 2003)) measure of Lin (1998) for similarity 
between two words, w and v, defined as follows: 

 

  
,

),(),(

),(),(

),(

)()(

)()(

� �
�

∈∈

∩∈

+

+

=

fvweightfwweight

fvweightfwweight

vwsim

vFfwFf

vFwFf

Lin

 

 
where F(w) and F(v) are the active features of the 
two words (positive feature weight) and the weight 
function is defined as MI. As typical for vector 
similarity measures, it assigns high similarity 
scores if many of the two word’s features overlap, 
even though some prominent features might be 
disjoint. This is a major reason for getting such 
semantically loose similarities, like company - 
government and country - economy. 

Investigating the output of Lin’s (1998) similar-
ity measure with respect to the above criterion in 
(Geffet and Dagan, 2004), we discovered that the 
quality of similarity scores is often hurt by inaccu-
rate feature weights, which yield rather noisy fea-
ture vectors.  Hence, we tried to improve the 
feature weighting function to promote those fea-
tures that are most indicative of the word meaning. 
A new weighting scheme was defined for boot-
strapping feature weights, termed RFF (Relative 
Feature Focus). First, basic similarities are gener-
ated by Lin’s measure. Then, feature weights are 
recalculated, boosting the weights of features that 
characterize many of the words that are most simi-
lar to the given one2. As a result the most promi-
nent features of a word are concentrated within the 
top-100 entries of the vector. Finally, word simi-
larities are recalculated by Lin's metric over the 
vectors with the new RFF weights. 

    The lexical entailment prediction task of 
(Geffet and Dagan, 2004) measures how many of 
the top ranking similarity pairs produced by the 
                                                           
2 In concrete terms RFF is defined by: 

� ∩∈= ),()()(),( vwsimwNfWSvfwRFF ,  

where sim(w,v) is an initial approximation of the similarity space by Lin’s 
measure, WS(f) is a set of words co-occurring with feature f, and N(w) is the set 
of the most similar words of w by Lin’s measure. 

RFF-based metric hold the entailment relation, in 
at least one direction. To this end a data set of 
1,200 pairs was created, consisting of top-N 
(N=40) similar words of 30 randomly selected 
nouns, which were manually judged by the lexical 
entailment criterion. Quite high Kappa agreement 
values of 0.75 and 0.83 were reported, indicating 
that the entailment judgment task was reasonably 
well defined. A subset of the data set is demon-
strated in Table 1.     

The RFF weighting produced 10% precision 
improvement over Lin’s original use of MI, sug-
gesting the RFF capability to promote semantically 
meaningful features. However, over 47% of the 
word pairs in the top-40 similarities are not related 
by entailment, which calls for further improve-
ment. In this paper we use the same data set 3 and 
the RFF metric as a basis for our experiments. 

2.2 Predicting  Semantic Inclusion 

Weeds et al. (2004) attempted to refine the distri-
butional similarity goal to predict whether one 
term is a generalization/specification of the other. 
They present a distributional generality concept 
and expect it to correlate with semantic generality. 
Their conjecture is that the majority of the features 
of the more specific word are included in the fea-
tures of the more general one. They define the fea-
ture recall of w with respect to v as the weighted 
proportion of features of v that also appear in the 
vector of w. Then, they suggest that a hypernym 
would have a higher feature recall for its hypo-
nyms (specifications), than vice versa.  
    However, their results in predicting the hy-
ponymy-hyperonymy direction (71% precision) are 
comparable to the naïve baseline (70% precision) 
that simply assumes that general words are more 
frequent than specific ones. Possible sources of 
noise in their experiment could be ignoring word 
polysemy and data sparseness of word-feature co-
occurrence in the corpus. 

3 The Distr ibutional Inclusion Hy-
potheses 

In this paper we suggest refined versions of the 
distributional similarity hypothesis which relate 
distributional behavior with lexical entailment. 

                                                           
3 Since the original data set did not include the direction of entailment, we have 
enriched it by adding the judgments of entailment direction. 
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     Extending the rationale of Weeds et al., we 
suggest that if the meaning of a word v entails an-
other word w then it is expected that all the typical 
contexts (features) of v will occur also with w. That 
is, the characteristic contexts of v are expected to 
be included within all w's contexts (but not neces-
sarily amongst the most characteristic ones for w). 
Conversely, we might expect that if v's characteris-
tic contexts are included within all w's contexts 
then it is likely that the meaning of  v does entail 
w. Taking both directions together, lexical entail-
ment is expected to highly correlate with character-
istic feature inclusion. 
     Two additional observations are needed before 
concretely formulating these hypotheses. As ex-
plained in Section 2, word contexts should be rep-
resented by syntactic features, which are more 
restrictive and thus better reflect the restrained se-
mantic meaning of the word (it is difficult to tie 
entailment to looser context representations, such 
as co-occurrence in a text window). We also notice 
that distributional similarity principles are intended 
to hold at the sense level rather than the word 
level, since different senses have different charac-
teristic contexts (even though computational com-
mon practice is to work at the word level, due to 
the lack of robust sense annotation). 
    We can now define the two distributional inclu-
sion hypotheses, which correspond to the two di-
rections of inference relating distributional feature 
inclusion and lexical entailment. Let vi and wj be 
two word senses of the words w and v, correspond-
ingly, and let vi => wj denote the (directional) en-
tailment relation between these senses. Assume 
further that we have a measure that determines the 
set of characteristic features for the meaning of 
each word sense. Then we would hypothesize: 

Hypothesis I : 

If vi => wj then all the characteristic (syntactic-
based) features of vi are expected to appear with wj.  

Hypothesis I I : 

If all the characteristic (syntactic-based) features of 
vi appear with wj then we expect that vi => wj. 

4 Word Level Testing of Feature In-
clusion  

To check the validity of the hypotheses we need to 
test feature inclusion. In this section we present an 
automated word-level feature inclusion testing 
method, termed ITA (Inclusion Testing Algorithm). 
To overcome the data sparseness problem we in-
corporated web-based feature sampling. Given a 
test pair of words, three main steps are performed, 
as detailed in the following subsections:  
Step 1: Computing the set of characteristic features 
for each word. 
Step 2: Testing feature inclusion for each pair, in 
both directions, within the given corpus data.  
Step 3: Complementary testing of feature inclusion 
for each pair in the web. 

4.1 Step 1: Corpus-based generation 
of character istic features 

To implement the first step of the algorithm, the 
RFF weighting function is exploited and its top-
100 weighted features are taken as most character-
istic for each word. As mentioned in Section 2, 
(Geffet and Dagan, 2004) shows that RFF yields 
high concentration of good features at the top of 
the vector. 

4.2 Step 2: Corpus-based feature 
inclusion test 

We first check feature inclusion in the corpus that 
was used to generate the characteristic feature sets.  
For each word pair (w, v) we first determine which 
features of w do co-occur with v in the corpus. The 
same is done to identify features of v that co-occur 
with w in the corpus. 

4.3 Step 3: Complementary Web-
based Inclusion Test 

This step is most important to avoid inclusion 
misses due to the data sparseness of the corpus. A 
few recent works (Ravichandran and Hovy, 2002; 
Keller et al., 2002; Chklovski and Pantel, 2004) 
used the web to collect statistics on word co-
occurrences. In a similar spirit, our inclusion test is 
completed by searching the web for the missing 
(non-included) features on both sides. We call this 
web-based technique mutual web-sampling. The 
web results are further parsed to verify matching of 
the feature's syntactic relationship. 
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     We denote the subset of w's features that are 
missing for v as M(w, v) (and equivalently M(v, 
w)). Since web sampling is time consuming we 
randomly sample a subset of k features (k=20 in 
our experiments), denoted as M(v,w,k).  

Mutual Web-sampling Procedure: 

For each pair (w, v) and their k-subsets  
M(w, v, k) and M(v, w, k) execute: 

 
1.  Syntactic Filtering of “Bag-of-Words”  Search: 
 
Search the web for sentences including v and a fea-
ture f from M(w, v, k) as “bag of words” , i. e. sen-
tences where w and f appear in any distance and in 
either order. Then filter out the sentences that do 
not match the defined syntactic relation between f 
and v (based on parsing). Features that co-occur 
with w in the correct syntactic relation are removed 
from M(w, v, k). Do the same search and filtering 
for w and features from M(v, w, k). 

2.   Syntactic Filtering of “Exact String” Matching: 

On the missing features on both sides (which are 
left in M(w, v, k) and M(v, w, k) after stage 1), ap-
ply “exact string”  search of the web. For this, con-
vert the tuple (v, f) to a string by adding 
prepositions and articles where needed. For exam-
ple, for (element, <project, pcomp_of, 1>) gener-
ate the corresponding string “element of the 
project”  and search the web for exact matches of 
the string. Then validate the syntactic relationship 
of f and v in the extracted sentences. Remove the 
found features from M(w, v, k) and M(v, w, k), re-
spectively. 

3.   Missing Features Validation:  

Since some of the features may be too infrequent 
or corpus-biased, check whether the remaining 
missing features do co-occur on the web with their 
original target words (with which they did occur in 
the corpus data). Otherwise, they should not be 
considered as valid misses and are also removed 
from M(w, v, k) and M(v, w, k).  
Output: Inclusion in either direction holds if the 
corresponding set of missing features is now 
empty. 

We also experimented with features consisting of 
words without syntactic relations. For example, 
exact string, or bag-of-words match. However, al-

most all the words (also non-entailing) were found 
with all the features of each other, even for seman-
tically implausible combinations (e.g. a word and a 
feature appear next to each other but belong to dif-
ferent clauses of the sentence). Therefore we con-
clude that syntactic relation validation is very 
important, especially on the web, in order to avoid 
coincidental co-occurrences.  

5 Empir ical Results 

To test the validity of the distributional inclusion 
hypotheses we performed an empirical analysis on 
a selected test sample using our automated testing 
procedure. 

5.1 Data and setting 

We experimented with a randomly picked test 
sample of about 200 noun pairs of 1,200 pairs pro-
duced by RFF (for details see Geffet and Dagan, 
2004) under Lin’s similarity scheme (Lin, 1998). 
The words were judged by the lexical entailment 
criterion (as described in Section 2). The original 
percentage of correct (52%) and incorrect (48%) 
entailments was preserved. 
    To estimate the degree of validity of the distri-
butional inclusion hypotheses we decomposed 
each word pair of the sample (w, v) to two direc-
tional pairs ordered by potential entailment direc-
tion: (w, v) and (v, w). The 400 resulting ordered 
pairs are used as a test set in Sections 5.2 and 5.3.   
    Features were computed from co-occurrences in 
a subset of the Reuters corpus of about 18 million 
words. For the web feature sampling the maximal 
number of web samples for each query (word - 
feature) was set to 3,000 sentences. 

5.2 Automatic Testing the Validity 
of the Hypotheses at the  Word 
Level  

The test set of 400 ordered pairs was examined in 
terms of entailment (according to the manual 
judgment) and feature inclusion (according to the 
ITA algorithm), as shown in Table 2. 
    According to Hypothesis I we expect that a pair 
(w, v) that satisfies entailment will also preserve 
feature inclusion. On the other hand, by Hypothe-
sis II if all the features of w are included by v then 
we expect that w entails v.  
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    We observed that Hypothesis I is better attested 
by our data than the second hypothesis. Thus 86% 
(97 out of 113) of the entailing pairs fulfilled the 
inclusion condition. Hypothesis II holds for ap-
proximately 70% (97 of 139) of the pairs for which 
feature inclusion holds. In the next section we ana-
lyze the cases of violation of both hypotheses and 
find that the first hypothesis held to an almost per-
fect extent with respect to word senses.  
    It is also interesting to note that thanks to the 
web-sampling procedure over 90% of the non-
included features in the corpus were found on the 
web, while most of the missing features (in the 
web) are indeed semantically implausible. 

5.3 Manual Sense Level Testing of 
Hypotheses Validity  

Since our data was not sense tagged, the automatic 
validation procedure could only test the hypotheses 
at the word level. In this section our goal is to ana-

lyze the findings of our empirical test at the word 
sense level as our hypotheses were defined for 
senses.  Basically, two cases of hypotheses invalid-
ity were detected: 

Case 1: Entailments with non-included features 
(violation of Hypothesis I); 

Case 2: Feature Inclusion for non-entailments 
(violation of Hypothesis II).     

    At the word level we observed 14% invalid pairs 
of the first case and 30% of the second case. How-
ever, our manual analysis shows, that over 90% of 
the first case pairs were due to a different sense of 
one of the entailing word, e.g. capital - town (capi-
tal as money) and spread - gap (spread as distribu-
tion) (Table 3). Note that ambiguity of the entailed 
word does not cause errors (like town – area, area 
as domain) (Table 3). Thus the first hypothesis 
holds at the sense level for over 98% of the cases 
(Table 4). 
    Two remaining invalid instances of the first case 
were due to the web sampling method limitations 
and syntactic parsing filtering mistakes, especially 
for some less characteristic and infrequent features 
captured by RFF. Thus, in virtually all the exam-
ples tested in our experiment Hypothesis I was 
valid. 
   We also explored the second case of invalid 
pairs: non-entailing words that pass the feature in-
clusion test. After sense based analysis their per-
centage was reduced slightly to 27.4%. Three 
possible reasons were discovered. First, there are 
words with features typical to the general meaning 
of the domain, which tend to be included by many 
other words of this domain, like valley – town. The 
features of valley (“eastern valley” , “central val-
ley” , “attack in valley” , “ industry of the valley” ) 
are not discriminative enough to be distinguished 
from town, as they are all characteristic to any geo-
graphic location.  

             Inclusion 
Entailment 

       +     - 
 

              +      97       16 
               -      42           245 
Table 2: Distribution of 400 entailing/non-
entailing ordered pairs that hold/do not hold 
feature inclusion at the word level.  

           Inclusion 
Entailment 

        +     - 
 

             +        111       2 
              -        42       245 
Table 4: Distribution of the entailing/non-
entailing ordered pairs that hold/do not hold 
feature inclusion at the sense level.  

spread – gap (mutually entail each other ) 
<weapon, pcomp_of> 
The Committee was discussing the Pro-
gramme of the “Big Eight,”  aimed against 
spread of weapon of mass destruction. 

town – area (“ town”  entails “ area” ) 
<cooperation, pcomp_for> 
This is a promising area for  cooperation and 
exchange of experiences.  

capital – town (“ capital”  entails “ town” ) 
<flow, nn> 
Offshore financial centers affect cross-border 
capital flow in China. 

Table 3: Examples of ambiguity of entailment-
related words, where the disjoint features be-
long to a different sense of the word. 
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    The second group consists of words that can be 
entailing, but only in a context-dependent (ana-
phoric) manner rather than ontologically. For ex-
ample, government and neighbour, while 
neighbour is used in the meaning of “ neighbouring 
(country) government” . Finally, sometimes one or 
both of the words are abstract and general enough 
and also highly ambiguous to appear with a wide 
range of features on the web, like element (vio-
lence – element, with all the tested features of vio-
lence included by element). 

To prevent occurrences of the second case more 
characteristic and discriminative features should be 
provided. For this purpose features extracted from 
the web, which are not domain-biased (like fea-
tures from the corpus) and multi-word features 
may be helpful. Overall, though, there might be 
inherent cases that invalidate Hypothesis II. 

6 Improving Lexical Entailment Pre-
diction by ITA (Inclusion Testing 
Algor ithm) 

In this section we show that ITA can be practically 
used to improve the (non-directional) lexical en-
tailment prediction task described in Section 2. 
Given the output of the distributional similarity 
method, we employ ITA at the word level to filter 
out non-entailing pairs. Word pairs that satisfy fea-
ture inclusion of all k features (at least in one direc-
tion) are claimed as entailing.  

 The same test sample of 200 word pairs men-
tioned in Section 5.1 was used in this experiment. 
The results were compared to RFF under Lin’s 
similarity scheme (RFF-top-40 in Table 5).  

 Precision was significantly improved, filtering 
out 60% of the incorrect pairs. On the other hand, 
the relative recall (considering RFF recall as 
100%) was only reduced by 13%, consequently 

leading to a better relative F1, when considering 
the RFF-top-40 output as 100% recall (Table 5). 

 Since our method removes about 35% of the 
original top-40 RFF output, it was interesting to 
compare our results to simply cutting off the 35% 
of the lowest ranked RFF words (top-26). The 
comparison to the baseline (RFF-top-26 in Table 
5) showed that ITA filters the output much better 
than just cutting off the lowest ranking similarities.  

 We also tried a couple of variations on feature 
sampling for the web-based procedure. In one of 
our preliminary experiments we used the top-k 
RFF features instead of random selection. But we 
observed that top ranked RFF features are less dis-
criminative than the random ones due to the nature 
of the RFF weighting strategy, which promotes 
features shared by many similar words. Then, we 
attempted doubling the sampling to 40 random fea-
tures. As expected the recall was slightly de-
creased, while precision was increased by over 5%. 
In summary, the behavior of ITA sampling of 
k=20 and k=40 features is closely comparable 
(ITA-20 and ITA-40 in Table 5, respectively)4.     

7 Conclusions and Future Work 

The main contributions of this paper were: 
1.  We defined two Distributional Inclusion Hy-
potheses that associate feature inclusion with lexi-
cal entailment at the word sense level. The 
Hypotheses were proposed as a refinement for 
Harris’  Distributional hypothesis and as an exten-
sion to the classic distributional similarity scheme. 
2.   To estimate the empirical validity of the de-
fined hypotheses we developed an automatic inclu-
sion testing algorithm (ITA). The core of the 
algorithm is a web-based feature inclusion testing 
procedure, which helped significantly to compen-
sate for data sparseness. 
3.    Then a thorough analysis of the data behavior 
with respect to the proposed hypotheses was con-
ducted. The first hypothesis was almost fully at-
tested by the data, particularly at the sense level, 
while the second hypothesis did not fully hold.  
4.   Motivated by the empirical analysis we pro-
posed to employ ITA for the practical task of im-
proving lexical entailment acquisition. The 
algorithm was applied as a filtering technique on 
the distributional similarity (RFF) output. We ob-

                                                           
4 The ITA-40 sampling f its the analysis from section 5.2 and 5.3 as well. 

Method Precision Recall F1 
ITA-20 0.700 0.875 0.777 
ITA-40 0.740 0.846 0.789 
RFF-top-40 0.520 1.000 0.684 
RFF-top-26 0.561 0.701 0.624 
Table 5: Comparative results of using the 
filter, with 20 and 40 feature sampling, com-
pared to RFF top-40 and RFF top-26 simi-
larities. ITA-20 and ITA-40 denote the web-
sampling method with 20 and random 40 
features, respectively. 
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tained 17% increase of precision and succeeded to 
improve relative F1 by 15% over the baseline.      
    Although the results were encouraging our man-
ual data analysis shows that we still have to handle 
word ambiguity. In particular, this is important in 
order to be able to learn the direction of entailment.  
     To achieve better precision we need to increase 
feature discriminativeness. To this end syntactic 
features may be extended to contain more than one 
word, and ways for automatic extraction of fea-
tures from the web (rather than from a corpus) may 
be developed. Finally, further investigation of 
combining the distributional and the co-occurrence 
pattern-based approaches over the web is desired. 
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Abstract

We address the rating-inference problem,
wherein rather than simply decide whether
a review is “thumbs up” or “thumbs
down”, as in previous sentiment analy-
sis work, one must determine an author’s
evaluation with respect to a multi-point
scale (e.g., one to five “stars”). This task
represents an interesting twist on stan-
dard multi-class text categorization be-
cause there are several different degrees
of similarity between class labels; for ex-
ample, “three stars” is intuitively closer to
“four stars” than to “one star”.

We first evaluate human performance at
the task. Then, we apply a meta-
algorithm, based on a metric labeling for-
mulation of the problem, that alters a
given � -ary classifier’s output in an ex-
plicit attempt to ensure that similar items
receive similar labels. We show that
the meta-algorithm can provide signifi-
cant improvements over both multi-class
and regression versions of SVMs when we
employ a novel similarity measure appro-
priate to the problem.

1 Introduction

There has recently been a dramatic surge of inter-
est in sentiment analysis, as more and more people
become aware of the scientific challenges posed and

the scope of new applications enabled by the pro-
cessing of subjective language. (The papers col-
lected by Qu, Shanahan, and Wiebe (2004) form a
representative sample of research in the area.) Most
prior work on the specific problem of categorizing
expressly opinionated text has focused on the bi-
nary distinction of positive vs. negative (Turney,
2002; Pang, Lee, and Vaithyanathan, 2002; Dave,
Lawrence, and Pennock, 2003; Yu and Hatzivas-
siloglou, 2003). But it is often helpful to have more
information than this binary distinction provides, es-
pecially if one is ranking items by recommendation
or comparing several reviewers’ opinions: example
applications include collaborative filtering and de-
ciding which conference submissions to accept.

Therefore, in this paper we consider generalizing
to finer-grained scales: rather than just determine
whether a review is “thumbs up” or not, we attempt
to infer the author’s implied numerical rating, such
as “three stars” or “four stars”. Note that this differs
from identifying opinion strength (Wilson, Wiebe,
and Hwa, 2004): rants and raves have the same
strength but represent opposite evaluations, and ref-
eree forms often allow one to indicate that one is
very confident (high strength) that a conference sub-
mission is mediocre (middling rating). Also, our
task differs from ranking not only because one can
be given a single item to classify (as opposed to a
set of items to be ordered relative to one another),
but because there are settings in which classification
is harder than ranking, and vice versa.

One can apply standard � -ary classifiers or regres-
sion to this rating-inference problem; independent
work by Koppel and Schler (2005) considers such
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methods. But an alternative approach that explic-
itly incorporates information about item similarities
together with label similarity information (for in-
stance, “one star” is closer to “two stars” than to
“four stars”) is to think of the task as one of met-
ric labeling (Kleinberg and Tardos, 2002), where
label relations are encoded via a distance metric.
This observation yields a meta-algorithm, applicable
to both semi-supervised (via graph-theoretic tech-
niques) and supervised settings, that alters a given� -ary classifier’s output so that similar items tend to
be assigned similar labels.

In what follows, we first demonstrate that hu-
mans can discern relatively small differences in (hid-
den) evaluation scores, indicating that rating infer-
ence is indeed a meaningful task. We then present
three types of algorithms — one-vs-all, regression,
and metric labeling — that can be distinguished by
how explicitly they attempt to leverage similarity
between items and between labels. Next, we con-
sider what item similarity measure to apply, propos-
ing one based on the positive-sentence percentage.
Incorporating this new measure within the metric-
labeling framework is shown to often provide sig-
nificant improvements over the other algorithms.

We hope that some of the insights derived here
might apply to other scales for text classifcation that
have been considered, such as clause-level opin-
ion strength (Wilson, Wiebe, and Hwa, 2004); af-
fect types like disgust (Subasic and Huettner, 2001;
Liu, Lieberman, and Selker, 2003); reading level
(Collins-Thompson and Callan, 2004); and urgency
or criticality (Horvitz, Jacobs, and Hovel, 1999).

2 Problem validation and formulation

We first ran a small pilot study on human subjects
in order to establish a rough idea of what a reason-
able classification granularity is: if even people can-
not accurately infer labels with respect to a five-star
scheme with half stars, say, then we cannot expect a
learning algorithm to do so. Indeed, some potential
obstacles to accurate rating inference include lack
of calibration (e.g., what an understated author in-
tends as high praise may seem lukewarm), author
inconsistency at assigning fine-grained ratings, and

Rating diff. Pooled Subject 1 Subject 2�
or more 100% 100% (35) 100% (15)

2 (e.g., 1 star) 83% 77% (30) 100% (11)
1 (e.g.,

�� star) 69% 65% (57) 90% (10)
0 55% 47% (15) 80% ( 5)

Table 1: Human accuracy at determining relative
positivity. Rating differences are given in “notches”.
Parentheses enclose the number of pairs attempted.

ratings not entirely supported by the text1.
For data, we first collected Internet movie reviews

in English from four authors, removing explicit rat-
ing indicators from each document’s text automati-
cally. Now, while the obvious experiment would be
to ask subjects to guess the rating that a review rep-
resents, doing so would force us to specify a fixed
rating-scale granularity in advance. Instead, we ex-
amined people’s ability to discern relative differ-
ences, because by varying the rating differences rep-
resented by the test instances, we can evaluate mul-
tiple granularities in a single experiment. Specifi-
cally, at intervals over a number of weeks, we au-
thors (a non-native and a native speaker of English)
examined pairs of reviews, attemping to determine
whether the first review in each pair was (1) more
positive than, (2) less positive than, or (3) as posi-
tive as the second. The texts in any particular review
pair were taken from the same author to factor out
the effects of cross-author divergence.

As Table 1 shows, both subjects performed per-
fectly when the rating separation was at least 3
“notches” in the original scale (we define a notch
as a half star in a four- or five-star scheme and 10
points in a 100-point scheme). Interestingly, al-
though human performance drops as rating differ-
ence decreases, even at a one-notch separation, both
subjects handily outperformed the random-choice
baseline of 33%. However, there was large variation
in accuracy between subjects.2

1For example, the critic Dennis Schwartz writes that “some-
times the review itself [indicates] the letter grade should have
been higher or lower, as the review might fail to take into con-
sideration my overall impression of the film — which I hope to
capture in the grade” (http://www.sover.net/˜ozus/cinema.htm).

2One contributing factor may be that the subjects viewed
disjoint document sets, since we wanted to maximize experi-
mental coverage of the types of document pairs within each dif-
ference class. We thus cannot report inter-annotator agreement,
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Because of this variation, we defined two differ-
ent classification regimes. From the evidence above,
a three-class task (categories 0, 1, and 2 — es-
sentially “negative”, “middling”, and “positive”, re-
spectively) seems like one that most people would
do quite well at (but we should not assume 100%
human accuracy: according to our one-notch re-
sults, people may misclassify borderline cases like
2.5 stars). Our study also suggests that people could
do at least fairly well at distinguishing full stars in
a zero- to four-star scheme. However, when we
began to construct five-category datasets for each
of our four authors (see below), we found that in
each case, either the most negative or the most pos-
itive class (but not both) contained only about 5%
of the documents. To make the classes more bal-
anced, we folded these minority classes into the ad-
jacent class, thus arriving at a four-class problem
(categories 0-3, increasing in positivity). Note that
the four-class problem seems to offer more possi-
bilities for leveraging class relationship information
than the three-class setting, since it involves more
class pairs. Also, even the two-category version of
the rating-inference problem for movie reviews has
proven quite challenging for many automated clas-
sification techniques (Pang, Lee, and Vaithyanathan,
2002; Turney, 2002).

We applied the above two labeling schemes to
a scale dataset3 containing four corpora of movie
reviews. All reviews were automatically pre-
processed to remove both explicit rating indicators
and objective sentences; the motivation for the latter
step is that it has previously aided positive vs. neg-
ative classification (Pang and Lee, 2004). All of the
1770, 902, 1307, or 1027 documents in a given cor-
pus were written by the same author. This decision
facilitates interpretation of the results, since it fac-
tors out the effects of different choices of methods
for calibrating authors’ scales.4 We point out that

but since our goal is to recover a reviewer’s “true” recommen-
dation, reader-author agreement is more relevant.

While another factor might be degree of English fluency, in
an informal experiment (six subjects viewing the same three
pairs), native English speakers made the only two errors.

3Available at http://www.cs.cornell.edu/People/pabo/movie-
review-data as scale dataset v1.0.

4From the Rotten Tomatoes website’s FAQ: “star systems
are not consistent between critics. For critics like Roger Ebert
and James Berardinelli, 2.5 stars or lower out of 4 stars is al-
ways negative. For other critics, 2.5 stars can either be positive

it is possible to gather author-specific information
in some practical applications: for instance, systems
that use selected authors (e.g., the Rotten Tomatoes
movie-review website — where, we note, not all
authors provide explicit ratings) could require that
someone submit rating-labeled samples of newly-
admitted authors’ work. Moreover, our results at
least partially generalize to mixed-author situations
(see Section 5.2).

3 Algorithms

Recall that the problem we are considering is multi-
category classification in which the labels can be
naturally mapped to a metric space (e.g., points on a
line); for simplicity, we assume the distance metric�
	������������� ���������

throughout. In this section, we
present three approaches to this problem in order of
increasingly explicit use of pairwise similarity infor-
mation between items and between labels. In order
to make comparisons between these methods mean-
ingful, we base all three of them on Support Vec-
tor Machines (SVMs) as implemented in Joachims’
(1999) ��� �"!$#&%('*) package.

3.1 One-vs-all

The standard SVM formulation applies only to bi-
nary classification. One-vs-all (OVA) (Rifkin and
Klautau, 2004) is a common extension to the � -ary
case. Training consists of building, for each label

�
,

an SVM binary classifier distinguishing label
�

from
“not-

�
”. We consider the final output to be a label

preference function +-,�.�/ 	102��3� , defined as the signed
distance of (test) item

0
to the

�
side of the

�
vs.

not-
�

decision plane.
Clearly, OVA makes no explicit use of pairwise

label or item relationships. However, it can perform
well if each class exhibits sufficiently distinct lan-
guage; see Section 4 for more discussion.

3.2 Regression

Alternatively, we can take a regression perspective
by assuming that the labels come from a discretiza-
tion of a continuous function 4 mapping from the

or negative. Even though Eric Lurio uses a 5 star system, his
grading is very relaxed. So, 2 stars can be positive.” Thus,
calibration may sometimes require strong familiarity with the
authors involved, as anyone who has ever needed to reconcile
conflicting referee reports probably knows.
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feature space to a metric space.5 If we choose 4
from a family of sufficiently “gradual” functions,
then similar items necessarily receive similar labels.
In particular, we consider linear, 5 -insensitive SVM
regression (Vapnik, 1995; Smola and Schölkopf,
1998); the idea is to find the hyperplane that best fits
the training data, but where training points whose la-
bels are within distance 5 of the hyperplane incur no
loss. Then, for (test) instance

0
, the label preference

function +76�8:9 	10;��<� is the negative of the distance be-
tween

�
and the value predicted for

0
by the fitted

hyperplane function.
Wilson, Wiebe, and Hwa (2004) used SVM re-

gression to classify clause-level strength of opinion,
reporting that it provided lower accuracy than other
methods. However, independently of our work,
Koppel and Schler (2005) found that applying lin-
ear regression to classify documents (in a different
corpus than ours) with respect to a three-point rat-
ing scale provided greater accuracy than OVA SVMs
and other algorithms.

3.3 Metric labeling
Regression implicitly encodes the “similar items,
similar labels” heuristic, in that one can restrict
consideration to “gradual” functions. But we can
also think of our task as a metric labeling prob-
lem (Kleinberg and Tardos, 2002), a special case
of the maximum a posteriori estimation problem
for Markov random fields, to explicitly encode our
desideratum. Suppose we have an initial label pref-
erence function + 	102��3� , perhaps computed via one
of the two methods described above. Also, let

�
be a distance metric on labels, and let �7�>= 	10?� de-
note the @ nearest neighbors of item

0
according

to some item-similarity function A�B�C . Then, it is
quite natural to pose our problem as finding a map-
ping of instances

0
to labels

�<D
(respecting the orig-

inal labels of the training instances) that minimizes

ED�F
test

GH � + 	102�� D �-I�J EK FMLNLPO*QRD3SNT 	U�V	�� D �� K ��� A�B�C 	102�WX��YZ[
where T is monotonically increasing (we choseT 	U�\�]�^�

unless otherwise specified) and
J

is a
trade-off and/or scaling parameter. (The inner sum-
mation is familiar from work in locally-weighted

5We discuss the ordinal regression variant in Section 6.

learning6 (Atkeson, Moore, and Schaal, 1997).) In a
sense, we are using explicit item and label similarity
information to increasingly penalize the initial clas-
sifier as it assigns more divergent labels to similar
items.

In this paper, we only report supervised-learning
experiments in which the nearest neighbors for any
given test item were drawn from the training set
alone. In such a setting, the labeling decisions for
different test items are independent, so that solving
the requisite optimization problem is simple.

Aside: transduction The above formulation also
allows for transductive semi-supervised learning as
well, in that we could allow nearest neighbors to
come from both the training and test sets. We
intend to address this case in future work, since
there are important settings in which one has a
small number of labeled reviews and a large num-
ber of unlabeled reviews, in which case consider-
ing similarities between unlabeled texts could prove
quite helpful. In full generality, the correspond-
ing multi-label optimization problem is intractable,
but for many families of T functions (e.g., con-
vex) there exist practical exact or approximation
algorithms based on techniques for finding mini-
mum s-t cuts in graphs (Ishikawa and Geiger, 1998;
Boykov, Veksler, and Zabih, 1999; Ishikawa, 2003).
Interestingly, previous sentiment analysis research
found that a minimum-cut formulation for the binary
subjective/objective distinction yielded good results
(Pang and Lee, 2004). Of course, there are many
other related semi-supervised learning algorithms
that we would like to try as well; see Zhu (2005)
for a survey.

4 Class struggle: finding a label-correlated
item-similarity function

We need to specify an item similarity function A_B1C
to use the metric-labeling formulation described in
Section 3.3. We could, as is commonly done, em-
ploy a term-overlap-based measure such as the co-
sine between term-frequency-based document vec-
tors (henceforth “TO(cos)”). However, Table 2

6If we ignore the `badc\e1f�g term, different choices of h cor-
respond to different versions of nearest-neighbor learning, e.g.,
majority-vote, weighted average of labels, or weighted median
of labels.

118



Label difference:
1 2 3

Three-class data 37% 33% —
Four-class data 34% 31% 30%

Table 2: Average over authors and class pairs of
between-class vocabulary overlap as the class labels
of the pair grow farther apart.

shows that in aggregate, the vocabularies of distant
classes overlap to a degree surprisingly similar to
that of the vocabularies of nearby classes. Thus,
item similarity as measured by TO(cos) may not cor-
relate well with similarity of the item’s true labels.

We can potentially develop a more useful similar-
ity metric by asking ourselves what, intuitively, ac-
counts for the label relationships that we seek to ex-
ploit. A simple hypothesis is that ratings can be de-
termined by the positive-sentence percentage (PSP)
of a text, i.e., the number of positive sentences di-
vided by the number of subjective sentences. (Term-
based versions of this premise have motivated much
sentiment-analysis work for over a decade (Das and
Chen, 2001; Tong, 2001; Turney, 2002).) But coun-
terexamples are easy to construct: reviews can con-
tain off-topic opinions, or recount many positive as-
pects before describing a fatal flaw.

We therefore tested the hypothesis as follows.
To avoid the need to hand-label sentences as posi-
tive or negative, we first created a sentence polarity
dataset7 consisting of 10,662 movie-review “snip-
pets” (a striking extract usually one sentence long)
downloaded from www.rottentomatoes.com; each
snippet was labeled with its source review’s label
(positive or negative) as provided by Rotten Toma-
toes. Then, we trained a Naive Bayes classifier on
this data set and applied it to our scale dataset to
identify the positive sentences (recall that objective
sentences were already removed).

Figure 1 shows that all four authors tend to ex-
hibit a higher PSP when they write a more pos-
itive review, and we expect that most typical re-
viewers would follow suit. Hence, PSP appears to
be a promising basis for computing document sim-
ilarity for our rating-inference task. In particular,

7Available at http://www.cs.cornell.edu/People/pabo/movie-
review-data as sentence polarity dataset v1.0.

we defined
���X�i�X�&jk � k 	107� to be the two-dimensional vec-

tor
	 k � k 	107�_<lm� k � k 	10?��� , and then set the item-

similarity function required by the metric-labeling
optimization function (Section 3.3) to A�B�C 	102�WX�n�o�prqts �1�i�X�i�Rjk � k 	10?�� �X�X�i�ujk � k 	1Wi�wvyx 8
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Figure 1: Average and standard deviation of PSP for
reviews expressing different ratings.

But before proceeding, we note that it is possi-
ble that similarity information might yield no extra
benefit at all. For instance, we don’t need it if we
can reliably identify each class just from some set
of distinguishing terms. If we define such terms
as frequent ones ( ��z {�| ) that appear in a sin-
gle class 50% or more of the time, then we do find
many instances; some examples for one author are:
“meaningless”, “disgusting” (class 0); “pleasant”,
“uneven” (class 1); and “oscar”, “gem” (class 2)
for the three-class case, and, in the four-class case,
“flat”, “tedious” (class 1) versus “straightforward”,
“likeable” (class 2). Some unexpected distinguish-
ing terms for this author are “lion” for class 2 (three-
class case), and for class 2 in the four-class case,
“jennifer”, for a wide variety of Jennifers.

5 Evaluation

This section compares the accuracies of the ap-
proaches outlined in Section 3 on the four corpora
comprising our scale dataset. (Results using } � er-
ror were qualitatively similar.) Throughout, when

8While admittedly we initially chose this function because
it was convenient to work with cosines, post hoc analysis re-
vealed that the corresponding metric space “stretched” certain
distances in a useful way.
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we refer to something as “significant”, we mean sta-
tistically so with respect to the paired ~ -test, ��� x |r� .

The results that follow are based on �\��� !$#&%('*) ’s
default parameter settings for SVM regression and
OVA. Preliminary analysis of the effect of varying
the regression parameter 5 in the four-class case re-
vealed that the default value was often optimal.

The notation “A
I

B” denotes metric labeling
where method A provides the initial label preference
function + and B serves as similarity measure. To
train, we first select the meta-parameters @ and

J
by running 9-fold cross-validation within the train-
ing set. Fixing @ and

J
to those values yielding the

best performance, we then re-train A (but with SVM
parameters fixed, as described above) on the whole
training set. At test time, the nearest neighbors of
each item are also taken from the full training set.

5.1 Main comparison

Figure 2 summarizes our average 10-fold cross-
validation accuracy results. We first observe from
the plots that all the algorithms described in Section
3 always definitively outperform the simple baseline
of predicting the majority class, although the im-
provements are smaller in the four-class case. In-
cidentally, the data was distributed in such a way
that the absolute performance of the baseline it-
self does not change much between the three- and
four-class case (which implies that the three-class
datasets were relatively more balanced); and Author
c’s datasets seem noticeably easier than the others.

We now examine the effect of implicitly using la-
bel and item similarity. In the four-class case, re-
gression performed better than OVA (significantly
so for two authors, as shown in the righthand ta-
ble); but for the three-category task, OVA signifi-
cantly outperforms regression for all four authors.
One might initially interprete this “flip” as showing
that in the four-class scenario, item and label simi-
larities provide a richer source of information rela-
tive to class-specific characteristics, especially since
for the non-majority classes there is less data avail-
able; whereas in the three-class setting the categories
are better modeled as quite distinct entities.

However, the three-class results for metric label-
ing on top of OVA and regression (shown in Figure 2
by black versions of the corresponding icons) show
that employing explicit similarities always improves

results, often to a significant degree, and yields the
best overall accuracies. Thus, we can in fact effec-
tively exploit similarities in the three-class case. Ad-
ditionally, in both the three- and four- class scenar-
ios, metric labeling often brings the performance of
the weaker base method up to that of the stronger
one (as indicated by the “disappearance” of upward
triangles in corresponding table rows), and never
hurts performance significantly.

In the four-class case, metric labeling and regres-
sion seem roughly equivalent. One possible inter-
pretation is that the relevant structure of the problem
is already captured by linear regression (and per-
haps a different kernel for regression would have
improved its three-class performance). However,
according to additional experiments we ran in the
four-class situation, the test-set-optimal parameter
settings for metric labeling would have produced
significant improvements, indicating there may be
greater potential for our framework. At any rate, we
view the fact that metric labeling performed quite
well for both rating scales as a definitely positive re-
sult.

5.2 Further discussion
Q: Metric labeling looks like it’s just combining
SVMs with nearest neighbors, and classifier combi-
nation often improves performance. Couldn’t we get
the same kind of results by combining SVMs with
any other reasonable method?
A: No. For example, if we take the strongest
base SVM method for initial label preferences, but
replace PSP with the term-overlap-based cosine
(TO(cos)), performance often drops significantly.
This result, which is in accordance with Section
4’s data, suggests that choosing an item similarity
function that correlates well with label similarity
is important. (ova

I
PSP �P�P�P� ova

I
TO(cos) [3c];

reg
I

PSP � reg
I

TO(cos) [4c])
Q: Could you explain that notation, please?
A: Triangles point toward the significantly bet-
ter algorithm for some dataset. For instance,
“M �P�P� N [3c]” means, “In the 3-class task, method
M is significantly better than N for two author
datasets and significantly worse for one dataset (so
the algorithms were statistically indistinguishable on
the remaining dataset)”. When the algorithms be-
ing compared are statistically indistinguishable on
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Average ten-fold cross-validation accuracies. Open icons: SVMs in either one-versus-all (square) or re-
gression (circle) mode; dark versions: metric labeling using the corresponding SVM together with the
positive-sentence percentage (PSP). The

W
-axes of the two plots are aligned.

Significant differences, three-class data Significant differences, four-class data
ova ova+PSP reg reg+PSP

a b c d a b c d a b c d a b c d

ova �V�?� . �?�?�V� . � . .

ova+PSP �?�?� . �?�?�V� �?�?� .

reg �?�?�V� �V�?�?� . � . �
reg+PSP . � . . �V�?� . . � . �

ova ova+PSP reg reg+PSP
a b c d a b c d a b c d a b c d

ova . �?�?� �?� . . � . . �
ova+PSP . �?�?� � . . . � . . .

reg �?� . . � . . . . . . .

reg+PSP � . . � � . . . . . . .

Triangles point towards significantly better algorithms for the results plotted above. Specifically, if the
difference between a row and a column algorithm for a given author dataset (a, b, c, or d) is significant, a
triangle points to the better one; otherwise, a dot (.) is shown. Dark icons highlight the effect of adding PSP
information via metric labeling.

Figure 2: Results for main experimental comparisons.

all four datasets (the “no triangles” case), we indi-
cate this with an equals sign (“=”).

Q: Thanks. Doesn’t Figure 1 show that the
positive-sentence percentage would be a good
classifier even in isolation, so metric labeling isn’t
necessary?
A: No. Predicting class labels directly from
the PSP value via trained thresholds isn’t as
effective (ova

I
PSP �P�P�P� threshold PSP [3c];

reg
I

PSP �P� threshold PSP [4c]).
Alternatively, we could use only the PSP com-

ponent of metric labeling by setting the la-

bel preference function to the constant function
0, but even with test-set-optimal parameter set-
tings, doing so underperforms the trained met-
ric labeling algorithm with access to an ini-
tial SVM classifier (ova

I
PSP �P�P�P� 0

I k � k�� [3c];
reg
I

PSP �P� 0
I k � k�� [4c]).

Q: What about using PSP as one of the features for
input to a standard classifier?
A: Our focus is on investigating the utility of simi-
larity information. In our particular rating-inference
setting, it so happens that the basis for our pair-
wise similarity measure can be incorporated as an
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item-specific feature, but we view this as a tan-
gential issue. That being said, preliminary experi-
ments show that metric labeling can be better, barely
(for test-set-optimal parameter settings for both al-
gorithms: significantly better results for one author,
four-class case; statistically indistinguishable other-
wise), although one needs to determine an appropri-
ate weight for the PSP feature to get good perfor-
mance.

Q: You defined the “metric transformation” func-
tion T as the identity function T 	U�������

, imposing
greater loss as the distance between labels assigned
to two similar items increases. Can you do just as
well if you penalize all non-equal label assignments
by the same amount, or does the distance between
labels really matter?
A: You’re asking for a comparison to the Potts
model, which sets T to the function �T 	U��� �l

if
� � | , | otherwise. In the one set-

ting in which there is a significant difference
between the two, the Potts model does worse
(ova

I
PSP � ova �I PSP [3c]). Also, employing the

Potts model generally leads to fewer significant
improvements over a chosen base method (com-
pare Figure 2’s tables with: reg �I PSP � reg [3c];
ova �I PSP �P� ova [3c]; ova �I PSP

�
ova [4c]; but

note that reg �I PSP � reg [4c]). We note that opti-
mizing the Potts model in the multi-label case is NP-
hard, whereas the optimal metric labeling with the
identity metric-transformation function can be effi-
ciently obtained (see Section 3.3).

Q: Your datasets had many labeled reviews and only
one author each. Is your work relevant to settings
with many authors but very little data for each?
A: As discussed in Section 2, it can be quite dif-
ficult to properly calibrate different authors’ scales,
since the same number of “stars” even within what
is ostensibly the same rating system can mean differ-
ent things for different authors. But since you ask:
we temporarily turned a blind eye to this serious is-
sue, creating a collection of 5394 reviews by 496 au-
thors with at most 80 reviews per author, where we
pretended that our rating conversions mapped cor-
rectly into a universal rating scheme. Preliminary
results on this dataset were actually comparable to
the results reported above, although since we are
not confident in the class labels themselves, more

work is needed to derive a clear analysis of this set-
ting. (Abusing notation, since we’re already play-
ing fast and loose: [3c]: baseline 52.4%, reg 61.4%,
reg
I

PSP 61.5%, ova (65.4%) � ova
I

PSP (66.3%);
[4c]: baseline 38.8%, reg (51.9%) � reg

I
PSP

(52.7%), ova (53.8%) � ova
I

PSP (54.6%))
In future work, it would be interesting to deter-

mine author-independent characteristics that can be
used on (or suitably adapted to) data for specific au-
thors.

Q: How about trying —
A: —Yes, there are many alternatives. A few
that we tested are described in the Appendix, and
we propose some others in the next section. We
should mention that we have not yet experimented
with all-vs.-all (AVA), another standard binary-to-
multi-category classifier conversion method, be-
cause we wished to focus on the effect of omit-
ting pairwise information. In independent work on
3-category rating inference for a different corpus,
Koppel and Schler (2005) found that regression out-
performed AVA, and Rifkin and Klautau (2004) ar-
gue that in principle OVA should do just as well as
AVA. But we plan to try it out.

6 Related work and future directions

In this paper, we addressed the rating-inference
problem, showing the utility of employing label sim-
ilarity and (appropriate choice of) item similarity
— either implicitly, through regression, or explicitly
and often more effectively, through metric labeling.

In the future, we would like to apply our methods
to other scale-based classification problems, and ex-
plore alternative methods. Clearly, varying the ker-
nel in SVM regression might yield better results.
Another choice is ordinal regression (McCullagh,
1980; Herbrich, Graepel, and Obermayer, 2000),
which only considers the ordering on labels, rather
than any explicit distances between them; this ap-
proach could work well if a good metric on labels is
lacking. Also, one could use mixture models (e.g.,
combine “positive” and “negative” language mod-
els) to capture class relationships (McCallum, 1999;
Schapire and Singer, 2000; Takamura, Matsumoto,
and Yamada, 2004).

We are also interested in framing multi-class but
non-scale-based categorization problems as metric
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labeling tasks. For example, positive vs. negative vs.
neutral sentiment distinctions are sometimes consid-
ered in which neutral means either objective (En-
gström, 2004) or a conflation of objective with a rat-
ing of mediocre (Das and Chen, 2001). (Koppel and
Schler (2005) in independent work also discuss var-
ious types of neutrality.) In either case, we could
apply a metric in which positive and negative are
closer to objective (or objective+mediocre) than to
each other. As another example, hierarchical label
relationships can be easily encoded in a label met-
ric.

Finally, as mentioned in Section 3.3, we would
like to address the transductive setting, in which one
has a small amount of labeled data and uses rela-
tionships between unlabeled items, since it is par-
ticularly well-suited to the metric-labeling approach
and may be quite important in practice.
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Kleinberg, Jon and Éva Tardos. 2002. Approximation al-
gorithms for classification problems with pairwise relation-
ships: Metric labeling and Markov random fields. Journal
of the ACM, 49(5):616–639.

Koppel, Moshe and Jonathan Schler. 2005. The importance
of neutral examples for learning sentiment. In Workshop on
the Analysis of Informal and Formal Information Exchange
during Negotiations (FINEXIN).

Liu, Hugo, Henry Lieberman, and Ted Selker. 2003. A model
of textual affect sensing using real-world knowledge. In Pro-
ceedings of Intelligent User Interfaces (IUI), pages 125–132.

McCallum, Andrew. 1999. Multi-label text classification with
a mixture model trained by EM. In AAAI Workshop on Text
Learning.

McCullagh, Peter. 1980. Regression models for ordinal data.
Journal of the Royal Statistical Society, 42(2):109–42.

123



Pang, Bo and Lillian Lee. 2004. A sentimental education: Sen-
timent analysis using subjectivity summarization based on
minimum cuts. In Proceedings of the ACL, pages 271–278.

Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. 2002.
Thumbs up? Sentiment classification using machine learning
techniques. In Proceedings of EMNLP, pages 79–86.

Qu, Yan, James Shanahan, and Janyce Wiebe, editors. 2004.
Proceedings of the AAAI Spring Symposium on Explor-
ing Attitude and Affect in Text: Theories and Applications.
AAAI Press. AAAI technical report SS-04-07.

Rifkin, Ryan M. and Aldebaro Klautau. 2004. In defense of
one-vs-all classification. Journal of Machine Learning Re-
search, 5:101–141.

Schapire, Robert E. and Yoram Singer. 2000. BoosTexter:
A boosting-based system for text categorization. Machine
Learning, 39(2/3):135–168.

Smola, Alex J. and Bernhard Schölkopf. 1998. A tuto-
rial on support vector regression. Technical Report Neuro-
COLT NC-TR-98-030, Royal Holloway College, University
of London.

Subasic, Pero and Alison Huettner. 2001. Affect analysis of
text using fuzzy semantic typing. IEEE Transactions on
Fuzzy Systems, 9(4):483–496.

Takamura, Hiroya, Yuji Matsumoto, and Hiroyasu Yamada.
2004. Modeling category structures with a kernel function.
In Proceedings of CoNLL, pages 57–64.

Tong, Richard M. 2001. An operational system for detecting
and tracking opinions in on-line discussion. SIGIR Work-
shop on Operational Text Classification.

Turney, Peter. 2002. Thumbs up or thumbs down? Semantic
orientation applied to unsupervised classification of reviews.
In Proceedings of the ACL, pages 417–424.

Vapnik, Vladimir. 1995. The Nature of Statistical Learning
Theory. Springer.

Wilson, Theresa, Janyce Wiebe, and Rebecca Hwa. 2004. Just
how mad are you? Finding strong and weak opinion clauses.
In Proceedings of AAAI, pages 761–769.

Yu, Hong and Vasileios Hatzivassiloglou. 2003. Towards an-
swering opinion questions: Separating facts from opinions
and identifying the polarity of opinion sentences. In Pro-
ceedings of EMNLP.

Zhu, Xiaojin (Jerry). 2005. Semi-Supervised Learning with
Graphs. Ph.D. thesis, Carnegie Mellon University.

A Appendix: other variations attempted

A.1 Discretizing binary classification
In our setting, we can also incorporate class relations
by directly altering the output of a binary classifier,
as follows. We first train a standard SVM, treating
ratings greater than 0.5 as positive labels and others

as negative labels. If we then consider the resulting
classifier to output a positivity-preference function+
� 	107� , we can then learn a series of thresholds to
convert this value into the desired label set, under
the assumption that the bigger + � 	10?� is, the more
positive the review.9 This algorithm always outper-
forms the majority-class baseline, but not to the de-
gree that the best of SVM OVA and SVM regres-
sion does. Koppel and Schler (2005) independently
found in a three-class study that thresholding a pos-
itive/negative classifier trained only on clearly posi-
tive or clearly negative examples did not yield large
improvements.

A.2 Discretizing regression
In our experiments with SVM regression, we dis-
cretized regression output via a set of fixed decision
thresholds �3| x � <l�x �  { x � *xdxdx&� to map it into our set of
class labels. Alternatively, we can learn the thresh-
olds instead. Neither option clearly outperforms the
other in the four-class case. In the three-class set-
ting, the learned version provides noticeably better
performance in two of the four datasets. But these
results taken together still mean that in many cases,
the difference is negligible, and if we had started
down this path, we would have needed to consider
similar tweaks for one-vs-all SVM as well. We
therefore stuck with the simpler version in order to
maintain focus on the central issues at hand.

9This is not necessarily true: if the classifier’s goal is to opti-
mize binary classification error, its major concern is to increase
confidence in the positive/negative distinction, which may not
correspond to higher confidence in separating “five stars” from
“four stars”.
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Abstract 

In this paper, we present an unsupervised 
methodology for propagating lexical co-
occurrence vectors into an ontology such 
as WordNet. We evaluate the framework 
on the task of automatically attaching new 
concepts into the ontology. Experimental 
results show 73.9% attachment accuracy 
in the first position and 81.3% accuracy in 
the top-5 positions. This framework could 
potentially serve as a foundation for on-
tologizing lexical-semantic resources and 
assist the development of other large-
scale and internally consistent collections 
of semantic information. 

1 Introduction 

Despite considerable effort, there is still today no 
commonly accepted semantic corpus, semantic 
framework, notation, or even agreement on pre-
cisely which aspects of semantics are most useful 
(if at all). We believe that one important reason 
for this rather startling fact is the absence of truly 
wide-coverage semantic resources. 

Recognizing this, some recent work on wide 
coverage term banks, like WordNet (Miller 1990) 
and CYC (Lenat 1995), and annotated corpora, 
like FrameNet (Baker et al. 1998), Propbank 
(Kingsbury et al. 2002) and Nombank (Meyers et 
al. 2004), seeks to address the problem.  But man-
ual efforts such as these suffer from two draw-
backs: they are difficult to tailor to new domains, 
and they have internal inconsistencies that can 
make automating the acquisition process difficult.   

In this work, we introduce a general frame-
work for inducing co-occurrence feature vectors 
for nodes in a WordNet-like ontology. We be-
lieve that this framework will be useful for a va-
riety of applications, including adding additional 
semantic information to existing semantic term 
banks by disambiguating lexical-semantic re-
sources. 

Ontologizing semantic resources 

Recently, researchers have applied text- and 
web-mining algorithms for automatically creating 
lexical semantic resources like similarity lists 
(Lin 1998), semantic lexicons (Riloff and Shep-
herd 1997), hyponymy lists (Shinzato and Tori-
sawa 2004; Pantel and Ravichandran 2004), part-
whole lists (Girgu et al. 2003), and verb relation 
graphs (Chklovski and Pantel 2004). However, 
none of these resources have been directly linked 
into an ontological framework. For example, in 
VERBOCEAN (Chklovski and Pantel 2004), we 
find the verb relation “to surpass is-stronger-than 
to hit”, but it is not specified that it is the achiev-
ing sense of hit where this relation applies. 

We term ontologizing a lexical-semantic re-
source as the task of sense disambiguating the re-
source. This problem is different but not 
orthogonal to word-sense disambiguation. If we 
could disambiguate large collections of text with 
high accuracy, then current methods for building 
lexical-semantic resources could easily be applied 
to ontologize them by treating each word’s senses 
as separate words. Our method does not require 
the disambiguation of text. Instead, it relies on the 
principle of distributional similarity and that 
polysemous words that are similar in one sense 
are dissimilar in their other senses. 

125



Given the enriched ontologies produced by 
our method, we believe that ontologizing lexical-
semantic resources will be feasible. For example, 
consider the example verb relation “to surpass is-
stronger-than to hit” from above. To disambigu-
ate the verb hit, we can look at all other verbs that 
to surpass is stronger than (for example, in 
VERBOCEAN, “to surpass is-stronger-than to 
overtake” and “to surpass is-stronger-than to 
equal”). Now, we can simply compare the lexical 
co-occurrence vectors of overtake and equal with 
the ontological feature vectors of the senses of hit 
(which are induced by our framework). The sense 
whose feature vector is most similar is selected. 

It remains to be seen in future work how well 
this approach performs on ontologizing various 
semantic resources. In this paper, we focus on the 
general framework for inducing the ontological 
co-occurrence vectors and we apply it to the task 
of linking new terms into the ontology. 

2 Relevant work 

Our framework aims at enriching WordNet-like 
ontologies with syntactic features derived from a 
non-annotated corpus. Others have also made 
significant additions to WordNet. For example, in 
eXtended WordNet (Harabagiu et al. 1999), the 
rich glosses in WordNet are enriched by disam-
biguating the nouns, verbs, adverbs, and adjec-
tives with synsets. Another work has enriched 
WordNet synsets with topically related words ex-
tracted from the Web (Agirre et al. 2001). While 
this method takes advantage of the redundancy of 
the web, our source of information is a local 
document collection, which opens the possibility 
for domain specific applications. 

Distributional approaches to building semantic 
repositories have shown remarkable power. The 
underlying assumption, called the Distributional 
Hypothesis (Harris 1985), links the semantics of 
words to their lexical and syntactic behavior. The 
hypothesis states that words that occur in the 
same contexts tend to have similar meaning. Re-
searchers have mostly looked at representing 
words by their surrounding words (Lund and Bur-
gess 1996) and by their syntactical contexts 
(Hindle 1990; Lin 1998). However, these repre-
sentations do not distinguish between the differ-
ent senses of words. Our framework utilizes these 
principles and representations to induce disam-

biguated feature vectors. We describe these rep-
resentations further in Section 3. 

In supervised word sense disambiguation, 
senses are commonly represented by their sur-
rounding words in a sense-tagged corpus (Gale et 
al. 1991). If we had a large collection of sense-
tagged text, then we could extract disambiguated 
feature vectors by collecting co-occurrence fea-
tures for each word sense. However, since there is 
little sense-tagged text available, the feature vec-
tors for a random WordNet concept would be 
very sparse. In our framework, feature vectors are 
induced from much larger untagged corpora (cur-
rently 3GB of newspaper text). 

Another approach to building semantic reposi-
tories is to collect and merge existing ontologies.  
Attempts to automate the merging process have 
not been particularly successful (Knight and Luk 
1994; Hovy 1998; Noy and Musen 1999).  The 
principal problems of partial and unbalanced cov-
erage and of inconsistencies between ontologies 
continue to hamper these approaches. 

3 Resources 

The framework we present in Section 4 propa-
gates any type of lexical feature up an ontology. 
In previous work, lexicals have often been repre-
sented by proximity and syntactic features. Con-
sider the following sentence: 

The tsunami left a trail of horror. 

In a proximity approach, a word is represented 
by a window of words surrounding it. For the 
above sentence, a window of size 1 would yield 
two features (-1:the and +1:left) for the word tsu-
nami. In a syntactic approach, more linguistically 
rich features are extracted by using each gram-
matical relation in which a word is involved (e.g. 
the features for tsunami are determiner:the and 
subject-of:leave). 

For the purposes of this work, we consider the 
propagation of syntactic features. We used Mini-
par (Lin 1994), a broad coverage parser, to ana-
lyze text. We collected the statistics on the 
grammatical relations (contexts) output by Mini-
par and used these as the feature vectors. Follow-
ing Lin (1998), we measure each feature f for a 
word e not by its frequency but by its pointwise 
mutual information, mief: 
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4 Inducing ontological features 

The resource described in the previous section 
yields lexical feature vectors for each word in a 
corpus. We term these vectors lexical because 
they are collected by looking only at the lexicals 
in the text (i.e. no sense information is used). We 
use the term ontological feature vector to refer to 
a feature vector whose features are for a particu-
lar sense of the word. 

In this section, we describe our framework for 
inducing ontological feature vectors for each 
node of an ontology. Our approach employs two 
phases. A divide-and-conquer algorithm first 
propagates syntactic features to each node in the 
ontology. A final sweep over the ontology, which 
we call the Coup phase, disambiguates the feature 
vectors of lexicals (leaf nodes) in the ontology. 

4.1 Divide-and-conquer phase 

In the first phase of the algorithm, we propagate 
features up the ontology in a bottom-up approach. 
Figure 1 gives an overview of this phase. 

The termination condition of the recursion is 
met when the algorithm processes a leaf node. 
The feature vector that is assigned to this node is 
an exact copy of the lexical feature vector for that 
leaf (obtained from a large corpus as described in 
Section 3). For example, for the two leaf nodes 
labeled chair in Figure 2, we assign to both the 
same ambiguous lexical feature vector, an excerpt 
of which is shown in Figure 3. 

When the recursion meets a non-leaf node, 
like chairwoman in Figure 2, the algorithm first 

recursively applies itself to each of the node’s 
children. Then, the algorithm selects those fea-
tures common to its children to propagate up to 
its own ontological feature vector. The assump-
tion here is that features of other senses of 
polysemous words will not be propagated since 
they will not be common across the children. Be-
low, we describe the two methods we used to 
propagate features: Shared and Committee. 

Shared propagation algorithm 

The first technique for propagating features to a 
concept node n from its children C is the simplest 
and scored best in our evaluation (see Section 
5.2). The goal is that the feature vector for n 

Input: A node n and a corpus C. 

Step 1: Termination Condition: 
  If n is a leaf node then assign to n its lexical 

feature vector as described in Section 3. 
Step 2: Recursion Step: 
  For each child c of n, reecurse on c and C. 
  Assign a feature vector to n by propagating 

features from its children. 
Output: A feature vector assigned to each node of the 

tree rooted by n. 

Figure 1. Divide-and-conquer phase. 
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Figure 2. Subtrees of WordNet illustrating two senses 
of chair. 

"chair" 
 conjunction: 
   sofa 77 11.8 
   professor 11 6.0 
   dining room 2 5.6 
   cushion 1 4.5 
   council member 1 4.4 
   President 9 2.9 
   foreign minister 1 2.8 
 nominal subject 
   Ottoman 8 12.1 
   director 22 9.1 
   speaker 8 8.6 
   Joyner 2 8.22 
   recliner 2 7.7 
   candidate 1 3.5  

Figure 3. Excerpt of a lexical feature vector for the 
word chair. Grammatical relations are in italics (con-
junction and nominal-subject). The first column of 
numbers are frequency counts and the other are mutual 
information scores. In bold are the features that inter-
sect with the induced ontological feature vector for the 
parent concept of chair’s chairwoman sense. 
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represents the general grammatical behavior that 
its children will have. For example, for the con-
cept node furniture in Figure 2, we would like to 
assign features like object-of:clean since 
mosttypes of furniture can be cleaned. However, 
even though you can eat on a table, we do not 
want the feature on:eat for the furniture concept 
since we do not eat on mirrors or beds. 

In the Shared propagation algorithm, we 
propagate only those features that are shared by at 
least t children. In our experiments, we experi-
mentally set t = min(3, |C|). 

The frequency of a propagated feature is ob-
tained by taking a weighted sum of the frequency 
of the feature across its children. Let fi be the fre-
quency of the feature for child i, let ci be the total 
frequency of child i, and let N be the total fre-
quency of all children. Then, the frequency f of 
the propagated feature is given by: 

 ∑ ×=
i

i
i N

c
ff  (1) 

Committee propagation algorithm 

The second propagation algorithm finds a set of 
representative children from which to propagate 
features. Pantel and Lin (2002) describe an algo-
rithm, called Clustering By Committee (CBC), 
which discovers clusters of words according to 
their meanings in test. The key to CBC is finding 
for each class a set of representative elements, 
called a committee, which most unambiguously 
describe the members of the class. For example, 
for the color concept, CBC discovers the follow-
ing committee members: 

purple, pink, yellow, mauve, turquoise, 
beige, fuchsia 

Words like orange and violet are avoided be-
cause they are polysemous. For a given concept c, 
we build a committee by clustering its children 
according to their similarity and then keep the 
largest and most interconnected cluster (see 
Pantel and Lin (2002) for details). 

The propagated features are then those that are 
shared by at least two committee members. The 
frequency of a propagated feature is obtained us-
ing Eq. 1 where the children i are chosen only 
among the committee members. 

Generating committees using CBC works best 
for classes with many members. In its original 

application (Pantel and Lin 2002), CBC discov-
ered a flat list of coarse concepts. In the finer 
grained concept hierarchy of WordNet, there are 
many fewer children for each concept so we ex-
pect to have more difficulty finding committees. 

4.2 Coup phase 

At the end of the Divide-and-conquer phase, the 
non-leaf nodes of the ontology contain disam-
biguated features1. By design of the propagation 
algorithm, each concept node feature is shared by 
at least two of its children. We assume that two 
polysemous words, w1 and w2, that are similar in 
one sense will be dissimilar in its other senses. 
Under the distributional hypothesis, similar words 
occur in the same grammatical contexts and dis-
similar words occur in different grammatical con-
texts. We expect then that most features that are 
shared between w1 and w2 will be the grammati-
cal contexts of their similar sense. Hence, mostly 
disambiguated features are propagated up the on-
tology in the Divide-and-conquer phase. 

However, the feature vectors for the leaf 
nodes remain ambiguous (e.g. the feature vectors 
for both leaf nodes labeled chair in Figure 2 are 
identical). In this phase of the algorithm, leaf 
node feature vectors are disambiguated by look-
ing at the parents of their other senses. 

Leaf nodes that are unambiguous in the ontol-
ogy will have unambiguous feature vectors. For 
ambiguous leaf nodes (i.e. leaf nodes that have 
more than one concept parent), we apply the al-
gorithm described in Figure 4. Given a polyse-
mous leaf node n, we remove from its ambiguous 

                                                      
1 By disambiguated features, we mean that the features 

are co-occurrences with a particular sense of a word; the 
features themselves are not sense-tagged. 

Input: A node n and the enriched ontology O output 
from the algorithm in Figure 1. 

Step 1: If n is not a leaf node then return. 

Step 2: Remove from n’s feature vector all features 
that intersect with the feature vector of any of 
n’s other senses’ parent concepts, but are not 
in n’s parent concept feature vector. 

Output: A disambiguated feature vector for each leaf 
node  n. 

Figure 4. Coup phase. 
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feature vector those features that intersect with 
the ontological feature vector of any of its other 
senses’ parent concept but that are not in its own 
parent’s ontological feature vector. For example, 
consider the furniture sense of the leaf node chair 
in Figure 2. After the Divide-and-conquer phase, 
the node chair is assigned the ambiguous lexical 
feature vector shown in Figure 3. Suppose that 
chair only has one other sense in WordNet, 
which is the chairwoman sense illustrated in Fig-
ure 2. The features in bold in Figure 3 represent 
those features of chair that intersect with the on-
tological feature vector of chairwoman. In the 
Coup phase of our system, we remove these bold 
features from the furniture sense leaf node chair. 
What remains are features like “chair and sofa”, 
“chair and cushion”, “Ottoman is a chair”, and 
“recliner is a chair”. Similarly, for the chair-
woman sense of chair, we remove those features 
that intersect with the ontological feature vector 
of the chair concept (the parent of the other chair 
leaf node). 

As shown in the beginning of this section, 
concept node feature vectors are mostly unambi-
guous after the Divide-and-conquer phase. How-
ever, the Divide-and-conquer phase may be 
repeated after the Coup phase using a different 
termination condition. Instead of assigning to leaf 
nodes ambiguous lexical feature vectors, we use 
the leaf node feature vectors from the Coup 
phase. In our experiments, we did not see any 
significant performance difference by skipping 
this extra Divide-and-conquer step. 

5 Experimental results 

In this section, we provide a quantitative and 
qualitative evaluation of our framework. 

5.1 Experimental Setup 

We used Minipar (Lin 1994), a broad coverage 
parser, to parse two 3GB corpora (TREC-9 and 
TREC-2002). We collected the frequency counts 
of the grammatical relations (contexts) output by 
Minipar and used these to construct the lexical 
feature vectors as described in Section 3. 

WordNet 2.0 served as our testing ontology. 
Using the algorithm presented in Section 4, we 
induced ontological feature vectors for the noun 
nodes in WordNet using the lexical co-occurrence 
features from the TREC-2002 corpus. Due to 

memory limitations, we were only able to propa-
gate features to one quarter of the ontology. We 
experimented with both the Shared and Commit-
tee propagation models described in Section 4.1. 

5.2 Quantitative evaluation 

To evaluate the resulting ontological feature vec-
tors, we considered the task of attaching new 
nodes into the ontology. To automatically evalu-
ate this, we randomly extracted a set of 1000 
noun leaf nodes from the ontology and accumu-
lated lexical feature vectors for them using the 
TREC-9 corpus (a separate corpus than the one 
used to propagate features, but of the same 
genre). We experimented with two test sets: 

• Full: The 424 of the 1000 random nodes that 
existed in the TREC-9 corpus 

• Subset: Subset of Full where only nodes that do 
not have concept siblings are kept (380 nodes). 

For each random node, we computed the simi-
larity of the node with each concept node in the 
ontology by computing the cosine of the angle 
(Salton and McGill 1983) between the lexical 
feature vector of the random node ei and the onto-
logical feature vector of the concept nodes ej: 
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We only kept those similar nodes that had a 
similarity above a threshold σ. We experimentally 
set σ = 0.1. 

Top-K accuracy 

We collected the top-K most similar concept 
nodes (attachment points) for each node in the 
test sets and computed the accuracy of finding a 
correct attachment point in the top-K list. Table 1 
shows the result. 

We expected the algorithm to perform better 
on the Subset data set since only concepts that 
have exclusively lexical children must be consid-
ered for attachment. In the Full data set, the algo-
rithm must consider each concept in the ontology 
as a potential attachment point. However, consid-
ering the top-5 best attachments, the algorithm 
performed equally well on both data sets.  

The Shared propagation algorithm performed 
consistently slightly better than the Committee 
method. As described in Section 4.1, building a 
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committee performs best for concepts with many 
children. Since many nodes in WordNet have few 
direct children, the Shared propagation method is 
more appropriate. One possible extension of the 
Committee propagation algorithm is to find com-
mittee members from the full list of descendants 
of a node rather than only its immediate children. 

Precision and Recall 

We computed the precision and recall of our sys-
tem on varying numbers of returned attachments. 
Figure 5 and Figure 6 show the attachment preci-
sion and recall of our system when the maximum 
number of returned attachments ranges between 1 
and 5. In Figure 5, we see that the Shared propa-
gation method has better precision than the 
Committee method. Both methods perform simi-
larly on recall. The recall of the system increases 
most dramatically when returning two attach-
ments without too much of a hit on precision. The 
low recall when returning only one attachment is 
due to both system errors and also to the fact that 
many nodes in the hierarchy are polysemous. In 
the next section, we discuss further experiments 

on polysemous nodes. Figure 6 illustrates the 
large difference on both precision and recall 
when using the simpler Subset data set. All 95% 
confidence bounds in Figure 5 and Figure 6 range 
between ±2.8% and ±5.3%. 

Polysemous nodes 

84 of the nodes in the Full data set are polyse-
mous (they are attached to more than one concept 
node in the ontology). On average, these nodes 
have 2.6 senses for a total of 219 senses. Figure 7 
compares the precision and recall of the system 
on all nodes in the Full data set vs. the 84 
polysemous nodes. The 95% confidence intervals 
range between ±3.8% and ±5.0% for the Full data 
set and between ±1.2% and ±9.4% for the 
polysemous nodes. The precision on the polyse-
mous nodes is consistently better since these have 
more possible correct attachments. 

Clearly, when the system returns at most one 
or two attachments, the recall on the polysemous 
nodes is lower than on the Full set. However, it is 
interesting to note that recall on the polysemous 
nodes equals the recall on the Full set after K=3. 

Table 1. Correct attachment point in the top-K attachments (with 95% conf.) 

K Shared (Full) Committee (Full) Shared (Subset) Committee (Subset) 
1 73.9% ± 4.5% 72.0% ± 4.9% 77.4% ± 3.6% 76.1% ± 5.1% 
2 78.7% ± 4.1% 76.6% ± 4.2% 80.7% ± 4.0% 79.1% ± 4.5% 
3 79.9% ± 4.0% 78.2% ± 4.2% 81.2% ± 3.9% 80.5% ± 4.8% 
4 80.6% ± 4.1% 79.0% ± 4.0% 81.5% ± 4.1% 80.8% ± 5.0% 
5 81.3% ± 3.8% 79.5% ± 3.9% 81.7% ± 4.1% 81.3% ± 4.9% 

 

Figure 5. Attachment precision and recall for the 
Shared and Committee propagation methods when 
returning at most K attachments (on the Full set). 

Precision and Recall (Shared and Committee) vs. 
Number of Returned Attachments
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Figure 6. Attachment precision and recall for the 
Full and Subset data sets when returning at most K 
attachments (using the Shared propagation method). 
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5.3 Qualitative evaluation 

Inspection of errors revealed that the system often 
makes plausible attachments. Table 2 shows 
some example errors generated by our system. 
For the word arsenic, the system attached it to the 
concept trioxide, which is the parent of the cor-
rect attachment. 

The system results may be useful to help vali-
date the ontology. For example, for the word law, 
the system attached it to the regulation (as an or-
ganic process) and ordinance (legislative act) 
concepts. According to WordNet, law has seven 
possible attachment points, none of which are a 
legislative act. Hence, the system has found that 
in the TREC-9 corpus, the word law has a sense 
of legislative act. Similarly, the system discov-
ered the symptom sense of vomiting. 

The system discovered a potential anomaly in 
WordNet with the word slob. The system classi-
fied slob as follows: 

fool  simpleton  someone 

whereas WordNet classifies it as: 
vulgarian  unpleasant person  unwel-
come person  someone 

The ontology could use this output to verify if 
fool should link in the unpleasant person subtree. 

Capitalization is not very trustworthy in large 
collections of text. One of our design decisions 
was to ignore the case of words in our corpus, 
which in turn caused some errors since WordNet 
is case sensitive. For example, the lexical node 
Munch (Norwegian artist) was attached to the 
munch concept (food) by error because our sys-
tem accumulated all features of the word Munch 
in text regardless of its capitalization. 

6 Discussion 

One question that remains unanswered is how 
clean an ontology must be in order for our meth-
odology to work. Since the structure of the ontol-
ogy guides the propagation of features, a very 
noisy ontology will result in noisy feature vec-
tors. However, the framework is tolerant to some 
amount of noise and can in fact be used to correct 
some errors (as shown in Section 5.3). 

We showed in Section 1 how our framework 
can be used to disambiguate lexical-semantic re-
sources like hyponym lists, verb relations, and 

unknown words or terms. Other avenues of future 
work include: 

Adapting/extending existing ontologies 
It takes a large amount of time to build resources 
like WordNet. However, adapting existing re-
sources to a new corpus might be possible using 
our framework. Once we have enriched the on-
tology with features from a corpus, we can rear-
range the ontological structure according to the 
inter-conceptual similarity of nodes. For example, 
consider the word computer in WordNet, which 
has two senses: a) a machine; and b) a person 
who calculates. In a computer science corpus, 
sense b) occurs very infrequently and possibly a 
new sense of computer (e.g. a processing chip) 
occurs. A system could potentially remove sense 
b) since the similarity of the other children of b) 
and computer is very low. It could also uncover 
the new processing chip sense by finding a high 
similarity between computer and the processing 
chip concept. 

Validating ontologies 
This is a holy grail problem in the knowledge 
representation community. As a small step, our 
framework can be used to flag potential anoma-
lies to the knowledge engineer. 

What makes a chair different from a recliner? 
Given an enriched ontology, we can remove from 
the feature vectors of chair and recliner those 
features that occur in their parent furniture con-
cept. The features that remain describe their dif-
ferent syntactic behaviors in text. 

Figure 7. Attachment precision and recall on the 
Full set vs. the polysemous nodes in the Full set 
when the system returns at most K attachments. 
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7 Conclusions 

We presented a framework for inducing ontologi-
cal feature vectors from lexical co-occurrence 
vectors. Our method does not require the disam-
biguation of text. Instead, it relies on the principle 
of distributional similarity and the fact that 
polysemous words that are similar in one sense 
tend to be dissimilar in their other senses. On the 
task of attaching new words to WordNet using 
our framework, our experiments showed that the 
first attachment has 73.9% accuracy and that a 
correct attachment is in the top-5 attachments 
with 81.3% accuracy. 

We believe this work to be useful for a variety 
of applications. Not only can sense selection tasks 
such as word sense disambiguation, parsing, and 
semantic analysis benefit from our framework, 
but more inference-oriented tasks such as ques-
tion answering and text summarization as well.  
We hope that this work will assist with the devel-
opment of other large-scale and internally consis-
tent collections of semantic information. 
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Table 2. Example attachment errors by our system. 

Node System 
Attachment 

Correct  
Attachment 

arsenic* trioxide arsenic OR element 
law regulation law OR police OR … 
Munch† munch Munch 
slob fool slob 
vomiting fever emesis 

* the system’s attachment was a parent of the correct attachment. 
† error due to case mix-up (our algorithm does not differentiate 
between case). 
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Abstract

We propose a method for extracting se-
mantic orientations of words: desirable
or undesirable. Regarding semantic ori-
entations as spins of electrons, we use
the mean field approximation to compute
the approximate probability function of
the system instead of the intractable ac-
tual probability function. We also pro-
pose a criterion for parameter selection on
the basis of magnetization. Given only
a small number of seed words, the pro-
posed method extracts semantic orienta-
tions with high accuracy in the exper-
iments on English lexicon. The result
is comparable to the best value ever re-
ported.

1 Introduction

Identification of emotions (including opinions and
attitudes) in text is an important task which has a va-
riety of possible applications. For example, we can
efficiently collect opinions on a new product from
the internet, if opinions in bulletin boards are auto-
matically identified. We will also be able to grasp
people’s attitudes in questionnaire, without actually
reading all the responds.

An important resource in realizing such identifi-
cation tasks is a list of words with semantic orienta-
tion: positive or negative (desirable or undesirable).
Frequent appearance of positive words in a docu-
ment implies that the writer of the document would

have a positive attitude on the topic. The goal of this
paper is to propose a method for automatically cre-
ating such a word list from glosses (i.e., definition
or explanation sentences ) in a dictionary, as well as
from a thesaurus and a corpus. For this purpose, we
usespin model, which is a model for a set of elec-
trons with spins. Just as each electron has a direc-
tion of spin (up or down), each word has a semantic
orientation (positive or negative). We therefore re-
gard words as a set of electrons and apply the mean
field approximation to compute the average orienta-
tion of each word. We also propose a criterion for
parameter selection on the basis of magnetization, a
notion in statistical physics. Magnetization indicates
the global tendency of polarization.

We empirically show that the proposed method
works well even with a small number of seed words.

2 Related Work

Turney and Littman (2003) proposed two algorithms
for extraction of semantic orientations of words. To
calculate the association strength of a word with pos-
itive (negative) seed words, they used the number
of hits returned by a search engine, with a query
consisting of the word and one of seed words (e.g.,
“word NEAR good”, “word NEAR bad”). They re-
garded the difference of two association strengths as
a measure of semantic orientation. They also pro-
posed to use Latent Semantic Analysis to compute
the association strength with seed words. An em-
pirical evaluation was conducted on 3596 words ex-
tracted from General Inquirer (Stone et al., 1966).

Hatzivassiloglou and McKeown (1997) focused
on conjunctive expressions such as “simple and
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well-received” and “simplistic but well-received”,
where the former pair of words tend to have the same
semantic orientation, and the latter tend to have the
opposite orientation. They first classify each con-
junctive expression into the same-orientation class
or the different-orientation class. They then use the
classified expressions to cluster words into the pos-
itive class and the negative class. The experiments
were conducted with the dataset that they created on
their own. Evaluation was limited to adjectives.

Kobayashi et al. (2001) proposed a method for ex-
tracting semantic orientations of words with boot-
strapping. The semantic orientation of a word is
determined on the basis of its gloss, if any of their
52 hand-crafted rules is applicable to the sentence.
Rules are applied iteratively in the bootstrapping
framework. Although Kobayashi et al.’s work pro-
vided an accurate investigation on this task and in-
spired our work, it has drawbacks: low recall and
language dependency. They reported that the seman-
tic orientations of only 113 words are extracted with
precision 84.1% (the low recall is due partly to their
large set of seed words (1187 words)). The hand-
crafted rules are only for Japanese.

Kamps et al. (2004) constructed a network by
connecting each pair of synonymous words provided
by WordNet (Fellbaum, 1998), and then used the
shortest paths to two seed words “good” and “bad”
to obtain the semantic orientation of a word. Limi-
tations of their method are that a synonymy dictio-
nary is required, that antonym relations cannot be
incorporated into the model. Their evaluation is re-
stricted to adjectives. The method proposed by Hu
and Liu (2004) is quite similar to the shortest-path
method. Hu and Liu’s method iteratively determines
the semantic orientations of the words neighboring
any of the seed words and enlarges the seed word
set in a bootstrapping manner.

Subjective words are often semantically oriented.
Wiebe (2000) used a learning method to collect sub-
jective adjectives from corpora. Riloff et al. (2003)
focused on the collection of subjective nouns.

We later compare our method with Turney and
Littman’s method and Kamps et al.’s method.

The other pieces of research work mentioned
above are related to ours, but their objectives are dif-
ferent from ours.

3 Spin Model and Mean Field
Approximation

We give a brief introduction to the spin model
and the mean field approximation, which are well-
studied subjects both in the statistical mechanics
and the machine learning communities (Geman and
Geman, 1984; Inoue and Carlucci, 2001; Mackay,
2003).

A spin system is an array ofN electrons, each of
which has a spin with one of two values “+1 (up)” or
“−1 (down)”. Two electrons next to each other en-
ergetically tend to have the same spin. This model
is called the Ising spin model, or simply the spin
model(Chandler, 1987). The energy function of a
spin system can be represented as

E(x,W ) = −1
2

∑

ij

wijxixj , (1)

wherexi andxj (∈ x) are spins of electronsi andj,
matrixW = {wij} represents weights between two
electrons.

In a spin system, the variable vectorx follows the
Boltzmann distribution :

P (x|W ) =
exp(−βE(x,W ))

Z(W )
, (2)

whereZ(W ) =
∑

x exp(−βE(x,W )) is the nor-
malization factor, which is calledthe partition
function and β is a constant calledthe inverse-
temperature. As this distribution function suggests,
a configuration with a higher energy value has a
smaller probability.

Although we have a distribution function, com-
puting various probability values is computationally
difficult. The bottleneck is the evaluation ofZ(W ),
since there are2N configurations of spins in this sys-
tem.

We therefore approximateP (x|W ) with a simple
functionQ(x; θ). The set of parametersθ for Q, is
determined such thatQ(x; θ) becomes as similar to
P (x|W ) as possible. As a measure for the distance
betweenP andQ, the variational free energyF is
often used, which is defined as the difference be-
tween the mean energy with respect toQ and the
entropy ofQ :

F (θ) = β
∑

x
Q(x; θ)E(x;W )
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−
(
−

∑

x
Q(x; θ) logQ(x; θ)

)
. (3)

The parametersθ that minimizes the variational free
energy will be chosen. It has been shown that mini-
mizingF is equivalent to minimizing the Kullback-
Leibler divergence betweenP and Q (Mackay,
2003).

We next assume that the functionQ(x; θ) has the
factorial form :

Q(x; θ) =
∏

i

Q(xi; θi). (4)

Simple substitution and transformation leads us to
the following variational free energy :

F (θ) = −β
2

∑

ij

wij x̄ix̄j

−
∑

i

(
−

∑
xi

Q(xi; θi) logQ(xi; θi)
)
.

(5)

With the usual method of Lagrange multipliers,
we obtain themean field equation:

x̄i =

∑
xi xi exp

(
βxi

∑
j wij x̄j

)

∑
xi exp

(
βxi

∑
j wij x̄j

) . (6)

This equation is solved by the iterative update rule :

x̄newi =

∑
xi xi exp

(
βxi

∑
j wij x̄

old
j

)

∑
xi exp

(
βxi

∑
j wij x̄

old
j

) . (7)

4 Extraction of Semantic Orientation of
Words with Spin Model

We use the spin model to extract semantic orienta-
tions of words.

Each spin has a direction taking one of two values:
up or down. Two neighboring spins tend to have the
same direction from a energetic reason. Regarding
each word as an electron and its semantic orientation
as the spin of the electron, we construct a lexical net-
work by connecting two words if, for example, one
word appears in the gloss of the other word. Intu-
ition behind this is that if a word is semantically ori-
ented in one direction, then the words in its gloss
tend to be oriented in the same direction.

Using the mean-field method developed in statis-
tical mechanics, we determine the semantic orienta-
tions on the network in a global manner. The global
optimization enables the incorporation of possibly
noisy resources such as glosses and corpora, while
existing simple methods such as the shortest-path
method and the bootstrapping method cannot work
in the presence of such noisy evidences. Those
methods depend on less-noisy data such as a the-
saurus.

4.1 Construction of Lexical Networks

We construct a lexical network by linking two words
if one word appears in the gloss of the other word.
Each link belongs to one of two groups: the same-
orientation linksSL and the different-orientation
links DL. If at least one word precedes a nega-
tion word (e.g., not) in the gloss of the other word,
the link is a different-orientation link. Otherwise the
links is a same-orientation link.

We next set weightsW = (wij) to links :

wij =





1√
d(i)d(j)

(lij ∈ SL)

− 1√
d(i)d(j)

(lij ∈ DL)

0 otherwise

, (8)

wherelij denotes the link between wordi and word
j, and d(i) denotes the degree of wordi, which
means the number of words linked with wordi. Two
words without connections are regarded as being
connected by a link of weight 0. We call this net-
work the gloss network (G).

We construct another network,the gloss-
thesaurus network (GT), by linking synonyms,
antonyms and hypernyms, in addition to the the
above linked words. Only antonym links are in DL.

We enhance the gloss-thesaurus network with
cooccurrence information extracted from corpus. As
mentioned in Section 2, Hatzivassiloglou and McK-
eown (1997) used conjunctive expressions in corpus.
Following their method, we connect two adjectives
if the adjectives appear in a conjunctive form in the
corpus. If the adjectives are connected by “and”, the
link belongs to SL. If they are connected by “but”,
the link belongs to DL. We call this networkthe
gloss-thesaurus-corpus network (GTC).
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4.2 Extraction of Orientations

We suppose that a small number of seed words are
given. In other words, we know beforehand the se-
mantic orientations of those given words. We incor-
porate this small labeled dataset by modifying the
previous update rule.

Instead ofβE(x,W ) in Equation (2), we use the
following functionH(β, x,W ) :

H(β, x,W ) = −β
2

∑

ij

wijxixj + α
∑

i∈L
(xi − ai)2,

(9)
whereL is the set of seed words,ai is the orientation
of seed wordi, andα is a positive constant. This
expression means that ifxi (i ∈ L) is different from
ai, the state is penalized.

Using functionH, we obtain the new update rule
for xi (i ∈ L) :

x̄newi =

∑
xi xi exp

(
βxis

old
i − α(xi − ai)2

)

∑
xi exp

(
βxisoldi − α(xi − ai)2

) ,

(10)
wheresoldi =

∑
j wij x̄

old
j . x̄oldi and x̄newi are the

averages ofxi respectively before and after update.
What is discussed here was constructed with the ref-
erence to work by Inoue and Carlucci (2001), in
which they applied the spin glass model to image
restoration.

Initially, the averages of the seed words are set
according to their given orientations. The other av-
erages are set to 0.

When the difference in the value of the variational
free energy is smaller than a threshold before and
after update, we regard computation converged.

The words with high final average values are clas-
sified as positive words. The words with low final
average values are classified as negative words.

4.3 Hyper-parameter Prediction

The performance of the proposed method largely de-
pends on the value of hyper-parameterβ. In order to
make the method more practical, we propose criteria
for determining its value.

When a large labeled dataset is available, we can
obtain a reliablepseudo leave-one-out error rate:

1
|L|

∑

i∈L
[aix̄′i], (11)

where[t] is 1 if t is negative, otherwise 0, and̄x′i is
calculated with the right-hand-side of Equation (6),
where the penalty termα(x̄i−ai)2 in Equation (10)
is ignored. We chooseβ that minimizes this value.

However, when a large amount of labeled data is
unavailable, the value of pseudo leave-one-out error
rate is not reliable. In such cases, we usemagnetiza-
tionm for hyper-parameter prediction :

m =
1
N

∑

i

x̄i. (12)

At a high temperature, spins are randomly ori-
ented (paramagnetic phase, m ≈ 0). At a low
temperature, most of the spins have the same di-
rection (ferromagnetic phase, m 6= 0). It is
known that at some intermediate temperature, ferro-
magnetic phase suddenly changes to paramagnetic
phase. This phenomenon is calledphase transition.
Slightly before the phase transition, spins are locally
polarized; strongly connected spins have the same
polarity, but not in a global way.

Intuitively, the state of the lexical network is lo-
cally polarized. Therefore, we calculate values of
m with several different values ofβ and select the
value just before the phase transition.

4.4 Discussion on the Model

In our model, the semantic orientations of words
are determined according to the averages values of
the spins. Despite the heuristic flavor of this deci-
sion rule, it has a theoretical background related to
maximizer of posterior marginal (MPM) estimation,
or ‘finite-temperature decoding’ (Iba, 1999; Marro-
quin, 1985). In MPM, the average is the marginal
distribution overxi obtained from the distribution
over x. We should note that the finite-temperature
decoding is quite different from annealing type algo-
rithms or ‘zero-temperature decoding’, which cor-
respond to maximum a posteriori (MAP) estima-
tion and also often used in natural language process-
ing (Cowie et al., 1992).

Since the model estimation has been reduced
to simple update calculations, the proposed model
is similar to conventional spreading activation ap-
proaches, which have been applied, for example, to
word sense disambiguation (Veronis and Ide, 1990).
Actually, the proposed model can be regarded as a
spreading activation model with a specific update
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rule, as long as we are dealing with 2-class model
(2-Ising model).

However, there are some advantages in our mod-
elling. The largest advantage is its theoretical back-
ground. We have an objective function and its ap-
proximation method. We thus have a measure of
goodness in model estimation and can use another
better approximation method, such as Bethe approx-
imation (Tanaka et al., 2003). The theory tells
us which update rule to use. We also have a no-
tion of magnetization, which can be used for hyper-
parameter estimation. We can use a plenty of knowl-
edge, methods and algorithms developed in the field
of statistical mechanics. We can also extend our
model to a multiclass model (Q-Ising model).

Another interesting point is the relation to maxi-
mum entropy model (Berger et al., 1996), which is
popular in the natural language processing commu-
nity. Our model can be obtained by maximizing the
entropy of the probability distributionQ(x) under
constraints regarding the energy function.

5 Experiments

We used glosses, synonyms, antonyms and hyper-
nyms of WordNet (Fellbaum, 1998) to construct an
English lexical network. For part-of-speech tag-
ging and lemmatization of glosses, we used Tree-
Tagger (Schmid, 1994). 35 stopwords (quite fre-
quent words such as “be” and “have”) are removed
from the lexical network. Negation words include
33 words. In addition to usual negation words such
as “not” and “never”, we include words and phrases
which mean negation in a general sense, such as
“free from” and “lack of”. The whole network con-
sists of approximately 88,000 words. We collected
804 conjunctive expressions from Wall Street Jour-
nal and Brown corpus as described in Section 4.2.

The labeled dataset used as a gold standard is
General Inquirer lexicon (Stone et al., 1966) as in the
work by Turney and Littman (2003). We extracted
the words tagged with “Positiv” or “Negativ”, and
reduced multiple-entry words to single entries. As a
result, we obtained 3596 words (1616 positive words
and 1980 negative words)1. In the computation of

1Although we preprocessed in the same way as Turney and
Littman, there is a slight difference between their dataset and
our dataset. However, we believe this difference is insignificant.

Table 1: Classification accuracy (%) with various
networks and four different sets of seed words. In
the parentheses, the predicted value ofβ is written.
For cv, no value is written forβ, since 10 different
values are obtained.

seeds GTC GT G
cv 90.8 (—) 90.9 (—) 86.9 (—)
14 81.9 (1.0) 80.2 (1.0) 76.2 (1.0)
4 73.8 (0.9) 73.7 (1.0) 65.2 (0.9)
2 74.6 (1.0) 61.8 (1.0) 65.7 (1.0)

accuracy, seed words are eliminated from these 3596
words.

We conducted experiments with different values
of β from 0.1 to 2.0, with the interval 0.1, and pre-
dicted the best value as explained in Section 4.3. The
threshold of the magnetization for hyper-parameter
estimation is set to1.0 × 10−5. That is, the pre-
dicted optimal value ofβ is the largestβ whose
corresponding magnetization does not exceeds the
threshold value.

We performed 10-fold cross validation as well as
experiments with fixed seed words. The fixed seed
words are the ones used by Turney and Littman: 14
seed words{good, nice, excellent, positive, fortu-
nate, correct, superior, bad, nasty, poor, negative,
unfortunate, wrong, inferior}; 4 seed words{good,
superior, bad, inferior}; 2 seed words{good, bad}.

5.1 Classification Accuracy

Table 1 shows the accuracy values of semantic ori-
entation classification for four different sets of seed
words and various networks. In the table, cv corre-
sponds to the result of 10-fold cross validation, in
which case we use the pseudo leave-one-out error
for hyper-parameter estimation, while in other cases
we use magnetization.

In most cases, the synonyms and the cooccurrence
information from corpus improve accuracy. The
only exception is the case of 2 seed words, in which
G performs better than GT. One possible reason of
this inversion is that the computation is trapped in a
local optimum, since a small number of seed words
leave a relatively large degree of freedom in the so-
lution space, resulting in more local optimal points.

We compare our results with Turney and
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Table 2: Actual best classification accuracy (%)
with various networks and four different sets of seed
words. In the parenthesis, the actual best value ofβ
is written, except for cv.

seeds GTC GT G
cv 91.5 (—) 91.5 (—) 87.0 (—)
14 81.9 (1.0) 80.2 (1.0) 76.2 (1.0)
4 74.4 (0.6) 74.4 (0.6) 65.3 (0.8)
2 75.2 (0.8) 61.9 (0.8) 67.5 (0.5)

Littman’s results. With 14 seed words, they achieved
61.26% for a small corpus (approx.1× 107 words),
76.06% for a medium-sized corpus (approx.2×109

words), 82.84% for a large corpus (approx.1×1011

words).
Without a corpus nor a thesaurus (but with glosses

in a dictionary), we obtained accuracy that is compa-
rable to Turney and Littman’s with a medium-sized
corpus. When we enhance the lexical network with
corpus and thesaurus, our result is comparable to
Turney and Littman’s with a large corpus.

5.2 Prediction ofβ

We examine how accurately our prediction method
for β works by comparing Table 1 above and Ta-
ble 2 below. Our method predicts goodβ quite well
especially for 14 seed words. For small numbers of
seed words, our method using magnetization tends
to predict a little larger value.

We also display the figure of magnetization and
accuracy in Figure 1. We can see that the sharp
change of magnetization occurs at aroundβ = 1.0
(phrase transition). At almost the same point, the
classification accuracy reaches the peak.

5.3 Precision for the Words with High
Confidence

We next evaluate the proposed method in terms of
precision for the words that are classified with high
confidence. We regard the absolute value of each
average as a confidence measure and evaluate the top
words with the highest absolute values of averages.

The result of this experiment is shown in Figure 2,
for 14 seed words as an example. The top 1000
words achieved more than 92% accuracy. This re-
sult shows that the absolute value of each average
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Table 3: Precision (%) for selected adjectives.
Comparison between the proposed method and the
shortest-path method.

seeds proposed short. path
14 73.4 (1.0) 70.8
4 71.0 (1.0) 64.9
2 68.2 (1.0) 66.0

Table 4: Precision (%) for adjectives. Comparison
between the proposed method and the bootstrapping
method.

seeds proposed bootstrap
14 83.6 (0.8) 72.8
4 82.3 (0.9) 73.2
2 83.5 (0.7) 71.1

can work as a confidence measure of classification.

5.4 Comparison with other methods

In order to further investigate the model, we conduct
experiments in restricted settings.

We first construct a lexical network using only
synonyms. We compare the spin model with
the shortest-path method proposed by Kamps et
al. (2004) on this network, because the shortest-
path method cannot incorporate negative links of
antonyms. We also restrict the test data to 697 ad-
jectives, which is the number of examples that the
shortest-path method can assign a non-zero orien-
tation value. Since the shortest-path method is de-
signed for 2 seed words, the method is extended
to use the average shortest-path lengths for 4 seed
words and 14 seed words. Table 3 shows the re-
sult. Since the only difference is their algorithms,
we can conclude that the global optimization of the
spin model works well for the semantic orientation
extraction.

We next compare the proposed method with a
simple bootstrapping method proposed by Hu and
Liu (2004). We construct a lexical network using
synonyms and antonyms. We restrict the test data
to 1470 adjectives for comparison of methods. The
result in Table 4 also shows that the global optimiza-
tion of the spin model works well for the semantic
orientation extraction.

We also tested the shortest path method and the
bootstrapping method on GTC and GT, and obtained
low accuracies as expected in the discussion in Sec-
tion 4.

5.5 Error Analysis

We investigated a number of errors and concluded
that there were mainly three types of errors.

One is the ambiguity of word senses. For exam-
ple, one of the glosses of “costly”is “entailing great
loss or sacrifice”. The word “great” here means
“large”, although it usually means “outstanding” and
is positively oriented.

Another is lack of structural information. For ex-
ample, “arrogance” means “overbearing pride evi-
denced by a superior manner toward the weak”. Al-
though “arrogance” is mistakingly predicted as posi-
tive due to the word “superior”, what is superior here
is “manner”.

The last one is idiomatic expressions. For exam-
ple, although “brag” means “show off”, neither of
“show” and “off” has the negative orientation. Id-
iomatic expressions often does not inherit the se-
mantic orientation from or to the words in the gloss.

The current model cannot deal with these types of
errors. We leave their solutions as future work.

6 Conclusion and Future Work

We proposed a method for extracting semantic ori-
entations of words. In the proposed method, we re-
garded semantic orientations as spins of electrons,
and used the mean field approximation to compute
the approximate probability function of the system
instead of the intractable actual probability function.
We succeeded in extracting semantic orientations
with high accuracy, even when only a small number
of seed words are available.

There are a number of directions for future work.
One is the incorporation of syntactic information.

Since the importance of each word consisting a gloss
depends on its syntactic role. syntactic information
in glosses should be useful for classification.

Another is active learning. To decrease the
amount of manual tagging for seed words, an active
learning scheme is desired, in which a small number
of goodseed words are automatically selected.

Although our model can easily extended to a
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multi-state model, the effectiveness of using such a
multi-state model has not been shown yet.

Our model uses only the tendency of having the
same orientation. Therefore we can extract seman-
tic orientations of new words that are not listed in
a dictionary. The validation of such extension will
widen the possibility of application of our method.

Larger corpora such as web data will improve per-
formance. The combination of our method and the
method by Turney and Littman (2003) is promising.

Finally, we believe that the proposed model is ap-
plicable to other tasks in computational linguistics.
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Abstract

This paper considers the problem of auto-
matic assessment of local coherence. We
present a novel entity-based representa-
tion of discourse which is inspired by Cen-
tering Theory and can be computed au-
tomatically from raw text. We view co-
herence assessment as a ranking learning
problem and show that the proposed dis-
course representation supports the effec-
tive learning of a ranking function. Our
experiments demonstrate that the induced
model achieves significantly higher ac-
curacy than a state-of-the-art coherence
model.

1 Introduction

A key requirement for any system that produces
text is the coherence of its output. Not surprisingly,
a variety of coherence theories have been devel-
oped over the years (e.g., Mann and Thomson, 1988;
Grosz et al. 1995) and their principles have found
application in many symbolic text generation sys-
tems (e.g., Scott and de Souza, 1990; Kibble and
Power, 2004). The ability of these systems to gener-
ate high quality text, almost indistinguishable from
human writing, makes the incorporation of coher-
ence theories in robust large-scale systems partic-
ularly appealing. The task is, however, challenging
considering that most previous efforts have relied on
handcrafted rules, valid only for limited domains,
with no guarantee of scalability or portability (Re-
iter and Dale, 2000). Furthermore, coherence con-
straints are often embedded in complex representa-
tions (e.g., Asher and Lascarides, 2003) which are
hard to implement in a robust application.

This paper focuses on local coherence, which
captures text relatedness at the level of sentence-to-

sentence transitions, and is essential for generating
globally coherent text. The key premise of our work
is that the distribution of entities in locally coherent
texts exhibits certain regularities. This assumption is
not arbitrary — some of these regularities have been
recognized in Centering Theory (Grosz et al., 1995)
and other entity-based theories of discourse.

The algorithm introduced in the paper automat-
ically abstracts a text into a set of entity transi-
tion sequences, a representation that reflects distri-
butional, syntactic, and referential information about
discourse entities. We argue that this representation
of discourse allows the system to learn the proper-
ties of locally coherent texts opportunistically from
a given corpus, without recourse to manual annota-
tion or a predefined knowledge base.

We view coherence assessment as a ranking prob-
lem and present an efficiently learnable model that
orders alternative renderings of the same informa-
tion based on their degree of local coherence. Such
a mechanism is particularly appropriate for gener-
ation and summarization systems as they can pro-
duce multiple text realizations of the same underly-
ing content, either by varying parameter values, or
by relaxing constraints that control the generation
process. A system equipped with a ranking mech-
anism, could compare the quality of the candidate
outputs, much in the same way speech recognizers
employ language models at the sentence level.

Our evaluation results demonstrate the effective-
ness of our entity-based ranking model within the
general framework of coherence assessment. First,
we evaluate the utility of the model in a text order-
ing task where our algorithm has to select a max-
imally coherent sentence order from a set of can-
didate permutations. Second, we compare the rank-
ings produced by the model against human coher-
ence judgments elicited for automatically generated
summaries. In both experiments, our method yields
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a significant improvement over a state-of-the-art co-
herence model based on Latent Semantic Analysis
(Foltz et al., 1998).

In the following section, we provide an overview
of existing work on the automatic assessment of lo-
cal coherence. Then, we introduce our entity-based
representation, and describe our ranking model.
Next, we present the experimental framework and
data. Evaluation results conclude the paper.

2 Related Work

Local coherence has been extensively studied within
the modeling framework put forward by Centering
Theory (Grosz et al., 1995; Walker et al., 1998;
Strube and Hahn, 1999; Poesio et al., 2004; Kibble
and Power, 2004). One of the main assumptions un-
derlying Centering is that a text segment which fore-
grounds a single entity is perceived to be more co-
herent than a segment in which multiple entities are
discussed. The theory formalizes this intuition by in-
troducing constraints on the distribution of discourse
entities in coherent text. These constraints are for-
mulated in terms of focus, the most salient entity in
a discourse segment, and transition of focus between
adjacent sentences. The theory also establishes con-
straints on the linguistic realization of focus, sug-
gesting that it is more likely to appear in prominent
syntactic positions (such as subject or object), and to
be referred to with anaphoric expressions.

A great deal of research has attempted to translate
principles of Centering Theory into a robust coher-
ence metric (Miltsakaki and Kukich, 2000; Hasler,
2004; Karamanis et al., 2004). Such a translation is
challenging in several respects: one has to specify
the “free parameters” of the system (Poesio et al.,
2004) and to determine ways of combining the ef-
fects of various constraints. A common methodol-
ogy that has emerged in this research is to develop
and evaluate coherence metrics on manually anno-
tated corpora. For instance, Miltsakaki and Kukich
(2000) annotate a corpus of student essays with tran-
sition information, and show that the distribution of
transitions correlates with human grades. Karamanis
et al. (2004) use a similar methodology to compare
coherence metrics with respect to their usefulness
for text planning in generation.

The present work differs from these approaches
in two key respects. First, our method does not re-
quire manual annotation of input texts. We do not
aim to produce complete centering annotations; in-

stead, our inference procedure is based on a dis-
course representation that preserves essential entity
transition information, and can be computed auto-
matically from raw text. Second, we learn patterns
of entity distribution from a corpus, without attempt-
ing to directly implement or refine Centering con-
straints.

3 The Coherence Model

In this section we introduce our entity-based repre-
sentation of discourse. We describe how it can be
computed and how entity transition patterns can be
extracted. The latter constitute a rich feature space
on which probabilistic inference is performed.

Text Representation Each text is represented
by an entity grid, a two-dimensional array that cap-
tures the distribution of discourse entities across text
sentences. We follow Miltsakaki and Kukich (2000)
in assuming that our unit of analysis is the tradi-
tional sentence (i.e., a main clause with accompa-
nying subordinate and adjunct clauses). The rows of
the grid correspond to sentences, while the columns
correspond to discourse entities. By discourse en-
tity we mean a class of coreferent noun phrases. For
each occurrence of a discourse entity in the text, the
corresponding grid cell contains information about
its grammatical role in the given sentence. Each grid
column thus corresponds to a string from a set of
categories reflecting the entity’s presence or absence
in a sequence of sentences. Our set consists of four
symbols: S (subject), O (object), X (neither subject
nor object) and – (gap which signals the entity’s ab-
sence from a given sentence).

Table 1 illustrates a fragment of an entity grid
constructed for the text in Table 2. Since the text
contains six sentences, the grid columns are of
length six. Consider for instance the grid column for
the entity trial, [O – – – – X]. It records that trial
is present in sentences 1 and 6 (as O and X respec-
tively) but is absent from the rest of the sentences.

Grid Computation The ability to identify and
cluster coreferent discourse entities is an impor-
tant prerequisite for computing entity grids. The
same entity may appear in different linguistic forms,
e.g., Microsoft Corp., Microsoft, and the company,
but should still be mapped to a single entry in the
grid. Table 1 exemplifies the entity grid for the text
in Table 2 when coreference resolution is taken into
account. To automatically compute entity classes,
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1 S O S X O – – – – – – – – – – 1
2 – – O – – X S O – – – – – – – 2
3 – – S O – – – – S O O – – – – 3
4 – – S – – – – – – – – S – – – 4
5 – – – – – – – – – – – – S O – 5
6 – X S – – – – – – – – – – – O 6

Table 1: A fragment of the entity grid. Noun phrases
are represented by their head nouns.

1 [The Justice Department]S is conducting an [anti-trust
trial]O against [Microsoft Corp.]X with [evidence]X that
[the company]S is increasingly attempting to crush
[competitors]O.

2 [Microsoft]O is accused of trying to forcefully buy into
[markets]X where [its own products]S are not competitive
enough to unseat [established brands]O .

3 [The case]S revolves around [evidence]O of [Microsoft]S
aggressively pressuring [Netscape]O into merging
[browser software]O .

4 [Microsoft]S claims [its tactics]S are commonplace and
good economically.

5 [The government]S may file [a civil suit]O ruling
that [conspiracy]S to curb [competition]O through
[collusion]X is [a violation of the Sherman Act]O.

6 [Microsoft]S continues to show [increased earnings]O de-
spite [the trial]X.

Table 2: Summary augmented with syntactic anno-
tations for grid computation.

we employ a state-of-the-art noun phrase coref-
erence resolution system (Ng and Cardie, 2002)
trained on the MUC (6–7) data sets. The system de-
cides whether two NPs are coreferent by exploit-
ing a wealth of features that fall broadly into four
categories: lexical, grammatical, semantic and posi-
tional.

Once we have identified entity classes, the next
step is to fill out grid entries with relevant syn-
tactic information. We employ a robust statistical
parser (Collins, 1997) to determine the constituent
structure for each sentence, from which subjects (s),
objects (o), and relations other than subject or ob-
ject (x) are identified. Passive verbs are recognized
using a small set of patterns, and the underlying deep
grammatical role for arguments involved in the pas-
sive construction is entered in the grid (see the grid
cell o for Microsoft, Sentence 2, Table 2).

When a noun is attested more than once with a dif-
ferent grammatical role in the same sentence, we de-
fault to the role with the highest grammatical rank-
ing: subjects are ranked higher than objects, which
in turn are ranked higher than the rest. For exam-
ple, the entity Microsoft is mentioned twice in Sen-
tence 1 with the grammatical roles x (for Microsoft
Corp.) and s (for the company), but is represented
only by s in the grid (see Tables 1 and 2).

Coherence Assessment We introduce a method
for coherence assessment that is based on grid rep-
resentation. A fundamental assumption underlying
our approach is that the distribution of entities in
coherent texts exhibits certain regularities reflected
in grid topology. Some of these regularities are for-
malized in Centering Theory as constraints on tran-
sitions of local focus in adjacent sentences. Grids of
coherent texts are likely to have some dense columns
(i.e., columns with just a few gaps such as Microsoft
in Table 1) and many sparse columns which will
consist mostly of gaps (see markets, earnings in Ta-
ble 1). One would further expect that entities cor-
responding to dense columns are more often sub-
jects or objects. These characteristics will be less
pronounced in low-coherence texts.

Inspired by Centering Theory, our analysis re-
volves around patterns of local entity transitions.
A local entity transition is a sequence {S,O,X,–}n

that represents entity occurrences and their syntactic
roles in n adjacent sentences. Local transitions can
be easily obtained from a grid as continuous subse-
quences of each column. Each transition will have a
certain probability in a given grid. For instance, the
probability of the transition [S –] in the grid from
Table 1 is 0.08 (computed as a ratio of its frequency
(i.e., six) divided by the total number of transitions
of length two (i.e., 75)). Each text can thus be viewed
as a distribution defined over transition types. We
believe that considering all entity transitions may
uncover new patterns relevant for coherence assess-
ment.

We further refine our analysis by taking into ac-
count the salience of discourse entities. Centering
and other discourse theories conjecture that the way
an entity is introduced and mentioned depends on
its global role in a given discourse. Therefore, we
discriminate between transitions of salient entities
and the rest, collecting statistics for each group sep-
arately. We identify salient entities based on their
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d1 0 0 0 .03 0 0 0 .02 .07 0 0 .12 .02 .02 .05 .25
d2 0 0 0 .02 0 .07 0 .02 0 0 .06 .04 0 0 0 .36
d3 .02 0 0 .03 0 0 0 .06 0 0 0 .05 .03 .07 .07 .29

Table 3: Example of a feature-vector document rep-
resentation using all transitions of length two given
syntactic categories: S, O, X, and –.

frequency,1 following the widely accepted view that
the occurrence frequency of an entity correlates with
its discourse prominence (Morris and Hirst, 1991;
Grosz et al., 1995).

Ranking We view coherence assessment as a
ranking learning problem. The ranker takes as input
a set of alternative renderings of the same document
and ranks them based on their degree of local coher-
ence. Examples of such renderings include a set of
different sentence orderings of the same text and a
set of summaries produced by different systems for
the same document. Ranking is more suitable than
classification for our purposes since in text gener-
ation, a system needs a scoring function to com-
pare among alternative renderings. Furthermore, it
is clear that coherence assessment is not a categori-
cal decision but a graded one: there is often no single
coherent rendering of a given text but many different
possibilities that can be partially ordered.

As explained previously, coherence constraints
are modeled in the grid representation implicitly by
entity transition sequences. To employ a machine
learning algorithm to our problem, we encode tran-
sition sequences explicitly using a standard feature
vector notation. Each grid rendering j of a docu-
ment di is represented by a feature vector Φ(xi j) =
(p1(xi j), p2(xi j), . . . , pm(xi j)), where m is the num-
ber of all predefined entity transitions, and pt(xi j)
the probability of transition t in grid xi j . Note that
considerable latitude is available when specifying
the transition types to be included in a feature vec-
tor. These can be all transitions of a given length
(e.g., two or three) or the most frequent transitions
within a document collection. An example of a fea-
ture space with transitions of length two is illustrated
in Table 3.

The training set consists of ordered pairs of ren-
derings (xi j,xik), where xi j and xik are renderings

1The frequency threshold is empirically determined on the
development set. See Section 5 for further discussion.

of the same document di, and xi j exhibits a higher
degree of coherence than xik . Without loss of gen-
erality, we assume j > k. The goal of the training
procedure is to find a parameter vector ~w that yields
a “ranking score” function ~w ·Φ(xi j), which mini-
mizes the number of violations of pairwise rankings
provided in the training set. Thus, the ideal ~w would
satisfy the condition ~w ·(Φ(xi j)−Φ(xik)) > 0 ∀ j, i,k
such that j > k. The problem is typically treated as
a Support Vector Machine constraint optimization
problem, and can be solved using the search tech-
nique described in Joachims (2002a). This approach
has been shown to be highly effective in various
tasks ranging from collaborative filtering (Joachims,
2002a) to parsing (Toutanova et al., 2004).

In our ranking experiments, we use Joachims’
(2002a) SVMlight package for training and testing
with all parameters set to their default values.

4 Evaluation Set-Up

In this section we describe two evaluation tasks that
assess the merits of the coherence modeling frame-
work introduced above. We also give details regard-
ing our data collection, and parameter estimation.
Finally, we introduce the baseline method used for
comparison with our approach.

4.1 Text Ordering
Text structuring algorithms (Lapata, 2003; Barzi-
lay and Lee, 2004; Karamanis et al., 2004)
are commonly evaluated by their performance at
information-ordering. The task concerns determin-
ing a sequence in which to present a pre-selected set
of information-bearing items; this is an essential step
in concept-to-text generation, multi-document sum-
marization, and other text-synthesis problems. Since
local coherence is a key property of any well-formed
text, our model can be used to rank alternative sen-
tence orderings. We do not assume that local coher-
ence is sufficient to uniquely determine the best or-
dering — other constraints clearly play a role here.
However, we expect that the accuracy of a coherence
model is reflected in its performance in the ordering
task.

Data To acquire a large collection for training
and testing, we create synthetic data, wherein the
candidate set consists of a source document and per-
mutations of its sentences. This framework for data
acquisition is widely used in evaluation of ordering
algorithms as it enables large scale automatic evalu-
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ation. The underlying assumption is that the orig-
inal sentence order in the source document must
be coherent, and so we should prefer models that
rank it higher than other permutations. Since we do
not know the relative quality of different permuta-
tions, our corpus includes only pairwise rankings
that comprise the original document and one of its
permutations. Given k original documents, each with
n randomly generated permutations, we obtain k · n
(trivially) annotated pairwise rankings for training
and testing.

Using the technique described above, we col-
lected data in two different genres: newspaper ar-
ticles and accident reports written by government
officials. The first collection consists of Associated
Press articles from the North American News Cor-
pus on the topic of natural disasters. The second in-
cludes narratives from the National Transportation
Safety Board’s database2 . Both sets have documents
of comparable length – the average number of sen-
tences is 10.4 and 11.5, respectively. For each set, we
used 100 source articles with 20 randomly generated
permutations for training. The same number of pair-
wise rankings (i.e., 2000) was used for testing. We
held out 10 documents (i.e., 200 pairwise rankings)
from the training data for development purposes.

4.2 Summary Evaluation

We further test the ability of our method to assess
coherence by comparing model induced rankings
against rankings elicited by human judges. Admit-
tedly, the information ordering task only partially
approximates degrees of coherence violation using
different sentence permutations of a source docu-
ment. A stricter evaluation exercise concerns the as-
sessment of texts with naturally occurring coherence
violations as perceived by human readers. A rep-
resentative example of such texts are automatically
generated summaries which often contain sentences
taken out of context and thus display problems with
respect to local coherence (e.g., dangling anaphors,
thematically unrelated sentences). A model that ex-
hibits high agreement with human judges not only
accurately captures the coherence properties of the
summaries in question, but ultimately holds promise
for the automatic evaluation of machine-generated
texts. Existing automatic evaluation measures such
as BLEU (Papineni et al., 2002) and ROUGE (Lin

2The collections are available from http://www.csail.
mit.edu/regina/coherence/.

and Hovy, 2003), are not designed for the coherence
assessment task, since they focus on content similar-
ity between system output and reference texts.

Data Our evaluation was based on materi-
als from the Document Understanding Conference
(DUC, 2003), which include multi-document sum-
maries produced by human writers and by automatic
summarization systems. In order to learn a rank-
ing, we require a set of summaries, each of which
have been rated in terms of coherence. We therefore
elicited judgments from human subjects.3 We ran-
domly selected 16 input document clusters and five
systems that had produced summaries for these sets,
along with summaries composed by several humans.
To ensure that we do not tune a model to a particu-
lar system, we used the output summaries of distinct
systems for training and testing. Our set of train-
ing materials contained 4 · 16 summaries (average
length 4.8), yielding

(4
2

)

·16 = 96 pairwise rankings.
In a similar fashion, we obtained 32 pairwise rank-
ings for the test set. Six documents from the training
data were used as a development set.

Coherence ratings were obtained during an elic-
itation study by 177 unpaid volunteers, all native
speakers of English. The study was conducted re-
motely over the Internet. Participants first saw a set
of instructions that explained the task, and defined
the notion of coherence using multiple examples.
The summaries were randomized in lists following a
Latin square design ensuring that no two summaries
in a given list were generated from the same docu-
ment cluster. Participants were asked to use a seven
point scale to rate how coherent the summaries were
without having seen the source texts. The ratings
(approximately 23 per summary) given by our sub-
jects were averaged to provide a rating between 1
and 7 for each summary.

The reliability of the collected judgments is cru-
cial for our analysis; we therefore performed sev-
eral tests to validate the quality of the annota-
tions. First, we measured how well humans agree
in their coherence assessment. We employed leave-
one-out resampling4 (Weiss and Kulikowski, 1991),
by correlating the data obtained from each par-
ticipant with the mean coherence ratings obtained
from all other participants. The inter-subject agree-

3The ratings are available from http://homepages.inf.
ed.ac.uk/mlap/coherence/.

4We cannot apply the commonly used Kappa statistic for
measuring agreement since it is appropriate for nominal scales,
whereas our summaries are rated on an ordinal scale.
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ment was r = .768. Second, we examined the ef-
fect of different types of summaries (human- vs.
machine-generated.) An ANOVA revealed a reliable
effect of summary type: F(1;15) = 20.38, p < 0.01
indicating that human summaries are perceived as
significantly more coherent than system-generated
ones. Finally, the judgments of our participants ex-
hibit a significant correlation with DUC evaluations
(r = .41, p < 0.01).

4.3 Parameter Estimation
Our model has two free parameters: the frequency
threshold used to identify salient entities and the
length of the transition sequence. These parameters
were tuned separately for each data set on the corre-
sponding held-out development set. For our ordering
and summarization experiments, optimal salience-
based models were obtained for entities with fre-
quency ≥ 2. The optimal transition length was ≤ 3
for ordering and ≤ 2 for summarization.

4.4 Baseline
We compare our algorithm against the coherence
model proposed by Foltz et al. (1998) which mea-
sures coherence as a function of semantic related-
ness between adjacent sentences. Semantic related-
ness is computed automatically using Latent Se-
mantic Analysis (LSA, Landauer and Dumais 1997)
from raw text without employing syntactic or other
annotations. This model is a good point of compari-
son for several reasons: (a) it is fully automatic, (b) it
is a not a straw-man baseline; it correlates reliably
with human judgments and has been used to analyze
discourse structure, and (c) it models an aspect of
coherence which is orthogonal to ours (their model
is lexicalized).

Following Foltz et al. (1998) we constructed
vector-based representations for individual words
from a lemmatized version of the North American
News Text Corpus5 (350 million words) using a
term-document matrix. We used singular value de-
composition to reduce the semantic space to 100 di-
mensions obtaining thus a space similar to LSA. We
represented the meaning of a sentence as a vector
by taking the mean of the vectors of its words. The
similarity between two sentences was determined by
measuring the cosine of their means. An overall text
coherence measure was obtained by averaging the
cosines for all pairs of adjacent sentences.

5Our selection of this corpus was motivated by its similarity
to the DUC corpus which primarily consists of news stories.

In sum, each text was represented by a single
feature, its sentence-to-sentence semantic similar-
ity. During training, the ranker learns an appropriate
threshold value for this feature.

4.5 Evaluation Metric
Model performance was assessed in the same way
for information ordering and summary evaluation.
Given a set of pairwise rankings, we measure accu-
racy as the ratio of correct predictions made by the
model over the size of the test set. In this setup, ran-
dom prediction results in an accuracy of 50%.

5 Results

The evaluation of our coherence model was driven
by two questions: (1) How does the proposed model
compare to existing methods for coherence assess-
ment that make use of distinct representations?
(2) What is the contribution of linguistic knowledge
to the model’s performance? Table 4 summarizes the
accuracy of various configurations of our model for
the ordering and coherence assessment tasks.

We first compared a linguistically rich grid model
that incorporates coreference resolution, expressive
syntactic information, and a salience-based feature
space (Coreference+Syntax+Salience) against the
LSA baseline (LSA). As can be seen in Table 4, the
grid model outperforms the baseline in both ordering
and summary evaluation tasks, by a wide margin.
We conjecture that this difference in performance
stems from the ability of our model to discriminate
between various patterns of local sentence transi-
tions. In contrast, the baseline model only measures
the degree of overlap across successive sentences,
without taking into account the properties of the en-
tities that contribute to the overlap. Not surprisingly,
the difference between the two methods is more pro-
nounced for the second task — summary evaluation.
Manual inspection of our summary corpus revealed
that low-quality summaries often contain repetitive
information. In such cases, simply knowing about
high cross-sentential overlap is not sufficient to dis-
tinguish a repetitive summary from a well-formed
one.

In order to investigate the contribution of linguis-
tic knowledge on model performance we compared
the full model introduced above against models us-
ing more impoverished representations. We focused
on three sources of linguistic knowledge — syntax,
coreference resolution, and salience — which play
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Model Ordering (Set1) Ordering (Set2) Summarization
Coreference+Syntax+Salience 87.3 90.4 68.8
Coreference+Salience 86.9 88.3 62.5
Syntax+Salience 83.4 89.7 81.3
Coreference+Syntax 76.5 88.8 75.0
LSA 72.1 72.1 25.0

Table 4: Ranking accuracy measured as the fraction of correct pairwise rankings in the test set.

a prominent role in Centering analyses of discourse
coherence. An additional motivation for our study is
exploration of the trade-off between robustness and
richness of linguistic annotations. NLP tools are typ-
ically trained on human-authored texts, and may de-
teriorate in performance when applied to automati-
cally generated texts with coherence violations.

Syntax To evaluate the effect of syntactic
knowledge, we eliminated the identification of
grammatical relations from our grid computation
and recorded solely whether an entity is present or
absent in a sentence. This leaves only the coref-
erence and salience information in the model, and
the results are shown in Table 4 under (Corefer-
ence+Salience). The omission of syntactic informa-
tion causes a uniform drop in performance on both
tasks, which confirms its importance for coherence
analysis.

Coreference To measure the effect of fully-
fledged coreference resolution, we constructed en-
tity classes simply by clustering nouns on the ba-
sis of their identity. In other words, each noun in a
text corresponds to a different entity in a grid, and
two nouns are considered coreferent only if they
are identical. The performance of the model (Syn-
tax+Salience) is shown in the third row of Table 4.

While coreference resolution improved model
performance in ordering, it caused a decrease in ac-
curacy in summary evaluation. This drop in per-
formance can be attributed to two factors related
to the nature of our corpus — machine-generated
texts. First, an automatic coreference resolution tool
expectedly decreases in accuracy because it was
trained on well-formed human-authored texts. Sec-
ond, automatic summarization systems do not use
anaphoric expressions as often as humans do. There-
fore, a simple entity clustering method is more suit-
able for automatic summaries.

Salience Finally, we evaluate the contribution
of salience information by comparing our orig-

inal model (Coreference+Syntax+Salience) which
accounts separately for patterns of salient and
non-salient entities against a model that does not
attempt to discriminate between them (Corefer-
ence+Syntax). Our results on the ordering task indi-
cate that models that take salience information into
account consistently outperform models that do not.
The effect of salience is less pronounced for the
summarization task when it is combined with coref-
erence information (Coreference + Salience). This is
expected, since accurate identification of coreferring
entities is prerequisite to deriving accurate salience
models. However, as explained above, our automatic
coreference tool introduces substantial noise in our
representation. Once this noise is removed (see Syn-
tax+Salience), the salience model has a clear advan-
tage over the other models.

6 Discussion and Conclusions

In this paper we proposed a novel framework for
representing and measuring text coherence. Central
to this framework is the entity grid representation
of discourse which we argue captures important pat-
terns of sentence transitions. We re-conceptualize
coherence assessment as a ranking task and show
that our entity-based representation is well suited for
learning an appropriate ranking function; we achieve
good performance on text ordering and summary co-
herence evaluation.

On the linguistic side, our results yield empirical
support to some of Centering Theory’s main claims.
We show that coherent texts are characterized by
transitions with particular properties which do not
hold for all discourses. Our work, however, not only
validates these findings, but also quantitatively mea-
sures the predictive power of various linguistic fea-
tures for the task of coherence assessment.

An important future direction lies in augmenting
our entity-based model with lexico-semantic knowl-
edge. One way to achieve this goal is to cluster enti-
ties based on their semantic relatedness, thereby cre-
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ating a grid representation over lexical chains (Mor-
ris and Hirst, 1991). An entirely different approach
is to develop fully lexicalized models, akin to tra-
ditional language models. Cache language mod-
els (Kuhn and Mori, 1990) seem particularly promis-
ing in this context.

In the discourse literature, entity-based theories
are primarily applied at the level of local coherence,
while relational models, such as Rhetorical Structure
Theory (Mann and Thomson, 1988; Marcu, 2000),
are used to model the global structure of discourse.
We plan to investigate how to combine the two for
improved prediction on both local and global levels,
with the ultimate goal of handling longer texts.
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Abstract

Processing discourse connectives is im-
portant for tasks such as discourse parsing
and generation. For these tasks, it is use-
ful to know which connectives can signal
the same coherence relations. This paper
presents experiments into modelling the
substitutability of discourse connectives.
It shows that substitutability effects dis-
tributional similarity. A novel variance-
based function for comparing probability
distributions is found to assist in predict-
ing substitutability.

1 Introduction

Discourse coherence relations contribute to the
meaning of texts, by specifying the relationships be-
tween semantic objects such as events and propo-
sitions. They also assist in the interpretation of
anaphora, verb phrase ellipsis and lexical ambigu-
ities (Hobbs, 1985; Kehler, 2002; Asher and Las-
carides, 2003). Coherence relations can be implicit,
or they can be signalled explicitly through the use of
discourse connectives, e.g.because, even though.

For a machine to interpret a text, it is impor-
tant that it recognises coherence relations, and so as
explicit markers discourse connectives are of great
assistance (Marcu, 2000). When discourse con-
nectives are not present, the task is more difficult.
For such cases, unsupervised approaches have been
developed for predicting relations, by using sen-
tences containing discourse connectives as training

data (Marcu and Echihabi, 2002; Lapata and Las-
carides, 2004). However the nature of the relation-
ship between the coherence relations signalled by
discourse connectives and their empirical distribu-
tions has to date been poorly understood. In par-
ticular, one might wonder whether connectives with
similar meanings also have similar distributions.

Concerning natural language generation, texts are
easier for humans to understand if they are coher-
ently structured. Addressing this, a body of research
has considered the problems of generating appropri-
ate discourse connectives (for example (Moser and
Moore, 1995; Grote and Stede, 1998)). One such
problem involves choosing which connective to gen-
erate, as the mapping between connectives and re-
lations is not one-to-one, but rather many-to-many.
Siddharthan (2003) considers the task of paraphras-
ing a text while preserving its rhetorical relations.
Clauses conjoined bybut, or and when are sepa-
rated to form distinct orthographic sentences, and
these conjunctions are replaced by the discourse ad-
verbialshowever, otherwiseandthen, respectively.

The idea underlying Siddharthan’s work is that
one connective can be substituted for another while
preserving the meaning of a text. Knott (1996)
studies the substitutability of discourse connectives,
and proposes that substitutability can motivate the-
ories of discourse coherence. Knott uses an empiri-
cal methodology to determine the substitutability of
pairs of connectives. However this methodology is
manually intensive, and Knott derives relationships
for only about 18% of pairs of connectives. It would
thus be useful if substitutability could be predicted
automatically.
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This paper proposes that substitutability can be
predicted through statistical analysis of the contexts
in which connectives appear. Similar methods have
been developed for predicting the similarity of nouns
and verbs on the basis of their distributional similar-
ity, and many distributional similarity functions have
been proposed for these tasks (Lee, 1999). However
substitutability is a more complex notion than simi-
larity, and we propose a novel variance-based func-
tion for assisting in this task.

This paper constitutes a first step towards predict-
ing substitutability of cnonectives automatically. We
demonstrate that the substitutability of connectives
has significant effects on both distributional similar-
ity and the new variance-based function. We then at-
tempt to predict substitutability of connectives using
a simplified task that factors out the prior likelihood
of being substitutable.

2 Relationships between connectives

Two types of relationships between connectives are
of interest: similarity and substitutability.

2.1 Similarity

The concept of lexical similarity occupies an impor-
tant role in psychology, artificial intelligence, and
computational linguistics. For example, in psychol-
ogy, Miller and Charles (1991) report that psycholo-
gists ‘have largely abandoned “synonymy” in favour
of “semantic similarity”.’ In addition, work in au-
tomatic lexical acquisition is based on the proposi-
tion that distributional similarity correlates with se-
mantic similarity (Grefenstette, 1994; Curran and
Moens, 2002; Weeds and Weir, 2003).

Several studies have found subjects’ judge-
ments of semantic similarity to be robust. For
example, Miller and Charles (1991) elicit similar-
ity judgements for 30 pairs of nouns such as
cord–smile, and found a high correlation with
judgements of the same data obtained over 25
years previously (Rubenstein and Goodenough,
1965). Resnik (1999) repeated the experiment,
and calculated an inter-rater agreement of 0.90.
Resnik and Diab (2000) also performed a similar
experiment with pairs of verbs (e.g.bathe–kneel).
The level of inter-rater agreement was again signifi-
cant (r = 0.76).

1. Take an instance of a discourse connective
in a corpus. Imagine you are the writer
that produced this text, but that you need to
choose an alternative connective.

2. Remove the connective from the text, and
insert another connective in its place.

3. If the new connective achieves the same dis-
course goals as the original one, it is consid-
eredsubstitutable in this context.

Figure 1: Knott’s Test for Substitutability

Given two words, it has been suggested that if
words have the similar meanings, then they can be
expected to have similar contextual distributions.
The studies listed above have also found evidence
that similarity ratings correlate positively with the
distributional similarity of the lexical items.

2.2 Substitutability

The notion of substitutability has played an impor-
tant role in theories of lexical relations. A defini-
tion of synonymy attributed to Leibniz states that
two words are synonyms if one word can be used in
place of the other without affecting truth conditions.

Unlike similarity, the substitutability of dis-
course connectives has been previously studied.
Halliday and Hasan (1976) note that in certain con-
textsotherwisecan be paraphrased byif not, as in

(1) It’s the way I like to go to work.
One person and one line of enquiry at a time.
Otherwise/if not, there’s a muddle.

They also suggest some other extended paraphrases
of otherwise, such asunder other circumstances.

Knott (1996) systematises the study of the substi-
tutability of discourse connectives. His first step is
to propose a Test for Substitutability for connectives,
which is summarised in Figure 1. An application of
the Test is illustrated by (2). Hereseeing aswas
the connective originally used by the writer, how-
everbecausecan be used instead.
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w2

(d) w1 and w2 are
EXCLUSIVE

Figure 2: Venn diagrams representing relationships between distributions

(2) Seeing as/becausewe’ve got nothing but
circumstantial evidence, it’s going to be
difficult to get a conviction. (Knott, p. 177)

However the ability to substitute is sensitive to the
context. In other contexts, for example (3), the sub-
stitution ofbecausefor seeing asis not valid.

(3) It’s a fairly good piece of work,seeing
as/#becauseyou have been under a lot of
pressure recently. (Knott, p. 177)

Similarly, there are contexts in whichbecausecan
be used, butseeing ascannot be substituted for it:

(4) That proposal is useful,because/#seeing asit
gives us a fallback position if the negotiations
collapse. (Knott, p. 177)

Knott’s next step is to generalise over all contexts
a connective appears in, and to define four substi-
tutability relationships that can hold between a pair
of connectivesw1 andw2. These relationships are
illustrated graphically through the use of Venn dia-
grams in Figure 2, and defined below.

• w1 is a SYNONYM of w2 if w1 can always be
substituted forw2, and vice versa.

• w1 andw2 areEXCLUSIVE if neither can ever
be substituted for the other.

• w1 is a HYPONYM of w2 if w2 can always be
substituted forw1, but not vice versa.

• w1 and w2 are CONTINGENTLY SUBSTI-
TUTABLE if each can sometimes, but not al-
ways, be substituted for the other.

Given examples (2)–(4) we can conclude thatbe-
causeand seeing asare CONTINGENTLY SUBSTI-
TUTABLE (henceforth “CONT. SUBS.”). However
this is the only relationship that can be established
using a finite number of linguistic examples. The
other relationships all involve generalisations over
all contexts, and so rely to some degree on the judge-
ment of the analyst. Examples of each relationship
given by Knott (1996) include:given thatandsee-
ing asareSYNONYMS, on the grounds thatis aHY-
PONYM of because, andbecauseandnow thatare
EXCLUSIVE.

Although substitutability is inherently a more
complex notion than similarity, distributional simi-
larity is expected to be of some use in predicting sub-
stitutability relationships. For example, if two dis-
course connectives areSYNONYMS then we would
expect them to have similar distributions. On the
other hand, if two connectives areEXCLUSIVE, then
we would expect them to have dissimilar distribu-
tions. However if the relationship between two con-
nectives isHYPONYMY or CONT. SUBS. then we
expect to have partial overlap between their distribu-
tions (consider Figure 2), and so distributional simi-
larity might not distinguish these relationships.

The Kullback-Leibler (KL) divergence function
is a distributional similarity function that is of par-
ticular relevance here since it can be described in-
formally in terms of substitutability. Given co-
occurrence distributionsp and q, its mathematical
definition can be written as:

D(p||q) =
∑

x

p(x)(log
1

q(x)
− log

1
p(x)

) (5)
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Figure 3: Surprise in substitutingw2 for w1 (darker shading indicates higher surprise)

The valuelog 1
p(x) has an informal interpretation as

a measure of how surprised an observer would be
to see eventx, given prior likelihood expectations
defined byp. Thus, ifp andq are the distributions of
wordsw1 andw2 then

D(p||q) = Ep(surprise in seeingw2

− surprise in seeingw1) (6)

whereEp is the expectation function over the distri-
bution of w1 (i.e. p). That is, KL divergence mea-
sures how much more surprised we would be, on
average, to see wordw2 rather thanw1, where the
averaging is weighted by the distribution ofw1.

3 A variance-based function for
distributional analysis

A distributional similarity function provides only
a one-dimensional comparison of two distributions,
namely how similar they are. However we can ob-
tain an additional perspective by using a variance-
based function. We now introduce a new functionV
by taking the variance of the surprise in seeingw2,
over the contexts in whichw1 appears:

V (p, q) = V ar(surprise in seeingw2)

= Ep((Ep(log
1

q(x)
) − log

1
q(x)

)2) (7)

Note that like KL divergence,V (p, q) is asymmetric.
We now consider how the substitutability of con-

nectives affects our expectations of the value ofV .
If two connectives areSYNONYMS then each can
always be used in place of other. Thus we would
always expect a low level of surprise in seeing one

Relationship Function
of w1 to w2 D(p||q) D(q||p) V (p, q) V (q, p)
SYNONYM Low Low Low Low
HYPONYM Low Medium Low High
CONT. SUBS. Medium Medium High High
EXCLUSIVE High High Low Low

Table 1: Expectations for distributional functions

connective in place of the other, and this low level of
surprise is indicated via light shading in Figure 3a.
It follows that the variance in surprise is low. On the
other hand, if two connectives areEXCLUSIVE then
there would always be a high degree of surprise in
seeing one in place of the other. This is indicated
using dark shading in Figure 3e. Only one set is
shaded because we need only consider the contexts
in which w1 is appropriate. In this case, the vari-
ance in surprise is again low. The situation is more
interesting when we consider two connectives that
are CONT. SUBS.. In this case substitutability (and
hence surprise) is dependent on the context. This
is illustrated using light and dark shading in Fig-
ure 3d. As a result, the variance in surprise is high.
Finally, with HYPONYMY, the variance in surprise
depends on whether the original connective was the
HYPONYM or theHYPERNYM.

Table 1 summarises our expectations of the val-
ues of KL divergence andV , for the various sub-
stitutability relationships. (KL divergence, unlike
most similarity functions, is sensitive to the order of
arguments related by hyponymy (Lee, 1999).) The
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Something happenedand something else happened.
Something happenedor something else happened.

© 0 © 1 © 2 © 3 © 4 © 5

Figure 4: Example experimental item

experiments described below test these expectations
using empirical data.

4 Experiments

We now describe our empirical experiments which
investigate the connections between a) subjects’ rat-
ings of the similarity of discourse connectives, b)
the substitutability of discourse connectives, and c)
KL divergence and the new functionV applied to
the distributions of connectives. Our motivation is
to explore how distributional properties of words
might be used to predict substitutability. The ex-
periments are restricted to connectives which relate
clauses within a sentence. These include coordinat-
ing conjunctions (e.g.but) and a range of subordina-
tors including conjunctions (e.g.because) as well as
phrases introducing adverbial clauses (e.g.now that,
given that, for the reason that). Adverbial discourse
connectives are therefore not considered.

4.1 Experiment 1: Subject ratings of similarity

This experiment tests the hypotheses that 1) subjects
agree on the degree of similarity between pairs of
discourse connectives, and 2) similarity ratings cor-
relate with the degree of substitutability.

4.1.1 Methodology

We randomly selected 48 pairs of discourse con-
nectives such that there were 12 pairs standing in
each of the four substitutability relationships.To do
this, we used substitutability judgements made by
Knott (1996), supplemented with some judgements
of our own. Each experimental item consisted of
the two discourse connectives along with dummy
clauses, as illustrated in Figure 4. The format of the
experimental items was designed to indicate how a
phrase could be used as a discourse connective (e.g.
it may not be obvious to a subject that the phrase
the momentis a discourse connective), but without

Mean HYP CONT. SUBS. EXCL

SYNONYM 3.97 * * *
HYPONYM 3.43 * *
CONT. SUBS. 1.79 *
EXCLUSIVE 1.08

Table 2: Similarity by substitutability relationship

providing complete semantics for the clauses, which
might bias the subjects’ ratings. Forty native speak-
ers of English participated in the experiment, which
was conducted remotely via the internet.

4.1.2 Results

Leave-one-out resampling was used to compare
each subject’s ratings are with the means of their
peers’ (Weiss and Kulikowski, 1991). The average
inter-subject correlation was 0.75 (Min = 0.49, Max
= 0.86, StdDev = 0.09), which is comparable to pre-
vious results on verb similarity ratings (Resnik and
Diab, 2000). The effect of substitutability on simi-
larity ratings can be seen in Table 2. Post-hoc Tukey
tests revealed all differences between means in Ta-
ble 2 to be significant.

The results demonstrate that subjects’ ratings of
connective similarity show significant agreement
and are robust enough for effects of substitutability
to be found.

4.2 Experiment 2: Modelling similarity

This experiment compares subjects’ ratings of sim-
ilarity with lexical co-occurrence data. It hypothe-
sises that similarity ratings correlate with distribu-
tional similarity, but that neither correlates with the
new variance in surprise function.

4.2.1 Methodology

Sentences containing discourse connectives were
gathered from the British National Corpus and the
world wide web, with discourse connectives identi-
fied on the basis of their syntactic contexts (for de-
tails, see Hutchinson (2004b)). The mean number
of sentences per connective was about32, 000, al-
though about12% of these are estimated to be er-
rors. From these sentences, lexical co-occurrence
data were collected. Only co-occurrences with dis-
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Figure 5: Similarity versus distributional divergence

course adverbials and other structural discourse con-
nectives were stored, as these had previously been
found to be useful for predicting semantic features
of connectives (Hutchinson, 2004a).

4.2.2 Results

A skewed variant of the Kullback-Leibler diver-
gence function was used to compare co-occurrence
distributions (Lee, 1999, withα = 0.95). Spear-
man’s correlation coefficient for ranked data showed
a significant correlation (r = −0.51, p < 0.001).
(The correlation is negative because KL divergence
is lower when distributions are more similar.) The
strength of this correlation is comparable with sim-
ilar results achieved for verbs (Resnik and Diab,
2000), but not as great as has been observed for
nouns (McDonald, 2000). Figure 5 plots the mean
similarity judgements against the distributional di-
vergence obtained using discourse markers, and also
indicates the substitutability relationship for each
item. (Two outliers can be observed in the upper left
corner; these were excluded from the calculations.)

The “variance in surprise” function introduced in
the previous section was applied to the same co-
occurrence data.1 These variances were compared
to distributional divergence and the subjects’ simi-
larity ratings, but in both cases Spearman’s correla-
tion coefficient was not significant.

In combination with the previous experiment,

1In practice, the skewed variantV (p, 0.95q + 0.05p) was
used, in order to avoid problems arising whenq(x) = 0.

these results demonstrate a three way correspon-
dence between the human ratings of the similar-
ity of a pair of connectives, their substitutabil-
ity relationship, and their distributional similarity.
Hutchinson (2005) presents further experiments on
modelling connective similarity, and discusses their
implications. This experiment also provides empiri-
cal evidence that the new variance in surprise func-
tion is not a measure of similarity.

4.3 Experiment 3: Predicting substitutability

The previous experiments provide hope that sub-
stitutability of connectives might be predicted on
the basis of their empirical distributions. However
one complicating factor is thatEXCLUSIVE is by far
the most likely relationship, holding between about
70% of pairs. Preliminary experiments showed
that the empirical evidence for other relationships
was not strong enough to overcome this prior bias.
We therefore attempted two pseudodisambiguation
tasks which eliminated the effects of prior likeli-
hoods. The first task involved distinguishing be-
tween the relationships whose connectives subjects
rated as most similar, namelySYNONYMY andHY-
PONYMY. Triples of connectives〈p, q, q′〉 were
collected such thatSYNONYM(p, q) and eitherHY-
PONYM(p, q′) or HYPONYM(q′, p) (we were not at-
tempting to predict the order ofHYPONYMY). The
task was then to decide automatically which ofq and
q′ is theSYNONYM of p.

The second task was identical in nature to the first,
however here the relationship betweenp andq was
either SYNONYMY or HYPONYMY, while p andq′

were eitherCONT. SUBS. or EXCLUSIVE. These
two sets of relationships are those corresponding to
high and low similarity, respectively. In combina-
tion, the two tasks are equivalent to predictingSYN-
ONYMY or HYPONYMY from the set of all four rela-
tionships, by first distinguishing the high similarity
relationships from the other two, and then making a
finer-grained distinction between the two.

4.3.1 Methodology

Substitutability relationships between 49 struc-
tural discourse connectives were extracted from
Knott’s (1996) classification. In order to obtain more
evaluation data, we used Knott’s methodology to ob-
tain relationships between an additional 32 connec-
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max(D1, D2) max(V1, V2) (V1 − V2)2

SYN 0.627 4.44 3.29
HYP 0.720 5.16 8.02
CONT 1.057 4.85 7.81
EXCL 1.069 4.79 7.27

Table 3: Distributional analysis by substitutability

tives. This resulted in 46 triples〈p, q, q′〉 for the first
task, and 10,912 triples for the second task.

The co-occurrence data from the previous section
were re-used. These were used to calculateD(p||q)
andV (p, q). Both of these are asymmetric, so for
our purposes we took the maximum of applying
their arguments in both orders. Recall from Table 1
that when two connectives are in aHYPONYMY re-
lation we expectV to be sensitive to the order in
which the connectives are given as arguments. To
test this, we also calculated(V (p, q) − V (q, p))2,
i.e. the square of the difference of applying the argu-
ments toV in both orders. The average values are
summarised in Table 3, withD1 andD2 (andV1 and
V2) denoting different orderings of the arguments to
D (andV ), andmax denoting the function which
selects the larger of two numbers.

These statistics show that our theoretically moti-
vated expectations are supported. In particular, (1)
SYNONYMOUS connectives have the least distribu-
tional divergence andEXCLUSIVE connectives the
most, (2)CONT. SUBS. andHYPONYMOUS connec-
tives have the greatest values forV , and (3)V shows
the greatest sensitivity to the order of its arguments
in the case ofHYPONYMY.

The co-occurrence data were used to construct a
Gaussian classifier, by assuming the values forD
andV are generated by Gaussians.2 First, normal
functions were used to calculate the likelihood ratio
of p andq being in the two relationships:

P (syn|data)
P (hyp|data)

=
P (syn)
P (hyp)

· P (data|syn)
P (data|hyp)

(8)

= 1·n(max(D1, D2);µsyn, σsyn)
n(max(D1, D2);µhyp, σhyp)

(9)

2KL divergence is right skewed, so a log-normal model was
used to modelD, whereas a normal model used forV .

Input to Gaussian SYN vs SYN/HYP vs
Model HYP EX/CONT

max(D1, D2) 50.0% 76.1%
max(V1, V2) 84.8% 60.6%

Table 4: Accuracy on pseudodisambiguation task

wheren(x;µ, σ) is the normal function with mean
µ and standard deviationσ, and whereµsyn, for ex-
ample, denotes the mean of the Gaussian model for
SYNONYMY. Next the likelihood ratio forp and
q was divided by that forp and q′. If this value
was greater than 1, the model predictedp and q
wereSYNONYMS, otherwiseHYPONYMS. The same
technique was used for the second task.

4.3.2 Results

A leave-one-out cross validation procedure was
used. For each triple〈p, q, q′〉, the data concern-
ing the pairsp, q andp, q′ were held back, and the
remaining data used to construct the models. The
results are shown in Table 4. For comparison, a ran-
dom baseline classifier achieves 50% accuracy.

The results demonstrate the utility of the new
variance-based functionV . The new variance-based
function V is better than KL divergence at dis-
tinguishing HYPONYMY from SYNONYMY (χ2 =
11.13, df = 1, p < 0.001), although it performs
worse on the coarser grained task. This is consis-
tent with the expectations of Table 1. The two clas-
sifiers were also combined by making a naive Bayes
assumption. This gave an accuracy of 76.1% on the
first task, which is significantly better than just us-
ing KL divergence (χ2 = 5.65, df = 1, p < 0.05),
and not significantly worse than usingV . The com-
bination’s accuracy on the second task was 76.2%,
which is about the same as using KL divergence.
This shows that combining similarity- and variance-
based measures can be useful can improve overall
performance.

5 Conclusions

The concepts of lexical similarity and substitutabil-
ity are of central importance to psychology, ar-
tificial intelligence and computational linguistics.
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To our knowledge this is the first modelling study
of how these concepts relate to lexical items in-
volved in discourse-level phenomena. We found a
three way correspondence between data sources of
quite distinct types: distributional similarity scores
obtained from lexical co-occurrence data, substi-
tutability judgements made by linguists, and the
similarity ratings of naive subjects.

The substitutability of lexical items is important
for applications such as text simplification, where it
can be desirable to paraphrase one discourse con-
nective using another. Ultimately we would like to
automatically predict substitutability for individual
tokens. However predicting whether one connective
can either a) always, b) sometimes or c) never be
substituted for another is a step towards this goal.
Our results demonstrate that these general substi-
tutability relationships have empirical correlates.

We have introduced a novel variance-based func-
tion of two distributions which complements distri-
butional similarity. We demonstrated the new func-
tion’s utility in helping to predict the substitutabil-
ity of connectives, and it can be expected to have
wider applicability to lexical acquisition tasks. In
particular, it is expected to be useful for learning
relationships which cannot be characterised purely
in terms of similarity, such as hyponymy. In future
work we will analyse further the empirical proper-
ties of the new function, and investigate its applica-
bility to learning relationships between other classes
of lexical items such as nouns.
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Abstract

In this paper, we view coreference reso-
lution as a problem of ranking candidate
partitions generated by different coref-
erence systems. We propose a set of
partition-based features to learn a rank-
ing model for distinguishing good and bad
partitions. Our approach compares fa-
vorably to two state-of-the-art coreference
systems when evaluated on three standard
coreference data sets.

1 Introduction

Recent research in coreference resolution — the
problem of determining which noun phrases (NPs)
in a text or dialogue refer to which real-world
entity — has exhibited a shift from knowledge-
based approaches to data-driven approaches, yield-
ing learning-based coreference systems that rival
their hand-crafted counterparts in performance (e.g.,
Soon et al. (2001), Ng and Cardie (2002b), Strube et
al. (2002), Yang et al. (2003), Luo et al. (2004)). The
central idea behind the majority of these learning-
based approaches is to recast coreference resolution
as a binary classification task. Specifically, a clas-
sifier is first trained to determine whether two NPs
in a document are co-referring or not. A separate
clustering mechanism then coordinates the possibly
contradictory pairwise coreference classification de-
cisions and constructs a partition on the given set of
NPs, with one cluster for each set of coreferent NPs.

Though reasonably successful, this “standard” ap-
proach is not as robust as one may think. First, de-

sign decisions such as the choice of the learning al-
gorithm and the clustering procedure are apparently
critical to system performance, but are often made
in an ad-hoc and unprincipled manner that may be
suboptimal from an empirical point of view.

Second, this approach makes no attempt to search
through the space of possible partitions when given
a set of NPs to be clustered, employing instead a
greedy clustering procedure to construct a partition
that may be far from optimal.

Another potential weakness of this approach con-
cerns its inability to directly optimize for clustering-
level accuracy: the coreference classifier is trained
and optimized independently of the clustering pro-
cedure to be used, and hence improvements in clas-
sification accuracy do not guarantee corresponding
improvements in clustering-level accuracy.

Our goal in this paper is to improve the robustness
of the standard approach by addressing the above
weaknesses. Specifically, we propose the following
procedure for coreference resolution: given a set of
NPs to be clustered, (1) use � pre-selected learning-
based coreference systems to generate � candidate
partitions of the NPs, and then (2) apply an auto-
matically acquired ranking model to rank these can-
didate hypotheses, selecting the best one to be the fi-
nal partition. The key features of this approach are:
Minimal human decision making. In contrast to
the standard approach, our method obviates, to a
large extent, the need to make tough or potentially
suboptimal design decisions.1 For instance, if we

1We still need to determine the � coreference systems to be
employed in our framework, however. Fortunately, the choice
of � is flexible, and can be as large as we want subject to the
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cannot decide whether learner
�

is better to use than
learner � in a coreference system, we can simply
create two copies of the system with one employing�

and the other � , and then add both into our pre-
selected set of coreference systems.
Generation of multiple candidate partitions. Al-
though an exhaustive search for the best partition is
not computationally feasible even for a document
with a moderate number of NPs, our approach ex-
plores a larger portion of the search space than the
standard approach via generating multiple hypothe-
ses, making it possible to find a potentially better
partition of the NPs under consideration.
Optimization for clustering-level accuracy via
ranking. As mentioned above, the standard ap-
proach trains and optimizes a coreference classifier
without necessarily optimizing for clustering-level
accuracy. In contrast, we attempt to optimize our
ranking model with respect to the target coreference
scoring function, essentially by training it in such
a way that a higher scored candidate partition (ac-
cording to the scoring function) would be assigned a
higher rank (see Section 3.2 for details).

Perhaps even more importantly, our approach pro-
vides a general framework for coreference resolu-
tion. Instead of committing ourselves to a partic-
ular resolution method as in previous approaches,
our framework makes it possible to leverage the
strengths of different methods by allowing them to
participate in the generation of candidate partitions.

We evaluate our approach on three standard coref-
erence data sets using two different scoring met-
rics. In our experiments, our approach compares fa-
vorably to two state-of-the-art coreference systems
adopting the standard machine learning approach,
outperforming them by as much as 4–7% on the
three data sets for one of the performance metrics.

2 Related Work

As mentioned before, our approach differs from the
standard approach primarily by (1) explicitly learn-
ing a ranker and (2) optimizing for clustering-level
accuracy. In this section we will focus on discussing
related work along these two dimensions.

Ranking candidate partitions. Although we are
not aware of any previous attempt on training a

available computing resources.

ranking model using global features of an NP par-
tition, there is some related work on partition rank-
ing where the score of a partition is computed via
a heuristic function of the probabilities of its NP
pairs being coreferent.2 For instance, Harabagiu et
al. (2001) introduce a greedy algorithm for finding
the highest-scored partition by performing a beam
search in the space of possible partitions. At each
step of this search process, candidate partitions are
ranked based on their heuristically computed scores.

Optimizing for clustering-level accuracy. Ng
and Cardie (2002a) attempt to optimize their rule-
based coreference classifier for clustering-level ac-
curacy, essentially by finding a subset of the learned
rules that performs the best on held-out data with
respect to the target coreference scoring program.
Strube and Müller (2003) propose a similar idea, but
aim instead at finding a subset of the available fea-
tures with which the resulting coreference classifier
yields the best clustering-level accuracy on held-out
data. To our knowledge, our work is the first attempt
to optimize a ranker for clustering-level accuracy.

3 A Ranking Approach to Coreference

Our ranking approach operates by first dividing the
available training texts into two disjoint subsets: a
training subset and a held-out subset. More specifi-
cally, we first train each of our � pre-selected coref-
erence systems on the documents in the training sub-
set, and then use these resolvers to generate � can-
didate partitions for each text in the held-out subset
from which a ranking model will be learned. Given
a test text, we use our � coreference systems to cre-
ate � candidate partitions as in training, and select
the highest-ranked partition according to the ranking
model to be the final partition.3 The rest of this sec-
tion describes how we select these � learning-based
coreference systems and acquire the ranking model.

3.1 Selecting Coreference Systems

A learning-based coreference system can be defined
by four elements: the learning algorithm used to
train the coreference classifier, the method of creat-
ing training instances for the learner, the feature set

2Examples of such scoring functions include the Dempster-
Shafer rule (see Kehler (1997) and Bean and Riloff (2004)) and
its variants (see Harabagiu et al. (2001) and Luo et al. (2004)).

3The ranking model breaks ties randomly.
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used to represent a training or test instance, and the
clustering algorithm used to coordinate the coref-
erence classification decisions. Selecting a corefer-
ence system, then, is a matter of instantiating these
elements with specific values.

Now we need to define the set of allowable values
for each of these elements. In particular, we want to
define them in such a way that the resulting coref-
erence systems can potentially generate good can-
didate partitions. Given that machine learning ap-
proaches to the problem have been promising, our
choices will be guided by previous learning-based
coreference systems, as described below.

Training instance creation methods. A training
instance represents two NPs, NP� and NP� , having a
class value of COREFERENT or NOT COREFERENT

depending on whether the NPs co-refer in the asso-
ciated text. We consider three previously-proposed
methods of creating training instances.

In McCarthy and Lehnert’s method, a positive
instance is created for each anaphoric NP paired
with each of its antecedents, and a negative instance
is created by pairing each NP with each of its preced-
ing non-coreferent noun phrases. Hence, the number
of instances created by this method is quadratic in
the number of NPs in the associated text. The large
number of instances can potentially make the train-
ing process inefficient.

In an attempt to reduce the training time, Soon et
al.’s method creates a smaller number of training in-
stances than McCarthy and Lehnert’s. Specifically,
a positive instance is created for each anaphoric NP,
NP� , and its closest antecedent, NP� ; and a negative
instance is created for NP� paired with each of the
intervening NPs, NP����� , NP����� , 	
	
	 , NP���� .

Unlike Soon et al., Ng and Cardie’s method gen-
erates a positive instance for each anaphoric NP and
its most confident antecedent. For a non-pronominal
NP, the most confident antecedent is assumed to
be its closest non-pronominal antecedent. For pro-
nouns, the most confident antecedent is simply its
closest preceding antecedent. Negative instances are
generated as in Soon et al.’s method.

Feature sets. We employ two feature sets for rep-
resenting an instance, as described below.

Soon et al.’s feature set consists of 12 surface-
level features, each of which is computed based on

one or both NPs involved in the instance. The fea-
tures can be divided into four groups: lexical, gram-
matical, semantic, and positional. Space limitations
preclude a description of these features. Details can
be found in Soon et al. (2001).

Ng and Cardie expand Soon et al.’s feature set
from 12 features to a deeper set of 53 to allow more
complex NP string matching operations as well as
finer-grained syntactic and semantic compatibility
tests. See Ng and Cardie (2002b) for details.

Learning algorithms. We consider three learning
algorithms, namely, the C4.5 decision tree induction
system (Quinlan, 1993), the RIPPER rule learning
algorithm (Cohen, 1995), and maximum entropy
classification (Berger et al., 1996). The classifica-
tion model induced by each of these learners returns
a number between 0 and 1 that indicates the likeli-
hood that the two NPs under consideration are coref-
erent. In this work, NP pairs with class values above
0.5 are considered COREFERENT; otherwise the pair
is considered NOT COREFERENT.

Clustering algorithms. We employ three cluster-
ing algorithms, as described below.

The closest-first clustering algorithm selects as
the antecedent of NP� its closest preceding coreferent
NP. If no such NP exists, then NP� is assumed to be
non-anaphoric (i.e., no antecedent is selected).

On the other hand, the best-first clustering al-
gorithm selects as the antecedent of NP� the clos-
est NP with the highest coreference likelihood value
from its set of preceding coreferent NPs. If this
set is empty, then no antecedent is selected for NP� .
Since the most likely antecedent is chosen for each
NP, best-first clustering may produce partitions with
higher precision than closest-first clustering.

Finally, in aggressive-merge clustering, each NP
is merged with all of its preceding coreferent NPs.
Since more merging occurs in comparison to the pre-
vious two algorithms, aggressive-merge clustering
may yield partitions with higher recall.

Table 1 summarizes the previous work on coref-
erence resolution that employs the learning algo-
rithms, clustering algorithms, feature sets, and in-
stance creation methods discussed above. With three
learners, three training instance creation methods,
two feature sets, and three clustering algorithms, we
can produce 54 coreference systems in total.
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Decision tree learners Aone and Bennett (1995), McCarthy and Lehnert (1995), Soon et al. (2001),
Learning (C4.5/C5/CART) Strube et al. (2002), Strube and Müller (2003), Yang et al. (2003)
algorithm RIPPER Ng and Cardie (2002b)

Maximum entropy Kehler (1997), Morton (2000), Luo et al. (2004)
Instance McCarthy and Lehnert’s McCarthy and Lehnert (1995), Aone and Bennett (1995)
creation Soon et al.’s Soon et al. (2001), Strube et al. (2002), Iida et al. (2003)
method Ng and Cardie’s Ng and Cardie (2002b)
Feature Soon et al.’s Soon et al. (2001)

set Ng and Cardie’s Ng and Cardie (2002b)
Clustering Closest-first Soon et al. (2001), Strube et al. (2002)
algorithm Best-first Aone and Bennett (1995), Ng and Cardie (2002b), Iida et al. (2003)

Aggressive-merge McCarthy and Lehnert (1995)

Table 1: Summary of the previous work on coreference resolution that employs the learning algorithms, the
clustering algorithms, the feature sets, and the training instance creation methods discussed in Section 3.1.

3.2 Learning to Rank Candidate Partitions

We train an SVM-based ranker for ranking candidate
partitions by means of Joachims’ (2002) SVM

� �������
package, with all the parameters set to their default
values. To create training data, we first generate 54
candidate partitions for each text in the held-out sub-
set as described above and then convert each parti-
tion into a training instance consisting of a set of
partition-based features and method-based features.

Partition-based features are used to characterize a
candidate partition and can be derived directly from
the partition itself. Following previous work on us-
ing global features of candidate structures to learn
a ranking model (Collins, 2002), the global (i.e.,
partition-based) features we consider here are sim-
ple functions of the local features that capture the
relationship between NP pairs.

Specifically, we define our partition-based fea-
tures in terms of the features in the Ng and Cardie
(N&C) feature set (see Section 3.1) as follows. First,
let us assume that

�
� is the � -th nominal feature in

N&C’s feature set and 	 � � is the 
 -th possible value
of
�
� . Next, for each � and 
 , we create two partition-

based features, � � ��� and ��� ��� . � � �� is computed over
the set of coreferent NP pairs (with respect to the
candidate partition), denoting the probability of en-
countering

�
����	 � � in this set when the pairs are

represented as attribute-value vectors using N&C’s
features. On the other hand, � � ��� is computed over
the set of non-coreferent NP pairs (with respect to
the candidate partition), denoting the probability of
encountering

�
����	 � � in this set when the pairs are

represented as attribute-value vectors using N&C’s
features. One partition-based feature, for instance,

would denote the probability that two NPs residing
in the same cluster have incompatible gender values.
Intuitively, a good NP partition would have a low
probability value for this feature. So, having these
partition-based features can potentially help us dis-
tinguish good and bad candidate partitions.

Method-based features, on the other hand, are
used to encode the identity of the coreference sys-
tem that generated the candidate partition under con-
sideration. Specifically, we have one method-based
feature representing each pre-selected coreference
system. The feature value is 1 if the corresponding
coreference system generated the candidate partition
and 0 otherwise. These features enable the learner
to learn how to distinguish good and bad partitions
based on the systems that generated them, and are
particularly useful when some coreference systems
perform consistently better than the others.

Now, we need to compute the “class value” for
each training instance, which is a positive integer de-
noting the rank of the corresponding partition among
the 54 candidates generated for the training docu-
ment under consideration. Recall from the intro-
duction that we want to train our ranking model so
that higher scored partitions according to the target
coreference scoring program are ranked higher. To
this end, we compute the rank of each candidate par-
tition as follows. First, we apply the target scoring
program to score each candidate partition against the
correct partition derived from the training text. We
then assign rank � to the � -th lowest scored parti-
tion.4 Effectively, the learning algorithm learns what
a good partition is from the scoring program.

4Two partitions with the same score will have the same rank.
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Training Corpus Test Corpus
# Docs # Tokens # Docs # Tokens

BNEWS 216 67470 51 18357
NPAPER 76 71944 17 18174
NWIRE 130 85688 29 20528

Table 2: Statistics for the ACE corpus.

4 Evaluation

4.1 Experimental Setup

For evaluation purposes, we use the ACE (Au-
tomatic Content Extraction) coreference corpus,
which is composed of three data sets created
from three different news sources, namely, broad-
cast news (BNEWS), newspaper (NPAPER), and
newswire (NWIRE).5 Statistics of these data sets are
shown in Table 2. In our experiments, we use the
training texts to acquire coreference classifiers and
evaluate the resulting systems on the test texts with
respect to two commonly-used coreference scoring
programs: the MUC scorer (Vilain et al., 1995) and
the B-CUBED scorer (Bagga and Baldwin, 1998).

4.2 Results Using the MUC Scorer

Baseline systems. We employ as our baseline sys-
tems two existing coreference resolvers: our dupli-
cation of the Soon et al. (2001) system and the Ng
and Cardie (2002b) system. Both resolvers adopt
the standard machine learning approach and there-
fore can be characterized using the four elements
discussed in Section 3.1. Specifically, Soon et al.’s
system employs a decision tree learner to train a
coreference classifier on instances created by Soon’s
method and represented by Soon’s feature set, coor-
dinating the classification decisions via closest-first
clustering. Ng and Cardie’s system, on the other
hand, employs RIPPER to train a coreference classi-
fier on instances created by N&C’s method and rep-
resented by N&C’s feature set, inducing a partition
on the given NPs via best-first clustering.

The baseline results are shown in rows 1 and 2
of Table 3, where performance is reported in terms
of recall, precision, and F-measure. As we can see,
the N&C system outperforms the Duplicated Soon
system by about 2-6% on the three ACE data sets.

5See http://www.itl.nist.gov/iad/894.01/
tests/ace for details on the ACE research program.

Our approach. Recall that our approach uses la-
beled data to train both the coreference classifiers
and the ranking model. To ensure a fair comparison
of our approach with the baselines, we do not rely
on additional labeled data for learning the ranker;
instead, we use half of the training texts for training
classifiers and the other half for ranking purposes.
Results using our approach are shown in row 3 of
Table 3. Our ranking model, when trained to opti-
mize for F-measure using both partition-based fea-
tures and method-based features, consistently pro-
vides substantial gains in F-measure over both base-
lines. In comparison to the stronger baseline (i.e.,
N&C), F-measure increases by 7.4, 7.2, and 4.6 for
the BNEWS, NPAPER, and NWIRE data sets, re-
spectively. Perhaps more encouragingly, gains in F-
measure are accompanied by simultaneous increase
in recall and precision for all three data sets.

Feature contribution. In an attempt to gain addi-
tional insight into the contribution of partition-based
features and method-based features, we train our
ranking model using each type of features in iso-
lation. Results are shown in rows 4 and 5 of Ta-
ble 3. For the NPAPER and NWIRE data sets, we
still see gains in F-measure over both baseline sys-
tems when the model is trained using either type of
features. The gains, however, are smaller than those
observed when the two types of features are applied
in combination. Perhaps surprisingly, the results for
BNEWS do not exhibit the same trend as those for
the other two data sets. Here, the method-based fea-
tures alone are strongly predictive of good candidate
partitions, yielding even slightly better performance
than when both types of features are applied. Over-
all, however, these results seem to suggest that both
partition-based and method-based features are im-
portant to learning a good ranking model.

Random ranking. An interesting question is:
how much does supervised ranking help? If all of
our candidate partitions are of very high quality, then
ranking will not be particularly important because
choosing any of these partitions may yield good re-
sults. To investigate this question, we apply a ran-
dom ranking model, which randomly selects a can-
didate partition for each test text. Row 6 of Table 3
shows the results (averaged over five runs) when the
random ranker is used in place of the supervised
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BNEWS NPAPER NWIRE
System Variation R P F R P F R P F

1 Duplicated Soon et al. baseline 52.7 47.5 50.0 63.3 56.7 59.8 48.7 40.9 44.5
2 Ng and Cardie baseline 56.5 58.6 57.5 57.1 68.0 62.1 43.1 59.9 50.1
3 Ranking framework 62.2 67.9 64.9 67.4 71.4 69.3 50.1 60.3 54.7
4 Partition-based features only 54.5 55.5 55.0 66.3 63.0 64.7 50.7 51.2 51.0
5 Method-based features only 62.0 68.5 65.1 67.5 61.2 64.2 51.1 49.9 50.5
6 Random ranking model 48.6 54.8 51.5 57.4 63.3 60.2 40.3 44.3 42.2
7 Perfect ranking model 66.0 69.3 67.6 70.4 71.2 70.8 56.6 59.7 58.1

Table 3: Results for the three ACE data sets obtained via the MUC scoring program.

ranker. In comparison to the results in row 3, we
see that the supervised ranker surpasses its random
counterpart by about 9-13% in F-measure, implying
that ranking plays an important role in our approach.

Perfect ranking. It would be informative to see
whether our ranking model is performing at its up-
per limit, because further performance improvement
beyond this point would require enlarging our set of
candidate partitions. So, we apply a perfect ranking
model, which uses an oracle to choose the best can-
didate partition for each test text. Results in row 7 of
Table 3 indicate that our ranking model performs at
about 1-3% below the perfect ranker, suggesting that
we can further improve coreference performance by
improving the ranking model.

4.3 Results Using the B-CUBED Scorer

Baseline systems. In contrast to the MUC results,
the B-CUBED results for the two baseline systems
are mixed (see rows 1 and 2 of Table 4). Specifically,
while there is no clear winner for the NWIRE data
set, N&C performs better on BNEWS but worse on
NPAPER than the Duplicated Soon system.

Our approach. From row 3 of Table 4, we see that
our approach achieves small but consistent improve-
ments in F-measure over both baseline systems. In
comparison to the better baseline, F-measure in-
creases by 0.1, 1.1, and 2.0 for the BNEWS, NPA-
PER, and NWIRE data sets, respectively.

Feature contribution. Unlike the MUC results,
using more features to train the ranking model does
not always yield better performance with respect to
the B-CUBED scorer (see rows 3-5 of Table 4). In
particular, the best result for BNEWS is achieved
using only method-based features, whereas the best
result for NPAPER is obtained using only partition-
based features. Nevertheless, since neither type of

features offers consistently better performance than
the other, it still seems desirable to apply the two
types of features in combination to train the ranker.

Random ranking. Comparing rows 3 and 6 of Ta-
ble 4, we see that the supervised ranker yields a non-
trivial improvement of 2-3% in F-measure over the
random ranker for the three data sets. Hence, rank-
ing still plays an important role in our approach with
respect to the B-CUBED scorer despite its modest
performance gains over the two baseline systems.

Perfect ranking. Results in rows 3 and 7 of Ta-
ble 4 indicate that the supervised ranker underper-
forms the perfect ranker by about 5% for BNEWS
and 3% for both NPAPER and NWIRE in terms
of F-measure, suggesting that the supervised ranker
still has room for improvement. Moreover, by com-
paring rows 1-2 and 7 of Table 4, we can see that
the perfect ranker outperforms the baselines by less
than 5%. This is essentially an upper limit on how
much our approach can improve upon the baselines
given the current set of candidate partitions. In other
words, the performance of our approach is limited in
part by the quality of the candidate partitions, more
so with B-CUBED than with the MUC scorer.

5 Discussion

Two questions naturally arise after examining the
above results. First, which of the 54 coreference sys-
tems generally yield superior results? Second, why
is the same set of candidate partitions scored so dif-
ferently by the two scoring programs?

To address the first question, we take the 54 coref-
erence systems that were trained on half of the avail-
able training texts (see Section 4) and apply them to
the three ACE test data sets. Table 5 shows the best-
performing resolver for each test set and scoring pro-
gram combination. Interestingly, with respect to the
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BNEWS NPAPER NWIRE
System Variation R P F R P F R P F

1 Duplicated Soon et al. baseline 53.4 78.4 63.5 58.0 75.4 65.6 56.0 75.3 64.2
2 Ng and Cardie baseline 59.9 72.3 65.5 61.8 64.9 63.3 62.3 66.7 64.4
3 Ranking framework 57.0 77.1 65.6 62.8 71.2 66.7 59.3 75.4 66.4
4 Partition-based features only 55.0 79.1 64.9 61.3 74.7 67.4 57.1 76.8 65.5
5 Method-based features only 63.1 69.8 65.8 58.4 75.2 65.8 58.9 75.5 66.1
6 Random ranking model 52.5 79.9 63.4 58.4 69.2 63.3 54.3 77.4 63.8
7 Perfect ranking model 64.5 76.7 70.0 61.3 79.1 69.1 63.2 76.2 69.1

Table 4: Results for the three ACE data sets obtained via the B-CUBED scoring program.

MUC scorer, the best performance on the three data
sets is achieved by the same resolver. The results
with respect to B-CUBED are mixed, however.

For each resolver shown in Table 5, we also com-
pute the average rank of the partitions generated
by the resolver for the corresponding test texts.6

Intuitively, a resolver that consistently produces
good partitions (relative to other candidate parti-
tions) would achieve a low average rank. Hence, we
can infer from the fairly high rank associated with
the top B-CUBED resolvers that they do not perform
consistently better than their counterparts.

Regarding our second question of why the same
set of candidate partitions is scored differently by the
two scoring programs, the reason can be attributed
to two key algorithmic differences between these
scorers. First, while the MUC scorer only rewards
correct identification of coreferent links, B-CUBED
additionally rewards successful recognition of non-
coreference relationships. Second, the MUC scorer
applies the same penalty to each erroneous merging
decision, whereas B-CUBED penalizes erroneous
merging decisions involving two large clusters more
heavily than those involving two small clusters.

Both of the above differences can potentially
cause B-CUBED to assign a narrower range of F-
measure scores to each set of 54 candidate partitions
than the MUC scorer, for the following reasons.
First, our candidate partitions in general agree more
on singleton clusters than on non-singleton clusters.
Second, by employing a non-uniform penalty func-
tion B-CUBED effectively removes a bias inherent
in the MUC scorer that leads to under-penalization
of partitions in which entities are over-clustered.

Nevertheless, our B-CUBED results suggest that

6The rank of a partition is computed in the same way as in
Section 3.2, except that we now adopt the common convention
of assigning rank � to the � -th highest scored partition.

(1) despite its modest improvement over the base-
lines, our approach offers robust performance across
the data sets; and (2) we could obtain better scores
by improving the ranking model and expanding our
set of candidate partitions, as elaborated below.

To improve the ranking model, we can potentially
(1) design new features that better characterize a
candidate partition (e.g., features that measure the
size and the internal cohesion of a cluster), and (2)
reserve more labeled data for training the model. In
the latter case we may have less data for training
coreference classifiers, but at the same time we can
employ weakly supervised techniques to bootstrap
the classifiers. Previous attempts on bootstrapping
coreference classifiers have only been mildly suc-
cessful (e.g., Müller et al. (2002)), and this is also
an area that deserves further research.

To expand our set of candidate partitions, we can
potentially incorporate more high-performing coref-
erence systems into our framework, which is flex-
ible enough to accommodate even those that adopt
knowledge-based (e.g., Harabagiu et al. (2001)) and
unsupervised approaches (e.g., Cardie and Wagstaff
(1999), Bean and Riloff (2004)). Of course, we
can also expand our pre-selected set of corefer-
ence systems via incorporating additional learning
algorithms, clustering algorithms, and feature sets.
Once again, we may use previous work to guide our
choices. For instance, Iida et al. (2003) and Ze-
lenko et al. (2004) have explored the use of SVM,
voted perceptron, and logistic regression for train-
ing coreference classifiers. McCallum and Well-
ner (2003) and Zelenko et al. (2004) have employed
graph-based partitioning algorithms such as corre-
lation clustering (Bansal et al., 2002). Finally,
Strube et al. (2002) and Iida et al. (2003) have pro-
posed new edit-distance-based string-matching fea-
tures and centering-based features, respectively.
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Scoring Average Coreference System
Test Set Program Rank Instance Creation Method Feature Set Learner Clustering Algorithm
BNEWS MUC 7.2549 McCarthy and Lehnert’s Ng and Cardie’s C4.5 aggressive-merge

BCUBED 16.9020 McCarthy and Lehnert’s Ng and Cardie’s C4.5 aggressive-merge
NPAPER MUC 1.4706 McCarthy and Lehnert’s Ng and Cardie’s C4.5 aggressive-merge

B-CUBED 9.3529 Soon et al.’s Soon et al.’s RIPPER closest-first
NWIRE MUC 7.7241 McCarthy and Lehnert’s Ng and Cardie’s C4.5 aggressive-merge

B-CUBED 13.1379 Ng and Cardie’s Ng and Cardie’s MaxEnt closest-first

Table 5: The coreference systems that achieved the highest F-measure scores for each test set and scorer
combination. The average rank of the candidate partitions produced by each system for the corresponding test set is also shown.
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Abstract

In this paper we focus on how to improve
pronoun resolution using the statistics-
based semantic compatibility information.
We investigate two unexplored issues that
influence the effectiveness of such in-
formation: statistics source and learning
framework. Specifically, we for the first
time propose to utilize the web and the
twin-candidate model, in addition to the
previous combination of the corpus and
the single-candidate model, to compute
and apply the semantic information. Our
study shows that the semantic compatibil-
ity obtained from the web can be effec-
tively incorporated in the twin-candidate
learning model and significantly improve
the resolution of neutral pronouns.

1 Introduction

Semantic compatibility is an important factor for
pronoun resolution. Since pronouns, especially neu-
tral pronouns, carry little semantics of their own,
the compatibility between an anaphor and its an-
tecedent candidate is commonly evaluated by ex-
amining the relationships between the candidate and
the anaphor’s context, based on the statistics that the
corresponding predicate-argument tuples occur in a
particular large corpus. Consider the example given
in the work of Dagan and Itai (1990):

(1) They know full well that companies held tax
money aside for collection later on the basis
that the government saidit1 was going to col-
lect it2.

For anaphorit1, the candidategovernmentshould
have higher semantic compatibility thanmoneybe-
causegovernmentcollect is supposed to occur more
frequently thanmoneycollect in a large corpus. A
similar pattern could also be observed forit2.

So far, the corpus-based semantic knowledge has
been successfully employed in several anaphora res-
olution systems. Dagan and Itai (1990) proposed
a heuristics-based approach to pronoun resolu-
tion. It determined the preference of candidates
based on predicate-argument frequencies. Recently,
Bean and Riloff (2004) presented an unsupervised
approach to coreference resolution, which mined
the co-referring NP pairs with similar predicate-
arguments from a large corpus using a bootstrapping
method.

However, the utility of the corpus-based se-
mantics for pronoun resolution is often argued.
Kehler et al. (2004), for example, explored the
usage of the corpus-based statistics in supervised
learning based systems, and found that such infor-
mation did not produce apparent improvement for
the overall pronoun resolution. Indeed, existing
learning-based approaches to anaphor resolution
have performed reasonably well using limited
and shallow knowledge (e.g., Mitkov (1998),
Soon et al. (2001), Strube and Muller (2003)).
Could the relatively noisy semantic knowledge give
us further system improvement?

In this paper we focus on improving pronominal
anaphora resolution using automatically computed
semantic compatibility information. We propose to
enhance the utility of the statistics-based knowledge
from two aspects:

Statistics source. Corpus-based knowledge usu-
ally suffers from data sparseness problem. That is,
many predicate-argument tuples would be unseen
even in a large corpus. A possible solution is the
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web. It is believed that the size of the web is thou-
sands of times larger than normal large corpora, and
the counts obtained from the web are highly corre-
lated with the counts from large balanced corpora
for predicate-argument bi-grams (Keller and Lapata,
2003). So far the web has been utilized in nominal
anaphora resolution (Modjeska et al., 2003; Poesio
et al., 2004) to determine the semantic relation be-
tween an anaphor and candidate pair. However, to
our knowledge, using the web to help pronoun reso-
lution still remains unexplored.

Learning framework . Commonly, the predicate-
argument statistics is incorporated into anaphora res-
olution systems as a feature. What kind of learn-
ing framework is suitable for this feature? Previous
approaches to anaphora resolution adopt the single-
candidate model, in which the resolution is done on
an anaphor and one candidate at a time (Soon et al.,
2001; Ng and Cardie, 2002). However, as the pur-
pose of the predicate-argument statistics is to eval-
uate the preference of the candidates in semantics,
it is possible that the statistics-based semantic fea-
ture could be more effectively applied in the twin-
candidate (Yang et al., 2003) that focusses on the
preference relationships among candidates.

In our work we explore the acquisition of the se-
mantic compatibility information from the corpus
and the web, and the incorporation of such semantic
information in the single-candidate model and the
twin-candidate model. We systematically evaluate
the combinations of different statistics sources and
learning frameworks in terms of their effectiveness
in helping the resolution. Results on the MUC data
set show that for neutral pronoun resolution in which
an anaphor has no specific semantic category, the
web-based semantic information would be the most
effective when applied in the twin-candidate model:
Not only could such a system significantly improve
the baseline without the semantic feature, it also out-
performs the system with the combination of the cor-
pus and the single-candidate model (by 11.5% suc-
cess).

The rest of this paper is organized as follows. Sec-
tion 2 describes the acquisition of the semantic com-
patibility information from the corpus and the web.
Section 3 discusses the application of the statistics
in the single-candidate and twin-candidate learning
models. Section 4 gives the experimental results,

and finally, Section 5 gives the conclusion.

2 Computing the Statistics-based Semantic
Compatibility

In this section, we introduce in detail how to com-
pute the semantic compatibility, using the predicate-
argument statistics obtained from the corpus or the
web.

2.1 Corpus-Based Semantic Compatibility

Three relationships, possessive-noun, subject-verb
and verb-object, are considered in our work. Be-
fore resolution a large corpus is prepared. Doc-
uments in the corpus are processed by a shallow
parser that could generate predicate-argument tuples
of the above three relationships1.

To reduce data sparseness, the following steps are
applied in each resulting tuple, automatically:

• Only the nominal or verbal heads are retained.

• Each Named-Entity (NE) is replaced by a com-
mon noun which corresponds to the seman-
tic category of the NE (e.g. “IBM”→ “com-
pany”) 2.

• All words are changed to their base morpho-
logic forms (e.g. “companies→ company”).

During resolution, for an encountered anaphor,
each of its antecedent candidates is substituted with
the anaphor . According to the role and type of the
anaphor in its context, a predicate-argument tuple is
extracted and the above three steps for data-sparse
reduction are applied. Consider the sentence (1),
for example. The anaphors “it1” and “it2” indicate
a subjectverb and verbobject relationship, respec-
tively. Thus, the predicate-argument tuples for the
two candidates“government” and “money” would
be (collect (subject government))and(collect (sub-
ject money))for “ it1”, and (collect (object govern-
ment))and(collect (object money))for “ it2”.

Each extracted tuple is searched in the prepared
tuples set of the corpus, and the times the tuple oc-
curs are calculated. For each candidate, its semantic

1The possessive-noun relationship involves the forms like
“NP2 of NP1” and “NP1’s NP2”.

2In our study, the semantic category of a NE is identified
automatically by the pre-processing NE recognition component.
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compatibility with the anaphor could be represented
simply in terms offrequency

StatSem(candi, ana) = count(candi, ana) (1)

wherecount(candi, ana) is the count of the tuple
formed bycandi andana, or alternatively, in terms
of conditional probability(P (candi, ana|candi)),
where the count of the tuple is divided by the count
of the single candidate in the corpus. That is

StatSem(candi, ana) =
count(candi, ana)

count(candi)
(2)

In this way, the statistics would not bias candidates
that occur frequently in isolation.

2.2 Web-Based Semantic Compatibility

Unlike documents in normal corpora, web pages
could not be preprocessed to generate the predicate-
argument reserve. Instead, the predicate-argument
statistics has to be obtained via a web search engine
like Google and Altavista. For the three types of
predicate-argument relationships, queries are con-
structed in the forms of “NPcandi VP” (for subject-
verb), “VP NPcandi” (for verb-object), and “NPcandi

’s NP” or “NP of NPcandi” (for possessive-noun).
Consider the following sentence:

(2) Several experts suggested that IBM’s account-
ing grew much more liberal since the mid 1980s
as its business turned sour.

For the pronoun “its” and the candidate “IBM”, the
two generated queries are “business of IBM” and
“ IBM’s business”.

To reduce data sparseness, in an initial query only
the nominal or verbal heads are retained. Also, each
NE is replaced by the corresponding common noun.
(e.g, “IBM’s business” → “company’s business” and
“business of IBM” → “business of company”).

A set of inflected queries is generated by ex-
panding a term into all its possible morphologi-
cal forms. For example, in Sentence (1), “collect
money” becomes “collected|collecting|... money”,
and in (2) “business of company” becomes “business
of company|companies”). Besides, determiners are
inserted for every noun. If the noun is the candidate
under consideration, only the definite articlethe is
inserted. For other nouns, instead,a/an, theand the

empty determiners (for bare plurals) would be added
(e.g., “the|a business of the company|companies”).

Queries are submitted to a particular web search
engine (Google in our study). All queries are per-
formed as exact matching. Similar to the corpus-
based statistics, the compatibility for each candidate
and anaphor pair could be represented using either
frequency(Eq. 1) orprobability (Eq. 2) metric. In
such a situation,count(candi, ana) is the hit num-
ber of the inflected queries returned by the search
engine, whilecount(candi) is the hit number of the
query formed with only the head of the candidate
(i.e.,“the+ candi”).

3 Applying the Semantic Compatibility

In this section, we discuss how to incorporate the
statistics-based semantic compatibility for pronoun
resolution, in a machine learning framework.

3.1 The Single-Candidate Model

One way to utilize the semantic compatibility is to
take it as a feature under the single-candidate learn-
ing model as employed by Ng and Cardie (2002).

In such a learning model, each training or testing
instance takes the form ofi{C, ana}, whereana is
the possible anaphor andC is its antecedent candi-
date. An instance is associated with a feature vector
to describe their relationships.

During training, for each anaphor in a given text,
a positive instance is created by pairing the anaphor
and its closest antecedent. Also a set of negative in-
stances is formed by pairing the anaphor and each
of the intervening candidates. Based on the train-
ing instances, a binary classifier is generated using a
certain learning algorithm, like C5 (Quinlan, 1993)
in our work.

During resolution, given a new anaphor, a test in-
stance is created for each candidate. This instance is
presented to the classifier, which then returns a pos-
itive or negative result with a confidence value indi-
cating the likelihood that they are co-referent. The
candidate with the highest confidence value would
be selected as the antecedent.

3.2 Features

In our study we only consider those domain-
independent features that could be obtained with low
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Feature Description
DefNp 1 if the candidate is a definite NP; else 0
Pron 1 if the candidate is a pronoun; else 0
NE 1 if the candidate is a named entity; else 0
SameSent 1 if the candidate and the anaphor is in the same sentence; else 0
NearestNP 1 if the candidate is nearest to the anaphor; else 0
ParalStuct 1 if the candidate has an parallel structure with ana; else 0
FirstNP 1 if the candidate is the first NP in a sentence; else 0
Reflexive 1 if the anaphor is a reflexive pronoun; else 0
Type Type of the anaphor (0: Single neuter pronoun; 1: Plural neuter pronoun; 2:

Male personal pronoun; 3: Female personal pronoun)
StatSem∗ the statistics-base semantic compatibility of the candidate
SemMag∗∗ the semantic compatibility difference between two competing candidates

Table 1: Feature set for our pronoun resolution system(*ed feature is only for the single-candidate model
while **ed feature is only for the twin-candidate mode)

computational cost but with high reliability. Table 1
summarizes the features with their respective possi-
ble values. The first three features represent the lex-
ical properties of a candidate. The POS properties
could indicate whether a candidate refers to a hearer-
old entity that would have a higher preference to be
selected as the antecedent (Strube, 1998).SameSent
andNearestNPmark the distance relationships be-
tween an anaphor and the candidate, which would
significantly affect the candidate selection (Hobbs,
1978). FirstNP aims to capture the salience of the
candidate in the local discourse segment.ParalStuct
marks whether a candidate and an anaphor have sim-
ilar surrounding words, which is also a salience fac-
tor for the candidate evaluation (Mitkov, 1998).

FeatureStatSemrecords the statistics-based se-
mantic compatibility computed, from the corpus or
the web, by eitherfrequencyor probability metric,
as described in the previous section. If a candidate
is a pronoun, this feature value would be set to that
of its closest nominal antecedent.

As described, the semantic compatibility of a can-
didate is computed under the context of the cur-
rent anaphor. Consider two occurrences of anaphors
“ . . .it1 collected . . .” and “. . .it2 said . . .”. As “NP
collected” should occur less frequently than “NP
said”, the candidates ofit1 would generally have
predicate-argument statistics lower than those ofit2.
That is, a positive instance forit1 might bear a lower
semantic feature value than a negative instance for

it2. The consequence is that the learning algorithm
would think such a feature is not that ”indicative”
and reduce its salience in the resulting classifier.

One way to tackle this problem is to normalize the
feature by the frequencies of the anaphor’s context,
e.g., “count(collected)” and “count(said)”. This,
however, would require extra calculation. In fact,
as candidates of a specific anaphor share the same
anaphor context, we can just normalize the semantic
feature of a candidate by that of its competitor:

StatSemN (C, ana) =
StatSem(C, ana)

max
ci∈candi set(ana)

StatSem(ci, ana)

The value (0 ∼ 1) represents the rank of the
semantic compatibility of the candidateC among
candi set(ana), the current candidates ofana.

3.3 The Twin-Candidate Model

Yang et al. (2003) proposed an alternative twin-
candidate model for anaphora resolution task. The
strength of such a model is that unlike the single-
candidate model, it could capture the preference re-
lationships between competing candidates. In the
model, candidates for an anaphor are paired and
features from two competing candidates are put to-
gether for consideration. This property could nicely
deal with the above mentioned training problem of
different anaphor contexts, because the semantic
feature would be considered under the current can-
didate set only. In fact, as semantic compatibility is
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a preference-based factor for anaphor resolution, it
would be incorporated in the twin-candidate model
more naturally.

In the twin-candidate model, an instance takes a
form like i{C1, C2, ana}, whereC1 andC2 are two
candidates. We stipulate thatC2 should be closer to
ana thanC1 in distance. The instance is labelled as
“10” if C1 the antecedent, or “01” ifC2 is.

During training, for each anaphor, we find its
closest antecedent,Cante. A set of “10” instances,
i{Cante, C, ana}, is generated by pairingCante and
each of the interning candidatesC. Also a set of “01”
instances,i{C, Cante, ana}, is created by pairing
Cante with each candidate beforeCante until another
antecedent, if any, is reached.

The resulting pairwise classifier would return
“10” or “01” indicating which candidate is preferred
to the other. During resolution, candidates are paired
one by one. The score of a candidate is the total
number of the competitors that the candidate wins
over. The candidate with the highest score would be
selected as the antecedent.

Features The features for the twin-candidate
model are similar to those for the single-candidate
model except that a duplicate set of features has to
be prepared for the additional candidate. Besides,
a new feature,SemMag, is used in place ofStat-
Semto represent the difference magnitude between
the semantic compatibility of two candidates. Let
mag = StatSem(C1, ana)/StatSem(C2, ana), feature
SemMagis defined as follows,

SemMag(C1, C2, ana) =

{
mag − 1 : mag >= 1

1−mag−1 : mag < 1

The positive or negative value marks the times that
the statistics ofC1 is larger or smaller thanC2.

4 Evaluation and Discussion

4.1 Experiment Setup

In our study we were only concerned about the third-
person pronoun resolution. With an attempt to ex-
amine the effectiveness of the semantic feature on
different types of pronouns, the whole resolution
was divided into neutral pronoun (it & they) reso-
lution and personal pronoun (he& she) resolution.

The experiments were done on the newswire do-
main, using MUC corpus (Wall Street Journal ar-
ticles). The training was done on 150 documents

from MUC-6 coreference data set, while the testing
was on the 50 formal-test documents of MUC-6 (30)
and MUC-7 (20). Throughout the experiments, de-
fault learning parameters were applied to the C5 al-
gorithm. The performance was evaluated based on
success, the ratio of the number of correctly resolved
anaphors over the total number of anaphors.

An input raw text was preprocessed automati-
cally by a pipeline of NLP components. The noun
phrase identification and the predicate-argument ex-
traction were done based on the results of a chunk
tagger, which was trained for the shared task of
CoNLL-2000 and achieved 92% accuracy (Zhou et
al., 2000). The recognition of NEs as well as their
semantic categories was done by a HMM based
NER, which was trained for the MUC NE task
and obtained high F-scores of 96.9% (MUC-6) and
94.3% (MUC-7) (Zhou and Su, 2002).

For each anaphor, the markables occurring within
the current and previous two sentences were taken
as the initial candidates. Those with mismatched
number and gender agreements were filtered from
the candidate set. Also, pronouns or NEs that dis-
agreed in person with the anaphor were removed in
advance. For the training set, there are totally 645
neutral pronouns and 385 personal pronouns with
non-empty candidate set, while for the testing set,
the number is 245 and 197.

4.2 The Corpus and the Web

The corpus for the predicate-argument statistics
computation was from the TIPSTER’s Text Re-
search Collection (v1994). Consisting of 173,252
Wall Street Journal articles from the year 1988 to
1992, the data set contained about 76 million words.
The documents were preprocessed using the same
POS tagging and NE-recognition components as in
the pronoun resolution task. Cass (Abney, 1996), a
robust chunker parser was then applied to generate
the shallow parse trees, which resulted in 353,085
possessive-noun tuples, 759,997 verb-object tuples
and 1,090,121 subject-verb tuples.

We examined the capacity of the web and the
corpus in terms of zero-count ratio and count num-
ber. On average, among the predicate-argument tu-
ples that have non-zero corpus-counts, above 93%
have also non-zero web-counts. But the ratio is only
around 40% contrariwise. And for the predicate-
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Neutral Pron Personal Pron Overall
Learning Model System Corpus Web Corpus Web Corpus Web

baseline 65.7 86.8 75.1
+frequency 67.3 69.9 86.8 86.8 76.0 76.9

Single-Candidate +normalized frequency 66.9 67.8 86.8 86.8 75.8 76.2
+probability 65.7 65.7 86.8 86.8 75.1 75.1

+normalized probability 67.7 70.6 86.8 86.8 76.2 77.8
baseline 73.9 91.9 81.9

Twin-Candidate +frequency 76.7 79.2 91.4 91.9 83.3 84.8
+probability 75.9 78.0 91.4 92.4 82.8 84.4

Table 2: The performance of different resolution systems

Relationship N-Pron P-Pron
Possessive-Noun 0.508 0.517
Verb-Object 0.503 0.526
Subject-Verb 0.619 0.676

Table 3: Correlation between web and corpus counts
on the seen predicate-argument tuples

argument tuples that could be seen in both data
sources, the count from the web is above 2000 times
larger than that from the corpus.

Although much less sparse, the web counts are
significantly noisier than the corpus count since no
tagging, chunking and parsing could be carried out
on the web pages. However, previous study (Keller
and Lapata, 2003) reveals that the large amount of
data available for the web counts could outweigh the
noisy problems. In our study we also carried out a
correlation analysis3 to examine whether the counts
from the web and the corpus are linearly related,
on the predicate-argument tuples that can be seen
in both data sources. From the results listed in Ta-
ble 3, we observe moderately high correlation, with
coefficients ranging from 0.5 to 0.7 around, between
the counts from the web and the corpus, for both
neutral pronoun (N-Pron) and personal pronoun (P-
Pron) resolution tasks.

4.3 System Evaluation

Table 2 summarizes the performance of the systems
with different combinations of statistics sources and
learning frameworks. The systems without the se-

3All the counts were log-transformed and the correlation co-
efficients were evaluated based on Pearsons’r.

mantic feature were used as the baseline. Under the
single-candidate (SC) model, the baseline system
obtains a success of 65.7% and 86.8% for neutral
pronoun and personal pronoun resolution, respec-
tively. By contrast, the twin-candidate (TC) model
achieves a significantly (p≤ 0.05, by two-tailed t-
test) higher success of 73.9% and 91.9%, respec-
tively. Overall, for the whole pronoun resolution,
the baseline system under the TC model yields a
success 81.9%, 6.8% higher than SC does4. The
performance is comparable to most state-of-the-art
pronoun resolution systems on the same data set.

Web-based feature vs. Corpus-based feature
The third column of the table lists the results us-
ing the web-based compatibility feature for neutral
pronouns. Under both SC and TC models, incorpo-
ration of the web-based feature significantly boosts
the performance of the baseline: For the best sys-
tem in the SC model and the TC model, the success
rate is improved significantly by around 4.9% and
5.3%, respectively. A similar pattern of improve-
ment could be seen for the corpus-based semantic
feature. However, the increase is not as large as
using the web-based feature: Under the two learn-
ing models, the success rate of the best system with
the corpus-based feature rises by up to 2.0% and
2.8% respectively, about 2.9% and 2.5% less than
that of the counterpart systems with the web-based
feature. The larger size and the better counts of the
web against the corpus, as reported in Section 4.2,

4The improvement against SC is higher than that reported
in (Yang et al., 2003). It should be because we now used 150
training documents rather than 30 ones as in the previous work.
The TC model would benefit from larger training data set as it
uses more features (more than double) than SC.
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should contribute to the better performance.
Single-candidate model vs. Twin-Candidate

model The difference between the SC and the TC
model is obvious from the table. For the N-Pron
and P-Pron resolution, the systems under TC could
outperform the counterpart systems under SC by
above 5% and 8% success, respectively. In addition,
the utility of the statistics-based semantic feature is
more salient under TC than under SC for N-Pron res-
olution: the best gains using the corpus-based and
the web-based semantic features under TC are 2.9%
and 5.3% respectively, higher than those under the
SC model using either un-normalized semantic fea-
tures (1.6% and 3.3%), or normalized semantic fea-
tures (2.0% and 4.9%). Although under SC, the nor-
malized semantic feature could result in a gain close
to under TC, its utility is not stable: with metricfre-
quency, using the normalized feature performs even
worse than using the un-normalized one. These re-
sults not only affirm the claim by Yang et al. (2003)
that the TC model is superior to the SC model for
pronoun resolution, but also indicate that TC is more
reliable than SC in applying the statistics-based se-
mantic feature, for N-Pron resolution.

Web+TC vs. Other combinations The above
analysis has exhibited the superiority of the web
over the corpus, and the TC model over the
SC model. The experimental results also re-
veal that using the the web-based semantic fea-
ture together with the TC model is able to further
boost the resolution performance for neutral pro-
nouns. The system with such a Web+TC combi-
nation could achieve a high success of 79.2%, de-
feating all the other possible combinations. Es-
pecially, it considerably outperforms (up to 11.5%
success) the system with the Corpus+SC combina-
tion, which is commonly adopted in previous work
(e.g., Kehler et al. (2004)).

Personal pronoun resolution vs. Neutral pro-
noun resolution Interestingly, the statistics-based
semantic feature has no effect on the resolution of
personal pronouns, as shown in the table 2. We
found in the learned decision trees such a feature
did not occur (SC) or only occurred in bottom nodes
(TC). This should be because personal pronouns
have strong restriction on the semantic category (i.e.,
human) of the candidates. A non-human candidate,
even with a high predicate-argument statistics, could

Feature Group Isolated Combined
SemMag (Web-based) 61.2 61.2

Type+Reflexive 53.1 61.2
ParaStruct 53.1 61.2

Pron+DefNP+InDefNP+NE 57.1 67.8
NearestNP+SameSent 53.1 70.2

FirstNP 65.3 79.2

Table 4: Results of different feature groups under
the TC model for N-pron resolution

SameSent_1 = 0:
:..SemMag > 0:
: :..Pron_2 = 0: 10 (200/23)
: : Pron_2 = 1: ...
: SemMag <= 0:
: :..Pron_2 = 1: 01 (75/1)
: Pron_2 = 0:
: :..SemMag <= -28: 01 (110/19)
: SemMag > -28: ...
SameSent_1 = 1:
:..SameSent_2 = 0: 01 (1655/49)

SameSent_2 = 1:
:..FirstNP_2 = 1: 01 (104/1)

FirstNP_2 = 0:
:..ParaStruct_2 = 1: 01 (3)

ParaStruct_2 = 0:
:..SemMag <= -151: 01 (27/2)

SemMag > -151:...

Figure 1: Top portion of the decision tree learned
under TC model for N-pron resolution (features ended

with “ 1” are for the first candidateC1 and those with “2” are

for C2.)

not be used as the antecedent (e.g.companysaid in
the sentence “. . . the company . . . he said . . .”). In
fact, our analysis of the current data set reveals that
most P-Prons refer back to a P-Pron or NE candidate
whose semantic category (human) has been deter-
mined. That is, simply using featuresNE andPron
is sufficient to guarantee a high success, and thus the
relatively weak semantic feature would not be taken
in the learned decision tree for resolution.

4.4 Feature Analysis

In our experiment we were also concerned about the
importance of the web-based compatibility feature
(usingfrequencymetric) among the feature set. For
this purpose, we divided the features into groups,
and then trained and tested on one group at a time.
Table 4 lists the feature groups and their respective
results for N-Pron resolution under the TC model.
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The second column is for the systems with only the
current feature group, while the third column is with
the features combined with the existing feature set.
We see that used in isolation, the semantic compati-
bility feature is able to achieve a success up to 61%
around, just 4% lower than the best indicative fea-
tureFirstNP. In combination with other features, the
performance could be improved by as large as 18%
as opposed to being used alone.

Figure 1 shows the top portion of the pruned deci-
sion tree for N-Pron resolution under the TC model.
We could find that: (i) When comparing two can-
didates which occur in the same sentence as the
anaphor, the web-based semantic feature would be
examined in the first place, followed by the lexi-
cal property of the candidates. (ii) When two non-
pronominal candidates are both in previous sen-
tences before the anaphor, the web-based semantic
feature is still required to be examined afterFirstNP
andParaStruct. The decision tree further indicates
that the web-based feature plays an important role in
N-Pron resolution.

5 Conclusion

Our research focussed on improving pronoun reso-
lution using the statistics-based semantic compati-
bility information. We explored two issues that af-
fect the utility of the semantic information: statis-
tics source and learning framework. Specifically, we
proposed to utilize the web and the twin-candidate
model, in addition to the common combination of
the corpus and single-candidate model, to compute
and apply the semantic information.

Our experiments systematically evaluated differ-
ent combinations of statistics sources and learn-
ing models. The results on the newswire domain
showed that the web-based semantic compatibility
could be the most effectively incorporated in the
twin-candidate model for the neutral pronoun res-
olution. While the utility is not obvious for per-
sonal pronoun resolution, we can still see the im-
provement on the overall performance. We believe
that the semantic information under such a config-
uration would be even more effective on technical
domains where neutral pronouns take the majority
in the pronominal anaphors. Our future work would
have a deep exploration on such domains.
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Abstract

Discriminative reranking is one method
for constructing high-performance statis-
tical parsers (Collins, 2000). A discrim-
inative reranker requires a source of can-
didate parses for each sentence. This pa-
per describes a simple yet novel method
for constructing sets of 50-best parses
based on a coarse-to-fine generative parser
(Charniak, 2000). This method gener-
ates 50-best lists that are of substantially
higher quality than previously obtainable.
We used these parses as the input to a
MaxEnt reranker (Johnson et al., 1999;
Riezler et al., 2002) that selects the best
parse from the set of parses for each sen-
tence, obtaining an f-score of 91.0% on
sentences of length 100 or less.

1 Introduction

We describe a reranking parser which uses a reg-
ularized MaxEnt reranker to select the best parse
from the 50-best parses returned by a generative
parsing model. The 50-best parser is a probabilistic
parser that on its own produces high quality parses;
the maximum probability parse trees (according to
the parser’s model) have anf -score of0.897 on
section 23 of the Penn Treebank (Charniak, 2000),
which is still state-of-the-art. However, the 50 best
(i.e., the 50 highest probability) parses of a sentence
often contain considerably better parses (in terms of
f -score); this paper describes a 50-best parsing al-

gorithm with an oraclef -score of96.8 on the same
data.

The reranker attempts to select the best parse for
a sentence from the 50-best list of possible parses
for the sentence. Because the reranker only has
to consider a relatively small number of parses per
sentences, it is not necessary to use dynamic pro-
gramming, which permits the features to be essen-
tially arbitrary functions of the parse trees. While
our reranker does not achieve anything like the ora-
cle f -score, the parses it selects do have anf -score
of 91.0, which is considerably better than the maxi-
mum probability parses of then-best parser.

In more detail, for each strings then-best parsing
algorithm described in section 2 returns then high-
est probability parsesY(s) = {y1(s), . . . , yn(s)}
together with the probabilityp(y) of each parsey ac-
cording to the parser’s probability model. The num-
ber n of parses was set to50 for the experiments
described here, but some simple sentences actually
received fewer than50 parses (son is actually a
function of s). Each yield or terminal string in the
training, development and test data sets is mapped
to such ann-best list of parse/probability pairs; the
cross-validation scheme described in Collins (2000)
was used to avoid training then-best parser on the
sentence it was being used to parse.

A feature extractor, described in section 3, is a
vector ofm functionsf = (f1, . . . , fm), where each
fj maps a parsey to a real numberfj(y), which
is the value of thejth feature ony. So a feature
extractor maps eachy to a vector of feature values
f(y) = (f1(y), . . . , fm(y)).

Our reranking parser associates a parse with a
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scorevθ(y), which is a linear function of the feature
valuesf(y). That is, each featurefj is associated
with a weightθj , and the feature values and weights
define the scorevθ(y) of each parsey as follows:

vθ(y) = θ · f(y) =
m∑

j=1

θjfj(y).

Given a strings, the reranking parser’s outputŷ(s)
on strings is the highest scoring parse in then-best
parsesY(s) for s, i.e.,

ŷ(s) = arg max
y∈Y(s)

vθ(y).

The feature weight vectorθ is estimated from the
labelled training corpus as described in section 4.
Because we use labelled training data we know the
correct parsey?(s) for each sentences in the training
data. The correct parsey?(s) is not always a mem-
ber of then-best parser’s outputY(s), but we can
identify the parsesY+(s) in Y(s) with the highest
f -scores. Informally, the estimation procedure finds
a weight vectorθ that maximizes the scorevθ(y) of
the parsesy ∈ Y+(s) relative to the scores of the
other parses inY(s), for eachs in the training data.

2 Recovering then-best parses using
coarse-to-fine parsing

The major difficulty inn-best parsing, compared to
1-best parsing, is dynamic programming. For exam-
ple, n-best parsing is straight-forward in best-first
search or beam search approaches that do not use
dynamic programming: to generate more than one
parse, one simply allows the search mechanism to
create successive versions to one’s heart’s content.

A good example of this is the Roark parser
(Roark, 2001) which works left-to right through the
sentence, and abjures dynamic programming in fa-
vor of a beam search, keeping some large number of
possibilities to extend by adding the next word, and
then re-pruning. At the end one has a beam-width’s
number of best parses (Roark, 2001).

The Collins parser (Collins, 1997)does use dy-
namic programming in its search. That is, whenever
a constituent with the same history is generated a
second time, it is discarded if its probability is lower
than the original version. If the opposite is true, then
the original is discarded. This is fine if one only

wants the first-best, but obviously it does not directly
enumerate then-best parses.

However, Collins (Collins, 2000; Collins
and Koo, in submission) has created ann-
best version of his parser by turning off dy-
namic programming (see the user’s guide to
Bikel’s re-implementation of Collins’ parser,
http://www.cis.upenn.edu/ dbikel/software.html#stat-
parser). As with Roark’s parser, it is necessary to
add a beam-width constraint to make the search
tractable. With a beam width of 1000 the parser
returns something like a 50-best list (Collins,
personal communication), but the actual number of
parses returned for each sentences varies. However,
turning off dynamic programming results in a loss in
efficiency. Indeed, Collins’sn-best list of parses for
section 24 of the Penn tree-bank has some sentences
with only a single parse, because then-best parser
could not find any parses.

Now there are two known ways to producen-best
parses while retaining the use of dynamic program-
ming: the obvious way and the clever way.

The clever way is based upon an algorithm devel-
oped by Schwartz and Chow (1990). Recall the key
insight in the Viterbi algorithm: in the optimal parse
the parsing decisions at each of the choice points that
determine a parse must be optimal, since otherwise
one could find a better parse. This insight extends
to n-best parsing as follows. Consider the second-
best parse: if it is to differ from the best parse, then
at least one of its parsing decisions must be subop-
timal. In fact, all but one of the parsing decisions
in second-best parse must be optimal, and the one
suboptimal decision must be the second-best choice
at that choice point. Further, thenth-best parse can
only involve at mostn suboptimal parsing decisions,
and all but one of these must be involved in one of
the second through then−1th-best parses. Thus the
basic idea behind this approach ton-best parsing is
to first find the best parse, then find the second-best
parse, then the third-best, and so on. The algorithm
was originally described for hidden Markov models.

Since this first draft of this paper we have be-
come aware of two PCFG implementations of this
algorithm (Jimenez and Marzal, 2000; Huang and
Chang, 2005). The first was tried on relatively small
grammars, while the second was implemented on
top of the Bikel re-implementation of the Collins
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parser (Bikel, 2004) and achieved oracle results for
50-best parses similar to those we report below.

Here, however, we describe how to findn-best
parses in a more straight-forward fashion. Rather
than storing a single best parse of each edge, one
storesn of them. That is, when using dynamic pro-
gramming, rather than throwing away a candidate if
it scores less than the best, one keeps it if it is one
of the topn analyses for this edge discovered so far.
This is really very straight-forward. The problem
is space. Dynamic programming parsing algorithms
for PCFGs requireO(m2) dynamic programming
states, wherem is the length of the sentence, so an
n-best parsing algorithm requiresO(nm2). How-
ever things get much worse when the grammar is bi-
lexicalized. As shown by Eisner (Eisner and Satta,
1999) the dynamic programming algorithms for bi-
lexicalized PCFGs requireO(m3) states, so an-best
parser would requireO(nm3) states. Things be-
come worse still in a parser like the one described in
Charniak (2000) because it conditions on (and hence
splits the dynamic programming states according to)
features of the grandparent node in addition to the
parent, thus multiplying the number of possible dy-
namic programming states even more. Thus nobody
has implemented this version.

There is, however, one particular feature of the
Charniak parser that mitigates the space problem: it
is a “coarse-to-fine” parser. By “coarse-to-fine” we
mean that it first produces a crude version of the
parse using coarse-grained dynamic programming
states, and then builds fine-grained analyses by split-
ting the most promising of coarse-grained states.

A prime example of this idea is from Goodman
(1997), who describes a method for producing a sim-
ple but crude approximate grammar of a standard
context-free grammar. He parses a sentence using
the approximate grammar, and the results are used
to constrain the search for a parse with the full CFG.
He finds that total parsing time is greatly reduced.

A somewhat different take on this paradigm is
seen in the parser we use in this paper. Here the
parser first creates a parse forest based upon a much
less complex version of the complete grammar. In
particular, it only looks at standard CFG features,
the parent and neighbor labels. Because this gram-
mar encodes relatively little state information, its dy-
namic programming states are relatively coarse and

hence there are comparatively few of them, so it can
be efficiently parsed using a standard dynamic pro-
gramming bottom-up CFG parser. However, pre-
cisely because this first stage uses a grammar that
ignores many important contextual features, the best
parse it finds will not, in general, be the best parse
according to the finer-grained second-stage gram-
mar, so clearly we do not want to perform best-first
parsing with this grammar. Instead, the output of
the first stage is a polynomial-sized packed parse
forest which records the left and right string posi-
tions for each local tree in the parses generated by
this grammar. The edges in the packed parse for-
est are then pruned, to focus attention on the coarse-
grained states that are likely to correspond to high-
probability fine-grained states. The edges are then
pruned according to their marginal probability con-
ditioned on the strings being parsed as follows:

p(ni
j,k | s) =

α(ni
j,k)β(ni

j,k)

p(s)
(1)

Here ni
j,k is a constituent of typei spanning the

words fromj to k, α(ni
j,k) is the outside probability

of this constituent, andβ(ni
j,k) is its inside proba-

bility. From parse forest bothα andβ can be com-
puted in time proportional to the size of the compact
forest. The parser then removes all constituentsni

j,k

whose probability falls below some preset threshold.
In the version of this parser available on the web, this
threshold is on the order of10−4.

The unpruned edges are then exhaustively eval-
uated according to the fine-grained probabilistic
model; in effect, each coarse-grained dynamic pro-
gramming state is split into one or more fine-grained
dynamic programming states. As noted above, the
fine-grained model conditions on information that is
not available in the coarse-grained model. This in-
cludes the lexical head of one’s parents, the part of
speech of this head, the parent’s and grandparent’s
category labels, etc. The fine-grained states inves-
tigated by the parser are constrained to be refine-
ments of the coarse-grained states, which drastically
reduces the number of fine-grained states that need
to be investigated.

It is certainly possible to do dynamic program-
ming parsing directly with the fine-grained gram-
mar, but precisely because the fine-grained grammar

175



conditions on a wide variety of non-local contex-
tual information there would be a very large number
of different dynamic programming states, so direct
dynamic programming parsing with the fine-grained
grammar would be very expensive in terms of time
and memory.

As the second stage parse evaluates all the re-
maining constituents in all of the contexts in which
they appear (e.g., what are the possible grand-parent
labels) it keeps track of the most probable expansion
of the constituent in that context, and at the end is
able to start at the root and piece together the overall
best parse.

Now comes the easy part. To create a 50-best
parser we simply change the fine-grained version of
1-best algorithm in accordance with the “obvious”
scheme outlined earlier in this section. The first,
coarse-grained, pass is not changed, but the second,
fine-grained, pass keeps then-best possibilities at
each dynamic programming state, rather than keep-
ing just first best. When combining two constituents
to form a larger constituent, we keep the best 50 of
the 2500 possibilities they offer. Naturally, if we
keep each 50-best list sorted, we do nothing like
2500 operations.

The experimental question is whether, in practice,
the coarse-to-fine architecture keeps the number of
dynamic programming states sufficiently low that
space considerations do not defeat us.

The answer seems to be yes. We ran the algorithm
on section 24 of the Penn WSJ tree-bank using the
default pruning settings mentioned above. Table 1
shows how the number of fine-grained dynamic pro-
gramming states increases as a function of sentence
length for the sentences in section 24 of the Tree-
bank. There are no sentences of length greater than
69 in this section. Columns two to four show the
number of sentences in each bucket, their average
length, and the average number of fine-grained dy-
namic programming structures per sentence. The fi-
nal column gives the value of the function100∗L1.5

whereL is the average length of sentences in the
bucket. Except for bucket 6, which is abnormally
low, it seems that this add-hoc function tracks the
number of structures quite well. Thus the number of
dynamic programming states does not grow asL2,
much less asL3.

To put the number of these structures per sen-

Len Num Av sen Av strs 100 ∗ L1.5

sents length per sent
0–9 225 6.04 1167 1484

10–19 725 15.0 4246 5808
20–29 795 24.2 9357 11974
30–39 465 33.8 15893 19654
40–49 162 43.2 21015 28440
50–59 35 52.8 30670 38366
60–69 9 62.8 23405 49740

Table 1: Number of structures created as a function
of sentence length

n 1 2 10 25 50
f -score 0.897 0.914 0.948 0.960 0.968

Table 2: Oraclef -score as a function of numbern

of n-best parses

tence in perspective, consider the size of such struc-
tures. Each one must contain a probability, the non-
terminal label of the structure, and a vector of point-
ers to it’s children (an average parent has slightly
more than two children). If one were concerned
about every byte this could be made quite small. In
our implementation probably the biggest factor is
the STL overhead on vectors. If we figure we are
using, say, 25 bytes per structure, the total space re-
quired is only 1.25Mb even for 50,000 dynamic pro-
gramming states, so it is clearly not worth worrying
about the memory required.

The resultingn-bests are quite good, as shown in
Table 2. (The results are for all sentences of sec-
tion 23 of the WSJ tree-bank of length≤ 100.) From
the 1-best result we see that the base accuracy of the
parser is 89.7%.1 2-best and 10-best show dramatic
oracle-rate improvements. After that things start to
slow down, and we achieve an oracle rate of 0.968
at 50-best. To put this in perspective, Roark (Roark,
2001) reports oracle results of 0.941 (with the same
experimental setup) using his parser to return a vari-
able number of parses. For the case cited his parser
returns, on average, 70 parses per sentence.

Finally, we note that 50-best parsing is only a fac-

1Charniak in (Charniak, 2000) cites an accuracy of 89.5%.
Fixing a few very small bugs discovered by users of the parser
accounts for the difference.
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tor of two or three slower than 1-best.

3 Features for reranking parses

This section describes how each parsey is mapped
to a feature vectorf(y) = (f1(y), . . . , fm(y)). Each
featurefj is a function that maps a parse to a real
number. The first featuref1(y) = log p(y) is the
logarithm of the parse probabilityp according to
the n-best parser model. The other features are
integer valued; informally, each feature is associ-
ated with a particular configuration, and the feature’s
valuefj(y) is the number of times that the config-
uration thatfj indicates. For example, the feature
feat pizza(y) counts the number of times that a phrase
in y headed byeat has a complement phrase headed
by pizza.

Features belong to feature schema, which are ab-
stract schema from which specific features are in-
stantiated. For example, the featurefeat pizza is an
instance of the “Heads” schema. Feature schema are
often parameterized in various ways. For example,
the “Heads” schema is parameterized by the type of
heads that the feature schema identifies. Following
Grimshaw (1997), we associate each phrase with a
lexical head and a function head. For example, the
lexical head of anNP is a noun while the functional
head of anNP is a determiner, and the lexical head
of a VP is a main verb while the functional head of
VP is an auxiliary verb.

We experimented with various kinds of feature
selection, and found that a simple count threshold
performs as well as any of the methods we tried.
Specifically, we ignored all features that did not vary
on the parses of at leastt sentences, wheret is the
count threshold. In the experiments described below
t = 5, though we also experimented witht = 2.

The rest of this section outlines the feature
schemata used in the experiments below. These fea-
ture schemata used here were developed using the
n-best parses provided to us by Michael Collins
approximately a year before then-best parser de-
scribed here was developed. We used the division
into preliminary training and preliminary develop-
ment data sets described in Collins (2000) while
experimenting with feature schemata; i.e., the first
36,000 sentences of sections 2–20 were used as pre-
liminary training data, and the remaining sentences

of sections 20 and 21 were used as preliminary de-
velopment data. It is worth noting that develop-
ing feature schemata is much more of an art than
a science, as adding or deleting a single schema
usually does not have a significant effect on perfor-
mance, yet the overall impact of many well-chosen
schemata can be dramatic.

Using the 50-best parser output described here,
there are 1,148,697 features that meet the count
threshold of at least 5 on the main training data
(i.e., Penn treebank sections 2–21). We list each
feature schema’s name, followed by the number of
features in that schema with a count of at least 5, to-
gether with a brief description of the instances of the
schema and the schema’s parameters.

CoPar (10) The instances of this schema indicate
conjunct parallelism at various different depths.
For example, conjuncts which have the same
label are parallel at depth 0, conjuncts with the
same label and whose children have the same
label are parallel at depth 1, etc.

CoLenPar (22) The instances of this schema indi-
cate the binned difference in length (in terms
of number of preterminals dominated) in adja-
cent conjuncts in the same coordinated struc-
tures, conjoined with a boolean flag that indi-
cates whether the pair is final in the coordinated
phrase.

RightBranch (2) This schema enables the reranker
to prefer right-branching trees. One instance of
this schema returns the number of nonterminal
nodes that lie on the path from the root node
to the right-most non-punctuation preterminal
node, and the other instance of this schema
counts the number of the other nonterminal
nodes in the parse tree.

Heavy (1049) This schema classifies nodes by their
category, their binned length (i.e., the number
of preterminals they dominate), whether they
are at the end of the sentence and whether they
are followed by punctuation.

Neighbours (38,245) This schema classifies nodes
by their category, their binned length, and the
part of speech categories of the`1 preterminals
to the node’s left and thè2 preterminals to the
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node’s right. `1 and`2 are parameters of this
schema; herè1 = 1 or `1 = 2 and`2 = 1.

Rule (271,655) The instances of this schema are
local trees, annotated with varying amounts
of contextual information controlled by the
schema’s parameters. This schema was in-
spired by a similar schema in Collins and Koo
(in submission). The parameters to this schema
control whether nodes are annotated with their
preterminal heads, their terminal heads and
their ancestors’ categories. An additional pa-
rameter controls whether the feature is special-
ized to embedded or non-embedded clauses,
which roughly corresponds to Emonds’ “non-
root” and “root” contexts (Emonds, 1976).

NGram (54,567) The instances of this schema are
`-tuples of adjacent children nodes of the same
parent. This schema was inspired by a simi-
lar schema in Collins and Koo (in submission).
This schema has the same parameters as the
Rule schema, plus the length` of the tuples of
children (̀ = 2 here).

Heads (208,599) The instances of this schema are
tuples of head-to-head dependencies, as men-
tioned above. The category of the node that
is the least common ancestor of the head and
the dependent is included in the instance (this
provides a crude distinction between different
classes of arguments). The parameters of this
schema are whether the heads involved are lex-
ical or functional heads, the number of heads
in an instance, and whether the lexical item or
just the head’s part of speech are included in the
instance.

LexFunHeads (2,299) The instances of this feature
are the pairs of parts of speech of the lexical
head and the functional head of nodes in parse
trees.

WProj (158,771) The instances of this schema are
preterminals together with the categories of` of
their closest maximal projection ancestors. The
parameters of this schema control the number`

of maximal projections, and whether the preter-
minals and the ancestors are lexicalized.

Word (49,097) The instances of this schema are
lexical items together with the categories of`

of their immediate ancestor nodes, where` is
a schema parameter (` = 2 or ` = 3 here).
This feature was inspired by a similar feature
in Klein and Manning (2003).

HeadTree (72,171) The instances of this schema
are tree fragments consisting of the local trees
consisting of the projections of a preterminal
node and the siblings of such projections. This
schema is parameterized by the head type (lex-
ical or functional) used to determine the pro-
jections of a preterminal, and whether the head
preterminal is lexicalized.

NGramTree (291,909) The instances of this
schema are subtrees rooted in the least com-
mon ancestor of` contiguous preterminal
nodes. This schema is parameterized by the
number̀ of contiguous preterminals (` = 2 or
` = 3 here) and whether these preterminals are
lexicalized.

4 Estimating feature weights

This section explains how we estimate the feature
weightsθ = (θ1, . . . , θm) for the feature functions
f = (f1, . . . , fm). We use a MaxEnt estimator to
find the feature weightŝθ, whereL is the loss func-
tion andR is a regularization penalty term:

θ̂ = arg min
θ

LD(θ) + R(θ).

The training dataD = (s1, . . . , sn′) is a se-
quence of sentences and their correct parses
y?(s1), . . . , y?(sn). We used the 20-fold cross-
validation technique described in Collins (2000)
to compute then-best parsesY(s) for each sen-
tences in D. In general the correct parsey?(s)
is not a member ofY(s), so instead we train the
reranker to identify one of the best parsesY+(s) =
arg maxy∈Y(s) Fy?(s)(y) in the n-best parser’s out-
put, whereFy?

(y) is the Parsevalf -score ofy eval-
uated with respect toy?.

Because there may not be a unique best parse for
each sentence (i.e.,|Y+(s)| > 1 for some sentences
s) we used the variant of MaxEnt described in Rie-
zler et al. (2002) for partially labelled training data.
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Recall the standard MaxEnt conditional probability
model for a parsey ∈ Y:

Pθ(y|Y) =
exp vθ(y)

∑
y′∈Y exp vθ(y′)

, where

vθ(y) = θ · f(y) =
m∑

j=1

θjfj(y).

The loss functionLD proposed in Riezler et al.
(2002) is just the negative log conditional likelihood
of the best parsesY+(s) relative to then-best parser
outputY(s):

LD(θ) = −
n′∑

i=1

log Pθ(Y+(si)|Y(si)), where

Pθ(Y+|Y) =
∑

y∈Y+

Pθ(y|Y)

The partial derivatives of this loss function, which
are required by the numerical estimation procedure,
are:

∂LD

θj

=
n′∑

i=1

Eθ[fj |Y(si)] − Eθ[fj |Y+(si)]

Eθ[f |Y] =
∑

y∈Y

f(y)Pθ(y|Y)

In the experiments reported here, we used a Gaus-
sian or quadratic regularizerR(w) = c

∑m
j=1 w2

j ,
where c is an adjustable parameter that controls
the amount of regularization, chosen to optimize
the reranker’sf -score on the development set (sec-
tion 24 of the treebank).

We used the Limited Memory Variable Metric op-
timization algorithm from thePETSc/TAO optimiza-
tion toolkit (Benson et al., 2004) to find the optimal
feature weightŝθ because this method seems sub-
stantially faster than comparable methods (Malouf,
2002). ThePETSc/TAO toolkit provides a variety of
other optimization algorithms and flags for control-
ling convergence, but preliminary experiments on
the Collins’ trees with different algorithms and early
stopping did not show any performance improve-
ments, so we used the defaultPETSc/TAO setting for
our experiments here.

5 Experimental results

We evaluated the performance of our reranking
parser using the standard PARSEVAL metrics. We

n-best trees f -score
New 0.9102
Collins 0.9037

Table 3: Results on newn-best trees and Collinsn-
best trees, with weights estimated from sections 2–
21 and the regularizer constantc adjusted for op-
timal f -score on section 24 and evaluated on sen-
tences of length less than 100 in section 23.

trained then-best parser on sections 2–21 of the
Penn Treebank, and used section 24 as development
data to tune the mixing parameters of the smooth-
ing model. Similarly, we trained the feature weights
θ with the MaxEnt reranker on sections 2–21, and
adjusted the regularizer constantc to maximize the
f -score on section 24 of the treebank. We did this
both on the trees supplied to us by Michael Collins,
and on the output of then-best parser described in
this paper. The results are presented in Table 3. The
n-best parser’s most probable parses are already of
state-of-the-art quality, but the reranker further im-
proves thef -score.

6 Conclusion

This paper has described a dynamic programming
n-best parsing algorithm that utilizes a heuristic
coarse-to-fine refinement of parses. Because the
coarse-to-fine approach prunes the set of possible
parse edges beforehand, a simple approach which
enumerates then-best analyses of each parse edge
is not only practical but quite efficient.

We use the 50-best parses produced by this algo-
rithm as input to a MaxEnt discriminative reranker.
The reranker selects the best parse from this set of
parses using a wide variety of features. The sys-
tem we described here has anf -score of0.91 when
trained and tested using the standard PARSEVAL

framework.

This result is only slightly higher than the highest
reported result for this test-set, Bod’s (.907) (Bod,
2003). More to the point, however, is that the sys-
tem we describe is reasonably efficient so it can
be used for the kind of routine parsing currently
being handled by the Charniak or Collins parsers.
A 91.0 f-score represents a 13% reduction in f-
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measure error over the best of these parsers.2 Both
the 50-best parser, and the reranking parser can be
found at ftp://ftp.cs.brown.edu/pub/nlparser/, named
parser and reranker respectively.
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Abstract

Previous research applying kernel meth-
ods to natural language parsing have fo-
cussed on proposing kernels over parse
trees, which are hand-crafted based on do-
main knowledge and computational con-
siderations. In this paper we propose a
method for defining kernels in terms of
a probabilistic model of parsing. This
model is then trained, so that the param-
eters of the probabilistic model reflect the
generalizations in the training data. The
method we propose then uses these trained
parameters to define a kernel for rerank-
ing parse trees. In experiments, we use
a neural network based statistical parser
as the probabilistic model, and use the
resulting kernel with the Voted Percep-
tron algorithm to rerank the top 20 parses
from the probabilistic model. This method
achieves a significant improvement over
the accuracy of the probabilistic model.

1 Introduction

Kernel methods have been shown to be very ef-
fective in many machine learning problems. They
have the advantage that learning can try to optimize
measures related directly to expected testing perfor-
mance (i.e. “large margin” methods), rather than
the probabilistic measures used in statistical models,
which are only indirectly related to expected test-
ing performance. Work on kernel methods in natural

language has focussed on the definition of appropri-
ate kernels for natural language tasks. In particu-
lar, most of the work on parsing with kernel meth-
ods has focussed on kernels over parse trees (Collins
and Duffy, 2002; Shen and Joshi, 2003; Shen et
al., 2003; Collins and Roark, 2004). These kernels
have all been hand-crafted to try reflect properties
of parse trees which are relevant to discriminating
correct parse trees from incorrect ones, while at the
same time maintaining the tractability of learning.

Some work in machine learning has taken an al-
ternative approach to defining kernels, where the
kernel is derived from a probabilistic model of the
task (Jaakkola and Haussler, 1998; Tsuda et al.,
2002). This way of defining kernels has two ad-
vantages. First, linguistic knowledge about parsing
is reflected in the design of the probabilistic model,
not directly in the kernel. Designing probabilistic
models to reflect linguistic knowledge is a process
which is currently well understood, both in terms of
reflecting generalizations and controlling computa-
tional cost. Because many NLP problems are un-
bounded in size and complexity, it is hard to specify
all possible relevant kernel features without having
so many features that the computations become in-
tractable and/or the data becomes too sparse.1 Sec-
ond, the kernel is defined using the trained param-
eters of the probabilistic model. Thus the kernel is
in part determined by the training data, and is auto-
matically tailored to reflect properties of parse trees
which are relevant to parsing.

1For example, see (Henderson, 2004) for a discussion of
why generative models are better than models parameterized to
estimate the a posteriori probability directly.
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In this paper, we propose a new method for de-
riving a kernel from a probabilistic model which is
specifically tailored to reranking tasks, and we ap-
ply this method to natural language parsing. For the
probabilistic model, we use a state-of-the-art neural
network based statistical parser (Henderson, 2003).
The resulting kernel is then used with the Voted Per-
ceptron algorithm (Freund and Schapire, 1998) to
reranking the top 20 parses from the probabilistic
model. This method achieves a significant improve-
ment over the accuracy of the probabilistic model
alone.

2 Kernels Derived from Probabilistic
Models

In recent years, several methods have been proposed
for constructing kernels from trained probabilistic
models. As usual, these kernels are then used with
linear classifiers to learn the desired task. As well as
some empirical successes, these methods are moti-
vated by theoretical results which suggest we should
expect some improvement with these classifiers over
the classifier which chooses the most probable an-
swer according to the probabilistic model (i.e. the
maximum a posteriori (MAP) classifier). There is
guaranteed to be a linear classifier for the derived
kernel which performs at least as well as the MAP
classifier for the probabilistic model. So, assuming
a large-margin classifier can optimize a more ap-
propriate criteria than the posterior probability, we
should expect the derived kernel’s classifier to per-
form better than the probabilistic model’s classifier,
although empirical results on a given task are never
guaranteed.

In this section, we first present two previous ker-
nels and then propose a new kernel specifically for
reranking tasks. In each of these discussions we
need to characterize the parsing problem as a classi-
fication task. Parsing can be regarded as a mapping
from an input space of sentencesx∈X to a struc-
tured output space of parse treesy∈Y. On the basis
of training sentences, we learn a discriminant func-
tion F : X × Y → R. The parse treey with the
largest value for this discriminant functionF (x, y)
is the output parse tree for the sentencex. We focus
on the linear discriminant functions:

Fw(x, y) = <w,φ(x, y)>,

whereφ(x, y) is a feature vector for the sentence-
tree pair, w is a parameter vector for the discrim-
inant function, and<a, b> is the inner product of
vectorsa andb. In the remainder of this section, we
will characterize the kernel methods we consider in
terms of the feature extractorφ(x, y).

2.1 Fisher Kernels

The Fisher kernel (Jaakkola and Haussler, 1998) is
one of the best known kernels belonging to the class
of probability model based kernels. Given a genera-
tive model ofP (z|θ̂) with smooth parameterization,
the Fisher score of an examplez is a vector of partial
derivatives of the log-likelihood of the example with
respect to the model parameters:

φθ̂(z) = (∂logP (z|θ̂)
∂θ1

, . . . , ∂logP (z|θ̂)
∂θl

).

This score can be regarded as specifying how the
model should be changed in order to maximize the
likelihood of the examplez. Then we can define the
similarity between data points as the inner product
of the corresponding Fisher scores. This kernel is
often referred to as the practical Fisher kernel. The
theoretical Fisher kernel depends on the Fisher in-
formation matrix, which is not feasible to compute
for most practical tasks and is usually omitted.

The Fisher kernel is only directly applicable to
binary classification tasks. We can apply it to our
task by considering an examplez to be a sentence-
tree pair(x, y), and classifying the pairs into cor-
rect parses versus incorrect parses. When we use the
Fisher scoreφθ̂(x, y) in the discriminant functionF ,
we can interpret the value as the confidence that the
treey is correct, and choose they in which we are
the most confident.

2.2 TOP Kernels

Tsuda (2002) proposed another kernel constructed
from a probabilistic model, called the Tangent vec-
tors Of Posterior log-odds (TOP) kernel. Their TOP
kernel is also only for binary classification tasks, so,
as above, we treat the inputz as a sentence-tree pair
and the output categoryc ∈ {−1,+1} as incor-
rect/correct. It is assumed that the true probability
distribution is included in the class of probabilis-
tic models and that the true parameter vectorθ? is
unique. The feature extractor of the TOP kernel for
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the inputz is defined by:

φθ̂(z) = (v(z, θ̂), ∂v(z,θ̂)
∂θ1

, . . . , ∂v(z,θ̂)
∂θl

),

where v(z, θ̂) = logP (c=+1|z, θ̂) −
logP (c=−1|z, θ̂).

In addition to being at least as good as the
MAP classifier, the choice of the TOP kernel fea-
ture extractor is motivated by the minimization of
the binary classification error of a linear classifier
<w,φθ̂(z)> + b. Tsuda (2002) demonstrates that
this error is closely related to the estimation error of
the posterior probabilityP (c=+1|z, θ?) by the esti-
matorg(<w,φθ̂(z)> + b), whereg is the sigmoid
functiong(t) = 1/(1 + exp (−t)).

The TOP kernel isn’t quite appropriate for struc-
tured classification tasks becauseφθ̂(z) is motivated
by binary classificaton error minimization. In the
next subsection, we will adapt it to structured classi-
fication.

2.3 A TOP Kernel for Reranking

We define the reranking task as selecting a parse tree
from the list of candidate trees suggested by a proba-
bilistic model. Furthermore, we only consider learn-
ing to rerank the output of a particular probabilistic
model, without requiring the classifier to have good
performance when applied to a candidate list pro-
vided by a different model. In this case, it is natural
to model the probability that a parse tree is the best
candidate given the list of candidate trees:

P (yk|x, y1, . . . , ys) = P (x,yk)∑
t
P (x,yt)

,

wherey1, . . . , ys is the list of candidate parse trees.
To construct a new TOP kernel for reranking, we

apply an approach similar to that used for the TOP
kernel (Tsuda et al., 2002), but we consider the prob-
ability P (yk|x, y1, . . . , ys, θ

?) instead of the proba-
bility P (c=+1|z, θ?) considered by Tsuda. The re-
sulting feature extractor is given by:

φθ̂(x, yk) = (v(x, yk, θ̂),
∂v(x,yk,θ̂)

∂θ1
, . . . , ∂v(x,yk,θ̂)

∂θl
),

where v(x, yk, θ̂) = logP (yk|y1, . . . , ys, θ̂) −
log

∑
t6=k P (yt|y1, . . . , ys, θ̂). We will call this ker-

nel theTOP reranking kernel.

3 The Probabilistic Model

To complete the definition of the kernel, we need
to choose a probabilistic model of parsing. For

this we use a statistical parser which has previously
been shown to achieve state-of-the-art performance,
namely that proposed in (Henderson, 2003). This
parser has two levels of parameterization. The first
level of parameterization is in terms of a history-
based generative probability model, but this level is
not appropriate for our purposes because it defines
an infinite number of parameters (one for every pos-
sible partial parse history). When parsing a given
sentence, the bounded set of parameters which are
relevant to a given parse are estimated using a neural
network. The weights of this neural network form
the second level of parameterization. There is a fi-
nite number of these parameters. Neural network
training is applied to determine the values of these
parameters, which in turn determine the values of
the probability model’s parameters, which in turn
determine the probabilistic model of parse trees.

We do not use the complete set of neural network
weights to define our kernels, but instead we define a
third level of parameterization which only includes
the network’s output layer weights. These weights
define a normalized exponential model, with the net-
work’s hidden layer as the input features. When we
tried using the complete set of weights in some small
scale experiments, training the classifier was more
computationally expensive, and actually performed
slightly worse than just using the output weights.
Using just the output weights also allows us to make
some approximations in the TOP reranking kernel
which makes the classifier learning algorithm more
efficient.

3.1 A History-Based Probability Model

As with many other statistical parsers (Ratnaparkhi,
1999; Collins, 1999; Charniak, 2000), Henderson
(2003) uses a history-based model of parsing. He
defines the mapping from phrase structure trees to
parse sequences using a form of left-corner parsing
strategy (see (Henderson, 2003) for more details).
The parser actions include: introducing a new con-
stituent with a specified label, attaching one con-
stituent to another, and predicting the next word of
the sentence. A complete parse consists of a se-
quence of these actions,d1,..., dm, such that per-
formingd1,..., dm results in a complete phrase struc-
ture tree.

Because this mapping to parse sequences is
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one-to-one, and the word prediction actions in
a complete parsed1,..., dm specify the sentence,
P (d1,..., dm) is equivalent to the joint probability of
the output phrase structure tree and the input sen-
tence. This probability can be then be decomposed
into the multiplication of the probabilities of each
action decisiondi conditioned on that decision’s
prior parse historyd1,..., di−1.

P (d1,..., dm) = ΠiP (di|d1,..., di−1)

3.2 Estimating Decision Probabilities with a
Neural Network

The parameters of the above probability model are
the P (di|d1,..., di−1). There are an infinite num-
ber of these parameters, since the parse history
d1,..., di−1 grows with the length of the sentence. In
other work on history-based parsing, independence
assumptions are applied so that only a finite amount
of information from the parse history can be treated
as relevant to each parameter, thereby reducing the
number of parameters to a finite set which can be
estimated directly. Instead, Henderson (2003) uses
a neural network to induce a finite representation
of this unbounded history, which we will denote
h(d1,..., di−1). Neural network training tries to find
such a history representation which preserves all the
information about the history which is relevant to es-
timating the desired probability.

P (di|d1,..., di−1) ≈ P (di|h(d1,..., di−1))

Using a neural network architecture called Simple
Synchrony Networks (SSNs), the history representa-
tion h(d1,..., di−1) is incrementally computed from
features of the previous decisiondi−1 plus a finite
set of previous history representationsh(d1,..., dj),
j < i − 1. Each history representation is a finite
vector of real numbers, called the network’s hidden
layer. As long as the history representation for po-
sition i − 1 is always included in the inputs to the
history representation for positioni, any information
about the entire sequence could be passed from his-
tory representation to history representation and be
used to estimate the desired probability. However,
learning is biased towards paying more attention to
information which passes through fewer history rep-
resentations.

To exploit this learning bias, structural locality is
used to determine which history representations are

input to which others. First, each history representa-
tion is assigned to the constituent which is on the top
of the parser’s stack when it is computed. Then ear-
lier history representations whose constituents are
structurally local to the current representation’s con-
stituent are input to the computation of the correct
representation. In this way, the number of represen-
tations which information needs to pass through in
order to flow from history representationi to his-
tory representationj is determined by the structural
distance betweeni’s constituent andj’s constituent,
and not just the distance betweeni and j in the
parse sequence. This provides the neural network
with a linguistically appropriate inductive bias when
it learns the history representations, as explained in
more detail in (Henderson, 2003).

Once it has computedh(d1,..., di−1), the SSN
uses a normalized exponential to estimate a proba-
bility distribution over the set of possible next deci-
sionsdi given the history:

P (di|d1,..., di−1, θ) ≈
exp(<θdi ,h(d1,...,di−1)>)∑

t∈N(di−1)
exp(<θt,h(d1,...,di−1)>)

,

where by θt we denote the set of output layer
weights, corresponding to the parser actiont,
N(di−1) defines a set of possible next parser actions
after the stepdi−1 andθ denotes the full set of model
parameters.

We trained SSN parsing models, using the on-line
version of Backpropagation to perform the gradient
descent with a maximum likelihood objective func-
tion. This learning simultaneously tries to optimize
the parameters of the output computation and the pa-
rameters of the mappingsh(d1,..., di−1). With multi-
layered networks such as SSNs, this training is not
guaranteed to converge to a global optimum, but in
practice a network whose criteria value is close to
the optimum can be found.

4 Large-Margin Optimization

Once we have defined a kernel over parse trees, gen-
eral techniques for linear classifier optimization can
be used to learn the given task. The most sophis-
ticated of these techniques (such as Support Vec-
tor Machines) are unfortunately too computationally
expensive to be used on large datasets like the Penn
Treebank (Marcus et al., 1993). Instead we use a
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method which has often been shown to be virtu-
ally as good, the Voted Perceptron (VP) (Freund and
Schapire, 1998) algorithm. The VP algorithm was
originally applied to parse reranking in (Collins and
Duffy, 2002) with the Tree kernel. We modify the
perceptron training algorithm to make it more suit-
able for parsing, where zero-one classification loss
is not the evaluation measure usually employed. We
also develop a variant of the kernel defined in sec-
tion 2.3, which is more efficient when used with the
VP algorithm.

Given a list of candidate trees, we train the clas-
sifier to select the tree with largest constituentF1

score. TheF1 score is a measure of the similarity
between the tree in question and the gold standard
parse, and is the standard way to evaluate the accu-
racy of a parser. We denote thek’th candidate tree
for thej’th sentencexj by yjk. Without loss of gener-
ality, let us assume thatyj1 is the candidate tree with
the largestF1 score.

The Voted Perceptron algorithm is an ensem-
ble method for combining the various intermediate
models which are produced during training a per-
ceptron. It demonstrates more stable generalization
performance than the normal perceptron algorithm
when the problem is not linearly separable (Freund
and Schapire, 1998), as is usually the case.

We modify the perceptron algorithm by introduc-
ing a new classification loss function. This modifi-
cation enables us to treat differently the cases where
the perceptron predicts a tree with anF1 score much
smaller than that of the top candidate and the cases
where the predicted and the top candidates have sim-
ilar score values. The natural choice for the loss
function would be∆(yjk, y

j
1) = F1(yj1) − F1(yjk),

whereF1(yjk) denotes theF1 score value for the
parse treeyjk. This approach is very similar to slack
variable rescaling for Support Vector Machines pro-
posed in (Tsochantaridis et al., 2004). The learning
algorithm we employed is presented in figure 1.

When applying kernels with a large training cor-
pus, we face efficiency issues because of the large
number of the neural network weights. Even though
we use only the output layer weights, this vector
grows with the size of the vocabulary, and thus can
be large. The kernels presented in section 2 all lead
to feature vectors without many zero values. This

w = 0
for j = 1 .. n

for k = 2 .. s

if <w,φ(xj , yjk)> > <w, φ(xj , yj1)>
w = w + ∆(yjk, y

j
1)(φ(xj , yj1)− φ(xj , yjk))

Figure 1: The modified perceptron algorithm

happens because we compute the derivative of the
normalization factor used in the network’s estima-
tion of P (di|d1,..., di−1). This normalization factor
depends on the output layer weights corresponding
to all the possible next decisions (see section 3.2).
This makes an application of the VP algorithm in-
feasible in the case of a large vocabulary.

We can address this problem by freezing the
normalization factor when computing the feature
vector. Note that we can rewrite the model log-
probability of the tree as:

logP (y|θ) =∑
i log ( exp(<θdi ,h(d1,...,di−1)>)∑

t∈N(di−1)
exp(<θt,h(d1,...,di−1)>)

) =∑
i(<θdi , h(d1,..., di−1)>)−∑
i log

∑
t∈N(di−1) exp(<θt, h(d1,..., di−1)>).

We treat the parameters used to compute the first
term as different from the parameters used to com-
pute the second term, and we define our kernel only
using the parameters in the first term. This means
that the second term does not effect the derivatives
in the formula for the feature vectorφ(x, y). Thus
the feature vector for the kernel will contain non-
zero entries only in the components corresponding
to the parser actions which are present in the candi-
date derivation for the sentence, and thus in the first
vector component. We have applied this technique
to the TOP reranking kernel, the result of which we
will call the efficient TOP reranking kernel.

5 The Experimental Results

We used the Penn Treebank WSJ corpus (Marcus et
al., 1993) to perform empirical experiments on the
proposed parsing models. In each case the input to
the network is a sequence of tag-word pairs.2 We re-
port results for two different vocabulary sizes, vary-
ing in the frequency with which tag-word pairs must

2We used a publicly available tagger (Ratnaparkhi, 1996) to
provide the tags.
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occur in the training set in order to be included ex-
plicitly in the vocabulary. A frequency threshold of
200 resulted in a vocabulary of 508 tag-word pairs
(including tag-unknownword pairs) and a threshold
of 20 resulted in 4215 tag-word pairs. We denote
the probabilistic model trained with the vocabulary
of 508 by the SSN-Freq≥200, the model trained with
the vocabulary of 4215 by the SSN-Freq≥20.

Testing the probabilistic parser requires using a
beam search through the space of possible parses.
We used a form of beam search which prunes the
search after the prediction of each word. We set the
width of this post-word beam to 40 for both testing
of the probabilistic model and generating the candi-
date list for reranking. For training and testing of
the kernel models, we provided a candidate list con-
sisting of the top 20 parses found by the generative
probabilistic model. When using the Fisher kernel,
we added the log-probability of the tree given by the
probabilistic model as the feature. This was not nec-
essary for the TOP kernels because they already con-
tain a feature corresponding to the probability esti-
mated by the probabilistic model (see section 2.3).

We trained the VP model with all three kernels
using the 508 word vocabulary (Fisher-Freq≥200,
TOP-Freq≥200, TOP-Eff-Freq≥200) but only the ef-
ficient TOP reranking kernel model was trained with
the vocabulary of 4215 words (TOP-Eff-Freq≥20).
The non-sparsity of the feature vectors for other ker-
nels led to the excessive memory requirements and
larger testing time. In each case, the VP model was
run for only one epoch. We would expect some im-
provement if running it for more epochs, as has been
empirically demonstrated in other domains (Freund
and Schapire, 1998).

To avoid repeated testing on the standard testing
set, we first compare the different models with their
performance on the validation set. Note that the val-
idation set wasn’t used during learning of the kernel
models or for adjustment of any parameters.

Standard measures of accuracy are shown in ta-
ble 1.3 Both the Fisher kernel and the TOP kernels
show better accuracy than the baseline probabilistic

3All our results are computed with the evalb program fol-
lowing the standard criteria in (Collins, 1999), and using the
standard training (sections 2–22, 39,832 sentences, 910,196
words), validation (section 24, 1346 sentence, 31507 words),
and testing (section 23, 2416 sentences, 54268 words) sets
(Collins, 1999).

LR LP Fβ=1

SSN-Freq≥200 87.2 88.5 87.8
Fisher-Freq≥200 87.2 88.8 87.9
TOP-Freq≥200 87.3 88.9 88.1
TOP-Eff-Freq≥200 87.3 88.9 88.1
SSN-Freq≥20 88.1 89.2 88.6
TOP-Eff-Freq≥20 88.2 89.7 88.9

Table 1: Percentage labeled constituent recall (LR),
precision (LP), and a combination of both (Fβ=1) on
validation set sentences of length at most 100.

model, but only the improvement of the TOP kernels
is statistically significant.4 For the TOP kernel, the
improvement over baseline is about the same with
both vocabulary sizes. Also note that the perfor-
mance of the efficient TOP reranking kernel is the
same as that of the original TOP reranking kernel,
for the smaller vocabulary.

For comparison to previous results, table 2 lists
the results on the testing set for our best model
(TOP-Efficient-Freq≥20) and several other statisti-
cal parsers (Collins, 1999; Collins and Duffy, 2002;
Collins and Roark, 2004; Henderson, 2003; Char-
niak, 2000; Collins, 2000; Shen and Joshi, 2004;
Shen et al., 2003; Henderson, 2004; Bod, 2003).
First note that the parser based on the TOP efficient
kernel has better accuracy than (Henderson, 2003),
which used the same parsing method as our base-
line model, although the trained network parameters
were not the same. When compared to other kernel
methods, our approach performs better than those
based on the Tree kernel (Collins and Duffy, 2002;
Collins and Roark, 2004), and is only 0.2% worse
than the best results achieved by a kernel method for
parsing (Shen et al., 2003; Shen and Joshi, 2004).

6 Related Work

The first application of kernel methods to parsing
was proposed by Collins and Duffy (2002). They
used the Tree kernel, where the features of a tree are
all its connected tree fragments. The VP algorithm
was applied to rerank the output of a probabilistic
model and demonstrated an improvement over the
baseline.

4We measured significance with the randomized signifi-
cance test of (Yeh, 2000).
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LR LP Fβ=1∗

Collins99 88.1 88.3 88.2
Collins&Duffy02 88.6 88.9 88.7
Collins&Roark04 88.4 89.1 88.8
Henderson03 88.8 89.5 89.1
Charniak00 89.6 89.5 89.5
TOP-Eff-Freq≥20 89.1 90.1 89.6
Collins00 89.6 89.9 89.7
Shen&Joshi04 89.5 90.0 89.8
Shen et al.03 89.7 90.0 89.8
Henderson04 89.8 90.4 90.1
Bod03 90.7 90.8 90.7

* Fβ=1 for previous models may have rounding errors.

Table 2: Percentage labeled constituent recall (LR),
precision (LP), and a combination of both (Fβ=1) on
the entire testing set.

Shen and Joshi (2003) applied an SVM based
voting algorithm with the Preference kernel defined
over pairs for reranking. To define the Preference
kernel they used the Tree kernel and the Linear ker-
nel as its underlying kernels and achieved state-of-
the-art results with the Linear kernel.

In (Shen et al., 2003) it was pointed out that
most of the arbitrary tree fragments allowed by the
Tree kernel are linguistically meaningless. The au-
thors suggested the use of Lexical Tree Adjoining
Grammar (LTAG) based features as a more linguis-
tically appropriate set of features. They empiri-
cally demonstrated that incorporation of these fea-
tures helps to improve reranking performance.

Shen and Joshi (2004) proposed to improve mar-
gin based methods for reranking by defining the
margin not only between the top tree and all the
other trees in the candidate list but between all the
pairs of parses in the ordered candidate list for the
given sentence. They achieved the best results when
training with an uneven margin scaled by the heuris-
tic function of the candidates positions in the list.
One potential drawback of this method is that it
doesn’t take into account the actualF1 score of the
candidate and considers only the position in the list
ordered by theF1 score. We expect that an im-
provement could be achieved by combining our ap-
proach of scaling updates by theF1 loss with the
all pairs approach of (Shen and Joshi, 2004). Use
of theF1 loss function during training demonstrated

better performance comparing to the 0-1 loss func-
tion when applied to a structured classification task
(Tsochantaridis et al., 2004).

All the described kernel methods are limited to
the reranking of candidates from an existing parser
due to the complexity of finding the best parse given
a kernel (i.e. the decoding problem). (Taskar et
al., 2004) suggested a method for maximal mar-
gin parsing which employs the dynamic program-
ming approach to decoding and parameter estima-
tion problems. The efficiency of dynamic program-
ming means that the entire space of parses can be
considered, not just a candidate list. However, not
all kernels are suitable for this method. The dy-
namic programming approach requires the feature
vector of a tree to be decomposable into a sum over
parts of the tree. In particular, this is impossible with
the TOP and Fisher kernels derived from the SSN
model. Also, it isn’t clear whether the algorithm
remains tractable for a large training set with long
sentences, since the authors only present results for
sentences of length less than or equal to 15.

7 Conclusions

This paper proposes a method for deriving a ker-
nel for reranking from a probabilistic model, and
demonstrates state-of-the-art accuracy when this
method is applied to parse reranking. Contrary to
most of the previous research on kernel methods in
parsing, linguistic knowledge does not have to be ex-
pressed through a list of features, but instead can be
expressed through the design of a probability model.
The parameters of this probability model are then
trained, so that they reflect what features of trees are
relevant to parsing. The kernel is then derived from
this trained model in such a way as to maximize its
usefulness for reranking.

We performed experiments on parse reranking us-
ing a neural network based statistical parser as both
the probabilistic model and the source of the list
of candidate parses. We used a modification of
the Voted Perceptron algorithm to perform reranking
with the kernel. The results were amongst the best
current statistical parsers, and only 0.2% worse than
the best current parsing methods which use kernels.
We would expect further improvement if we used
different models to derive the kernel and to gener-
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ate the candidates, thereby exploiting the advantages
of combining multiple models, as do the better per-
forming methods using kernels.

In recent years, probabilistic models have become
commonplace in natural language processing. We
believe that this approach to defining kernels would
simplify the problem of defining kernels for these
tasks, and could be very useful for many of them.
In particular, maximum entropy models also use a
normalized exponential function to estimate proba-
bilities, so all the methods discussed in this paper
would be applicable to maximum entropy models.
This approach would be particularly useful for tasks
where there is less data available than in parsing, for
which large-margin methods work particularly well.
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Abstract

This paper introduces a new application of boost-
ing for parse reranking. Several parsers have been
proposed that utilize the all-subtrees representa-
tion (e.g., tree kernel and data oriented parsing).
This paper argues that such an all-subtrees repre-
sentation is extremely redundant and a compara-
ble accuracy can be achieved using just a small
set of subtrees. We show how the boosting algo-
rithm can be applied to the all-subtrees representa-
tion and how it selects a small and relevant feature
set efficiently. Two experiments on parse rerank-
ing show that our method achieves comparable or
even better performance than kernel methods and
also improves the testing efficiency.

1 Introduction

Recent work on statistical natural language pars-
ing and tagging has exploreddiscriminative tech-
niques. One of the novel discriminative approaches
is reranking, where discriminative machine learning
algorithms are used to rerank then-best outputs of
generative or conditional parsers. The discrimina-
tive reranking methods allow us to incorporate vari-
ous kinds of features to distinguish the correct parse
tree from all other candidates.

With such feature design flexibility, it is non-
trivial to employ an appropriate feature set that has
a good discriminative ability for parse reranking. In
early studies, feature sets were given heuristically by
simply preparing task-dependentfeature templates
(Collins, 2000; Collins, 2002). These ad-hoc solu-
tions might provide us with reasonable levels of per-
∗Currently, Google Japan Inc., taku@google.com

formance. However, they are highly task dependent
and require careful design to create the optimal fea-
ture set for each task. Kernel methods offer an ele-
gant solution to these problems. They can work on a
potentially huge or even infinite number of features
without a loss of generalization. The best known
kernel for modeling a tree is the tree kernel (Collins
and Duffy, 2002), which argues that a feature vec-
tor is implicitly composed of the counts of subtrees.
Although kernel methods are general and can cover
almost all useful features, the set of subtrees that is
used is extremely redundant. The main question ad-
dressed in this paper concerns whether it is possible
to achieve a comparable or even better accuracy us-
ing just a small and non-redundant set of subtrees.

In this paper, we present a new application of
boosting for parse reranking. While tree kernel
implicitly uses the all-subtrees representation, our
boosting algorithm uses itexplicitly. Although this
set-up makes the feature space large, thel1-norm
regularization achived by boosting automatically se-
lects a small and relevant feature set. Such a small
feature set is useful in practice, as it is interpretable
and makes the parsing (reranking) time faster. We
also incorporate a variant of the branch-and-bound
technique to achieve efficient feature selection in
each boosting iteration.

2 General setting of parse reranking

We describe the general setting of parse reranking.

• Training dataT is a set of input/output pairs, e.g.,
T = {〈x1,y1〉, . . . , 〈xL,yL〉}, wherexi is an in-
put sentence, andyi is a correct parse associated
with the sentencexi.

• Let Y(x) be a function that returns a set of candi-
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date parse trees for a particular sentencex.

• We assume thatY(xi) contains the correct parse
treeyi, i.e.,yi ∈ Y(xi) ∗

• Let Φ(y) ∈ Rd be a feature function that maps
the given parse treey into Rd space.w ∈ Rd is
a parameter vector of the model. The output parse
ŷ of this model on input sentencex is given as:
ŷ = argmaxy∈Y(x) w · Φ(y).

There are two questions as regards this formula-
tion. One is how to set the parametersw, and the
other is how to design the feature functionΦ(y). We
briefly describe the well-known solutions to these
two problems in the next subsections.

2.1 Parameter estimation

We usually adopt a general loss functionLoss(w),
and set the parametersw that minimize the loss,
i.e.,ŵ = argminw∈Rd Loss(w). Generally, the loss
function has the following form:

Loss(w) =
L∑

i=1

L(w,Φ(yi),xi),

whereL(w,Φ(yi),xi) is an arbitrary loss function.
We can design a variety of parameter estimation
methods by changing the loss function. The follow-
ing three loss functions,LogLoss,HingeLoss, and
BoostLoss, have been widely used in parse rerank-
ing tasks.

LogLoss = − log

ţ X

y∈Y(xi)

exp
ş
w · [Φ(yi)− Φ(y)]

ťű

HingeLoss =
X

y∈Y(xi)

max(0, 1−w · [Φ(yi)− Φ(y)])

BoostLos =
X

y∈Y(xi)

exp
ş
−w · [Φ(yi)− Φ(y)]

ť

LogLoss is based on the standard maximum like-
lihood optimization, and is used with maximum en-
tropy models.HingeLoss captures the errors only
whenw · [Φ(yi)− Φ(y)]) < 1. This loss is closely
related to the maximum margin strategy in SVMs
(Vapnik, 1998). BoostLoss is analogous to the
boosting algorithm and is used in (Collins, 2000;
Collins, 2002).
∗In the real setting, we cannot assume this condition. In this

case, we select the parse treeŷ that is the most similar toyi and
takeŷ as the correct parse treeyi.

2.2 Definition of feature function

It is non-trivial to define an appropriate feature func-
tion Φ(y) that has a good ability to distinguish the
correct parseyi from all other candidates

In early studies, the feature functions were given
heuristically by simply preparingfeature templates
(Collins, 2000; Collins, 2002). However, such
heuristic selections are task dependent and would
not cover all useful features that contribute to overall
accuracy.

When we select the special family of loss func-
tions, the problem can be reduced to a dual form that
depends only on the inner products of two instances
Φ(y1) ·Φ(y2). This property is important as we can
use akernel trickand we do not need to provide an
explicit feature function. For example, tree kernel
(Collins and Duffy, 2002), one of the convolution
kernels, implicitly maps the instance represented in
a tree into all-subtrees space. Even though the fea-
ture space is large, inner products under this feature
space can be calculated efficiently using dynamic
programming. Tree kernel is more general than fea-
ture templates since it can use the all-subtrees repre-
sentation without loss of efficiency.

3 RankBoost with subtree features

A simple question related to kernel-based parse
reranking asks whetherall subtrees are really needed
to construct the final parametersw. Suppose we
have twolarge treest andt′, wheret′ is simply gen-
erated by attaching a single node tot. In most cases,
these two trees yield an almost equivalent discrimi-
native ability, since they are very similar and highly
correlated with each other. Even when we exploit all
subtrees, most of them are extremely redundant.

The motivation of this paper is based on the above
observation. We think that only a small set of sub-
trees is needed to express the final parameters. A
compact, non-redundant, and highly relevant feature
set is useful in practice, as it is interpretable and in-
creases the parsing (reranking) speed.

To realize this goal, we propose a new boosting-
based reranking algorithm based on the all-subtrees
representation. First, we describe the architecture of
our reranking method. Second, we show a connec-
tion between boosting and SVMs, and describe how
the algorithm realizes the sparse feature representa-
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Figure 1: Labeled ordered tree and subtree relation

tion described above.

3.1 Preliminaries

Let us introduce a labeled ordered tree (or simply
’tree’), its definition and notations, first.

Definition 1 Labeled ordered tree (Tree)
A labeled ordered tree is a tree where each node is
associated with a label and is ordered among its sib-
lings, that is, there is a first child, second child, third
child, etc.

Definition 2 Subtree
Let t andu be labeled ordered trees. We say thatt
matchesu, or t is a subtree ofu (t ⊆ u), if there is a
one-to-one functionψ from nodes int tou, satisfying
the conditions: (1)ψ preserves the parent-daughter
relation, (2)ψ preserves the sibling relation, (3)ψ
preserves the labels.

We denote the number of nodes int as|t|. Figure 1
shows an example of a labeled ordered tree and its
subtree and non-subtree.

3.2 Feature space given by subtrees

We first assume that a parse treey is represented in
a labeled ordered tree. Note that the outputs of part-
of-speech tagging, shallow parsing, and dependency
analysis can be modeled as labeled ordered trees.

The feature setF consists of all subtrees seen in
the training data, i.e.,

F = ∪i,y∈Y(xi){t | t ⊆ y}.
The feature mappingΦ(y) is then given by letting
the existence of a treet be a single dimension, i.e.,

Φ(y) = {I(t1 ⊆ y), . . . , I(tm ⊆ y)} ∈ {0, 1}m,
whereI(·) is the indicator function,m = |F|, and
{t1, . . . , tm} ∈ F . The feature space is essentially
the same as that of tree kernel†
†Strictly speaking, tree kernel uses the cardinality of each

subtree

3.3 RankBoost algorithm

The parameter estimation method we adopt is a vari-
ant of the RankBoost algorithm introduced in (Fre-
und et al., 2003). Collins et al. used RankBoost to
parse reranking tasks (Collins, 2000; Collins, 2002).
The algorithm proceeds forK iterations and tries to
minimize theBoostLoss for given training data‡.
At each iteration, a single feature (hypothesis) is
chosen, and its weight is updated.

Suppose we have current parameters:

w = {w1, w2, . . . , wm} ∈ Rm.

New parametersw∗〈k,δ〉 ∈ Rm are then given by
selecting a single featurek and updating the weight
through an incrementδ:

w∗〈k,δ〉 = {w1, w2, . . . , wk + δ, . . . , wm}.
After the update, the new loss is given:

Loss(w∗〈k,δ〉) =
X

i, y∈Y(xi)

exp
ş
−w∗〈k,δ〉 · [Φ(yi)− Φ(y)]

ť
. (1)

The RankBoost algorithm iteratively selects the op-
timal pair〈k̂, δ̂〉 that minimizes the loss, i.e.,

〈k̂, δ̂〉 = argmin
〈k,δ〉

Loss(w∗〈k,δ〉).

By setting the differential of (1) at 0, the following
optimal solutions are obtained:

k̂ = argmax
k=1,...,m

ŕŕŕŕ
q
W+
k −

q
W−k

ŕŕŕŕ, andδ =
1

2
log

W+

k̂

W−
k̂

, (2)

whereW b
k =

∑
i,y∈Y(xi)

D(yi,y) · I[I(tk ⊆ yi)−
I(tk ⊆ y) = b], b ∈ {+1,−1}, andD(yi,y) =
exp (−w · [Φ(yi)− Φ(y)]).

Following (Freund et al., 2003; Collins, 2000), we
introduce smoothing to prevent the case when either
W+
k orW−k is 0 §:

δ =
1

2
log

W+

k̂
+ εZ

W−
k̂

+ εZ
, whereZ =

X

i,y∈Y(xi)

D(yi,y) andε ∈ R+.

The functionY(x) is usually performed by a
probabilistic history-based parser, which can output
not only a parse tree but the log probability of the
‡In our experiments, optimal settings forK were selected

by using development data.
§For simplicity, we fixε at 0.001 in all our experiments.
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tree. We incorporate the log probability into the
reranking by using it as a feature:

Φ(y) = {L(y), I(t1 ⊆ y), . . . , I(tm ⊆ y)}, and

w = {w0, w1, w2, . . . , wm},
whereL(y) is the log probability of a treey un-
der the base parser andw0 is the parameter ofL(y).
Note that the update algorithm (2) does not allow us
to calculate the parameterw0, since (2) is restricted
to binary features. To prevent this problem, we use
the approximation technique introduced in (Freund
et al., 2003).

3.4 Sparse feature representation

Recent studies (Schapire et al., 1997; Rätsch, 2001)
have shown that both boosting and SVMs (Vapnik,
1998) work according to similar strategies: con-
structing optimal parametersw that maximize the
smallest marginbetween positive and negative ex-
amples. The critical difference is the definition of
margin or the way they regularize the vectorw.
(Rätsch, 2001) shows that the iterative feature selec-
tion performed in boosting asymptotically realizes
an l1-norm ||w||1 regularization. In contrast, it is
well known that SVMs are reformulated as anl2-
norm||w||2 regularized algorithm.

The relationship between two regularizations has
been studied in the machine learning community.
(Perkins et al., 2003) reported thatl1-norm should
be chosen for a problem where most given features
areirrelevant. On the other hand,l2-norm should be
chosen when most given features arerelevant. An
advantage of thel1-norm regularizer is that it often
leads to sparse solutions where mostwk are exactly
0. The features assigned zero weight are thought to
be irrelevantfeatures as regards classifications.

The l1-norm regularization is useful for our set-
ting, since most features (subtrees) are redundant
and irrelevant, and these redundant features are au-
tomatically eliminated.

4 Efficient Computation

In each boosting iteration, we have to solve the fol-
lowing optimization problem:

k̂ = argmax
k=1,...,m

gain(tk),

where gain(tk) =
∣∣∣
√
W+
k −

√
W−k

∣∣∣.

It is non-trivial to find the optimal treetk̂ that maxi-
mizesgain(tk), since the number of subtrees is ex-
ponential to its size. In fact, the problem is known
to be NP-hard (Yang, 2004). However, in real appli-
cations, the problem is manageable, since the max-
imum number of subtrees is usually bounded by a
constant. To solve the problem efficiently, we now
adopt a variant of the branch-and-bound algorithm,
similar to that described in (Kudo and Matsumoto,
2004)

4.1 Efficient Enumeration of Trees

Abe and Zaki independently proposed an efficient
method, rightmost-extension, for enumerating all
subtrees from a given tree (Abe et al., 2002; Zaki,
2002). First, the algorithm starts with a set of trees
consisting of single nodes, and then expands a given
tree of size(n−1) by attaching a new node to it to
obtain trees of sizen. However, it would be inef-
ficient to expand nodes at arbitrary positions of the
tree, as duplicated enumeration is inevitable. The
algorithm, rightmost extension, avoids such dupli-
cated enumerations by restricting the position of at-
tachment. Here we give the definition of rightmost
extension to describe this restriction in detail.

Definition 3 Rightmost Extension (Abe et al., 2002;
Zaki, 2002)
Let t and t′ be labeled ordered trees. We sayt′ is a
rightmost extension oft, if and only ift andt′ satisfy
the following three conditions:
(1) t′ is created by adding a single node tot, (i.e.,
t ⊂ t′ and|t|+ 1 = |t′|).
(2) A node is added to a node existing on the unique
path from the root to the rightmost leaf (rightmost-
path) int.
(3) A node is added as the rightmost sibling.

Consider Figure 2, which illustrates example treet
with labels drawn from the setL = {a, b, c}. For
the sake of convenience, each node in this figure has
its original number (depth-first enumeration). The
rightmost-path of the treet is (a(c(b))), and it oc-
curs at positions1, 4 and6 respectively. The set of
rightmost extended trees is then enumerated by sim-
ply adding a single node to a node on the rightmost
path. Since there are three nodes on the rightmost
path and the size of the label set is 3(= |L|), a to-
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tal of 9 trees are enumerated from the original tree
t. By repeating the rightmost-extension process re-
cursively, we can create a search space in which all
trees drawn from the setL are enumerated.

4.2 Pruning

Rightmost extension defines a canonical search
space in which we can enumerate all subtrees from
a given set of trees. Here we consider an upper
bound of the gain that allows subspace pruning in
this canonical search space. The following obser-
vation provides a convenient way of computing an
upper bound of thegain(tk) for any super-treetk′
of tk.
Observation 1 Upper bound of thegain(tk)
For any tk′ ⊇ tk, the gain of tk′ is bounded by
µ(tk):

gain(tk′) =

ŕŕŕŕ
q
W+
k′ −

q
W−k′

ŕŕŕŕ

≤ max(
q
W+
k′ ,

q
W−k′ )

≤ max(
q
W+
k ,

q
W−k ) = µ(tk),

since tk′ ⊇ tk ⇒W b
k′ ≤W b

k , b ∈ {+1,−1}.

We can efficiently prune the search space spanned
by the rightmost extension using the upper bound of
gainµ(t). During the traverse of the subtree lattice
built by the recursive process of rightmost extension,
we always maintain the temporally suboptimal gain
τ of all the previously calculated gains. Ifµ(t) < τ ,
the gain of any super-treet′ ⊇ t is no greater thanτ ,
and therefore we can safely prune the search space
spanned from the subtreet. In contrast, ifµ(t) ≥ τ ,
we cannot prune this space, since there might be a
super-treet′ ⊇ t such thatgain(t′) ≥ τ .

4.3 Ad-hoc techniques

In real applications, we also employ the following
practical methods to reduce the training costs.

• Size constraint
Larger trees are usually less effective to discrimi-
nation. Thus, we give a size thresholds, and use
subtrees whose size is no greater thans. This con-
straint is easily realized by controlling the right-
most extension according to the size of the trees.
• Frequency constraint

The frequency-based cut-off has been widely used
in feature selections. We employ a frequency
thresholdf , and use subtrees seen on at least one
parse for at leastf different sentences. Note that
a similar branch-and-bound technique can also be
applied to the cut-off. When we find that the fre-
quency of a treet is no greater thanf , we can safely
prune the space spanned fromt as the frequencies
of any super-treest′ ⊇ t are also no greater thanf .
• Pseudo iterations

After several 5- or 10-iterations of boosting, we al-
ternately perform 100- or 300 pseudo iterations, in
which the optimal feature (subtree) is selected from
the cache that maintains the features explored in the
previous iterations. The idea is based on our ob-
servation that a feature in the cache tends to be re-
used as the number of boosting iterations increases.
Pseudo iterations converge very fast, and help the
branch-and-bound algorithm find new features that
are not in the cache.

5 Experiments

5.1 Parsing Wall Street Journal Text

In our experiments, we used the same data set that
used in (Collins, 2000). Sections 2-21 of the Penn
Treebank were used as training data, and section
23 was used as test data. The training data con-
tains about 40,000 sentences, each of which has an
average of 27 distinct parses. Of the 40,000 train-
ing sentences, the first 36,000 sentences were used
to perform the RankBoost algorithm. The remain-
ing 4,000 sentences were used as development data.
Model2 of (Collins, 1999) was used to parse both
the training and test data.

To capture the lexical information of the parse
trees, we did not use a standard CFG tree but a
lexicalized-CFG tree where each non-terminal node
has an extra lexical node labeled with the head word
of the constituent. Figure 3 shows an example of the
lexicalized-CFG tree used in our experiments. The
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Figure 3: Lexicalized CFG tree for WSJ parsing
head word, e.g., (saw), is put as a leftmost constituent

size parameters and frequency parameterf were ex-
perimentally set at6 and 10, respectively. As the
data set is very large, it is difficult to employ the ex-
periments with more unrestricted parameters.

Table 1 lists results on test data for the Model2 of
(Collins, 1999), for several previous studies, and for
our best model. We achieve recall and precision of
89.3/%89.6% and 89.9%/90.1% for sentences with
≤ 100 words and≤ 40 words, respectively. The
method shows a 1.2% absolute improvement in av-
erage precision and recall (from 88.2% to 89.4% for
sentences≤ 100 words), a 10.1% relative reduc-
tion in error. (Collins, 2000) achieved 89.6%/89.9%
recall and precision for the same datasets (sen-
tences≤ 100 words) using boosting and manu-
ally constructed features. (Charniak, 2000) extends
PCFG and achieves similar performance to (Collins,
2000). The tree kernel method of (Collins and
Duffy, 2002) uses the all-subtrees representation and
achieves 88.6%/88.9% recall and precision, which
are slightly worse than the results obtained with our
model. (Bod, 2001) also uses the all-subtrees repre-
sentation with a very different parameter estimation
method, and realizes 90.06%/90.08% recall and pre-
cision for sentences of≤ 40 words.

5.2 Shallow Parsing

We used the same data set as the CoNLL 2000
shared task (Tjong Kim Sang and Buchholz, 2000).
Sections 15-18 of the Penn Treebank were used as
training data, and section 20 was used as test data.

As a baseline model, we used a shallow parser
based on Conditional Random Fields (CRFs), very
similar to that described in (Sha and Pereira, 2003).
CRFs have shown remarkable results in a number
of tagging and chunking tasks in NLP.n-best out-
puts were obtained by a combination of forward

MODEL ≤ 40 Words (2245 sentences)
LR LP CBs 0 CBs 2 CBs

CO99 88.5% 88.7% 0.92 66.7% 87.1%
CH00 90.1% 90.1% 0.74 70.1% 89.6%
CO00 90.1% 90.4% 0.74 70.3% 89.6%
CO02 89.1% 89.4% 0.85 69.3% 88.2%

Boosting 89.9% 90.1% 0.77 70.5% 89.4%
MODEL ≤ 100 Words (2416 sentences)

LR LP CBs 0 CBs 2 CBs
CO99 88.1% 88.3% 1.06 64.0% 85.1%
CH00 89.6% 89.5% 0.88 67.6% 87.7%
CO00 89.6% 89.9% 0.87 68.3% 87.7%
CO02 88.6% 88.9% 0.99 66.5% 86.3%

Boosting 89.3% 89.6% 0.90 67.9% 87.5%

Table 1: Results for section 23 of the WSJ Treebank
LR/LP = labeled recall/precision. CBs is the average number

of cross brackets per sentence. 0 CBs, and 2CBs are the per-

centage of sentences with 0 or≤ 2 crossing brackets, respec-

tively. COL99 = Model 2 of (Collins, 1999). CH00 = (Char-

niak, 2000), CO00=(Collins, 2000). CO02=(Collins and Duffy,

2002).

Viterbi search and backward A* search. Note that
this search algorithm yields optimaln-best results
in terms of the CRFs score. Each sentence has at
most 20 distinct parses. The log probability from
the CRFs shallow parser was incorporated into the
reranking. Following (Collins, 2000), the training
set was split into 5 portions, and the CRFs shallow
parser was trained on 4/5 of the data, then used to
decode the remaining 1/5. The outputs of the base
parser, which consist of base phrases, were con-
verted into right-branching trees by assuming that
two adjacent base phrases are in a parent-child re-
lationship. Figure 4 shows an example of the tree
for shallow parsing task. We also put two virtual
nodes, left/right boundaries, to capture local transi-
tions. The size parameters and frequency parameter
f were experimentally set at6 and5, respectively.

Table 2 lists results on test data for the baseline
CRFs parser, for several previous studies, and for
our best model. Our model achieves a 94.12 F-
measure, and outperforms the baseline CRFs parser
and the SVMs parser (Kudo and Matsumoto, 2001).
(Zhang et al., 2002) reported a higher F-measure
with a generalized winnow using additional linguis-
tic features. The accuracy of our model is very simi-
lar to that of (Zhang et al., 2002) without using such
additional features. Table 3 shows the results for our
best model per chunk type.
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Figure 4: Tree representation for shallow parsing
Represented in a right-branching tree with two virtual nodes

MODEL Fβ=1

CRFs (baseline) 93.76
8 SVMs-voting(Kudo and Matsumoto, 2001)93.91
RW + linguistic features(Zhang et al., 2002) 94.17
Boosting(our model) 94.12

Table 2: Results of shallow parsing
Fβ=1 is the harmonic mean of precision and recall.

6 Discussion

6.1 Interpretablity and Efficiency

The numbers of active (non-zero) features selected
by boosting are around 8,000 and 3,000 in the WSJ
parsing and shallow parsing, respectively. Although
almost all the subtrees are used as feature candi-
dates, boosting selects a small and highly relevant
subset of features. When we explicitly enumerate
the subtrees used in tree kernel, the number of ac-
tive features might amount to millions or more. Note
that the accuracies under such sparse feature spaces
are still comparable to those obtained with tree ker-
nel. This result supports our first intuition that we
do not always need all the subtrees to construct the
parameters.

The sparse feature representations are useful in
practice as they allow us to analyze what kinds of
features are relevant. Table 4 shows examples of
active features along with their weightswk. In the
shallow parsing tasks, subordinate phrases (SBAR)
are difficult to analyze without seeing long depen-
dencies. Subordinate phrases usually precede a sen-
tence (NP and VP). However, Markov-based shal-
low parsers, such as MEMM or CRFs, cannot cap-
ture such a long dependency. Our model automat-
ically selects useful subtrees to obtain an improve-
ment on subordinate phrases. It is interesting that the

Precision Recall Fβ=1

ADJP 80.35% 73.41% 76.72
ADVP 83.88% 82.33% 83.10
CONJP 42.86% 66.67% 52.17
INTJ 50.00% 50.00% 50.00
LST 0.00% 0.00% 0.00
NP 94.45% 94.36% 94.41
PP 97.24% 98.07% 97.65
PRT 76.92% 75.47% 76.19
SBAR 90.70% 89.35% 90.02
VP 93.95% 94.72% 94.33
Overall 94.11% 94.13% 94.12

Table 3: Results of shallow parsing per chunk type

tree (SBAR(IN(for))(NP(VP(TO)))) has a large positive
weight, while the tree(SBAR((IN(for))(NP(O)))) has a
negative weight. The improvement on subordinate
phrases is considerable. We achieve 19% of the rel-
ative error reduction for subordinate phrase (from
87.68 to 90.02 in F-measure)

The testing speed of our model is much higher
than that of other models. The speeds of rerank-
ing for WSJ parsing and shallow parsing are 0.055
sec./sent. and 0.042 sec./sent. respectively, which
are fast enough for real applications¶.

6.2 Relationship to previous work

Tree kernel uses the all-subtrees representation not
explicitly but implicitly by reducing the problem to
the calculation of the inner-products of two trees.
The implicit calculation yields a practical computa-
tion in training. However, in testing, kernel meth-
ods require a number of kernel evaluations, which
are too heavy to allow us to realize real applications.
Moreover, tree kernel needs to incorporate a decay
factor to downweight the contribution of larger sub-
trees. It is non-trivial to set the optimal decay factor
as the accuracies are sensitive to its selection.

Similar to our model, data oriented parsing (DOP)
methods (Bod, 1998) deal with the all-subtrees rep-
resentation explicitly. Since the exact computa-
tion of scores for DOP is NP-complete, several ap-
proximations are employed to perform an efficient
parsing. The critical difference between our model
and DOP is that our model leads to an extremely
sparse solution and automatically eliminates redun-
dant subtrees. With the DOP methods, (Bod, 2001)
also employs constraints (e.g., depth of subtrees) to

¶We ran these tests on a Linux PC with Pentium 4 3.2 Ghz.
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WSJ parsing
w active trees that contain the word“in”

0.3864 (VP(NP(NNS(plants)))(PP(in)))
0.3326 (VP(VP(PP)(PP(in)))(VP))
0.2196 (NP(VP(VP(PP)(PP(in)))))
0.1748 (S(NP(NNP))(PP(in)(NP)))

... ...
-1.1217 (PP(in)(NP(NP(effect))))
-1.1634 (VP(yield)(PP(PP))(PP(in)))
-1.3574 (NP(PP(in)(NP(NN(way)))))
-1.8030 (NP(PP(in)(NP(trading)(JJ))))

shallow parsing
w active trees that contain the phrase“SBAR”

1.4500 (SBAR(IN(for))(NP(VP(TO))))
0.6177 (VP(SBAR(NP(VBD)))
0.6173 (SBAR(NP(VP(“))))
0.5644 (VP(SBAR(NP(VP(JJ)))))

.. ..
-0.9034 (SBAR(IN(for))(NP(O)))
-0.9181 (SBAR(NP(O)))
-1.0695 (ADVP(NP(SBAR(NP(VP)))))
-1.1699 (SBAR(NP(NN)(NP)))

Table 4: Examples of active features (subtrees)
All trees are represented in S-expression. In the shallow parsing

task,O is a special phrase that means “out of chunk”.

select relevant subtrees and achieves the best results
for WSJ parsing. However, these techniques are not
based on the regularization framework focused on
this paper and do not always eliminate all the re-
dundant subtrees. Even using the methods of (Bod,
2001), millions of subtrees are still exploited, which
leads to inefficiency in real problems.

7 Conclusions

In this paper, we presented a new application of
boosting for parse reranking, in which all subtrees
are potentially used as distinct features. Although
this set-up greatly increases the feature space, the
l1-norm regularization performed by boosting se-
lects a compact and relevant feature set. Our model
achieved a comparable or even better accuracy than
kernel methods even with an extremely small num-
ber of features (subtrees).
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Abstract

To facilitate the use of syntactic infor-
mation in the study of child language
acquisition, a coding scheme for Gram-
matical Relations (GRs) in transcripts of
parent-child dialogs has been proposed by
Sagae, MacWhinney and Lavie (2004).
We discuss the use of current NLP tech-
niques to produce the GRs in this an-
notation scheme. By using a statisti-
cal parser (Charniak, 2000) and memory-
based learning tools for classification
(Daelemans et al., 2004), we obtain high
precision and recall of several GRs. We
demonstrate the usefulness of this ap-
proach by performing automatic measure-
ments of syntactic development with the
Index of Productive Syntax (Scarborough,
1990) at similar levels to what child lan-
guage researchers compute manually.

1 Introduction

Automatic syntactic analysis of natural language has
benefited greatly from statistical and corpus-based
approaches in the past decade. The availability of
syntactically annotated data has fueled the develop-
ment of high quality statistical parsers, which have
had a large impact in several areas of human lan-
guage technologies. Similarly, in the study of child
language, the availability of large amounts of elec-
tronically accessible empirical data in the form of
child language transcripts has been shifting much of
the research effort towards a corpus-based mental-
ity. However, child language researchers have only

recently begun to utilize modern NLP techniques
for syntactic analysis. Although it is now common
for researchers to rely on automatic morphosyntactic
analyses of transcripts to obtain part-of-speech and
morphological analyses, their use of syntactic pars-
ing is rare.

Sagae, MacWhinney and Lavie (2004) have
proposed a syntactic annotation scheme for the
CHILDES database (MacWhinney, 2000), which
contains hundreds of megabytes of transcript data
and has been used in over 1,500 studies in child lan-
guage acquisition and developmental language dis-
orders. This annotation scheme focuses on syntactic
structures of particular importance in the study of
child language. In this paper, we describe the use
of existing NLP tools to parse child language tran-
scripts and produce automatically annotated data in
the format of the scheme of Sagae et al. We also
validate the usefulness of the annotation scheme and
our analysis system by applying them towards the
practical task of measuring syntactic development in
children according to the Index of Productive Syn-
tax, or IPSyn (Scarborough, 1990), which requires
syntactic analysis of text and has traditionally been
computed manually. Results obtained with current
NLP technology are close to what is expected of hu-
man performance in IPSyn computations, but there
is still room for improvement.

2 The Index of Productive Syntax (IPSyn)

The Index of Productive Syntax (Scarborough,
1990) is a measure of development of child lan-
guage that provides a numerical score for grammat-
ical complexity. IPSyn was designed for investigat-
ing individual differences in child language acqui-
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sition, and has been used in numerous studies. It
addresses weaknesses in the widely popular Mean
Length of Utterance measure, or MLU, with respect
to the assessment of development of syntax in chil-
dren. Because it addresses syntactic structures di-
rectly, it has gained popularity in the study of gram-
matical aspects of child language learning in both
research and clinical settings.

After about age 3 (Klee and Fitzgerald, 1985),
MLU starts to reach ceiling and fails to properly dis-
tinguish between children at different levels of syn-
tactic ability. For these purposes, and because of its
higher content validity, IPSyn scores often tells us
more than MLU scores. However, the MLU holds
the advantage of being far easier to compute. Rel-
atively accurate automated methods for computing
the MLU for child language transcripts have been
available for several years (MacWhinney, 2000).

Calculation of IPSyn scores requires a corpus of
100 transcribed child utterances, and the identifica-
tion of 56 specific language structures in each ut-
terance. These structures are counted and used to
compute numeric scores for the corpus in four cat-
egories (noun phrases, verb phrases, questions and
negations, and sentence structures), according to a
fixed score sheet. Each structure in the four cate-
gories receives a score of zero (if the structure was
not found in the corpus), one (if it was found once
in the corpus), or two (if it was found two or more
times). The scores in each category are added, and
the four category scores are added into a final IPSyn
score, ranging from zero to 112.1

Some of the language structures required in the
computation of IPSyn scores (such as the presence
of auxiliaries or modals) can be recognized with the
use of existing child language analysis tools, such
as the morphological analyzer MOR (MacWhinney,
2000) and the part-of-speech tagger POST (Parisse
and Le Normand, 2000). However, more complex
structures in IPSyn require syntactic analysis that
goes beyond what POS taggers can provide. Exam-
ples of such structures include the presence of an
inverted copula or auxiliary in a wh-question, con-
joined clauses, bitransitive predicates, and fronted
or center-embedded subordinate clauses.

1See (Scarborough, 1990) for a complete listing of targeted
structures and the IPSyn score sheet used for calculation of
scores.

Sentence (input):
We eat the cheese sandwich

Grammatical Relations (output):

[Leftwall]     We     eat     the     cheese     sandwich

SUBJ

ROOT OBJ

DET

MOD

Figure 1: Input sentence and output produced by our
system.

3 Automatic Syntactic Analysis of Child
Language Transcripts

A necessary step in the automatic computation of
IPSyn scores is to produce an automatic syntac-
tic analysis of the transcripts being scored. We
have developed a system that parses transcribed
child utterances and identifies grammatical relations
(GRs) according to the CHILDES syntactic annota-
tion scheme (Sagae et al., 2004). This annotation
scheme was designed specifically for child-parent
dialogs, and we have found it suitable for the iden-
tification of the syntactic structures necessary in the
computation of IPSyn.

Our syntactic analysis system takes a sentence
and produces a labeled dependency structure repre-
senting its grammatical relations. An example of the
input and output associated with our system can be
seen in figure 1. The specific GRs identified by the
system are listed in figure 2.

The three main steps in our GR analysis are: text
preprocessing, unlabeled dependency identification,
and dependency labeling. In the following subsec-
tions, we examine each of them in more detail.

3.1 Text Preprocessing

The CHAT transcription system2 is the format
followed by all transcript data in the CHILDES
database, and it is the input format we use for syn-
tactic analysis. CHAT specifies ways of transcrib-
ing extra-grammatical material such as disfluency,
retracing, and repetition, common in spontaneous
spoken language. Transcripts of child language may
contain a large amount of extra-grammatical mate-

2http://childes.psy.cmu.edu/manuals/CHAT.pdf
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SUBJ, ESUBJ, CSUBJ, XSUBJ

COMP, XCOMP

JCT, CJCT, XJCT

OBJ, OBJ2, IOBJ

PRED, CPRED, XPRED

MOD, CMOD, XMOD

AUX NEG DET QUANT POBJ PTL

CPZR COM INF VOC COORD ROOT

Subject, expletive subject, clausal subject (finite and non−finite) Object, second object, indirect object

Clausal complement (finite and non−finite) Predicative, clausal predicative (finite and non−finite)

Adjunct, clausal adjunct (finite and non−finite) Nominal modifier, clausal nominal modifier (finite and non−finite)

Auxiliary Negation Determiner Quantifier Prepositional object Verb particle

CommunicatorComplementizer Infinitival "to" Vocative Coordinated item Top node

Figure 2: Grammatical relations in the CHILDES syntactic annotation scheme.

rial that falls outside of the scope of the syntactic an-
notation system and our GR identifier, since it is al-
ready clearly marked in CHAT transcripts. By using
the CLAN tools (MacWhinney, 2000), designed to
process transcripts in CHAT format, we remove dis-
fluencies, retracings and repetitions from each sen-
tence. Furthermore, we run each sentence through
the MOR morphological analyzer (MacWhinney,
2000) and the POST part-of-speech tagger (Parisse
and Le Normand, 2000). This results in fairly clean
sentences, accompanied by full morphological and
part-of-speech analyses.

3.2 Unlabeled Dependency Identification

Once we have isolated the text that should be ana-
lyzed in each sentence, we parse it to obtain unla-
beled dependencies. Although we ultimately need
labeled dependencies, our choice to produce unla-
beled structures first (and label them in a later step)
is motivated by available resources. Unlabeled de-
pendencies can be readily obtained by processing
constituent trees, such as those in the Penn Tree-
bank (Marcus et al., 1993), with a set of rules to
determine the lexical heads of constituents. This
lexicalization procedure is commonly used in sta-
tistical parsing (Collins, 1996) and produces a de-
pendency tree. This dependency extraction proce-
dure from constituent trees gives us a straightfor-
ward way to obtain unlabeled dependencies: use an
existing statistical parser (Charniak, 2000) trained
on the Penn Treebank to produce constituent trees,
and extract unlabeled dependencies using the afore-
mentioned head-finding rules.

Our target data (transcribed child language) is

from a very different domain than the one of the data
used to train the statistical parser (the Wall Street
Journal section of the Penn Treebank), but the degra-
dation in the parser’s accuracy is acceptable. An
evaluation using 2,018 words of in-domain manu-
ally annotated dependencies shows that the depen-
dency accuracy of the parser is 90.1% on child lan-
guage transcripts (compared to over 92% on section
23 of the Wall Street Journal portion of the Penn
Treebank). Despite the many differences with re-
spect to the domain of the training data, our domain
features sentences that are much shorter (and there-
fore easier to parse) than those found in Wall Street
Journal articles. The average sentence length varies
from transcript to transcript, because of factors such
as the age and verbal ability of the child, but it is
usually less than 15 words.

3.3 Dependency Labeling

After obtaining unlabeled dependencies as described
above, we proceed to label those dependencies with
the GR labels listed in Figure 2.

Determining the labels of dependencies is in gen-
eral an easier task than finding unlabeled dependen-
cies in text.3 Using a classifier, we can choose one
of the 30 possible GR labels for each dependency,
given a set of features derived from the dependen-
cies. Although we need manually labeled data to
train the classifier for labeling dependencies, the size
of this training set is far smaller than what would be
necessary to train a parser to find labeled dependen-

3Klein and Manning (2002) offer an informal argument that
constituent labels are much more easily separable in multidi-
mensional space than constituents/distituents. The same argu-
ment applies to dependencies and their labels.
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cies in one pass.
We use a corpus of about 5,000 words with man-

ually labeled dependencies to train TiMBL (Daele-
mans et al., 2003), a memory-based learner (set to
use the k-nn algorithm with k=1, and gain ratio
weighing), to classify each dependency with a GR
label. We extract the following features for each de-
pendency:

• The head and dependent words;
• The head and dependent parts-of-speech;
• Whether the dependent comes before or after

the head in the sentence;
• How many words apart the dependent is from

the head;
• The label of the lowest node in the constituent

tree that includes both the head and dependent.

The accuracy of the classifier in labeling depen-
dencies is 91.4% on the same 2,018 words used to
evaluate unlabeled accuracy. There is no intersec-
tion between the 5,000 words used for training and
the 2,018-word test set. Features were tuned on a
separate development set of 582 words.

When we combine the unlabeled dependencies
obtained with the Charniak parser (and head-finding
rules) and the labels obtained with the classifier,
overall labeled dependency accuracy is 86.9%, sig-
nificantly above the results reported (80%) by Sagae
et al. (2004) on very similar data.

Certain frequent and easily identifiable GRs, such
as DET, POBJ, INF, and NEG were identified with
precision and recall above 98%. Among the most
difficult GRs to identify were clausal complements
COMP and XCOMP, which together amount to less
than 4% of the GRs seen the training and test sets.
Table 1 shows the precision and recall of GRs of par-
ticular interest.

Although not directly comparable, our results
are in agreement with state-of-the-art results for
other labeled dependency and GR parsers. Nivre
(2004) reports a labeled (GR) dependency accuracy
of 84.4% on modified Penn Treebank data. Briscoe
and Carroll (2002) achieve a 76.5% F-score on a
very rich set of GRs in the more heterogeneous and
challenging Susanne corpus. Lin (1998) evaluates
his MINIPAR system at 83% F-score on identifica-
tion of GRs, also in data from the Susanne corpus
(but using simpler GR set than Briscoe and Carroll).

GR Precision Recall F-score
SUBJ 0.94 0.93 0.93
OBJ 0.83 0.91 0.87
COORD 0.68 0.85 0.75
JCT 0.91 0.82 0.86
MOD 0.79 0.92 0.85
PRED 0.80 0.83 0.81
ROOT 0.91 0.92 0.91
COMP 0.60 0.50 0.54
XCOMP 0.58 0.64 0.61

Table 1: Precision, recall and F-score (harmonic
mean) of selected Grammatical Relations.

4 Automating IPSyn

Calculating IPSyn scores manually is a laborious
process that involves identifying 56 syntactic struc-
tures (or their absence) in a transcript of 100 child
utterances. Currently, researchers work with a par-
tially automated process by using transcripts in elec-
tronic format and spreadsheets. However, the ac-
tual identification of syntactic structures, which ac-
counts for most of the time spent on calculating IP-
Syn scores, still has to be done manually.

By using part-of-speech and morphological anal-
ysis tools, it is possible to narrow down the num-
ber of sentences where certain structures may be
found. The search for such sentences involves pat-
terns of words and parts-of-speech (POS). Some
structures, such as the presence of determiner-noun
or determiner-adjective-noun sequences, can be eas-
ily identified through the use of simple patterns.
Other structures, such as front or center-embedded
clauses, pose a greater challenge. Not only are pat-
terns for such structures difficult to craft, they are
also usually inaccurate. Patterns that are too gen-
eral result in too many sentences to be manually ex-
amined, but more restrictive patterns may miss sen-
tences where the structures are present, making their
identification highly unlikely. Without more syntac-
tic analysis, automatic searching for structures in IP-
Syn is limited, and computation of IPSyn scores still
requires a great deal of manual inspection.

Long, Fey and Channell (2004) have developed
a software package, Computerized Profiling (CP),
for child language study, which includes a (mostly)
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automated computation of IPSyn.4 CP is an exten-
sively developed example of what can be achieved
using only POS and morphological analysis. It does
well on identifying items in IPSyn categories that
do not require deeper syntactic analysis. However,
the accuracy of overall scores is not high enough to
be considered reliable in practical usage, in particu-
lar for older children, whose utterances are longer
and more sophisticated syntactically. In practice,
researchers usually employ CP as a first pass, and
manually correct the automatic output. Section 5
presents an evaluation of the CP version of IPSyn.

Syntactic analysis of transcripts as described in
section 3 allows us to go a step further, fully au-
tomating IPSyn computations and obtaining a level
of reliability comparable to that of human scoring.
The ability to search for both grammatical relations
and parts-of-speech makes searching both easier and
more reliable. As an example, consider the follow-
ing sentences (keeping in mind that there are no ex-
plicit commas in spoken language):

(a) Then [,] he said he ate.
(b) Before [,] he said he ate.
(c) Before he ate [,] he ran.

Sentences (a) and (b) are similar, but (c) is dif-
ferent. If we were looking for a fronted subordinate
clause, only (c) would be a match. However, each
one of the sentences has an identical part-speech-
sequence. If this were an isolated situation, we
might attempt to fix it by having tags that explic-
itly mark verbs that take clausal complements, or by
adding lexical constraints to a search over part-of-
speech patterns. However, even by modifying this
simple example slightly, we find more problems:

(d) Before [,] he told the man he was cold.
(e) Before he told the story [,] he was cold.

Once again, sentences (d) and (e) have identical
part-of-speech sequences, but only sentence (e) fea-
tures a fronted subordinate clause. These limited toy
examples only scratch the surface of the difficulties
in identifying syntactic structures without syntactic

4Although CP requires that a few decisions be made man-
ually, such as the disambiguation of the lexical item “’s” as
copula vs. genitive case marker, and the definition of sentence
breaks for long utterances, the computation of IPSyn scores is
automated to a large extent.

analysis beyond part-of-speech and morphological
tagging. In these sentences, searching with GRs
is easy: we simply find a GR of clausal type (e.g.
CJCT, COMP, CMOD, etc) where the dependent is
to the left of its head.

For illustration purposes of how searching for
structures in IPSyn is done with GRs, let us look
at how to find other IPSyn structures5:

• Wh-embedded clauses: search for wh-words
whose head, or transitive head (its head’s head,
or head’s head’s head...) is a dependent in
GR of types [XC]SUBJ, [XC]PRED, [XC]JCT,
[XC]MOD, COMP or XCOMP;
• Relative clauses: search for a CMOD where the

dependent is to the right of the head;
• Bitransitive predicate: search for a word that is

a head of both OBJ and OBJ2 relations.

Although there is still room for under- and over-
generalization with search patterns involving GRs,
finding appropriate ways to search is often made
trivial, or at least much more simple and reliable
than searching without GRs. An evaluation of our
automated version of IPSyn, which searches for IP-
Syn structures using POS, morphology and GR in-
formation, and a comparison to the CP implemen-
tation, which uses only POS and morphology infor-
mation, is presented in section 5.

5 Evaluation

We evaluate our implementation of IPSyn in two
ways. The first isPoint Difference, which is cal-
culated by taking the (unsigned) difference between
scores obtained manually and automatically. The
point difference is of great practical value, since
it shows exactly how close automatically produced
scores are to manually produced scores. The second
is Point-to-Point Accuracy, which reflects the overall
reliability over each individual scoring decision in
the computation of IPSyn scores. It is calculated by
counting how many decisions (identification of pres-
ence/absence of language structures in the transcript
being scored) were made correctly, and dividing that

5More detailed descriptions and examples of each structure
are found in (Scarborough, 1990), and are omitted here for
space considerations, since the short descriptions are fairly self-
explanatory.
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number by the total number of decisions. The point-
to-point measure is commonly used for assessing the
inter-rater reliability of metrics such as the IPSyn. In
our case, it allows us to establish the reliability of au-
tomatically computed scores against human scoring.

5.1 Test Data

We obtained two sets of transcripts with correspond-
ing IPSyn scoring (total scores, and each individual
decision) from two different child language research
groups. The first set (A) contains 20 transcripts of
children of ages ranging between two and three. The
second set (B) contains 25 transcripts of children of
ages ranging between eight and nine.

Each transcript in set A was scored fully manu-
ally. Researchers looked for each language structure
in the IPSyn scoring guide, and recorded its pres-
ence in a spreadsheet. In set B, scoring was done
in a two-stage process. In the first stage, each tran-
script was scored automatically by CP. In the second
stage, researchers checked each automatic decision
made by CP, and corrected any errors manually.

Two transcripts in each set were held out for de-
velopment and debugging. The final test sets con-
tained: (A) 18 transcripts with a total of 11,704
words and a mean length of utterance of 2.9, and
(B) 23 transcripts with a total of 40,819 words and a
mean length of utterance of 7.0.

5.2 Results

Scores computed automatically from transcripts
parsed as described in section 3 were very close
to the scores computed manually. Table 2 shows a
summary of the results, according to our two eval-
uation metrics. Our system is labeled as GR, and
manually computed scores are labeled as HUMAN.
For comparison purposes, we also show the results
of running Long et al.’s automated version of IPSyn,
labeled as CP, on the same transcripts.

Point Difference

The average (absolute) point difference between au-
tomatically computed scores (GR) and manually
computed scores (HUMAN) was 3.3 (the range of
HUMAN scores on the data was 21-91). There was
no clear trend on whether the difference was posi-
tive or negative. In some cases, the automated scores
were higher, in other cases lower. The minimum dif-

System Avg. Pt. Difference Point-to-Point
to HUMAN Reliability

GR (Total) 3.3 92.8%
CP (Total) 8.3 85.4%
GR (Set A) 3.7 92.5%
CP (Set A) 6.2 86.2%
GR (Set B) 2.9 93.0%
CP (Set B) 10.2 84.8%

Table 2: Summary of evaluation results. GR is our
implementation of IPSyn based on grammatical re-
lations, CP is Long et al.’s (2004) implementation of
IPSyn, and HUMAN is manual scoring.
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Figure 3: Histogram of point differences between
HUMAN scores and GR (black), and CP (white).

ference was zero, and the maximum difference was
12. Only two scores differed by 10 or more, and 17
scores differed by two or less. The average point dif-
ference between HUMAN and the scores obtained
with Long et al.’s CP was 8.3. The minimum was
zero and the maximum was 21. Sixteen scores dif-
fered by 10 or more, and six scores differed by 2 or
less. Figure 3 shows the point differences between
GR and HUMAN, and CP and HUMAN.

It is interesting to note that the average point dif-
ferences between GR and HUMAN were similar on
sets A and B (3.7 and 2.9, respectively). Despite the
difference in age ranges, the two averages were less
than one point apart. On the other hand, the average
difference between CP and HUMAN was 6.2 on set
A, and 10.2 on set B. The larger difference reflects
CP’s difficulty in scoring transcripts of older chil-
dren, whose sentences are more syntactically com-
plex, using only POS analysis.
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Point-to-Point Accuracy

In the original IPSyn reliability study (Scarborough,
1990), point-to-point measurements using 75 tran-
scripts showed the mean inter-rater agreement for
IPSyn among human scorers at 94%, with a min-
imum agreement of 90% of all decisions within a
transcript. The lowest agreement between HUMAN
and GR scoring for decisions within a transcript was
88.5%, with a mean of 92.8% over the 41 transcripts
used in our evaluation. Although comparisons of
agreement figures obtained with different sets of
transcripts are somewhat coarse-grained, given the
variations within children, human scorers and tran-
script quality, our results are very satisfactory. For
direct comparison purposes using the same data, the
mean point-to-point accuracy of CP was 85.4% (a
relative increase of about 100% in error).

In their separate evaluation of CP, using 30 sam-
ples of typically developing children, Long and
Channell (2001) found a 90.7% point-to-point ac-
curacy between fully automatic and manually cor-
rected IPSyn scores.6 However, Long and Channell
compared only CP output with manually corrected
CP output, while our set A was manually scored
from scratch. Furthermore, our set B contained
only transcripts from significantly older children (as
in our evaluation, Long and Channell observed de-
creased accuracy of CP’s IPSyn with more com-
plex language usage). These differences, and the
expected variation from using different transcripts
from different sources, account for the difference in
our results and Long and Channell’s.

5.3 Error Analysis

Although the overall accuracy of our automatically
computed scores is in large part comparable to man-
ual IPSyn scoring (and significantly better than the
only option currently available for automatic scor-
ing), our system suffers from visible deficiencies in
the identification of certain structures within IPSyn.

Four of the 56 structures in IPSyn account for al-
most half of the number of errors made by our sys-
tem. Table 3 lists these IPSyn items, with their re-
spective percentages of the total number of errors.

6Long and Channell’s evaluation also included samples
from children with language disorders. Their 30 samples of
typically developing children (with a mean age of 5) are more
directly comparable to the data used in our evaluation.

IPSyn item Error
S11 (propositional complement) 16.9%
V15 (copula, modal or aux for 12.3%
emphasis or ellipsis)
S16 (relative clause) 10.6%
S14 (bitransitive predicate) 5.8%

Table 3: IPSyn structures where errors occur most
frequently, and their percentages of the total number
of errors over 41 transcripts.

Errors in items S11 (propositional complements),
S16 (relative clauses), and S14 (bitransitive predi-
cates) are caused by erroneous syntactic analyses.
For an example of how GR assignments affect IP-
Syn scoring, let us consider item S11. Searching for
the relation COMP is a crucial part in finding propo-
sitional complements. However, COMP is one of
the GRs that can be identified the least reliably in
our set (precision of 0.6 and recall of 0.5, see table
1). As described in section 2, IPSyn requires that
we credit zero points to item S11 for no occurrences
of propositional complements, one point for a single
occurrence, and two points for two or more occur-
rences. If there are several COMPs in the transcript,
we should find about half of them (plus others, in
error), and correctly arrive at a credit of two points.
However, if there are very few or none, our count is
likely to be incorrect.

Most errors in item V15 (emphasis or ellipsis)
were caused not by incorrect GR assignments, but
by imperfect search patterns. The searching failed to
account for a number of configurations of GRs, POS
tags and words that indicate that emphasis or ellip-
sis exists. This reveals another general source of er-
ror in our IPSyn implementation: the search patterns
that use GR analyzed text to make the actual IP-
Syn scoring decisions. Although our patterns are far
more reliable than what we could expect from POS
tags and words alone, these are still hand-crafted
rules that need to be debugged and perfected over
time. This was the first evaluation of our system,
and only a handful of transcripts were used during
development. We expect that once child language
researchers have had the opportunity to use the sys-
tem in practical settings, their feedback will allow us
to refine the search patterns at a more rapid pace.
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6 Conclusion and Future Work

We have presented an automatic way to annotate
transcripts of child language with the CHILDES
syntactic annotation scheme. By using existing re-
sources and a small amount of annotated data, we
achieved state-of-the-art accuracy levels.

GR identification was then used to automate the
computation of IPSyn scores to measure grammati-
cal development in children. The reliability of our
automatic IPSyn was very close to the inter-rater re-
liability among human scorers, and far higher than
that of the only other computational implementation
of IPSyn. This demonstrates the value of automatic
GR assignment to child language research.

From the analysis in section 5.3, it is clear that the
identification of certain GRs needs to be made more
accurately. We intend to annotate more in-domain
training data for GR labeling, and we are currently
investigating the use of other applicable GR parsing
techniques.

Finally, IPSyn score calculation could be made
more accurate with the knowledge of the expected
levels of precision and recall of automatic assign-
ment of specific GRs. It is our intuition that in a
number of cases it would be preferable to trade re-
call for precision. We are currently working on a
framework for soft-labeling of GRs, which will al-
low us to manipulate the precision/recall trade-off
as discussed in (Carroll and Briscoe, 2002).
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Abstract

This paper describes a novel framework
for interactive question-answering (Q/A)
based on predictive questioning. Gen-
erated off-line from topic representations
of complex scenarios, predictive ques-
tions represent requests for information
that capture the most salient (and diverse)
aspects of a topic. We present experimen-
tal results from large user studies (featur-
ing a fully-implemented interactive Q/A
system named FERRET) that demonstrates
that surprising performance is achieved by
integrating predictive questions into the
context of a Q/A dialogue.

1 Introduction

In this paper, we propose a new architecture for
interactive question-answering based on predictive
questioning. We present experimental results from
a currently-implemented interactive Q/A system,
named FERRET, that demonstrates that surprising
performance is achieved by integrating sources of
topic information into the context of a Q/A dialogue.

In interactive Q/A, professional users engage in
extended dialogues with automatic Q/A systems in
order to obtain information relevant to a complex
scenario. Unlike Q/A in isolation, where the per-
formance of a system is evaluated in terms of how
well answers returned by a system meet the specific
information requirements of a single question, the
performance of interactive Q/A systems have tradi-
tionally been evaluated by analyzing aspects of the

dialogue as a whole. Q/A dialogues have been evalu-
ated in terms of (1) efficiency, defined as the number
of questions that the user must pose to find particu-
lar information, (2) effectiveness, defined by the rel-
evance of the answers returned, (3) user satisfaction.

In order to maximize performance in these three
areas, interactive Q/A systems need a predictive di-
alogue architecture that enables them to propose re-
lated questions about the relevant information that
could be returned to a user, given a domain of inter-
est. We argue that interactive Q/A systems depend
on three factors: (1) the effective representation of
the topic of a dialogue, (2) the dynamic recognition
of the structure of the dialogue, and (3) the ability to
return relevant answers to a particular question.

In this paper, we describe results from experi-
ments we conducted with our own interactive Q/A
system, FERRET, under the auspices of the ARDA
AQUAINT1 program, involving 8 different dialogue
scenarios and more than 30 users. The results pre-
sented here illustrate the role of predictive question-
ing in enhancing the performance of Q/A interac-
tions.

In the remainder of this paper, we describe a new
architecture for interactive Q/A. Section 2 presents
the functionality of several of FERRET’s modules
and describes the NLP techniques it relies upon. In
Section 3, we present one of the dialogue scenar-
ios and the topic representations we have employed.
Section 4 highlights the management of the inter-
action between the user and FERRET, while Sec-
tion 5 presents the results of evaluating our proposed

1AQUAINT is an acronym for Advanced QUestion Answer-
ing for INTelligence.
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Figure 1: FERRET - A Predictive Interactive Question-Answering Architecture.

model, and Section 6 summarizes the conclusions.

2 Interactive Question-Answering

We have found that the quality of interactions pro-
duced by an interactive Q/A system can be greatly
enhanced by predicting the range of questions that
a user might ask in the context of a given topic.
If a large database of topic-relevant questions were
available for a wide variety of topics, the accuracy
of a state-of-the-art Q/A system such as (Harabagiu
et al., 2003) could be enhanced.

In FERRET, our interactive Q/A system, we store
such “predicted” pairs of questions and answers in a
database known as the Question Answer Database
(or QUAB). FERRET uses this large set of topic-
relevant question-and-answer pairs to improve the
interaction with the user by suggesting new ques-
tions. For example, when a user asks a question
like (Q1) (as illustrated in Table 1), FERRET returns
an answer to the question (A1) and proposes (Q2),
(Q3), and (Q4) as suggestions of possible continua-
tions of the dialogue. Users then choose how to con-
tinue the interaction by either (1) ignoring the sug-
gestions made by the system and proposing a differ-
ent question, or by (2) selecting one of the proposed
questions and examining its answer.

Figure 1 illustrates the architecture of FERRET.
The interactions are managed by a dialogue shell,
which processes questions by transforming them
into their corresponding predicate-argument struc-
tures2.

The data collection used in our experiments was

2We have employed the same representation of predicate-
argument structures as those encoded in PropBank. We use a
semantic parser (described in (Surdeanu et al., 2003)) that rec-
ognizes predicate-argument structures.

(Q1) What weapons are included in Egypt’s stockpiles?

(A1) The Israelis point to comments made by former President Anwar Sadat,
who in 1970 stated that Egypt has biological weapons stored in
refrigerators ready to use against Israel if need be. The program might
include ”plague, botulism toxin, encephalitis virus, anthrax,
Rift Valley fever and mycotoxicosis.”

(Q2) Where did Egypt inherit its first stockpiles of chemical weapons?
(Q3) Is there evidence that Egypt has dismantled its stockpiles of weapons?
(Q4) Where are Egypt’s weapons stockpiles located?
(Q5) Who oversees Egypt’s weapons stockpiles?

Table 1: User question and proposed questions from QUABs

made available by the Center for Non-Proliferation
Studies (CNS)3.

Modules from the FERRET’s dialogue shell inter-
act with modules from the predictive dialogue block.
Central to the predictive dialogue is the topic repre-
sentation for each scenario, which enables the pop-
ulation of a Predictive Dialogue Network (PDN).
The PDN consists of a large set of questions that
were asked or predicted for each topic. It is a net-
work because questions are related by “similarity”
links, which are computed by the Question Simi-
larity module. The topic representation enables an
Information Extraction module based on (Surdeanu
and Harabagiu, 2002) to find topic-relevant infor-
mation in the document collection and to use it as
answers for the QUABs. The questions associated
with each predicted answer are generated from pat-
terns that are related to the extraction patterns used
for identifying topic relevant information. The qual-
ity of the dialog between the user and FERRET de-
pends on the quality of the topic representations and
the coverage of the QUABs.

3The Center for Non-Proliferation Studies at the Monterrey
Institute of International Studies distributes collections of print
and online documents on weapons of mass destruction. More
information at: http://cns.miis.edu.
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GENERAL BACKGROUND

 1) Country Profile

 3) Military Operations: Army, Navy, Air Force, Leaders, Capabilities, Intentions
 4) Allies/Partners: Coalition Forces
 5) Weapons: Chemical, Biological, Materials, Stockpiles, Facilities, Access, Research Efforts, Scientists
 6) Citizens: Population, Growth Rate, Education

 8) Economics: Growth Domestic Product, Growth Rate, Imports
 9) Threat Perception: Border and Surrounding States, International, Terrorist Groups
10) Behaviour: Threats, Invasions, Sponsorship and Harboring of Bad Actors

13) Leadership:

 7) Industrial: Major Industrires, Exports, Power Sources

14) Behaviour: Threats to use WMDs, Actual Usage, Sophistication of Attack, Anectodal or Simultaneous

Serving as a background to the scenarios, the following list contains subject areas that may be relevant
to the scenarios under examination, and it is provided to assist the analyst in generating questions.

 2) Government: Type of, Leadership, Relations

SCENARIO: Assessment of Egypt’s Biological Weapons

As terrorist Activity in Egypt increases, the Commander
of the United States Army believes a better understanding
of Egypt’s Military capabilities is needed. Egypt’s
biological weapons database needs to be updated to
correspond with the Commander’s request. Focus your 
investigation on Egypt’s access to old technology, 
assistance received from the Soviet Union for development
of their pharmaceutical infrastructure, production of
toxins and BW agents, stockpiles, exportation of these
materials and development technology to Middle Eastern
countries, and the effect that this information will have on
the United States and Coalition Forces in the Middle East.
Please incorporate any other related information to 
your report.

11) Transportation Infrastructure: Kilometers of Road, Rail, Air Runways, Harbors and Ports, Rivers
12) Beliefs: Ideology, Goals, Intentions

15) Weapons: Chemical, Bilogical, Materials, Stockpiles, Facilities, Access

Figure 2: Example of a Dialogue Scenario.

3 Modeling the Dialogue Topic

Our experiments in interactive Q/A were based on
several scenarios that were presented to us as part
of the ARDA Metrics Challenge Dialogue Work-
shop. Figure 2 illustrates one of these scenarios. It
is to be noted that the general background consists
of a list of subject areas, whereas the scenario is a
narration in which several sub-topics are identified
(e.g. production of toxins or exportation of materi-
als). The creation of scenarios for interactive Q/A
requires several different types of domain-specific
knowledge and a level of operational expertise not
available to most system developers. In addition to
identifying a particular domain of interest, scenar-
ios must specify the set of relevant actors, outcomes,
and related topics that are expected to operate within
the domain of interest, the salient associations that
may exist between entities and events in the sce-
nario, and the specific timeframe and location that
bound the scenario in space and time. In addition,
real-world scenarios also need to identify certain op-
erational parameters as well, such as the identity of
the scenario’s sponsor (i.e. the organization spon-
soring the research) and audience (i.e. the organiza-
tion receiving the information), as well as a series of
evidence conditions which specify how much verifi-
cation information must be subject to before it can
be accepted as fact. We assume the set of sub-topics
mentioned in the general background and the sce-
nario can be used together to define a topic structure
that will govern future interactions with the Q/A sys-
tem. In order to model this structure, the topic rep-
resentation that we create considers separate topic
signatures for each sub-topic.

The notion of topic signatures was first introduced
in (Lin and Hovy, 2000). For each subtopic in a sce-
nario, given (a) documents relevant to the sub-topic
and (b) documents not relevant to the subtopic, a sta-
tistical method based on the likelihood ratio is used
to discover a weighted list of the most topic-specific
concepts, known as the topic signature. Later work
by (Harabagiu, 2004) demonstrated that topic sig-
natures can be further enhanced by discovering the
most relevant relations that exist between pairs of
concepts. However, both of these types of topic rep-
resentations are limited by the fact that they require
the identification of topic-relevant documents prior
to the discovery of the topic signatures. In our ex-
periments, we were only presented with a set of doc-
uments relevant to a particular scenario; no further
relevance information was provided for individual
subject areas or sub-topics.

In order to solve the problem of finding relevant
documents for each subtopic, we considered four
different approaches:

� Approach 1: All documents in the CNS col-
lection were initially clustered using K-Nearest
Neighbor (KNN) clustering (Dudani, 1976).
Each cluster that contained at least one key-
word that described the sub-topic was deemed
relevant to the topic.

� Approach 2: Since individual documents may
contain discourse segments pertaining to differ-
ent sub-topics, we first used TextTiling (Hearst,
1994) to automatically segment all of the doc-
uments in the CNS collection into individual
text tiles. These individual discourse segments
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then served as input to the KNN clustering al-
gorithm described in Approach 1.

� Approach 3: In this approach, relevant docu-
ments were discovered simultaneously with the
discovery of topic signatures. First, we asso-
ciated a binary seed relation ��� for each each
sub-topic

� � . (Seed relations were created both
by hand and using the method presented in
(Harabagiu, 2004).) Since seed relations are by
definition relevant to a particular subtopic, they
can be used to determine a binary partition of
the document collection � into (1) a relevant
set of documents ��� (that is, the documents rel-
evant to relation � � ) and (2) a set of non-relevant
documents � - ��� . Inspired by the method pre-
sented in (Yangarber et al., 2000), a topic sig-
nature (as calculated by (Harabagiu, 2004)) is
then produced for the set of documents in ��� .
For each subtopic

� � defined as part of the di-
alogue scenario, documents relevant to a cor-
responding seed relation � � are added to � iff
the relation ��� meets the density criterion (as
defined in (Yangarber et al., 2000)). If 	 rep-
resents the set of documents where ��� is recog-
nized, then the density criterion can be defined
as:


 �����

������


 ��


 ��
 . Once 	 is added to ��� , then

a new topic signature is calculated for � . Rela-
tions extracted from the new topic signature can
then be used to determine a new document par-
tition by re-iterating the discovery of the topic
signature and of the documents relevant to each
subtopic.

� Approach 4: Approach 4 implements the tech-
nique described in Approach 3, but operates
at the level of discourse segments (or texttiles)
rather than at the level of full documents. As
with Approach 2, segments were produced us-
ing the TextTiling algorithm.

In modeling the dialogue scenarios, we consid-
ered three types of topic-relevant relations: (1)
structural relations, which represent hypernymy
or meronymy relations between topic-relevant con-
cepts, (2) definition relations, which uncover the
characteristic properties of a concept, and (3) ex-
traction relations, which model the most relevant
events or states associated with a sub-topic. Al-

though structural relations and definition relations
are discovered reliably using patterns available from
our Q/A system (Harabagiu et al., 2003), we found
only extraction relations to be useful in determining
the set of documents relevant to a subtopic. Struc-
tural relations were available from concept ontolo-
gies implemented in the Q/A system. The definition
relations were identified by patterns used for pro-
cessing definition questions.

Extraction relations are discovered by processing
documents in order to identify three types of rela-
tions, including: (1) syntactic attachment relations
(including subject-verb, object-verb, and verb-PP
relations), (2) predicate-argument relations, and (3)
salience-based relations that can be used to encode
long-distance dependencies between topic-relevant
concepts. (Salience-based relations are discovered
using a technique first reported in (Harabagiu, 2004)
which approximates a Centering Theory-style ap-
proach (Kameyama, 1997) to the resolution of
coreference.)

Subtopic: Egypt’s production of toxins and BW agents
Topic Signature:
produce − phosphorous trichloride (TOXIN)
house − ORGANIZATION
cultivate − non−pathogenic Bacilus Subtilis (TOXIN)
produce − mycotoxins (TOXIN)
acquire − FACILITY

Subtopic: Egypt’s allies and partners
Topic Signature:
provide − COUNTRY
cultivate − COUNTRY
supply − precursors

cooperate − COUNTRY
train − PERSON
supply − know−how

Figure 3: Example of two topic signatures acquired
for the scenario illustrated in Figure 2.

We made the extraction relations associated with
each topic signature more general (a) by replacing
words with their (morphological) root form (e.g.
wounded with wound, weapons with weapon), (b)
by replacing lexemes with their subsuming category
from an ontology of 100,000 words (e.g. truck is re-
placed by VEHICLE, ARTIFACT, or OBJECT), and (c)
by replacing each name with its name class (Egypt
with COUNTRY). Figure 3 illustrates the topic sig-
natures resulting for the scenario illustrated in Fig-
ure 2.

Once extraction relations were obtained for a par-
ticular set of documents, the resulting set of re-
lations were ranked according to a method pro-
posed in (Yangarber, 2003). Under this approach,
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the score associated with each relation is given by:����� ��� � �	��
 ����������
 � 
��������	� � ��! � ��� , where " 	#" rep-
resents the cardinality of the documents where the
relation is identified, and

� �	! � �	� represents sup-
port associated with the relation � . � �	! � �	� is de-
fined as the sum of the relevance of each document
in 	 :

� �	! � �	�$
 %'&)( � �*�,+ �.- � . The relevance
of a document that contains a topic-significant re-
lation can be defined as: �*�/+ �.- �0
214365 � (,7 �

� 1438 ��� � � �	�9� , where : � represents the topic signature
of the subtopic4 . The accuracy of the relation, then,
is given by:

8 ��� � � �	�;
 <
 � 
 � %'&)( � �*�/+>=@? �.- �A3
%CBEDF � �*�/+>=HG �.- �9� . Here, �*�,+ � ? �.- � measures the rel-
evance of a subtopic

� � to a particular document
-
,

while �*�/+ � G �.- � measures the relevance of
-

to an-
other subtopic,

� B .
We use a different learner for each subtopic in or-

der to train simultaneously on each iteration. (The
calculation of topic signatures continues to iterate
until there are no more relations that can be added
to the overall topic signature.) When the precision
of a relation to a subtopic

� � is computed, it takes
into account the negative evidence of its relevance
to any other subtopic

� �JI
 � B . If
8 ��� � � ���JKML ,

the relation is not included in the topic signature,
where relations are ranked by the score

� �)� ��� � �	�N
8 ��� � � �	� � + ��O � � �	! � �	�9� .
Representing topics in terms of relevant concepts

and relations is important for the processing of ques-
tions asked within the context of a given topic. For
interactive Q/A, however, the ideal topic-structured
representation would be in the form of question-
answer pairs (QUABs) that model the individual
segments of the scenario. We have currently cre-
ated two sets of QUABs: a handcrafted set and
an automatically-generated set. For the manually-
created set of QUABs, 4 linguists manually gener-
ated 3210 question-answer pairs for each of the 8
dialogue scenarios considered in our experiments.

In a separate effort, we devised a process for au-
tomatically populating the QUAB for each scenario.
In order to generate question-answer pairs for each
subtopic, we first identified relevant text passages in
the document collection to serve as “answers” and
then generated individual questions that could be an-

4Initially, P Q contains only the seed relation. Additional
relations can be added with each iteration.

swered by each answer passage.R Answer Identification: We defined an an-
swer passage as a contiguous sequence of sentences
with a positive answer rank and a passage price
of K 4. To select answer passages for each sub-
topic

� � , we calculate an answer rank, ��SUTWV � SX�Y

% � ?

����� ��� � ���Z� , that sums across the scores of each
relation from the topic signature that is identified in
the same text window. Initially, the text window
is set to one sentence. (If the sentence is part of a
quote, however, the text window is immediately ex-
panded to encompass the entire sentence that con-
tains the quote.) Each passage with ��SUTWV � SX�\[]L is
then considered to be a candidate answer passage.
The text window of each candidate answer passage
is then expanded to include the following sentence.
If the answer rank does not increase with the addi-
tion of the succeeding sentence, then the price (

!
) of

the candidate answer passage is incremented by 1,
otherwise it is decremented by 1. The text window
of each candidate answer passage continues to ex-
pand until

! 
_^ . Before the ranked list of candidate
answers can be considered by the Question Genera-
tion module, answer passages with a positive price

!
are stripped of the last

!
sentences.

ANSWER
In the early 1970s, Egyptian President Anwar Sadat
validates that Egypt has a BW stockpile.

Predicate−Argument Structures
P1: validate

arguments: A0 = E2: Answer Type: Definition
A1 = P2: have

arguments: A0 = E3
A1 = E4

ArgM−TMP: E1: Answer Type: Time

P3: admit

Reference 4 (relational)

Egyptian President X

E5: BW program

Reference 2 (metonymic)

Reference 3 (part−whole)

QUESTIONS
Definition Pattern: Who is X?
Q1: Who is Anwar Sadat?
Pattern: When did E3 P1 to P2 E4?
Q2: When did Egypt validate to having BW stockpiles?
Pattern: When did E3 P3 to P2 E4?
Q3: When did Egypt admit to having BW stockpiles?
Pattern: When did E3 P3 to P2 E5?
Q4: When did Egypt admint to having a BW program?

E1: "in the early 1970s"; Category: TIME
E2: "Egyptian President Anwar Sadat"; Category: PERSON
E3: "Egypt"; Category: COUNTRY
E4: "BW stockpile"; Category: UNKNOWN

4 entities

2 predicates: P1="validate"; P2="has"

P
R

O
C

E
S

S
IN

G

Reference 1 (definitional)

Figure 4: Associating Questions with Answers.R Question Generation: In order to automati-
cally generate questions from answer passages, we
considered the following two problems:

� Problem 1: Every word in an answer passage
can refer to an entity, a relation, or an event. In
order for question generation be successful, we
must determine whether a particular reference
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is “interesting” enough to the scenario such that
it deserves to be mentioned in a topic-relevant
question. For example, Figure 4 illustrates an
answer that includes two predicates and four
entities. In this case, four types of reference are
used to associate these linguistic objects with
other related objects: (a) definitional reference,
used to link entity (E1) “Anwar Sadat” to a cor-
responding attribute “Egyptian President”, (b)
metonymic reference, since (E1) can be coerced
into (E2), (c) part-whole reference, since “BW
stockpiles”(E4) necessarily imply the existence
of a “BW program”(E5), and (d) relational ref-
erence, since validating is subsumed as part
of the meaning of declaring (as determined by
WordNet glosses), while admitting can be de-
fined in terms of declaring, as in declaring [to
be true].

ANSWER
Egyptian Deputy Minister Mahmud Salim states that Egypt’s

Egyptians have "adequate means of retaliating without delay".
enemies would never use BW because they are aware that the

Predicates: P’1=state; P’2 = never use; P3 = be aware;

Causality:

P’2(BW) = NON−NEGATIVE RESULT(P5); P’5 = "obstacle"
Reference: P’1          P’6 = view

QUESTIONS

Does Egypt view the possesion of BW as an obstacle?
Does Egypt view the possesion of BW as a deterrent?

P’4 = have         P"4 = "the possesion"

P"4 = "the possesion" = nominalization(P’4) = EFFECT(P’2(BW))

P
R

O
C

E
S

S
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G

sp
ec

ia
liz

at
io

n

Pattern: Does Egypt P’6 P"4(BW) as a P’5?

Figure 5: Questions for Implied Causal Relations.
� Problem 2: We have found that the identifica-

tion of the association between a candidate an-
swer and a question depends on (a) the recogni-
tion of predicates and entities based on both the
output of a named entity recognizer and a se-
mantic parser (Surdeanu et al., 2003) and their
structuring into predicate-argument frames, (b)
the resolution of reference (addressed in Prob-
lem 1), (c) the recognition of implicit rela-
tions between predications stated in the answer.
Some of these implicit relations are referential,
as is the relation between predicates

8
< and

8��
illustrated in Figure 4. A special case of im-
plicit relations are the causal relations. Fig-
ure 5 illustrates an answer where a causal re-
lation exists and is marked by the cue phrase
because. Predicates – like those in Figure 5 –
can be phrasal (like

8���
) or negative (like

8��� ).
Causality is established between predicates

8 ��
and

8��
’ as they are the ones that ultimately de-

termine the selection of the answer. The predi-
cate

! ��
can be substituted by its nominalization

since
� � O < of

8 � is BW, the same argument is
transferred to

8�� ��
. The causality implied by the

answer from Figure 5 has two components: (1)
the effect (i.e. the predicate

8 � ��
) and (2) the re-

sult, which eliminates the semantic effect of the
negative polarity item never by implying the
predicate

!	�
, obstacle. The questions that are

generated are based on question patterns asso-
ciated with causal relations and therefore allow
different degrees for the specificity of the resul-
tative, i.e obstacle or deterrent.

We generated several questions for each answer
passage. Questions were generated based on pat-
terns that were acquired to model interrogations
using relations between predicates and their argu-
ments. Such interrogations are based on (1) as-
sociations between the answer type (e.g. DATE)
and the question stem (e.g. “when” and (2) the
relation between predicates, question stem and the
words that determine the answer type (Narayanan
and Harabagiu, 2004). In order to obtain these
predicate-argument patterns, we used 30% (approxi-
mately 1500 questions) of the handcrafted question-
answer pairs, selected at random from each of the 8
dialogue scenarios. As Figures 4 and 5 illustrate, we
used patterns based on (a) embedded predicates and
(b) causal or counterfactual predicates.

4 Managing Interactive Q/A Dialogues

As illustrated in Figure 1, the main idea of man-
aging dialogues in which interactions with the Q/A
system occur is based on the notion of predictions,
i.e. by proposing to the user a small set of questions
that tackle the same subject as her question (as illus-
trated in Table 1). The advantage is that the user can
follow-up with one of the pre-processed questions,
that has a correct answer and resides in one of the
QUABs. This enhances the effectiveness of the dia-
logue. It also may impact on the efficiency, i.e. the
number of questions being asked if the QUABs have
good coverage of the subject areas of the scenario.
Moreover, complex questions, that generally are not
processed with high accuracy by current state-of-
the-art Q/A systems, are associated with predictive
questions that represent decompositions based on
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similarities between predicates and arguments of the
original question and the predicted questions.

The selection of the questions from the QUABs
that are proposed for each user question is based on
a similarity-metric that ranks the QUAB questions.
To compute the similarity metric, we have experi-
mented with seven different metrics. The first four
metrics were introduced in (Lytinen and Tomuro,
2002).

� Similarity Metric 1 is based on two process-
ing steps:
(a) the content words of the questions are
weighted using the ����� - � measure used in In-
formation Retrieval � � 
 � � � � � 
 � 1��
����� � �����Z�9�
	�����&�� ? , where � is the number of
questions in the QUAB,

- � � is the num-
ber of questions containing � � and ����� is
the number of times � � appears in the ques-
tion. This allows the user question and any
QUAB question to be transformed into two
vectors, �  
 ��� ���� � 
�
��������� � ��

�
and ��� 
��� � ��� � � ����������� � �"!

�
;

(b) the term vector similarity is used to compute
the similarity between the user question and
any question from the QUAB: # �%$ � � �� ��� �J
� % � �  ? � � ? ��&

�9� % � � � ? � ��('
� % � � �� ? � �� �

� Similarity Metric 2 is based on the percent of
user question terms that appear in the QUAB
question. It is obtained by finding the intersec-
tion of the terms in the term vectors of the two
questions.

� Similarity Metric 3 is based on semantic in-
formation available from WordNet. It involves:
(a) finding the minimum path between Word-
Net concepts. Given two terms � < and � � ,
each with T and ) WordNet senses

�
< 
* � < ��������� �,+.- and

� � 
 * � < ��������� ��/ - . The se-
mantic distance between the terms 0 � � < � � � � is
defined by the minimum of all the possible pair-
wise semantic distances between

�
< and

� � :0 � � < � � � � 
 13254 = ? ( �%�76 � G ( �
� 	
� � � � � B � , where

	 � � � � � B � is the path length between � � and � B .
(b) the semantic similarity between the user
question :  
8� � < �

� � ���������
� + � and the QUAB

question :9� 
 �;: < � : � ��������� :</
�

to be defined

as � �,) � : =� :>�/� 
 ? � 7
@ 6 7
A �CB ? � 7
A 6 7
@ �
 7 @ 
 B 
 7 A 
 , whereD � :�E � :>F��N
 % E (,7HG << B�IKJ�LNM<OQP M�R � E 6 F �
� Similarity Metric 4 is based on the question

type similarity. Instead of using the question
class, determined by its stem, whenever we
could recognize the answer type expected by
the question, we used it for matching. As back-
off only, we used a question type similarity
based on a matrix akin to the one reported in
(Lytinen and Tomuro, 2002)

� Similarity Metric 5 is based on question con-
cepts rather than question terms. In order to
translate question terms into concepts, we re-
placed (a) question stems (i.e. a WH-word +
NP construction) with expected answer types
(taken from the answer type hierarchy em-
ployed by FERRET’s Q/A system) and (b)
named entities with corresponding their corre-
sponding classes. Remaining nouns and verbs
were also replaced with their WordNet seman-
tic classes, as well. Each concept was then as-
sociated with a weight: concepts derived from
named entities classes were weighted heavier
than concepts from answer types, which were
in turn weighted heavier than concepts taken
from WordNet clases. Similarity was then com-
puted across “matching” concepts. 5 The resul-
tant similarity score was based on three vari-
ables:S

= sum of the weights of all concepts matched
between a user query ( T  ) and a QUAB query
( TVU );W = sum of the weights of all unmatched con-
cepts in T  ;X = sum of the weights of all unmatched con-
cepts in TVU ;
The similarity between T  and TYU was calcu-
lated as

S
3 � !

 ' W � 3
� ! U ' X � , where

!
 and! U were used as coefficients to penalize the con-

tribution of unmatched concepts in T  and TVU
respectively. 6

� Similarity Metric 6 is based on the fact that the
5In the case of ambiguous nouns and verbs associated with

multiple WordNet classes, all possible classes for a term were
considered in matching.

6We set Z @ = 0.4 and Z�[ = 0.1 in our experiments.
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Q1: Does Iran have an indigenous CW program?
(1b) Has the plant at Qazvin been linked to CW production?
(1c) What CW does Iran produce?

(1a) How did Iran start its CW program?

Q2: Where are Iran’s CW facilities located? (2a) What factories in Iran could produce CW?
(2b) Where are Iran’s stockpiles of CW?
(2c) Where has Iran bought equipment to produce CW?

Q3: What is Iran’s goal for its CW program? (3a) What motivated Iran to expand its chemical weapons program?
(3b) How do CW figure into Iran’s long−term strategic plan?
(3c) What are Iran’s future CW plans?

QUABs:

QUABs:

QUABs:

Answer(A3):

Answer(A2):

Answer (A1):
Although Iran is making a concerted effort to attain an independent production capability for all aspects of chemical
weapons program, it remains dependent on foreign sources for chemical warfare−related technologies.

According to several sources, Iran’s primary suspected chemical weapons production facility is located in the city of Damghan.

In their pursuit of regional hegemony, Iran and Iraq probably regard CW weapons and missiles as necessary to support their
political and military objectives. Possession of chemical weapons would likely lead to increased intimidation of their Gulf,
neighbors, as well as increased willingness to confront the United States.

Figure 6: A sample interactive Q/A dialogue.

QUAB questions are clustered based on their
mapping to a vector of important concepts in
the QUAB.The clustering was done using the
K-Nearest Neighbor (KNN) method (Dudani,
1976). Instead of measuring the similarity be-
tween the user question and each question in
the QUAB, similarities are computed only be-
tween the user question and the centroid of
each cluster.

� Similarity Metric 7 was derived from the re-
sults of Similarity Metrics 5 and 6 above. In
this case, if the QUAB question ( T U ) that was
deemed to be most similar to a user question
( T  ) under Similarity Metric 5 is contained
in the cluster of QUAB questions deemed to
be most similar to T  under Similarity Metric
6, then TVU receives a cluster adjustment score
in order to boost its ranking within its QUAB
cluster. We calculate the cluster adjustment
score as ���)� ��� � & B � TYU�� 
 � � � ) � � � 1 3 � � �9�9�� � � )�� � � � � , where � � represents the difference
in rank between the centroid of the cluster and
the previous rank of the QUAB question T U .

In the currently-implemented version of FERRET,
we used Similarity Metric 5 to automatically iden-
tify the set of 10 QUAB questions that were most
similar to a user’s question. These question-and-
answer pairs were then returned to the user – along
with answers from FERRET’s automatic Q/A system
– as potential continuations of the Q/A dialogue. We
used the remaining 6 similarity metrics described in

this section to manually assess the impact of simi-
larity on a Q/A dialogue.

5 Experiments with Interactive Q/A
Dialogues

To date, we have used FERRET to produce over 90
Q/A dialogues with human users. Figure 6 illustrates
three turns from a real dialogue from a human user
investigating Iran’s chemical weapons prorgram. As
it can be seen coherence can be established between
the user’s questions and the system’s answers (e.g.
Q3 is related to both A1 and A3) as well as between
the QUABs and the user’s follow-up questions (e.g.
QUAB (1b) is more related to Q2 than either Q1 or
A1). Coherence alone is not sufficient to analyze the
quality of interactions, however.

In order to better understand interactive Q/A dia-
logues, we have conducted three sets of experiments
with human users of FERRET. In these experiments,
users were allotted two hours to interact with Ferret
to gather information requested by a dialogue sce-
nario similar to the one presented in Figure 2. In
Experiment 1 (E1), 8 U.S. Navy Reserve (USNR)
intelligence analysts used FERRET to research 8 dif-
ferent scenarios related to chemical and biological
weapons. Experiment 2 and Experiment 3 consid-
ered several of the same scenarios addressed in E1:
E2 included 24 mixed teams of analysts and novice
users working with 2 scenarios, while E3 featured 4
USNR analysts working with 6 of the original 8 sce-
narios. (Details for each experiment are provided in
Table 2.) Users were also given a task to focus their
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research; in E1 and E3, users prepared a short report
detailing their findings; in E2, users were given a list
of “challenge” questions to answer.

Exp Users QUABs? Scenarios Topics
E1 8 Yes 8 Egypt BW, Russia CW, South

Africa CW, India CW, North
Korea CBW, Pakistan CW,
Libya CW, Iran CW

E2 24 Yes 2 Egypt BW, Russia CW
E3 4 No 6 Egypt BW, Russia CW, North

Korea CBW, Pakistan CW
India CW, Libya CW, Iran CW

Table 2: Experiment details

In E1 and E2, users had access to a total of 3210
QUAB questions that had been hand-created by de-
velopers for each the 8 dialogue scenarios. (Table 3
provides totals for each scenario.) In E3, users per-
formed research with a version of FERRET that in-
cluded no QUABs at all.

Scenario Handcrafted QUABs
INDIA 460
LIBYA 414
IRAN 522

NORTH KOREA 316
PAKISTAN 322

SOUTH AFRICA 454
RUSSIA 366
EGYPT 356

Testing Total 3210

Table 3: QUAB distribution over scenarios

We have evaluated FERRET by measuring effi-
ciency, effectiveness, and user satisfaction:

Efficiency FERRET’s QUAB collection enabled
users in our experiments to find more relevant infor-
mation by asking fewer questions. When manually-
created QUABs were available (E1 and E2), users
submitted an average of 12.25 questions each ses-
sion. When no QUABs were available (E3), users
entered a total of 44.5 questions per session. Table 4
lists the number of QUAB question-answer pairs se-
lected by users and the number of user questions en-
tered by users during the 8 scenarios considered in
E1. In E2, freed from the task of writing a research
report, users asked significantly (p � 0.05) fewer
questions and selected fewer QUABs than they did
in E1. (See Table 5).

Effectiveness QUAB question-answer pairs also
improved the overall accuracy of the answers re-
turned by FERRET. To measure the effectiveness of
a Q/A dialogue, human annotators were used to per-
form a post-hoc analysis of how relevant the QUAB
pairs returned by FERRET were to each question

Country n QUAB User Q Total
(avg.) (avg.) (avg.)

India 2 21.5 13.0 34.5
Libya 2 12.0 9.0 21.0
Iran 2 18.5 11.0 29.5
N.Korea 2 16.5 7.5 34.0
Pakistan 2 29.5 15.5 45.0
S.Africa 2 14.5 6.0 20.5
Russia 2 13.5 15.5 29.0
Egypt 2 15.0 20.5 35.5
TOTAL(E1) 16 17.63 12.25 29.88

Table 4: Efficiency of Dialogues in Experiment 1

Country n QUAB User Q Total
(avg.) (avg.) (avg.)

Russia 24 8.2 5.5 13.7
Egypt 24 10.8 7.6 18.4
TOTAL(E2) 48 9.50 6.55 16.05

Table 5: Efficiency of Dialogues in Experiment 2

entered by a user: each QUAB pair returned was
graded as “relevant” or “irrelevant” to a user ques-
tion in a forced-choice task. Aggregate relevance
scores were used to calculate (1) the percentage of
relevant QUAB pairs returned and (2) the mean re-
ciprocal rank (MRR) for each user question. MRR is
defined as <+ % � F < <� ? , whree ��� is the lowest rank of

any relevant answer for the � ��� user query7. Table 6
describes the performance of FERRET when each of
the 7 similarity measures presented in Section 4 are
used to return QUAB pairs in response to a query.
When only answers from FERRET’s automatic Q/A
system were available to users, only 15.7% of sys-
tem responses were deemed to be relevant to a user’s
query. In contrast, when manually-generated QUAB
pairs were introduced, as high as 84% of the sys-
tem’s responses were deemed to be relevant. The
results listed in Table 6 show that the best metric is
Similarity Metric 5. Thse results suggest that the
selection of relevant questions depends on sophis-
ticated similarity measures that rely on conceptual
hierarchies and semantic recognizers.

We evaluated the quality of each of the four
sets of automatically-generated QUABs in a sim-
ilar fashion. For each question submitted by a
user in E1, E2, and E3, we collected the top 5
QUAB question-answer pairs (as determined by
Similarity Metric 5) that FERRET returned. As with
the manually-generated QUABs, the automatically-

7We chose MRR as our scoring metric because it reflects the
fact that a user is most likely to examine the first few answers
from any system, but that all correct answers returned by the
system have some value because users will sometimes examine
a very large list of query results.
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% of Top 5 Responses % of Top 1 Responses MRR
Relevant to User Q Relevant to User Q

Without QUAB 15.73% 26.85% 0.325
Similarity 1 82.61% 60.63% 0.703
Similarity 2 79.95% 58.45% 0.681
Similarity 3 79.47% 56.04% 0.664
Similarity 4 78.26% 46.14% 0.592

Similarity 5 84.06% 68.36% 0.753
Similarity 6 81.64% 56.04% 0.671
Similarity 7 84.54% 64.01% 0.730

Table 6: Effectiveness of dialogs

generated pairs were submitted to human assessors
who annotated each as “relevant” or irrelevant to the
user’s query. Aggregate scores are presented in Ta-
ble 7.

Egypt Russia
Approach % of Top 5 % of Top 5

Responses Rel. MRR Responses Rel. MRR
to User Q to User Q

Approach 1 40.01% 0.295 60.25% 0.310
Approach 2 36.00% 0.243 72.00% 0.475
Approach 3 44.62% 0.271 60.00% 0.297
Approach 4 68.05% 0.510 68.00% 0.406

Table 7: Quality of QUABs acquired automatically

User Satisfaction Users were consistently satis-
fied with their interactions with FERRET. In all three
experiments, respondents claimed that they found
that FERRET (1) gave meaningful answers, (2) pro-
vided useful suggestions, (3) helped answer spe-
cific questions, and (4) promoted their general un-
derstanding of the issues considered in the scenario.
Complete results of this study are presented in Ta-
ble 88.

Factor E1 E2 E3
Promoted understanding 3.40 3.20 3.75
Helped with specific questions 3.70 3.60 3.25
Make good use of questions 3.40 3.55 3.0
Gave new scenario insights 3.00 3.10 2.2
Gave good collection coverage 3.75 3.70 3.75
Stimulated user thinking 3.50 3.20 2.75
Easy to use 3.50 3.55 4.10
Expanded understanding 3.40 3.20 3.00
Gave meaningful answers 4.10 3.60 2.75
Was helpful 4.00 3.75 3.25
Helped with new search methods 2.75 3.05 2.25
Provided novel suggestions 3.25 3.40 2.65
Is ready for work environment 2.85 2.80 3.25
Would speed up work 3.25 3.25 3.00
Overall like of system 3.75 3.60 3.75

Table 8: User Satisfaction Survey Results

6 Conclusions

We believe that the quality of Q/A interactions de-
pends on the modeling of scenario topics. An ideal
model is provided by question-answer databases
(QUABs) that are created off-line and then used to

8Evaluation scale: 1-does not describe the system, 5-
completely describes the system

make suggestions to a user of potential relevant con-
tinuations of a discourse. In this paper, we have
presented FERRET, an interactive Q/A system which
makes use of a novel Q/A architecture that integrates
QUAB question-answer pairs into the processing of
questions. Experiments with FERRET have shown
that, in addition to being rapidly adopted by users as
valid suggestions, the incorporation of QUABs into
Q/A can greatly improve the overall accuracy of an
interactive Q/A dialogue.
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Abstract

This paper regards Question Answering
(QA) as Question-Biased Term Extraction
(QBTE). This new QBTE approach lib-
erates QA systems from the heavy bur-
den imposed by question types (or answer
types). In conventional approaches, a QA
system analyzes a given question and de-
termines the question type, and then it se-
lects answers from among answer candi-
dates that match the question type. Con-
sequently, the output of a QA system is
restricted by the design of the question
types. The QBTE directly extracts an-
swers as terms biased by the question. To
confirm the feasibility of our QBTE ap-
proach, we conducted experiments on the
CRL QA Data based on 10-fold cross val-
idation, using Maximum Entropy Models
(MEMs) as an ML technique. Experimen-
tal results showed that the trained system
achieved 0.36 in MRR and 0.47 in Top5
accuracy.

1 Introduction

The conventional Question Answering (QA) archi-
tecture is a cascade of the following building blocks:

Question Analyzer analyzes a question sentence
and identifies the question types (or answer
types).

Document Retriever retrieves documents related
to the question from a large-scale document set.

Answer Candidate Extractor extracts answer
candidates that match the question types from
the retrieved documents.

Answer Selector ranks the answer candidates ac-
cording to the syntactic and semantic confor-
mity of each answer with the question and its
context in the document.

Typically, question types consist of named en-
tities, e.g., PERSON, DATE, and ORGANIZATION,
numerical expressions, e.g., LENGTH, WEIGHT,
SPEED, and class names, e.g., FLOWER, BIRD, and
FOOD. The question type is also used for selecting
answer candidates. For example, if the question type
of a given question is PERSON, the answer candidate
extractor lists only person names that are tagged as
the named entity PERSON.

The conventional QA architecture has a drawback
in that the question-type system restricts the range of
questions that can be answered by the system. It is
thus problematic for QA system developers to care-
fully design and build an answer candidate extrac-
tor that works well in conjunction with the question-
type system. This problem is particularly difficult
when the task is to develop a multilingual QA sys-
tem to handle languages that are unfamiliar to the
developer. Developing high-quality tools that can
extract named entities, numerical expressions, and
class names for each foreign language is very costly
and time-consuming.

Recently, some pioneering studies have inves-
tigated approaches to automatically construct QA
components from scratch by applying machine
learning techniques to training data (Ittycheriah et
al., 2001a)(Ittycheriah et al., 2001b)(Ng et al., 2001)
(Pasca and Harabagiu)(Suzuki et al., 2002)(Suzuki
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Table 1: Number of Questions in Question Types of CRL QA Data
# of Questions # of Question Types Example

1-9 74 AWARD, CRIME, OFFENSE
10-50 32 PERCENT, N PRODUCT, YEAR PERIOD

51-100 6 COUNTRY, COMPANY, GROUP
100-300 3 PERSON, DATE, MONEY

Total 115

et al., 2003) (Zukerman and Horvitz, 2001)(Sasaki
et al., 2004). These approaches still suffer from the
problem of preparing an adequate amount of training
data specifically designed for a particular QA sys-
tem because each QA system uses its own question-
type system. It is very typical in the course of sys-
tem development to redesign the question-type sys-
tem in order to improve system performance. This
inevitably leads to revision of a large-scale training
dataset, which requires a heavy workload.

For example, assume that you have to develop a
Chinese or Greek QA system and have 10,000 pairs
of question and answers. You have to manually clas-
sify the questions according to your own question-
type system. In addition, you have to annotate the
tags of the question types to large-scale Chinese or
Greek documents. If you wanted to redesign the
question type ORGANIZATION to three categories,
COMPANY, SCHOOL, and OTHER ORGANIZATION,
then the ORGANIZATION tags in the annotated doc-
ument set would need to be manually revisited and
revised.

To solve this problem, this paper regards Ques-
tion Answering as Question-Biased Term Extraction
(QBTE). This new QBTE approach liberates QA
systems from the heavy burden imposed by question
types.

Since it is a challenging as well as a very com-
plex and sensitive problem to directly extract an-
swers without using question types and only using
features of questions, correct answers, and contexts
in documents, we have to investigate the feasibility
of this approach: how well can answer candidates
be extracted, and how well are answer candidates
ranked?

In response, this paper employs the ma-
chine learning technique Maximum Entropy Models
(MEMs) to extract answers to a question from doc-
uments based on question features, document fea-
tures, and the combined features. Experimental re-
sults show the performance of a QA system that ap-

plies MEMs.

2 Preparation

2.1 Training Data

Document Set Japanese newspaper articles of The
Mainichi Newspaper published in 1995.

Question/Answer Set We used the CRL1 QA
Data (Sekine et al., 2002). This dataset com-
prises 2,000 Japanese questions with correct
answers as well as question types and IDs of
articles that contain the answers. Each ques-
tion is categorized as one of 115 hierarchically
classified question types.

The document set is used not only in the training
phase but also in the execution phrase.

Although the CRL QA Data contains question
types, the information of question types are not used
for the training. This is because more than the 60%
of question types have fewer than 10 questions as
examples (Table 1). This means it is very unlikely
that we can train a QA system that can handle this
60% due to data sparseness. 2 Only for the purpose
of analyzing experimental results in this paper do we
refer to the question types of the dataset.

2.2 Learning with Maximum Entropy Models

This section briefly introduces the machine learning
technique Maximum Entropy Models and describes
how to apply MEMs to QA tasks.

2.2.1 Maximum Entropy Models

Let X be a set of input symbols and Y be a set
of class labels. A sample (x, y) is a pair of input
x={x1,. . . , xm} (xi ∈ X ) and output y ∈ Y .

1Presently, National Institute of Information and Communi-
cations Technology (NICT), Japan

2A machine learning approach to hierarchical question anal-
ysis was reported in (Suzuki et al., 2003), but training and main-
taining an answer extractor for question types of fine granularity
is not an easy task.
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The Maximum Entropy Principle (Berger et al.,
1996) is to find a model p∗ = argmax

p∈C

H(p), which

means a probability model p(y|x) that maximizes
entropy H(p).

Given data (x(1), y(1)),. . .,(x(n), y(n)), let
⋃

k

(x(k) × {y(k)}) = {〈x̃1, ỹ1〉, ..., 〈x̃i, ỹi〉, ...,

〈x̃m, ỹm〉}. This means that we enumerate all pairs
of an input symbol and label and represent them as
〈x̃i, ỹi〉 using index i (1 ≤ i ≤ m).

In this paper, feature function fi is defined as fol-
lows.

fi(x, y) =

{

1 if x̃i ∈ x and y = ỹi

0 otherwise

We use all combinations of input symbols in x and
class labels for features (or the feature function) of
MEMs.

With Lagrangian λ = λ1, ..., λm, the dual func-
tion of H is:

Ψ(λ) = −
∑

x

p̃(x) log Zλ(x) +
∑

λip̃(fi),

where Zλ(x) =
∑

y

exp(
∑

i

λifi(x, y)) and p̃(x)

and p̃(fi) indicate the empirical distribution of x and
fi in the training data.

The dual optimization problem λ∗ =
argmax

λ

Ψ(λ) can be efficiently solved as an

optimization problem without constraints. As a
result, probabilistic model p∗ = pλ∗ is obtained as:

pλ∗(y|x) =
1

Zλ(x)
exp

(

∑

i

λifi(x, y)

)

.

2.2.2 Applying MEMs to QA
Question analysis is a classification problem that

classifies questions into different question types.
Answer candidate extraction is also a classifica-
tion problem that classifies words into answer types
(i.e., question types), such as PERSON, DATE, and
AWARD. Answer selection is an exactly classifica-
tion that classifies answer candidates as positive or
negative. Therefore, we can apply machine learning
techniques to generate classifiers that work as com-
ponents of a QA system.

In the QBTE approach, these three components,
i.e., question analysis, answer candidate extraction,

and answer selection, are integrated into one classi-
fier.

To successfully carry out this goal, we have to
extract features that reflect properties of correct an-
swers of a question in the context of articles.

3 QBTE Model 1

This section presents a framework, QBTE Model
1, to construct a QA system from question-answer
pairs based on the QBTE Approach. When a user
gives a question, the framework finds answers to the
question in the following two steps.

Document Retrieval retrieves the top N articles or
paragraphs from a large-scale corpus.

QBTE creates input data by combining the question
features and documents features, evaluates the
input data, and outputs the top M answers.3

Since this paper focuses on QBTE, this paper uses
a simple idf method in document retrieval.

Let wi be words and w1,w2,. . .wm be a docu-
ment. Question Answering in the QBTE Model 1
involves directly classifying words wi in the docu-
ment into answer words or non-answer words. That
is, given input x(i) for wi, its class label is selected
from among {I, O, B} as follows:

I: if the word is in the middle of the answer word
sequence;

O: if the word is not in the answer word sequence;

B: if the word is the start word of the answer word
sequence.

The class labeling system in our experiment is
IOB2 (Sang, 2000), which is a variation of
IOB (Ramshaw and Marcus, 1995).

Input x(i) of each word is defined as described be-
low.

3.1 Feature Extraction

This paper employs three groups of features as fea-
tures of input data:

• Question Feature Set (QF);

• Document Feature Set (DF);

• Combined Feature Set (CF), i.e., combinations
of question and document features.

3In this paper, M is set to 5.
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3.1.1 Question Feature Set (QF)
A Question Feature Set (QF) is a set of features

extracted only from a question sentence. This fea-
ture set is defined as belonging to a question sen-
tence.

The following are elements of a Question Feature
Set:

qw: an enumeration of the word n-grams (1 ≤
n ≤ N ), e.g., given question “What is CNN?”,
the features are {qw:What, qw:is, qw:CNN,
qw:What-is, qw:is-CNN } if N = 2,

qq: interrogative words (e.g., who, where, what,
how many),

qm1: POS1 of words in the question, e.g., given
“What is CNN?”, { qm1:wh-adv, qm1:verb,
qm1:noun } are features,

qm2: POS2 of words in the question,

qm3: POS3 of words in the question,

qm4: POS4 of words in the question.

POS1-POS4 indicate part-of-speech (POS) of the
IPA POS tag set generated by the Japanese mor-
phological analyzer ChaSen. For example, “Tokyo”
is analyzed as POS1 = noun, POS2 = propernoun,
POS3 = location, and POS4 = general. This paper
used up to 4-grams for qw.

3.1.2 Document Feature Set (DF)
Document Feature Set (DF) is a feature set ex-

tracted only from a document. Using only DF corre-
sponds to unbiased Term Extraction (TE).

For each word wi, the following features are ex-
tracted:

dw–k,. . .,dw+0,. . .,dw+k: k preceding and follow-
ing words of the word wi, e.g., { dw–1:wi−1,
dw+0:wi, dw+1:wi+1} if k = 1,

dm1–k,. . .,dm1+0,. . .,dm1+k: POS1 of k preced-
ing and following words of the word wi,

dm2–k,. . .,dm2+0,. . .,dm2+k: POS2 of k preced-
ing and following words of the word wi,

dm3–k,. . .,dm3+0,. . .,dm3+k: POS3 of k preced-
ing and following words of the word wi,

dm4–k,. . .,dm4+0,. . .,dm4+k: POS4 of k preced-
ing and following words of the word wi.

In this paper, k is set to 3 so that the window size is
7.

3.1.3 Combined Feature Set (CF)
Combined Feature Set (CF) contains features cre-

ated by combining question features and document
features. QBTE Model 1 employs CF. For each word
wi, the following features are created.

cw–k,. . .,cw+0,. . .,cw+k: matching results
(true/false) between each of dw–k,...,dw+k
features and any qw feature, e.g., cw–1:true if
dw–1:President and qw: President,

cm1–k,. . .,cm1+0,. . .,cm1+k: matching results
(true/false) between each of dm1–k,...,dm1+k
features and any POS1 in qm1 features,

cm2–k,. . .,cm2+0,. . .,cm2+k: matching results
(true/false) between each of dm2–k,...,dm2+k
features and any POS2 in qm2 features,

cm3–k,. . .,cm3+0,. . .,cm3+k: matching results
(true/false) between each of dm3–k,...,dm3+k
features and any POS3 in qm3 features,

cm4–k,. . .,cm4+0,. . .,cm4+k: matching results
(true/false) between each of dm4–k,...,dm4+k
features and any POS4 in qm4 features,

cq–k,. . .,cq+0,. . .,cq+k: combinations of each of
dw–k,...,dw+k features and qw features, e.g.,
cq–1:President&Who is a combination of dw–
1:President and qw:Who.

3.2 Training and Execution

The training phase estimates a probabilistic model
from training data (x(1),y(1)),...,(x(n),y(n)) gener-
ated from the CRL QA Data. The execution phase
evaluates the probability of y′(i) given inputx′(i) us-
ing the the probabilistic model.

Training Phase

1. Given question q, correct answer a, and docu-
ment d.

2. Annotate 〈A〉 and 〈/A〉 right before and after
answer a in d.

3. Morphologically analyze d.

4. For d = w1, ..., 〈A〉, wj , ..., wk, 〈/A〉, ..., wm,
extract features as x(1),...,x(m).

5. Class label y(i) = B if wi follows 〈A〉, y(i) = I

if wi is inside of 〈A〉 and 〈/A〉, and y(i) = O
otherwise.
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Table 2: Main Results with 10-fold Cross Validation
Correct Answer Rank

MRR Top51 2 3 4 5
Exact match 453 139 68 35 19 0.28 0.36
Partial match 684 222 126 80 48 0.43 0.58
Ave. 0.355 0.47
Manual evaluation 578 188 86 55 34 0.36 0.47

6. Estimate pλ∗ from (x(1),y(1)),...,(x(n),y(n)) us-
ing Maximum Entropy Models.

The execution phase extracts answers from re-
trieved documents as Term Extraction, biased by the
question.

Execution Phase

1. Given question q and paragraph d.

2. Morphologically analyze d.

3. For wi of d = w1, ..., wm, create input data
x′(i) by extracting features.

4. For each y′(j) ∈ Y , compute pλ ∗ (y′(j)|x′(i)),
which is a probability of y′(j) given x′(i).

5. For each x′(i), y′(j) with the highest probability
is selected as the label of wi.

6. Extract word sequences that start with the word
labeled B and are followed by words labeled I
from the labeled word sequence of d.

7. Rank the top M answers according to the prob-
ability of the first word.

This approach is designed to extract only the most
highly probable answers. However, pin-pointing
only answers is not an easy task. To select the top
five answers, it is necessary to loosen the condition
for extracting answers. Therefore, in the execution
phase, we only give label O to a word if its probabil-
ity exceeds 99%, otherwise we give the second most
probable label.

As a further relaxation, word sequences that in-
clude B inside the sequences are extracted for an-
swers. This is because our preliminary experiments
indicated that it is very rare for two answer candi-
dates to be adjacent in Question-Biased Term Ex-
traction, unlike an ordinary Term Extraction task.

4 Experimental Results

We conducted 10-fold cross validation using the
CRL QA Data. The output is evaluated using the
Top5 score and MRR.

Top5 Score shows the rate at which at least one
correct answer is included in the top 5 answers.

MRR (Mean Reciprocal Rank) is the average re-
ciprocal rank (1/n) of the highest rank n of a
correct answer for each question.

Judgment of whether an answer is correct is done
by both automatic and manual evaluation. Auto-
matic evaluation consists of exact matching and par-
tial matching. Partial matching is useful for ab-
sorbing the variation in extraction range. A partial
match is judged correct if a system’s answer com-
pletely includes the correct answer or the correct an-
swer completely includes a system’s answer. Table 2
presents the experimental results. The results show
that a QA system can be built by using our QBTE ap-
proach. The manually evaluated performance scored
MRR=0.36 and Top5=0.47. However, manual eval-
uation is costly and time-consuming, so we use au-
tomatic evaluation results, i.e., exact matching re-
sults and partial matching results, as a pseudo lower-
bound and upper-bound of the performances. Inter-
estingly, the manual evaluation results of MRR and
Top5 are nearly equal to the average between exact
and partial evaluation.

To confirm that the QBTE ranks potential answers
to the higher rank, we changed the number of para-
graphs retrieved from a large corpus from N =
1, 3, 5 to 10. Table 3 shows the results. Whereas
the performances of Term Extraction (TE) and Term
Extraction with question features (TE+QF) signifi-
cantly degraded, the performance of the QBTE (CF)
did not severely degrade with the larger number of
retrieved paragraphs.
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Table 3: Answer Extraction from Top N documents
Feature set Top N paragraphs Match Correct Answer Rank MRR Top5

1 2 3 4 5

1 Exact 102 109 80 71 62 0.11 0.21
Partial 207 186 155 153 121 0.21 0.41

3 Exact 65 63 55 53 43 0.07 0.14
TE (DF) Partial 120 131 112 108 94 0.13 0.28

5 Exact 51 38 38 36 36 0.05 0.10
Partial 99 80 89 81 75 0.10 0.21

10 Exact 29 17 19 22 18 0.03 0.07
Partial 59 38 35 49 46 0.07 0.14

1 Exact 120 105 94 63 80 0.12 0. 23
Partial 207 198 175 126 140 0.21 0 .42

TE (DF) 3 Exact 65 68 52 58 57 0.07 0.15
+ Partial 119 117 111 122 106 0.13 0.29

QF 5 Exact 44 57 41 35 31 0.05 0.10
Partial 91 104 71 82 63 0.10 0.21

10 Exact 28 42 30 28 26 0.04 0.08
Partial 57 68 57 56 45 0.07 0.14

1 Exact 453 139 68 35 19 0.28 0.36
Partial 684 222 126 80 48 0.43 0.58

3 Exact 403 156 92 52 43 0.27 0.37
QBTE (CF) Partial 539 296 145 105 92 0.42 0.62

5 Exact 381 153 92 59 50 0.26 0.37
Partial 542 291 164 122 102 0.40 0.61

10 Exact 348 128 92 65 57 0.24 0.35
Partial 481 257 173 124 102 0.36 0.57

5 Discussion

Our approach needs no question type system, and it
still achieved 0.36 in MRR and 0.47 in Top5. This
performance is comparable to the results of SAIQA-
II (Sasaki et al., 2004) (MRR=0.4, Top5=0.55)
whose question analysis, answer candidate extrac-
tion, and answer selection modules were indepen-
dently built from a QA dataset and an NE dataset,
which is limited to eight named entities, such as
PERSON and LOCATION. Since the QA dataset is
not publicly available, it is not possible to directly
compare the experimental results; however we be-
lieve that the performance of the QBTE Model 1 is
comparable to that of the conventional approaches,
even though it does not depend on question types,
named entities, or class names.

Most of the partial answers were judged correct
in manual evaluation. For example, for “How many
times bigger ...?”, “two times” is a correct answer
but “two” was judged correct. Suppose that “John
Kerry” is a prepared correct answer in the CRL QA
Data. In this case, “Senator John Kerry” would also
be correct. Such additions and omissions occur be-
cause our approach is not restricted to particular ex-
traction units, such as named entities or class names.

The performance of QBTE was affected little by
the larger number of retrieved paragraphs, whereas
the performances of TE and TE + QF significantly
degraded. This indicates that QBTE Model 1 is not
mere Term Extraction with document retrieval but
Term Extraction appropriately biased by questions.

Our experiments used no information about ques-
tion types given in the CRL QA Data because we are
seeking a universal method that can be used for any
QA dataset. Beyond this main goal, as a reference,
The Appendix shows our experimental results clas-
sified into question types without using them in the
training phase. The results of automatic evaluation
of complete matching are in Top5 (T5), and MRR
and partial matching are in Top5 (T5’) and MRR’.
It is interesting that minor question types were cor-
rectly answered, e.g., SEA and WEAPON, for which
there was only one training question.

We also conducted an additional experiment, as a
reference, on the training data that included question
types defined in the CRL QA Data; the question-
type of each question is added to the qw feature. The
performance of QBTE from the first-ranked para-
graph showed no difference from that of experi-
ments shown in Table 2.
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6 Related Work

There are two previous studies on integrating
QA components into one using machine learn-
ing/statistical NLP techniques. Echihabi et al. (Echi-
habi et al., 2003) used Noisy-Channel Models to
construct a QA system. In this approach, the range
of Term Extraction is not trained by a data set but se-
lected from answer candidates, e.g., named entities
and noun phrases, generated by a decoder. Lita et
al. (Lita and Carbonell, 2004) share our motivation
to build a QA system only from question-answer
pairs without depending on the question types. Their
method finds clusters of questions and defines how
to answer questions in each cluster. However, their
approach is to find snippets, i.e., short passages
including answers, not exact answers extracted by
Term Extraction.

7 Conclusion

This paper described a novel approach to extract-
ing answers to a question using probabilistic mod-
els constructed from only question-answer pairs.
This approach requires no question type system, no
named entity extractor, and no class name extractor.
To the best of our knowledge, no previous study has
regarded Question Answering as Question-Biased
Term Extraction. As a feasibility study, we built
a QA system using Maximum Entropy Models on
a 2000-question/answer dataset. The results were
evaluated by 10-fold cross validation, which showed
that the performance is 0.36 in MRR and 0.47 in
Top5. Since this approach relies on a morphological
analyzer, applying the QBTE Model 1 to QA tasks
of other languages is our future work.
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Appendix: Analysis of Evaluation Results w.r.t.
Question Type — Results of QBTE from the first-
ranked paragraph (NB: No information about these
question types was used in the training phrase.)

Question Type #Qs MRR T5 MRR’ T5’
GOE 36 0.30 0.36 0.41 0.53
GPE 4 0.50 0.50 1.00 1.00

N EVENT 7 0.76 0.86 0.76 0.86
EVENT 19 0.17 0.21 0.41 0.53
GROUP 74 0.28 0.35 0.45 0.62

SPORTS TEAM 15 0.28 0.40 0.45 0.73
BROADCAST 1 0.00 0.00 0.00 0.00

POINT 2 0.00 0.00 0.00 0.00
DRUG 2 0.00 0.00 0.00 0.00

SPACESHIP 4 0.88 1.00 0.88 1.00
ACTION 18 0.22 0.22 0.30 0.44

MOVIE 6 0.50 0.50 0.56 0.67
MUSIC 8 0.19 0.25 0.56 0.62

WATER FORM 3 0.50 0.67 0.50 0.67
CONFERENCE 17 0.14 0.24 0.46 0.65

SEA 1 1.00 1.00 1.00 1.00
PICTURE 1 0.00 0.00 0.00 0.00
SCHOOL 21 0.10 0.10 0.33 0.43

ACADEMIC 5 0.20 0.20 0.37 0.60
PERCENT 47 0.35 0.43 0.43 0.55

COMPANY 77 0.45 0.55 0.57 0.70
PERIODX 1 1.00 1.00 1.00 1.00

RULE 35 0.30 0.43 0.49 0.69
MONUMENT 2 0.00 0.00 0.25 0.50

SPORTS 9 0.17 0.22 0.40 0.67
INSTITUTE 26 0.38 0.46 0.53 0.69

MONEY 110 0.33 0.40 0.48 0.63
AIRPORT 4 0.38 0.50 0.44 0.75

MILITARY 4 0.00 0.00 0.25 0.25
ART 4 0.25 0.50 0.25 0.50

MONTH PERIOD 6 0.06 0.17 0.06 0.17
LANGUAGE 3 1.00 1.00 1.00 1.00

COUNTX 10 0.33 0.40 0.38 0.60
AMUSEMENT 2 0.00 0.00 0.00 0.00

PARK 1 0.00 0.00 0.00 0.00
SHOW 3 0.78 1.00 1.11 1.33

PUBLIC INST 19 0.18 0.26 0.34 0.53
PORT 3 0.17 0.33 0.33 0.67

N COUNTRY 8 0.28 0.38 0.32 0.50
NATIONALITY 4 0.50 0.50 1.00 1.00

COUNTRY 84 0.45 0.60 0.51 0.67
OFFENSE 9 0.23 0.44 0.23 0.44

CITY 72 0.41 0.50 0.53 0.65
N FACILITY 4 0.25 0.25 0.38 0.50

FACILITY 11 0.20 0.36 0.25 0.55
TIMEX 3 0.00 0.00 0.00 0.00

TIME TOP 2 0.00 0.00 0.50 0.50
TIME PERIOD 8 0.12 0.12 0.48 0.75

TIME 13 0.22 0.31 0.29 0.38
ERA 3 0.00 0.00 0.33 0.33

PHENOMENA 5 0.50 0.60 0.60 0.80
DISASTER 4 0.50 0.75 0.50 0.75

OBJECT 5 0.47 0.60 0.47 0.60
CAR 1 1.00 1.00 1.00 1.00

RELIGION 5 0.30 0.40 0.30 0.40
WEEK PERIOD 4 0.05 0.25 0.55 0.75

WEIGHT 12 0.21 0.25 0.31 0.42
PRINTING 6 0.17 0.17 0.38 0.50

Question Type #Q MRR T5 MRR’ T5’
RANK 7 0.18 0.29 0.54 0.71
BOOK 6 0.31 0.50 0.47 0.67

AWARD 9 0.17 0.33 0.34 0.56
N LOCATION 2 0.10 0.50 0.10 0.50
VEGETABLE 10 0.31 0.50 0.34 0.60

COLOR 5 0.20 0.20 0.20 0.20
NEWSPAPER 7 0.61 0.71 0.61 0.71

WORSHIP 8 0.47 0.62 0.62 0.88
SEISMIC 1 0.00 0.00 1.00 1.00

N PERSON 72 0.30 0.39 0.43 0.60
PERSON 282 0.18 0.21 0.46 0.55
NUMEX 19 0.32 0.32 0.35 0.47

MEASUREMENT 1 0.00 0.00 0.00 0.00
P ORGANIZATION 3 0.33 0.33 0.67 0.67

P PARTY 37 0.30 0.41 0.43 0.57
GOVERNMENT 37 0.50 0.54 0.53 0.57

N PRODUCT 41 0.25 0.37 0.37 0.56
PRODUCT 58 0.24 0.34 0.44 0.69

WAR 2 0.75 1.00 0.75 1.00
SHIP 7 0.26 0.43 0.40 0.57

N ORGANIZATION 20 0.14 0.25 0.28 0.55
ORGANIZATION 23 0.08 0.13 0.20 0.30

SPEED 1 0.00 0.00 1.00 1.00
VOLUME 5 0.00 0.00 0.18 0.60

GAMES 8 0.28 0.38 0.34 0.50
POSITION TITLE 39 0.20 0.28 0.30 0.44

REGION 22 0.17 0.23 0.46 0.64
GEOLOGICAL 3 0.42 0.67 0.42 0.67

LOCATION 2 0.00 0.00 0.50 0.50
EXTENT 22 0.04 0.09 0.13 0.18

CURRENCY 1 0.00 0.00 0.00 0.00
STATION 3 0.50 0.67 0.50 0.67

RAILROAD 1 0.00 0.00 0.25 1.00
PHONE 1 0.00 0.00 0.00 0.00

PROVINCE 36 0.30 0.33 0.45 0.50
N ANIMAL 3 0.11 0.33 0.22 0.67

ANIMAL 10 0.26 0.50 0.31 0.60
ROAD 1 0.00 0.00 0.50 1.00

DATE PERIOD 9 0.11 0.11 0.33 0.33
DATE 130 0.24 0.32 0.41 0.58

YEAR PERIOD 34 0.22 0.29 0.38 0.59
AGE 22 0.34 0.45 0.44 0.59

MULTIPLICATION 9 0.39 0.44 0.56 0.67
CRIME 4 0.75 0.75 0.75 0.75

AIRCRAFT 2 0.00 0.00 0.25 0.50
MUSEUM 3 0.33 0.33 0.33 0.33
DISEASE 18 0.29 0.50 0.43 0.72

FREQUENCY 13 0.18 0.31 0.19 0.38
WEAPON 1 1.00 1.00 1.00 1.00

MINERAL 18 0.16 0.22 0.25 0.39
METHOD 29 0.39 0.48 0.48 0.62

ETHNIC 3 0.42 0.67 0.75 1.00
NAME 5 0.20 0.20 0.40 0.40
SPACE 4 0.50 0.50 0.50 0.50

THEORY 1 0.00 0.00 0.00 0.00
LANDFORM 5 0.13 0.40 0.13 0.40

TRAIN 2 0.17 0.50 0.17 0.50
2000 0.28 0.36 0.43 0.58
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Abstract

This paper presents a corpus study that ex-
plores the extent to which captions con-
tribute to recognizing the intended mes-
sage of an information graphic. It then
presents an implemented graphic interpre-
tation system that takes into account a va-
riety of communicative signals, and an
evaluation study showing that evidence
obtained from shallow processing of the
graphic’s caption has a significant impact
on the system’s success. This work is part
of a larger project whose goal is to provide
sight-impaired users with effective access
to information graphics.

1 Introduction

Language research has posited that a speaker or
writer executes a speech act whose intended mean-
ing he expects the listener to be able to deduce, and
that the listener identifies the intended meaning by
reasoning about the observed signals and the mutual
beliefs of author and interpreter (Grice, 1969; Clark,
1996). But as noted by Clark (Clark, 1996), lan-
guage is more than just words. It is any “signal” (or
lack of signal when one is expected), where a sig-
nal is a deliberate action that is intended to convey a
message.

Although some information graphics are only in-
tended to display data values, the overwhelming ma-
jority of the graphics that we have examined (taken

∗Authors can be reached via email as fol-
lows: elzer@cs.millersville.edu, nlgreen@uncg.edu,
{carberry, chester, demir, trnka}@cis.udel.edu, In-
grid.Zukerman@infotech.monash.edu.au.
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Figure 1: Graphic from a 2001 Local Newspaper

from newspaper, magazine, and web articles) ap-
pear to have some underlying goal or intended mes-
sage, such as the graphic in Figure 1 whose com-
municative goal is ostensibly to convey the sharp in-
crease in local bankruptcies in the current year com-
pared with the previous decreasing trend. Applying
Clark’s view of language, it is reasonable to presume
that the author of an information graphic expects the
viewer to deduce from the graphic the message that
the graphic was intended to convey, by reasoning
about the graphic itself, the salience of entities in
the graphic, and the graphic’s caption.

This paper adopts Clark’s view of language as any
deliberate signal that is intended to convey a mes-
sage. Section 3 investigates the kinds of signals used
in information graphics. Section 4 presents a cor-
pus study that investigates the extent to which cap-
tions capture the message of the graphic, illustrates
the issues that would arise in trying to fully under-
stand such captions, and proposes shallow process-
ing of the caption to extract evidence from it. Sec-
tion 5 then describes how evidence obtained from
a variety of communicative signals, including shal-
low processing of the graphic’s caption, is used in a
probabilistic system for hypothesizing the intended
message of the graphic. Section 6 presents an eval-

223



10

 5

15

0−680+ 65−79 7−19 35−4980+65−7950−6435−49

10

 5

15

20−347−190−6 20−3450−64

(a) (b)
Figure 2: Two Alternative Graphs from the Same Data

uation showing the system’s success, with particu-
lar attention given to the impact of evidence from
shallow processing of the caption, and Section 7 dis-
cusses future work.

Although we believe that our findings are ex-
tendible to other kinds of information graphics, our
current work focuses on bar charts. This research is
part of a larger project whose goal is a natural lan-
guage system that will provide effective access to
information graphics for individuals with sight im-
pairments, by inferring the intended message under-
lying the graphic, providing an initial summary of
the graphic that includes the intended message along
with notable features of the graphic, and then re-
sponding to follow-up questions from the user.

2 Related Work

Our work is related to efforts on graph summariza-
tion. (Yu et al., 2002) used pattern recognition tech-
niques to summarize interesting features of automat-
ically generated graphs of time-series data from a
gas turbine engine. (Futrelle and Nikolakis, 1995)
developed a constraint grammar for parsing vector-
based visual displays and producing representations
of the elements comprising the display. The goal
of Futrelle’s project is to produce a graphic that
summarizes one or more graphics from a document
(Futrelle, 1999). The summary graphic might be a
simplification of a graphic or a merger of several
graphics from the document, along with an appropri-
ate summary caption. Thus the end result of summa-
rization will itself be a graphic. The long range goal
of our project, on the other hand, is to provide alter-
native access to information graphics via an initial
textual summary followed by an interactive follow-
up component for additional information. The in-

tended message of the graphic will be an important
component of the initial summary, and hypothesiz-
ing it is the goal of our current work.

3 Evidence about the Intended Message

The graphic designer has many alternative ways of
designing a graphic; different designs contain differ-
ent communicative signals and thus convey differ-
ent communicative intents. For example, consider
the two graphics in Figure 2. The graphic in Fig-
ure 2a conveys that average doctor visits per year
is U-shaped by age; it starts out high when one is
very young, decreases into middle age, and then
rises again as one ages. The graphic in Figure 2b
presents the same data; but instead of conveying a
trend, this graphic seems to convey that the elderly
and the young have the highest number of doctor vis-
its per year. These graphics illustrate how choice of
design affects the message that the graphic conveys.

Following the AutoBrief work (Kerpedjiev and
Roth, 2000) (Greenet al., 2004) on generating
graphics that fulfill communicative goals, we hy-
pothesize that the designer chooses a design that best
facilitates the perceptual and cognitive tasks that
are most important to conveying his intended mes-
sage, subject to the constraints imposed by compet-
ing tasks. Byperceptual taskswe mean tasks that
can be performed by simply viewing the graphic,
such as finding the top of a bar in a bar chart; by
cognitive taskswe mean tasks that are done via men-
tal computations, such as computing the difference
between two numbers.

Thus one source of evidence about the intended
message is the relative difficulty of the perceptual
tasks that the viewer would need to perform in order
to recognize the message. For example, determining
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the entity with maximum value in a bar chart will be
easiest if the bars are arranged in ascending or de-
scending order of height. We have constructed a set
of rules, based on research by cognitive psycholo-
gists, that estimate the relative difficulty of perform-
ing different perceptual tasks; these rules have been
validated by eye-tracking experiments and are pre-
sented in (Elzeret al., 2004).

Another source of evidence is entities that have
been made salient in the graphic by some kind of fo-
cusing device, such as coloring some elements of the
graphic, annotations such as an asterisk, or an arrow
pointing to a particular location in a graphic. Enti-
ties that have been made salient suggest particular
instantiations of perceptual tasks that the viewer is
expected to perform, such as comparing the heights
of two highlighted bars in a bar chart.

And lastly, one would expect captions to help con-
vey the intended message of an information graphic.
The next section describes a corpus study that we
performed in order to explore the usefulness of cap-
tions and how we might exploit evidence from them.

4 A Corpus Study of Captions

Although one might suggest relying almost ex-
clusively on captions to interpret an information
graphic, (Corio and Lapalme, 1999) found in a cor-
pus study that captions are often very general. The
objective of their corpus study was to categorize the
kinds of information in captions so that their find-
ings could be used in forming rules for generating
graphics with captions.

Our project is instead concerned with recogniz-
ing the intended message of an information graphic.
To investigate how captions might be used in a sys-
tem for understanding information graphics, we per-
formed a corpus study in which we analyzed the
first 100 bar charts from our corpus of information
graphics; this corpus contains a variety of bar charts
from different publication venues. The following
subsections present the results of this corpus study.

4.1 Do Captions Convey the Intended
Message?

Our first investigation explored the extent to which
captions capture the intended message of an infor-
mation graphic. We extracted the first 100 graphics

Category #

Category-1: Captures intention (mostly) 34
Category-2: Captures intention (somewhat)15
Category-3: Hints at intention 7
Category-4: No contribution to intention 44

Figure 3: Analysis of 100 Captions on Bar Charts

from our corpus of bar charts. The intended mes-
sage of each bar chart had been previously annotated
by two coders. The coders were asked to identify
1) the intended message of the graphic using a list
of 12 high-level intentions (see Section 5 for exam-
ples) and 2) the instantiation of the parameters. For
example, if the coder classified the intended mes-
sage of a graphic asChange-trend, the coder was
also asked to identify where the first trend began,
its general slope (increasing, decreasing, or stable),
where the change in trend occurred, the end of the
second trend, and the slope of the second trend. If
there was disagreement between the coders on either
the intention or the instantiation of the parameters,
we utilized consensus-based annotation (Anget al.,
2002), in which the coders discussed the graphic to
try to come to an agreement. As observed by (Ang
et al., 2002), this allowed us to include the “harder”
or less obvious graphics in our study, thus lowering
our expected system performance. We then exam-
ined the caption of each graphic, and determined to
what extent the caption captured the graphic’s in-
tended message. Figure 3 shows the results. 44%
of the captions in our corpus did not convey to any
extent the message of the information graphic. The
following categorizes the purposes that these cap-
tions served, along with an example of each:

• general heading (8 captions):“UGI Monthly
Gas Rates”on a graphic conveying a recent
spike in home heating bills.

• reference to dependent axis (15 captions):
“Lancaster rainfall totals for July” on a
graphic conveying that July-02 was the driest
of the previous decade.

• commentary relevant to graphic (4 captions):
“Basic performers: One look at the best per-
forming stocks in the Standard&Poor’s 500 in-
dex this year shows that companies with ba-
sic businesses are rewarding investors”on a
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graphic conveying the relative rank of different
stocks, some of which were basic businesses
and some of which were not. This type of in-
formation was classified asdeductiveby (Corio
and Lapalme, 1999) since it draws a conclusion
from the data depicted in the graphic.

• commentary extending message of graphic (8
captions): “Profits are getting squeezed”on
a graphic conveying that Southwest Airlines
net income is estimated to increase in 2003 af-
ter falling the preceding three years. Here the
commentary does not draw a conclusion from
the data in the graphic but instead supplements
the graphic’s message. However this type of
caption would probably fall into thedeductive
class in (Corio and Lapalme, 1999).

• humor (7 captions):“The Sound of Sales”on
a graphic conveying the changing trend (down-
ward after years of increase) in record album
sales. This caption has nothing to do with the
change-trend message of the graphic, but ap-
pears to be an attempt at humor.

• conclusion unwarranted by graphic (2 cap-
tions): “Defense spending declines”on a
graphic that in fact conveys that recent defense
spending is increasing.

Slightly over half the captions (56%) contributed
to understanding the graphic’s intended message.
34% were judged to convey most of the intended
message. For example, the caption“Tennis play-
ers top nominees”appeared on a graphic whose in-
tended message is to convey that more tennis players
were nominated for the 2003 Laureus World Sports
Award than athletes from any other sport. Since we
argue that captions alone are insufficient for inter-
preting information graphics, in the few cases where
it was unclear whether a caption should be placed
in Category-1 or Category-2, we erred on the side
of over-rating the contribution of a caption to the
graphic’s intended message. For example, consider
the caption“Chirac is riding high in the polls”
which appeared on a graphic conveying that there
has been a steady increase in Chirac’s approval rat-
ings from 55% to about 75%. Although this caption
does not fully capture the communicative intention

of the graphic (since it does not capture the steady
increase conveyed by the graphic), we placed it in
the first category since one might argue thatriding
high in the pollswould suggest both high and im-
proving ratings.

15% of the captions were judged to convey only
part of the graphic’s intended message; an example
is “Drug spending for young outpace seniors”that
appears on a graphic whose intended message ap-
pears to be that there is a downward trend by age for
increased drug spending; we classified the caption
in Category-2 since the caption fails to capture that
the graphic is talking about percent increasesin drug
spending, not absolute drug spending, and that the
graphic conveys the downward trend for increases in
drug spending by age group, not just that increases
for the young were greater than for the elderly.

7% of the captions were judged to only hint at the
graphic’s message. An example is“GM’s Money
Machine” which appeared on a graphic whose in-
tended message was a contrast of recent perfor-
mance against the previous trend — ie., that al-
though there had been a steady decrease in the per-
centage of GM’s overall income produced by its fi-
nance unit, there was now a substantial increase in
the percentage provided by the finance unit. Since
the termmoney machineis a colloquialism that sug-
gests making a lot of money, the caption was judged
to hint at the graphic’s intended message.

4.2 Understanding Captions

For the 49 captions in Category 1 or 2 (where the
caption conveyed at least some of the message of
the graphic), we examined how well the caption
could be parsed and understood by a natural lan-
guage system. We found that 47% were fragments
(for example,“A Growing Biotech Market”), or in-
volved some other kind of ill-formedness (for ex-
ample,“Running tops in sneaker wear in 2002”or
“More seek financial aid”1). 16% would require ex-
tensive domain knowledge or analogical reasoning
to understand. One example is“Chirac is riding
high in the polls”which would require understand-
ing the meaning ofriding high in the polls. Another
example is“Bad Moon Rising”; here the verbris-
ing suggests that something is increasing, but the

1Here we judge the caption to be ill-formed due to the ellip-
sis sinceMoreshould beMore students.
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system would need to understand that abad moon
refers to something undesirable (in this case, delin-
quent loans).

4.3 Simple Evidence from Captions

Although our corpus analysis showed that captions
can be helpful in understanding the message con-
veyed by an information graphic, it also showed that
full understanding of a caption would be problem-
atic; moreover, once the caption was understood, we
would still need to relate it to the information ex-
tracted from the graphic itself, which appears to be
a difficult problem.

Thus we began investigating whether shallow pro-
cessing of the caption might provide evidence that
could be effectively combined with other evidence
obtained from the graphic itself. Our analysis pro-
vided the following observations:

• Verbs in a caption often suggest the kind of
message being conveyed by the graphic. An
example from our corpus is“Boating deaths
decline”; the verb decline suggests that the
graphic conveys a decreasing trend. Another
example from our corpus is“American Express
total billings still lag” ; the verblag suggests
that the graphic conveys that some entity (in
this caseAmerican Express) is ranked behind
some others.

• Adjectives in a caption also often suggest the
kind of message being conveyed by the graphic.
An example from our corpus is“Air Force has
largest percentage of women”; the adjective
largest suggests that the graphic is conveying
an entity whose value is largest. Adjectives de-
rived from verbs function similarly to verbs.
An example from our corpus is“Soaring De-
mand for Servers”which is the caption on a
graphic that conveys the rapid increase in de-
mand for servers. Here the adjectivesoaringis
derived from the verbsoar, and suggests that
the graphic is conveying a strong increase.

• Nouns in a caption often refer to an entity that
is a label on the independent axis. When this
occurs, the caption brings the entity into focus
and suggests that it is part of the intended mes-
sage of the graphic. An example from our cor-

pus is“Germans miss their marks”where the
graphic displays a bar chart that is intended to
convey that Germans are the least happy with
the Euro. Words that usually appear as verbs,
but are used in the caption as a noun, may func-
tion similarly to verbs. An example is“Cable
On The Rise”; in this caption,rise is used as a
noun, but suggests that the graphic is conveying
an increase.

5 Utilizing Evidence

We developed and implemented a probabilistic
framework for utilizing evidence from a graphic and
its caption to hypothesize the graphic’s intended
message. To identify the intended message of a
new information graphic, the graphic is first given
to a Visual Extraction Module (Chester and Elzer,
2005) that is responsible for recognizing the indi-
vidual components of a graphic, identifying the re-
lationship of the components to one another and to
the graphic as a whole, and classifying the graphic
as to type (bar chart, line graph, etc.); the result is
an XML file that describes the graphic and all of its
components.

Next a Caption Processing Module analyzes the
caption. To utilize verb-related evidence from cap-
tions, we identified a set of verbs that would indicate
each category of high-level goal2, such asrecover
for Change-trend andbeatsfor Relative-difference;
we then extended the set of verbs by examining
WordNet for verbs that were closely related in mean-
ing, and constructed a verb class for each set of
closely related verbs. Adjectives such asmoreand
mostwere handled in a similar manner. The Caption
Processing Module applies a part-of-speech tagger
and a stemmer to the caption in order to identify
nouns, adjectives, and the root form of verbs and
adjectives derived from verbs. The XML represen-
tation of the graphic is augmented to indicate any
independent axis labels that match nouns in the cap-
tion, and the presence of a verb or adjective class in
the caption.

The Intention Recognition Module then analyzes
the XML file to build the appropriate Bayesian net-
work; the current system is limited to bar charts, but

2As described in the next paragraph, there are 12 categories
of high-level goals.
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the principles underlying the system should be ex-
tendible to other kinds of information graphics. The
network is described in (Elzeret al., 2005). Very
briefly, our analysis of simple bar charts has shown
that the intended message can be classified into one
of 12 high-level goals; examples of such goals in-
clude:

• Change-trend: Viewer to believe that there
is a <slope-1> trend from <param1>
to <param2> and a significantly differ-
ent <slope-2> trend from <param3> to
<param4>

• Relative-difference:Viewer to believe that the
value of element<param1> is <comparison>
the value of element<param2> where
<comparison> is greater-than, less-than, or
equal-to.

Each category of high-level goal is represented by a
node in the network (whose parent is the top-level
goal node), and instances of these goals (ie., goals
with their parameters instantiated) appear as chil-
dren with inhibitory links (Huber et al., 1994) cap-
turing their mutual exclusivity. Each goal is broken
down further into subtasks (perceptual or cognitive)
that the viewer would need to perform in order to
accomplish the goal of the parent node. The net-
work is built dynamically when the system is pre-
sented with a new information graphic, so that nodes
are added to the network only as suggested by the
graphic. For example, low-level nodes are added for
the easiest primitive perceptual tasks and for per-
ceptual tasks in which a parameter is instantiated
with a salient entity (such as an entity colored dif-
ferently from others in the graphic or an entity that
appears as a noun in the caption), since the graphic
designer might have intended the viewer to perform
these tasks; then higher-level goals that involve these
tasks are added, until eventually a link is established
to the top-level goal node.

Next evidence nodes are added to the network to
capture the kinds of evidence noted in Sections 3
and 4.3. For example, evidence nodes are added to
the network as children of each low-level perceptual
task; these evidence nodes capture the relative dif-
ficulty (categorized as easy, medium, hard, or im-
possible) of performing the perceptual task as esti-

mated by our effort estimation rules mentioned in
Section 3, whether a parameter in the task refers to
an entity that is salient in the graphic, and whether
a parameter in the task refers to an entity that is a
noun in the caption. An evidence node, indicating
for each verb class whether that verb class appears
in the caption (either as a verb, or as an adjective de-
rived from a verb, or as a noun that can also serve as
a verb) is added as a child of the top level goal node.
Adjectives such asmoreandmostthat provide evi-
dence are handled in a similar manner.

In a Bayesian network, conditional probability ta-
bles capture the conditional probability of a child
node given the value of its parent(s). For example,
the network requires the conditional probability of
an entity appearing as a noun in the caption given
that recognizing the intended message entails per-
forming a particular perceptual task involving that
entity. Similarly, the network requires the condi-
tional probability, for each class of verb, that the
verb class appears in the caption given that the in-
tended message falls into a particular intention cat-
egory. These probabilities are learned from our cor-
pus of graphics, as described in (Elzeret al., 2005).

6 Evaluation

In this paper, we are particularly interested in
whether shallow processing of captions can con-
tribute to recognizing the intended message of an
information graphic. As mentioned earlier, the in-
tended message of each information graphic in our
corpus of bar charts had been previously annotated
by two coders. To evaluate our approach, we used
leave-one-out cross validation. We performed a se-
ries of experiments in which each graphic in the cor-
pus is selected once as the test graphic, the probabil-
ity tables in the Bayesian network are learned from
the remaining graphics, and the test graphic is pre-
sented to the system as a test case. The system was
judged to fail if either its top-rated hypothesis did
not match the intended message that was assigned
to the graphic by the coders or the probability rat-
ing of the system’s top-rated hypothesis did not ex-
ceed 50%. Overall success was then computed by
averaging together the results of the whole series of
experiments.

Each experiment consisted of two parts, one in
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Figure 4: A Graphic from Business Week3

which captions were not taken into account in the
Bayesian network and one in which the Bayesian
network included evidence from captions. Our
overall accuracy without the caption evidence was
64.5%, while the inclusion of caption evidence in-
creased accuracy to 79.1% for an absolute increase
in accuracy of 14.6% and a relative improvement of
22.6% over the system’s accuracy without caption
evidence. Thus we conclude that shallow process-
ing of a caption provides evidence that can be effec-
tively utilized in a Bayesian network to recognize
the intended message of an information graphic.

Our analysis of the results provides some interest-
ing insights on the role of elements of the caption.
There appear to be two primary functions of verbs.
The first is to reflect what is in the data, thereby
strengthening the message that would be recognized
without the caption. One example from our corpus
is a graphic with the caption“Legal immigration to
the U.S. has been rising for decades”. Although
the early part of the graphic displays a change from
decreasing immigration to a steadily increasing im-
migration trend, most of the graphic focuses on the
decades of increasing immigration and the caption
strengthensincreasing trend in immigrationas the
intended message of the graphic. If we do not in-
clude the caption, our system hypothesizes anin-
creasing trendmessage with a probability of 66.4%;
other hypotheses include an intended message that
emphasizes thechange in trendwith a probability
of 15.3%. However, when the verbincreasingfrom
the caption is taken into account, the probability of
increasing trend in immigrationbeing the intended
message rises to 97.9%.

3This is a slight variation of the graphic from Business
Week. In the Business Week graphic, the labels sometimes ap-

The second function of a verb is to focus atten-
tion on some aspect of the data. For example, con-
sider the graphic in Figure 4. Without a caption, our
system hypothesizes that the graphic is intended to
convey the relative rank in billings of different credit
card issuers and assigns it a probability of 72.7%.
Other possibilities have some probability assigned
to them. For example, the intention of conveying
that Visa has the highest billings is assigned a prob-
ability of 26%. Suppose that the graphic had a cap-
tion of “Billings still lag” ; if the verb lag is taken
into account, our system hypothesizes an intended
message of conveying the credit card issuer whose
billings are lowest, namely Diner’s Club; the prob-
ability assigned to this intention is now 88.4%, and
the probability assigned to the intention of convey-
ing the relative rank of different credit card issuers
drops to 7.8%. This is because the verb class con-
taininglag appeared in our corpus as part of the cap-
tion for graphics whose message conveyed an en-
tity with a minimum value, and not with graphics
whose message conveyed the relative rank of all the
depicted entities. On the other hand, if the caption
is “American Express total billings still lag”(which
is the caption associated with the graphic in our cor-
pus), then we have two pieces of evidence from the
caption — the verblag, and the nounAmerican Ex-
presswhich matches a label. In this case, the proba-
bilities change dramatically; the hypothesis that the
graphic is intended to convey the rank ofAmerican
Express(namely third behind Visa and Mastercard)
is assigned a probability of 76% and the probability
drops to 24% that the graphic is intended to con-
vey that Diner’s Club has the lowest billings. This is
not surprising. The presence of the nounAmerican
Expressin the caption makes that entity salient and
is very strong evidence that the intended message
places an emphasis onAmerican Express, thus sig-
nificantly affecting the probabilities of the different
hypotheses. On the other hand, the verb class con-
taining lag occurred both in the caption of graphics
whose message was judged to convey the entity with
the minimum value and in the caption of graphics

pear on the bars and sometimes next to them, and the heading
for the dependent axis appears in the empty white space of the
graphic instead of below the values on the horizontal axis as we
show it. Our vision system does not yet have heuristics for rec-
ognizing non-standard placement of labels and axis headings.
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that conveyed an entity ranked behind some others.
Therefore, conveying the entity with minimum value
is still assigned a non-negligible probability.

7 Future Work

It is rare that a caption contains more than one verb
class; when it does happen, our current system by
default uses the first one that appears. We need to
examine how to handle the occurrence of multiple
verb classes in a caption. Occasionally, labels in the
graphic appear differently in the caption. An exam-
ple isDJIA (for Dow Jones Industrial Average) that
occurs in one graphic as a label but appears asDow
in the caption. We need to investigate resolving such
coreferences.

We currently limit ourselves to recognizing what
appears to be the primary communicative intention
of an information graphic; in the future we will also
consider secondary intentions. We will also extend
our work to other kinds of information graphics such
as line graphs and pie charts, and to complex graph-
ics, such as grouped and composite bar charts.

8 Summary

To our knowledge, our project is the first to inves-
tigate the problem of understanding the intended
message of an information graphic. This paper
has focused on the communicative evidence present
in an information graphic and how it can be used
in a probabilistic framework to reason about the
graphic’s intended message. The paper has given
particular attention to evidence provided by the
graphic’s caption. Our corpus study showed that
about half of all captions contain some evidence that
contributes to understanding the graphic’s message,
but that fully understanding captions is a difficult
problem. We presented a strategy for extracting ev-
idence from a shallow analysis of the caption and
utilizing it, along with communicative signals from
the graphic itself, in a Bayesian network that hy-
pothesizes the intended message of an information
graphic, and our results demonstrate the effective-
ness of our methodology. Our research is part of a
larger project aimed at providing alternative access
to information graphics for individuals with sight
impairments.
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Abstract

The paper considers how to scale up dialogue
protocols to multilogue, settings with multiple
conversationalists. We extract two benchmarks
to evaluate scaled up protocols based on the
long distance resolution possibilities of non-
sentential utterances in dialogue and multi-
logue in the British National Corpus. In light
of these benchmarks, we then consider three
possible transformations to dialogue protocols,
formulated within an issue-based approach to
dialogue management. We show that one such
transformation yields protocols for querying
and assertion that fulfill these benchmarks.

1 Introduction

The development of dialogue systems in which a human
agent interacts using natural language with a computa-
tional system is by now a flourishing domain (see e.g.
(NLE, 2003)), buttressed by an increasing theoretical and
experimental literature on the properties of dialogue (see
e.g. recent work in the SEMDIAL and SIGDIAL confer-
ences). In contrast, the development ofmultiloguesys-
tems, in which conversation with 3 or more participants
ensue—is still in its early stages, as is the theoretical and
experimental study of multilogue.Thefundamental issue
in tackling multilogue is: how can mechanisms motiv-
ated for dialogue (e.g. information states, protocols, up-
date rules etc) be scaled up to multilogue?

In this paper we extract from a conversational cor-
pus, the British National Corpus (BNC), several bench-
marks that characterize dialogue and multilogue inter-
action. These are based on the resolution possibilities
of non-sentential utterances (NSUs). We then use these
benchmarks to evaluate certain general transformations
whose application to a dialogue interaction system yield
a system appropriate for multilogue.

There are of course various plausible views of the rela-
tion between dialogue and multilogue. One possible ap-
proach to take is to view multilogue as a sequence of dia-
logues. Something like this approach seems to be adop-
ted in the literature on communication between autonom-
ous software agents. However, even though many situ-
ations considered in multiagent systems do involve more
than two agents, most interaction protocols are designed
only for two participants at a time. This is the case of
the protocol specifications provided by FIPA (Foundation
for Intelligent Physical Agents) for agent communication
language messages (FIPA, 2003). The FIPA interaction
protocols (IP) are most typically designed for two parti-
cipants, an initiator and a responder . Some IPs permit the
broadcasting of a message to a group of addressees, and
the reception of multiple responses by the original initi-
ator (see most particularly the Contract Net IP). However,
even though more than two agents participate in the com-
municative process, as (Dignum and Vreeswijk, 2003)
point out, such conversations can not be considered mul-
tilogue, but rather a number of parallel dialogues.

The Mission Rehearsal Exercise (MRE) Project
(Traum and Rickel, 2002), one of the largest multilogue
systems developed hitherto, is a virtual reality envir-
onment where multiple partners (including humans and
other autonomous agents) engage in multi-conversation
situations. The MRE is underpinned by an approach to
the modelling of interaction in terms of obligations that
different utterance types bring about originally proposed
for dialogue (see e.g. (Matheson et al. , 2000)). In par-
ticular, this includes a model of the grounding process
(Clark, 1996) that involves recognition and construction
of common ground units (CGUs) (see (Traum, 2003)).
Modelling of obligations and grounding becomes more
complex when considering multilogue situations. The
model of grounding implemented in the MRE project can
only be used in cases where there is a single initiator and
responder. It is not clear what the model should be for
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multiple addressees: should the contents be considered
grounded when any of the addressees has acknowledged
them? Should evidence of understanding be required
from every addressee?

Since their resolution is almost wholly reliant on con-
text, non sentential utterances provide a large testbed con-
cerning the structure of both dialogue and multilogue. In
section 2 we present data from the British National Cor-
pus (BNC) concerning the resolution of NSUs in dialogue
and multilogue. The main focus of this data is with the
distance between antecedent and fragment. We use this
to extract certain benchmarks concerning multilogue in-
teraction. Thus, acknowledgement and acceptance mark-
ers (e.g. ‘mmh’, ‘yeah’) are resolved with reference to
an utterance (assertion) which they ground (accept). The
data we provide shows that acknowledgements in mul-
tilogue, as in dialogue, are adjacent to their antecedent.
This provides evidence that, in general, a single addressee
serves to signal grounding. In contrast, BNC data indic-
ates the prevalence in multilogue of short answers that
are resolved using material from an antecedent question
located several turns back, whereas in dialogue short an-
swers are generally adjacent to their antecedent. This
provides evidence against reducing querying interaction
in multilogue to a sequence of dialogues. We show that
long distance short answers are a stable phenomenon for
multilogue involving both small (≤5 persons) and large
(> 5 persons) groups, despite the apparently declining
interactivity with increasing group size flagged in exper-
imental work (see (Fay et al., 2000)).

In section 3 we sketch the basic principles of issue
based dialogue management which we use as a basis
for our subsequent investigations of multilogue interac-
tion. This will include information states and formula-
tion of protocols for querying and assertion in dialogue.
In section 4 we consider three possible transformations
on dialogue protocols into multilogue protocols. These
transformations are entirely general in nature and could
be applied to protocols stated in whatever specification
language. We evaluate the protocols that are generated
by these transformations with reference to the bench-
marks extracted in section 2. In particular, we show
that one such transformation, dubbedAdd Side Parti-
cipants(ASP), yields protocols for querying and asser-
tion that fulfill these benchmarks. Finally, section 5
provides some conclusions and pointers to future work.

2 Long Distance Resolution of NSUs in
Dialogue and Multilogue: some
benchmarks

The work we present in this paper is based on empir-
ical evidence provided by corpus data extracted from the
British National Corpus (BNC).

2.1 The Corpus

Our current corpus is a sub-portion of the BNC conversa-
tional transcripts consisting of 14,315 sentences. The cor-
pus was created by randomly excerpting a 200-speaker-
turn section from 54 BNC files. Of these files, 29 are
transcripts of conversations between two dialogue parti-
cipants, and 25 files are multilogue transcripts.

A total of 1285 NSUs were found in our sub-corpus.
Table 1 shows the raw counts of NSUs found in the dia-
logue and multilogue transcripts, respectively.

NSUs BNC files

Dialogue 709 29
Multilogue 576 25

Total 1285 54

Table 1: Total of NSUs in Dialogue and Multilogue

All NSUs encountered within the corpus were clas-
sified according to the NSU typology presented in
(Ferńandez and Ginzburg, 2002). Additionally, the dis-
tance from their antecedent was measured.1 Table 2
shows the distribution of NSU categories and their ante-
cedent separation distance. The classes of NSU which
feature in our discussion below are boldfaced.

The BNC annotation includes tagging of units approx-
imating to sentences, as identified by the CLAWS seg-
mentation scheme (Garside, 1987). Each sentence unit is
assigned an identifier number. By default it is assumed
that sentences are non-overlapping and that their numer-
ation indicates temporal sequence. When this is not the
case because speakers overlap, the tagging scheme en-
codes synchronous speech by means of an alignment map
used to synchronize points within the transcription. How-
ever, even though information about simultaneous speech
is available, overlapping sentences are annotated with dif-
ferent sentence numbers.

In order to be able to measure the distance between
the NSUs encountered and their antecedents, all instances
were tagged with the sentence number of their antecedent
utterance. The distance we report is therefore measured
in terms of sentence numbers. It should however be noted
that taking into account synchronous speech would not
change the data reported in Table 2 in any significant

1This classification was done by one expert annotator. To
assess its reliability a pilot study of the taxonomy was per-
formed using two additional non-expert coders. These annot-
ated 50 randomly selected NSUs (containing a minimum of 2
instances of each NSU class, as labelled by the expert annot-
ator.). The agreement achieved by the three coders is reasonably
good, yielding a kappa scoreκ = 0.76. We also assessed the ac-
curacy of the coders’ choices in choosing the antecedent utter-
ance using the expert annotator’s annotation as a gold standard.
Given this, one coder’s accuracy was 92%, whereas the other
coder’s was 96%.
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Distance
NSU Class Example Total 1 2 3 4 5 6 >6

Acknowledgment Mm mm. 595 578 15 2
Short Answer Ballet shoes. 188 104 21 17 5 5 8 28

Affirmative Answer Yes. 109 104 4 1
Clarification Ellipsis John? 92 76 13 2 1

Repeated Ack. His boss, right. 86 81 2 3
Rejection No. 50 49 1

Factual Modifier Brilliant! 27 23 2 1 1
Repeated Aff. Ans. Very far, yes. 26 25 1

Helpful Rejection No, my aunt. 24 18 5 1
Check Question Okay? 22 15 7

Filler ... a cough. 18 16 1 1
Bare Mod. Phrase On the desk. 16 11 4 1

Sluice When? 11 10 1
Prop. Modifier Probably. 11 10 1

Conjunction Phrase Or a mirror. 10 5 4 1
Total 1285 1125 82 26 9 7 8 28
Percentage 100 87.6 6.3 2 0.6 0.5 0.6 2.1

Table 2: NSUs sorted by Class and Distance

way, as manual examination of all NSUs at more than
distance 3 reveals that the transcription portion between
antecedent and NSU does not contain any completely
synchronous sentences in such cases.

In the examples throughout the paper we shall use ital-
ics to indicate speech overlap. When italics are not used,
utterances take place sequentially.

2.2 NSU-Antecedent Separation Distance

The last row in Table 2 shows the distribution of NSU-
antecedent separation distances as percentages of the
total of NSUs found. This allows us to see that about
87% of NSUs have a distance of 1 sentence (i.e. the ante-
cedent was the immediately preceding sentence), and that
the vast majority (about 96%) have a distance of 3 sen-
tences or less.

Although the proportion of NSUs found in dialogue
and multilogue is roughly the same (see Table 1 above),
when taking into account the distance of NSUs from their
antecedent, the proportion of long distance NSUs in mul-
tilogue increases radically: the longer the distance, the
higher the proportion of NSUs that were found in multi-
logue. In fact, as Table 3 shows, NSUs that have a dis-
tance of 7 sentences or more appear exclusively in multi-
logue transcripts. These differences are significant (χ2 =
62.24,p ≤ 0.001).

Adjacency of grounding and affirmation utterances
The data in table 2 highlights a fundamental charac-
teristic of the remaining majoritarian classes of NSUs,
Ack(nowledgements), Affirmative Answer, CE (clari-
fication ellipsis),Repeated Ack(nowledgements), and
Rejection. These are used either in grounding interac-

tion, or to affirm/reject propositions.2 The overwhelming
adjacency to their antecedent underlines the locality of
these interactions.

Long distance potential for short answers One strik-
ing result exhibited in Table 2 is the uneven distribution of
long distance NSUs across categories. With a few excep-
tions, NSUs that have a distance of 3 sentences or more
are exclusively short answers. Not only is the long dis-
tance phenomenon almost exclusively restricted to short
answers, but the frequency of long distance short answers
stands in strong contrast to the other NSUs classes; in-
deed, over 44% of short answers have more than distance
1, and over 24% have distance 4 or more, like the last
answer in the following example:

(1) Allan: How much do you think?
Cynthia: Three hundred pounds.
Sue: More.
Cynthia: A thousand pounds.
Allan: More.
Unknown: <unclear>
Allan: Eleven hundred quid apparently.

[BNC, G4X]

Long distance short answers primarily a multilogue
effect Table 4 shows the total number of short answers
found in dialogue and multilogue respectively, and the
proportions sorted by distance over those totals:

From this it emerges that short answers are more
common in multilogue than in dialogue—134(71%) v.

2Acknowledgements and acceptances are, in principle, dis-
tinct acts: the former involves indication that an utterance has
been understood, whereas the latter that an assertion is accepted.
In practice, though, acknowledgements in the form of NSUs
commonly simultaneously signal acceptances. Given this, cor-
pus studies of NSUs (e.g. (Fernández and Ginzburg, 2002)) of-
ten conflate the two.

233



Distance 1 2 3 4 5 6 >6

Dialogue 658 (59%) 37 (45%) 11 (45%) 1 (12%) 1 (14%) 1 (13%) 0 (0%)
Multilogue 467 (41%) 45 (55%) 15 (55%) 8 (88%) 6 (86%) 7 (87%) 28 (100%)

Table 3: NSUs in dialogue and multilogue sorted by distance

Short Answers Total # 1 2 3 > 3

Dialogue 54 82 9 9 0
Multilogue 134 44 11 8 37

Table 4:% over the totals found in dialogue and multilogue

54(29%). Also, the distance pattern exhibited by these
two groups is strikingly different: Only 18% of short an-
swers found in dialogue have a distance of more than 1
sentence, with all of them having a distance of at most 3,
like the short answer in (2).

(2) Malcolm: [...] cos what’s three hundred and
sixty divided by seven?

Anon 1: I don’t know.
Malcolm: Yes I don’t know either!
Anon 1: Fifty four point fifty one point four.

[BNC, KND]

This dialogue/multilogue asymmetry argues against re-
ductive views of multilogue as sequential dialogue.

Long Distance short answers and group size As
Table 4 shows, all short answers at more than distance
3 appear in multilogues. Following (Fay et al., 2000),
we distinguish between small groups (those with 3 to 5
participants) and large groups (those with more than 5
participants). The size of the group is determined by the
amount of participants that are active when a particular
short answer is uttered. We consider active participants
those that have made a contribution within a window of
30 turns back from the turn where the short answer was
uttered.

Table 5 shows the distribution of long distance short
answers (distance> 3) in small and large groups respect-
ively. This indicates that long distance short answers are
significantly more frequent in large groups (χ2 = 22.17,
p ≤ 0.001), though still reasonably common in small
groups. A pragmatic account correlating group size and
frequency of long distance short answers is offered in the
final paragraph of section 3.

Group Size d> 3 d≤ 3 Total

≤ 5 20 73 93
(21.5%) (78.5%)

> 5 26 15 41
(63%) (37%)

Table 5:Long distance short answers in small and large groups

Large group multilogues in the corpus are all tran-
scripts of tutorials, training sessions or seminars, which
exhibit a rather particular structure. The general pat-
tern involves a question being asked by the tutor or ses-
sion leader, the other participants then taking turns to an-
swer that question. The tutor or leader acts as turn man-
ager. She assigns the turn explicitly usually by addressing
the participants by their name without need to repeat the
question under discussion. An example is shown in (3):

(3) Anon1: How important is those three components
and what value would you put on them [...]

Anon3: Tone forty five. Body language thirty .
Anon1: Thank you.
Anon4: Oh.
Anon1: Melanie.
Anon5: twenty five.
Anon1: Yes.
Anon5: Tone of voice twenty five. [BNC, JYM]

Small group multilogues on the other hand have a more
unconstrained structure: after a question is asked, the par-
ticipants tend to answer freely. Answers by different par-
ticipants can follow one after the other without explicit
acknowledgements nor turn management, like in (4):.

(4) Anon 1: How about finance then?<pause>
Unknown 1: Corruption
Unknown 2: Risk<pause dur=30>
Unknown 3: Wage claims<pause dur=18>

2.3 Two Benchmarks of multilogue

The data we have seen above leads in particular to the fol-
lowing two benchmarks protocols for querying, assertion,
and grounding interaction in multilogue:

(5) a. Multilogue Long Distance short answers
(MLDSA) : querying protocols for multilogue
must license short answers an unbounded num-
ber of turns from the original query.

b. Multilogue adjacency of ground-
ing/acceptance (MAG): assertion and ground-
ing protocols for multilogue should license
grounding/clarification/acceptance moves only
adjacently to their antecedent utterance.

MLDSA and MAG have a somewhat different status:
whereas MLDSA is a direct generalization from the data,
MAG is a negative constraint, posited given the paucity of
positive instances. As such MAG is more open to doubt
and we shall treat it as such in the sequel.
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3 Issue based Dialogue Management:
basic principles

In this section we outline some of the basic principles
of Issue-based Dialogue Management, which we use as
a basis for our subsequent investigations of multilogue
interaction.

Information States We assume information states of
the kind developed in the KoS framework (e.g. (Gin-
zburg, 1996, forthcoming), (Larsson, 2002)) and imple-
mented in systems such as GODIS, IBIS, and CLARIE
(see e.g. (Larsson, 2002; Purver, 2004)). On this
view each dialogue participant’s view of the common
ground, their Dialogue Gameboard (DGB), is structured
by a number of attributes including the following three:
FACTS: a set of facts representing the shared assump-
tions of the CPs,LatestMove: the most recent groun-
ded move, andQUD (‘questions under discussion’): a
partially ordered set—often taken to be structured as a
stack—consisting of the currently discussable questions.

Querying and Assertion Both querying and asser-
tion involve a question becoming maximal in the quer-
ier/asserter’s QUD:3 the posed questionq for a query
whereq is posed, the polar questionp? for an assertion
wherep is asserted. Roughly, the responder can sub-
sequently either choose to start a discussion (ofq or p?)
or, in the case of assertion, to update her FACTS structure
with p. A dialogue participant can downdateq/p? from
QUD when, as far as her (not necessarily public) goals
dictate, sufficient information has been accumulated in
FACTS. The querying/assertion protocols (in their most
basic form) are summarized as follows:

(6)

querying assertion
LatestMove = Ask(A,q) LatestMove = Assert(A,p)
A: push q onto QUD; A: push p? onto QUD;

release turn; release turn
B: push q onto QUD; B: push p? onto QUD;

take turn; take turn;
make max-qud–specific; Option 1: Discuss p?

utterance4

take turn. Option 2: Accept p
LatestMove = Accept(B,p)

B: increment FACTS with p;
pop p? from QUD;

A: increment FACTS with p;
pop p? from QUD;

Following (Larsson, 2002; Cooper, 2004), one can
3In other words,pushed onto the stack, if one assumes QUD

is a stack.
4An utterance whose content is either a propositionp About

max-qud or a questionq1 on which max-qudDepends. For the
latter see footnote 7. If one assumes QUD to be a stack, then
‘max-qud–specific’ will in this case reduce to ‘q–specific’. But
the more general formulation will be important below.

decompose interaction protocols intoconversational
update rules—functions from DGBs into DGBs using
Type Theory with Records (TTR). This allows simple
interfacing with the grammar, a Constraint-based Gram-
mar closely modelled on HPSG but formulated in TTR
(see (Ginzburg, forthcoming)).

Grounding Interaction Grounding an utteranceu : T
(‘the sign associated withu is of type T’) is modelled as
involving the following interaction. (a) Addressee B tries
to anchor the contextual parameters of T. If successful,
B acknowledges u (directly, gesturally or implicitly) and
responds to the content ofu. (b) If unsuccessful, B poses
a Clarification Request (CR), that arises viautterance co-
ercion (see (Ginzburg and Cooper, 2001)). For reasons
of space we do not formulate an explicit protocol here—
the structure of such a protocol resembles the assertion
protocol. Our subsequent discussion of assertion can be
modifiedmutatis mutandisto grounding.

NSU Resolution We assume the account of NSU res-
olution developed in (Ginzburg and Sag, 2000). The
essential idea they develop is that NSUs get their main
predicates from context, specifically via unification with
the question that is currentlyunder discussion, an entity
dubbed themaximal question under discussion(MAX -
QUD). NSU resolution is, consequently, tied to conver-
sational topic, viz. theMAX -QUD.5

Distance effects in dialogue short answers If one as-
sumes QUD to be a stack, this affords the potential for
non adjacent short answers in dialogue. These, as dis-
cussed in section 2, are relatively infrequent. Two com-
monly observeddialogueconditions will jointly enforce
adjacency between short answers and their interrogative
antecedents: (a) Questions have a simple, one phrase
answer. (b) Questions can be answered immediately,
without preparatory or subsequent discussion. For multi-
logue (or at least certain genres thereof), both these con-
ditions are less likely to be maintained: different CPs
can supply different answers, even assuming that relat-
ive to each CP there is a simple, one phrase answer. The
more CPs there are in a conversation, the smaller their
common ground and the more likely the need for cla-
rificatory interaction. A pragmatic account of this type
of the frequency of adjacency in dialogue short answers
seems clearly preferable to any actual mechanism that
would rule out long distance short answers. These can
be perfectly felicitous—see e.g. example (1) above which

5The resolution of NSUs, on the approach of (Ginzburg and
Sag, 2000), involves one other parameter, an antecedent sub-
utterance they dub thesalient-utterance(SAL-UTT). This plays
a role similar to the role played by theparallel elementin higher
order unification–based approaches to ellipsis resolution (see
e.g. (Pulman, 1997). For current purposes, we limit attention
to theMAX -QUD as the nucleus of NSU resolution.
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would work fine if the turn uttered by Sue had been
uttered by Allan instead. Moreover such a pragmatic ac-
count leads to the expectation that the frequency of long
distance antecedents is correlated with group size, as in-
deed indicated by the data in table 5.

4 Scaling up Protocols

(Goffman, 1981) introduced the distinction betweenrat-
ified participants and overhearers in a conversation.
Within the former are located the speaker and participants
whom she takes into account in her utterance design—
the intended addressee(s) of a given utterance, as well
as side participants. In this section we consider three
possible principles of protocol extension, each of which
can be viewed as adding roles for participants from one
of Goffman’s categories. We evaluate the protocol that
results from the application of each such principle re-
lative to the benchmarks we introduced in section 2.3.
Seen in this light, the final principle we consider,Add
Side Participants (ASP), arguably, yields the best res-
ults. Nonetheless, these three principles would appear to
be complementary—the most general protocol for mul-
tilogue will involve, minimally, application of all three.6

We state the principles informally and framework inde-
pendently as transformations on operational construals of
the protocols. In a more extended presentation we will
formulate these as functions on TTR conversational up-
date rules.

The simplest principle isAdd Overhearers (AOV).
This involves adding participants who merely observe the
interaction. They keep track of facts concerning a par-
ticular interaction, but their context is not facilitated for
them to participate:

(7) Given a dialogue protocolπ, add roles C1,. . . ,Cn
where each Ci is a silent participant: given an ut-
teranceu0 classified as being of typeT0, Ci up-
dates Ci.DGB.FACTS with the propositionu0 :
T0.

Applying AOV yields essentially multilogues which
are sequences of dialogues. A special case of this are
moderated multilogues, where all dialogues involve a
designated individual (who is also responsible for turn
assignment.). Restricting scaling up to applications of
AOV is not sufficient sinceinter alia this will not fulfill
the MLDSA benchmark.

A far stronger principle isDuplicate Responders
(DR):

(8) Given a dialogue protocolπ, add roles C1,. . . ,Cn
which duplicate the responder role.

6We thank an anonymous reviewer for ACL for convincing
us of this point.

Applying DR to the querying protocol yields the fol-
lowing protocol:

(9) Querying with multiple responders

1. LatestMove = Ask(A,q)
2. A: push q onto QUD; release turn
3. Resp1: push q onto QUD; take turn; make max-qud–

specific utterance; release turn
4. Resp2: push q onto QUD; take turn; make max-qud–

specific utterance; release turn
5. . . .
6. Respn: push q onto QUD; take turn; make max-qud–

specific utterance; release turn

This yields interactions such as (4) above. The query-
ing protocol in (9) licenses long distance short answers,
so satisfies the MLDSA benchmark. On the other hand,
the contextual updates it enforces will not enable it to deal
with the following (constructed) variant on (4), in other
words does not afford responders to comment on previ-
ous responders, as opposed to the original querier:

(10) A: Who should we invite for the conference?

B: Svetlanov.

C: No (=Not Svetlanov), Zhdanov

D: No (= Not Zhdanov,6= Not Svetlanov), Gergev

Applying DR to the assertion protocol will yield the
following protocol:

(11) Assertion with multiple responders
1. LatestMove = Assert(A,p)
2. A: push p? onto QUD; release turn
3. Resp1: push p? onto QUD; take turn;〈 Option 1:

Discuss p?, Option 2: Accept p〉
4. Resp2: push p? onto QUD; take turn;〈 Option 1:

Discuss p?, Option 2: Accept p〉
5. . . .
6. Respn: push p? onto QUD; take turn;〈 Option 1:

Discuss p?, Option 2: Accept p〉

One arguable problem with this protocol—equally
applicable to the corresponding DRed grounding
protocol—is that it licences long distance acceptance and
is, thus, inconsistent with the MAG benchmark. On the
other hand, it is potentially useful for interactions where
there is explicitly more than one direct addressee.

A principle intermediate between AOV and DR isAdd
Side Participants (ASP):

(12) Given a dialogue protocolπ, add roles
C1,. . . ,Cn, which effect the same contextual up-
date as the interaction initiator.

Applying ASP to the dialogue assertion protocol yields
the following protocol:

(13) Assertion for a conversation involving
{A,B,C1,. . . ,Cn}
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1. LatestMove = Assert(A,p)
2. A: push p? onto QUD; release turn
3. Ci: push p? onto QUD;
4. B: push p? onto QUD; take turn;〈Option 1: Accept

p, Option 2: Discuss p?〉

(14) 1. LatestMove = Accept(B,p)
2. B: increment FACTS with p; pop p? from QUD;
3. Ci:increment FACTS with p; pop p? from QUD;
4. A: increment FACTS with p; pop p? from QUD;

This protocol satisfies the MAG benchmark in that ac-
ceptance is strictly local. This is because it enforces
communal acceptance—acceptance by one CP can count
as acceptance by all other addressees of an assertion.
There is an obvious rational motivation for this, given the
difficulty of a CP constantly monitoring an entire audi-
ence (when this consists of more than one addressee) for
acceptance signals—it is well known that the effect of
visual access on turn taking is highly significant (Dabbs
and Ruback, 1987). It also enforces quick reaction to
an assertion—anyone wishing to dissent fromp must get
their reaction in early i.e. immediately following the as-
sertion since further discussion ofp? is not countenanced
if acceptance takes place. The latter can happen of course
as a consequence of a dissenter not being quick on their
feet; on this protocol to accommodate such cases would
require some type of backtracking.

Applying ASP to the dialogue querying protocol yields
the following protocol:

(15) Querying for a conversation involving
{ A,B,C1,. . . ,Cn}

1. LatestMove = Ask(A,q)
2. A: push q onto QUD; release turn
3. Ci: push q onto QUD;
4. B: push q onto QUD; take turn; make max-qud–

specific utterance.

This improves on the DR generated protocol be-
cause it does allow responders to comment on previous
responders—the context is modified as in the dialogue
protocol. Nonetheless, as it stands, this protocol won’t
fully deal with examples such as (4)—the issue intro-
duced by each successive participant takes precedence
given that QUD is assumed to be a stack. This can be
remedied by slightly modifying this latter assumption:
we will assume that when a questionq is pushed onto
QUD it doesn’t subsumeall existing questions in QUD,
but rather only those on whichq does not depend:7

(16) q is QUDmod(dependence) maximal iff for anyq0 in
QUD such that¬Depend(q, q1): q � q0.

7 The notion of dependence we assume here is one common
in work on questions, e.g. (Ginzburg and Sag, 2000), intuitively
corresponding to the notion of ‘is a subquestion of’.q1 depends
on q2 iff any propositionp such thatp resolvesq2 also satisfies
p is aboutq1.

This is conceptually attractive because it reinforces
that the order in QUD has an intuitive semantic basis.
One effect this has is to ensure that any polar question
p? introduced into QUD, whether by an assertion or by
a query, subsequent to a wh-questionq on whichp? de-
pends does not subsumeq. Hence,q will remain access-
ible as an antecedent for NSUs, as long as no new unre-
lated topic has been introduced. Assuming this modifica-
tion to QUD is implemented in the above ASP–generated
protocols, both MLDSA and MAG benchmarks are ful-
filled.

5 Conclusions and Further Work

In this paper we consider how to scale up dialogue proto-
cols to multilogue, settings with multiple conversation-
alists. We have extracted two benchmarks, MLDSA
and MAG, to evaluate scaled up protocols based on the
long distance resolution possibilities of NSUs in dialogue
and multilogue in the BNC. MLDSA, the requirement
that multilogue protocols license long distance short an-
swers, derives from the statistically significant increase
in frequency of long distance short answers in multi-
logue as opposed to dialogue. MAG, the requirement
that multilogue protocols enforce adjacency of accept-
ance and grounding interaction, derives from the over-
whelming locality of acceptance/grounding interaction
in multilogue, as in dialogue. In light of these bench-
marks, we then consider three possible transformations
to dialogue protocols formulated within an issue-based
approach to dialogue management. Each transformation
can be intuited as adding roles that correspond to dis-
tinct categories of an audience originally suggested by
Goffman. The three transformations would appear to be
complementary—it seems reasonable to assume that ap-
plication of all three (in some formulation) will be needed
for wide coverage of multilogue. MLDSA and MAG can
be fulfilled within an approach that combines theAdd
Side Participants transformation on protocols with an
independently motivated modification of the structure of
QUD from a canonical stack to a stack where maximality
is conditioned by issue dependence.

With respect to long distance short answers our ac-
count licences their occurrence in dialogue, as in mul-
tilogue. We offer a pragmatic account for their low fre-
quency in dialogue, which indeed generalizes to explain
a statistically significant correlation we observe between
their increased incidence and increasing active participant
size. We plan to carry out more detailed work, both
corpus–based and experimental, in order to evaluate the
status of MAG and, correspondingly to assess just how
local acceptance and grounding interaction really are.
We also intend to implement multilogue protocols in
CLARIE so it can simulate multilogue. We will then eval-
uate its ability to process NSUs from the BNC.
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Abstract

Clarification requests (CRs) in conversa-
tion ensure and maintain mutual under-
standing and thus play a crucial role in
robust dialogue interaction. In this pa-
per, we describe a corpus study of CRs
in task-oriented dialogue and compare our
findings to those reported in two prior
studies. We find that CR behavior in
task-oriented dialogue differs significantly
from that in everyday conversation in a
number of ways. Moreover, the dialogue
type, the modality and the channel qual-
ity all influence the decision of when to
clarify and at which level of the ground-
ing process. Finally we identify form-
function correlations which can inform the
generation of CRs.

1 Introduction

Clarification requests in conversation ensure and
maintain mutual understanding and thus play a sig-
nificant role in robust and efficient dialogue interac-
tion. From a theoretical perspective, themodel of
groundingexplains how mutual understanding is es-
tablished. According to Clark (1996), speakers and
listeners ground mutual understanding on four lev-
els of coordination in an action ladder, as shown in
Table 1.

Several current research dialogue systems can de-
tect errors on different levels of grounding (Paek
and Horvitz, 2000; Larsson, 2002; Purver, 2004;

Level Speaker S Listener L
Convers. S is proposing activity

α
L is considering pro-
posalα

Intention S is signalling thatp L is recognizing thatp
Signal S is presenting signalσ L is identifying signal

σ
Channel S is executing behavior

β
L is attending to behav-
ior β

Table 1: Four levels of grounding

Schlangen, 2004). However, only the work of
Purver (2004) addresses the question of how the
source of the error affects the form the CR takes.

In this paper, we investigate the use of form-
function mappings derived from human-human di-
alogues to inform the generation of CRs. We iden-
tify the factors that determine which function a CR
should take and identify function-form correlations
that can be used to guide the automatic generation
of CRs.

In Section 2, we discuss the classification
schemes used in two recent corpus studies of CRs
in human-human dialogue, and assess their applica-
bility to the problem of generating CRs. Section 3
describes the results we obtained by applying the
classification scheme of Rodriguez and Schlangen
(2004) to the Communicator Corpus (Bennett and
Rudnicky, 2002). Section 4 draws general conclu-
sions for generating CRs by comparing our results
to those of (Purver et al., 2003) and (Rodriguez and
Schlangen, 2004). Section 5 describes the correla-
tions between function and form features that are
present in the corpus and their implications for gen-
erating CRs.
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Attr. Value Category Example
form non Non-Reprise “What did you say?”

wot Conventional “Sorry?”
frg Reprise Fragment “Edinburgh?”
lit Literal Reprise “You want a flight to Edinburgh?”
slu Reprise Sluice “Where?”
sub Wh-substituted Reprise “You want a flight where?”
gap Gap “You want a flight to...?”
fil Gap Filler “...Edinburgh?”
other Other x

readings cla Clausal “Are you asking/asserting that X?”
con Constituent “What do you mean by X?”
lex Lexical “Did you utter X?”
corr Correction “Did you intend to utter X instead?”
other Other x

Table 2: CR classification scheme by PGH

2 CR Classification Schemes

We now discuss two recently proposed classifica-
tion schemes for CRs, and assess their usefulness for
generating CRs in a spoken dialogue system (SDS).

2.1 Purver, Ginzburg and Healey (PGH)

Purver, Ginzburg and Healey (2003) investigated
CRs in the British National Corpus (BNC) (Burnard,
2000). In their annotation scheme, a CR can take
seven distinct surface forms and four readings, as
shown in Table 2. The examples for the form feature
are possible CRs following the statement“I want a
flight to Edinburgh”. The focus of this classification
scheme is to map semantic readings to syntactic sur-
face forms. Theform feature is defined by its rela-
tion to the problematic utterance, i.e., whether a CR
reprises the antecedent utterance and to what extent.
CRs may take the three different readings as defined
by Ginzburg and Cooper (2001), as well as a fourth
reading which indicates a correction.

Although PGH report good coverage of the
scheme on their subcorpus of the BNC (99%), we
found their classification scheme to to be too coarse-
grained to prescribe the form that a CR should take.
As shown in example 1, Reprise Fragments (RFs),
which make up one third of the BNC, are ambigu-
ous in their readings and may also take several sur-
face forms.

(1) I would like to book a flight on Monday.

(a) Monday?

frg, con/cla

(b) Which Monday?

frg, con

(c) Monday the first?

frg, con

(d) The first of May?

frg, con

(e) Monday the first or Monday the eighth?

frg, (exclusive) con

RFs endorse literal repetitions of part of the prob-
lematic utterance (1.a); repetitions with an addi-
tional question word (1.b); repetition with further
specification (1.c); reformulations (1.d); and alter-
native questions (1.e)1.

In addition to being too general to describe such
differences, the classification scheme also fails to
describe similarities. As noted by (Rodriguez and
Schlangen, 2004), PGH provide no feature to de-
scribe the extent to which an RF repeats the prob-
lematic utterance.

Finally, some phenomena cannot be described at
all by the four readings. For example, the readings
do not account for non-understanding on the prag-
matic level. Furthermore the readings may have sev-
eral problem sources: the clausal reading may be
appropriate where the CR initiator failed to recog-
nise the word acoustically as well as when he failed
to resolve the reference. Since we are interested in
generating CRs that indicate the source of the error,
we need a classification scheme that represents such
information.

2.2 Rodriguez and Schlangen (R&S)

Rodriguez and Schlangen (2004) devised a multi-
dimensional classification scheme whereform and

1Alternative questions would be interpreted as asking a polar
question with an exclusive reading.
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functionare meta-features taking sub-features as at-
tributes. Thefunction feature breaks down into
the sub-featuressource, severity, extent, replyand
satisfaction. The sourcesthat might have caused
the problem map to the levels as defined by Clark
(1996). These sources can also be of different
severity. The severity can be interpreted as de-
scribing the set of possible referents: asking for
repetition indicates that no interpretation is avail-
able (cont-rep ); asking for confirmation means
that the CR initiator has some kind of hypothesis
(cont-conf ). Theextentof a problem describes
whether the CR points out a problematic element in
the problem utterance. Thereply represents the an-
swer the addressee gives to the CR. Thesatisfaction
of the CR-initiator is indicated by whether he renews
the request for clarification or not.

The meta-featureform describes how the CR is
lingustically realised. It describes thesentence’s
mood, whether it is grammaticallycomplete, there-
lation to the antecedent, and theboundary tone. Ac-
cording to R&S’s classification scheme our illustra-
tive example would be annotated as follows2:

(2) I would like to book a flight on Monday.

(a) Monday?

mood: decl
completeness: partial
rel-antecedent: repet
source: acous/np-ref
severity: cont-repet
extent: yes

(b) Which Monday?

mood: wh-question
completeness: partial
rel-antecedent: addition
source: np-ref
severity: cont-repet
extent: yes

(c) Monday the first?

mood: decl
completeness: partial
rel-antecedent: addition
source: np-ref
severity: cont-conf
extent: yes

(d) The first of May?

mood: decl
completeness: partial

2The source features answer and satisfaction are ignored as
they depend on how the dialogue continues. The interpretation
of the source is dependent on the reply to the CR. Therefore all
possible interpretations are listed.

rel-antecedent: reformul
source: np-ref
severity: cont-conf
extent: yes

(d) Monday the first or Monday the eighth?

mood: alt-q
completeness: partial
rel-antecedent: addition
source: np-ref
severity: cont-repet
extent: yes

In R&S’s classification scheme, ambiguities
about CRs having different sources cannot be re-
solved entirely as example (2.a) shows. However,
in contrast to PGH, the overall approach is a differ-
ent one: instead of explaining causes of CRs within
a theoretic-semantic model (as the three different
readings of Ginzburg and Cooper (2001) do), they
infer the interpretation of the CR from the context.
Ambiguities get resolved by the reply of the ad-
dressee and the satisfaction of the CR initiator in-
dicates the “mutually agreed interpretation” .

R&S’s multi-dimensional CR description allows
the fine-grained distinctions needed to generate nat-
ural CRs to be made. For example, PGH’s general
category of RFs can be made more specific via the
values for the featurerelation to antecedent. In ad-
dition, theform feature is not restricted to syntax; it
includes features such as intonation and coherence,
which are useful for generating the surface form of
CRs. Furthermore, the multi-dimensionalfunction
feature allows us to describe information relevant to
generating CRs that is typically available in dialogue
systems, such as the level of confidence in the hy-
pothesis and the problem source.

3 CRs in the Communicator Corpus

3.1 Material and Method

Material: We annotated the human-human travel
reservation dialogues available as part of the
Carnegie Mellon Communicator Corpus (Bennett
and Rudnicky, 2002) because we were interested
in studying naturally occurring CRs in task-oriented
dialogue. In these dialogues, an experienced travel
agent is making reservations for trips that people in
the Carnegie Mellon Speech Group were taking in
the upcoming months. The corpus comprises 31 di-
alogues of transcribed telephone speech, with 2098
dialogue turns and 19395 words.
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form:


distance-src:

{
1 | 2 | 3 | 4 | 5 |more

}
mood:

{
none | decl | polar-q |wh-q | alt-q | imp | other

}
form:

{
none | particle | partial | complete

}
relation-antecedent:

{
none | add | repet | repet-add | reformul | indep

}
boundary-tone:

{
none | rising | falling | no-appl

}



function:



source:

{
none | acous | lex | parsing | np-ref | deitic-ref | act-ref |
int+eval | relevance | belief | ambiguity | scr-several

}
extent:

{
none | fragment |whole

}
severity:

{
none | cont-conf | cont-rep | cont-disamb | no-react

}
answer:

{
none | ans-repet | ans-y/n | ans-reformul | ans-elab |
ans-w-defin | no-react

}
satisfaction:

{
none | happy-yes | happy-no | happy-ambig

}




Figure 1: CR classification scheme

Annotation Scheme: Our annotation scheme,
shown in Figure 1, is an extention of the R&S
scheme described in the previous section. R&S’s
scheme was devised for and tested on the Bielefeld
Corpus of German task-oriented dialogues about
joint problem solving.3 To annotate the Commu-
nicator Corpus we extended the scheme in the fol-
lowing ways. First, we found the need to distin-
guish CRs that consist only of newly added infor-
mation, as in example 3, from those that add in-
formation while also repeating part of the utterance
to be clarified, as in 4. We augmented the scheme
to allow two distinct values for theform feature
relation-antecedent , add for cases like 3
andrepet-add for cases like 4.

(3) Cust: What is the last flight I could come back on?
Agent: On the 29th of March?

(4) Cust: I’ll be returning on Thursday the fifth.
Agent: The fifth of February?

To the function featuresourcewe added the val-
uesbelief to cover CRs like 5 andambiguity
refinement to cover CRs like 6.

(5) Agent: You need a visa.
Cust: I doneed one?
Agent: Yes you do.

(6) Agent: Okay I have two options . . . with Hertz . . . if not
they do have a lower rate with Budget and that is
fifty one dollars.

Cust: Per day?
Agent: Per day um mm.

Finally, following Gabsdil (2003) we introduced
an additional value forseverity, cont-disamb , to

3http://sfb360.uni-bielefeld.de

cover CRs that request disambiguation when more
than one interpretation is available.

Method: We first identified turns containing CRs,
and then annotated them withformandfunctionfea-
tures. It is not always possible to identify CRs from
the utterance alone. Frequently, context (e.g., the
reaction of the addressee) or intonation is required
to distinguish a CR from other feedback strategies,
such as positive feedback. See (Rieser, 2004) for a
detailed discussion. The annotation was only per-
formed once. The coding scheme is a slight varia-
tion of R&S, which has been shown relaiable with
Kappa of 0.7 for identifying source.

3.2 Forms and Functions of CRs in the
Communicator Corpus

The human-human dialogues in the Communica-
tor Corpus contain 98 CRs in 2098 dialogue turns
(4.6%).

Forms: The frequencies for the values of the
individual form features are shown in Table 3.
The most frequent type of CRs werepartial
declarative questions, which combine the mood
value declarative and the completeness value
partial .4 These account for 53.1% of the CRs
in the corpus. Moreover, four of the five most
frequent surface forms of CRs in the Communi-
cator Corpus differ only in the value for the fea-
ture relation-antecedent . They are partial
declaratives with rising boundary tone, that either re-
formulate (7.1%) the problematic utterance, repeat

4Declarative questions cover “all cases of non-interrogative
word-order, i.e., both declarative sentences and fragments” (Ro-
driguez and Schlangen, 2004).
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Feature Value Freq. (%)
Mood declarative 65

polar 21
wh-question 7
other 7

Completeness partial 58
complete 38
other 4

Relation antecedent rep-add 27
independent 21
reformulation 19
repetition 18
addition 10
other 5

Boundary tone rising 74
falling 22
other 4

Table 3: Distribution of values for theform features

the problematic constituent (11.2%), add only new
information (7.1%), or repeat the problematic con-
stituent and add new information (10.2%). The fifth
most frequent type is conventional CRs (10.2%).5

Functions: The distributions of thefunction fea-
tures are given in Figure 4. The most frequent source
of problems was np-reference. Next most frequent
were acoustic problems, possibly due to the poor
channel quality. Third were CRs that enquire about
intention. As indicated by the featureextent, al-
most 80% of CRs point out a specific element of
the problematic utterance. The featuresseverityand
answerillustrate that most of the time CRs request
confirmation of an hypothesis (73.5%) with a yes-
no-answer (64.3%). The majority of the provided
answers were satisfying, which means that the ad-
dressee tends to interpret the CR correctly and an-
swers collaboratively. Only 6.1% of CRs failed to
elicit a response.

4 CRs in Task-oriented Dialogue

4.1 Comparison

In order to determine whether there are differences
as regards CRs between task-oriented dialogues and
everyday conversations, we compared our results to
those of PGH’s study on the BNC and those of R&S

5Conventional forms are“Excuse me?”, “Pardon?” , etc.

Feature Value Freq. (%)
Source np-reference 40

acoustic 31
intention 8
belief 6
ambiguity 4
contact 4
others 3
relevance 2
several 2

Extent yes 80
no 20

Severity confirmation 73
repetition 20
other 7

Answer y/n answer 64
other 15
elaboration 13
no reaction 6

Table 4: Distribution of values for thefunctionfea-
tures

on the Bielefeld Corpus. The BNC contains a 10
million word sub-corpus of English dialogue tran-
scriptions about topics of general interest. PGH
analysed a portion consisting of ca. 10,600 turns,
ca. 150,000 words. R&S annotated 22 dialogues
from the Bielefeld Corpus, consisting of ca. 3962
turns, ca. 36,000 words.

The major differences in the feature distributions
are listed in Table 5. We found that there are no
significant differences between the feature distri-
butions for the Communicator and Bielefeld cor-
pora, but that the differences between Communica-
tor and BNC, and Bielefeld and BNC are significant
at the levels indicated in Table 5 using Pearson’s
χ2. The differences between dialogues of differ-
ent types suggest that there is a different grounding
strategy. In task-oriented dialogues we see a trade-
off between avoiding misunderstanding and keeping
the conversation as efficient as possible. The hy-
pothesis that grounding in task-oriented dialogues is
morecautiousis supported by the following facts (as
shown by the figures in Table 5):

• CRs are more frequent in task-oriented dia-
logues.

• The overwhelming majority of CRs directly
follow the problematic utterance.
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Corpus
Feature Communicator Bielefeld BNC

CRs 98 230 418
frequency 4.6% 5.8%*** 3.9%
distance-src=1 92.8%* 94.8%*** 84.4%
no-react 6.1%* 8.7%** 17.0%
cont-conf 73.5%*** 61.7%*** 46.6%
partial 58.2%** 76.5%*** 42.4%
independent 21.4%*** 9.6%*** 44.2%
cont-rep 19.8%*** 14.8%*** 39.5%
y/n-answer 64.3% 44.8% n/a

Table 5: Comparison of CRforms in everyday vs. task-
oriented corpora (* denotesp < .05, ** is p < .01, *** is
p < .005.)

• CRs in everyday conversation fail to elicit a re-
sponse nearly three times as often.6

• Even though dialogue participants seem to
have strong hypotheses, they frequently con-
firm them.

Although grounding is more cautious in task-
oriented dialogues, the dialogue participants try to
keep the dialogue asefficientas possible:

• Most CRs are partial in form.

• Most of the CRs point out one specific element
(with only a minority being independent as
shown in Table 5). Therefore, in task-oriented
dialogues, CRs locate the understanding prob-
lem directly and give partial credit for what was
understood.

• In task-oriented dialogues, the CR-initiator
asks to confirm an hypothesis about what he
understood rather than asking the other dia-
logue participant to repeat her utterance.

• The addressee prefers to give a short y/n answer
in most cases.

Comparing error sources in the two task-oriented
corpora, we found a number of differences as shown
in Table 6. In particular:

6Another factor that might account for these differences is
that the BNC contains multi-party conversations, and questions
in multi-party conversations may be less likely to receive re-
sponses. Furthermore, due to the poor recording quality of the
BNC, many utterances are marked as “not interpretable”, which
could also lower the response rate.

Corpus
Feature Communicator Bielefeld Significance

contact 4.1% 0 inst n/a
acoustic 30.6% 11.7% ***
lexical 1 inst 1 inst n/a
parsing 1 inst 0 inst n/a
np-ref 39.8% 24.4% **
deict-ref 1 inst 27.4% ***
ambiguity 4.1% not eval. n/a
belief 6.1% not eval. n/a
relevance 2.1% not eval. n/a
intention 8.2% 22.2% **
several 2.0% 14.3% ***

Table 6:Comparison of CR problem sources in task-oriented
corpora

• Dialogue type: Belief and ambiguity refine-
ment do not seem to be a source of problems
in joint problem solving dialogues, as R&S did
not include them in their annotation scheme.
For CRs in information seeking these features
need to be added to explain quite frequent phe-
nomena. As shown in Table 6, 10.2% of CRs
were in one of these two classes.

• Modality: Deictic reference resolution causes
many more understanding difficulties in dia-
logues where people have a shared point of
view than in telephone communication (Biele-
feld: most frequent problem source; Communi-
cator: one instance detected). Furthermore, in
the Bielefeld Corpus, people tend to formulate
more fragmentary sentences. In environments
where people have a shared point of view, com-
plete sentences can be avoided by using non-
verbal communication channels. Finally, we
see that establishing contact is more of a prob-
lem when speech is the only modality available.

• Channel quality: Acoustic problems are much
more likely in the Communicator Corpus.

These results indicate that the decision process for
grounding needs to consider the modality, the do-
main, and the communication channel. Similar ex-
tensions to the grounding model are suggested by
(Traum, 1999).
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4.2 Consequences for Generation

The similarities and differences detected can be
used to give recommendations for generating CRs.
In terms of when to initiate a CR, we can state
that clarification should not be postponed, and im-
mediate, local management of uncertainty is criti-
cal. This view is also supported by observations of
how non-native speakers handle non-understanding
(Paek, 2003).

Furthermore, for task-oriented dialogues the sys-
tem should present an hypothesis to be confirmed,
rather than ask for repetition. Our data suggests that,
when they are confronted with uncertainty, humans
tend to build up hypotheses from the dialogue his-
tory and from their world knowledge. For example,
when the customer specified a date without a month,
the travel agent would propose the most reasonable
hypothesis instead of asking a wh-question. It is in-
teresting to note that Skantze (2003) found that users
are more satisfied if the system “hides” its recog-
nition problem by asking a task-related question to
help to confirm the hypothesis, rather than explicitly
indicating non-understanding.

5 Correlations between Function and
Form: How to say it?

Once the dialogue system has decided on thefunc-
tion features, it must find a corresponding surface
form to be generated. Many forms are indeed re-
lated to the function as shown in Table 7, where we
present a significance analysis using Pearson’sχ2

(with Yates correction).

Source: We found that the relation to the an-
tecedent seems to distinguish fairly reliably be-
tween CRs clarifying reference and those clarify-
ing acoustic understanding. In the Communicator
Corpus, for acoustic problems the CR-initiator tends
to repeat the problematic part literally, while refer-
ence problems trigger a reformulation or a repeti-
tion with addition. For both problem sources, par-
tial declarative questions are preferred. These find-
ings are also supported by R&S. For the first level
of non-understanding, the inability to establish con-
tact, complete polar questions with no relation to the
antecedent are formulated, e.g., ”Are you there?”.

Severity: The severity indicates how much was
understood, i.e., whether the CR initiator asks to
confirm an hypothesis or to repeat the antecedent
utterance. The severity of an error strongly cor-
relates with the sentence mood. Declarative and
polar questions, which take up material from the
problematic utterance, ask to confirm an hypothe-
sis. Wh-questions, which are independent, refor-
mulations or repetitions with additions (e.g., wh-
substituted reprises) of the problematic utterance
usually prompt for repetition, as do imperatives. Al-
ternative questions prompt the addressee to disam-
biguate the hypothesis.

Answer: By definition, certain types of question
prompt for certain answers. Therefore, the feature
answer is closely linked to the sentence mood of
the CR. As polar questions and declarative ques-
tions generally enquire about a proposition, i.e., an
hypothesis or belief, they tend to receive yes/no
answers, but repetitions are also possible. Wh-
questions, alternative questions and imperatives tend
to get answers providing additional information (i.e.,
reformulations and elaborations).

Extent: Thefunctionfeatureextentis logically in-
dependent from theform featurecompleteness, al-
though they are strongly correlated.Extentis a bi-
nary feature indicating whether the CR points out
a specific element or concerns the whole utterance.
Most fragmentary declarative questions and frag-
mentary polar questions point out a specific element,
especially when they are not independent but stand
in some relation to the antecedent utterance. In-
dependent complete imperatives address the whole
previous utterance.

The correlations found in the Communicator Cor-
pus are fairly consistent with those found in the
Bielefeld Corpus, and thus we believe that the guide-
lines for generating CRs in task-oriented dialogues
may be language independent, at least for German
and English.

6 Summary and Future Work

In this paper we presented the results of a corpus
study of naturally occurring CRs in task-oriented di-
alogue. Comparing our results to two other stud-
ies, one of a task-oriented corpus and one of a cor-
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Function
Form source severity extent answer

mood χ2(24) = 112.20
p < 0.001

χ2(5) = 30.34
p < 0.001

χ2(5) = 24.25
df = p < 0.005

χ2(5) = 25.19
p < 0.001

bound-tone indep. indep. indep. indep.

rel-antec χ2(24) = 108.23
p < 0.001

χ2(4) = 11.69
p < 0.005

χ2(4) = 42.58
p < 0.001

indep.

complete χ2(7) = 27.39
p < 0.005

indep. χ2(1) = 27.39
p < 0.001

indep.

Table 7: Significance analysis for form/function correlations.

pus of everyday conversation, we found no signif-
icant differences in frequency of CRs and distribu-
tion of forms in the two task-oriented corpora, but
many significant differences between CRs in task-
oriented dialogue and everyday conversation. Our
findings suggest that in task-oriented dialogues, hu-
mans use a cautious, but efficient strategy for clar-
ification, preferring to present an hypothesis rather
than ask the user to repeat or rephrase the problem-
atic utterance. We also identified correlations be-
tweenfunctionand form features that can serve as
a basis for generating more natural sounding CRs,
which indicate a specific problem with understand-
ing. In current work, we are studying data collected
in a wizard-of-oz study in a multi-modal setting, in
order to study clarification behavior in multi-modal
dialogue.
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Abstract

Non-sentential utterances (e.g., short-
answers as in “Who came to the party?”—
“Peter.”) are pervasive in dialogue. As
with other forms of ellipsis, the elided ma-
terial is typically present in the context
(e.g., the question that a short answer an-
swers). We present a machine learning
approach to the novel task of identifying
fragments and their antecedents in multi-
party dialogue. We compare the perfor-
mance of several learning algorithms, us-
ing a mixture of structural and lexical fea-
tures, and show that the task of identifying
antecedents given a fragment can be learnt
successfully (f(0.5) = .76); we discuss
why the task of identifying fragments is
harder (f(0.5) = .41) and finally report
on a combined task (f(0.5) = .38).

1 Introduction

Non-sentential utterances (NSUs) as in (1) are per-
vasive in dialogue: recent studies put the proportion
of such utterances at around 10% across different
types of dialogue (Fernández and Ginzburg, 2002;
Schlangen and Lascarides, 2003).

(1) a. A: Who came to the party?
B: Peter. (=Peter came to the party.)

b. A: I talked to Peter.
B: Peter Miller? (=Was it Peter Miller
you talked to?)

c. A: Who was this? Peter Miller? (=Was
this Peter Miller?

Such utterances pose an obvious problem for natural
language processing applications, namely that the
intended information (in (1-a)-B a proposition) has
to be recovered from the uttered information (here,
an NP meaning) with the help of information from
the context.

While some systems that automatically resolve
such fragments have recently been developed
(Schlangen and Lascarides, 2002; Fernández et al.,
2004a), they have the drawback that they require
“deep” linguistic processing (full parses, and also in-
formation about discourse structure) and hence are
not very robust. We have defined a well-defined
subtask of this problem, namely identifyingfrag-
ments(certain kinds of NSUs, see below) and their
antecedents (in multi-party dialogue, in our case),
and present a novel machine learning approach to it,
which we hypothesise will be useful for tasks such
as automatic meeting summarisation.1

The remainder of this paper is structured as fol-
lows. In the next section we further specify the task
and different possible approaches to it. We then de-
scribe the corpus we used, some of its characteris-
tics with respect to fragments, and the features we
extracted from it for machine learning. Section 4
describes our experimental settings and reports the
results. After a comparison to related work in Sec-
tion 5, we close with a conclusion and some further

1(Zechner and Lavie, 2001) describe a related task, linking
questions and answers, and evaluate its usefulness in the context
of automatic summarisation; see Section 5.
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work that is planned.

2 The Tasks

As we said in the introduction, the main task we
want to tackle is to align (certain kinds of) NSUs
and theirantecedents. Now, what characterises this
kind of NSU, and what are their antecedents?

In the examples from the introduction, the NSUs
can be resolved simply by looking at the previous
utterance, which provides the material that is elided
in them. In reality, however, the situation is not that
simple, for three reasons: First, it is of course not
always thepreviousutterance that provides this ma-
terial (as illustrated by (2), where utterance 7 is re-
solved by utterance 1); in our data the average dis-
tance in fact is 2.5 utterances (see below).

(2) 1 B: [. . . ] What else should be done ?
2 C: More intelligence .
3 More good intelligence .
4 Right .
5 D: Intelligent intelligence .
6 B: Better application of face and voice

recognition .
7 C: More [. . . ] intermingling of the

agencies , you know .
[ from NSI 20011115 ]

Second, it’s not even necessarily a single utter-
ance that does this–it might very well be a span
of utterances, or something that has to be inferred
from such spans (parallel to the situation with pro-
nouns, as discussed empirically e.g. in (Strube and
Müller, 2003)). (3) shows an example where a new
topic is broached by using an NSU. It is possible to
analyse this as an answer to thequestion under dis-
cussion“what shall we organise for the party?”, as
(Fernández et al., 2004a) would do; a question, how-
ever, which is onlyimplicitly posed by the previous
discourse, and hence this is an example of an NSU
that does not have an overt antecedent.

(3) [after discussing a number of different topics]

1 D: So, equipment.
2 I can bring [. . . ]

[ from NSI 20011211 ]

Lastly, not all NSUs should be analysed as being the
result of ellipsis: backchannels for example (like the
“Right” in utterance 4 in (2) above) seem to directly
fulfil their discourse function without any need for

reconstruction.2

To keep matters simple, we concentrate in this pa-
per on NSUs of a certain kind, namely those that a)
do not predominantly have a discourse-management
function (like for example backchannels), but rather
convey messages (i.e., propositions, questions or
requests)—this is what distinguishesfragmentsfrom
other NSUs—and b) have individual utterances as
antecedents. In the terminology of (Schlangen and
Lascarides, 2003), fragments of the latter type are
resolution-via-identity-fragments, where the elided
information can be identified in the context and
need not be inferred (as opposed toresolution-via-
inference-fragments). Choosing only this special
kind of NSUs poses the question whether this sub-
group is distinguished from the general group of
fragments by criteria that can be learnt; we will re-
turn to this below when we analyse the errors made
by the classifier.

We have defined two approaches to this task. One
is to split the task into two sub-tasks: identifying
fragments in a corpus, and identifying antecedents
for fragments. These steps are naturally performed
sequentially to handle our main task, but they also
allow the fragment classification decision to come
from another source—a language-model used in an
automatic speech recognition system, for example—
and to use only the antecedent-classifier. The other
approach is to do both at the same time, i.e. to clas-
sify pairs of utterances into those that combine a
fragment and its antecedent and those that don’t. We
report the results of our experiments with these tasks
below, after describing the data we used.

3 Corpus, Features, and Data Creation

3.1 Corpus

As material we have used six transcripts from the
“ NIST Meeting Room Pilot Corpus” (Garofolo et al.,
2004), a corpus of recordings and transcriptions of
multi-party meetings.3 Those six transcripts con-

2The boundaries are fuzzy here, however, as backchan-
nels can also be fragmental repetitions of previous material,
and sometimes it is not clear how to classify a given utter-
ance. A similar problem of classifying fragments is discussed
in (Schlangen, 2003) and we will not go further into this here.

3We have chosen a multi-party setting because we are ulti-
mately interested in automatic summarisation of meetings.In
this paper here, however, we view our task as a “stand-alone
task”. Some of the problems resulting in the presence of many
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average distanceα – β
(utterances): 2.5
α declarative 159 (52%)
α interrogative 140 (46%)
α unclassfd. 8 (2%)
β declarative 235 (76%)
β interrogative (23%)
β unclassfd. 2 (0.7%)
α being last in their turn 142 (46%)
β being first in their turn 159 (52%)

Table 1: Some distributional characteristics. (α de-
notes antecedent,β fragment.)

sist of 5,999 utterances, among which we identified
307 fragment–antecedent pairs.4,5 With 5.1% this is
a lower rate than that reported for NSUs in other cor-
pora (see above); but note that as explained above,
we are actually only looking at a sub-class of all
NSUs here.

For these pairs we also annotated some more at-
tributes, which are summarised in Table 1. Note
that the average distance is slightly higher than that
reported in (Schlangen and Lascarides, 2003) for
(2-party) dialogue (1.8); this is presumably due to
the presence of more speakers who are able to re-
ply to an utterance. Finally, we automatically an-
notated all utterances with part-of-speech tags, us-
ing TreeTagger (Schmid, 1994), which we’ve
trained on the switchboard corpus of spoken lan-
guage (Godfrey et al., 1992), because it contains,
just like our corpus, speech disfluencies.6

We now describe the creation of the data we used
for training. We first describe the data-sets for the
different tasks, and then the features used to repre-
sent the events that are to be classified.

3.2 Data Sets

Data creation for the fragment-identification task
(henceforth simplyfragment-task) was straightfor-

speakers are discussed below.
4We have used theMMAX tool (Müller and Strube, 2001))

for the annotation.
5To test the reliability of the annotation scheme, we had a

subset of the data annotated by two annotators and found a sat-
isfactoryκ-agreement (Carletta, 1996) ofκ = 0.81.

6The tagger is available free for academic research from
http://www.ims.uni-stuttgart.de/projekte/
corplex/TreeTagger/DecisionTreeTagger.html.

ward: for each utterance, a number of features was
derived automatically (see next section) and the cor-
rect class (fragment / other) was added. (Note
that none of the manually annotated attributes were
used.) This resulted in a file with 5,999 data points
for classification. Given that there were 307 frag-
ments, this means that in this data-set there is a ratio
positives (fragments) vs. negatives (non-fragments)
for the classifier of 1:20. To address this imbalance,
we also ran the experiments with balanced data-sets
with a ratio of 1:5.

The other tasks, antecedent-identification
(antecedent-task) and antecedent-fragment-
identification (combined-task) required the creation
of data-sets containing pairs. For this we created
an “accessibility window” going back from each
utterance. Specifically, we included for each
utterance a) all previous utterances of the same
speaker from the same turn; and b) the three last
utterances of every speaker, but only until one
speaker took the turn again and up to a maximum
of 6 previous utterances. To illustrate this method,
given example (2) it would form pairs with utterance
7 as fragment-candidate and all of utterances 6–2,
but not 1, because that violates condition b) (it is the
second turn of speaker B).

In the case of (2), this exclusion would be a wrong
decision, since 1 is in fact the antecedent for 7. In
general, however, this dynamic method proved good
at capturing as many antecedents as possible while
keeping the number of data points manageable. It
captured 269 antecedent-fragment pairs, which had
an average distance of 1.84 utterances. The remain-
ing 38 pairs which it missed had an average distance
of 7.27 utterances, which means that to capture those
we would have had to widen the window consid-
erably. E.g., considering all previous 8 utterances
would capture an additional 25 pairs, but at the cost
of doubling the number of data points. We hence
chose the approach described here, being aware of
the introduction of a certain bias.

As we have said, we are trying to linkutterances,
one a fragment, the other its antecedent. The no-
tion of utteranceis however less well-defined than
one might expect, and the segmentation of contin-
uous speech into utterances is a veritable research
problem on its own (see e.g. (Traum and Heeman,
1997)). Often it is arguable whether a prepositional
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Structural features
dis distanceα – β, in utterances
sspk same speaker yes/no
nspk number speaker changes (= # turns)
iqu number of intervening questions
alt α last utterance in its turn?
bft β first utterance in its turn?

Lexical / Utterance-based features
bvb (tensed) verb present inβ?
bds disfluency present inβ?
aqm α contains question mark
awh α contains wh word
bpr ratio of polar particles (yes, no, maybe, etc..)

/ other inβ
apr ratio of polar particles inα
lal length ofα
lbe length ofβ
nra ratio nouns / non-nouns inα
nra ratio nouns / non-nouns inβ
rab ratio nouns inβ that also occur inα
rap ratio words inβ that also occur inα
god google similarity (see text)

Table 2: The Features

phrase for example should be analysed as an adjunct
(and hence as not being an utterance on its own) or
as a fragment. In our experiments, we have followed
the decision made by the transcribers of the origi-
nal corpus, since they had information (e.g. about
pauses) which was not available to us.

For the antecedent-task, we include only pairs
where β (the second utterance in the pair) is a
fragment—since the task is to identify an antecedent
for already identified fragments. This results in a
data-set with 1318 data points (i.e., we created on
average 4 pairs per fragment). This data-set is suf-
ficiently balanced between positives and negatives,
and so we did not create another version of it. The
data for the combined-task, however, is much big-
ger, as it contains pairs for all utterances. It consists
of 26,340 pairs, i.e. a ratio of roughly 1:90. For this
reason we also used balanced data-sets for training,
where the ratio was adjusted to 1:25.

3.3 Features

Table 2 lists the features we have used to represent
the utterances. (In this table, and in this section, we
denote the candidate for being a fragment withβ and
the candidate for beingβ’s antecedent withα.)

We have defined a number of structural fea-

tures, which give information about the (discourse-
)structural relation betweenα andβ. The rationale
behind choosing them should be clear;iqu for ex-
ample indicates in a weak way whether there might
have been a topic change, and highnspk should
presumably make an antecedent relation betweenα

andβ less likely.
We have also used some lexical or utterance-

based features, which describe lexical properties of
the individual utterances and lexical relations be-
tween them which could be relevant for the tasks.
For example, the presence of a verb inβ is presum-
ably predictive for its being a fragment or not, as
is the length. To capture a possible semantic rela-
tionship between the utterances, we defined two fea-
tures. The more direct one,rab, looks at verbatim
re-occurrences of nouns fromα in β, which occur
for example in check-questions as in (4) below.

(4) A: I saw Peter.
B: Peter? (=Who is this Peter you saw?)

Less direct semantic relations are intended to be
captured bygod, the second semantic feature we
use.7 It is computed as follows: for each pair(x, y)
of nouns fromα and β, Google is called (via the
Google API) with a query forx, for y, and forx and
y together. The similarity then is the average ratio of
pair vs. individual term:

GoogleSimilarity(x, y) = (
hits(x, y)

hits(x)
+

hits(x, y)

hits(y)
)∗

1

2

We now describe the experiments we performed
and their results.

4 Experiments and Results

4.1 Experimental Setup

For the learning experiments, we used three classi-
fiers on all data-sets for the the three tasks:

• SLIPPER (Simple Learner with Iterative Prun-
ing to Produce Error Reduction), (Cohen and Singer,
1999), which is a rule learner which combines
the separate-and-conquer approach with confidence-
rated boosting. It is unique among the classifiers that

7The name is short forgoogle distance, which indicates its
relatedness to the feature used by (Poesio et al., 2004); it is how-
ever a measure ofsimilarity, not distance, as described above.
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we have used in that it can make use of “set-valued”
features, e.g. strings; we have run this learner both
with only the features listed above and with the ut-
terances (andPOS-tags) as an additional feature.

• TIMBL (Tilburg Memory-Based Learner),
(Daelemans et al., 2003), which implements a
memory-based learning algorithm (IB1) which pre-
dicts the class of a test data point by looking at its
distance to all examples from the training data, us-
ing some distance metric. In our experiments, we
have used the weighted-overlap method, which as-
signs weights to all features.

• MAX ENT, Zhang Le’s C++ implementation8 of
maximum entropy modelling (Berger et al., 1996).
In our experiments, we used L-BFGS parameter es-
timation.

We also implemented a naı̈ve bayes classifier and
ran it on the fragment-task, with a data-set consisting
only of the strings and POS-tags.

To determine the contribution of all features, we
used an iterative process similar to the one described
in (Kohavi and John, 1997; Strube and Müller,
2003): we start with training a model using a base-
line set of features, and then add each remaining
feature individually, recording the gain (w.r.t. the f-
measure (f(0.5), to be precise)), and choosing the
best-performing feature, incrementally until no fur-
ther gain is recorded. All individual training- and
evaluation-steps are performed using 8-fold cross-
validation (given the small number of positive in-
stances, more folds would have made the number of
instances in the test set set too small).

The baselines were as follows: for the fragment-
task, we usedbvb andlbe as baseline, i.e. we let
the classifier know the length of the candidate and
whether the candidate contains a verb or not. For
the antecedent-task we tested a very simple baseline,
containing only of one feature, the distance between
α and β (dis). The baseline for the combined-
task, finally, was a combination of those two base-
lines, i.e.bvb+lbe+dis. The full feature-set for
the fragment-task waslbe, bvb, bpr, nrb,
bft, bds (since for this task there was noα to
compute features of), for the two other tasks it was
the complete set shown in Table 2.

8Available fromhttp://homepages.inf.ed.ac.uk/
s0450736/maxent toolkit.html.

4.2 Results

The Tables 3–5 show the results of the experiments.
The entries are roughly sorted by performance of the
classifier used; for most of the classifiers and data-
sets for each task we show the performance for base-
line, intermediate feature set(s), and full feature-set,
for the rest we only show the best-performing set-
ting. We also indicate whether a balanced or unbal-
anced data set was used. I.e., the first three lines
in Table 3 report on MaxEnt on a balanced data set
for the fragment-task, giving results for the baseline,
baseline+nrb+bft, and the full feature-set.

We begin with discussing the fragment task. As
Table 3 shows, the three main classifiers perform
roughly equivalently. Re-balancing the data, as ex-
pected, boosts recall at the cost of precision. For all
settings (i.e., combinations of data-sets, feature-sets
and classifier), except re-balanced maxent, the base-
line (verb inβ yes/no, and length ofβ) already has
some success in identifying fragments, but adding
the remaining features still boosts the performance.
Having available the string (condition s.s; slipper
with set valued features) interestingly does not help
SLIPPERmuch.

Overall the performance on this task is not great.
Why is that? An analysis of the errors made shows
two problems. Among the false negatives, there is a
high number of fragments like “yeah” and “mhm”,
which in their particular context were answers to
questions, but that however occur much more of-
ten as backchannels (true negatives). The classifier,
without having information about the context, can of
course not distinguish between these cases, and goes
for the majority decision. Among the false positives,
we find utterances that are indeed non-sentential,
but for which no antecedent was marked (as in (3)
above), i.e., which are not fragments in our narrow
sense. It seems, thus, that the required distinctions
are not ones that can be reliably learnt from looking
at the fragments alone.

The antecedent-task was handled more satisfac-
torily, as Table 4 shows. For this task, a naı̈ve base-
line (“always take previous utterance”) preforms rel-
atively well already; however, all classifiers were
able to improve on this, with a slight advantage for
the maxent model (f(0.5) = 0.76). As the entry
for MaxEnt shows, adding to the baseline-features
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Data Set Cl. Recall Precision f(0.5) f(1.0) f(2.0)

B; bl m 0.00 0.00 0.00 0.00 0.00
B; bl+nrb+bft m 36.39 31.16 0.31 0.33 0.35

B; all m 40.61 44.10 0.43 0.42 0.41
UB; all m 22.13 65.06 0.47 0.33 0.25

B; bl t 31.77 21.20 0.22 0.24 0.28
B; bl+nrb+bpr+bds t 42.18 41.26 0.41 0.42 0.42

B; all t 44.54 32.74 0.34 0.37 0.41
UB; bl+nrb t 26.22 59.05 0.47 0.36 0.29

B; bl s 21.07 16.95 0.17 0.18 0.20
B; bl+nrb+bft+bds s 36.37 49.28 0.46 0.41 0.38

B; all s 36.67 43.31 0.42 0.40 0.38
UB; bl+nrb s 28.28 57.88 0.48 0.38 0.31

B s.s 32.57 42.96 0.40 0.36 0.34
B b 55.62 19.75 0.23 0.29 0.41

UB b 66.50 20.00 0.23 0.31 0.45

Table 3: Results for the fragment task. (Cl. = classifier used, where s = slipper, s.s = slipper + set-valued
features, t = timbl, m = maxent, b = naive bayes; UB/B = (un)balanced training data.)

Data Set Cl. Recall Precision f(0.5) f(1.0) f(2.0)

dis=1 - 44.95 44.81 0.45 0.45 0.45
UB; bl m 0 0 0.0 0.0 0.0

UB; bl+awh m 43.21 52.90 0.50 0.47 0.45
UB; bl+awh+god m 36.98 75.31 0.62 0.50 0.41

UB; bl+awh+god+lbe+lal+iqu+nra+buh m 64.26 80.39 0.76 0.71 0.67
UB; all m 58.16 73.57 0.69 0.64 0.60

UB; bl s 0.00 0.00 0.00 0.00 0.00
UB; bl+aqm s 36.65 78.44 0.63 0.49 0.41

UB; bl+aqm+rab+iqu+lal s 49.72 79.75 0.71 0.61 0.54
UB; all s 49.43 72.57 0.66 0.58 0.52

UB; bl t 0 0 0.0 0.0 0.0
UB; bl+aqm t 36.98 73.58 0.61 0.49 0.41

UB; bl+aqm+awh+rab+iqu t 46.41 77.65 0.68 0.58 0.50
UB; all t 60.57 58.74 0.59 0.60 0.60

Table 4: Results for the antecedent task.

Data Set Cl. Recall Precision f(0.5) f(1.0) f(2.0)

B; bl m 0.00 0.00 0.00 0.00 0.00
B; bl+rap m 5.83 40.91 0.18 0.10 0.07

B; bl+rap+god m 7.95 55.83 0.25 0.14 0.10
B; bl+rap+god+nspk m 11.70 49.15 0.30 0.19 0.14

B; bl+rap+god+nspk+alt+awh+nra+lal m 20.27 50.02 0.38 0.28 0.23
B; all m 23.29 43.79 0.36 0.30 0.25

UB; bl+rap+god+nspk+iqu+nra+bds+rab+awh m 13.01 54.87 0.33 0.21 0.15
B; bl s 0.00 0.00 0.00 0.00 0.00

B; bl+god s 11.80 35.60 0.25 0.17 0.13
B; bl+god+bds s 14.44 46.98 0.32 0.22 0.17

B; all s 17.78 41.96 0.32 0.24 0.20
UB; bl+alt+bds+god+sspk+rap s 11.37 56.34 0.31 0.19 0.13

B; bl t 0.00 0.00 0.00 0.00 0.00
B; bl+god t 17.20 29.09 0.25 0.21 0.19

B; all t 17.87 19.97 0.19 0.19 0.18
UB; bl+god+iqu+rab t 14.24 41.63 0.29 0.21 0.16

B; bl+rab+buh s.s 8.63 54.20 0.26 0.15 0.10

Table 5: Results for the combined task.
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information about whetherα is a question or not al-
ready boost the performance considerably. An anal-
ysis of the predictions of this model then indeed
shows that it already captures cases of question and
answer pairs quite well. Adding the similarity fea-
ture god then gives the model information about
semantic relatedness, which, as hypothesised, cap-
tures elaboration-type relations (as in (1-b) and (1-c)
above). Structural information (iqu) further im-
proves the model; however, the remaining features
only seem to add interfering information, for perfor-
mance using the full feature-set is worse.

If one of the problems of the fragment-task was
that information about the context is required to dis-
tinguish fragments and backchannels, then the hope
could be that in the combined-task the classifier
would able to capture these cases. However, the per-
formance of all classifiers on this task is not satis-
factory, as Table 5 shows; in fact, it is even slightly
worse than the performance on the fragment task
alone. We speculate that instead of of cancelling out
mistakes in the other part of the task, the two goals
(let β be a fragment, andα a typical antecedent) in-
terfere during optimisation of the rules.

To summarise, we have shown that the task of
identifying the antecedent of a given fragment is
learnable, using a feature-set that combines struc-
tural and lexical features; in particular, the inclusion
of a measure of semantic relatedness, which was
computed via queries to an internet search engine,
proved helpful. The task of identifying (resolution-
via-identity) fragments, however, is hindered by the
high number of non-sentential utterances which can
be confused with the kinds of fragments we are in-
terested in. Here it could be helpful to have a method
that identifies and filters out backchannels, presum-
ably using a much more local mechanism (as for ex-
ample proposed in (Traum, 1994)). Similarly, the
performance on the combined task is low, also due
to a high number of confusions of backchannels and
fragments. We discuss an alternative set-up below.

5 Related Work

To our knowledge, the tasks presented here have so
far not been studied with a machine learning ap-
proach. The closest to our problem is (Fernández et
al., 2004b), which discussesclassifyingcertain types

of fragments, namely questions of the type “Who?”,
“When?”, etc. (sluices). However, that paper does
not address the task ofidentifying those in a cor-
pus (which in any case should be easier than our
fragment-task, since those fragments cannot be con-
fused with backchannels).

Overlapping from another direction is the work
presented in (Zechner and Lavie, 2001), where the
task of aligning questions and answers is tackled.
This subsumes the task of identifying question-
antecedents for short-answers, but again is presum-
ably somewhat simpler than our general task, be-
cause questions are easier to identify. The authors
also evaluate the use of the alignment of questions
and answers in a summarisation system, and report
an increase in summary fluency, without a compro-
mise in informativeness. This is something we hope
to be able to show for our tasks as well.

There are also similarities, especially of the an-
tecedent task, to the pronoun resolution task (see
e.g. (Strube and Müller, 2003; Poesio et al., 2004)).
Interestingly, our results for the antecedent task are
close to those reported for that task. The problem of
identifying the units in need of an antecedent, how-
ever, is harder for us, due to the problem of there
being a large number of non-sentential utterances
that cannot be linked to a single utterance as an-
tecedent. In general, this seems to be the main differ-
ence between our task and the ones mentioned here,
which concentrate on more easily identified mark-
ables (questions, sluices, and pronouns).

6 Conclusions and Further Work

We have presented a machine learning approach
to the task of identifying fragments and their an-
tecedents in multi-party dialogue. This represents a
well-defined subtask of computing discourse struc-
ture, which to our knowledge has not been studied so
far. We have shown that the task of identifying the
antecedent of a given fragment is learnable, using
features that provide information about the structure
of the discourse between antecedent and fragment,
and about semantic closeness.

The other tasks, identifying fragments and the
combined tasks, however, did not perform as well,
mainly because of a high rate of confusions be-
tween general non-sentential utterances and frag-
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ments (in our sense). In future work, we will try
a modified approach, where the detection of frag-
ments is integrated with a classification of utterances
as backchannels, fragments, or full sentences, and
where the antecedent task only ranks pairs, leaving
open the possibility of excluding a supposed frag-
ment by using contextual information. Lastly, we
are planning to integrate our classifier into a pro-
cessing pipeline after the pronoun resolution step,
to see whether this would improve both our perfor-
mance and the quality of automatic meeting sum-
marisations.9
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Abstract

In this paper we describe a novel data
structure for phrase-based statistical ma-
chine translation which allows for the re-
trieval of arbitrarily long phrases while si-
multaneously using less memory than is
required by current decoder implementa-
tions. We detail the computational com-
plexity and average retrieval times for
looking up phrase translations in our suf-
fix array-based data structure. We show
how sampling can be used to reduce the
retrieval time by orders of magnitude with
no loss in translation quality.

1 Introduction

Statistical machine translation (SMT) has an advan-
tage over many other statistical natural language
processing applications in that training data is reg-
ularly produced by other human activity. For some
language pairs very large sets of training data are
now available. The publications of the European
Union and United Nations provide gigbytes of data
between various language pairs which can be eas-
ily mined using a web crawler. The Linguistics
Data Consortium provides an excellent set of off
the shelf Arabic-English and Chinese-English paral-
lel corpora for the annual NIST machine translation
evaluation exercises.

The size of the NIST training data presents a prob-
lem for phrase-based statistical machine translation.
Decoders such as Pharaoh (Koehn, 2004) primarily
use lookup tables for the storage of phrases and their
translations. Since retrieving longer segments of hu-

man translated text generally leads to better trans-
lation quality, participants in the evaluation exer-
cise try to maximize the length of phrases that are
stored in lookup tables. The combination of large
corpora and long phrases means that the table size
can quickly become unwieldy.

A number of groups in the 2004 evaluation exer-
cise indicated problems dealing with the data. Cop-
ing strategies included limiting the length of phrases
to something small, not using the entire training data
set, computing phrases probabilities on disk, and fil-
tering the phrase table down to a manageable size
after the testing set was distributed. We present a
data structure that is easily capable of handling the
largest data sets currently available, and show that it
can be scaled to much larger data sets.

In this paper we:

• Motivate the problem with storing enumerated
phrases in a table by examining the memory re-
quirements of the method for the NIST data set

• Detail the advantages of using long phrases in
SMT, and examine their potential coverage

• Describe a suffix array-based data structure
which allows for the retrieval of translations
of arbitrarily long phrases, and show that it re-
quires far less memory than a table

• Calculate the computational complexity and
average time for retrieving phrases and show
how this can be sped up by orders of magnitude
with no loss in translation accuracy

2 Related Work

Koehn et al. (2003) compare a number of differ-
ent approaches to phrase-based statistical machine

255



length num uniq
(mil)

average #
translations

avg trans
length

1 .88 8.322 1.37
2 16.5 1.733 2.35
3 42.6 1.182 3.44
4 58.7 1.065 4.58
5 65.0 1.035 5.75
6 66.4 1.022 6.91
7 65.8 1.015 8.07
8 64.3 1.012 9.23
9 62.2 1.010 10.4
10 59.9 1.010 11.6

Table 1: Statistics about Arabic phrases in the NIST-
2004 large data track.

translation including the joint probability phrase-
based model (Marcu and Wong, 2002) and a vari-
ant on the alignment template approach (Och and
Ney, 2004), and contrast them to the performance of
the word-based IBM Model 4 (Brown et al., 1993).
Most relevant for the work presented in this paper,
they compare the effect on translation quality of us-
ing various lengths of phrases, and the size of the
resulting phrase probability tables.

Tillmann (2003) further examines the relationship
between maximum phrase length, size of the trans-
lation table, and accuracy of translation when in-
ducing block-based phrases from word-level align-
ments. Venugopal et al. (2003) and Vogel et al.
(2003) present methods for achieving better transla-
tion quality by growing incrementally larger phrases
by combining smaller phrases with overlapping seg-
ments.

3 Scaling to Long Phrases

Table 1 gives statistics about the Arabic-English par-
allel corpus used in the NIST large data track. The
corpus contains 3.75 million sentence pairs, and has
127 million words in English, and 106 million words
in Arabic. The table shows the number of unique
Arabic phrases, and gives the average number of
translations into English and their average length.

Table 2 gives estimates of the size of the lookup
tables needed to store phrases of various lengths,
based on the statistics in Table 1. The number of
unique entries is calculated as the number unique

length entries
(mil)

words
(mil)

memory
(gigs)

including
alignments

1 7.3 10 .1 .11
2 36 111 .68 .82
3 86 412 2.18 2.64
4 149 933 4.59 5.59
5 216 1,645 7.74 9.46
6 284 2,513 11.48 14.07
7 351 3,513 15.70 19.30
8 416 4,628 20.34 25.05
9 479 5,841 25.33 31.26
10 539 7,140 30.62 37.85

Table 2: Estimated size of lookup tables for the
NIST-2004 Arabic-English data

length coverage length coverage
1 93.5% 6 4.70%
2 73.3% 7 2.95%
3 37.1% 8 2.14%
4 15.5% 9 1.99%
5 8.05% 10 1.49%

Table 3: Lengths of phrases from the training data
that occur in the NIST-2004 test set

phrases times the average number of translations.
The number of words in the table is calculated as the
number of unique phrases times the phrase length
plus the number of entries times the average transla-
tion length. The memory is calculated assuming that
each word is represented with a 4 byte integer, that
each entry stores its probability as an 8 byte double
and that each word alignment is stored as a 2 byte
short. Note that the size of the table will vary de-
pending on the phrase extraction technique.

Table 3 gives the percent of the 35,313 word long
test set which can be covered using only phrases of
the specified length or greater. The table shows the
efficacy of using phrases of different lengths. The ta-
ble shows that while the rate of falloff is rapid, there
are still multiple matches of phrases of length 10.
The longest matching phrase was one of length 18.
There is little generalization in current SMT imple-
mentations, and consequently longer phrases gener-
ally lead to better translation quality.
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3.1 Why use phrases?

Statistical machine translation made considerable
advances in translation quality with the introduction
of phrase-based translation. By increasing the size
of the basic unit of translation, phrase-based ma-
chine translation does away with many of the prob-
lems associated with the original word-based for-
mulation of statistical machine translation (Brown
et al., 1993), in particular:

• The Brown et al. (1993) formulation doesn’t
have a direct way of translating phrases; instead
they specify afertility parameter which is used
to replicate words and translate them individu-
ally.

• With units as small as words, a lot of reordering
has to happen between languages with different
word orders. But thedistortion parameter is a
poor explanation of word order.

Phrase-based SMT overcomes the first of these
problems by eliminating the fertility parameter
and directly handling word-to-phrase and phrase-to-
phrase mappings. The second problem is alleviated
through the use of multi-word units which reduce
the dependency on the distortion parameter. Less
word re-ordering need occur since local dependen-
cies are frequently captured. For example, common
adjective-noun alternations are memorized. How-
ever, since this linguistic information is not encoded
in the model, unseen adjective noun pairs may still
be handled incorrectly.

By increasing the length of phrases beyond a
few words, we might hope to capture additional
non-local linguistic phenomena. For example, by
memorizing longer phrases we may correctly learn
case information for nouns commonly selected by
frequently occurring verbs; we may properly han-
dle discontinuous phrases (such as French negation,
some German verb forms, and English verb particle
constructions) that are neglected by current phrase-
based models; and we may by chance capture some
agreement information in coordinated structures.

3.2 Deciding what length of phrase to store

Despite the potential gains from memorizing longer
phrases, the fact remains that as phrases get longer

length coverage length coverage
1 96.3% 6 21.9%
2 94.9% 7 11.2%
3 86.1% 8 6.16%
4 65.6% 9 3.95%
5 40.9% 10 2.90%

Table 4: Coverage using only repeated phrases of
the specified length

there is a decreasing likelihood that they will be re-
peated. Because of the amount of memory required
to store a phrase table, in current implementations a
choice is made as to the maximum length of phrase
to store.

Based on their analysis of the relationship be-
tween translation quality and phrase length, Koehn
et al. (2003) suggest limiting phrase length to three
words or less. This is entirely a practical sugges-
tion for keeping the phrase table to a reasonable
size, since they measure minor but incremental im-
provement in translation quality up to their maxi-
mum tested phrase length of seven words.1

Table 4 gives statistics about phrases which oc-
cur more than once in the English section of the Eu-
roparl corpus (Koehn, 2002) which was used in the
Koehn et al. (2003) experiments. It shows that the
percentage of words in the corpus that can be cov-
ered by repeated phrases falls off rapidly at length
6, but that even phrases up to length 10 are able to
cover a non-trivial portion of the corpus. This draws
into question the desirability of limiting phrase re-
trieval to length three.

The decision concerning what length of phrases
to store in the phrase table seems to boil down to
a practical consideration: one must weigh the like-
lihood of retrieval against the memory needed to
store longer phrases. We present a data structure
where this is not a consideration. Our suffix array-
based data structure allows the retrieval of arbitrar-
ily long phrases, while simultaneously requiring far
less memory than the standard table-based represen-
tation.

1While the improvements to translation quality reported in
Koehn et al. (2003) are minor, their evaluation metric may not
have been especially sensitive to adding longer phrases. They
used the Bleu evaluation metric (Papineni et al., 2002), but
capped the n-gram precision at 4-grams.
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spain declined to confirm that spain declined to aid morocco
declined to confirm that spain declined to aid morocco
to confirm that spain declined to aid morocco
confirm that spain declined to aid morocco
that spain declined to aid morocco
spain declined to aid morocco
declined to aid morocco
to aid morocco
aid morocco
morocco

spain declined to confirm that spain declined aidto morocco
0 1 2 3 4 5 6 87 9

s[0]
s[1]
s[2]
s[3]
s[4]
s[5]
s[6]
s[7]
s[8]
s[9]

Initialized, unsorted
Suffix Array Suffixes denoted by s[i]

Corpus
Index of
words:

Figure 1: An initialized, unsorted suffix array for a
very small corpus

4 Suffix Arrays

The suffix array data structure (Manber and Myers,
1990) was introduced as a space-economical way of
creating an index for string searches. The suffix ar-
ray data structure makes it convenient to compute
the frequency and location of any substring or n-
gram in a large corpus. Abstractly, a suffix array is
an alphabetically-sorted list of all suffixes in a cor-
pus, where a suffix is a substring running from each
position in the text to the end. However, rather than
actually storing all suffixes, a suffix array can be
constructed by creating a list of references to each
of the suffixes in a corpus. Figure 1 shows how a
suffix array is initialized for a corpus with one sen-
tence. Each index of a word in the corpus has a cor-
responding place in the suffix array, which is identi-
cal in length to the corpus. Figure 2 shows the final
state of the suffix array, which is as a list of the in-
dices of words in the corpus that corresponds to an
alphabetically sorted list of the suffixes.

The advantages of this representation are that it is
compact and easily searchable. The total size of the
suffix array is a constant amount of memory. Typ-
ically it is stored as an array of integers where the
array is the same length as the corpus. Because it is
organized alphabetically, any phrase can be quickly
located within it using a binary search algorithm.

Yamamoto and Church (2001) show how to use
suffix arrays to calculate a number of statistics that
are interesting in natural language processing appli-
cations. They demonstrate how to calculate term fre-

8
3
6
1
9
5
0
4
7
2

to aid morocco
to confirm that spain declined to aid morocco

morocco
spain declined to aid morocco

declined to confirm that spain declined to aid morocco
declined to aid morocco
confirm that spain declined to aid morocco
aid morocco

that spain declined to aid morocco
spain declined to confirm that spain declined to aid morocco

Sorted
Suffix Array Suffixes denoted by s[i]

s[0]
s[1]
s[2]
s[3]
s[4]
s[5]
s[6]
s[7]
s[8]
s[9]

Figure 2: A sorted suffix array and its corresponding
suffixes

quency / inverse document frequency (tf / idf) for all
n-grams in very large corpora, as well as how to use
these frequencies to calculate n-grams with high mu-
tual information and residual inverse document fre-
quency. Here we show how to apply suffix arrays to
parallel corpora to calculate phrase translation prob-
abilities.

4.1 Applied to parallel corpora

In order to adapt suffix arrays to be useful for sta-
tistical machine translation we need a data structure
with the following elements:

• A suffix array created from the source language
portion of the corpus, and another created from
the target language portion of the corpus,

• An index that tells us the correspondence be-
tween sentence numbers and positions in the
source and target language corpora,

• An alignmenta for each sentence pair in the
parallel corpus, wherea is defined as a subset
of the Cartesian product of the word positions
in a sentencee of lengthI and a sentencef of
lengthJ :

a ⊆ {(i, j) : i = 1...I; j = 1...J}

• A method for extracting the translationally
equivalent phrase for a subphrase given an
aligned sentence pair containing that sub-
phrase.

The total memory usage of the data structure is
thus the size of the source and target corpora, plus
the size of the suffix arrays (identical in length to the
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corpora), plus the size of the two indexes that cor-
relate sentence positions with word positions, plus
the size of the alignments. Assuming we useints
to represent words and indices, andshortsto repre-
sent word alignments, we get the following memory
usage:

2 ∗ num words in source corpus∗ sizeof(int)+

2 ∗ num words in target corpus∗ sizeof(int)+

2 ∗ number sentence pairs∗ sizeof(int)+

number of word alignments∗ sizeof(short)

The total amount of memory required to store the
NIST Arabic-English data using this data structure
is

2 ∗ 105,994,774∗ sizeof(int)+

2 ∗ 127,450,473∗ sizeof(int)+

2 ∗ 3,758,904∗ sizeof(int)+

92,975,229∗ sizeof(short)

Or just over 2 Gigabytes.

4.2 Calculating phrase translation
probabilities

In order to produce a set of phrase translation prob-
abilities, we need to examine the ways in which
they are calculated. We consider two common ways
of calculating the translation probability: using the
maximum likelihood estimator (MLE) and smooth-
ing the MLE using lexical weighting.

The maximum likelihood estimator for the proba-
bility of a phrase is defined as

p(f̄ |ē) =
count(f̄ , ē)∑
f̄ count(f̄ , ē)

(1)

Wherecount(f̄ , ē) gives the total number of times
the phrasef̄ was aligned with the phrasēe in the
parallel corpus. We define phrase alignments as fol-
lows. A substrinḡe consisting of the words at po-
sitionsl...m is aligned with the phrasēf by way of
the subalignment

s = a ∩ {(i, j) : i = l...m, j = 1...J}

The aligned phrasēf is the subphrase inf which
spans frommin(j) tomax(j) for j|(i, j) ∈ s.

The procedure for generating the counts that are
used to calculate the MLE probability using our suf-
fix array-based data structures is:

1. Locate all the suffixes in the English suffix ar-
ray which begin with the phrasēe. Since the
suffix array is sorted alphabetically we can eas-
ily find the first occurrences[k] and the last oc-
currences[l]. The length of the span in the suf-
fix arrayl−k+1 indicates the number of occur-
rences of̄e in the corpus. Thus the denominator∑
f̄ count(f̄ , ē) can be calculated asl− k + 1.

2. For each of the matching phrasess[i] in the
spans[k]...s[l], look up the value ofs[i] which
is the word indexw of the suffix in the English
corpus. Look up the sentence number that in-
cludesw, and retrieve the corresponding sen-
tencese andf , and their alignmenta.

3. Usea to extract the target phrasēf that aligns
with the phrasēe that we are searching for. In-
crement the count for< f̄, ē >.

4. Calculate the probability for each unique
matching phrasēf using the formula in Equa-
tion 1.

A common alternative formulation of the phrase
translation probability is to lexically weight it as fol-
lows:

plw(f̄ |ē, s) =
n∏
i=1

1
|{i|(i, j) ∈ s}|

∑
∀(i,j)∈s

p(fj |ei)

(2)
Wheren is the length of̄e.

In order to use lexical weighting we would need
to repeat steps 1-4 above for each wordei in ē. This
would give us the values forp(fj |ei). We would fur-
ther need to retain the subphrase alignments in or-
der to know the correspondence between the words
(i, j) ∈ s in the aligned phrases, and the total num-
ber of foreign words that eachei is aligned with
(|{i|(i, j) ∈ s}|). Since a phrase alignment< f̄, ē >
may have multiple possible word-level alignments,
we retain a set of alignmentsS and take the maxi-
mum:
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p(f̄ |ē, S) = p(f̄ |ē) ∗ arg max
s∈S

plw(f̄ |ē, s) (3)

Thus our suffix array-based data structure can be
used straightforwardly to look up all aligned trans-
lations for a given phrase and calculate the proba-
bilities on-the-fly. In the next section we turn to
the computational complexity of constructing phrase
translation probabilities in this way.

5 Computational Complexity

Computational complexity is relevant because there
is a speed-memory tradeoff when adopting our data
structure. What we gained in memory efficiency
may be rendered useless if the time it takes to cal-
culate phrase translation probabilities is unreason-
ably long. The computational complexity of looking
up items in a hash table, as is done in current table-
based data structures, is extremely fast. Looking up
a single phrase can be done in unit time,O(1).

The computational complexity of our method has
the following components:

• The complexity of finding all occurrences of
the phrase in the suffix array

• The complexity of retrieving the associated
aligned sentence pairs given the positions of the
phrase in the corpus

• The complexity of extracting all aligned
phrases using our phrase extraction algorithm

• The complexity of calculating the probabilities
given the aligned phrases

The methods we use to execute each of these, and
their complexities are as follow:

• Since the array is sorted, finding all occur-
rences of the English phrase is extremely fast.
We can do two binary searches: one to find the
first occurrence of the phrase and a second to
find the last. The computational complexity is
therefore bounded byO(2 log(n)) wheren is
the length of the corpus.

• We use a similar method to look up the sen-
tencesei and fi and word-level alignmentai

phrase freq O time (ms)
respect for the
dead

3 80 24

since the end of
the cold war

19 240 136

the parliament 1291 4391 1117
of the 290921 682550 218369

Table 5: Examples ofO and calculation times for
phrases of different frequencies

that are associated with the positionwi in the
corpus of each phrase occurrenceēi. The com-
plexity isO(k ∗ 2 log(m)) wherek is the num-
ber of occurrences of̄e andm is the number of
sentence pairs in the parallel corpus.

• The complexity of extracting the aligned phrase
for a single occurrence of̄ei isO(2 log(|ai|) to
get the subphrase alignmentsi, since we store
the alignments in a sorted array. The complex-
ity of then gettingf̄i from si isO(length(f̄i)).

• The complexity of summing over all aligned
phrases and simultaneously calculating their
probabilities isO(k).

Thus we have a total complexity of:

O(2 log(n) + k ∗ 2 log(m) (4)

+
ē1...ēk∑
ai,f̄i|ēi

(2 log(|ai|) + length(f̄i)) + k) (5)

for the MLE estimation of the translation probabil-
ities for a single phrase. The complexity is domi-
nated by thek terms in the equation, when the num-
ber of occurrences of the phrase in the corpus is
high. Phrases with high frequency may cause exces-
sively long retrieval time. This problem is exacer-
bated when we shift to a lexically weighted calcula-
tion of the phrase translation probability. The com-
plexity will be multiplied across each of the compo-
nent words in the phrase, and the component words
themselves will be more frequent than the phrase.

Table 5 shows example times for calculating the
translation probabilities for a number of phrases. For
frequent phrases likeof thethese times get unaccept-
ably long. While our data structure is perfect for
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overcoming the problems associated with storing the
translations of long, infrequently occurring phrases,
it in a way introduces the converse problem. It has
a clear disadvantage in the amount of time it takes
to retrieve commonly occurring phrases. In the next
section we examine the use of sampling to speed up
the calculation of translation probabilities for very
frequent phrases.

6 Sampling

Rather than compute the phrase translation proba-
bilities by examining the hundreds of thousands of
occurrences of common phrases, we instead sam-
ple from a small subset of the occurrences. It is
unlikely that we need to extract the translations of
all occurrences of a high frequency phrase in order
to get a good approximation of their probabilities.
We instead cap the number of occurrences that we
consider, and thus give a maximum bound onk in
Equation 5.

In order to determine the effect of different lev-
els of sampling, we compare the translation quality
against cumulative retrieval time for calculating the
phrase translation probabilities for all subphrases in
an evaluation set. We translated a held out set of
430 German sentences with 50 words or less into
English. The test sentences were drawn from the
01/17/00 proceedings of the Europarl corpus. The
remainder of the corpus (1 million sentences) was
used as training data to calculate the phrase trans-
lation probabilities. We calculated the translation
quality using Bleu’s modified n-gram precision met-
ric (Papineni et al., 2002) for n-grams of up to length
four. The framework that we used to calculate the
translation probabilities was similar to that detailed
in Koehn et al. (2003). That is:

ê = arg max
eI
1

p(eI
1|f I

1) (6)

= arg max
eI
1

pLM (eI
1) ∗ (7)

I∏
i=1

p(f̄i|ēi)d(ai − bi−1)plw(f̄i|ēi,a) (8)

WherepLM is a language model probability andd is
a distortion probability which penalizes movement.

Table 6 gives a comparison of the translation qual-
ity under different levels of sampling. While the ac-

sample size time quality
unlimited 6279 sec .290
50000 1051 sec .289
10000 336 sec .291
5000 201 sec .289
1000 60 sec .288
500 35 sec .288
100 10 sec .288

Table 6: A comparison of retrieval times and trans-
lation quality when the number of translations is
capped at various sample sizes

curacy fluctuates very slightly it essentially remains
uniformly high for all levels of sampling. There are
a number of possible reasons for the fact that the
quality does not decrease:

• The probability estimates under sampling are
sufficiently good that the most probable trans-
lations remain unchanged,

• The interaction with the language model prob-
ability rules out the few misestimated probabil-
ities, or

• The decoder tends to select longer or less fre-
quent phrases which are not affected by the
sampling.

While the translation quality remains essentially
unchanged, the cumulative time that it takes to cal-
culate the translation probabilities for all subphrases
in the 430 sentence test set decreases radically. The
total time drops by orders of magnitude from an hour
and a half without sampling down to a mere 10 sec-
onds with a cavalier amount of sampling. This sug-
gests that the data structure is suitable for deployed
SMT systems and that no additional caching need
be done to compensate for the structure’s computa-
tional complexity.

7 Discussion

The paper has presented a super-efficient data struc-
ture for phrase-based statistical machine translation.
We have shown that current table-based methods are
unwieldily when used in conjunction with large data
sets and long phrases. We have contrasted this with
our suffix array-based data structure which provides
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a very compact way of storing large data sets while
simultaneously allowing the retrieval of arbitrarily
long phrases.

For the NIST-2004 Arabic-English data set,
which is among the largest currently assembled for
statistical machine translation, our representation
uses a very manageable 2 gigabytes of memory. This
is less than is needed to store a table containing
phrases with a maximum of three words, and is ten
times less than the memory required to store a table
with phrases of length eight.

We have further demonstrated that while compu-
tational complexity can make the retrieval of trans-
lation of frequent phrases slow, the use of sampling
is an extremely effective countermeasure to this.
We demonstrated that calculating phrase translation
probabilities from sets of 100 occurrences or less re-
sults in nearly no decrease in translation quality.

The implications of the data structure presented
in this paper are significant. The compact rep-
resentation will allow us to easily scale to paral-
lel corpora consisting of billions of words of text,
and the retrieval of arbitrarily long phrases will al-
low experiments with alternative decoding strate-
gies. These facts in combination allow for an even
greater exploitation of training data in statistical ma-
chine translation.
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Abstract

We present a statistical phrase-based transla-
tion model that useshierarchical phrases—
phrases that contain subphrases. The model
is formally a synchronous context-free gram-
mar but is learned from a bitext without any
syntactic information. Thus it can be seen as
a shift to the formal machinery of syntax-
based translation systems without anylin-
guistic commitment. In our experiments us-
ing BLEU as a metric, the hierarchical phrase-
based model achieves a relative improve-
ment of 7.5% over Pharaoh, a state-of-the-art
phrase-based system.

1 Introduction

The alignment template translation model (Och and
Ney, 2004) and related phrase-based models ad-
vanced the previous state of the art by moving
from words tophrasesas the basic unit of transla-
tion. Phrases, which can be any substring and not
necessarily phrases in any syntactic theory, allow
these models to learn local reorderings, translation
of short idioms, or insertions and deletions that are
sensitive to local context. They are thus a simple and
powerful mechanism for machine translation.

The basic phrase-based model is an instance of
the noisy-channel approach (Brown et al., 1993),1 in
which the translation of a French sentencef into an

1Throughout this paper, we follow the convention of Brown
et al. of designating the source and target languages as “French”
and “English,” respectively. The variablesf and e stand for
source and target sentences;f j

i stands for the substring off
from positioni to position j inclusive, and similarly forej

i .

English sentencee is modeled as:

arg max
e

P(e | f ) = arg max
e

P(e, f )(1)

= arg max
e

(P(e) × P( f | e))(2)

The translation modelP( f | e) “encodes”e into f by
the following steps:

1. segmente into phrases ¯e1 · · · ēI , typically with
a uniform distribution over segmentations;

2. reorder the ¯ei according to some distortion
model;

3. translate each of the ¯ei into French phrases ac-
cording to a modelP( f̄ | ē) estimated from the
training data.

Other phrase-based models model the joint distribu-
tion P(e, f ) (Marcu and Wong, 2002) or madeP(e)
andP( f | e) into features of a log-linear model (Och
and Ney, 2002). But the basic architecture of phrase
segmentation (or generation), phrase reordering, and
phrase translation remains the same.

Phrase-based models can robustly perform trans-
lations that are localized to substrings that are com-
mon enough to have been observed in training. But
Koehn et al. (2003) find that phrases longer than
three words improve performance little, suggesting
that data sparseness takes over for longer phrases.
Above the phrase level, these models typically have
a simple distortion model that reorders phrases in-
dependently of their content (Och and Ney, 2004;
Koehn et al., 2003), or not at all (Zens and Ney,
2004; Kumar et al., 2005).

But it is often desirable to capture translations
whose scope is larger than a few consecutive words.
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Consider the following Mandarin example and its
English translation:

(3) ³2
Aozhou
Australia

/
shi
is

�
yu
with

�
Bei
North

é
Han
Korea

	
you
have

¦¤
bangjiao
dipl. rels.

�
de
that

�p
shaoshu
few

ý¶
guojia
countries

K�
zhiyi
one of

‘Australia is one of the few countries that have
diplomatic relations with North Korea’

If we countzhiyi, lit. ‘of-one,’ as a single token, then
translating this sentence correctly into English re-
quires reversing a sequence of five elements. When
we run a phrase-based system, Pharaoh (Koehn et
al., 2003; Koehn, 2004a), on this sentence (using the
experimental setup described below), we get the fol-
lowing phrases with translations:

(4) [Aozhou] [shi] [yu] [Bei Han] [you]
[bangjiao]1 [de shaoshu guojia zhiyi]

[Australia] [is] [dipl. rels.]1 [with] [North
Korea] [is] [one of the few countries]

where we have used subscripts to indicate the re-
ordering of phrases. The phrase-based model is
able to order “diplomatic. . .Korea” correctly (using
phrase reordering) and “one. . .countries” correctly
(using a phrase translation), but does not accom-
plish the necessary inversion of those two groups.
A lexicalized phrase-reordering model like that in
use in ISI’s system (Och et al., 2004) might be able
to learn a better reordering, but simpler distortion
models will probably not.

We propose a solution to these problems that
does not interfere with the strengths of the phrase-
based approach, but rather capitalizes on them: since
phrases are good for learning reorderings of words,
we can use them to learn reorderings of phrases
as well. In order to do this we needhierarchical
phrasesthat consist of both words and subphrases.
For example, a hierarchical phrase pair that might
help with the above example is:

(5) 〈yu 1 you 2 ,have 2 with 1 〉

where 1 and 2 are placeholders for subphrases. This
would capture the fact that Chinese PPs almost al-
ways modify VP on the left, whereas English PPs

usually modify VP on the right. Because it gener-
alizes over possible prepositional objects and direct
objects, it acts both as a discontinuous phrase pair
and as a phrase-reordering rule. Thus it is consider-
ably more powerful than a conventional phrase pair.

Similarly,

(6) 〈 1 de 2 , the 2 that 1 〉

would capture the fact that Chinese relative clauses
modify NPs on the left, whereas English relative
clauses modify on the right; and

(7) 〈 1 zhiyi,one of 1 〉

would render the constructionzhiyi in English word
order. These three rules, along with some conven-
tional phrase pairs, suffice to translate the sentence
correctly:

(8) [Aozhou] [shi] [[[yu [Bei Han]1 you
[bangjiao]2] de [shaoshu guojia]3] zhiyi]

[Australia] [is] [one of [the [few countries]3

that [have [dipl. rels.]2 with [North Korea]1]]]

The system we describe below uses rules like this,
and in fact is able to learn them automatically from
a bitext without syntactic annotation. It translates the
above example almost exactly as we have shown, the
only error being that it omits the word ‘that’ from (6)
and therefore (8).

These hierarchical phrase pairs are formally pro-
ductions of a synchronous context-free grammar
(defined below). A move to synchronous CFG can
be seen as a move towards syntax-based MT; how-
ever, we make a distinction here betweenformally
syntax-based andlinguistically syntax-based MT. A
system like that of Yamada and Knight (2001) is
both formally and linguistically syntax-based: for-
mally because it uses synchronous CFG, linguisti-
cally because the structures it is defined over are (on
the English side) informed by syntactic theory (via
the Penn Treebank). Our system is formally syntax-
based in that it uses synchronous CFG, but not nec-
essarily linguistically syntax-based, because it in-
duces a grammar from a parallel text without relying
on any linguistic annotations or assumptions; the re-
sult sometimes resembles a syntactician’s grammar
but often does not. In this respect it resembles Wu’s
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bilingual bracketer (Wu, 1997), but ours uses a dif-
ferent extraction method that allows more than one
lexical item in a rule, in keeping with the phrase-
based philosophy. Our extraction method is basi-
cally the same as that of Block (2000), except we
allow more than one nonterminal symbol in a rule,
and use a more sophisticated probability model.

In this paper we describe the design and imple-
mentation of our hierarchical phrase-based model,
and report on experiments that demonstrate that hi-
erarchical phrases indeed improve translation.

2 The model

Our model is based on a weighted synchronous CFG
(Aho and Ullman, 1969). In a synchronous CFG the
elementary structures are rewrite rules with aligned
pairs of right-hand sides:

(9) X→ 〈γ, α,∼〉

whereX is a nonterminal,γ andα are both strings
of terminals and nonterminals, and∼ is a one-to-one
correspondence between nonterminal occurrences
in γ and nonterminal occurrences inα. Rewriting
begins with a pair of linked start symbols. At each
step, two coindexed nonterminals are rewritten us-
ing the two components of a single rule, such that
none of the newly introduced symbols is linked to
any symbols already present.

Thus the hierarchical phrase pairs from our above
example could be formalized in a synchronous CFG
as:

X → 〈yu X 1 you X 2 ,have X2 with X 1 〉(10)

X → 〈X 1 de X 2 , the X 2 that X 1 〉(11)

X → 〈X 1 zhiyi,one of X1 〉(12)

where we have used boxed indices to indicate which
occurrences of X are linked by∼.

Note that we have used only a single nonterminal
symbol X instead of assigning syntactic categories
to phrases. In the grammar we extract from a bitext
(described below), all of our rules use only X, ex-
cept for two special “glue” rules, which combine a
sequence of Xs to form an S:

S→ 〈S 1 X 2 ,S 1 X 2 〉(13)

S→ 〈X 1 ,X 1 〉(14)

These give the model the option to build only par-
tial translations using hierarchical phrases, and then
combine them serially as in a standard phrase-based
model. For a partial example of a synchronous CFG
derivation, see Figure 1.

Following Och and Ney (2002), we depart from
the traditional noisy-channel approach and use a
more general log-linear model. The weight of each
rule is:

(15) w(X→ 〈γ, α〉) =
∏

i

φi(X→ 〈γ, α〉)
λi

where theφi are features defined on rules. For our
experiments we used the following features, analo-
gous to Pharaoh’s default feature set:

• P(γ | α) andP(α | γ), the latter of which is not
found in the noisy-channel model, but has been
previously found to be a helpful feature (Och
and Ney, 2002);

• the lexical weightsPw(γ | α) and Pw(α | γ)
(Koehn et al., 2003), which estimate how well
the words inα translate the words inγ;2

• a phrase penalty exp(1), which allows the
model to learn a preference for longer or
shorter derivations, analogous to Koehn’s
phrase penalty (Koehn, 2003).

The exceptions to the above are the two glue rules,
(13), which has weight one, and (14), which has
weight

(16) w(S→ 〈S 1 X 2 ,S 1 X 2 〉) = exp(−λg)

the idea being thatλg controls the model’s prefer-
ence for hierarchical phrases over serial combination
of phrases.

Let D be a derivation of the grammar, and letf (D)
ande(D) be the French and English strings gener-
ated byD. Let us representD as a set of triples
〈r, i, j〉, each of which stands for an application of
a grammar ruler to rewrite a nonterminal that spans
f (D) j

i on the French side.3 Then the weight ofD

2This feature uses word alignment information, which is dis-
carded in the final grammar. If a rule occurs in training with
more than one possible word alignment, Koehn et al. take the
maximum lexical weight; we take a weighted average.

3This representation is not completely unambiguous, but is
sufficient for defining the model.
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〈S 1 ,S 1 〉 ⇒ 〈S 2 X 3 ,S 2 X 3 〉

⇒ 〈S 4 X 5 X 3 ,S 4 X 5 X 3 〉

⇒ 〈X 6 X 5 X 3 ,X 6 X 5 X 3 〉

⇒ 〈Aozhou X5 X 3 ,Australia X5 X 3 〉

⇒ 〈Aozhou shi X3 ,Australia is X3 〉

⇒ 〈Aozhou shi X7 zhiyi,Australia is one of X7 〉

⇒ 〈Aozhou shi X8 de X 9 zhiyi,Australia is one of the X9 that X 8 〉

⇒ 〈Aozhou shi yu X1 you X 2 de X 9 zhiyi,Australia is one of the X9 that have X2 with X 1 〉

Figure 1: Example partial derivation of a synchronous CFG.

is the product of the weights of the rules used in the
translation, multiplied by the following extra factors:

(17) w(D) =
∏
〈r,i, j〉∈D

w(r)× plm(e)λlm ×exp(−λwp|e|)

whereplm is the language model, and exp(−λwp|e|),
the word penalty, gives some control over the length
of the English output.

We have separated these factors out from the rule
weights for notational convenience, but it is concep-
tually cleaner (and necessary for polynomial-time
decoding) to integrate them into the rule weights,
so that the whole model is a weighted synchronous
CFG. The word penalty is easy; the language model
is integrated by intersecting the English-side CFG
with the language model, which is a weighted finite-
state automaton.

3 Training

The training process begins with a word-aligned cor-
pus: a set of triples〈 f ,e,∼〉, where f is a French
sentence,e is an English sentence, and∼ is a (many-
to-many) binary relation between positions off and
positions ofe. We obtain the word alignments using
the method of Koehn et al. (2003), which is based
on that of Och and Ney (2004). This involves run-
ning GIZA++ (Och and Ney, 2000) on the corpus in
both directions, and applying refinement rules (the
variant they designate “final-and”) to obtain a single
many-to-many word alignment for each sentence.

Then, following Och and others, we use heuris-
tics to hypothesize a distribution of possible deriva-
tions of each training example, and then estimate

the phrase translation parameters from the hypoth-
esized distribution. To do this, we first identifyini-
tial phrasepairs using the same criterion as previous
systems (Och and Ney, 2004; Koehn et al., 2003):

Definition 1. Given a word-aligned sentence pair
〈 f ,e,∼〉, a rule 〈 f j

i ,e
j′

i′ 〉 is an initial phrase pair of
〈 f ,e,∼〉 iff:

1. fk ∼ ek′ for somek ∈ [i, j] andk′ ∈ [i′, j′];

2. fk / ek′ for all k ∈ [i, j] andk′ < [i′, j′];

3. fk / ek′ for all k < [i, j] andk′ ∈ [i′, j′].

Next, we form all possible differences of phrase
pairs:

Definition 2. The set of rules of〈 f ,e,∼〉 is the
smallest set satisfying the following:

1. If 〈 f j
i ,e

j′

i′ 〉 is an initial phrase pair, then

X → 〈 f j
i ,e

j′

i′ 〉

is a rule.

2. If r = X → 〈γ, α〉 is a rule and〈 f j
i ,e

j′

i′ 〉 is an

initial phrase pair such thatγ = γ1 f j
i γ2 andα =

α1ej′

i′ α2, then

X → 〈γ1X k γ2, α1X k α2〉

is a rule, wherek is an index not used inr.

The above scheme generates a very large num-
ber of rules, which is undesirable not only because
it makes training and decoding very slow, but also
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because it createsspurious ambiguity—a situation
where the decoder produces many derivations that
are distinct yet have the same model feature vectors
and give the same translation. This can result inn-
best lists with very few different translations or fea-
ture vectors, which is problematic for the algorithm
we use to tune the feature weights. Therefore we
filter our grammar according to the following prin-
ciples, chosen to balance grammar size and perfor-
mance on our development set:

1. If there are multiple initial phrase pairs contain-
ing the same set of alignment points, we keep
only the smallest.

2. Initial phrases are limited to a length of 10 on
the French side, and rule to five (nonterminals
plus terminals) on the French right-hand side.

3. In the subtraction step,f j
i must have length

greater than one. The rationale is that little
would be gained by creating a new rule that is
no shorter than the original.

4. Rules can have at most two nonterminals,
which simplifies the decoder implementation.
Moreover, we prohibit nonterminals that are
adjacent on the French side, a major cause of
spurious ambiguity.

5. A rule must have at least one pair of aligned
words, making translation decisions always
based on some lexical evidence.

Now we must hypothesize weights for all the deriva-
tions. Och’s method gives equal weight to all the
extracted phrase occurences. However, our method
may extract many rules from a single initial phrase
pair; therefore we distribute weight equally among
initial phrase pairs, but distribute that weight equally
among the rules extracted from each. Treating this
distribution as our observed data, we use relative-
frequency estimation to obtainP(γ | α) andP(α | γ).

4 Decoding

Our decoder is a CKY parser with beam search
together with a postprocessor for mapping French
derivations to English derivations. Given a French
sentencef , it finds the best derivation (orn best
derivations, with little overhead) that generates〈 f ,e〉

for somee. Note that we find the English yield of the
highest-probability single derivation

(18) e

 arg max
D s.t. f (D) = f

w(D)


and not necessarily the highest-probabilitye, which
would require a more expensive summation over
derivations.

We prune the search space in several ways. First,
an item that has a score worse thanβ times the best
score in the same cell is discarded; second, an item
that is worse than thebth best item in the same cell is
discarded. Each cell contains all the items standing
for X spanningf j

i . We chooseb and β to balance
speed and performance on our development set. For
our experiments, we setb = 40, β = 10−1 for X cells,
andb = 15, β = 10−1 for S cells. We also prune rules
that have the same French side (b = 100).

The parser only operates on the French-side gram-
mar; the English-side grammar affects parsing only
by increasing the effective grammar size, because
there may be multiple rules with the same French
side but different English sides, and also because in-
tersecting the language model with the English-side
grammar introduces many states into the nontermi-
nal alphabet, which are projected over to the French
side. Thus, our decoder’s search space is many times
larger than a monolingual parser’s would be. To re-
duce this effect, we apply the following heuristic
when filling a cell: if an item falls outside the beam,
then any item that would be generated using a lower-
scoring rule or a lower-scoring antecedent item is
also assumed to fall outside the beam. This heuristic
greatly increases decoding speed, at the cost of some
search errors.

Finally, the decoder has a constraint that pro-
hibits any X from spanning a substring longer than
10 on the French side, corresponding to the maxi-
mum length constraint on initial rules during train-
ing. This makes the decoding algorithm asymptoti-
cally linear-time.

The decoder is implemented in Python, an inter-
preted language, with C++ code from the SRI Lan-
guage Modeling Toolkit (Stolcke, 2002). Using the
settings described above, on a 2.4 GHz Pentium IV,
it takes about 20 seconds to translate each sentence
(average length about 30). This is faster than our
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Python implementation of a standard phrase-based
decoder, so we expect that a future optimized imple-
mentation of the hierarchical decoder will run at a
speed competitive with other phrase-based systems.

5 Experiments

Our experiments were on Mandarin-to-English
translation. We compared a baseline system,
the state-of-the-art phrase-based system Pharaoh
(Koehn et al., 2003; Koehn, 2004a), against our sys-
tem. For all three systems we trained the transla-
tion model on the FBIS corpus (7.2M+9.2M words);
for the language model, we used the SRI Language
Modeling Toolkit to train a trigram model with mod-
ified Kneser-Ney smoothing (Chen and Goodman,
1998) on 155M words of English newswire text,
mostly from the Xinhua portion of the Gigaword
corpus. We used the 2002 NIST MT evaluation test
set as our development set, and the 2003 test set as
our test set. Our evaluation metric was BLEU (Pap-
ineni et al., 2002), as calculated by the NIST script
(version 11a) with its default settings, which is to
perform case-insensitive matching ofn-grams up to
n = 4, and to use the shortest (as opposed to nearest)
reference sentence for the brevity penalty. The re-
sults of the experiments are summarized in Table 1.

5.1 Baseline

The baseline system we used for comparison was
Pharaoh (Koehn et al., 2003; Koehn, 2004a), as pub-
licly distributed. We used the default feature set: lan-
guage model (same as above),p( f̄ | ē), p(ē | f̄ ), lex-
ical weighting (both directions), distortion model,
word penalty, and phrase penalty. We ran the trainer
with its default settings (maximum phrase length 7),
and then used Koehn’s implementation of minimum-
error-rate training (Och, 2003) to tune the feature
weights to maximize the system’s BLEU score on
our development set, yielding the values shown in
Table 2. Finally, we ran the decoder on the test set,
pruning the phrase table withb = 100, pruning the
chart withb = 100, β = 10−5, and limiting distor-
tions to 4. These are the default settings, except for
the phrase table’sb, which was raised from 20, and
the distortion limit. Both of these changes, made by
Koehn’s minimum-error-rate trainer by default, im-
prove performance on the development set.

Rank Chinese English
1 � .
3 � the

14 ( in
23 � ’s

577 X 1 � X 2 the X 2 of X 1

735 X 1 � X 2 the X 2 X 1

763 X 1 K� one of X1

1201 X1 ;ß president X1

1240 X1 �C $ X 1

2091 Êt X 1 X 1 this year
3253 ~�K X 1 X 1 percent

10508 ( X 1 � under X1

28426 ( X 1 M before X1

47015 X1 � X 2 the X 2 that X 1

1752457 � X 1 	 X 2 have X2 with X 1

Figure 2: A selection of extracted rules, with ranks
after filtering for the development set. All have X for
their left-hand sides.

5.2 Hierarchical model

We ran the training process of Section 3 on the same
data, obtaining a grammar of 24M rules. When fil-
tered for the development set, the grammar has 2.2M
rules (see Figure 2 for examples). We then ran the
minimum-error rate trainer with our decoder to tune
the feature weights, yielding the values shown in Ta-
ble 2. Note thatλg penalizes the glue rule much less
thanλpp does ordinary rules. This suggests that the
model will prefer serial combination of phrases, un-
less some other factor supports the use of hierarchi-
cal phrases (e.g., a better language model score).

We then tested our system, using the settings de-
scribed above.4 Our system achieves an absolute im-
provement of 0.02 over the baseline (7.5% relative),
without using any additional training data. This dif-
ference is statistically significant (p < 0.01).5 See
Table 1, which also shows that the relative gain is
higher for highern-grams.

4Note that we gave Pharaoh wider beam settings than we
used on our own decoder; on the other hand, since our decoder’s
chart has more cells, itsb limits do not need to be as high.

5We used Zhang’s significance tester (Zhang et al., 2004),
which uses bootstrap resampling (Koehn, 2004b); it was mod-
ified to conform to NIST’s current definition of the BLEU
brevity penalty.
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BLEU-n n-gram precisions
System 4 1 2 3 4 5 6 7 8
Pharaoh 0.2676 0.72 0.37 0.19 0.10 0.052 0.027 0.014 0.0075
hierarchical 0.2877 0.74 0.39 0.21 0.11 0.060 0.032 0.017 0.0084
+constituent 0.2881 0.73 0.39 0.21 0.11 0.062 0.032 0.017 0.0088

Table 1: Results on baseline system and hierarchical system, with and without constituent feature.

Features
System Plm(e) P(γ|α) P(α|γ) Pw(γ|α) Pw(α|γ) Word Phr λd λg λc

Pharaoh 0.19 0.095 0.030 0.14 0.029 −0.20 0.22 0.11 — —
hierarchical 0.15 0.036 0.074 0.037 0.076 −0.32 0.22 — 0.09 —
+constituent 0.11 0.026 0.062 0.025 0.029 −0.23 0.21 — 0.11 0.20

Table 2: Feature weights obtained by minimum-error-rate training (normalized so that absolute values sum
to one). Word= word penalty; Phr= phrase penalty. Note that we have inverted the sense of Pharaoh’s
phrase penalty so that a positive weight indicates a penalty.

5.3 Adding a constituent feature

The use of hierarchical structures opens the pos-
sibility of making the model sensitive to syntac-
tic structure. Koehn et al. (2003) mention German
〈es gibt, there is〉 as an example of a good phrase
pair which is not a syntactic phrase pair, and report
that favoring syntactic phrases does not improve ac-
curacy. But in our model, the rule

(19) X→ 〈es gibt X1 , there is X1 〉

would indeed respect syntactic phrases, because it
builds a pair of Ss out of a pair of NPs. Thus, favor-
ing subtrees in our model that are syntactic phrases
might provide a fairer way of testing the hypothesis
that syntactic phrases are better phrases.

This feature adds a factor to (17),

(20) c(i, j) =

1 if f j
i is a constituent

0 otherwise

as determined by a statistical tree-substitution-
grammar parser (Bikel and Chiang, 2000), trained
on the Penn Chinese Treebank, version 3 (250k
words). Note that the parser was run only on the
test data and not the (much larger) training data. Re-
running the minimum-error-rate trainer with the new
feature yielded the feature weights shown in Table 2.
Although the feature improved accuracy on the de-
velopment set (from 0.314 to 0.322), it gave no sta-
tistically significant improvement on the test set.

6 Conclusion

Hierarchical phrase pairs, which can be learned
without any syntactically-annotated training data,
improve translation accuracy significantly compared
with a state-of-the-art phrase-based system. They
also facilitate the incorporation of syntactic informa-
tion, which, however, did not provide a statistically
significant gain.

Our primary goal for the future is to move towards
a more syntactically-motivated grammar, whether
by automatic methods to induce syntactic categories,
or by better integration of parsers trained on an-
notated data. This would potentially improve both
accuracy and efficiency. Moreover, reducing the
grammar size would allow more ambitious train-
ing settings. The maximum initial phrase length
is currently 10; preliminary experiments show that
increasing this limit to as high as 15 does im-
prove accuracy, but requires more memory. On the
other hand, we have successfully trained on almost
30M+30M words by tightening the initial phrase
length limit for part of the data. Streamlining the
grammar would allow further experimentation in
these directions.

In any case, future improvements to this system
will maintain the design philosophy proven here,
that ideas from syntax should be incorporated into
statistical translation, but not in exchange for the
strengths of the phrase-based approach.
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Abstract 

We describe a novel approach to 
statistical machine translation that 
combines syntactic information in the 
source language with recent advances in 
phrasal translation. This method requires a 
source-language dependency parser, target 
language word segmentation and an 
unsupervised word alignment component. 
We align a parallel corpus, project the 
source dependency parse onto the target 
sentence, extract dependency treelet 
translation pairs, and train a tree-based 
ordering model. We describe an efficient 
decoder and show that using these tree-
based models in combination with 
conventional SMT models provides a 
promising approach that incorporates the 
power of phrasal SMT with the linguistic 
generality available in a parser.  

1. Introduction 

Over the past decade, we have witnessed a 
revolution in the field of machine translation 
(MT) toward statistical or corpus-based methods. 
Yet despite this success, statistical machine 
translation (SMT) has many hurdles to overcome. 
While it excels at translating domain-specific 
terminology and fixed phrases, grammatical 
generalizations are poorly captured and often 
mangled during translation (Thurmair, 04).  

1.1. Limitations of string-based phrasal SMT 

State-of-the-art phrasal SMT systems such as 
(Koehn et al., 03) and (Vogel et al., 03) model 
translations of phrases (here, strings of adjacent 
words, not syntactic constituents) rather than 
individual words. Arbitrary reordering of words is 
allowed within memorized phrases, but typically 

only a small amount of phrase reordering is 
allowed, modeled in terms of offset positions at 
the string level. This reordering model is very 
limited in terms of linguistic generalizations. For 
instance, when translating English to Japanese, an 
ideal system would automatically learn large-
scale typological differences: English SVO 
clauses generally become Japanese SOV clauses, 
English post-modifying prepositional phrases 
become Japanese pre-modifying postpositional 
phrases, etc. A phrasal SMT system may learn the 
internal reordering of specific common phrases, 
but it cannot generalize to unseen phrases that 
share the same linguistic structure. 

In addition, these systems are limited to 
phrases contiguous in both source and target, and 
thus cannot learn the generalization that English 
not may translate as French ne…pas except in the 
context of specific intervening words.  

1.2. Previous work on syntactic SMT1 

The hope in the SMT community has been that 
the incorporation of syntax would address these 
issues, but that promise has yet to be realized. 

One simple means of incorporating syntax into 
SMT is by re-ranking the n-best list of a baseline 
SMT system using various syntactic models, but 
Och et al. (04) found very little positive impact 
with this approach. However, an n-best list of 
even 16,000 translations captures only a tiny 
fraction of the ordering possibilities of a 20 word 
sentence; re-ranking provides the syntactic model 
no opportunity to boost or prune large sections of 
that search space.  

Inversion Transduction Grammars (Wu, 97), or 
ITGs, treat translation as a process of parallel 
parsing of the source and target language via a 
synchronized grammar. To make this process 

                                                        
1 Note that since this paper does not address the word alignment problem 
directly, we do not discuss the large body of work on incorporating syntactic 
information into the word alignment process. 
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computationally efficient, however, some severe 
simplifying assumptions are made, such as using 
a single non-terminal label. This results in the 
model simply learning a very high level 
preference regarding how often nodes should 
switch order without any contextual information. 
Also these translation models are intrinsically 
word-based; phrasal combinations are not 
modeled directly, and results have not been 
competitive with the top phrasal SMT systems.  

Along similar lines, Alshawi et al. (2000) treat 
translation as a process of simultaneous induction 
of source and target dependency trees using head-
transduction; again, no separate parser is used. 

Yamada and Knight (01) employ a parser in the 
target language to train probabilities on a set of 
operations that convert a target language tree to a 
source language string. This improves fluency 
slightly (Charniak et al., 03), but fails to 
significantly impact overall translation quality. 
This may be because the parser is applied to MT 
output, which is notoriously unlike native 
language, and no additional insight is gained via 
source language analysis.  

Lin (04) translates dependency trees using 
paths. This is the first attempt to incorporate large 
phrasal SMT-style memorized patterns together 
with a separate source dependency parser and 
SMT models. However the phrases are limited to 
linear paths in the tree, the only SMT model used 
is a maximum likelihood channel model and there 
is no ordering model. Reported BLEU scores are 
far below the leading phrasal SMT systems. 

MSR-MT (Menezes & Richardson, 01) parses 
both source and target languages to obtain a 
logical form (LF), and translates source LFs using 
memorized aligned LF patterns to produce a 
target LF. It utilizes a separate sentence 
realization component (Ringger et al., 04) to turn 
this into a target sentence. As such, it does not use 
a target language model during decoding, relying 
instead on MLE channel probabilities and 
heuristics such as pattern size. Recently Aue et al. 
(04) incorporated an LF-based language model 
(LM) into the system for a small quality boost. A 
key disadvantage of this approach and related 
work (Ding & Palmer, 02) is that it requires a 
parser in both languages, which severely limits 
the language pairs that can be addressed. 

2. Dependency Treelet Translation 

In this paper we propose a novel dependency tree-
based approach to phrasal SMT which uses tree-
based ‘phrases’ and a tree-based ordering model 
in combination with conventional SMT models to 
produce state-of-the-art translations.  

Our system employs a source-language 
dependency parser, a target language word 
segmentation component, and an unsupervised 
word alignment component to learn treelet 
translations from a parallel sentence-aligned 
corpus. We begin by parsing the source text to 
obtain dependency trees and word-segmenting the 
target side, then applying an off-the-shelf word 
alignment component to the bitext.  

The word alignments are used to project the 
source dependency parses onto the target 
sentences. From this aligned parallel dependency 
corpus we extract a treelet translation model 
incorporating source and target treelet pairs, 
where a treelet is defined to be an arbitrary 
connected subgraph of the dependency tree. A 
unique feature is that we allow treelets with a 
wildcard root, effectively allowing mappings for 
siblings in the dependency tree. This allows us to 
model important phenomena, such as not … � 
ne…pas. We also train a variety of statistical 
models on this aligned dependency tree corpus, 
including a channel model and an order model.  

To translate an input sentence, we parse the 
sentence, producing a dependency tree for that 
sentence. We then employ a decoder to find a 
combination and ordering of treelet translation 
pairs that cover the source tree and are optimal 
according to a set of models that are combined in 
a log-linear framework as in (Och, 03).  

This approach offers the following advantages 
over string-based SMT systems: Instead of 
limiting learned phrases to contiguous word 
sequences, we allow translation by all possible 
phrases that form connected subgraphs (treelets) 
in the source and target dependency trees. This is 
a powerful extension: the vast majority of 
surface-contiguous phrases are also treelets of the 
tree; in addition, we gain discontiguous phrases, 
including combinations such as verb-object, 
article-noun, adjective-noun etc. regardless of the 
number of intervening words. 
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Another major advantage is the ability to 
employ more powerful models for reordering 
source language constituents. These models can 
incorporate information from the source analysis. 
For example, we may model directly the 
probability that the translation of an object of a 
preposition in English should precede the 
corresponding postposition in Japanese, or the 
probability that a pre-modifying adjective in 
English translates into a post-modifier in French. 

2.1. Parsing and alignment 

We require a source language dependency parser 
that produces unlabeled, ordered dependency 
trees and annotates each source word with a part-
of-speech (POS). An example dependency tree is 
shown in Figure 1. The arrows indicate the head 
annotation, and the POS for each candidate is 
listed underneath. For the target language we only 
require word segmentation.  

To obtain word alignments we currently use 
GIZA++ (Och & Ney, 03). We follow the 
common practice of deriving many-to-many 
alignments by running the IBM models in both 
directions and combining the results heuristically. 
Our heuristics differ in that they constrain many-
to-one alignments to be contiguous in the source 
dependency tree. A detailed description of these 
heuristics can be found in Quirk et al. (04).  

2.2. Projecting dependency trees 

Given a word aligned sentence pair and a source 
dependency tree, we use the alignment to project 
the source structure onto the target sentence. One-
to-one alignments project directly to create a 
target tree isomorphic to the source. Many-to-one 
alignments project similarly; since the ‘many’ 
source nodes are connected in the tree, they act as 
if condensed into a single node. In the case of 
one-to-many alignments we project the source 
node to the rightmost2 of the ‘many’ target words, 
and make the rest of the target words dependent 
on it. 

                                                        
2 If the target language is Japanese, leftmost may be more appropriate. 

Unaligned target words3 are attached into the 
dependency structure as follows: assume there is 
an unaligned word tj in position j. Let i < j and k 
> j be the target positions closest to j such that ti 
depends on tk or vice versa: attach tj to the lower 
of ti or tk. If all the nodes to the left (or right) of 
position j are unaligned, attach tj to the left-most 
(or right-most) word that is aligned. 

The target dependency tree created in this 
process may not read off in the same order as the 
target string, since our alignments do not enforce 
phrasal cohesion. For instance, consider the 
projection of the parse in Figure 1 using the word 
alignment in Figure 2a. Our algorithm produces 
the dependency tree in Figure 2b. If we read off 
the leaves in a left-to-right in-order traversal, we 
do not get the original input string: de démarrage 
appears in the wrong place. 

A second reattachment pass corrects this 
situation. For each node in the wrong order, we 
reattach it to the lowest of its ancestors such that 
it is in the correct place relative to its siblings and 
parent. In Figure 2c, reattaching démarrage to et 
suffices to produce the correct order.  
                                                        
3 Source unaligned nodes do not present a problem, with the exception that if 
the root is unaligned, the projection process produces a forest of target trees 
anchored by a dummy root.  

startup properties and options
Noun Noun Conj Noun  

Figure 1. An example dependency tree. 

startup properties and options

propriétés et options de démarrage  
(a) Word alignment. 
 

 

startup properties and options

propriétés de démarrage et options

 
 

 (b) Dependencies after initial projection. 
 

 

startup properties and options

propriétés et options de démarrage

 
(c) Dependencies after reattachment step. 

 

Figure 2. Projection of dependencies. 
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2.3. Extracting treelet translation pairs 

From the aligned pairs of dependency trees we 
extract all pairs of aligned source and target 
treelets along with word-level alignment linkages, 
up to a configurable maximum size. We also keep 
treelet counts for maximum likelihood estimation.  

2.4. Order model 

Phrasal SMT systems often use a model to score 
the ordering of a set of phrases. One approach is 
to penalize any deviation from monotone 
decoding; another is to estimate the probability 
that a source phrase in position i translates to a 
target phrase in position j (Koehn et al., 03). 

We attempt to improve on these approaches by 
incorporating syntactic information. Our model 
assigns a probability to the order of a target tree 
given a source tree. Under the assumption that 
constituents generally move as a whole, we 
predict the probability of each given ordering of 
modifiers independently. That is, we make the 
following simplifying assumption (where c is a 
function returning the set of nodes modifying t): 

∏
∈

=
Tt

TStcorderTSTorder ),|))((P(),|)(P(  

Furthermore, we assume that the position of each 
child can be modeled independently in terms of a 
head-relative position: 

),|),(P(),|))((P(
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TStmposTStcorder
tcm

∏
∈
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Figure 3a demonstrates an aligned dependency 
tree pair annotated with head-relative positions; 
Figure 3b presents the same information in an 
alternate tree-like representation. 

We currently use a small set of features 
reflecting very local information in the 
dependency tree to model P(pos(m,t) | S, T): 
• The lexical items of the head and modifier. 
• The lexical items of the source nodes aligned 

to the head and modifier. 
• The part-of-speech ("cat") of the source nodes 

aligned to the head and modifier. 
• The head-relative position of the source node 

aligned to the source modifier. 4 
As an example, consider the children of 

propriété in Figure 3. The head-relative positions 

                                                        
4 One can also include features of siblings to produce a Markov ordering 
model. However, we found that this had little impact in practice. 

of its modifiers la and Cancel are -1 and +1, 
respectively. Thus we try to predict as follows: 

P(pos(m1) = -1 | 
lex(m1)="la", lex(h)="propriété", 
lex(src(m1))="the", lex(src(h)="property", 
cat(src(m1))=Determiner, cat(src(h))=Noun, 
position(src(m1))=-2) · 

P(pos(m2) = +1 | 
lex(m2)="Cancel", lex(h)="propriété", 
lex(src(m2))="Cancel", lex(src(h))="property", 
cat(src(m2))=Noun, cat(src(h))=Noun, 
position(src(m2))=-1) 

The training corpus acts as a supervised training 
set: we extract a training feature vector from each 
of the target language nodes in the aligned 
dependency tree pairs. Together these feature 
vectors are used to train a decision tree 
(Chickering, 02). The distribution at each leaf of 
the DT can be used to assign a probability to each 
possible target language position. A more detailed 
description is available in (Quirk et al., 04). 

2.5. Other models 

Channel Models: We incorporate two distinct 
channel models, a maximum likelihood estimate 
(MLE) model and a model computed using 
Model-1 word-to-word alignment probabilities as 
in (Vogel et al., 03). The MLE model effectively 
captures non-literal phrasal translations such as 
idioms, but suffers from data sparsity. The word-

the-2 Cancel-1 property-1 uses these-1 settings+1

la-1 propriété-1 Cancel+1 utilise ces-1 paramètres+1

 
(a) Head annotation representation 
 

uses

property-1              settings+1

the-2 Cancel-1                 these-1

la-1             Cancel+1         ces-1

propriété-1                        paramètres+1

utilise  
(b) Branching structure representation. 
 

Figure 3.  Aligned dependency tree pair, annotated with 
head-relative positions 
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to-word model does not typically suffer from data 
sparsity, but prefers more literal translations.  

Given a set of treelet translation pairs that 
cover a given input dependency tree and produce 
a target dependency tree, we model the 
probability of source given target as the product 
of the individual treelet translation probabilities: 
we assume a uniform probability distribution over 
the decompositions of a tree into treelets.  
Target Model: Given an ordered target language 
dependency tree, it is trivial to read off the surface 
string. We evaluate this string using a trigram 
model with modified Kneser-Ney smoothing.  
Miscellaneous Feature Functions: The log-linear 
framework allows us to incorporate other feature 
functions as ‘models’ in the translation process. 
For instance, using fewer, larger treelet translation 
pairs often provides better translations, since they 
capture more context and allow fewer possibilities 
for search and model error. Therefore we add a 
feature function that counts the number of phrases 
used. We also add a feature that counts the 
number of target words; this acts as an 
insertion/deletion bonus/penalty.  

3. Decoding 

The challenge of tree-based decoding is that the 
traditional left-to-right decoding approach of 
string-based systems is inapplicable. Additional 
challenges are posed by the need to handle 
treelets—perhaps discontiguous or overlapping—
and a combinatorially explosive ordering space.  

Our decoding approach is influenced by ITG 
(Wu, 97) with several important extensions. First, 
we employ treelet translation pairs instead of 
single word translations. Second, instead of 
modeling rearrangements as either preserving 
source order or swapping source order, we allow 
the dependents of a node to be ordered in any 
arbitrary manner and use the order model 
described in section 2.4 to estimate probabilities. 
Finally, we use a log-linear framework for model 
combination that allows any amount of other 
information to be modeled.  

We will initially approach the decoding 
problem as a bottom up, exhaustive search. We 
define the set of all possible treelet translation 
pairs of the subtree rooted at each input node in 
the following manner: A treelet translation pair x 
is said to match the input dependency tree S iff 

there is some connected subgraph S’ that is 
identical to the source side of x. We say that x 
covers all the nodes in S’ and is rooted at source 
node s, where s is the root of matched subgraph 
S’.  

We first find all treelet translation pairs that 
match the input dependency tree. Each matched 
pair is placed on a list associated with the input 
node where the match is rooted. Moving bottom-
up through the input dependency tree, we 
compute a list of candidate translations for the 
input subtree rooted at each node s, as follows:  

Consider in turn each treelet translation pair x 
rooted at s. The treelet pair x may cover only a 
portion of the input subtree rooted at s. Find all 
descendents s' of s that are not covered by x, but 
whose parent s'' is covered by x. At each such 
node s'' look at all interleavings of the children of 
s'' specified by x, if any, with each translation t' 
from the candidate translation list5 of each child 
s'. Each such interleaving is scored using the 
models previously described and added to the 
candidate translation list for that input node. The 
resultant translation is the best scoring candidate 
for the root input node. 

As an example, see the example dependency 
tree in Figure 4a and treelet translation pair in 4b. 
This treelet translation pair covers all the nodes in 
4a except the subtrees rooted at software and is. 
                                                        
5 Computed by the previous application of this procedure to s' during the 
bottom-up traversal. 

installed

software is on

the computer

your  
 (a) Example input dependency tree. 

installed

on

computer

your

votre

ordinateur

sur

installés  
(b) Example treelet translation pair. 
 

Figure 4.  Example decoder structures. 
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We first compute (and cache) the candidate 
translation lists for the subtrees rooted at software 
and is, then construct full translation candidates 
by attaching those subtree translations to installés 
in all possible ways. The order of sur relative to 
installés is fixed; it remains to place the translated 
subtrees for the software and is. Note that if c is 
the count of children specified in the mapping and 
r is the count of subtrees translated via recursive 
calls, then there are (c+r+1)!/(c+1)! orderings. 
Thus (1+2+1)!/(1+1)! = 12 candidate translations 
are produced for each combination of translations 
of the software and is. 

3.1. Optimality-preserving optimizations 

Dynamic Programming 
Converting this exhaustive search to dynamic 
programming relies on the observation that 
scoring a translation candidate at a node depends 
on the following information from its 
descendents: the order model requires features 
from the root of a translated subtree, and the 
target language model is affected by the first and 
last two words in each subtree. Therefore, we 
need to keep the best scoring translation candidate 
for a given subtree for each combination of (head, 
leading bigram, trailing bigram), which is, in the 
worst case, O(V5), where V is the vocabulary size. 
The dynamic programming approach therefore 
does not allow for great savings in practice 
because a trigram target language model forces 
consideration of context external to each subtree.  

Duplicate elimination 
To eliminate unnecessary ordering operations, we 
first check that a given set of words has not been 
previously ordered by the decoder. We use an 
order-independent hash table where two trees are 
considered equal if they have the same tree 
structure and lexical choices after sorting each 
child list into a canonical order. A simpler 
alternate approach would be to compare bags-of-
words. However since our possible orderings are 
bound by the induced tree structure, we might 
overzealously prune a candidate with a different 
tree structure that allows a better target order.  

3.2. Lossy optimizations 

The following optimizations do not preserve 
optimality, but work well in practice. 

N-best lists 
Instead of keeping the full list of translation 
candidates for a given input node, we keep a top-
scoring subset of the candidates. While the 
decoder is no longer guaranteed to find the 
optimal translation, in practice the quality impact 
is minimal with a list size ≥ 10 (see Table 5.6).  

Variable-sized n-best lists: A further speedup 
can be obtained by noting that the number of 
translations using a given treelet pair is 
exponential in the number of subtrees of the input 
not covered by that pair. To limit this explosion 
we vary the size of the n-best list on any recursive 
call in inverse proportion to the number of 
subtrees uncovered by the current treelet. This has 
the intuitive appeal of allowing a more thorough 
exploration of large treelet translation pairs (that 
are likely to result in better translations) than of 
smaller, less promising pairs.  

Pruning treelet translation pairs 
Channel model scores and treelet size are 
powerful predictors of translation quality. 
Heuristically pruning low scoring treelet 
translation pairs before the search starts allows 
the decoder to focus on combinations and 
orderings of high quality treelet pairs.  
• Only keep those treelet translation pairs with 

an MLE probability above a threshold t. 
• Given a set of treelet translation pairs with 

identical sources, keep those with an MLE 
probability within a ratio r of the best pair.  

• At each input node, keep only the top k treelet 
translation pairs rooted at that node, as ranked 
first by size, then by MLE channel model 
score, then by Model 1 score. The impact of 
this optimization is explored in Table 5.6.  

Greedy ordering 
The complexity of the ordering step at each node 
grows with the factorial of the number of children 
to be ordered. This can be tamed by noting that 
given a fixed pre- and post-modifier count, our 
order model is capable of evaluating a single 
ordering decision independently from other 
ordering decisions. 

One version of the decoder takes advantage of 
this to severely limit the number of ordering 
possibilities considered. Instead of considering all 
interleavings, it considers each potential modifier 
position in turn, greedily picking the most 
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probable child for that slot, moving on to the next 
slot, picking the most probable among the 
remaining children for that slot and so on. 

The complexity of greedy ordering is linear, 
but at the cost of a noticeable drop in BLEU score 
(see Table 5.4). Under default settings our system 
tries to decode a sentence with exhaustive 
ordering until a specified timeout, at which point 
it falls back to greedy ordering. 

4. Experiments 

We evaluated the translation quality of the system 
using the BLEU metric (Papineni et al., 02) under 
a variety of configurations. We compared against 
two radically different types of systems to 
demonstrate the competitiveness of this approach:  
• Pharaoh: A leading phrasal SMT decoder 

(Koehn et al., 03). 
• The MSR-MT system described in Section 1, 

an EBMT/hybrid MT system.  

4.1. Data 

We used a parallel English-French corpus 
containing 1.5 million sentences of Microsoft 
technical data (e.g., support articles, product 
documentation). We selected a cleaner subset of 
this data by eliminating sentences with XML or 
HTML tags as well as very long (>160 characters) 
and very short (<40 characters) sentences. We 
held out 2,000 sentences for development testing 
and parameter tuning, 10,000 sentences for 
testing, and 250 sentences for lambda training. 
We ran experiments on subsets of the training 
data ranging from 1,000 to 300,000 sentences. 
Table 4.1 presents details about this dataset. 

4.2. Training 

We parsed the source (English) side of the corpus 
using NLPWIN, a broad-coverage rule-based 
parser developed at Microsoft Research able to 

produce syntactic analyses at varying levels of 
depth (Heidorn, 02). For the purposes of these 
experiments we used a dependency tree output 
with part-of-speech tags and unstemmed surface 
words.  

For word alignment, we used GIZA++, 
following a standard training regimen of five 
iterations of Model 1, five iterations of the HMM 
Model, and five iterations of Model 4, in both 
directions.  

We then projected the dependency trees and 
used the aligned dependency tree pairs to extract 
treelet translation pairs and train the order model 
as described above. The target language model 
was trained using only the French side of the 
corpus; additional data may improve its 
performance. Finally we trained lambdas via 
Maximum BLEU (Och, 03) on 250 held-out 
sentences with a single reference translation, and 
tuned the decoder optimization parameters (n-best 
list size, timeouts etc) on the development test set. 

Pharaoh 
The same GIZA++ alignments as above were 
used in the Pharaoh decoder. We used the 
heuristic combination described in (Och & Ney, 
03) and extracted phrasal translation pairs from 
this combined alignment as described in (Koehn 
et al., 03). Except for the order model (Pharaoh 
uses its own ordering approach), the same models 
were used: MLE channel model, Model 1 channel 
model, target language model, phrase count, and 
word count. Lambdas were trained in the same 
manner (Och, 03). 

MSR-MT 
MSR-MT used its own word alignment approach 
as described in (Menezes & Richardson, 01) on 
the same training data. MSR-MT does not use 
lambdas or a target language model. 

5. Results 

We present BLEU scores on an unseen 10,000 
sentence test set using a single reference 
translation for each sentence. Speed numbers are 
the end-to-end translation speed in sentences per 
minute. All results are based on a training set size 
of 100,000 sentences and a phrase size of 4, 
except Table 5.2 which varies the phrase size and 
Table 5.3 which varies the training set size. 

  English French 
Training Sentences 570,562 
 Words 7,327,251 8,415,882 
 Vocabulary 72,440 80,758 
 Singletons 38,037 39,496 
Test Sentences 10,000 
 Words 133,402 153,701 

Table 4.1 Data characteristics 
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Results for our system and the comparison 
systems are presented in Table 5.1. Pharaoh 
monotone refers to Pharaoh with phrase 
reordering disabled. The difference between 
Pharaoh and the Treelet system is significant at 
the 99% confidence level under a two-tailed 
paired t-test. 

 BLEU Score Sents/min 
Pharaoh monotone 37.06 4286 
Pharaoh 38.83 162 
MSR-MT 35.26 453 
Treelet 40.66 10.1 

Table 5.1 System comparisons  

Table 5.2 compares Pharaoh and the Treelet 
system at different phrase sizes. While all the 
differences are statistically significant at the 99% 
confidence level, the wide gap at smaller phrase 
sizes is particularly striking. We infer that 
whereas Pharaoh depends heavily on long phrases 
to encapsulate reordering, our dependency tree-
based ordering model enables credible 
performance even with single-word ‘phrases’. We 
conjecture that in a language pair with large-scale 
ordering differences, such as English-Japanese, 
even long phrases are unlikely to capture the 
necessary reorderings, whereas our tree-based 
ordering model may prove more robust. 

Max. size Treelet BLEU Pharaoh BLEU 
1  37.50 23.18  
2 39.84 32.07  
3 40.36 37.09  
4 (default) 40.66 38.83  
5 40.71 39.41  
6 40.74 39.72  

Table 5.2 Effect of maximum treelet/phrase size 

Table 5.3 compares the same systems at different 
training corpus sizes. All of the differences are 
statistically significant at the 99% confidence 
level. Noting that the gap widens at smaller 
corpus sizes, we suggest that our tree-based 
approach is more suitable than string-based 
phrasal SMT when translating from English into 
languages or domains with limited parallel data. 

We also ran experiments varying different 
system parameters. Table 5.4 explores different 
ordering strategies, Table 5.5 looks at the impact 
of discontiguous phrases and Table 5.6 looks at 
the impact of decoder optimizations such as 
treelet pruning and n-best list size. 

Ordering strategy BLEU  Sents/min  
No order model (monotone) 35.35 39.7 
Greedy ordering 38.85 13.1 
Exhaustive (default) 40.66 10.1 

Table 5.4 Effect of ordering strategies 

 BLEU Score  Sents/min 
Contiguous only 40.08  11.0 
Allow discontiguous 40.66 10.1 

Table 5.5 Effect of allowing treelets that correspond to 
discontiguous phrases 

 BLEU Score  Sents/min  
Pruning treelets   
  Keep top 1 28.58  144.9 
  … top 3 39.10 21.2 
  … top 5 40.29 14.6 
  … top 10 (default) 40.66 10.1 
  … top 20 40.70 3.5 
  Keep all 40.29 3.2 
N-best list size    
  1-best 37.28 175.4 
  5-best 39.96 79.4 
  10-best 40.42 23.3 
  20-best (default) 40.66 10.1 
  50-best 39.39 3.7 

Table 5.6 Effect of optimizations  

6. Discussion  

We presented a novel approach to syntactically-
informed statistical machine translation that 
leverages a parsed dependency tree representation 
of the source language via a tree-based ordering 
model and treelet phrase extraction. We showed 
that it significantly outperforms a leading phrasal 
SMT system over a wide range of training set 
sizes and phrase sizes. 
Constituents vs. dependencies: Most attempts at 

 1k 3k 10k 30k 100k 300k 
Pharaoh 17.20  22.51  27.70  33.73  38.83  42.75  
Treelet 18.70 25.39 30.96 35.81 40.66 44.32 

Table 5.3 Effect of training set size on treelet translation and comparison system  
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syntactic SMT have relied on a constituency 
analysis rather than dependency analysis. While 
this is a natural starting point due to its well-
understood nature and commonly available tools, 
we feel that this is not the most effective 
representation for syntax in MT. Dependency 
analysis, in contrast to constituency analysis, 
tends to bring semantically related elements 
together (e.g., verbs become adjacent to all their 
arguments) and is better suited to lexicalized 
models, such as the ones presented in this paper.  

7. Future work 

The most important contribution of our system is 
a linguistically motivated ordering approach 
based on the source dependency tree, yet this 
paper only explores one possible model. Different 
model structures, machine learning techniques, 
and target feature representations all have the 
potential for significant improvements.  

Currently we only consider the top parse of an 
input sentence. One means of considering 
alternate possibilities is to build a packed forest of 
dependency trees and use this in decoding 
translations of each input sentence. 

As noted above, our approach shows particular 
promise for language pairs such as English-
Japanese that exhibit large-scale reordering and 
have proven difficult for string-based approaches. 
Further experimentation with such language pairs 
is necessary to confirm this. Our experience has 
been that the quality of GIZA++ alignments for 
such language pairs is inadequate. Following up 
on ideas introduced by (Cherry & Lin, 03) we 
plan to explore ways to leverage the dependency 
tree to improve alignment quality.  
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Abstract

This paper presents a probabilistic
framework, QARLA, for the evaluation
of text summarisation systems. The in-
put of the framework is a set of man-
ual (reference) summaries, a set of base-
line (automatic) summaries and a set of
similarity metrics between summaries.
It provides i) a measure to evaluate the
quality of any set of similarity metrics,
ii) a measure to evaluate the quality of
a summary using an optimal set of simi-
larity metrics, and iii) a measure to eval-
uate whether the set of baseline sum-
maries is reliable or may produce biased
results.

Compared to previous approaches, our
framework is able to combine different
metrics and evaluate the quality of a set
of metrics without any a-priori weight-
ing of their relative importance. We pro-
vide quantitative evidence about the ef-
fectiveness of the approach to improve
the automatic evaluation of text sum-
marisation systems by combining sev-
eral similarity metrics.

1 Introduction

The quality of an automatic summary can be es-
tablished mainly with two approaches:

Human assessments:The output of a number of
summarisation systems is compared by hu-

man judges, using some set of evaluation
guidelines.

Proximity to a gold standard: The best auto-
matic summary is the one that is closest to
some reference summary made by humans.

Using human assessments has some clear ad-
vantages: the results of the evaluation are inter-
pretable, and we can trace what a system is do-
ing well, and what is doing poorly. But it also
has a couple of serious drawbacks: i) different hu-
man assessors reach different conclusions, and ii)
the outcome of a comparative evaluation exercise
is not directly reusable for new techniques, i.e., a
summarisation strategy developed after the com-
parative exercise cannot be evaluated without ad-
ditional human assessments made from scratch.

Proximity to a gold standard, on the other hand,
is a criterion that can be automated (see Section 6),
with the advantages of i) being objective, and ii)
once gold standard summaries are built for a com-
parative evaluation of systems, the resulting test-
bed can iteratively be used to refine text summari-
sation techniques and re-evaluate them automati-
cally.

This second approach, however, requires solv-
ing a number of non-trivial issues. For instance,
(i) How can we know whether an evaluation met-
ric is good enough for automatic evaluation?, (ii)
different users produce different summaries, all of
them equally good as gold standards, (iii) if we
have several metrics which test different features
of a summary, how can we combine them into an
optimal test?, (iv) how do we know if our test bed
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Figure 1: Illustration of some of the restrictions onQ,K

is reliable, or the evaluation outcome may change
by adding, for instance, additional gold standards?

In this paper, we introduce a probabilistic
framework, QARLA, that addresses such issues.
Given a set of manual summaries and another set
of baseline summaries per task, together with a set
of similarity metrics, QARLA provides quantita-
tive measures to (i) select and combine the best
(independent) metrics (KING measure), (ii) apply
the best set of metrics to evaluate automatic sum-
maries (QUEEN measure), and (iii) test whether
evaluating with that test-bed is reliable (JACK
measure).

2 Formal constraints on any evaluation
framework based on similarity metrics

We are looking for a framework to evaluate au-
tomatic summarisation systems objectively using
similarity metrics to compare summaries. The in-
put of the framework is:

• A summarisation task (e.g. topic oriented, in-
formative multi-document summarisation on
a given domain/corpus).

• A setT of test cases (e.g. topic/document set
pairs for the example above)

• A set of summariesM produced by humans
(models), and a set of automatic summaries
A (peers), for every test case.

• A set X of similarity metrics to compare
summaries.

An evaluation framework should include, at
least:

• A measureQM,X(a) ∈ [0, 1] that estimates
the quality of an automatic summarya, us-
ing the similarity metrics inX to compare
the summary with the models inM . With
Q, we can compare the quality of automatic
summaries.

• A measureKM,A(X) ∈ [0, 1] that estimates
the suitability of a set of similarity metricsX
for our evaluation purposes. WithK, we can
choose the best similarity metrics.

Our main assumption is that all manual sum-
maries are equally optimal and, while they are
likely to be different, the best similarity metric is
the one that identifies and uses the features that are
common to all manual summaries, grouping and
separating them from the automatic summaries.

With these assumption in mind, it is useful to
think of some formal restrictions that any evalua-
tion frameworkQ,K must hold. We will consider
the following ones (see illustrations in Figure 1):
(1) Given two automatic summariesa, a′ and a
similarity measurex, if a is more distant to all
manual summaries thana′, thena cannot be better
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thana′. Formally: ∀m ∈ M.x(a, m) < x(a′, m) →
QM,x(a) ≤ QM,x(a′)

(2) A similarity metricx is better when it is able
to group manual summaries more closely, while
keeping them more distant from automatic sum-
maries: (∀m, m′ ∈ M.x(m, m′) > x′(m, m′) ∧ ∀m ∈
M, a ∈ Ax(a, m) < x′(a, m)) → KM,A(x) > KM,A(x′)

(3) If x is a perfect similarity metric, the quality of
a manual summary cannot be zero:KM,A(x) = 1 →
∀m ∈ M.QM,x(m) > 0

(4) The quality of a similarity metric or a summary
should not be dependent on scale issues. In gen-
eral, if x′ = f(x) with f being a growing mono-
tonic function, thenKM,A(x) = KM,A(x′) and
QM,x(a) = QM,x′(a) .
(5) The quality of a similarity metric should
not be sensitive to repeated elements inA, i.e.
KM,A∪{a}(x) = KM,A∪{a,a}(x).
(6) A random metricx should haveKM,A(x) = 0.
(7) A non-informative (constant) metricx should
haveKM,A(x) = 0.

3 QARLA evaluation framework

3.1 QUEEN: Estimation of the quality of an
automatic summary

We are now looking for a functionQM,x(a) that
estimates the quality of an automatic summarya ∈
A, given a set of modelsM and a similarity metric
x.

An obvious first attempt would be to compute
the average similarity ofa to all model summaries
in M in a test sample. But such a measure depends
on scale properties: metrics producing larger sim-
ilarity values will produce largerQ values; and,
depending on the scale properties ofx, this cannot
be solved just by scaling the finalQ value.

A probabilistic measure that solves this problem
and satisfies all the stated formal constraints is:

QUEENx,M (a) ≡ P (x(a, m) ≥ x(m′, m′′))

which defines the quality of an automatic sum-
mary a as the probability over triples of manual
summariesm,m′,m′′ that a is closer to a model
than the other two models to each other. This mea-
sure draws from the way in which some formal re-
strictions onQ are stated (by comparing similarity

values), and is inspired in the QARLA criterion
introduced in (Amigo et al., 2004).

Figure 2: Summaries quality in a similarity metric
space

Figure 2 illustrates some of the features of the
QUEEN estimation:

• Peers which are very far from the set of
models all receive QUEEN= 0. In other
words, QUEEN does not distinguish between
very poor automatic summarisation strate-
gies. While this feature reduces granularity
of the ranking produced by QUEEN, we find
it desirable, because in such situations, the
values returned by a similarity measure are
probably meaningless.

• The value of QUEEN is maximised for the
peers that “merge” with the models. For
QUEEN values between0.5 and1, peers are
effectively merged with the models.

• An ideal metric (that puts all models to-
gether) would give QUEEN(m) = 1 for all
models, and QUEEN(a) = 0 for all peers
that are not put together with the models.
This is a reasonable boundary condition say-
ing that, if we can distinguish between mod-
els and peers perfectly, then all peers are
poor emulations of human summarising be-
haviour.

3.2 Generalisation of QUEEN to metric sets

It is desirable, however, to have the possibility of
evaluating summaries with respect to several met-
rics together. Let us imagine, for instance, that
the best metric turns out to be a ROUGE (Lin and
Hovy, 2003a) variant that only considers unigrams
to compute similarity. Now consider a summary
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which has almost the same vocabulary as a hu-
man summary, but with a random scrambling of
the words which makes it unreadable. Even if the
unigram measure is the best hint of similarity to
human performance, in this case it would produce
a high similarity value, while any measure based
on 2-grams, 3-grams or on any simple syntactic
property would detect that the summary is useless.

The issue is, therefore, how to find informative
metrics, and then how to combine them into an op-
timal single quality estimation for automatic sum-
maries. The most immediate way of combining
metrics is via some weighted linear combination.
But our example suggests that this is not the op-
timal way: the unigram measure would take the
higher weight, and therefore it would assign a fair
amount of credit to a summary that can be strongly
rejected with other criteria.

Alternatively, we can assume that a summary is
better if it is closer to the model summaries ac-
cording to all metrics. We can formalise this idea
by introducing a universal quantifier on the vari-
able x in the QUEEN formula. In other words,
QUEENX,M (a) can be defined as the probability,
measured overM ×M ×M , that for every metric
in X the automatic summarya is closer to a model
than two models to each other.

QUEENX,M (a) ≡ P (∀x ∈ X.x(a, m) ≥ x(m′, m′′))

We can think of the generalised QUEEN mea-
sure as a way of using a set of tests (every simi-
larity metric inX) to falsify the hypothesis that a
given summarya is a model. If, for every compar-
ison of similarities betweena,m, m′,m′′, there is
at least one test thata does not pass, thena is re-
jected as a model.

This generalised measure is not affected by the
scale properties of every individual metric, i.e. it
does not require metric normalisation and it is not
affected by metric weighting. In addition, it still
satisfies the properties enumerated for its single-
metric counterpart.

Of course, the quality ranking provided by
QUEEN is meaningless if the similarity metricx
does not capture the essential features of the mod-
els. Therefore, we need to estimate the quality of

similarity metrics in order to use QUEEN effec-
tively.

3.3 KING: estimation of the quality of a
similarity metric

Now we need a measureKM,A(x) that estimates
the quality of a similarity metricx to evaluate
automatic summaries (peers) by comparison to
human-produced models.

In order to build a suitableK estimation, we
will again start from the hypothesis that the best
metric is the one that best characterises human
summaries as opposed to automatic summaries.
Such a metric should identify human summaries
as closer to each other, and more distant to peers
(second constraint in Section 2). By analogy with
QUEEN, we can try (for a single metric):

KM,A(x) ≡ P (x(a, m) < x(m′, m′′)) =

1− (QUEENx,M (a))

which is the probability that two models are
closer to each other than a third model to a peer,
and has smaller values when the average QUEEN
value of peers decreases. The generalisation ofK
to metric sets would be simply:

KM,A(X) ≡ 1− (QUEENX,M (a)))

This measure, however, does not satisfy formal
conditions 3 and 5. Condition 3 is violated be-
cause, given a limited set of models, theK mea-
sure grows with a large number of metrics inX,
eventually reachingK = 1 (perfect metric set).
But in this situation, QUEEN(m) becomes0 for
all models, because there will always exist a met-
ric that breaks the universal quantifier condition
overx.

We have to look, then, for an alternative for-
mulation for K. The bestK should minimise
QUEEN(a), but having the quality of the models
as a reference. A direct formulation can be:

KM,A(X) = P (QUEEN(m) > QUEEN(a))

According to this formula, the quality of a met-
ric set X is the probability that the quality of a
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model is higher than the quality of a peer ac-
cording to this metric set. This formula satisfies
all formal conditions except 5 (KM,A∪{a}(x) =
KM,A∪{a,a}(x)), because it is sensitive to repeated
peers. If we add a large set of identical (or very
similar peers),K will be biased towards this set.

We can define a suitableK that satisfies condi-
tion 5 if we apply a universal quantifier ona. This
is what we call the KING measure:

KINGM,A(X) ≡

P (∀a ∈ A.QUEENM,X(m) > QUEENM,X(a))

KING is the probability that a model is better
than any peer in a test sample. In terms of a qual-
ity ranking, it is the probability that a model gets a
better ranking than all peers in a test sample. Note
that KING satisfies all restrictions because it uses
QUEEN as a quality estimation for summaries; if
QUEEN is substituted for a different quality mea-
sure, some of the properties might not hold any
longer.

Figure 3: Metrics quality representation

Figure 3 illustrates the behaviour of the KING
measure in boundary conditions. The left-
most figure represents a similarity metric which
mixes models and peers randomly. Therefore,
P (QUEEN(m) > QUEEN(a)) ≈ 0.5. As there
are seven automatic summaries,KING = P (∀a ∈
A, QUEEN(m) > QUEEN(a)) ≈ 0.57 ≈ 0

The rightmost figure represents a metric which
is able to group models and separate them from
peers. In this case, QUEEN(a) = 0 for all peers,
and then KING(x) = 1.

3.4 JACK:Reliability of the peers set

Once we detect a difference in quality between
two summarisation systems, the question is now

whether this result is reliable. Would we get the
same results using a different test set (different ex-
amples, different human summarisers (models) or
different baseline systems)?

The first step is obviously to apply statistical
significance tests to the results. But even if they
give a positive result, it might be insufficient. The
problem is that the estimation of the probabilities
in KING, QUEEN assumes that the sample sets
M,A are not biased. IfM,A are biased, the re-
sults can be statistically significant and yet un-
reliable. The set of examples and the behaviour
of human summarisers (models) should be some-
how controlled either for homogeneity (if the in-
tended profile of examples and/or users is narrow)
or representativity (if it is wide). But how to know
whether the set of automatic summaries is repre-
sentative and therefore is not penalising certain au-
tomatic summarisation strategies?

Our goal is, therefore, to have some estimation
JACK(X, M, A) of the reliability of the test set to
compute reliable QUEEN, KING measures. We
can think of three reasonable criteria for this es-
timation:

1. All other things being equal, if the elements
of A are more heterogeneous, we are enhanc-
ing the representativeness ofA (we have a
more diverse set of (independent) automatic
summarization strategies represented), and
therefore the reliability of the results should
be higher. Reversely, if all automatic sum-
marisers employ similar strategies, we may
end up with a biased set of peers.

2. All other things being equal, if the elements
of A are closer to the model summaries inM ,
the reliability of the results should be higher.

3. Adding items toA should not reduce its reli-
ability.

A possible formulation for JACK which satis-
fies that criteria is:

JACK(X, M, A) ≡ P (∃a, a′ ∈ A.QUEEN(a) >

0 ∧QUEEN(a′) > 0 ∧ ∀x ∈ X.x(a, a′) ≤ x(a, m))

i.e. the probability over all model summariesm
of finding a couple of automatic summariesa, a′
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which are closer to each other than tom according
to all metrics.

This measure satisfies all three constraints: it
can be enlarged by increasing the similarity of the
peers to the models (thex(m,a) factor in the in-
equality) or decreasing the similarity between au-
tomatic summaries (thex(a, a′) factor in the in-
equality). Finally, adding elements toA can only
increase the chances of finding a pair of automatic
summaries satisfying the condition in JACK.

Figure 4: JACK values

Figure 4 illustrates how JACK works: in the
leftmost part of the figure, peers are grouped to-
gether and far from the models, giving a low JACK
value. In the rightmost part of the figure, peers are
distributed around the set of models, closely sur-
rounding them, receiving a high JACK value.

4 A Case of Study

In order to test the behaviour of our evaluation
framework, we have applied it to the ISCORPUS
described in (Amigo et al., 2004). The ISCOR-
PUS was built to study anInformation Synthesis
task, where a (large) set of relevant documents has
to be studied to give a brief, well-organised answer
to a complex need for information. This corpus
comprises:

• Eight topics extracted from the CLEF Span-
ish Information Retrieval test set, slightly re-
worded to move from a document retrieval
task (find documents about hunger strikes
in...) into an Information Synthesis task
(make a report about major causes of hunger
strikes in...).

• One hundred relevant documents per topic
taken from the CLEF EFE 1994 Spanish
newswire collection.

• M : Manual extractive summaries for every
topic made by 9 different users, with a 50-
sentence upper limit (half the number of rel-
evant documents).

• A: 30 automatic reports for every topic made
with baseline strategies. The 10 reports with
highest sentence overlap with the manual
summaries were selected as a way to increase
the quality of the baseline set.

We have considered the following similarity
metrics:

ROUGESim: ROUGE is a standard measure
to evaluate summarisation systems based on
n-gram recall. We have used ROUGE-1
(only unigrams with lemmatization and stop
word removal), which gives good results with
standard summaries (Lin and Hovy, 2003a).
ROUGE can be turned into a similarity met-
ric ROUGESimsimply by considering only
one model when computing its value.

SentencePrecision: Given a reference and a con-
trastive summary, the number of fragments of
the contrastive summary which are also in the
reference summary, in relation to the size of
the reference summary.

SentenceRecall: Given a reference and a con-
trastive summary, the number of fragments of
the reference summary which are also in the
contrastive summary, in relation to the size of
the contrastive summary.

DocSim: The number of documents used to select
fragments in both summaries, in relation to
the size of the contrastive summary.

VectModelSim: Derived from the Euclidean dis-
tance between vectors of relative word fre-
quencies representing both summaries.

NICOS (key concept overlap): Same asVect-
ModelSim, but using key-concepts (manually
identified by the human summarisers after
producing the summary) instead of all non-
empty words.
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TruncatedVectModeln: Same asVectModelSim,
but using only then more frequent terms
in the reference summary. We have used
10 variants of this measure withn =
1, 8, 64, 512.

4.1 Quality of Similarity Metric Sets

Figure 5 shows the quality (KING values averaged
over the eight ISCORPUS topics) of every individ-
ual metric. The rightmost part of the figure also
shows the quality of two metric sets:

• The first one ({ROUGESim, VectModelSim,
TruncVectModel.1}) is the metric set that
maximises KING, using only similarity met-
rics that do not require manual annotation
(i.e. excludingNICOS) or can only be ap-
plied to extractive summaries (i.e.DocSim,
SentenceRecallandSentencePrecision).

• The second one ({ TruncVectModel.1, ROU-
GESim, DocSim, VectModelSim}) is the best
combination considering all metrics.

The best result of individual metrics is obtained
by ROUGESim(0.39). All other individual met-
rics give scores below 0.31. Both metric sets, on
the other, are better thanROUGESimalone, con-
firming that metric combination is feasible to im-
prove system evaluation. The quality of the best
metric set (0.47) is 21% better thanROUGESim.

4.2 Reliability of the test set

The 30 automatic summaries (baselines) per topic
were built with four different classes of strategies:
i) picking up the first sentence from assorted sub-
sets of documents, ii) picking up first and second
sentences from assorted documents, iii) picking
up first, second or third sentences from assorted
documents, and iv) picking up whole documents
with different algorithms to determine which are
the most representative documents.

Figure 6 shows the reliability (JACK) of every
subset, and the reliability of the whole set of au-
tomatic summaries, computed with the best met-
ric set. Note that the individual subsets are all
below 0.2, while the reliability of the full set of
peers goes up to 0.57. That means that the con-
dition in JACK is satisfied for more than half of

the models. This value would probably be higher
if state-of-the-art summarisation techniques were
represented in the set of peers.

5 Testing the predictive power of the
framework

The QARLA probabilistic framework is designed
to evaluate automatic summarisation systems and,
at the same time, similarity metrics conceived as
well to evaluate summarisation systems. There-
fore, testing the validity of the QARLA proposal
implies some kind of meta-meta-evaluation, some-
thing which seems difficult to design or even to
define.

It is relatively simple, however, to perform some
simple cross-checkings on the ISCORPUS data to
verify that the qualitative information described
above is reasonable. This is the test we have im-
plemented:

If we remove a modelm from M , and pretend it
is the output of an automatic summariser, we can
evaluate the peers setA and the new peerm using
M ′ = M\{m} as the new model set. If the evalu-
ation metric is good, the quality of the new peerm
should be superior to all other peers inA. What we
have to check, then, is whether the average quality
of a human summariser on all test cases (8 topics
in ISCORPUS) is superior to the average quality
of any automatic summariser. We have 9 human
subjects in the ISCORPUS test bed; therefore, we
can repeat this test nine times.

With this criterion, we can compare our quality
measureQ with state-of-the-art evaluation mea-
sures such as ROUGE variants. Table 1 shows
the results of applying this test on ROUGE-
1, ROUGE-2, ROUGE-3, ROUGE-4 (as state-
of-the-art references) and QUEEN(ROUGESim),
QUEEN(Best Metric Combination) as representa-
tives of the QARLA framework. Even if the test is
very limited by the number of topics, it confirms
the potential of the framework, with the highest
KING metric combination doubling the perfor-
mance of the best ROUGE measure (6/9 versus 3/9
correct detections).
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Figure 5: Quality of similarity metrics

Figure 6: Reliability of ISCORPUS peer sets

Evaluation criterion human summarisers ranked first
ROUGE-1 3/9
ROUGE-2 2/9
ROUGE-3 1/9
ROUGE-4 1/9
QUEEN(ROUGESim) 4/9
QUEEN(Best Metric Combination) 6/9

Table 1: Results of the test of identifying the manual summariser
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6 Related work and discussion

6.1 Application of similarity metrics to
evaluate summaries

Both in Text Summarisation and Machine Trans-
lation, the automatic evaluation of systems con-
sists of computing some similarity metric between
the system output and a human model summary.
Systems are then ranked in order of decreasing
similarity to the gold standard. When there are
more than one reference items, similarity is calcu-
lated over a pseudo-summary extracted from every
model. BLEU (Papineni et al., 2001) and ROUGE
(Lin and Hovy, 2003a) are the standard similar-
ity metrics used in Machine Translation and Text
Summarisation. Generating a pseudo-summary
from every model, the results of a evaluation met-
ric might depend on the scale properties of the
metric regarding different models; our QUEEN
measure, however, does not depend on scales.

Another problem of the direct application of a
single evaluation metric to rank systems is how to
combine different metrics. The only way to do
this is by designing an algebraic combination of
the individual metrics into a new combined met-
ric, i.e. by deciding the weight of each individual
metric beforehand. In our framework, however, it
is not necessary to prescribe how similarity met-
rics should be combined, not even to know which
ones are individually better indicators.

6.2 Meta-evaluation of similarity metrics

The question of how to know which similar-
ity metric is best to evaluate automatic sum-
maries/translations has been addressed by

• comparing the quality of automatic items
with the quality of manual references (Culy
and Riehemann, 2003; Lin and Hovy,
2003b). If the metric does not identify that
the manual references are better, then it is not
good enough for evaluation purposes.

• measuring the correlation between the values
given by different metrics (Coughlin, 2003).

• measuring the correlation between the rank-
ings generated by each metric and rank-
ings generated by human assessors. (Joseph

P. Turian and Melamed, 2003; Lin and Hovy,
2003a).

The methodology which is closest to our frame-
work is ORANGE (Lin, 2004), which evaluates a
similarity metric using the average ranks obtained
by reference items within a baseline set. As in
our framework, ORANGE performs an automatic
meta-evaluation, there is no need for human as-
sessments, and it does not depend on the scale
properties of the metric being evaluated (because
changes of scale preserve rankings). The OR-
ANGE approach is, indeed, closely related to the
original QARLA measure introduced in (Amigo et
al., 2004).

Our KING, QUEEN, JACK framework, how-
ever, has a number of advantages over ORANGE:

• It is able to combine different metrics, and
evaluate the quality of metric sets, without
any a-priori weighting of their relative impor-
tance.

• It is not sensitive to repeated (or very similar)
baseline elements.

• It provides a mechanism, JACK, to check
whether a setX, M, A of metrics, manual
and baseline items is reliable enough to pro-
duce a stable evaluation of automatic sum-
marisation systems.

Probably the most significant improvement over
ORANGE is the ability of KING, QUEEN, JACK
to combine automatically the information of dif-
ferent metrics. We believe that a comprehensive
automatic evaluation of a summary must neces-
sarily capture different aspects of the problem with
different metrics, and that the results of every indi-
vidual metric should not be combined in any pre-
scribed algebraic way (such as a linear weighted
combination). Our framework satisfies this con-
dition. An advantage ofORANGE, however, is
that it does not require a large number of gold stan-
dards to reach stability, as in the case ofQARLA.

Finally, it is interesting to compare the rankings
produced byQARLA with the output of human
assessments, even if the philosophy ofQARLA
is not considering human assessments as the gold
standard for evaluation. Our initial tests on DUC
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Figure 7: KING vs Pearson correlation with manual rankings in DUC for 1024 metrics combinations

test beds are very promising, reaching Pearson
correlations of 0.9 and 0.95 between human as-
sessments and QUEEN values for DUC 2004 tasks
2 and 5 (Over and Yen, 2004), using metric sets
with highest KING values. The figure 7 shows
how Pearson correlation grows up with higher
KING values for 1024 metric combinations.
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Abstract

In Statistics-Based Summarization - Step
One: Sentence Compression, Knight and
Marcu (Knight and Marcu, 2000) (K&M)
present a noisy-channel model for sen-
tence compression. The main difficulty
in using this method is the lack of data;
Knight and Marcu use a corpus of 1035
training sentences. More data is not easily
available, so in addition to improving the
original K&M noisy-channel model, we
create unsupervised and semi-supervised
models of the task. Finally, we point out
problems with modeling the task in this
way. They suggest areas for future re-
search.

1 Introduction

Summarization in general, and sentence compres-
sion in particular, are popular topics. Knight and
Marcu (henceforth K&M) introduce the task of
statistical sentence compression inStatistics-Based
Summarization - Step One: Sentence Compression
(Knight and Marcu, 2000). The appeal of this prob-
lem is that it produces summarizations on a small
scale. It simplifies general compression problems,
such as text-to-abstract conversion, by eliminating
the need for coherency between sentences. The
model is further simplified by being constrained
to word deletion: no rearranging of words takes
place. Others have performed the sentence compres-
sion task using syntactic approaches to this problem

(Mani et al., 1999) (Zajic et al., 2004), but we fo-
cus exclusively on the K&M formulation. Though
the problem is simpler, it is still pertinent to cur-
rent needs; generation of captions for television and
audio scanning services for the blind (Grefenstette,
1998), as well as compressing chosen sentences for
headline generation (Angheluta et al., 2004) are ex-
amples of uses for sentence compression. In addi-
tion to simplifying the task, K&M’s noisy-channel
formulation is also appealing.

In the following sections, we discuss the K&M
noisy-channel model. We then present our cleaned
up, and slightly improved noisy-channel model. We
also develop unsupervised and semi-supervised (our
term for a combination of supervised and unsuper-
vised) methods of sentence compression with inspi-
ration from the K&M model, and create additional
constraints to improve the compressions. We con-
clude with the problems inherent in both models.

2 The Noisy-Channel Model

2.1 The K&M Model

The K&M probabilistic model, adapted from ma-
chine translation to this task, is the noisy-channel
model. In machine translation, one imagines that a
string was originally in English, but that someone
adds some noise to make it a foreign string. Analo-
gously, in the sentence compression model, the short
string is the original sentence and someone adds
noise, resulting in the longer sentence. Using this
framework, the end goal is, given a long sentence
l, to determine the short sentences that maximizes
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P (s | l). By Bayes Rule,

P (s | l) =
P (l | s)P (s)

P (l)
(1)

The probability of the long sentence,P (l) can be ig-
nored when finding the maximum, because the long
sentence is the same in every case.

P (s) is the source model: the probability thats
is the original sentence.P (l | s) is the channel
model: the probability the long sentence is the ex-
panded version of the short. This framework in-
dependently models the grammaticality ofs (with
P (s)) and whethers is a good compression ofl
(P (l | s)).

The K&M model uses parse trees for the sen-
tences. These allow it to better determine the proba-
bility of the short sentence and to obtain alignments
from the training data. In the K&M model, the
sentence probability is determined by combining a
probabilistic context free grammar (PCFG) with a
word-bigram score. The joint rules used to create the
compressions are generated by aligning the nodes of
the short and long trees in the training data to deter-
mine expansion probabilities (P (l | s)).

Recall that the channel model tries to find the
probability of the long string with respect to the
short string. It obtains these probabilities by align-
ing nodes in the parsed parallel training corpus, and
counting the nodes that align as “joint events.” For
example, there might beS→ NP VP PPin the long
sentence andS→ NP VP in the short sentence; we
count this as one joint event. Non-compressions,
where the long version is the same as the short, are
also counted. The expansion probability, as used in
the channel model, is given by

Pexpand(l | s) =
count(joint(l, s))

count(s)
(2)

wherecount(joint(l, s)) is the count of alignments
of the long rule and the short. Many compressions
do not align exactly. Sometimes the parses do not
match, and sometimes there are deletions that are too
complex to be modeled in this way. In these cases
sentence pairs, or sections of them, are ignored.

The K&M model creates a packed parse forest of
all possible compressions that are grammatical with
respect to the Penn Treebank (Marcus et al., 1993).

Any compression given a zero expansion probability
according to the training data is instead assigned a
very small probability. A tree extractor (Langkilde,
2000) collects the short sentences with the highest
score forP (s | l).

2.2 Our Noisy-Channel Model

Our starting implementation is intended to follow
the K&M model fairly closely. We use the same
1067 pairs of sentences from the Ziff-Davis cor-
pus, with 32 used as testing and the rest as train-
ing. The main difference between their model and
ours is that instead of using the rather ad-hoc K&M
language model, we substitute the syntax-based lan-
guage model described in (Charniak, 2001).

We slightly modify the channel model equation to
beP (l | s) = Pexpand(l | s)Pdeleted, wherePdeleted

is the probability of adding the deleted subtrees back
into s to get l. We determine this probability also
using the Charniak language model.

We require an extra parameter to encourage com-
pression. We create a development corpus of 25 sen-
tences from the training data in order to adjust this
parameter. That we require a parameter to encourage
compression is odd as K&M required a parameter to
discourage compression, but we address this point in
the penultimate section.

Another difference is that we only generate short
versions for which we have rules. If we have never
before seen the long version, we leave it alone, and
in the rare case when we never see the long version
as an expansion of itself, we allow only the short
version. We do not use a packed tree structure, be-
cause we make far fewer sentences. Additionally,
as we are traversing the list of rules to compress the
sentences, we keep the list capped at the 100 com-
pressions with the highestPexpand(l | s). We even-
tually truncate the list to the best 25, still based upon
Pexpand(l | s).

2.3 Special Rules

One difficulty in the use of training data is that so
many compressions cannot be modeled by our sim-
ple method. The rules it does model, immediate
constituent deletion, as in taking out theADVP ,of
S → ADVP , NP VP ., are certainly common, but
many good deletions are more structurally compli-
cated. One particular type of rule, such asNP(1)→
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NP(2) CC NP(3), where the parent has at least one
child with the same label as itself, and the resulting
compression is one of the matching children, such
as, here,NP(2). There are several hundred rules of
this type, and it is very simple to incorporate into our
model.

There are other structures that may be common
enough to merit adding, but we limit this experiment
to the original rules and our new “special rules.”

3 Unsupervised Compression

One of the biggest problems with this model of sen-
tence compression is the lack of appropriate train-
ing data. Typically, abstracts do not seem to con-
tain short sentences matching long ones elsewhere
in a paper, and we would prefer a much larger cor-
pus. Despite this lack of training data, very good
results were obtained both by the K&M model and
by our variant. We create a way to compress sen-
tences without parallel training data, while sticking
as closely to the K&M model as possible.

The source model stays the same, and we still
pay a probability cost in the channel model for ev-
ery subtree deleted. However, the way we determine
Pexpand(l | s) changes because we no longer have a
parallel text. We create joint rules using only the first
section (0.mrg) of the Penn Treebank. We count all
probabilistic context free grammar (PCFG) expan-
sions, and then match up similar rules as unsuper-
vised joint events.

We change Equation 2 to calculatePexpand(s | l)
without parallel data. First, let us definesvo (shorter
version of) to be:r1 svo r2 iff the righthand side of
r1 is a subsequence of the righthand side ofr2. Then
define

Pexpand(l | s) =
count(l)

∑
l′s.t. s svo l′ count(l′)

(3)

This is best illustrated by a toy example. Consider
a corpus with just 7 rules: 3 instances ofNP→ DT
JJ NNand 4 instances ofNP→ DT NN.

P(NP→ DT JJ NN| NP→ DT JJ NN)= 1. To
determine this, you divide the count ofNP→ DT JJ
NN = 3 by all the possible long versions ofNP→
DT JJ NN= 3.

P(NP→ DT JJ NN| NP→ DT NN) = 3/7. The
count ofNP→ DT JJ NN= 3, and the possible long

versions ofNP→ DT NNare itself (with count of 3)
andNP → DT JJ NN (with count of 4), yielding a
sum of 7.

Finally, P(NP→ DT NN | NP→ DT NN) = 4/7.
The count ofNP→ DT NN= 4, and since the short
(NP → DT NN) is the same as above, the count of
the possible long versions is again 7.

In this way, we approximatePexpand(l | s) with-
out parallel data.

Since some of these “training” pairs are likely
to be fairly poor compressions, due to the artifi-
ciality of the construction, we restrict generation of
short sentences to not allow deletion of the head
of any subtree. None of the special rules are ap-
plied. Other than the above changes, the unsuper-
vised model matches our supervised version. As will
be shown, this rule is not constraining enough and
allows some poor compressions, but it is remarkable
that any sort of compression can be achieved with-
out training data. Later, we will describe additional
constraints that help even more.

4 Semi-Supervised Compression

Because the supervised version tends to do quite
well, and its main problem is that the model tends
to pick longer compressions than a human would,
it seems reasonable to incorporate the unsupervised
version into our supervised model, in the hope of
getting more rules to use. In generating new short
sentences, if we have compression probabilities in
the supervised version, we use those, including the
special rules. The only time we use an unsupervised
compression probability is when there is no super-
vised version of the unsupervised rule.

5 Additional Constraints

Even with the unsupervised constraint from section
3, the fact that we have artificially created our joint
rules gives us some fairly ungrammatical compres-
sions. Adding extra constraints improves our unsu-
pervised compressions, and gives us better perfor-
mance on the supervised version as well. We use a
program to label syntactic arguments with the roles
they are playing (Blaheta and Charniak, 2000), and
the rules for complement/adjunct distinction given
by (Collins, 1997) to never allow deletion of the
complement. Since many nodes that should not
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be deleted are not labeled with their syntactic role,
we add another constraint that disallows deletion of
NPs.

6 Evaluation

As with Knight and Marcu’s (2000) original work,
we use the same 32 sentence pairs as our Test Cor-
pus, leaving us with 1035 training pairs. After ad-
justing the supervised weighting parameter, we fold
the development set back into the training data.

We presented four judges with nine compressed
versions of each of the 32 long sentences: A human-
generated short version, the K&M version, our first
supervised version, our supervised version with our
special rules, our supervised version with special
rules and additional constraints, our unsupervised
version, our supervised version with additional con-
straints, our semi-supervised version, and our semi-
supervised version with additional constraints. The
judges were asked to rate the sentences in two ways:
the grammaticality of the short sentences on a scale
from 1 to 5, and the importance of the short sen-
tence, or how well the compressed version retained
the important words from the original, also on a
scale from 1 to 5. The short sentences were ran-
domly shuffled across test cases.

The results in Table 1 show compression rates,
as well as average grammar and importance scores
across judges.

There are two main ideas to take away from these
results. First, we can get good compressions without
paired training data. Second, we achieved a good
boost by adding our additional constraints in two of
the three versions.

Note that importance is a somewhat arbitrary dis-
tinction, since according to our judges,all of the
computer-generated versions do as well in impor-
tance as the human-generated versions.

6.1 Examples of Results

In Figure 1, we give four examples of most compres-
sion techniques in order to show the range of perfor-
mance that each technique spans. In the first two ex-
amples, we give only the versions with constraints,
because there is little or no difference between the
versions with and without constraints.

Example 1 shows the additional compression ob-

tained by using our special rules. Figure 2 shows
the parse trees of the original pair of short and long
versions. The relevant expansion isNP → NP1 ,
PP in the long version and simplyNP1 in the short
version. The supervised version that includes the
special rules learned this particular common special
joint rule from the training data and could apply it
to the example case. This supervised version com-
presses better than either version of the supervised
noisy-channel model that lacks these rules. The un-
supervised version does not compress at all, whereas
the semi-supervised version is identical with the bet-
ter supervised version.

Example 2 shows how unsupervised and semi-
supervised techniques can be used to improve com-
pression. Although the final length of the sentences
is roughly the same, the unsupervised and semi-
supervised versions are able to take the action of
deleting the parenthetical. Deleting parentheses was
never seen in the training data, so it would be ex-
tremely unlikely to occur in this case. The unsuper-
vised version, on the other hand, sees bothPRN→
lrb NP rrb andPRN→ NP in its training data, and
the semi-supervised version capitalizes on this par-
ticular unsupervised rule.

Example 3 shows an instance of our initial super-
vised versions performing far worse than the K&M
model. The reason is that currently our supervised
model only generates compressions that it has seen
before, unlike the K&M model, which generates all
possible compressions.S→ S , NP VP .never occurs
in the training data, and so a good compression does
not exist. The unsupervised and semi-supervised
versions do better in this case, and the supervised
version with the added constraints does even better.

Example 4 gives an example of the K&M model
being outperformed by all of our other models.

7 Problems with Noisy Channel Models of
Sentence Compression

To this point our presentation has been rather nor-
mal; we draw inspiration from a previous paper, and
work at improving on it in various ways. We now
deviate from the usual by claiming that while the
K&M model works very well, there is a technical
problem with formulating the task in this way.

We start by making our noisy channel notation a
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original: Many debugging features, including user-definedbreak points and
variable-watching and message-watching windows, have been added.

human: Many debugging features have been added.
K&M: Many debugging features, including user-defined points and

variable-watching and message-watching windows, have been added.
supervised: Many features, including user-defined break points and variable-watching

and windows, have been added.
super (+ extra rules, constraints): Many debugging features have been added.
unsuper (+ constraints): Many debugging features, including user-defined break

points and variable-watching and message-watching windows, have been added.
semi-supervised (+ constraints): Many debugging featureshave been added.
original: Also, Trackstar supports only the critical path method (CPM) of project

scheduling.
human: Trackstar supports the critical path method of project scheduling.
K&M: Trackstar supports only the critical path method (CPM)of scheduling.
supervised: Trackstar supports only the critical path method (CPM) of scheduling.
super (+ extra rules, constraints): Trackstar supports only the critical path method (CPM) of scheduling.
unsuper (+ constraints): Trackstar supports only the critical path method of project scheduling.
semi-supervised (+ constraints): Trackstar supports onlythe critical path method of project scheduling.
original: The faster transfer rate is made possible by an MTI-proprietary data

buffering algorithm that off-loads lock-manager functions from the Q-bus
host, Raimondi said.

human: The algorithm off-loads lock-manager functions from the Q-bus host.
K&M: The faster rate is made possible by a MTI-proprietary data buffering algorithm

that off-loads lock-manager functions from the Q-bus host,Raimondi said.
supervised: Raimondi said.
super (+ extra rules): Raimondi said.
super (+ extra rules, constraints): The faster transfer rate is made possible by an MTI-proprietary data buffering

algorithm, Raimondi said.
unsuper (+ constraints): The faster transfer rate is made possible, Raimondi said.
semi-supervised (+ constraints): The faster transfer rateis made possible, Raimondi said.
original: The SAS screen is divided into three sections: onefor writing programs, one for

the system’s response as it executes the program, and a thirdfor output tables
and charts.

human: The SAS screen is divided into three sections.
K&M: The screen is divided into one
super (+ extra rules): SAS screen is divided into three sections: one for writing programs, and a third

for output tables and charts.
super (+ extra rules, constraints): The SAS screen is divided into three sections.
unsupervised: The screen is divided into sections: one for writing programs, one for the system’s

response as it executes program, and third for output tablesand charts.
unsupervised (+ constraints): Screen is divided into threesections: one for writing programs, one for the

system’s response as it executes program, and a third for output tables and charts.
semi-supervised: The SAS screen is divided into three sections: one for writing programs, one for

the system’s response as it executes the program, and a thirdfor output tables
and charts.

semi-super (+ constraints): The screen is divided into three sections: one for writing programs, one for the
system’s response as it executes the program, and a third foroutput tables
and charts.

Figure 1: Compression Examples294



compression rate grammar importance
humans 53.33% 4.96 3.73
K&M 70.37% 4.57 3.85
supervised 79.85% 4.64 3.97
supervised with extra rules 67.41% 4.57 3.66
supervised with extra rules and constraints68.44% 4.77 3.76
unsupervised 79.11% 4.38 3.93
unsupervised with constraints 77.93% 4.51 3.88
semi-supervised 81.19% 4.79 4.18
semi-supervised with constraints 79.56% 4.75 4.16

Table 1: Experimental Results

short: (S (NP (JJ Many) (JJ debugging) (NNS features))
(VP (VBP have) (VP (VBN been) (VP (VBN added))))(. .))

long: (S (NP (NP (JJ Many) (JJ debugging) (NNS features))(, ,)
(PP (VBG including) (NP (NP (JJ user-defined)(NN break)(NNSpoints)
(CC and)(NN variable-watching))
(CC and)(NP (JJ message-watching) (NNS windows))))(, ,))
(VP (VBP have) (VP (VBN been) (VP (VBN added))))(. .))

Figure 2: Joint Trees for special rules

bit more explicit:

arg maxsp(s, L = s | l, L = l) = (4)

arg maxsp(s, L = s)p(l, L = l | s, L = s)

Here we have introduced explicit conditioning
eventsL = l andL = s to state that that the sen-
tence in question is either the long version or the
short version. We do this because in order to get the
equation that K&M (and ourselves) start with, it is
necessary to assume the following

p(s, L = s) = p(s) (5)

p(l, L = l | s, L = s) = p(l | s) (6)

This means we assume that the probability of, say,s
as a short (compressed) sentence is simply its prob-
ability as a sentence. This will be, in general, false.
One would hope that real compressed sentences are
more probable as a member of the set of compressed
sentences than they are as simply a member of all
English sentences. However, neither K&M, nor we,
have a large enough body of compressed and origi-
nal sentences from which to create useful language
models, so we both make this simplifying assump-
tion. At this point it seems like a reasonable choice

root

vp

vb

buy

np

nns

toys

root

vp

vb

buy

np

jj

large

nns

toys

Figure 3: A compression example — trees A and B
respectively

to make. In fact, it compromises the entire enter-
prise. To see this, however, we must descend into
more details.

Let us consider a simplified version of a K&M
example, but as reinterpreted for our model: how
the noisy channel model assigns a probability of the
compressed tree (A) in Figure 3 given the original
treeB.

We compute the probabilitiesp(A) andp(B | A)
as follows (Figure 4): We have divided the probabil-
ities up according to whether they are contributed by
the source or channel models. Those from the source
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p(A) p(B | A)
p(s → vp | H(s)) p(s → vp | s → vp)
p(vp → vb np | H(vp)) p(vp → vb np | vp → vb np)
p(np → nns | H(np)) p(np → jj nns | np → nns)
p(vb → buy | H(vb)) p(vb → buy | vb → buy)
p(nns → toys | H(nns)) p(nns → toys | nns → toys)

p(jj → large | H(jj))

Figure 4: Source and channel probabilities for com-
pressingB into A

p(B) p(B | B)
p(s → vp | H(s)) p(s → vp | s → vp)
p(vp → vb np | H(vp)) p(vp → vb np | vp → vb np)
p(np → jj nns | H(np)) p(np → jj nns | np → jj nns)
p(vb → buy | H(vb)) p(vb → buy | vb → buy)
p(nns → toys | H(nns)) p(nns → toys | nns → toys)
p(jj → large | H(jj)) p(jj → large | jj → large)

Figure 5: Source and channel probabilities for leav-
ing B asB

model are conditioned on, e.g.H(np) the history in
terms of the tree structure around the noun-phrase.
In a pure PCFG this would only include the label of
the node. In our language model it includes much
more, such as parent and grandparent heads.

Again, following K&M, contrast this with the
probabilities assigned when the compressed tree is
identical to the original (Figure 5).

Expressed like this it is somewhat daunting, but
notice that if all we want is to see which probability
is higher (the compressed being the same as the orig-
inal or truly compressed) then most of these terms
cancel, and we get the rule, prefer the truly com-
pressed if and only if the following ratio is greater
than one.

p(np → nns | H(np))

p(np → jj nns | H(np))

p(np → jj nns | np → nns)

p(np → jj nns | np → jj nns)
(7)

1

p(jj → large | jj → large)

In the numerator are the unmatched probabilities
that go into the compressed sentence noisy chan-
nel probability, and in the denominator are those for
when the sentence does not undergo any change. We
can make this even simpler by noting that because

tree-bank pre-terminals can only expand into words
p(jj → large | jj → large) = 1. Thus the last fraction
in Equation 7 is equal to one and can be ignored.

For a compression to occur, it needs to be less de-
sirable to add an adjective in the channel model than
in the source model. In fact, the opposite occurs.
The likelihood of almost any constituent deletion is
far lower than the probability of the constituents all
being left in. This seems surprising, considering that
the model we are using has had some success, but
it makes intuitive sense. There are far fewer com-
pression alignments than total alignments: identical
parts of sentences are almost sure to align. So the
most probable short sentence should be very barely
compressed. Thus we add a weighting factor to
compress our supervised version further.

K&M also, in effect, weight shorter sentences
more strongly than longer ones based upon their lan-
guage model. In their papers on sentence compres-
sion, they give an example similar to our “buy large
toys” example. The equation they get for the channel
probabilities in their example is similar to the chan-
nel probabilities we give in Figures 3 and 4. How-
ever their source probabilities are different. K&M
did not have a true syntax-based language model
to use as we have. Thus they divided the language
model into two parts. Part one assigns probabilities
to the grammar rules using a probabilistic context-
free grammar, while part two assigns probabilities
to the words using a bi-gram model. As they ac-
knowledge in (Knight and Marcu, 2002), the word
bigram probabilities are also included in the PCFG
probabilities. So in their versions of Figures 3 and
4 they haveboth p(toys | nns) (from the PCFG)
and p(toys | buy) for the bigram probability. In
this model, the probabilities do not sum to one, be-
cause they pay the probabilistic price for guessing
the word “toys” twice, based upon two different con-
ditioning events. Based upon this language model,
they prefer shorter sentences.

To reiterate this section’s argument: A noisy
channel model isnot by itself an appropriate model
for sentence compression. In fact, the most likely
short sentence will, in general, be the same length
as the long sentence. We achieve compression by
weighting to give shorter sentences more likelihood.
In fact, what is really required is some model that
takes “utility” into account, using a utility model
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in which shorter sentences are more useful. Our
term giving preference to shorter sentences can be
thought of as a crude approximation to such a utility.
However, this is clearly an area for future research.

8 Conclusion

We have created a supervised version of the noisy-
channel model with some improvements over the
K&M model. In particular, we learned that adding
an additional rule type improved compression, and
that enforcing some deletion constraints improves
grammaticality. We also show that it is possible to
perform an unsupervised version of the compression
task, which performs remarkably well. Our semi-
supervised version, which we hoped would have
good compression rates and grammaticality, had
good grammaticality but lower compression than de-
sired.

We would like to come up with a better utility
function than a simple weighting parameter for our
supervised version. The unsupervised version prob-
ably can also be further improved. We achieved
much success using syntactic labels to constrain
compressions, and there are surely other constraints
that can be added.

However, more training data is always the easi-
est cure to statistical problems. If we can find much
larger quantities of training data we could allow for
much richer rule paradigms that relate compressed
to original sentences. One example of a rule we
would like to automatically discover would allow us
to compressall of our design goalsor

(NP (NP (DT all))
(PP (IN of)
(NP (PRP$ our) (NN design) (NNS goals))))}

to all design goalsor

(NP (DT all) (NN design) (NNS goals))

In the limit such rules blur the distinction between
compression and paraphrase.
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Abstract

This paper describes a summarization
system for technical chats and emails on
the Linux kernel. To reflect the complex-
ity and sophistication of the discussions,
they are clustered according to subtopic
structure on the sub-message level, and
immediate responding pairs are identified
through machine learning methods. A re-
sulting summary consists of one or more
mini-summaries, each on a subtopic from
the discussion.

1 Introduction

The availability of many chat forums reflects the
formation of globally dispersed virtual communi-
ties. From them we select the very active and
growing movement of Open Source Software
(OSS) development. Working together in a virtual
community in non-collocated environments, OSS
developers communicate and collaborate using a
wide range of web-based tools including Internet
Relay Chat (IRC), electronic mailing lists, and
more (Elliott and Scacchi, 2004). In contrast to
conventional instant message chats, IRCs convey
engaging and focused discussions on collaborative
software development. Even though all OSS par-
ticipants are technically savvy individually, sum-
maries of IRC content are necessary within a
virtual organization both as a resource and an or-
ganizational memory of activities (Ackerman and

Halverson, 2000). They are regularly produced
manually by volunteers. These summaries can be
used for analyzing the impact of virtual social in-
teractions and virtual organizational culture on
software/product development.

The emergence of email thread discussions and
chat logs as a major information source has
prompted increased interest in thread summariza-
tion within the Natural Language Processing
(NLP) community. One might assume a smooth
transition from text-based summarization to email
and chat-based summarizations. However, chat
falls in the genre of correspondence, which re-
quires dialogue and conversation analysis. This
property makes summarization in this area even
more difficult than traditional summarization. In
particular, topic “drift” occurs more radically than
in written genres, and interpersonal and pragmatic
content appears more frequently. Questions about
the content and overall organization of the sum-
mary must be addressed in a more thorough way
for chat and other dialogue summarization sys-
tems.

In this paper we present a new system that clus-
ters sub-message segments from correspondences
according to topic, identifies the sub-message
segment containing the leading issue within the
topic, finds immediate responses from other par-
ticipants, and consequently produces a summary
for the entire IRC. Other constructions are possi-
ble. One of the two baseline systems described in
this paper uses the timeline and dialogue structure
to select summary content, and is quite effective.
We use the term chat loosely in this paper. Input
IRCs for our system is a mixture of chats and
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emails that are indistinguishable in format ob-
served from the downloaded corpus (Section 3).

In the following sections, we summarize previ-
ous work, describe the email/chat data, intra-
message clustering and summary extraction proc-
ess, and discuss the results and future work.

2 Previous and Related Work

There are at least two ways of organizing dialogue
summaries: by dialogue structure and by topic.

Newman and Blitzer (2002) describe methods
for summarizing archived newsgroup conversa-
tions by clustering messages into subtopic groups
and extracting top-ranked sentences per subtopic
group based on the intrinsic scores of position in
the cluster and lexical centrality. Due to the techni-
cal nature of our working corpus, we had to handle
intra-message topic shifts, in which the author of a
message raises or responds to multiple issues in the
same message. This requires that our clustering
component be not message-based but sub-
message-based.

Lam et al. (2002) employ an existing summar-
izer for single documents using preprocessed email
messages and context information from previous
emails in the thread.

Rambow et al. (2004) show that sentence ex-
traction techniques are applicable to summarizing
email threads, but only with added email-specific
features. Wan and McKeown (2004) introduce a
system that creates overview summaries for ongo-
ing decision-making email exchanges by first de-
tecting the issue being discussed and then
extracting the response to the issue. Both systems
use a corpus that, on average, contains 190 words
and 3.25 messages per thread, much shorter than
the ones in our collection.

Galley et al. (2004) describe a system that iden-
tifies agreement and disagreement occurring in
human-to-human multi-party conversations. They
utilize an important concept from conversational
analysis, adjacent pairs (AP), which consists of
initiating and responding utterances from different
speakers. Identifying APs is also required by our
research to find correspondences from different
chat participants.

In automatic summarization of spoken dia-
logues, Zechner (2001) presents an approach to
obtain extractive summaries for multi-party dia-
logues in unrestricted domains by addressing in-

trinsic issues specific to speech transcripts. Auto-
matic question detection is also deemed important
in this work. A decision-tree classifier was trained
on question-triggering words to detect questions
among speech acts (sentences). A search heuristic
procedure then finds the corresponding answers.
Ries (2001) shows how to use keyword repetition,
speaker initiative and speaking style to achieve
topical segmentation of spontaneous dialogues.

3    Technical Internet Relay Chats

GNUe, a meta-project of the GNU project1–one of
the most famous free/open source software pro-
jects–is the case study used in (Elliott and Scacchi,
2004) in support of the claim that, even in virtual
organizations, there is still the need for successful
conflict management in order to maintain order
and stability.

The GNUe IRC archive is uniquely suited for
our experimental purpose because each IRC chat
log has a companion summary digest written by
project participants as part of their contribution to
the community. This manual summary constitutes
gold-standard data for evaluation.

3.1 Kernel Traffic2

Kernel Traffic is a collection of summary digests
of discussions on GNUe development. Each digest
summarizes IRC logs and/or email messages (later
referred to as chat logs) for a period of up to two
weeks. A nice feature is that direct quotes and
hyperlinks are part of the summary. Each digest is
an extractive overview of facts, plus the author’s
dramatic and humorous interpretations.

3.2 Corpus Download

The complete Linux Kernel Archive (LKA) con-
sists of two separate downloads. The Kernel Traf-
fic (summary digests) are in XML format and were
downloaded by crawling the Kernel Traffic site.
The Linux Kernel Archives (individual IRC chat
logs) are downloaded from the archive site. We
matched the summaries with their respective chat
logs based on subject line and publication dates.

3.3 Observation on Chat Logs

                                                            
1 http://www.gnu.org
2 http://kt.hoser.ca/kernel-traffic/index.html
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Upon initial examination of the chat logs, we
found that many conventional assumptions about
chats in general do not apply. For example, in most
instant-message chats, each exchange usually con-
sists of a small number of words in several sen-
tences. Due to the technical nature of GNUe, half
of the chat logs contain in-depth discussions with
lengthy messages. One message might ask and an-
swer several questions, discuss many topics in de-
tail, and make further comments. This property,
which we call subtopic structure, is an important
difference from informal chat/interpersonal banter.
Figure 1 shows the subtopic structure and relation
of the first 4 messages from a chat log, produced
manually. Each message is represented horizon-
tally; the vertical arrows show where participants
responded to each other. Visual inspection reveals
in this example there are three distinctive clusters
(a more complex cluster and two smaller satellite
clusters) of discussions between participants at
sub-message level.

3.4 Observation on Summary Digests

To measure the goodness of system-produced
summaries, gold standards are used as references.
Human-written summaries usually make up the
gold standards. The Kernel Traffic (summary di-
gests) are written by Linux experts who actively
contribute to the production and discussion of the
open source projects. However, participant-
produced digests cannot be used as reference
summaries verbatim. Due to the complex structure
of the dialogue, the summary itself exhibits some
discourse structure, necessitating such reader guid-
ance phrases such as “for the … question,” “on the
… subject,” “regarding …,” “later in the same
thread,” etc., to direct and refocus the reader’s at-
tention. Therefore, further manual editing and par-
titioning is needed to transform a multi-topic digest

into several smaller subtopic-based gold-standard
reference summaries (see Section 6.1 for the trans-
formation).

4 Fine-grained Clustering

To model the subtopic structure of each chat mes-
sage, we apply clustering at the sub-message level.

4.1 Message Segmentation

First, we look at each message and assume that
each participant responds to an ongoing discussion
by stating his/her opinion on several topics or is-
sues that have been discussed in the current chat
log, but not necessarily in the order they were dis-
cussed. Thus, topic shifts can occur sequentially
within a message. Messages are partitioned into
multi-paragraph segments using TextTiling, which
reportedly has an overall precision of 83% and re-
call of 78% (Hearst, 1994).

4.2 Clustering

After distinguishing a set of message segments, we
cluster them. When choosing an appropriate clus-
tering method, because the number of subtopics
under discussion is unknown, we cannot make an
assumption about the total number of resulting
clusters. Thus, nonhierarchical partitioning meth-
ods cannot be used, and we must use a hierarchical
method.  These methods can be either agglomera-
tive, which begin with an unclustered data set and
perform N – 1 pairwise joins, or divisive, which
add all objects to a single cluster, and then perform
N – 1 divisions to create a hierarchy of smaller
clusters, where N is the total number of items to be
clustered (Frakes and Baeza-Yates, 1992).

Ward’s Method

Hierarchical agglomerative clustering methods are
commonly used and we employ Ward’s method
(Ward and Hook, 1963), in which the text segment
pair merged at each stage is the one that minimizes
the increase in total within-cluster variance.

Each cluster is represented by an L-dimensional
vector (xi1, xi2, …, xiL) where each xik is the word’s
tf • idf score. If mi is the number of objects in the
cluster, the squared Euclidean distance between
two segments i and j is:

€ 

dij
2 = (xikK=1

L
∑ − x jk)

2

Figure 1. An example of chat subtopic structure
and relation between correspondences.
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When two segments are joined, the increase in
variance Iij is expressed as:

€ 

Iij =
mim j

mi + mj

dij
2

Number of Clusters

The process of joining clusters continues until the
combination of any two clusters would destabilize
the entire array of currently existing clusters pro-
duced from previous stages. At each stage, the two
clusters xik and xjk are chosen whose combination
would cause the minimum increase in variance Iij,
expressed as a percentage of the variance change
from the last round. If this percentage reaches a
preset threshold, it means that the nearest two
clusters are much further from each other com-
pared to the previous round; therefore, joining of
the two represents a destabilizing change, and
should not take place.

Sub-message segments from resulting clusters
are arranged according to the sequence the original
messages were posted and the resulting subtopic
structures are similar to the one shown in Figure 1.

5 Summary Extraction

Having obtained clusters of message segments fo-
cused on subtopics, we adopt the typical summari-
zation paradigm to extract informative sentences
and segments from each cluster to produce sub-
topic-based summaries. If a chat log has n clusters,
then the corresponding summary will contain n
mini-summaries.

All message segments in a cluster are related to
the central topic, but to various degrees. Some are
answers to questions asked previously, plus further
elaborative explanations; some make suggestions
and give advice where they are requested, etc.
From careful analysis of the LKA data, we can
safely assume that for this type of conversational
interaction, the goal of the participants is to seek
help or advice and advance their current knowl-
edge on various technical subjects. This kind of
interaction can be modeled as one problem-
initiating segment and one or more corresponding
problem-solving segments. We envisage that iden-
tifying corresponding message segment pairs will
produce adequate summaries. This analysis follows
the structural organization of summaries from Ker-
nel Traffic. Other types of discussions, at least in

part, require different discourse/summary organi-
zation.

These corresponding pairs are formally intro-
duced below, and the methods we experimented
with for identifying them are described.

5.1 Adjacent Response Pairs

An important conversational analysis concept, ad-
jacent pairs (AP), is applied in our system to iden-
tify initiating and responding correspondences
from different participants in one chat log. Adja-
cent pairs are considered fundamental units of
conversational organization (Schegloff and Sacks,
1973). An adjacent pair is said to consist of two
parts that are ordered, adjacent, and produced by
different speakers (Galley et al., 2004). In our
email/chat (LKA) corpus a physically adjacent
message, following the timeline, may not directly
respond to its immediate predecessor. Discussion
participants read the current live thread and decide
what he/she would like to correspond to, not nec-
essarily in a serial fashion. With the added compli-
cation of subtopic structure (see Figure 1) the
definition of adjacency is further violated. Due to
its problematic nature, a relaxation on the adja-
cency requirement is used in extensive research in
conversational analysis (Levinson, 1983). This re-
laxed requirement is adopted in our research.

Information produced by adjacent correspon-
dences can be used to produce the subtopic-based
summary of the chat log.  As described in Section
4, each chat log is partitioned, at sub-message
level, into several subtopic clusters. We take the
message segment that appears first chronologically
in the cluster as the topic-initiating segment in an
adjacent pair. Given the initiating segment, we
need to identify one or more segments from the
same cluster that are the most direct and relevant
responses. This process can be viewed equivalently
as the informative sentence extraction process in
conventional text-based summarization.

5.2 AP Corpus and Baseline

We manually tagged 100 chat logs for adjacent
pairs. There are, on average, 11 messages per chat
log and 3 segments per message (This is consid-
erably larger than threads used in previous re-
search). Each chat log has been clustered into one
or more bags of message segments. The message
segment that appears earliest in time in a cluster
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was marked as the initiating segment. The annota-
tors were provided with this segment and one other
segment at a time, and were asked to decide
whether the current message segment is a direct
answer to the question asked, the suggestion that
was requested, etc. in the initiating segment. There
are 1521 adjacent response pairs; 1000 were used
for training and 521 for testing.

Our baseline system selects the message seg-
ment (from a different author) immediately fol-
lowing the initiating segment. It is quite effective,
with an accuracy of 64.67%. This is reasonable
because not all adjacent responses are interrupted
by messages responding to different earlier initiat-
ing messages.

In the following sections, we describe two ma-
chine learning methods that were used to identify
the second element in an adjacent response pair
and the features used for training. We view the
problem as a binary classification problem, distin-
guishing less relevant responses from direct re-
sponses. Our approach is to assign a candidate
message segment c an appropriate response class r.

5.3 Features

Structural and durational features have been dem-
onstrated to improve performance significantly in
conversational text analysis tasks. Using them,
Galley et al. (2004) report an 8% increase in
speaker identification. Zechner (2001) reports ex-
cellent results (F > .94) for inter-turn sentence
boundary detection when recording the length of
pause between utterances.  In our corpus, dura-
tional information is nonexistent because chats and
emails were mixed and no exact time recordings
beside dates were reported. So we rely solely on
structural and lexical features.

For structural features, we count the number of
messages between the initiating message segment
and the responding message segment. Lexical fea-
tures are listed in Table 1. The tech words are the
words that are uncommon in conventional litera-
ture and unique to Linux discussions.

5.4 Maximum Entropy

Maximum entropy has been proven to be an ef-
fective method in various natural language proc-
essing applications (Berger et al., 1996). For

training and testing, we used YASMET3.  To est i-
mate P(r | c) in the exponential form, we have:

€ 

Pλ(r | c) =
1

Zλ(c)
 exp( λi,r

i
∑ f i,r (c,r))

where Zλ(c) is a normalizing constant and the fea-
ture function for feature fi and response class r is
defined as:

€ 

fi,r (c, ′ r ) =
1, if f i > 0 and ′ r = r
0, otherwise            

  
 
 
 

.

λi,r is the feature-weight parameter for feature fi and
response class r. Then, to determine the best class r
for the candidate message segment c, we have:

€ 

r* = arg maxrP(r | c)   .

5.5 Support Vector Machine

Support vector machines (SVMs) have been shown
to outperform other existing methods (naïve Bayes,
k-NN, and decision trees) in text categorization
(Joachims, 1998). Their advantages are robustness
and the elimination of the need for feature selec-
tion and parameter tuning. SVMs find the hyper-
plane that separates the positive and negative
training examples with maximum margin. Finding
this hyperplane can be translated into an optimiza-
tion problem of finding a set of coefficients αi

* of
the weight vector   

€ 

r w  for document di of class yi ∈
{+1 , –1}:

  

€ 

r w = α i
*

i
∑ yi

r 
d i,    α i > 0     .

Testing data are classified depending on the side
of the hyperplane they fall on. We used the
LIBSVM4 package for training and testing.

                                                            
3 http://www.fjoch.com/YASMET.html
4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Feature sets baseline MaxEnt SVM
64.67%

Structural 61.22% 71.79%
Lexical 62.24% 72.22%
Structural + Lexical 72.61% 72.79%

• number of overlapping words
• number of overlapping content words
• ratio of overlapping words
• ratio of overlapping content words
• number of overlapping tech words

Table 1. Lexical features.

Table 2. Accuracy on identifying APs.
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5.6 Results

Entries in Table 2 show the accuracies achieved
using machine learning models and feature sets.

5.7 Summary Generation

After responding message segments are identified,
we couple them with their respective initiating
segment to form a mini-summary based on their
subtopic. Each initializing segment has zero or
more responding segments. We also observed zero
response in human-written summaries where par-
ticipants initiated some question or concern, but
others failed to follow up on the discussion. The
AP process is repeated for each cluster created
previously. One or more subtopic-based mini-
summaries make up one final summary for each
chat log. Figure 2 shows an example. For longer
chat logs, the length of the final summary is arbi-
trarily averaged at 35% of the original.

6 Summary Evaluation

To evaluate the goodness of the system-produced
summaries, a set of reference summaries is used
for comparison. In this section, we describe the
manual procedure used to produce the reference
summaries, and the performances of our system
and two baseline systems.

6.1 Reference Summaries

Kernel Traffic digests are participant-written
summaries of the chat logs. Each digest mixes the
summary writer’s own narrative comments with
direct quotes (citing the authors) from the chat log.
As observed in Section 3.4, subtopics are inter-
mingled in each digest. Authors use key phrases to
link the contents of each subtopic throughout texts.
In Figure 3, we show an example of such a digest.
Discussion participants’ names are in italics and
subtopics are in bold. In this example, the conver-
sation was started by Benjamin Reed with two
questions: 1) asking for conventions for writing
/proc drivers, and 2) asking about the status of
sysctl. The summary writer indicated that Linus
Torvalds replied to both questions and used the
phrase “for the … question, he added…” to high-
light the answer to the second question. As the di-

Subtopic 1:
Benjamin Reed: I wrote a wireless ethernet driver a
while ago... Are driver writers recommended to use
that over extending /proc or is it deprecated?
Linus Torvalds: Syscyl is deprecated. It’s useful in one
way only ...

Subtopic 2:
Benjamin Reed: I am a bit uncomfortable ... wondering
for a while if there are guidelines on …
Linus Torvalds: The thing to do is to create ...

Subtopic 3:
Marcin Dalecki: Are you just blind to the never-ending
format/ compatibility/ … problems the whole idea
behind /proc induces inherently?

Figure 2. A system-produced summary.

Benjamin Reed wrote a wireless Ethernet driver that
used /proc as its interface. But he was a little uncom-
fortable … asked if there were any conventions he
should follow. He added, “and finally, what’s up with
sysctl? …”
Linus Torvalds replied with: “the thing to do is to cre-
ate a …[program code]. The /proc/drivers/ directory is
already there, so you’d basically do something like …
[program code].” For the sysctl question, he added
“sysctl is deprecated. ...”
Marcin Dalecki flamed Linus: “Are you just blind to
the never-ending format/compatibility/… problems the
whole idea behind /proc  induces inherently?
…[example]”

Figure 3. An original Kernel Traffic digest.

Mini 1:
Benjamin Reed wrote a wireless Ethernet driver that
used /proc as its interface. But he was a little uncom-
fortable … and asked if there were any conventions he
should follow.
Linus Torvalds replied with: the thing to do is to create
a …[program code]. The /proc/drivers/ directory is
already there, so you’d basically do something like …
[program code].
Marcin Dalecki flamed Linus: Are you just blind to the
never-ending format/ compatibility/ … problems the
whole idea behind /proc  induces inherently?
…[example]

Mini 2:
Benjamin Reed: and finally, what’s up with sysctl? ...
Linus Torvalds replied: sysctl is deprecated. ...

Figure 4. A reference summary reproduced
from a summary digest.
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gest goes on, Marcin Dalecki only responded to the
first question with his excited commentary.

Since our system-produced summaries are sub-
topic-based and partitioned accordingly, if we use
unprocessed Kernel Traffic as references, the com-
parison would be rather complicated and would
increase the level of inconsistency in future as-
sessments.  We manually reorganized each sum-
mary digest into one or more mini-summaries by
subtopic (see Figure 4.) Examples (usually kernel
stats) and programs are reduced to “[example]”
and “[program code].” Quotes (originally in sepa-
rate messages but merged by the summary writer)
that contain multiple topics are segmented and the
participant’s name is inserted for each segment.
We follow clues like “to answer … question” to
pair up the main topics and their responses.

6.2 Summarization Results

We evaluated 10 chat logs. On average, each con-
tains approximately 50 multi-paragraph tiles (par-
titioned by TextTile) and 5 subtopics (clustered by
the method from Section 4).

A simple baseline system takes the first sentence
from each email in the sequence that they were
posted, based on the assumption that people tend to
put important information in the beginning of texts
(Position Hypothesis).

A second baseline system was built based on
constructing and analyzing the dialogue structure
of each chat log. Participants often quote portions
of previously posted messages in their responses.
These quotes link most of the messages from a
chat log. The message segment that immediately
follows the quote is automatically paired with the
quote itself and added to the summary and sorted
according to the timeline. Segments that are not
quoted in later messages are labeled as less rele-
vant and discarded. A resulting baseline summary
is an inter-connected structure of segments that
quoted and responded to one another. Figure 5 is a
shortened summary produced by this baseline for

the ongoing example.
The summary digests from Kernel Traffic

mostly consist of direct snippets from original
messages, thus making the reference summaries
extractive even after rewriting. This makes it pos-
sible to conduct an automatic evaluation. A com-
puterized procedure calculates the overlap between
reference and system-produced summary units.
Since each system-produced summary is a set of
mini-summaries based on subtopics, we also com-
pared the subtopics against those appearing in ref-
erence summaries (precision = 77.00%, recall =
74.33 %, F = 0.7566).

Recall Precision F-measure

Baseline1 30.79% 16.81% .2175
Baseline2 63.14% 36.54% .4629

Summary 52.57% 52.14% .5235System

Topic-summ 52.57% 63.66% .5758

Table 3 shows the recall, precision, and F -
measure from the evaluation. From manual analy-
sis on the results, we notice that the original digest
writers often leave large portions of the discussion
out and focus on a few topics. We think this is be-
cause among the participants, some are Linux vet-
erans and others are novice programmers. Digest
writers recognize this difference and reflect it in
their writings, whereas our system does not. The
entry “Topic-summ” in the table shows system-
produced summaries being compared only against
the topics discussed in the reference summaries.

6.3 Discussion

A recall of 30.79% from the simple baseline reas-
sures us the Position Hypothesis still applies in
conversational discussions. The second baseline
performs extremely well on recall, 63.14%. It
shows that quoted message segments, and thereby
derived dialogue structure, are quite indicative of
where the important information resides. Systems
built on these properties are good summarization
systems and hard-to-beat baselines. The system
described in this paper (Summary) shows an F-
measure of .5235, an improvement from .4629 of
the smart baseline. It gains from a high precision
because less relevant message segments are identi-
fied and excluded from the adjacent response pairs,

[0|0] Benjamin Reed:  “I wrote an … driver … /proc
…”
[0|1] Benjamin Reed: “… /proc/ guideline …”
[0|2] Benjamin Reed: “… syscyl …”
[1|0] Linus Torvalds responds to [0|0, 0|1, 0|2]: “the
thing to do is …” “sysctl is deprecated … “

Figure 5. A short example from Baseline 2.

Table 3. Summary of results.

304



leaving mostly topic-oriented segments in summa-
ries. There is a slight improvement when assessing
against only those subtopics appeared in the refer-
ence summaries (Topic-summ). This shows that we
only identified clusters on their information con-
tent, not on their respective writers’ experience and
reliability of knowledge.

In the original summary digests, interactions and
reactions between participants are sometimes de-
scribed. Digest writers insert terms like “flamed”,
“surprised”, “felt sorry”, “excited”, etc. To analyze
social and organizational culture in a virtual envi-
ronment, we need not only information extracts
(implemented so far) but also passages that reveal
the personal aspect of the communications. We
plan to incorporate opinion identification into the
current system in the future.

7 Conclusion and Future Work

In this paper we have described a system that per-
forms intra-message topic-based summarization by
clustering message segments and classifying topic-
initiating and responding pairs. Our approach is an
initial step in developing a framework that can
eventually reflect the human interactions in virtual
environments. In future work, we need to prioritize
information according to the perceived knowl-
edgeability of each participant in the discussion, in
addition to identifying informative content and
recognizing dialogue structure. While the approach
to the detection of initiating-responding pairs is
quite effective, differentiating important and non-
important topic clusters is still unresolved and
must be explored.
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Abstract
This paper presents the first probabilistic
parsing results for French, using the re-
cently released French Treebank. We start
with an unlexicalized PCFG as a base-
line model, which is enriched to the level
of Collins’ Model 2 by adding lexical-
ization and subcategorization. The lexi-
calized sister-head model and a bigram
model are also tested, to deal with the flat-
ness of the French Treebank. The bigram
model achieves the best performance:
81% constituency F-score and 84% de-
pendency accuracy. All lexicalized mod-
els outperform the unlexicalized baseline,
consistent with probabilistic parsing re-
sults for English, but contrary to results
for German, where lexicalization has only
a limited effect on parsing performance.

1 Introduction

This paper brings together two strands of research
that have recently emerged in the field of probabilis-
tic parsing: crosslinguistic parsing and lexicalized
parsing. Interest in parsing models for languages
other than English has been growing, starting with
work on Czech (Collins et al., 1999) and Chinese
(Bikel and Chiang, 2000; Levy and Manning, 2003).
Probabilistic parsing for German has also been ex-
plored by a range of authors (Dubey and Keller,
2003; Schiehlen, 2004). In general, these authors
have found that existing lexicalized parsing models
for English (e.g., Collins 1997) do not straightfor-
wardly generalize to new languages; this typically
manifests itself in a severe reduction in parsing per-
formance compared to the results for English.

A second recent strand in parsing research has
dealt with the role of lexicalization. The conven-
tional wisdom since Magerman (1995) has been that
lexicalization substantially improves performance
compared to an unlexicalized baseline model (e.g., a
probabilistic context-free grammar, PCFG). How-
ever, this has been challenged by Klein and Man-
ning (2003), who demonstrate that an unlexicalized

model can achieve a performance close to the state
of the art for lexicalized models. Furthermore, Bikel
(2004) provides evidence that lexical information
(in the form of bi-lexical dependencies) only makes
a small contribution to the performance of parsing
models such as Collins’s (1997).

The only previous authors that have directly ad-
dressed the role of lexicalization in crosslinguistic
parsing are Dubey and Keller (2003). They show
that standard lexicalized models fail to outperform
an unlexicalized baseline (a vanilla PCFG) on Ne-
gra, a German treebank (Skut et al., 1997). They
attribute this result to two facts: (a) The Negra an-
notation assumes very flat trees, which means that
Collins-style head-lexicalization fails to pick up the
relevant information from non-head nodes. (b) Ger-
man allows flexible word order, which means that
standard parsing models based on context free gram-
mars perform poorly, as they fail to generalize over
different positions of the same constituent.

As it stands, Dubey and Keller’s (2003) work does
not tell us whether treebank flatness or word order
flexibility is responsible for their results: for English,
the annotation scheme is non-flat, and the word or-
der is non-flexible; lexicalization improves perfor-
mance. For German, the annotation scheme is flat
and the word order is flexible; lexicalization fails to
improve performance. The present paper provides
the missing piece of evidence by applying proba-
bilistic parsing models to French, a language with
non-flexible word order (like English), but with a
treebank with a flat annotation scheme (like Ger-
man). Our results show that French patterns with En-
glish: a large increase of parsing performance can be
obtained by using a lexicalized model. We conclude
that the failure to find a sizable effect of lexicaliza-
tion in German can be attributed to the word order
flexibility of that language, rather than to the flatness
of the annotation in the German treebank.

The paper is organized as follows: In Section 2,
we give an overview of the French Treebank we use
for our experiments. Section 3 discusses its anno-
tation scheme and introduces a set of tree transfor-
mations that we apply. Section 4 describes the pars-
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<NP>
<w lemma="eux" ei="PROmp"

ee="PRO-3mp" cat="PRO"
subcat="3mp">eux</w>

</NP>

Figure 1: Word-level annotation in the French Tree-
bank: eux ‘they’ (cat: POS tag, subcat: subcate-
gory, ei, ee: inflection)

ing models, followed by the results for the unlexi-
calized baseline model in Section 6 and for a range
of lexicalized models in Section 5. Finally, Section 7
provides a crosslinguistic comparison involving data
sets of the same size extracted from the French, En-
glish, and German treebanks.

2 The French Treebank

2.1 Annotation Scheme

The French Treebank (FTB; Abeillé et al. 2000) con-
sists of 20,648 sentences extracted from the daily
newspaper Le Monde, covering a variety of authors
and domains (economy, literature, politics, etc.).1

The corpus is formatted in XML and has a rich mor-
phosyntactic tagset that includes part-of-speech tag,
‘subcategorization’ (e.g., possessive or cardinal), in-
flection (e.g., masculine singular), and lemma in-
formation. Compared to the Penn Treebank (PTB;
Marcus et al. 1993), the POS tagset of the French
Treebank is smaller (13 tags vs. 36 tags): all punc-
tuation marks are represented as the single PONCT
tag, there are no separate tags for modal verbs, wh-
words, and possessives. Also verbs, adverbs and
prepositions are more coarsely defined. On the other
hand, a separate clitic tag (CL) for weak pronouns is
introduced. An example for the word-level annota-
tion in the FTB is given in Figure 1

The phrasal annotation of the FTB differs from
that for the Penn Treebank in several aspects. There
is no verb phrase: only the verbal nucleus (VN) is
annotated. A VN comprises the verb and any clitics,
auxiliaries, adverbs, and negation associated with it.
This results in a flat syntactic structure, as in (1).

(1) (VN (V sont) (ADV systématiquement) (V
arrêtés)) ‘are systematically arrested’

The noun phrases (NPs) in the FTB are also flat; a
noun is grouped together with any associated deter-
miners and prenominal adjectives, as in example (2).
Note that postnominal adjectives, however, are ad-
joined to the NP in an adjectival phrase (AP).

1The French Treebank was developed at Université Paris 7.
A license can be obtained by emailing Anne Abeillé (abeille@
linguist.jussieu.fr).

<w compound="yes" lemma="d’entre"
ei="P" ee="P" cat="P">
<w catint="P">d’</w>
<w catint="P">entre</w>

</w>

Figure 2: Annotation of compounds in the French
Treebank: d’entre ‘between’ (catint: compound-
internal POS tag)

(2) (NP (D des) (A petits) (N mots) (AP (ADV très)
(A gentils))) ‘small, very gentle words’

Unlike the PTB, the FTB annotates coordinated
phrases with the syntactic tag COORD (see the left
panel of Figure 3 for an example).

The treatment of compounds is also different in
the FTB. Compounds in French can comprise words
which do not exist otherwise (e.g., insu in the com-
pound preposition à l’insu de ‘unbeknownst to’) or
can exhibit sequences of tags otherwise ungrammat-
ical (e.g., à la va vite ‘in a hurry’: Prep + Det +
finite verb + adverb). To account for these proper-
ties, compounds receive a two-level annotation in
the FTB: a subordinate level is added for the con-
stituent parts of the compound (both levels use the
same POS tagset). An example is given in Figure 2.

Finally, the FTB differs from the PTB in that it
does not use any empty categories.

2.2 Data Sets

The version of the FTB made available to us (ver-
sion 1.4, May 2004) contains numerous errors. Two
main classes of inaccuracies were found in the data:
(a) The word is present but morphosyntactic tags
are missing; 101 such cases exist. (b) The tag in-
formation for a word (or a part of a compound) is
present but the word (or compound part) itself is
missing. There were 16,490 instances of this error
in the dataset.

Initially we attempted to correct the errors, but
this proved too time consuming, and we often found
that the errors cannot be corrected without access to
the raw corpus, which we did not have. We therefore
decided to remove all sentences with errors, which
lead to a reduced dataset of 10,552 sentences.

The remaining data set (222,569 words at an av-
erage sentence length of 21.1 words) was split into
a training set, a development set (used to test the
parsing models and to tune their parameters), and a
test set, unseen during development. The training set
consisted of the first 8,552 sentences in the corpus,
with the following 1000 sentences serving as the de-
velopment set and the final 1000 sentences forming
the test set. All results reported in this paper were
obtained on the test set, unless stated otherwise.
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3 Tree Transformations

We created a number of different datasets from the
FTB, applying various tree transformation to deal
with the peculiarities of the FTB annotation scheme.
As a first step, the XML formatted FTB data was
converted to PTB-style bracketed expressions. Only
the POS tag was kept and the rest of the morphologi-
cal information for each terminal was discarded. For
example, the NP in Figure 1 was transformed to:

(3) (NP (PRO eux))

In order to make our results comparable to re-
sults from the literature, we also transformed the
annotation of punctuation. In the FTB, all punc-
tuations is tagged uniformly as PONCT. We re-
assigned the POS for punctuation using the PTB
tagset, which differentiates between commas, peri-
ods, brackets, etc.

Compounds have internal structure in the FTB
(see Section 2.1). We created two separate data sets
by applying two alternative tree transformation to
make FTB compounds more similar to compounds
in other annotation schemes. The first was collaps-
ing the compound by concatenating the compound
parts using an underscore and picking up the cat
information supplied at the compound level. For ex-
ample, the compound in Figure 2 results in:

(4) (P d’ entre)

This approach is similar to the treatment of com-
pounds in the German Negra treebank (used by
Dubey and Keller 2003), where compounds are not
given any internal structure (compounds are mostly
spelled without spaces or apostrophes in German).

The second approach is expanding the compound.
Here, the compound parts are treated as individual
words with their own POS (from the catint tag),
and the suffix Cmp is appended the POS of the com-
pound, effectively expanding the tagset.2 Now Fig-
ure 2 yields:

(5) (PCmp (P d’) (P entre)).

This approach is similar to the treatment of com-
pounds in the PTB (except hat the PTB does not use
a separate tag for the mother category). We found
that in the FTB the POS tag of the compound part
is sometimes missing (i.e., the value of catint is
blank). In cases like this, the missing catint was
substituted with the cat tag of the compound. This
heuristic produces the correct POS for the subparts
of the compound most of the time.

2An alternative would be to retain the cat tag of the com-
pound. The effect of this decision needs to be investigated in
future work.

XP

X COORD

C XP

X

XP

X C XP

X

XP

X C X

Figure 3: Coordination in the FTB: before (left) and
after transformation (middle); coordination in the
PTB (right)

As mentioned previously, coordinate structures
have their own constituent label COORD in the
FTB annotation. Existing parsing models (e.g., the
Collins models) have coordination-specific rules,
presupposing that coordination is marked up in PTB
format. We therefore created additional datasets
where a transformation is applied that raises coor-
dination. This is illustrated in Figure 3. Note that
in the FTB annotation scheme, a coordinating con-
junction is always followed by a syntactic category.
Hence the resulting tree, though flatter, is still not
fully compatible with the PTB treatment of coordi-
nation.

4 Probabilistic Parsing Models

4.1 Probabilistic Context-Free Grammars

The aim of this paper is to further explore the
crosslinguistic role of lexicalization by applying lex-
icalized parsing models to the French Treebank pars-
ing accuracy. Following Dubey and Keller (2003),
we use a standard unlexicalized PCFG as our base-
line. In such a model, each context-free rule RHS →
LHS is annotated with an expansion probability
P(RHS|LHS). The probabilities for all the rules with
the same left-hand side have to sum up to one and
the probability of a parse tree T is defined as the
product of the probabilities of each rule applied in
the generation of T .

4.2 Collins’ Head-Lexicalized Models

A number of lexicalized models can then be applied
to the FTB, comparing their performance to the un-
lexicalized baseline. We start with Collins’ Model 1,
which lexicalizes a PCFG by associating a word w
and a POS tag t with each non-terminal X in the
tree. Thus, a non-terminal is written as X(x) where
x = 〈w, t〉 and X is constituent label. Each rule now
has the form:

P(h)→ Ln(ln) . . .L1(l1)H(h)R1(r1) . . .Rm(rm)(1)

Here, H is the head-daughter of the phrase, which
inherits the head-word h from its parent P. L1 . . .Ln
and R1 . . .Rn are the left and right sisters of H. Either
n or m may be zero, and n = m for unary rules.
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The addition of lexical heads leads to an enor-
mous number of potential rules, making direct esti-
mation of P(RHS|LHS) infeasible because of sparse
data. Therefore, the generation of the RHS of a rule
given the LHS is decomposed into three steps: first
the head is generated, then the left and right sisters
are generated by independent 0th-order Markov pro-
cesses. The probability of a rule is thus defined as:

P(RHS|LHS) =
P(Ln(ln) . . .L1(l1)H(h),R1(r1) . . .Rm(rm)|P(h))
= Ph(H|P,h)×∏m+1

i=1 Pr(Ri(ri)|P,h,H,d(i))
×∏n+1

i=1 Pl(Li(li)|P,h,H,d(i))

(2)

Here, Ph is the probability of generating the head, Pl
and Pr are the probabilities of generating the left and
right sister respectively. Lm+1(lm+1) and Rm+1(rm+1)
are defined as stop categories which indicate when to
stop generating sisters. d(i) is a distance measure, a
function of the length of the surface string between
the head and the previously generated sister.

Collins’ Model 2 further refines the initial model
by incorporating the complement/adjunct distinction
and subcategorization frames. The generative pro-
cess is enhanced to include a probabilistic choice of
left and right subcategorization frames. The proba-
bility of a rule is now:

Ph(H|P,h)×Plc(LC|P,H,h)×Prc(RC|P,H,h)
×∏m+1

i=1 Pr(Ri(ri)|P,h,H,d(i),RC)
×∏n+1

i=1 Pl(Li(li)|P,h,H,d(i),LC)

(3)

Here, LC and RC are left and right subcat frames,
multisets specifying the complements that the head
requires in its left or right sister. The subcat re-
quirements are added to the conditioning context. As
complements are generated, they are removed from
the appropriate subcat multiset.

5 Experiment 1: Unlexicalized Model

5.1 Method

This experiment was designed to compare the per-
formance of the unlexicalized baseline model on
four different datasets, created by the tree trans-
formations described in Section 3: compounds
expanded (Exp), compounds contracted (Cont),
compounds expanded with coordination raised
(Exp+CR), and compounds contracted with coordi-
nation raised (Cont+CR).

We used BitPar (Schmid, 2004) for our unlexi-
calized experiments. BitPar is a parser based on a
bit-vector implementation of the CKY algorithm. A
grammar and lexicon were read off our training set,
along with rule frequencies and frequencies for lex-
ical items, based on which BitPar computes the rule

Model LR LP CBs 0CB ≤2CB Tag Cov
Exp 59.97 58.64 1.74 39.05 73.23 91.00 99.20
Exp+CR 60.75 60.57 1.57 40.77 75.03 91.08 99.09
Cont 64.19 64.61 1.50 46.74 76.80 93.30 98.48
Cont+CR 66.11 65.55 1.39 46.99 78.95 93.22 97.94

Table 1: Results for unlexicalized models (sentences
≤40 words); each model performed its own POS
tagging.

probabilities using maximum likelihood estimation.
A frequency distribution for POS tags was also read
off the training set; this distribution is used by BitPar
to tag unknown words in the test data.

All models were evaluated using standard Par-
seval measures of labeled recall (LR), labeled pre-
cision (LP), average crossing brackets (CBs), zero
crossling brackets (0CB), and two or less crossing
brackets (≤2CB). We also report tagging accuracy
(Tag), and coverage (Cov).

5.2 Results

The results for the unlexicalized model are shown in
Table 1 for sentences of length ≤40 words. We find
that contracting compounds increases parsing per-
formance substantially compared to expanding com-
pounds, raising labeled recall from around 60% to
around 64% and labeled precision from around 59%
to around 65%. The results show that raising co-
ordination is also beneficial; it increases precision
and recall by 1–2%, both for expanded and for non-
expanded compounds.

Note that these results were obtained by uni-
formly applying coordination raising during evalu-
ation, so as to make all models comparable. For the
Exp and Cont models, the parsed output and the gold
standard files were first converted by raising coordi-
nation and then the evaluation was performed.

5.3 Discussion

The disappointing performance obtained for the ex-
panded compound models can be partly attributed
to the increase in the number of grammar rules
(11,704 expanded vs. 10,299 contracted) and POS
tags (24 expanded vs. 11 contracted) associated with
that transformation.

However, a more important point observation is
that the two compound models do not yield compa-
rable results, since an expanded compound has more
brackets than a contracted one. We attempted to ad-
dress this problem by collapsing the compounds for
evaluation purposes (as described in Section 3). For
example, (5) would be contracted to (4). However,
this approach only works if we are certain that the
model is tagging the right words as compounds. Un-

309



fortunately, this is rarely the case. For example, the
model outputs:

(6) (NCmp (N jours) (N commerçants))

But in the gold standard file, jours and commerçants
are two distinct NPs. Collapsing the compounds
therefore leads to length mismatches in the test data.
This problem occurs frequently in the test set, so that
such an evaluation becomes pointless.

6 Experiment 2: Lexicalized Models

6.1 Method

Parsing We now compare a series of lexicalized
parsing models against the unlexicalized baseline es-
tablished in the previous experiment. Our is was to
test if French behaves like English in that lexicaliza-
tion improves parsing performance, or like German,
in that lexicalization has only a small effect on pars-
ing performance.

The lexicalized parsing experiments were run us-
ing Dan Bikel’s probabilistic parsing engine (Bikel,
2002) which in addition to replicating the models
described by Collins (1997) also provides a con-
venient interface to develop corresponding parsing
models for other languages.

Lexicalization requires that each rule in a gram-
mar has one of the categories on its right hand side
annotated as the head. These head rules were con-
structed based on the FTB annotation guidelines
(provided along with the dataset), as well as by us-
ing heuristics, and were optimized on the develop-
ment set. Collins’ Model 2 incorporates a comple-
ment/adjunct distinction and probabilities over sub-
categorization frames. Complements were marked
in the training phase based on argument identifica-
tion rules, tuned on the development set.

Part of speech tags are generated along with
the words in the models; parsing and tagging are
fully integrated. To achieve this, Bikel’s parser
requires a mapping of lexical items to ortho-
graphic/morphological word feature vectors. The
features implemented (capitalization, hyphenation,
inflection, derivation, and compound) were again
optimized on the development set.

Like BitPar, Bikel’s parser implements a prob-
abilistic version of the CKY algorithm. As with
normal CKY, even though the model is defined in
a top-down, generative manner, decoding proceeds
bottom-up. To speed up decoding, the algorithm im-
plements beam search. Collins uses a beam width of
104, while we found that a width of 105 gave us the
best coverage vs. parsing speed trade-off.

Label FTB PTB Negra Label FTB PTB Negra
SENT 5.84 2.22 4.55 VPpart 2.51 – –
Ssub 4.41 – – VN 1.76 – –
Sint 3.44 – – PP 2.10 2.03 3.08
Srel 3.92 – – NP 2.45 2.20 3.08
VP – 2.32 2.59 AdvP 2.24 – 2.08
VPinf 3.07 – – AP 1.34 – 2.22

Table 2: Average number of daughter nodes per con-
stituents in three treebanks

Flatness As already pointed out in Section 2.1,
the FTB uses a flat annotation scheme. This can
be quantified by computing the average number of
daughters for each syntactic category in the FTB,
and comparing them with the figures available for
PTB and Negra (Dubey and Keller, 2003). This is
done in Table 2. The absence of sentence-internal
VPs explains the very high level of flatness for the
sentential category SENT (5.84 daughters), com-
pared to the PTB (2.44), and even to Negra, which is
also very flat (4.55 daughters). The other sentential
categories Ssub (subordinate clauses), Srel (relative
clause), and Sint (interrogative clause) are also very
flat. Note that the FTB uses VP nodes only for non-
finite subordinate clauses: VPinf (infinitival clause)
and VPpart (participle clause); these categories are
roughly comparable in flatness to the VP category
in the PTB and Negra. For NP, PPs, APs, and AdvPs
the FTB is roughly as flat as the PTB, and somewhat
less flat than Negra.

Sister-Head Model To cope with the flatness of
the FTB, we implemented three additional parsing
models. First, we implemented Dubey and Keller’s
(2003) sister-head model, which extends Collins’
base NP model to all syntactic categories. This
means that the probability function Pr in equation (2)
is no longer conditioned on the head but instead on
its previous sister, yielding the following definition
for Pr (and by analogy Pl):

Pr(Ri(ri)|P,Ri−1(ri−1),d(i))(4)

Dubey and Keller (2003) argue that this implicitly
adds binary branching to the grammar, and therefore
provides a way of dealing with flat annotation (in
Negra and in the FTB, see Table 2).

Bigram Model This model, inspired by the ap-
proach of Collins et al. (1999) for parsing the Prague
Dependency Treebank, builds on Collins’ Model 2
by implementing a 1st order Markov assumption for
the generation of sister non-terminals. The latter are
now conditioned, not only on their head, but also on
the previous sister. The probability function for Pr
(and by analogy Pl) is now:

Pr(Ri(ri)|P,h,H,d(i),Ri−1,RC)(5)
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Model LR LP CBs 0CB ≤2CB Tag Cov
Model 1 80.35 79.99 0.78 65.22 89.46 96.86 99.68
Model 2 80.49 79.98 0.77 64.85 90.10 96.83 99.68
SisterHead 80.47 80.56 0.78 64.96 89.34 96.85 99.57
Bigram 81.15 80.84 0.74 65.21 90.51 96.82 99.46
BigramFlat 80.30 80.05 0.77 64.78 89.13 96.71 99.57

Table 3: Results for lexicalized models (sentences
≤40 words); each model performed its own POS
tagging; all lexicalized models used the Cont+CR
data set

The intuition behind this approach is that the model
will learn that the stop symbol is more likely to fol-
low phrases with many sisters. Finally, we also ex-
perimented with a third model (BigramFlat) that ap-
plies the bigram model only for categories with high
degrees of flatness (SENT, Srel, Ssub, Sint, VPinf,
and VPpart).

6.2 Results

Constituency Evaluation The lexicalized models
were tested on the Cont+CR data set, i.e., com-
pounds were contracted and coordination was raised
(this is the configuration that gave the best perfor-
mance in Experiment 1).

Table 3 shows that all lexicalized models achieve
a performance of around 80% recall and precision,
i.e., they outperform the best unlexicalized model by
at least 14% (see Table 1). This is consistent with
what has been reported for English on the PTB.

Collins’ Model 2, which adds the comple-
ment/adjunct distinction and subcategorization
frames achieved only a very small improvement
over Collins’ Model 1, which was not statistically
significant using a χ2 test. It might well be that
the annotation scheme of the FTB does not lend
itself particularly well to the demands of Model 2.
Moreover, as Collins (1997) mentions, some of
the benefits of Model 2 are already captured by
inclusion of the distance measure.

A further small improvement was achieved us-
ing Dubey and Keller’s (2003) sister-head model;
however, again the difference did not reach sta-
tistical significance. The bigram model, however,
yielded a statistically significant improvement over
Collins’ Model 1 (recall χ2 = 3.91, df = 1, p≤ .048;
precision χ2 = 3.97, df = 1, p ≤ .046). This is con-
sistent with the findings of Collins et al. (1999)
for Czech, where the bigram model upped depen-
dency accuracy by about 0.9%, as well as for En-
glish where Charniak (2000) reports an increase
in F-score of approximately 0.3%. The BigramFlat
model, which applies the bigram model to only those
labels which have a high degree of flatness, performs

Model LR LP CBs 0CB ≤2CB Tag Cov
Exp+CR 65.50 64.76 1.49 42.36 77.48 100.0 97.83
Cont+CR 69.35 67.93 1.34 47.43 80.25 100.0 96.97
Model1 81.51 81.43 0.78 64.60 89.25 98.54 99.78
Model2 81.69 81.59 0.78 63.84 89.69 98.55 99.78
SisterHead 81.08 81.56 0.79 64.35 89.57 98.51 99.57
Bigram 81.78 81.91 0.78 64.96 89.12 98.81 99.67
BigramFlat 81.14 81.19 0.81 63.37 88.80 98.80 99.67

Table 4: Results for lexicalized and unlexical-
ized models (sentences ≤40 words) with correct
POS tags supplied; all lexicalized models used the
Cont+CR data set

at roughly the same level as Model 1.
The models in Tables 1 and 3 implemented their

own POS tagging. Tagging accuracy was 91–93%
for BitPar (unlexicalized models) and around 96%
for the word-feature enhanced tagging model of the
Bikel parser (lexicalized models). POS tags are an
important cue for parsing. To gain an upper bound
on the performance of the parsing models, we reran
the experiments by providing the correct POS tag
for the words in the test set. While BitPar always
uses the tags provided, the Bikel parser only uses
them for words whose frequency is less than the un-
known word threshold. As Table 4 shows, perfect
tagging increased parsing performance in the lexi-
calized models by around 3%. This shows that the
poor POS tagging performed by BitPar is one of the
reasons of the poor performance of the lexicalized
models. The impact of perfect tagging is less dras-
tic on the lexicalized models (around 1% increase).
However, our main finding, viz., that lexicalized
models outperform unlexicalized models consider-
able on the FTB, remains valid, even with perfect
tagging.3

Dependency Evaluation We also evaluated our
models using dependency measures, which have
been argued to be more annotation-neutral than
Parseval. Lin (1995) notes that labeled bracketing
scores are more susceptible to cascading errors,
where one incorrect attachment decision causes the
scoring algorithm to count more than one error.

The gold standard and parsed trees were con-
verted into dependency trees using the algorithm de-
scribed by Lin (1995). Dependency accuracy is de-
fined as the ratio of correct dependencies over the to-
tal number of dependencies in a sentence. (Note that
this is an unlabeled dependency measure.) Depen-
dency accuracy and constituency F-score are shown

3It is important to note that the Collins model has a range
of other features that set it apart from a standard unlexicalized
PCFG (notably Markovization), as discussed in Section 4.2. It
is therefore likely that the gain in performance is not attributable
to lexicalization alone.
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Model Dependency F-score
Cont+CR 73.09 65.83
Model 2 83.96 80.23
SisterHead 84.00 80.51
Bigram 84.20 80.99

Table 5: Dependency vs. constituency scores for lex-
icalized and unlexicalized models

in Table 5 for the most relevant FTB models. (F-
score is computed as the geometric mean of labeled
recall and precision.)

Numerically, dependency accuracies are higher
than constituency F-scores across the board. How-
ever, the effect of lexicalization is the same on both
measures: for the FTB, a gain of 11% in dependency
accuracy is observed for the lexicalized model.

7 Experiment 3: Crosslinguistic
Comparison

The results reported in Experiments 1 and 2 shed
some light on the role of lexicalization for parsing
French, but they are not strictly comparable to the
results that have been reported for other languages.
This is because the treebanks available for different
languages typically vary considerably in size: our
FTB training set was about 8,500 sentences large,
while the standard training set for the PTB is about
40,000 sentences in size, and the Negra training set
used by Dubey and Keller (2003) comprises about
18,600 sentences. This means that the differences in
the effect of lexicalization that we observe could be
simply due to the size of the training set: lexicalized
models are more susceptible to data sparseness than
unlexicalized ones.

We therefore conducted another experiment in
which we applied Collins’ Model 2 to subsets of
the PTB that were comparable in size to our FTB
data sets. We combined sections 02–05 and 08 of
the PTB (8,345 sentences in total) to form the train-
ing set, and the first 1,000 sentences of section 23
to form our test set. As a baseline model, we also
run an unlexicalized PCFG on the same data sets.
For comparison with Negra, we also include the re-
sults of Dubey and Keller (2003): they report the
performance of Collins’ Model 1 on a data set of
9,301 sentences and a test set of 1,000 sentences,
which are comparable in size to our FTB data sets.4

The results of the crosslinguistic comparison are
shown in Table 6.5 We conclude that the effect of

4Dubey and Keller (2003) report only F-scores for the re-
duced data set (see their Figure 1); the other scores were pro-
vided by Amit Dubey. No results for Model 2 are available.

5For this experiments, the same POS tagging model was ap-
plied to the PTB and the FTB data, which is why the FTB fig-

Corpus Model LR LP CBs 0CB ≤2CB
FTB Cont+CR 66.11 65.55 1.39 46.99 78.95

Model 2 79.20 78.58 0.83 63.33 89.23
PTB Unlex 72.79 75.23 2.54 31.56 58.98

Model 2 86.43 86.79 1.17 57.80 82.44
Negra Unlex 69.64 67.27 1.12 54.21 82.84

Model 1 68.33 67.32 0.83 60.43 88.78

Table 6: The effect of lexicalization on different cor-
pora for training sets of comparable size (sentences
≤40 words)

lexicalization is stable even if the size of the train-
ing set is held constant across languages: For the
FTB we find that lexicalization increases F-score by
around 13%. Also for the PTB, we find an effect of
lexicalization of about 14%. For the German Negra
treebank, however, the performance of the lexical-
ized and the unlexicalized model are almost indis-
tinguishable. (This is true for Collins’ Model 1; note
that Dubey and Keller (2003) do report a small im-
provement for the lexicalized sister-head model.)

8 Related Work

We are not aware of any previous attempts to build
a probabilistic, treebank-trained parser for French.
However, there is work on chunking for French. The
group who built the French Treebank (Abeillé et al.,
2000) used a rule-based chunker to automatically
annotate the corpus with syntactic structures, which
were then manually corrected. They report an un-
labeled recall/precision of 94.3/94.2% for opening
brackets and 92.2/91.4% for closing brackets, and a
label accuracy of 95.6%. This result is not compara-
ble to our results for full parsing.

Giguet and Vergne (1997) present use a memory-
based learner to predict chunks and dependencies
between chunks. The system is evaluated on texts
from Le Monde (different from the FTB texts). Re-
sults are only reported for verb-object dependencies,
for which recall/precision is 94.04/96.39%. Again,
these results are not comparable to ours, which were
obtained using a different corpus, a different depen-
dency scheme, and for a full set of dependencies.

9 Conclusions

In this paper, we provided the first probabilis-
tic, treebank-trained parser for French. In Exper-
iment 1, we established an unlexicalized baseline
model, which yielded a labeled precision and re-
call of about 66%. We experimented with a num-
ber of tree transformation that take account of the
peculiarities of the annotation of the French Tree-

ures are slightly lower than in Table 3.
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bank; the best performance was obtained by rais-
ing coordination and contracting compounds (which
have internal structure in the FTB). In Experiment 2,
we explored a range of lexicalized parsing models,
and found that lexicalization improved parsing per-
formance by up to 15%: Collins’ Models 1 and 2
performed at around 80% LR and LP. No signifi-
cant improvement could be achieved by switching to
Dubey and Keller’s (2003) sister-head model, which
has been claimed to be particularly suitable for tree-
banks with flat annotation, such as the FTB. A small
but significant improvement (to 81% LR and LP)
was obtained by a bigram model that combines fea-
tures of the sister-head model and Collins’ model.

These results have important implications for
crosslinguistic parsing research, as they allow us
to tease apart language-specific and annotation-
specific effects. Previous work for English (e.g.,
Magerman, 1995; Collins, 1997) has shown that lex-
icalization leads to a sizable improvement in pars-
ing performance. English is a language with non-
flexible word order and with a treebank with a non-
flat annotation scheme (see Table 2). Research on
German (Dubey and Keller, 2003) showed that lex-
icalization leads to no sizable improvement in pars-
ing performance for this language. German has a
flexible word order and a flat treebank annotation,
both of which could be responsible for this counter-
intuitive effect. The results for French presented in
this paper provide the missing piece of evidence:
they show that French behaves like English in that
it shows a large effect of lexicalization. Like En-
glish, French is a language with non-flexible word
order, but like the German Treebank, the French
Treebank has a flat annotation. We conclude that
Dubey and Keller’s (2003) results for German can be
attributed to a language-specific factor (viz., flexible
word order) rather than to an annotation-specific fac-
tor (viz., flat annotation). We confirmed this claim in
Experiment 3 by showing that the effects of lexical-
ization observed for English, French, and German
are preserved if the size of the training set is kept
constant across languages.

An interesting prediction follows from the claim
that word order flexibility, rather than flatness of
annotation, is crucial for lexicalization. A language
which has a flexible word order (like German), but
a non-flat treebank (like English) should show no
effect of lexicalization, i.e., lexicalized models are
predicted not to outperform unlexicalized ones. In
future work, we plan to test this prediction for Ko-
rean, a flexible word order language whose treebank
(Penn Korean Treebank) has a non-flat annotation.
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Abstract

In this paper, we present an unlexical-
ized parser for German which employs
smoothing and suffix analysis to achieve
a labelled bracket F-score of 76.2, higher
than previously reported results on the
NEGRA corpus. In addition to the high
accuracy of the model, the use of smooth-
ing in an unlexicalized parser allows us
to better examine the interplay between
smoothing and parsing results.

1 Introduction

Recent research on German statistical parsing has
shown that lexicalization adds little to parsing per-
formance in German (Dubey and Keller, 2003; Beil
et al., 1999). A likely cause is the relative produc-
tivity of German morphology compared to that of
English: German has a higher type/token ratio for
words, making sparse data problems more severe.
There are at least two solutions to this problem: first,
to use better models of morphology or, second, to
make unlexicalized parsing more accurate.

We investigate both approaches in this paper. In
particular, we develop a parser for German which at-
tains the highest performance known to us by mak-
ing use of smoothing and a highly-tuned suffix ana-
lyzer for guessing part-of-speech (POS) tags from
the input text. Rather than relying on smoothing
and suffix analysis alone, we also utilize treebank
transformations (Johnson, 1998; Klein and Man-
ning, 2003) instead of a grammar induced directly
from a treebank.

The organization of the paper is as follows: Sec-
tion 2 summarizes some important aspects of our

treebank corpus. In Section 3 we outline several
techniques for improving the performance of unlex-
icalized parsing without using smoothing, including
treebank transformations, and the use of suffix anal-
ysis. We show that suffix analysis is not helpful
on the treebank grammar, but it does increase per-
formance if used in combination with the treebank
transformations we present. Section 4 describes how
smoothing can be incorporated into an unlexicalized
grammar to achieve state-of-the-art results in Ger-
man. Rather using one smoothing algorithm, we use
three different approaches, allowing us to compare
the relative performance of each. An error analy-
sis is presented in Section 5, which points to several
possible areas of future research. We follow the er-
ror analysis with a comparison with related work in
Section 6. Finally we offer concluding remarks in
Section 7.

2 Data

The parsing models we present are trained and tested
on the NEGRA corpus (Skut et al., 1997), a hand-
parsed corpus of German newspaper text containing
approximately 20,000 sentences. It is available in
several formats, and in this paper, we use the Penn
Treebank (Marcus et al., 1993) format of NEGRA.

The annotation used in NEGRA is similar to that
used in the English Penn Treebank, with some dif-
ferences which make it easier to annotate German
syntax. German’s flexible word order would have
required an explosion in long-distance dependencies
(LDDs) had annotation of NEGRA more closely
resembled that of the Penn Treebank. The NE-
GRA designers therefore chose to use relatively flat
trees, encoding elements of flexible word order us-
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ing grammatical functions (GFs) rather than LDDs
wherever possible.

To illustrate flexible word order, consider the sen-
tences Der Mann sieht den Jungen (‘The man sees
the boy’) and Den Jungen sieht der Mann. Despite
the fact the subject and object are swapped in the
second sentence, the meaning of both are essentially
the same.1 The two possible word orders are dis-
ambiguated by the use of the nominative case for
the subject (marked by the article der) and the ac-
cusative case for the object (marked by den) rather
than their position in the sentence.

Whenever the subject appears after the verb, the
non-standard position may be annotated using a
long-distance dependency (LDD). However, as men-
tioned above, this information can also be retrieved
from the grammatical function of the respective
noun phrases: the GFs of the two NPs above would
be ‘subject’ and ‘accusative object’ regardless of
their position in the sentence. These labels may
therefore be used to recover the underlying depen-
dencies without having to resort to LDDs. This is
the approach used in NEGRA. It does have limita-
tions: it is only possible to use GF labels instead of
LDDs when all the nodes of interest are dominated
by the same parent. To maximize cases where all
necessary nodes are dominated by the same parent,
NEGRA uses flat ‘dependency-style’ rules. For ex-
ample, there is no VP node when there is no overt
auxiliary verb. category. Under the NEGRA anno-
tation scheme, the first sentence above would have
a rule S � NP-SB VVFIN NP-OA and the second,
S � NP-OA VVFIN NP-SB, where SB denotes sub-
ject and OA denotes accusative object.

3 Parsing with Grammatical Functions

3.1 Model

As explained above, this paper focuses on unlexi-
calized grammars. In particular, we make use of
probabilistic context-free grammars (PCFGs; Booth
(1969)) for our experiments. A PCFG assigns each
context-free rule LHS � RHS a conditional prob-
ability Pr

�
RHS �LHS � . If a parser were to be given

POS tags as input, this would be the only distribution

1Pragmatically speaking, the second sentence has a slightly
different meaning. A better translation might be: ‘It is the boy
the man sees.’

required. However, in this paper we are concerned
with the more realistic problem of accepting text as
input. Therefore, the parser also needs a probabil-
ity distribution Pw

�
w �LHS � to generate words. The

probability of a tree is calculated by multiplying the
probabilities all the rules and words generated in the
derivation of the tree.

The rules are simply read out from the treebank,
and the probabilities are estimated from the fre-
quency of rules in the treebank. More formally:

Pr
�
RHS �LHS ��� c

�
LHS � RHS �

c
�
LHS � (1)

The probabilities of words given tags are simi-
larly estimated from the frequency of word-tag co-
occurrences:

Pw
�
w �LHS ��� c

�
LHS � w �

c
�
LHS � (2)

To handle unseen or infrequent words, all words
whose frequency falls below a threshold Ω are
grouped together in an ‘unknown word’ token,
which is then treated like an additional word. For
our experiments, we use Ω � 10.

We consider several variations of this simple
model by changing both Pr and Pw. In addition to
the standard formulation in Equation (1), we con-
sider two alternative variants of Pr. The first is a
Markov context-free rule (Magerman, 1995; Char-
niak, 2000). A rule may be turned into a Markov
rule by first binarizing it, then making independence
assumptions on the new binarized rules. Binarizing
the rule A � B1 �	�	� Bn results in a number of smaller
rules A � B1AB1 , AB1

� B2AB1B2 , �	�	� , AB1 
 
 
 Bn � 1 �
Bn. Binarization does not change the probability of
the rule:

P
�
B1 �	�	� Bn �A �

�
i � 1

∏
n

P
� � Bi �A � B1 � �	�	� � Bi  1 �

Making the 2nd order Markov assumption ‘forgets’
everything earlier then 2 previous sisters. A rule
would now be in the form ABi � 2Bi � 1 � BiABi � 1Bi , and
the probability would be:

P
�
B1 �	�	� Bn �A �

� i � 1

∏
n

P
�
Bi �A � Bi  2 � Bi  1 �

315



The other rule type we consider are linear prece-
dence/immediate dominance (LP/ID) rules (Gazdar
et al., 1985). If a context-free rule can be thought
of as a LHS token with an ordered list of tokens on
the RHS, then an LP/ID rule can be thought of as
a LHS token with a multiset of tokens on the RHS
together with some constraints on the possible or-
ders of tokens on the RHS. Uszkoreit (1987) argues
that LP/ID rules with violatable ‘soft’ constraints
are suitable for modelling some aspects of German
word order. This makes a probabilistic formulation
of LP/ID rules ideal: probabilities act as soft con-
straints.

Our treatment of probabilistic LP/ID rules gener-
ate children one constituent at a time, conditioning
upon the parent and a multiset of previously gener-
ated children. Formally, the the probability of the
rule is approximated as:

P
�
B1 �	�	� Bn �A �

� i � 1

∏
n

P
�
Bi �A ��� B j � j � i � �

In addition to the two additional formulations of
the Pr distribution, we also consider one variant of
the Pw distribution, which includes the suffix anal-
ysis. It is important to clarify that we only change
the handling of uncommon and unknown words;
those which occur often are handled as normal. sug-
gested different choices for Pw in the face of un-
known words: Schiehlen (2004) suggests using a
different unknown word token for capitalized ver-
sus uncapitalized unknown words (German orthog-
raphy dictates that all common nouns are capital-
ized) and Levy and Manning (2004) consider in-
specting the last letter the unknown word to guess
the part-of-speech (POS) tags. Both of these models
are relatively impoverished when compared to the
approaches of handling unknown words which have
been proposed in the POS tagging literature. Brants
(2000) describes a POS tagger with a highly tuned
suffix analyzer which considers both capitalization
and suffixes as long as 10 letters long. This tagger
was developed with German in mind, but neither it
nor any other advanced POS tagger morphology an-
alyzer has ever been tested with a full parser. There-
fore, we take the novel step of integrating this suffix
analyzer into the parser for the second Pw distribu-

tion.

3.2 Treebank Re-annotation

Automatic treebank transformations are an impor-
tant step in developing an accurate unlexicalized
parser (Johnson, 1998; Klein and Manning, 2003).
Most of our transformations focus upon one part of
the NEGRA treebank in particular: the GF labels.
Below is a list of GF re-annotations we utilise:

Coord GF In NEGRA, a co-ordinated accusative
NP rule might look like NP-OA � NP-CJ KON NP-
CJ. KON is the POS tag for a conjunct, and CJ
denotes the function of the NP is a coordinate sis-
ter. Such a rule hides an important fact: the two
co-ordinate sisters are also accusative objects. The
Coord GF re-annotation would therefore replace the
above rule with NP-OA � NP-OA KON NP-OA.

NP case German articles and pronouns are
strongly marked for case. However, the grammati-
cal function of all articles is usually NK, meaning
noun kernel. To allow case markings in articles and
pronouns to ‘communicate’ with the case labels on
the GFs of NPs, we copy these GFs down into the
POS tags of articles and pronouns. For example,
a rule like NP-OA � ART-NK NN-NK would be
replaced by NP-OA � ART-OA NN-NK. A simi-
lar improvement has been independently noted by
Schiehlen (2004).

PP case Prepositions determine the case of the NP
they govern. While the case is often unambiguous
(i.e. für ‘for’ always takes an accusative NP), at
times the case may be ambiguous. For instance,
in ‘in’ may take either an accusative or dative NP.
We use the labels -OA, -OD, etc. for unambiguous
prepositions, and introduce new categories AD (ac-
cusative/dative ambiguous) and DG (dative/genitive
ambiguous) for the ambiguous categories. For ex-
ample, a rule such as PP � P ART-NK NN-NK is
replaced with PP � P-AD ART-AD NN-NK if it is
headed by the preposition in.

SBAR marking German subordinate clauses have
a different word order than main clauses. While sub-
ordinate clauses can usually be distinguished from
main clauses by their GF, there are some GFs which
are used in both cases. This transformation adds
an SBAR category to explicitly disambiguate these
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No suffix With suffix
F-score F-score

Normal rules 66.3 66.2
LP/ID rules 66.5 66.6
Markov rules 69.4 69.1

Table 1: Effect of rule type and suffix analysis.

cases. The transformation does not add any extra
nonterminals, rather it replaces rules such as S �
KOUS NP V NP (where KOUS is a complementizer
POS tag) with SBAR � KOUS NP V NP.

S GF One may argue that, as far as syntactic dis-
ambiguation is concerned, GFs on S categories pri-
marily serve to distinguish main clauses from sub-
ordinate clauses. As we have explicitly done this
in the previous transformation, it stands to reason
that the GF tags on S nodes may therefore be re-
moved without penalty. If the tags are necessary for
semantic interpretation, presumably they could be
re-inserted using a strategy such as that of Blaheta
and Charniak (2000) The last transformation there-
fore removes the GF of S nodes.

3.3 Method

To allow comparisons with earlier work on NEGRA
parsing, we use the same split of training, develop-
ment and testing data as used in Dubey and Keller
(2003). The first 18,602 sentences are used as train-
ing data, the following 1,000 form the development
set, and the last 1,000 are used as the test set. We re-
move long-distance dependencies from all sets, and
only consider sentences of length 40 or less for ef-
ficiency and memory concerns. The parser is given
untagged words as input to simulate a realistic pars-
ing task. A probabilistic CYK parsing algorithm is
used to compute the Viterbi parse.

We perform two sets of experiments. In the
first set, we vary the rule type, and in the second,
we report the additive results of the treebank re-
annotations described in Section 3.2. The three rule
types used in the first set of experiments are stan-
dard CFG rules, our version of LP/ID rules, and 2nd

order Markov CFG rules. The second battery of ex-
periments was performed on the model with Markov
rules.

In both cases, we report PARSEVAL labeled

No suffix With suffix
F-score F-score

GF Baseline 69.4 69.1
+Coord GF 70.2 71.5
+NP case 71.1 72.4
+PP case 71.0 72.7
+SBAR 70.9 72.6
+S GF 71.3 73.1

Table 2: Effect of re-annotation and suffix analysis
with Markov rules.

bracket scores (Magerman, 1995), with the brackets
labeled by syntactic categories but not grammatical
functions. Rather than reporting precision and recall
of labelled brackets, we report only the F-score, i.e.
the harmonic mean of precision and recall.

3.4 Results

Table 1 shows the effect of rule type choice, and Ta-
ble 2 lists the effect of the GF re-annotations. From
Table 1, we see that Markov rules achieve the best
performance, ahead of both standard rules as well as
our formulation of probabilistic LP/ID rules.

In the first group of experiments, suffix analysis
marginally lowers performance. However, a differ-
ent pattern emerges in the second set of experiments.
Suffix analysis consistently does better than the sim-
pler word generation probability model.

Looking at the treebank transformations with suf-
fix analysis enabled, we find the coordination re-
annotation provides the greatest benefit, boosting
performance by 2.4 to 71.5. The NP and PP case
re-annotations together raise performance by 1.2 to
72.7. While the SBAR annotation slightly lowers
performance, removing the GF labels from S nodes
increased performance to 73.1.

3.5 Discussion

There are two primary results: first, although LP/ID
rules have been suggested as suitable for German’s
flexible word order, it appears that Markov rules ac-
tually perform better. Second, adding suffix analysis
provides a clear benefit, but only after the inclusion
of the Coord GF transformation.

While the SBAR transformation slightly reduces
performance, recall that we argued the S GF trans-
formation only made sense if the SBAR transforma-

317



tion is already in place. To test if this was indeed the
case, we re-ran the final experiment, but excluded
the SBAR transformation. We did indeed find that
applying S GF without the SBAR transformation re-
duced performance.

4 Smoothing & Search

With the exception of DOP models (Bod, 1995), it is
uncommon to smooth unlexicalized grammars. This
is in part for the sake of simplicity: unlexicalized
grammars are interesting because they are simple
to estimate and parse, and adding smoothing makes
both estimation and parsing nearly as complex as
with fully lexicalized models. However, because
lexicalization adds little to the performance of Ger-
man parsing models, it is therefore interesting to in-
vestigate the impact of smoothing on unlexicalized
parsing models for German.

Parsing an unsmoothed unlexicalized grammar is
relatively efficient because the grammar constraints
the search space. As a smoothed grammar does not
have a constrained search space, it is necessary to
find other means to make parsing faster. Although
it is possible to efficiently compute the Viterbi parse
(Klein and Manning, 2002) using a smoothed gram-
mar, the most common approach to increase parsing
speed is to use some form of beam search (cf. Good-
man (1998)), a strategy we follow here.

4.1 Models

We experiment with three different smoothing mod-
els: the modified Witten-Bell algorithm employed
by Collins (1999), the modified Kneser-Ney algo-
rithm of Chen and Goodman (1998) the smooth-
ing algorithm used in the POS tagger of Brants
(2000). All are variants of linear interpolation, and
are used with 2nd order Markovization. Under this
regime, the probability of adding the ith child to
A � B1 �	�	� Bn is estimated as

P
�
Bi �A � Bi  1 � Bi  2 �

� λ1P
�
Bi �A � Bi  1 � Bi  2 ���

λ2P
�
Bi �A � Bi  1 ��� λ3P

�
Bi �A ��� λ4P

�
Bi �

The models differ in how the λ’s are estimated. For
both the Witten-Bell and Kneser-Ney algorithms,
the λ’s are a function of the context A � Bi  2 � Bi  1. By
contrast, in Brants’ algorithm the λ’s are constant

λ1 � λ2 � λ3 � 0
for each trigram x1 � x2 � x3 with c � x1 � x2 � x3 ��� 0

d3 �
	

c 
 xi � xi � 1 � xi � 2 �  1
c 
 xi � 1 � xi � 2 �  1 if c

�
xi  1 � xi  2 �� 1

0 if c
�
xi  1 � xi  2 � � 1

d2 �
	

c 
 xi � xi � 1 �  1
c 
 xi � 1 �  1 if c

�
xi  1 �� 1

0 if c
�
xi  1 � � 1

d1 � c 
 xi �  1
N  1

if d3 � max d1 � d2 � d3 then
λ3 � λ3 � c

�
xi � xi  1 � xi  2 �

elseif d2 � max d1 � d2 � d3 then
λ2 � λ2 � c

�
xi � xi  1 � xi  2 �

else
λ1 � λ1 � c

�
xi � xi  1 � xi  2 �

end
λ1 � λ1

λ1 � λ2 � λ � 3

λ2 � λ2
λ1 � λ2 � λ � 3

λ3 � λ3
λ1 � λ2 � λ � 3

Figure 1: Smoothing estimation based on the Brants
(2000) approach for POS tagging.

for all possible contexts. As both the Witten-Bell
and Kneser-Ney variants are fairly well known, we
do not describe them further. However, as Brants’
approach (to our knowledge) has not been used else-
where, and because it needs to be modified for our
purposes, we show the version of the algorithm we
use in Figure 1.

4.2 Method

The purpose of this is experiment is not only to im-
prove parsing results, but also to investigate the over-
all effect of smoothing on parse accuracy. Therefore,
we do not simply report results with the best model
from Section 3. Rather, we re-do each modification
in Section 3 with both search strategies (Viterbi and
beam) in the unsmoothed case, and with all three
smoothing algorithms with beam search. The beam
has a variable width, which means an arbitrary num-
ber of edges may be considered, as long as their
probability is within 4 � 10  3 of the best edge in a
given span.

4.3 Results

Table 3 summarizes the results. The best result in
each column is italicized, and the overall best result
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No Smoothing No Smoothing Brants Kneser-Ney Witten-Bell
Viterbi Beam Beam Beam Beam

GF Baseline 69.1 70.3 72.3 72.6 72.3
+Coord GF 71.5 72.7 75.2 75.4 74.5
+NP case 72.4 73.3 76.0 76.1 75.6
+PP case 72.7 73.2 76.1 76.2 75.7
+SBAR 72.6 73.1 76.3 76.0 75.3
+S GF Removal 73.1 72.6 75.7 75.3 75.1

Table 3: Effect of various smoothing algorithms.

in shown in bold. The column titled Viterbi repro-
duces the second column of Table 2 whereas the col-
umn titled Beam shows the result of re-annotation
using beam search, but no smoothing. The best re-
sult with beam search is 73.3, slightly higher than
without beam search.

Among smoothing algorithms, the Brants ap-
proach yields the highest results, of 76.3, with the
modified Kneser-Ney algorithm close behind, at
76.2. The modified Witten-Bell algorithm achieved
an F-score of 75.7.

4.4 Discussion

Overall, the best-performing model, using Brants
smoothing, achieves a labelled bracketing F-score
of 76.2, higher than earlier results reported by Dubey
and Keller (2003) and Schiehlen (2004).

It is surprisingly that the Brants algorithm per-
forms favourably compared to the better-known
modified Kneser-Ney algorithm. This might be due
to the heritage of the two algorithms. Kneser-Ney
smoothing was designed for language modelling,
where there are tens of thousands or hundreds of
thousands of tokens having a Zipfian distribution.
With all transformations included, the nonterminals
of our grammar did have a Zipfian marginal distri-
bution, but there were only several hundred tokens.
The Brants algorithm was specifically designed for
distributions with fewer tokens.

Also surprising is the fact that each smoothing al-
gorithm reacted differently to the various treebank
transformations. It is obvious that the choice of
search and smoothing algorithm add bias to the final
result. However, our results indicate that the choice
of search and smoothing algorithm also add a degree
of variance as improvements are added to the parser.
This is worrying: at times in the literature, details

of search or smoothing are left out (e.g. Charniak
(2000)). Given the degree of variance due to search
and smoothing, it raises the question if it is in fact
possible to reproduce such results without the nec-
essary details.2

5 Error Analysis

While it is uncommon to offer an error analysis for
probabilistic parsing, Levy and Manning (2003) ar-
gue that a careful error classification can reveal pos-
sible improvements. Although we leave the imple-
mentation of any improvements to future research,
we do discuss several common errors. Because the
parser with Brants smoothing performed best, we
use that as the basis of our error analysis.

First, we found that POS tagging errors had a
strong effect on parsing results. This is surpris-
ing, given that the parser is able to assign POS tags
with a high degree of accuracy. POS tagging results
are comparable to the best stand-alone POS taggers,
achieving results of 97.1% on the test set, match-
ing the performance of the POS tagger described
by Brants (2000) When GF labels are included (e.g.
considering ART-SB instead of just ART), tagging
accuracy falls to 90.1%. To quantify the effect of
POS tagging errors, we re-parsed with correct POS
tags (rather than letting the parser guess the tags),
and found that labelled bracket F-scores increase
from 76.3 to 85.2. A manual inspection of 100 sen-
tences found that GF mislabelling can accounts for
at most two-thirds of the mistakes due to POS tags.
Over one third was due to genuine POS tagging er-
rors. The most common problem was verb mistag-
ging: they are either confused with adjectives (both

2As an anonymous reviewer pointed out, it is not always
straightforward to reproduce statistical parsing results even
when the implementation details are given (Bikel, 2004).
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Model LB F-score
This paper 76.3
Dubey and Keller (2003) 74.1
Schiehlen (2004) 71.1

Table 4: Comparison with previous work.

take the common -en suffix), or the tense was incor-
rect. Mistagged verb are a serious problem: it entails
an entire clause is parsed incorrectly. Verb mistag-
ging is also a problem for other languages: Levy and
Manning (2003) describe a similar problem in Chi-
nese for noun/verb ambiguity. This problem might
be alleviated by using a more detailed model of mor-
phology than our suffix analyzer provides.

To investigate pure parsing errors, we manu-
ally examined 100 sentences which were incorrectly
parsed, but which nevertheless were assigned the
correct POS tags. Incorrect modifier attachment ac-
counted for for 39% of all parsing errors (of which
77% are due to PP attachment alone). Misparsed co-
ordination was the second most common problem,
accounting for 15% of all mistakes. Another class
of error appears to be due to Markovization. The
boundaries of VPs are sometimes incorrect, with the
parser attaching dependents directly to the S node
rather than the VP. In the most extreme cases, the
VP had no verb, with the main verb heading a sub-
ordinate clause.

6 Comparison with Previous Work

Table 4 lists the result of the best model presented
here against the earlier work on NEGRA parsing de-
scribed in Dubey and Keller (2003) and Schiehlen
(2004). Dubey and Keller use a variant of the lex-
icalized Collins (1999) model to achieve a labelled
bracketing F-score of 74.1%. Schiehlen presents a
number of unlexicalized models. The best model on
labelled bracketing achieves an F-score of 71.8%.

The work of Schiehlen is particularly interest-
ing as he also considers a number of transforma-
tions to improve the performance of an unlexicalized
parser. Unlike the work presented here, Schiehlen
does not attempt to perform any suffix or morpho-
logical analysis of the input text. However, he does
suggest a number of treebank transformations. One
such transformation is similar to one we prosed here,

the NP case transformation. His implementation is
different from ours: he annotates the case of pro-
nouns and common nouns, whereas we focus on ar-
ticles and pronouns (articles are pronouns are more
strongly marked for case than common nouns). The
remaining transformations we present are different
from those Schiehlen describes; it is possible that an
even better parser may result if all the transforma-
tions were combined.

Schiehlen also makes use of a morphological ana-
lyzer tool. While this includes more complete infor-
mation about German morphology, our suffix analy-
sis model allows us to integrate morphological am-
biguities into the parsing system by means of lexical
generation probabilities.

Levy and Manning (2004) also present work on
the NEGRA treebank, but are primarily interested
in long-distance dependencies, and therefore do not
report results on local dependencies, as we do here.

7 Conclusions

In this paper, we presented the best-performing
parser for German, as measured by labelled bracket
scores. The high performance was due to three fac-
tors: (i) treebank transformations (ii) an integrated
model of morphology in the form of a suffix ana-
lyzer and (iii) the use of smoothing in an unlexical-
ized grammar. Moreover, there are possible paths
for improvement: lexicalization could be added to
the model, as could some of the treebank transfor-
mations suggested by Schiehlen (2004). Indeed, the
suffix analyzer could well be of value in a lexicalized
model.

While we only presented results on the German
NEGRA corpus, there is reason to believe that the
techniques we presented here are also important to
other languages where lexicalization provides lit-
tle benefit: smoothing is a broadly-applicable tech-
nique, and if difficulties with lexicalization are due
to sparse lexical data, then suffix analysis provides
a useful way to get more information from lexical
elements which were unseen while training.

In addition to our primary results, we also pro-
vided a detailed error analysis which shows that
PP attachment and co-ordination are problematic
for our parser. Furthermore, while POS tagging is
highly accurate, the error analysis also shows it does
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have surprisingly large effect on parsing errors. Be-
cause of the strong impact of POS tagging on pars-
ing results, we conjecture that increasing POS tag-
ging accuracy may be another fruitful area for future
parsing research.
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Abstract

Consistency of corpus annotation is an
essential property for the many uses of
annotated corpora in computational and
theoretical linguistics. While some re-
search addresses the detection of inconsis-
tencies in positional annotation (e.g., part-
of-speech) and continuous structural an-
notation (e.g., syntactic constituency), no
approach has yet been developed for au-
tomatically detecting annotation errors in
discontinuous structural annotation. This
is significant since the annotation of po-
tentially discontinuous stretches of ma-
terial is increasingly relevant, from tree-
banks for free-word order languages to se-
mantic and discourse annotation.

In this paper we discuss how the variation
n-gram error detection approach (Dickin-
son and Meurers, 2003a) can be extended
to discontinuous structural annotation. We
exemplify the approach by showing how it
successfully detects errors in the syntactic
annotation of the German TIGER corpus
(Brants et al., 2002).

1 Introduction

Annotated corpora have at least two kinds of uses:
firstly, as training material and as “gold standard”
testing material for the development of tools in com-
putational linguistics, and secondly, as a source of
data for theoretical linguists searching for analyti-
cally relevant language patterns.

Annotation errors and why they are a problem
The high quality annotation present in “gold stan-
dard” corpora is generally the result of a manual
or semi-automatic mark-up process. The annota-
tion thus can contain annotation errors from auto-
matic (pre-)processes, human post-editing, or hu-
man annotation. The presence of errors creates prob-
lems for both computational and theoretical linguis-
tic uses, from unreliable training and evaluation of
natural language processing technology (e.g., van
Halteren, 2000; Kv̌etǒn and Oliva, 2002, and the
work mentioned below) to low precision and recall
of queries for already rare linguistic phenomena. In-
vestigating the quality of linguistic annotation and
improving it where possible thus is a key issue for
the use of annotated corpora in computational and
theoretical linguistics.

Illustrating the negative impact of annotation er-
rors on computational uses of annotated corpora,
van Halteren et al. (2001) compare taggers trained
and tested on the Wall Street Journal (WSJ, Marcus
et al., 1993) and the Lancaster-Oslo-Bergen (LOB,
Johansson, 1986) corpora and find that the results for
the WSJ perform significantly worse. They report
that the lower accuracy figures are caused by incon-
sistencies in the WSJ annotation and that 44% of the
errors for their best tagging system were caused by
“inconsistently handled cases.”

Turning from training to evaluation, Padro and
Marquez (1998) highlight the fact that the true ac-
curacy of a classifier could be much better or worse
than reported, depending on the error rate of the cor-
pus used for the evaluation. Evaluating two taggers
on the WSJ, they find tagging accuracy rates for am-
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biguous words of91.35% and92.82%. Given the
estimated 3% error rate of the WSJ tagging (Marcus
et al., 1993), they argue that the difference in perfor-
mance is not sufficient to establish which of the two
taggers is actually better.

In sum, corpus annotation errors, especially er-
rors which are inconsistencies, can have a profound
impact on the quality of the trained classifiers and
the evaluation of their performance. The problem is
compounded for syntactic annotation, given the dif-
ficulty of evaluating and comparing syntactic struc-
ture assignments, as known from the literature on
parser evaluation (e.g., Carroll et al., 2002).

The idea that variation in annotation can indicate
annotation errors has been explored to detect errors
in part-of-speech (POS) annotation (van Halteren,
2000; Eskin, 2000; Dickinson and Meurers, 2003a)
and syntactic annotation (Dickinson and Meurers,
2003b). But, as far as we are aware, the research
we report on here is the first approach to error detec-
tion for the increasing number of annotations which
make use of more general graph structures for the
syntactic annotation of free word order languages or
the annotation of semantic and discourse properties.

Discontinuous annotation and its relevance The
simplest kind of annotation is positional in nature,
such as the association of a part-of-speech tag with
each corpus position. On the other hand, struc-
tural annotation such as that used in syntactic tree-
banks (e.g., Marcus et al., 1993) assigns a syntactic
category to a contiguous sequence of corpus posi-
tions. For languages with relatively free constituent
order, such as German, Dutch, or the Slavic lan-
guages, the combinatorial potential of the language
encoded in constituency cannot be mapped straight-
forwardly onto the word order possibilities of those
languages. As a consequence, the treebanks that
have been created for German (NEGRA, Skut et al.,
1997; VERBMOBIL, Hinrichs et al., 2000; TIGER,
Brants et al., 2002) have relaxed the requirement that
constituents have to be contiguous. This makes it
possible to syntactically annotate the language data
as such, i.e., without requiring postulation of empty
elements as placeholders or other theoretically mo-
tivated changes to the data. We note in passing that
discontinuous constituents have also received some
support in theoretical linguistics (cf., e.g., the arti-

cles collected in Huck and Ojeda, 1987; Bunt and
van Horck, 1996).

Discontinuous constituents are strings of words
which are not necessarily contiguous, yet form a
single constituent with a single label, such as the
noun phraseEin Mann, der lachtin the German rel-
ative clause extraposition example (1) (Brants et al.,
2002).1

(1) Ein
a

Mann
man

kommt
comes

,
,
der
who

lacht
laughs

‘A man who laughs comes.’

In addition to their use in syntactic annotation,
discontinuous structural annotation is also rele-
vant for semantic and discourse-level annotation—
essentially any time that graph structures are needed
to encode relations that go beyond ordinary tree
structures. Such annotations are currently employed
in the mark-up for semantic roles (e.g., Kings-
bury et al., 2002) and multi-word expressions (e.g.,
Rayson et al., 2004), as well as for spoken language
corpora or corpora with multiple layers of annota-
tion which cross boundaries (e.g., Blache and Hirst,
2000).

In this paper, we present an approach to the de-
tection of errors in discontinuous structural annota-
tion. We focus on syntactic annotation with poten-
tially discontinuous constituents and show that the
approach successfully deals with the discontinuous
syntactic annotation found in the TIGER treebank
(Brants et al., 2002).

2 The variation n-gram method

Our approach builds on the variationn-gram al-
gorithm introduced in Dickinson and Meurers
(2003a,b). The basic idea behind that approach is
that a string occurring more than once can occur
with different labels in a corpus, which we refer to as
variation. Variation is caused by one of two reasons:
i) ambiguity: there is a type of string with multiple
possible labels and different corpus occurrences of
that string realize the different options, or ii)error:
the tagging of a string is inconsistent across compa-
rable occurrences.

1The ordinary way of marking a constituent with brack-
ets is inadequate for discontinuous constituents, so we instead
boldface and underline the words belonging to a discontinuous
constituent.
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The more similar the context of a variation, the
more likely the variation is an error. In Dickin-
son and Meurers (2003a), contexts are composed
of words, and identity of the context is required.
The termvariation n-gram refers to ann-gram (of
words) in a corpus that contains a string annotated
differently in another occurrence of the samen-gram
in the corpus. The string exhibiting the variation is
referred to as thevariation nucleus.

2.1 Detecting variation in POS annotation

In Dickinson and Meurers (2003a), we explore this
idea for part-of-speech annotation. For example, in
the WSJ corpus the string in (2) is a variation 12-
gram sinceoff is a variation nucleus that in one cor-
pus occurrence is tagged as a preposition (IN), while
in another it is tagged as a particle (RP).2

(2) to ward off a hostile takeover attempt by two
European shipping concerns

Once the variationn-grams for a corpus have
been computed, heuristics are employed to classify
the variations into errors and ambiguities. The first
heuristic encodes the basic fact that the label assign-
ment for a nucleus is dependent on the context: vari-
ation nuclei in longn-grams are likely to be errors.
The second takes into account that natural languages
favor the use of local dependencies over non-local
ones: nuclei found at the fringe of ann-gram are
more likely to be genuine ambiguities than those oc-
curring with at least one word of surrounding con-
text. Both of these heuristics are independent of a
specific corpus, annotation scheme, or language.

We tested the variation error detection method on
the WSJ and found 2495 distinct3 nuclei for the vari-
ation n-grams between the 6-grams and the 224-
grams. 2436 of these were actual errors, making for
a precision of 97.6%, which demonstrates the value
of the long context heuristic. 57 of the 59 genuine
ambiguities were fringe elements, confirming that
fringe elements are more indicative of a true ambi-
guity.

2To graphically distinguish the variation nucleus within a
variationn-gram, the nucleus is shown in grey.

3Being distinct means that each corpus position is only taken
into account for the longest variationn-gram it occurs in.

2.2 Detecting variation in syntactic annotation

In Dickinson and Meurers (2003b), we decompose
the variationn-gram detection for syntactic annota-
tion into a series of runs with different nucleus sizes.
This is needed to establish a one-to-one relation be-
tween a unit of data and a syntactic category annota-
tion for comparison. Each run detects the variation
in the annotation of strings of a specific length. By
performing such runs for strings from length 1 to
the length of the longest constituent in the corpus,
the approach ensures that all strings which are ana-
lyzed as a constituent somewhere in the corpus are
compared to the annotation of all other occurrences
of that string.

For example, the variation 4-gramfrom a year
earlier appears 76 times in the WSJ, where the nu-
cleusa year is labeled noun phrase (NP) 68 times,
and 8 times it is not annotated as a constituent and
is given the special labelNIL . An example with
two syntactic categories involves the nucleusnext
Tuesdayas part of the variation 3-grammaturity
next Tuesday, which appears three times in the WSJ.
Twice it is labeled as a noun phrase (NP) and once as
a prepositional phrase (PP).

To be able to efficiently calculate all variation nu-
clei of a treebank, in Dickinson and Meurers (2003b)
we make use of the fact that a variation necessar-
ily involves at least one constituent occurrence of
a nucleus and calculate the set of nuclei for a win-
dow of lengthi by first finding the constituents of
that length. Based on this set, we then find non-
constituent occurrences of all strings occurring as
constituents. Finally, the variationn-grams for these
variation nuclei are obtained in the same way as for
POS annotation.

In the WSJ, the method found 34,564 variation
nuclei, up to size 46; an estimated 71% of the 6277
non-fringe distinct variation nuclei are errors.

3 Discontinuous constituents

In Dickinson and Meurers (2003b), we argued that
null elements need to be ignored as variation nuclei
because the variation in the annotation of a null el-
ement as the nucleus is largely independent of the
local environment. For example, in (3) the null el-
ement*EXP* (expletive) can be annotated a. as a
sentence (S) or b. as a relative/subordinate clause
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(SBAR), depending on the properties of the clause
it refers to.

(3) a. For cities losing business to suburban shop-
ping centers , it*EXP* may be a wise busi-
ness investment [S * to help * keep those
jobs and sales taxes within city limits] .

b. But if the market moves quickly enough , it
*EXP* may be impossible [SBAR for the
broker to carry out the order] because the in-
vestment has passed the specified price .

We found that removing null elements as variation
nuclei of size 1 increased the precision of error de-
tection to 78.9%.

Essentially, null elements represent discontinu-
ous constituents in a formalism with a context-free
backbone (Bies et al., 1995). Null elements are co-
indexed with a non-adjacent constituent; in the pred-
icate argument structure, the constituent should be
interpreted where the null element is.

To be able to annotate discontinuous material
without making use of inserted null elements, some
treebanks have instead relaxed the definition of a lin-
guistic tree and have developed more complex graph
annotations. An error detection method for such cor-
pora thus does not have to deal with the problems
arising from inserted null elements discussed above,
but instead it must function appropriately even if
constituents are discontinuously realized.

A technique such as the variationn-gram method
is applicable to corpora with a one-to-one map-
ping between the text and the annotation. For
corpora with positional annotation—e.g., part-of-
speech annotated corpora—the mapping is triv-
ial given that the annotation consists of one-to-
one correspondences between words (i.e., tokens)
and labels. For corpora annotated with more
complex structural information—e.g., syntactically-
annotated corpora—the one-to-one mapping is ob-
tained by considering every interval (continuous
string of any length) which is assigned a category
label somewhere in the corpus.

While this works for treebanks with continuous
constituents, a one-to-one mapping is more com-
plicated to establish for syntactic annotation involv-
ing discontinuous constituents (NEGRA, Skut et al.,
1997; TIGER, Brants et al., 2002). In order to apply

the variationn-gram method to discontinuous con-
stituents, we need to develop a technique which is
capable of comparing labels for any set of corpus
positions, instead of for any interval.

4 Extending the variation n-gram method

To extend the variationn-gram method to handle
discontinuous constituents, we first have to define
the characteristics of such a constituent (section 4.1),
in other words our units of data for comparison.
Then, we can find identical non-constituent (NIL )
strings (section 4.2) and expand the context into
variationn-grams (section 4.3).

4.1 Variation nuclei: Constituents

For traditional syntactic annotation, a variation nu-
cleus is defined as a contiguous string with a sin-
gle label; this allows the variationn-gram method
to be broken down into separate runs, one for each
constituent size in the corpus. For discontinuous
syntactic annotation, since we are still interested in
comparing cases where the nucleus is the same, we
will treat two constituents as having the same size if
they consist of the same number of words, regard-
less of the amount of intervening material, and we
can again break the method down into runs of differ-
ent sizes. The intervening material is accounted for
when expanding the context inton-grams.

A question arises concerning the word order of
elements in a constituent. Consider the German ex-
ample (4) (M̈uller, 2004).

(4) weil
because

der
the

Mann
mannom

der
the

Frau
womandat

das
the

Buch
bookacc

gab.
gave

‘because the man gave the woman the book.’

The three arguments of the verbgab (’give’) can be
permuted in all six possible ways and still result in a
well-formed sentence. It might seem, then, that we
would want to allow different permutations of nuclei
to be treated as identical. Ifdas Buch der Frau gab
is a constituent in another sentence, for instance, it
should have the same category label asder Frau das
Buch gab.

Putting all permutations into one equivalence
class, however, amounts to stating that all order-
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ings are always the same. But even “free word or-
der” languages are more appropriately called free
constituent order; for example, in (4), the argument
noun phrases can be freely ordered, but each argu-
ment noun phrase is an atomic unit, and in each unit
the determiner precedes the noun.

Since we want our method to remain data-driven
and order can convey information which might be
reflected in an annotation system, we keep strings
with different orders of the same words distinct, i.e.,
ordering of elements is preserved in our method.

4.2 Variation nuclei: Non-constituents

The basic idea is to compare a string annotated as a
constituent with the same string found elsewhere—
whether annotated as a constituent or not. So we
need to develop a method for finding all string oc-
currences not analyzed as a constituent (and assign
them the special category labelNIL ). Following
Dickinson and Meurers (2003b), we only look for
non-constituent occurrences of those strings which
also occur at least once as a constituent.

But do we need to look for discontinuousNIL

strings or is it sufficient to assume only continuous
ones? Consider the TIGER treebank examples (5).

(5) a. in
on

diesem
this

Punkt
point

seien
are

sich
SELF

Bonn
Bonn

und
and

London
London

nicht
not

einig
agreed

.

.

‘Bonn and London do not agree on this point.’

b. in
on

diesem
this

Punkt
point

seien
are

sich
SELF

Bonn
Bonn

und
and

London
London

offensichtlich
clearly

nicht einig
not agreed

.

.

In example (5a),sich einig (’ SELF agree’) forms
an adjective phrase (AP) constituent. But in ex-
ample (5b), that same string is not analyzed as a
constituent, despite being in a nearly identical sen-
tence. We would thus like to assign the discontinu-
ous stringsich einigin (5b) the labelNIL , so that the
labeling of this string in (5a) can be compared to its
occurrence in (5b).

In consequence, our approach should be able to
detectNIL strings which are discontinuous—an is-
sue which requires special attention to obtain an al-
gorithm efficient enough to handle large corpora.

Use sentence boundary information The first
consideration makes use of the fact that syntactic an-
notation by its nature respects sentence boundaries.
In consequence, we never need to search forNIL

strings that span across sentences.4

Use tries to store constituent strings The sec-
ond consideration concerns how we calculate the
NIL strings. To find every non-constituent string in
the corpus, discontinuous or not, which is identical
to some constituent in the corpus, a basic approach
would first generate all possible strings within a sen-
tence and then test to see which ones occur as a
constituent elsewhere in the corpus. For example,
if the sentence isNobody died when Clinton lied, we
would see if any of the 31 subsets of strings occur
as constituents (e.g.,Nobody, Nobody when, Clin-
ton lied, Nobody when lied, etc.). But such a gener-
ate and test approach clearly is intractable given that
it generates generates2n− 1 potential matches for a
sentence ofn words.

We instead split the task of findingNIL strings into
two runs through the corpus. In the first, we store
all constituents in the corpus in a trie data structure
(Fredkin, 1960), with words as nodes. In the sec-
ond run through the corpus, we attempt to match the
strings in the corpus with a path in the trie, thus iden-
tifying all strings occurring as constituents some-
where in the corpus.

Filter out unwanted NIL strings The final con-
sideration removes “noisy”NIL strings from the can-
didate set. CertainNIL strings are known to be use-
less for detecting annotation errors, so we should re-
move them to speed up the variationn-gram calcu-
lations. Consider example (6) from the TIGER cor-
pus, where the continuous constituentdie Menschen
is annotated as a noun phrase (NP).

(6) Ohne
without

diese
these

Ausgaben,
expenses

so
according to

die
the

Weltbank,
world bank

seien
are

die Menschen
the people

totes
dead

Kapital
capital

‘According to the world bank, the people are dead capital

without these expenses.’

4This restriction clearly is syntax specific and other topo-
logical domains need to be identified to make searching forNIL
strings tractable for other types of discontinuous annotation.
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Our basic method of findingNIL strings would de-
tect another occurrence ofdie Menschenin the same
sentence since nothing rules out that the other occur-
rence ofdie in the sentence (precedingWeltbank)
forms a discontinuousNIL string with Menschen.
Comparing a constituent with aNIL string that con-
tains one of the words of the constituent clearly goes
against the original motivation for wanting to find
discontinuous strings, namely that they show varia-
tion between different occurrences of a string.

To prevent such unwanted variation, we eliminate
occurrences ofNIL -labeled strings that overlap with
identical constituent strings from consideration.

4.3 Variation n-grams

The more similar the context surrounding a varia-
tion nucleus, the more likely it is for a variation in
its annotation to be an error. For detecting errors in
traditional syntactic annotation (see section 2.2), the
context consists of the elements to the left and the
right of the nucleus. When nuclei can be discontinu-
ous, however, there can also beinternal context, i.e.,
elements which appear between the words forming
a discontinuous variation nucleus.

As in our earlier work, an instance of the a pri-
ori algorithm is used to expand a nucleus into a
longern-gram by stepwise adding context elements.
Where previously it was possible to add an element
to the left or the right, we now also have the option of
adding it in the middle—as part of the new, internal
context. But depending on how we fill in the internal
context, we can face a serious tractability problem.
Given a nucleus withj gaps within it, we need to
potentially expand it inj + 2 directions, instead of
in just 2 directions (to the right and to the left).

For example, the potential nucleuswas werden
appears as a verb phrase (VP) in the TIGER corpus in
the stringwas ein Seeufer werden; elsewhere in the
corpuswasandwerdenappear in the same sentence
with 32 words between them. The chances of one of
the middle 32 elements matching something in the
internal context of theVP is relatively high, and in-
deed the twenty-sixth word isein. However, if we
move stepwise out from the nucleus in order to try
to matchwas ein Seeufer werden, the only options
are to findein directly to the right ofwasor Seeufer
directly to the left ofwerden, neither of which oc-
curs, thus stopping the search.

In conclusion, we obtain an efficient application
of the a priori algorithm by expanding the context
only to elements which are adjacent to an element
already in then-gram. Note that this was already
implicitly assumed for the left and the right context.

There are two other efficiency-related issues
worth mentioning. Firstly, as with the variation nu-
cleus detection, we limit then-grams expansion to
sentences only. Since the category labels do not rep-
resent cross-sentence dependencies, we gain no new
information if we find more context outside the sen-
tence, and in terms of efficiency, we cut off what
could potentially be a very large search space.5

Secondly, the methods for reducing the number
of variation nuclei discussed in section 4.2 have the
consequence of also reducing the number of possi-
ble variationn-grams. For example, in a test run
on the NEGRA corpus we allowed identical strings
to overlap; this generated a variation nucleus of size
63, with 16 gaps in it, varying betweenNP andNIL

within the same sentence. Fifteen of the gaps can be
filled in and still result in variation. The filter for un-
wantedNIL strings described in the previous section
eliminates theNIL value from consideration. Thus,
there is no variation and no tractability problem in
constructingn-grams.

4.3.1 Generalizing then-gram context

So far, we assumed that the context added around
variation nuclei consists of words. Given that tree-
banks generally also provide part-of-speech infor-
mation for every token, we experimented with part-
of-speech tags as a less restrictive kind of context.
The idea is that it should be possible to find more
variation nuclei with comparable contexts if only the
part-of-speech tags of the surrounding words have to
be identical instead of the words themselves.

As we will see in section 5, generalizingn-gram
contexts in this way indeed results in more variation
n-grams being found, i.e., increased recall.

4.4 Adapting the heuristics

To determine which nuclei are errors, we can build
on the two heuristics from previous research (Dick-

5Note that similar sentences which were segmented differ-
ently could potentially cause varyingn-gram strings not to be
found. We propose to treat this as a separate sentence segmen-
tation error detection phase in future work.
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inson and Meurers, 2003a,b)—trust long contexts
and distrust the fringe—with some modification,
given that we have more fringe areas to deal with
for discontinuous strings. In addition to the right
and the left fringe, we also need to take into account
the internal context in a way that maintains the non-
fringe heuristic as a good indicator for errors. As
a solution that keeps internal context on a par with
the way external context is treated in our previous
work, we require one word of context around every
terminal element that is part of the variation nucleus.
As discussed below, this heuristic turns out to be a
good predictor of which variations are annotation er-
rors; expanding to the longest possible context, as in
Dickinson and Meurers (2003a), is not necessary.

5 Results on the TIGER Corpus

We ran the variationn-grams error detection method
for discontinuous syntactic constituents on v. 1 of
TIGER (Brants et al., 2002), a corpus of 712,332
tokens in 40,020 sentences. The method detected
a total of 10,964 variation nuclei. From these we
sampled 100 to get an estimate of the number of er-
rors in the corpus which concern variation. Of these
100, 13 variation nuclei pointed to an error; with this
point estimate of .13, we can derive a 95% confi-
dence interval of (0.0641, 0.1959),6 which means
that we are 95% confident that the true number of
variation-based errors is between 702 and 2148. The
effectiveness of a method which uses context to nar-
row down the set of variation nuclei can be judged
by how many of these variation errors it finds.

Using the non-fringe heuristic discussed in the
previous section, we selected the shortest non-fringe
variationn-grams to examine. Occurrences of the
same strings within largern-grams were ignored, so
as not to artificially increase the resulting set ofn-
grams.

When the context is defined as identical words,
we obtain 500 variationn-grams. Sampling 100 of
these and labeling for each position whether it is an
error or an ambiguity, we find that 80 out of the 100
samples point to at least one token error. The 95%
confidence interval for this point estimate of .80 is

6The 95% confidence interval was calculated using the stan-

dard formula ofp±1.96
q

p(1−p)
n

, wherep is the point estimate

andn the sample size.

(0.7216, 0.8784), so we are 95% confident that the
true number of error types is between 361 and 439.
Note that this precision is comparable to the esti-
mates for continuous syntactic annotation in Dick-
inson and Meurers (2003b) of 71% (with null ele-
ments) and 78.9% (without null elements).

When the context is defined as identical parts of
speech, as described in section 4.3.1, we obtain 1498
variationn-grams. Again sampling 100 of these, we
find that 52 out of the 100 point to an error. And
the 95% confidence interval for this point estimate
of .52 is (0.4221, 0.6179), giving a larger estimated
number of errors, between 632 and 926.

Context Precision Errors
Word 80% 361–439
POS 52% 632–926

Figure 1: Accuracy rates for the different contexts

Words convey more information than part-of-
speech tags, and so we see a drop in precision when
using part-of-speech tags for context, but these re-
sults highlight a very practical benefit of using a
generalized context. By generalizing the context, we
maintain a precision rate of approximately 50%, and
we substantially increase the recall of the method.
There are, in fact, likely twice as many errors when
using POS contexts as opposed to word contexts.
Corpus annotation projects willing to put in some
extra effort thus can use this method of finding vari-
ation n-grams with a generalized context to detect
and correct more errors.

6 Summary and Outlook

We have described the first method for finding er-
rors in corpora with graph annotations. We showed
how the variationn-gram method can be extended
to discontinuous structural annotation, and how this
can be done efficiently and with as high a preci-
sion as reported for continuous syntactic annotation.
Our experiments with the TIGER corpus show that
generalizing the context to part-of-speech tags in-
creases recall while keeping precision above 50%.
The method can thus have a substantial practical
benefit when preparing a corpus with discontinuous
annotation.

Extending the error detection method to handle
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discontinuous constituents, as we have done, has
significant potential for future work given the in-
creasing number of free word order languages for
which corpora and treebanks are being developed.
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Abstract

In this paper we present a quantitative
and qualitative analysis of annotation in
the Hinoki treebank of Japanese, and in-
vestigate a method of speeding annotation
by using part-of-speech tags. The Hinoki
treebank is a Redwoods-style treebank of
Japanese dictionary definition sentences.
5,000 sentences are annotated by three dif-
ferent annotators and the agreement evalu-
ated. An average agreement of 65.4% was
found using strict agreement, and 83.5%
using labeled precision. Exploiting POS
tags allowed the annotators to choose the
best parse with 19.5% fewer decisions.

1 Introduction

It is important for an annotated corpus that the mark-
up is both correct and, in cases where variant anal-
yses could be considered correct, consistent. Con-
siderable research in the field of word sense disam-
biguation has concentrated on showing that the an-
notation of word senses can be done correctly and
consistently, with the normal measure being inter-
annotator agreement (e.g. Kilgariff and Rosenzweig,
2000). Surprisingly, few such studies have been car-
ried out for syntactic annotation, with the notable
exceptions of Brants et al. (2003, p 82) for the Ger-
man NeGra Corpus and Civit et al. (2003) for the
Spanish Cast3LB corpus. Even such valuable and
widely used corpora as the Penn TreeBank have not
been verified in this way.

We are constructing the Hinoki treebank as part of
a larger project in cognitive and computational lin-

guistics ultimately aimed at natural language under-
standing (Bond et al., 2004). In order to build the ini-
tial syntactic and semantic models, we are treebank-
ing the dictionary definition sentences of the most
familiar 28,000 words of Japanese and building an
ontology from the results.

Arguably the most common method in building a
treebank still is manual annotation, annotators (often
linguistics students) marking up linguistic properties
of words and phrases. In some semi-automated tree-
bank efforts, annotators are aided by POS taggers or
phrase-level chunkers, which can propose mark-up
for manual confirmation, revision, or extension. As
computational grammars and parsers have increased
in coverage and accuracy, an alternate approach has
become feasible, in which utterances are parsed and
the annotator selects the best parse Carter (1997);
Oepen et al. (2002) from the full analyses derived
by the grammar.

We adopted the latter approach. There were four
main reasons. The first was that we wanted to de-
velop a precise broad-coverage grammar in tandem
with the treebank, as part of our research into natu-
ral language understanding. Treebanking the output
of the parser allows us to immediately identify prob-
lems in the grammar, and improving the grammar
directly improves the quality of the treebank in a mu-
tually beneficial feedback loop (Oepen et al., 2004).
The second reason is that we wanted to annotate to a
high level of detail, marking not only dependency
and constituent structure but also detailed seman-
tic relations. By using a Japanese grammar (JACY:
Siegel and Bender, 2002) based on a monostratal
theory of grammar (HPSG: Pollard and Sag, 1994)
we could simultaneously annotate syntactic and se-
mantic structure without overburdening the annota-
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tor. The third reason was that we expected the use
of the grammar to aid in enforcing consistency —
at the very least all sentences annotated are guaran-
teed to have well-formed parses. The flip side to this
is that any sentences which the parser cannot parse
remain unannotated, at least unless we were to fall
back on full manual mark-up of their analyses. The
final reason was that the discriminants can be used
to update the treebank when the grammar changes,
so that the treebank can be improved along with the
grammar. This kind of dynamic, discriminant-based
treebanking was pioneered in the Redwoods tree-
bank of English (Oepen et al., 2002), so we refer
to it as Redwoods-style treebanking.

In the next section, we give some more details
about the Hinoki Treebank and the data used to eval-
uate the parser (§ 2). This is followed by a brief dis-
cussion of treebanking using discriminants (§ 3), and
an extension to seed the treebanking using existing
markup (§ 4). Finally we present the results of our
evaluation (§ 5), followed by some discussion and
outlines for future research.

2 The Hinoki Treebank

The Hinoki treebank currently consists of around
95,000 annotated dictionary definition and example
sentences. The dictionary is the Lexeed Semantic
Database of Japanese (Kasahara et al., 2004), which
consists of all words with a familiarity greater than
or equal to five on a scale of one to seven. This
gives 28,000 words, divided into 46,347 different
senses. Each sense has a definition sentence and
example sentence written using only these 28,000
familiar words (and some function words). Many
senses have more than one sentence in the definition:
there are 81,000 defining sentences in all.

The data used in our evaluation is taken from the
first sentence of the definitions of all words with a
familiarity greater than six (9,854 sentences). The
Japanese grammar JACY was extended until the
coverage was over 80% (Bond et al., 2004).

For evaluation of the treebanking we selected
5,000 of the sentences that could be parsed, and di-
vided them into five 1,000 sentence sets (A–E). Def-
inition sentences tend to vary widely in form de-
pending on the part of speech of the word being de-
fined — each set was constructed with roughly the

same distribution of defined words, as well as hav-
ing roughly the same length (the average was 9.9,
ranging from 9.5–10.4).

A (simplified) example of an entry (Sense 2 of�������
kāten “curtain: any barrier to communica-

tion or vision”), and a syntactic view of its parse are
given in Figure 1. There were 6 parses for this def-
inition sentence. The full parse is an HPSG sign,
containing both syntactic and semantic information.
A view of the semantic information is given in Fig-
ure 21.

UTTERANCE
NP

VP N
PP V

NP
DET N CASE-P� � ���� � 	 	 	�


 � � �   ���� 	 	 	
aru monogoto o kakusu mono

a certain stuff ACC hide thing

Curtain2: “a thing that hides something”

Figure 1: Syntactic View of the Definition of
�����

�
2 kāten “curtain”

〈h0, x2 {h0 : proposition(h5)
h1 : aru(e1, x1, u0) “a certain”
h1 : monogoto(x1) “stuff”
h2 : u def(x1, h1, h6)
h5 : kakusu(e2, x2, x1) “hide”
h3 : mono(x2) “thing”
h4 : u def(x2, h3, h7)}〉

Figure 2: Semantic View of the Definition of
�����

�
2 kāten “curtain”

The semantic view shows some ambiguity has
been resolved that is not visible in the purely syn-
tactic view. In Japanese, relative clauses can have
gapped and non-gapped readings. In the gapped
reading (selected here), � mono “thing” is the sub-
ject of ��� kakusu “hide”. In the non-gapped read-
ing there is some unspecified relation between the
thing and the verb phrase. This is similar to the dif-
ference in the two readings of the day he knew in En-
glish: “the day that he knew about” (gapped) vs “the
day on which he knew (something)” (non-gapped).

1The semantic representation used is Minimal Recursion Se-
mantics (Copestake et al., Forthcoming). The figure shown here
hides some of the detail of the underspecified scope.
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Such semantic ambiguity is resolved by selecting the
correct derivation tree that includes the applied rules
in building the tree, as shown in Figure 3. In the next
phase of the Hinoki project, we are concentrating on
acquiring an ontology from these semantic represen-
tations and using it to improve the parse selection
(Bond et al., 2004).

3 Treebanking Using Discriminants

Selection among analyses in our set-up is done
through a choice of elementary discriminants, basic
and mostly independent contrasts between parses.
These are (relatively) easy to judge by annotators.
The system selects features that distinguish between
different parses, and the annotator selects or rejects
the features until only one parse is left. In a small
number of cases, annotation may legitimately leave
more than one parse active (see below). The system
we used for treebanking was the [incr tsdb()] Red-
woods environment2 (Oepen et al., 2002). The num-
ber of decisions for each sentence is proportional
to the log of the number of parses. The number of
decisions required depends on the ambiguity of the
parses and the length of the input. For Hinoki, on av-
erage, the number of decisions presented to the an-
notator was 27.5. However, the average number of
decisions needed to disambiguate each sentence was
only 2.6, plus an additional decision to accept or re-
ject the selected parses3. In general, even a sentence
with 100 parses requires only around 5 decisions and
1,000 parses only around 7 decisions. A graph of
parse results versus number of decisions presented
and required is given in Figure 6.

The primary data stored in the treebank is the
derivation tree: the series of rules and lexical items
the parser used to construct the parse. This, along
with the grammar, can be combined to rebuild the
complete HPSG sign. The annotators task is to se-
lect the appropriate derivation tree or trees. The pos-
sible derivation trees for

�������
2 kāten “curtain”

are shown in Figure 3. Nodes in the trees indicate
applied rules, simplified lexical types or words. We

2The [incr tsdb()] system, Japanese and English grammars
and the Redwoods treebank of English are available from the
Deep Linguistic Processing with HPSG Initiative (DELPH-IN:
http://www.delph-in.net/).

3This average is over all sentences, even non-ambiguous
ones, which only require a decision as to whether to accept or
reject.

will use it as an example to explain the annotation
process. Figure 3 also displays POS tag from a sep-
arate tagger, shown in typewriter font.4

This example has two major sources of ambiguity.
One is lexical: aru “a certain/have/be” is ambigu-
ous between a reading as a determiner “a certain”
(det-lex) and its use as a verb of possession “have”
(aru-verb-lex). If it is a verb, this gives rise to
further structural ambiguity in the relative clause, as
discussed in Section 2. Reliable POS tags can thus
resolve some ambiguity, although not all.

Overall, this five-word sentence has 6 parses. The
annotator does not have to examine every tree but is
instead presented with a range of 9 discriminants, as
shown in Figure 4, each local to some segment of
the utterance (word or phrase) and thus presenting a
contrast that can be judged in isolation. Here the first
column shows deduced status of discriminants (typ-
ically toggling one discriminant will rule out oth-
ers), the second actual decisions, the third the dis-
criminating rule or lexical type, the fourth the con-
stituent spanned (with a marker showing segmenta-
tion of daughters, where it is unambiguous), and the
fifth the parse trees which include the rule or lexical
type.

D A
Rules /

Lexical Types
Subtrees /

Lexical items
Parse
Trees

? ? rel-cl-sbj-gap
����	�
��������	

2,4,6
? ? rel-clause

����	�
��������	
1,3,5

- ? rel-cl-sbj-gap
������	�


3,4
- ? rel-clause

������	�

5,6

+ ? hd-specifier
������	�


1,2
? ? subj-zpro

��
2,4,6

- ? subj-zpro
���

5,6
- ? aru-verb-lex

���
3–6

+ + det-lex
���

1,2
+: positive decision
-: negative decision
?: indeterminate / unknown

Figure 4: Discriminants (marked after one is se-
lected). D : deduced decisions, A : actual decisions

After selecting a discriminant, the system recal-
culates the discriminant set. Those discriminants
which can be deduced to be incompatible with the
decisions are marked with ‘−’, and this information
is recorded. The tool then presents to the annotator

4The POS markers used in our experiment are from the
ChaSen POS tag set (http://chasen.aist-nara.ac.
jp/), we show simplified transliterated tag names.
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NP-frag
rel-cl-sbj-gap

hd-complement N
hd-complement V

hd-specifier
DET N CASE-P� � �!   " " "$## # % % % & & &('' ' " " "

adnominal noun particle verb noun
a certain thing ACC hide thing

Tree #1

NP-frag
rel-clause

hd-complement N
hd-complement subj-zpro

hd-specifier V
DET N CASE-P� � �!   " " "$## # % % % & & &('' ' " " "

adnominal noun particle verb noun
a certain thing ACC hide thing

Tree #2

NP-frag
rel-cl-sbj-gap

hd-complement N
hd-complement V

rel-cl-sbj-gap
V N CASE-P� � �!   " " ")# # # % % % & & &*'' ' " " "

verb noun particle verb noun
exist thing ACC hide thing

Tree #3

NP-frag
rel-clause

hd-complement N
hd-complement subj-zpro

rel-cl-sbj-gap V
V N CASE-P� � �!   " " "$## # % % % & & &('' ' " " "

verb noun particle verb noun
exist thing ACC hide thing

Tree #4

NP-frag
rel-cl-sbj-gap

hd-complement N
hd-complement V

rel-clause
subj-zpro

V N CASE-P� � �!   " " ")# # # % % % & & &*'' ' " " "
verb noun particle verb noun
exist thing ACC hide thing

Tree #5

NP-frag
rel-clause

hd-complement N
hd-complement subj-zpro

rel-clause V
subj-zpro

V N CASE-P� � �!   " " ")# # # % % % & & &*'' ' " " "
verb noun particle verb noun
exist thing ACC hide thing

Tree #6

Figure 3: Derivation Trees of the Definition of
���+�,�

2 kāten “curtain”

only those discriminants which still select between
the remaining parses, marked with ‘?’.

In this case the desired parse can be selected with
a minimum of two decisions. If the first decision is
that -/. aru is a determiner (det-lex), it elimi-
nates four parses, leaving only three discriminants
(corresponding to trees #1 and #2 in Figure 3) to be
decided on in the second round of decisions. Select-
ing � mono “thing” as the gapped subject of �0�
kakusu “hide” (rel-cl-sbj-gap) resolves the parse
forest to the single correct derivation tree #1 in Fig-
ure 3.

The annotator also has the option of leaving some
ambiguity in the treebank. For example, the verbal
noun 1 ��2,� ōpun “open” is defined with the sin-
gle word 354 aku/hiraku “open”. This word how-
ever, has two readings: aku which is intransitive and
hiraku which is transitive. As 1 ��2,� ōpun “open”
can be either transitive or intransitive, both parses
are in fact correct! In such cases, the annotators were
instructed to leave both parses.

Finally, the annotator has the option of rejecting
all the parses presented, if none have the correct syn-

tax and semantics. This decision has to be made
even for sentences with a unique parse.

4 Using POS Tags to Blaze the Trees

Sentences in the Lexeed dictionary were already
part-of-speech tagged so we investigated exploiting
this information to reduce the number of decisions
the annotators had to make. More generally, there
are many large corpora with a subset of the infor-
mation we desire already available. For example,
the Kyoto Corpus (Kurohashi and Nagao, 2003) has
part of speech information and dependency informa-
tion, but not the detailed information available from
an HPSG analysis. However, the existing informa-
tion can be used to blaze5 trees in the parse forest:
that is to select or reject certain discriminants based
on existing information.

Because other sources of information may not be
entirely reliable, or the granularity of the informa-
tion may be different from the granularity in our

5In forestry, to blaze is to mark a tree, usually by painting
and/or cutting the bark, indicating those to be cut or the course
of a boundary, road, or trail.
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treebank, we felt it was important that the blazes
be defeasible. The annotator can always reject the
blazed decisions and retag the sentence.

In [incr tsdb()], it is currently possible to blaze us-
ing POS information. The criteria for the blazing de-
pend on both the grammar used to make the treebank
and the POS tag set. The system matches the tagged
POS against the grammar’s lexical hierarchy, using a
one-to-many mapping of parts of speech to types of
the grammar and a subsumption-based comparison.
It is thus possible to write very general rules. Blazes
can be positive to accept a discriminant or negative
to reject it. The blaze markers are defined to be a
POS tag, and then a list of lexical types and a score.
The polarity of the score determines whether to ac-
cept or reject. The numerical value allows the use
of a threshold, so that only those markers whose ab-
solute value is greater than a threshold will be used.
The threshold is currently set to zero: all blaze mark-
ers are used.

Due to the nature of discriminants, having two
positively marked but competing discriminants for
the same word will result in no trees satisfying the
conditions. Therefore, it is important that only neg-
ative discriminants should be used for more general
lexical types.

Hinoki uses 13 blaze markers at present, a sim-
plified representation of them is shown in Figure 5.
E.g. if 〈verb-aux, v-stem-lex, -1.0〉 was a blaze
marker, then any sentence with a verb that has two
non-auxiliary entries (e.g. hiraku/aku vt and vi)
would be eliminated. The blaze set was derived from
a conservative inspection of around 1,000 trees from
an earlier round of annotation of similar data, identi-
fying high-frequency contrasts in lexical ambiguity
that can be confidently blazed from the POS granu-
larity available for Lexeed.

POS tags Lexical Types in the Grammar Score
verb-aux v-stem-lex −1.0
verb-main aspect-stem-lex −1.0
noun verb-stem-lex −1.0
adnominal noun mod-lex-l 0.9

det-lex 0.9
conjunction n conj-p-lex 0.9

v-coord-end-lex 0.9
adjectival-noun noun-lex −1.0

Figure 5: Some Blaze Markers used in Hinoki

For the example shown in Figures 3 and 4, the

blaze markers use the POS tagging of the determiner
-6. aru to mark it as det-lex. This eliminates
four parses and six discriminants leaving only three
to be presented to the annotator. On average, mark-
ing blazes reduced the average number of blazes pre-
sented per sentence from 27.5 to 23.8 (a reduction
of 15.6%). A graphical view of number of discrimi-
nants versus parse ambiguity is shown in Figure 6.

5 Measuring Inter-Annotator Agreement

Lacking a task-oriented evaluation scenario at this
point, inter-annotator agreement is our core measure
of annotation consistency in Hinoki. All trees (and
associated semantics) in Hinoki are derived from a
computational grammar and thus should be expected
to demonstrate a basic degree of internal consis-
tency. On the other hand, the use of the grammar
exposes large amounts of ambiguity to annotators
that might otherwise go unnoticed. It is therefore not
a priori clear whether the Redwoods-style approach
to treebank construction as a general methodology
results in a high degree of internal consistency or a
comparatively low one.

α – β β – γ γ – α Average
Parse Agreement 63.9 68.2 64.2 65.4
Reject Agreement 4.8 3.0 4.1 4.0
Parse Disagreement 17.5 19.2 17.9 18.2
Reject Disagreement 13.7 9.5 13.8 12.4

Table 1: Exact Match Inter-annotator Agreement

Table 1 quantifies inter-annotator agreement in
terms of the harshest possible measure, the propor-
tion of sentences for which two annotators selected
the exact same parse or both decided to reject all
available parses. Each set was annotated by three
annotators (α, β, γ). They were all native speakers
of Japanese with a high score in a Japanese profi-
ciency test (Amano and Kondo, 1998) but no lin-
guistic training. The average annotation speed was
50 sentences an hour.

In around 19 per cent of the cases annotators
chose to not fully disambiguate, keeping two or even
three active parses; for these we scored i

j
, with j be-

ing the number of identical pairs in the cross-product
of active parses, and i the number of mismatches.
One annotator keeping {1, 2, 3}, for example, and
another {3, 4} would be scored as 1

6
. In addition to
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leaving residual ambiguity, annotators opted to re-
ject all available parses in some eight per cent of
cases, usually indicating opportunities for improve-
ment of the underlying grammar. The Parse Agree-
ment figures (65.4%) in Table 1 are those sentences
where both annotators chose one or more parses,
and they showed non-zero agreement. This figure
is substantially above the published figure of 52%
for NeGra Brants et al. (2003). Parse Disagreement
is where both chose parses, but there was no agree-
ment. Reject Agreement shows the proportion of
sentences for which both annotators found no suit-
able analysis. Finally Reject Disagreement is those
cases were one annotator found no suitable parses,
but one selected one or more.

The striking contrast between the comparatively
high exact match ratios (over a random choice base-
line of below seven per cent; κ = 0.628) and the low
agreement between annotators on which structures
to reject completely suggests that the latter type of
decision requires better guidelines, ideally tests that
can be operationalized.

To obtain both a more fine-grained measure and
also be able to compare to related work, we com-
puted a labeled precision f-score over derivation
trees. Note that our inventory of labels is large,
as they correspond in granularity to structures of
the grammar: close to 1,000 lexical and 120 phrase
types. As there is no ‘gold’ standard in contrasting
two annotations, our labeled constituent measure F

is the harmonic mean of standard labeled precision
P (Black et al., 1991; Civit et al., 2003) applied in
both ‘directions’: for a pair of annotators α and β, F

is defined as:

F =
2P (α, β)P (β, α)

P (α, β) + P (β, α)

As found in the discussion of exact match inter-
annotator agreement over the entire treebank, there
are two fundamentally distinct types of decisions
made by annotators, viz. (a) elimination of unwanted
ambiguity and (b) the choice of keeping at least one
analysis or rejecting the entire item. Of these, only
(b) applies to items that are assigned only one parse
by the grammar, hence we omit unambiguous items
from our labeled precision measures (a little more
than twenty per cent of the total) to exclude trivial
agreement from the comparison. In the same spirit,

to eliminate noise hidden in pairs of items where one
or both annotators opted for multiple valid parses,
we further reduced the comparison set to those pairs
where both annotators opted for exactly one active
parse. Intersecting both conditions for pairs of an-
notators leaves us with subsets of around 2,500 sen-
tences each, for which we record F values ranging
from 95.1 to 97.4, see Table 2. When broken down
by pairs of annotators and sets of 1,000 items each,
which have been annotated in strict sequential order,
F scores in Table 2 confirm that: (a) inter-annotator
agreement is stable, all three annotators appear to
have performed equally (well); (b) with growing ex-
perience, there is a slight increase in F scores over
time, particularly when taking into account that set
E exhibits a noticeably higher average ambiguity
rate (1208 parses per item) than set D (820 aver-
age parses); and (c) Hinoki inter-annotator agree-
ment compares favorably to results reported for the
German NeGra (Brants, 2000) and Spanish Cast3LB
(Civit et al., 2003) treebanks, both of which used
manual mark-up seeded from automated POS tag-
ging and chunking.

Compared to the 92.43 per cent labeled F score
reported by Brants (2000), Hinoki achieves an ‘er-
ror’ (i.e. disagreement) rate of less than half, even
though our structures are richer in information and
should probably be contrasted with the ‘edge label’
F score for NeGra, which is 88.53 per cent. At
the same time, it is unknown to what extent results
are influenced by differences in text genre, i.e. av-
erage sentence length of our dictionary definitions
is noticeably shorter than for the NeGra newspaper
corpus. In addition, our measure is computed only
over a subset of the corpus (those trees that can be
parsed and that had multiple parses which were not
rejected). If we recalculate over all 5,000 sentences,
including rejected sentences (F measure of 0) and
those with no ambiguity (F measure of 1) then the
average F measure is 83.5, slightly worse than the
score for NeGra. However, the annotation process
itself identifies which the problematic sentences are,
and how to improve the agreement: improve the
grammar so that fewer sentences need to be rejected
and then update the annotation. The Hinoki treebank
is, by design, dynamic, so we expect to continue to
improve the grammar and annotation continuously
over the project’s lifetime.
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Test α – β β – γ γ – α Average
Set # F # F # F F
A 507 96.03 516 96.22 481 96.24 96.19
B 505 96.79 551 96.40 511 96.57 96.58
C 489 95.82 517 95.15 477 95.42 95.46
D 454 96.83 477 96.86 447 97.40 97.06
E 480 95.15 497 96.81 484 96.57 96.51

2435 96.32 2558 96.28 2400 96.47 96.36

Table 2: Inter-Annotator Agreement as Mutual Labeled Precision F-Score

Test Annotator Decisions Blazed
Set α β γ Decisions
A 2,659 2,606 3,045 416
B 2,848 2,939 2,253 451
C 1,930 2,487 2,882 468
D 2,254 2,157 2,347 397
E 1,769 2,278 1,811 412

Table 3: Number of Decisions Required

5.1 The Effects of Blazing
Table 3 shows the number of decisions per annota-
tor, including revisions, and the number of decisions
that can be done automatically by the part-of-speech
blazed markers. The test sets where the annotators
used the blazes are shown underlined. The final de-
cision to accept or reject the parses was not included,
as it must be made for every sentence.

The blazed test sets require far fewer annotator
decisions. In order to evaluate the effect of the
blazes, we compared the average number of deci-
sions per sentence for the test sets in which some
annotators used blazes and some did not (B–D). The
average number of decisions went from 2.63 to 2.11,
a substantial reduction of 19.5%. similarly, the time
required to annotate an utterance was reduced from
83 seconds per sentence to 70, a speed up of 15.7%.
We did not include A and E, as there was variation in
difficulty between test sets, and it is well known that
annotators improve (at least in speed of annotation)
over time. Research on other projects has shown that
it is normal for learning curve differences to swamp
differences in tools (Wallis, 2003, p. 65). The num-
ber of decisions against the number of parses is show
in Figure 6, both with and without the blazes.

6 Discussion

Annotators found the rejections the most time con-
suming. If a parse was eliminated, they often re-
did the decision process several times to be sure
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Figure 6: Number of Decisions versus Number of
Parses (Test Sets B–D)

they had not eliminated the correct parse in error,
which was very time consuming. This shows that
the most important consideration for the success of
treebanking in this manner is the quality of the gram-
mar. Fortunately, treebanking offers direct feed-
back to the grammar developers. Rejected sentences
identify which areas need to be improved, and be-
cause the treebank is dynamic, it can be improved
when we improve the analyses in the grammar. This
is a notable improvement over semi-automatically
constructed grammars, such as the Penn Treebank,
where many inconsistencies remain (around 4,500
types estimated by Dickinson and Meurers, 2003)
and the treebank does not allow them to be identi-
fied automatically or easily updated.

Because we are simultaneously using the seman-
tic output of the grammar in building an ontology,
and the syntax and semantics are tightly coupled, the
knowledge acquisition provides a further route for
feedback. Extracting an ontology from the seman-
tic representations revealed many issues with the se-
mantics that had previously been neglected.

Our top priority for further work within Hinoki
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is to improve the grammar so as to both increase
the cover and decrease the number of results with
no acceptable parses. This will allow us to treebank
a higher proportion of sentences, with even higher
precision.

For more general work on treebank construction,
we would like to investigate (1) using other informa-
tion for blazes (syntactic constituents, dependencies,
translation data) and marking blazes automatically
using confident scores from existing POS taggers
or parsers, (2) other agreement measures (for ex-
ample agreement over the semantic representations),
(3) presenting discriminants based on the semantic
representations.

7 Conclusions

We conducted an experiment to measure inter-
annotator agreement for the Hinoki corpus. Three
annotators marked up 5,000 sentences. Sentence
agreement was an unparalleled 65.4%. The method
used identifies problematic annotations as a by-
product, and allows the treebank to be improved
as its underlying grammar improves. We also pre-
sented a method to speed up the annotation by ex-
ploiting existing part-of-speech tags. This led to a
decrease in the number of annotation decisions of
19.5%.
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Abstract
Sitting at the intersection between statis-
tics and machine learning, Dynamic
Bayesian Networks have been applied
with much success in many domains, such
as speech recognition, vision, and compu-
tational biology. While Natural Language
Processing increasingly relies on statisti-
cal methods, we think they have yet to
use Graphical Models to their full poten-
tial. In this paper, we report on experi-
ments in learning edit distance costs using
Dynamic Bayesian Networks and present
results on a pronunciation classification
task. By exploiting the ability within the
DBN framework to rapidly explore a large
model space, we obtain a 40% reduc-
tion in error rate compared to a previous
transducer-based method of learning edit
distance.

1 Introduction
Edit distance (ED) is a common measure of the sim-
ilarity between two strings. It has a wide range
of applications in classification, natural language
processing, computational biology, and many other
fields. It has been extended in various ways; for
example, to handle simple (Lowrance and Wagner,
1975) or (constrained) block transpositions (Leusch
et al., 2003), and other types of block opera-
tions (Shapira and Storer, 2003); and to measure
similarity between graphs (Myers et al., 2000; Klein,
1998) or automata (Mohri, 2002).

∗This material was supported by NSF under Grant No. ISS-
0326276.

Another important development has been the use
of data-driven methods for the automatic learning of
edit costs, such as in (Ristad and Yianilos, 1998) in
the case of string edit distance and in (Neuhaus and
Bunke, 2004) for graph edit distance.

In this paper we revisit the problem of learn-
ing string edit distance costs within the Graphi-
cal Models framework. We apply our method to
a pronunciation classification task and show sig-
nificant improvements over the standard Leven-
shtein distance (Levenshtein, 1966) and a previous
transducer-based learning algorithm.

In section 2, we review a stochastic extension of
the classic string edit distance. We present our DBN-
based edit distance models in section 3 and show re-
sults on a pronunciation classification task in sec-
tion 4. In section 5, we discuss the computational
aspects of using our models. We end with our con-
clusions and future work in section 6.

2 Stochastic Models of Edit Distance
Let sm1 = s1s2...sm be asourcestring over a source
alphabetA, andm the length of the string.sji is the
substringsi...sj andsji is equal to the empty string,
ε, wheni > j. Likewise, tn1 denotes atarget string
over a target alphabetB, andn the length oftn1 .

A source string can be transformed into a target
string through a sequence ofedit operations. We
write 〈s, t〉 ((s, t) 6= (ε, ε)) to denote anedit opera-
tion in which the symbols is replaced byt. If s=ε
andt 6=ε, 〈s, t〉 is aninsertion. If s 6=ε andt=ε, 〈s, t〉
is adeletion. Whens 6= ε, t 6= ε ands 6= t, 〈s, t〉 is a
substitution. In all other cases,〈s, t〉 is anidentity.

The string edit distance,d(sm1 , t
n
1 ) betweensm1

andtn1 is defined as the minimum weighted sum of
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the number of deletions, insertions, and substitutions
required to transformsm1 into tn1 (Wagner and Fis-
cher, 1974). AO(m · n) Dynamic Programming
(DP) algorithm exists to compute the ED between
two strings. The algorithm is based on the following
recursion:

d(si1, t
j
1) = min

 d(si−1
1 , tj1) + γ(〈si, ε〉),

d(si1, t
j−1
1 ) + γ(〈ε, tj〉),

d(si−1
1 , tj−1

1 ) + γ(〈si, tj〉)


with d(ε, ε)=0 andγ : {〈s, t〉|(s, t) 6= (ε, ε)}→<+

a cost function. Whenγ maps non-identity edit op-
erations to unity and identities to zero, string ED is
often referred to as theLevenshtein distance.

To learn the edit distance costs from data, Ristad
and Yianilos (1998) use a generative model (hence-
forth referred to as theRY model) based on a mem-
oryless transducer of string pairs. Below we sum-
marize their main idea and introduce our notation,
which will be useful later on.

We are interested in modeling the joint probability
P (Sm1 =sm1 , T

n
1=t

n
1 | θ) of observing the source/target

string pair(sm1 , t
n
1 ) given model parametersθ. Si

(resp. Ti), 1≤i≤m, is a random variable (RV) as-
sociated with the event of observing a source (resp.
target) symbol at positioni.1

To model the edit operations, we introduce a hid-
den RV,Z, that takes values in(A ∪ ε × B ∪ ε) \
{(ε, ε)}. Z can be thought of as arandom vector
with two components,Z(s) andZ(t).

We can then write the joint probability
P (sm1 , t

n
1 | θ) as

P (sm1 , t
n
1 | θ) =

∑∑
{z`1:v(z`1)=<sm1 ,t

n
1>, max(m,n)≤`≤m+n}

P (Z`1=z`1, s
m
1 , t

n
1 | θ) (1)

where v(z`1) is the yield of the sequencez`1: the
string pair output by the transducer.

Equation 1 says that the probability of a par-
ticular pair of strings is equal to the sum of the
probabilities of all possible ways to generate the
pair by concatenating the edit operationsz1...z`. If
we make the assumption that there is no depen-
dence between edit operations, we call our model
memoryless. P (Z`1, s

m
1 , t

n
1 | θ) can then be factored

as ΠiP (Zi, sm1 , t
n
1 | θ). In addition, we call the

modelcontext-independentif we can writeQ(zi) =
1We follow the convention of using capital letters for ran-

dom variables and lowercase letters for instantiations of random
variables.

P (Zi=zi, sm1 , t
n
1 | θ), 1<i<`, wherezi=〈z(s)

i , z
(t)
i 〉,

in the form

Q(zi) ∝


f ins(tbi) for z(s)

i = ε; z(t)
i = tbi

fdel(sai) for z(s)
i = sai ; z

(t)
i = ε

fsub(sai , tbi) for (z(s)
i , z

(t)
i ) = (sai , tbi)

0 otherwise
(2)

where
∑

z Q(z) = 1; ai =
∑i−1

j=1 1{z(s)
j 6=ε}

(resp.bi)

is the index of the source (resp. target) string gen-
erated up to theith edit operation; andf ins,fdel,and
fsub are functions mapping to[0, 1].2 Context in-
dependence is not to be taken here to meanZi
does not depend onsai or tbi . It depends on them
through theglobal contextwhich forcesZ`1 to gen-
erate(sm1 , t

n
1 ). The RY model ismemoryless and

context-independent(MCI).
Equation 2, also implicitly enforces theconsis-

tency constraintthat the pair of symbols output,
(z(s)
i , z

(t)
i ), agrees with the actual pair of symbols,

(sai , tbi), that needs to be generated at stepi in or-
der for the total yield,v(z`1), to equal the string pair.

The RY stochastic model is similar to the one in-
troduced earlier by Bahl and Jelinek (1975). The
difference is that the Bahl model is memoryless
andcontext-dependent(MCD); the f functions are
now indexed bysai (or tai , or both) such that∑

z Qsai (z) = 1 ∀sai . In general, context depen-
dence can be extended to include up to the whole
source (and/or target) string,sai−1

1 , sai , s
m
ai+1. Sev-

eral other types of dependence can be exploited as
will be discussed in section 3.

Both the Ristad and the Bahl transducer mod-
els give exponentially smaller probability to longer
strings and edit sequences. Ristad presents an al-
ternate explicit model of the joint probability of
the length of the source and target strings. In this
parametrization the probability of the length of an
edit sequence does not necessarily decrease geomet-
rically. A similar effect can be achieved by modeling
the length of the hidden edit sequence explicitly (see
section 3).

3 DBNs for Learning Edit Distance
Dynamic Bayesian Networks (DBNs), of which
Hidden Markov Models (HMMs) are the most fa-

2By convention,sai = ε for ai > m. Likewise,tbi = ε if
bi > n. f ins(ε) = fdel(ε) = fsub(ε, ε) = 0. This takes care
of the case when we are past the end of a string.
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mous representative, are well suited for modeling
stochastic temporal processes such as speech and
neural signals. DBNs belong to the larger family of
Graphical Models (GMs). In this paper, we restrict
ourselves to the class of DBNs and use the terms
DBN and GM interchangeably. For an example in
which Markov Random Fields are used to compute
a context-sensitive edit distance see (Wei, 2004).3

There is a large body of literature on DBNs and
algorithms associated with them. To briefly de-
fine a graphical model, it is a way of representing
a (factored) probability distribution using a graph.
Nodes of the graph correspond to random variables;
and edges to dependence relations between the vari-
ables.4 To do inferenceor parameter learning us-
ing DBNs, various generic exact or approximate
algorithms exist (Lauritzen, 1996; Murphy, 2002;
Bilmes and Bartels, 2003). In this section we start
by introducing a graphical model for the MCI trans-
ducer then present four additional classes of DBN
models: context-dependent, memory (where an edit
operation can depend on past operations), direct
(HMM-like), and length models (in which we ex-
plicitly model the length of the sequence of edits
to avoid the exponential decrease in likelihood of
longer sequences). A few other models are dis-
cussed in section 4.2.

3.1 Memoryless Context-independent Model
Fig. 1 shows a DBN representation of the memo-
ryless context-independent transducer model (sec-
tion 2). The graph represents atemplatewhich con-
sists, in general, of three parts: aprologue, achunk,
and anepilogue. The chunk is repeated as many
times as necessary to model sequences of arbitrary
length. The product ofunrolling the template is a
Bayesian Network organized into a given number of
frames. The prologue and the epilogue often differ
from the chunk because they model boundary con-
ditions, such as ensuring that the end of both strings
is reached at or before the last frame.

Associated with each node is a probability func-
tion that maps the node’s parent values to the values
the node can take. We will refer to that function as a

3While the Markov Edit Distanceintroduced in the paper
takes local statistical dependencies into account, the edit costs
are still fixed and not corpus-driven.

4The concept ofd-separationis useful to read independence
relations encoded by the graph (Lauritzen, 1996).

Figure 1: DBN for the memory-less transducer
model. Unshaded nodes are hidden nodes with prob-
abilistic dependencies with respect to their parents.
Nodes with stripes are deterministic hidden nodes,
i.e., they take a unique value for each configuration
of their parents. Filled nodes are observed (they can
be either stochastic or deterministic). The graph
template is divided into three frames. The center
frame is repeatedm+n− 2 times to yield a graph
with a total ofm+n frames, the maximum number
of edit operations needed to transformsm1 into tn1 .
Outgoing light edges mean the parent is a switch-
ing variable with respect to the child: depending on
the value of the switching RV, the child uses different
CPTs and/or a different parent set.

conditional probability table(CPT).
Common to all the frames in fig. 1, are position

RVs,a andb, which encode the current positions in
the source and target strings resp.; source and target
symbols,s andt; the hidden edit operation,Z; and
consistency nodessc andtc, which enforce the con-
sistency constraint discussed in section 2. Because
of symmetry we will explain the upper half of the
graph involving the source string unless the target
half is different. We drop subscripts when the frame
number is clear from the context.

In the first frame,a and b are observed to have
value 1, the first position in both strings.a and b
determine the value of the symbolss andt. Z takes
a random value〈z(s), z(t)〉. sc has the fixed observed
value 1. The only configurations of its parents,Z
ands, that satisfyP (sc= 1|s, z) > 0 are such that
(Z(s) = s) or (Z(s) = ε andZ 6= 〈ε, ε〉). This is the
consistency constraint in equation 2.

In the following frame, the position RVa2 de-
pends ona1 and Z1. If Z1 is an insertion (i.e.
Z

(s)
1 = ε : the source symbol in the first frame is
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not output), thena2 retains the same value asa1;
otherwisea2 is incremented by1 to point to the next
symbol in the source string.

The end RV is an indicator of when we are past
the end of both source and target strings (a>m and
b > n). end is also aswitching parentof Z; when
end = 0, the CPT ofZ is the same as described
above: a distribution over edit operations. When
end= 1, Z takes, with probability 1, a fixed value
outside the range of edit operations but consistent
with s andt. This ensures 1) no “null” state (〈ε, ε〉)
is required to fill in the value ofZ until the end
of the graph is reached; our likelihoods and model
parameters therefore do not become dependent on
the amount of “null” padding; and 2) no probability
mass is taken from the other states ofZ as is the case
with the special termination symbol # in the original
RY model. We found empirically that the use of ei-
ther a null or an end state hurts performance to a
small but significant degree.

In the last frame, two new nodes make their ap-
pearance.send andtend ensure we areat or past
the end of the two strings (the RVend only checks
that we are past the end). That is whysend depends
on botha andZ. If a>m, send (observed to be 1) is
1 with probability1. If a<m, thenP (send=1) = 0
and the whole sequenceZ`1 has zero probability. If
a=m, thensend only gets probability greater than
zero if Z is not an insertion. This ensures the last
source symbol is indeed consumed.

Note that we can obtain the equivalent of the to-
tal edit distance cost by usingViterbi inferenceand
adding acosti variable as a deterministic child of the
random variableZi : in each frame the cost is equal
to costi−1 plus 0 whenZi is an identity, or plus1
otherwise.

3.2 Context-dependent Model

Adding context dependence in the DBN framework
is quite natural. In fig. 2, we add edges fromsi,
sprevi, andsnexti to Zi. Thesc node is no longer
required because we can enforce the consistency
constraint via the CPT ofZ given its parents.snexti
is an RV whose value is set to the symbol at theai+1
position of the string, i.e.,snexti=sai+1. Likewise,
sprevi = sai−1. The Bahl model (1975) uses a de-
pendency onsi only. Note thatsi−1 is not necessar-
ily equal tosai−1. Conditioning onsi−1 induces an

Figure 2:Context-dependent model.

indirect dependence on whether there was an inser-
tion in the previous step becausesi−1 = si might be
correlated with the eventZ(s)

i−1 = ε.
3.3 Memory Model
Memory models are another easy extension of the
basic model as fig. 3 shows. Depending on whether
the variableHi−1 linking Zi−1 to Zi is stochastic
or deterministic, there are several models that can
be implemented; for example, a latent factor mem-
ory model whenH is stochastic. The cardinality of
H determines how much the information from one
frame to the other is “summarized.” With a deter-
ministic implementation, we can, for example, spec-
ify the usualP (Zi|Zi−1) memory model whenH is
a simple copy ofZ or haveZi depend on the type of
edit operation in the previous frame.

Figure 3:Memory model. Depending on the type of
dependency betweenZi andHi, the model can be
latent variable based or it can implement a deter-
ministic dependency on a function ofZi

3.4 Direct Model

The direct modelin fig. 4 is patterned on the clas-
sic HMM, where the unrolled length of graph is the
same as the length of the sequence of observations.
The key feature of this model is that we are required
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to consume a target symbol per frame. To achieve
that, we introduce two RVs,ins, with cardinality
2, anddel, with cardinality at mostm. The depen-
dency ofdel on ins is to ensure the two events never
happen concomitantly. At each frame,a is incre-
mented either by the value ofdel in the case of a
(possibly block) deletion or by zero or one depend-
ing on whether there was an insertion in the previous
frame. An insertion also forcess to take valueε.

Figure 4:Direct model.

In essence the direct model is not very differ-
ent from the context-dependent model in that here
too we learn the conditional probabilitiesP (ti|si)
(which are implicit in the CD model).
3.5 Length Model

While this model (fig. 5) is more complex than
the previous ones, much of the network structure
is “control logic” necessary to simulate variable
length-unrolling of the graph template. The key idea
is that we have a new stochastic hidden RV,inclen,
whose value added to that of the RVinilen deter-
mines the number of edit operations we are allowed.
A counter variable,counter is used to keep track
of the frame number and when the required num-
ber is reached, the RVatReqLen is triggered. If at
that point we have just reached the end of one of the
strings while the end of the other one is reached in
this frame or a previous one, then the variableend
is explained(it has positive probability). Otherwise,
the entire sequence of edit operations up to that point
has zero probability.

4 Pronunciation Classification
In pronunciation classification we are given alexi-
con, which consists of words and their correspond-
ing canonical pronunciations. We are also provided
with surface pronunciationsand asked to find the
most likely corresponding words. Formally, for each

Figure 5:Length unrolling model.

surface form,tn1 , we need to find the set of words
Ŵ s.t. Ŵ = argmaxwP (w|tn1 ). There are several
ways we could model the probabilityP (w|tn1 ). One
way is to assume a generative model whereby a word
w and a surface pronunciationtn1 are related via an
underlying canonical pronunciationsm1 of w and a
stochastic process that explains the transformation
from sm1 to tn1 . This is summarized in equation 3.
C(w) denotes the set of canonical pronunciations of
w.

Ŵ = argmax
w

∑
sm1 ∈C(w)

P (w|sm1 )P (sm1 , t
n
1 ) (3)

If we assume uniform probabilitiesP (w|sm1 )
(sm1 ∈C(w)) and use the max approximation in place
of the sum in eq. 3 our classification rule becomes

Ŵ = {w|Ŝ∩C(w) 6=∅, Ŝ=argmax
sm1

P (sm1 , t
n
1 )} (4)

It is straightforward to create a DBN to model the
joint probabilityP (w, sm1 , t

n
1 ) by adding a word RV

and a canonical pronunciation RV on top of any of
the previous models.

There are other pronunciation classification ap-
proaches with various emphases. For example,
Rentzepopoulos and Kokkinakis (1996) use HMMs
to convert phoneme sequences to their most likely
orthographic forms in the absence of a lexicon.
4.1 Data
We use Switchboard data (Godfrey et al., 1992) that
has been hand annotated in the context of the Speech
Transcription Project (STP) described in (Green-
berg et al., 1996). Switchboard consists of spon-
taneous informal conversations recorded over the
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phone. Because of the informal non-scripted nature
of the speech and the variety of speakers, the cor-
pus presents much variety in word pronunciations,
which can significantly deviate from the prototypical
pronunciations found in a lexicon. Another source
of pronunciation variability is the noise introduced
during the annotation of speech segments. Even
when the phone labels are mostly accurate, the start
and end time information is not as precise and it af-
fects how boundary phones get aligned to the word
sequence. As a reference pronunciation dictionary
we use a lexicon of the 2002 Switchboard speech
recognition evaluation. The lexicon contains 40000
entries, but we report results on a reduced dictio-
nary5 with 5000 entries corresponding to only those
words that appear in our train and test sets. Ristad
and Yianilos use a few additional lexicons, some of
which are corpus-derived. We did reproduce their
results on the different types of lexicons.

For testing we randomly divided STP data into
9495 training words (corresponding to 9545 pronun-
ciations) and 912 test words (901 pronunciations).
For the Levenshtein and MCI results only, we per-
formed ten-fold cross validation to verify we did not
pick a non-representative test set. Our models are
implemented using GMTK, a general-purpose DBN
tool originally created to explore different speech
recognition models (Bilmes and Zweig, 2002). As
a sanity check, we also implemented the MCI model
in C following RY’s algorithm.

The error rate is computed by calculating, for each
pronunciation form, the fraction of words that are
correctly hypothesized and averaging over the test
set. For example if the classifier returns five words
for a given pronunciation, and two of the words are
correct, the error rate is 3/5*100%.

Three EM iterations are used for training. Addi-
tional iterations overtrained our models.

4.2 Results

Table 1 summarizes our results using DBN based
models. The basic MCI model does marginally bet-
ter than the Levenshtein edit distance. This is con-
sistent with the finding in RY: their gains come from
the joint learning of the probabilitiesP (w|sm1 ) and
P (sm1 , t

n
1 ). Specifically, the word model accounts

for much of their gains over the Levenshtein dis-

5Equivalent to theE2 lexicon in RY.

tance. We use uniform priors and the simple classi-
fication rule in eq. 4. We feel it is more compelling
that we are able to significantly improve upon stan-
dard edit distance and the MCI model without using
any lexicon or word model.

Memory Models Performance improves with the
addition of a direct dependence ofZi onZi−1. The
biggest improvement (27.65% ER) however comes
from conditioning onZ(t)

i−1, the target symbol that
is hypothesized in the previous step. There was no
gain when conditioning on the type of edit operation
in the previous frame.

Context Models Interestingly, the exact opposite
from the memory models is happening here when
we condition on the source context (versus condi-
tioning on the target context). Conditioning onsi
gets us to 21.70%. Withsi, si−1 we can further re-
duce the error rate to 20.26%. However, when we
add a third dependency, the error rate worsens to
29.32%, which indicates a number of parameters too
high for the given amount of training data. Backoff,
interpolation, or state clustering might all be appro-
priate strategies here.

Position Models Because in the previous mod-
els, when conditioning on the past, boundary condi-
tions dictate that we use a different CPT in the first
frame, it is fair to wonder whether part of the gain
we witness is due to the implicit dependence on the
source-target string position. The (small) improve-
ment due to conditioning onbi indicates there is such
dependence. Also, the fact that the target position is
more informative than the source one is likely due to
the misalignments we observed in the phonetically
transcribed corpus, whereby the first or last phones
would incorrectly be aligned with the previous or
next word resp. I.e., the model might be learning
to not put much faith in the start and end positions
of the target string, and thus it boosts deletion and
insertion probabilities at those positions. We have
also conditioned on coarser-grained positions (be-
ginning, middle, and end of string) but obtained the
same results as with the fine-grained dependency.

Length Models Modeling length helps to a small
extent when it is added to the MCI and MCD mod-
els. Belying the assumption motivating this model,
we found that the distribution over the RVinclen
(which controls how much the edit sequence extends
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beyond the length of the source string) is skewed to-
wards small values ofinclen. This indicates on that
insertions are rare when the source string is longer
than the target one and vice-versa for deletions.

Direct Model The low error rate obtained by this
model reflects its similarity to the context-dependent
model. From the two sets of results, it is clear that
source string context plays a crucial role in predict-
ing canonical pronunciations from corpus ones. We
would expect additional gains from modeling con-
text dependencies across time here as well.

Model Zi Dependencies % Err rate
Lev none 35.97

Baseline none 35.55

Memory

Zi−1 30.05
editOperationType(Zi−1) 36.16
stochastic binaryHi−1 33.87

Z
(s)
i−1 29.62

Z
(t)
i−1 27.65

Context

si 21.70
ti 32.06

si, si−1 20.26
ti, ti−1 28.21

si, si−1, sai+1 29.32
si, sai+1 (sai−1 in last frame) 23.14
si, sai−1 (sai+1 in first frame) 23.15

Position
ai 33.80
bi 31.06

ai, bi 34.17

Mixed bi,si 22.22
Z

(t)
i−1,si 24.26

Length none 33.56
si 20.03

Direct none 23.70

Table 1:DBN based model results summary.

When we combine the best position-dependent
or memory models with the context-dependent one,
the error rate decreases (from 31.31% to 25.25%
when conditioning onbi andsi; and from 28.28%
to 25.75% when conditioning onz(t)

i−1 andsi) but not
to the extent conditioning onsi alone decreases error
rate. Not shown in table 1, we also tried several other
models, which although they are able to produce
reasonable alignments (in the sense that the Leven-
shtein distance would result in similar alignments)
between two given strings, they have extremely poor
discriminative ability and result in error rates higher
than 90%. One such example is a model in which
Zi depends on bothsi andti. It is easy to see where
the problem lies with this model once one considers

that two very different strings might still get a higher
likelihood than more similar pair because, givens
andt s.t. s 6= t, the probability of identity is obvi-
ously zero and that of insertion or deletion can be
quite high; and whens = t, the probability of in-
sertion (or deletion) is still positive. We observe the
same non-discriminative behavior when we replace,
in the MCI model,Zi with a hidden RVXi, where
Xi takes as values one of the four edit operations.

5 Computational Considerations

The computational complexity of inference in a
graphical model is related to the state space of the
largest clique (maximal complete subgraph) in the
graph. In general, finding the smallest such clique is
NP-complete (Arnborg et al., 1987).

In the case of the MCI model, however, it is not
difficult to show that the smallest such clique con-
tains all the RVs within a frame and the complex-
ity of doing inference is orderO(mn ·max(m,n)).
The reason there is a complexity gap is that the
source and target position variables are indexed by
the frame number and we do not exploit the fact
that even though we arrive at a given source-target
position pair along different edit sequence paths at
different frames, the position pair is really the same
regardless of its frame index. We are investigating
generic ways of exploiting this constraint.

In practice, however, state space pruning can sig-
nificantly reduce the running time of DBN infer-
ence. Ukkonen (1985) reduces the complexity of the
classic edit distance toO(d·max(m,n)), whered is
the edit distance. The intuition there is that, assum-
ing a small edit distance, the most likely alignments
are such that the source position does not diverge too
much from the target position. The same intuition
holds in our case: if the source and the target posi-
tion do not get too far out of sync, then at each step,
only a small fraction of them · n possible source-
target position configurations need be considered.

The direct model, for example, is quite fast in
practice because we can restrict the cardinality of the
del RV to a constantc (i.e. we disallow long-span
deletions, which for certain applications is a reason-
able restriction) and make inference linear inn with
a running time constant proportional toc2.
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6 Conclusion
We have shown how the problem of learning edit
distance costs from data can be modeled quite
naturally using Dynamic Bayesian Networks even
though the problem lacks the temporal or order con-
straints that other problems such as speech recog-
nition exhibit. This gives us confidence that other
important problems such as machine translation can
benefit from a Graphical Models perspective. Ma-
chine translation presents a fresh set of challenges
because of the large combinatorial space of possible
alignments between the source string and the target.

There are several extensions to this work that we
intend to implement or have already obtained pre-
liminary results on. One is simple and block trans-
position. Another natural extension is modeling edit
distance of multiple strings.

It is also evident from the large number of depen-
dency structures that were explored that our learn-
ing algorithm would benefit from a structure learn-
ing procedure. Maximum likelihood optimization
might, however, not be appropriate in this case, as
exemplified by the failure of some models to dis-
criminate between different pronunciations. Dis-
criminative methods have been used with significant
success in training HMMs. Edit distance learning
could benefit from similar methods.
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Abstract

Stochastic Optimality Theory (Boersma,
1997) is a widely-used model in linguis-
tics that did not have a theoretically sound
learning method previously. In this pa-
per, a Markov chain Monte-Carlo method
is proposed for learning Stochastic OT
Grammars. Following a Bayesian frame-
work, the goal is finding the posterior dis-
tribution of the grammar given the rela-
tive frequencies of input-output pairs. The
Data Augmentation algorithm allows one
to simulate a joint posterior distribution by
iterating two conditional sampling steps.
This Gibbs sampler constructs a Markov
chain that converges to the joint distribu-
tion, and the target posterior can be de-
rived as its marginal distribution.

1 Introduction

Optimality Theory (Prince and Smolensky, 1993)
is a linguistic theory that dominates the field of
phonology, and some areas of morphology and syn-
tax. The standard version of OT contains the follow-
ing assumptions:

• A grammar is a set of ordered constraints({Ci :
i = 1, · · · , N}, >);

• Each constraintCi is a function: Σ∗ →
{0, 1, · · · }, whereΣ∗ is the set of strings in the
language;

∗The author thanks Bruce Hayes, Ed Stabler, Yingnian Wu,
Colin Wilson, and anonymous reviewers for their comments.

• Each underlying formu corresponds to a set
of candidatesGEN(u). To obtain the unique
surface form, the candidate set is successively
filtered according to the order of constraints, so
that only the most harmonic candidates remain
after each filtering. If only 1 candidate is left
in the candidate set, it is chosen as the optimal
output.

The popularity of OT is partly due to learning al-
gorithms that induce constraint ranking from data.
However, most of such algorithms cannot be ap-
plied to noisy learning data. Stochastic Optimality
Theory (Boersma, 1997) is a variant of Optimality
Theory that tries to quantitatively predict linguis-
tic variation. As a popular model among linguists
that are more engaged with empirical data than with
formalisms, Stochastic OT has been used in a large
body of linguistics literature.

In Stochastic OT, constraints are regarded as
independent normal distributions with unknown
means and fixed variance. As a result, the stochastic
constraint hierarchy generates systematic linguistic
variation. For example, consider a grammar with
3 constraints,C1 ∼ N(µ1, σ

2), C2 ∼ N(µ2, σ
2),

C3 ∼ N(µ3, σ
2), and 2 competing candidates for a

given inputx:

p(.) C1 C2 C3

x ∼ y1 .77 0 0 1
x ∼ y2 .23 1 1 0

Table 1: A Stochastic OT grammar

with 1 input and 2 outputs
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The probabilitiesp(.) are obtained by repeatedly
sampling the 3 normal distributions, generating the
winning candidate according to the ordering of con-
straints, and counting the relative frequencies in the
outcome. As a result, the grammar will assign non-
zero probabilities to a given set of outputs, as shown
above.

The learning problem of Stochastic OT involves
fitting a grammarG ∈ RN to a set of candidates
with frequency counts in a corpus. For example,
if the learning data is the above table, we need to
find an estimate ofG = (µ1, µ2, µ3)1 so that the
following ordering relations hold with certain prob-
abilities:

max{C1, C2} > C3; with probability.77
max{C1, C2} < C3; with probability.23

(1)

The current method for fitting Stochastic OT mod-
els, used by many linguists, is the Gradual Learn-
ing Algorithm (GLA) (Boersma and Hayes, 2001).
GLA looks for the correct ranking values by using
the following heuristic, which resembles gradient
descent. First, an input-output pair is sampled from
the data; second, an ordering of the constraints is
sampled from the grammar and used to generate an
output; and finally, the means of the constraints are
updated so as to minimize the error. The updating
is done by adding or subtracting a “plasticity” value
that goes to zero over time. The intuition behind
GLA is that it does “frequency matching”, i.e. look-
ing for a better match between the output frequen-
cies of the grammar and those in the data.

As it turns out, GLA does not work in all cases2,
and its lack of formal foundations has been ques-
tioned by a number of researchers (Keller and
Asudeh, 2002; Goldwater and Johnson, 2003).
However, considering the broad range of linguistic
data that has been analyzed with Stochastic OT, it
seems unadvisable to reject this model because of
the absence of theoretically sound learning meth-
ods. Rather, a general solution is needed to eval-
uate Stochastic OT as a model for linguistic varia-
tion. In this paper, I introduce an algorithm for learn-
ing Stochastic OT grammars using Markov chain
Monte-Carlo methods. Within a Bayesian frame-

1Up to translation by an additive constant.
2Two examples included in the experiment section. See 6.3.

work, the learning problem is formalized as find-
ing theposterior distributionof ranking values (G)
given the information on constraint interaction based
on input-output pairs (D). The posterior contains all
the information needed for linguists’ use: for exam-
ple, if there is a grammar that will generate the exact
frequencies as in the data, such a grammar will ap-
pear as a mode of the posterior.

In computation, the posterior distribution is sim-
ulated with MCMC methods because the likeli-
hood function has a complex form, thus making
a maximum-likelihood approach hard to perform.
Such problems are avoided by using theData Aug-
mentationalgorithm (Tanner and Wong, 1987) to
make computation feasible: to simulate the pos-
terior distributionG ∼ p(G|D), we augment the
parameter space and simulate a joint distribution
(G, Y ) ∼ p(G,Y |D). It turns out that by setting
Y as the value of constraints that observe the de-
sired ordering, simulating fromp(G,Y |D) can be
achieved with aGibbs sampler, which constructs a
Markov chain that converges to the joint posterior
distribution (Geman and Geman, 1984; Gelfand and
Smith, 1990). I will also discuss some issues related
to efficiency in implementation.

2 The difficulty of a maximum-likelihood
approach

Naturally, one may consider “frequency matching”
as estimating the grammar based on the maximum-
likelihood criterion. Given a set of constraints and
candidates, the data may be compiled in the form of
(1), on which the likelihood calculation is based. As
an example, given the grammar and data set in Table
1, the likelihood ofd=“max{C1, C2} > C3” can
be written asP (d|µ1, µ2, µ3)=

1− ∫ 0
−∞

∫ 0
−∞

1
2πσ2 exp

{
− ~fxy ·Σ·~fT

xy

2

}
dx dy

where~fxy = (x− µ1 + µ3, y − µ2 + µ3), andΣ
is the identity covariance matrix. The integral sign
follows from the fact that bothC1 − C2, C2 − C3

are normal, since each constraint is independently
normally distributed.

If we treat each data as independently generated
by the grammar, then the likelihood will be a prod-
uct of such integrals (multiple integrals if many con-
straints are interacting). One may attempt to max-
imize such a likelihood function using numerical
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methods3, yet it appears to be desirable to avoid like-
lihood calculations altogether.

3 The missing data scheme for learning
Stochastic OT grammars

The Bayesian approach tries to explorep(G|D),
the posterior distribution. Notice if we take the
usual approach by using the relationshipp(G|D) ∝
p(D|G) · p(G), we will encounter the same prob-
lem as in Section 2. Therefore we need a feasible
way of samplingp(G|D) without having to derive
the closed-form ofp(D|G).

The key idea here is the so-called “missing data”
scheme in Bayesian statistics: in a complex model-
fitting problem, the computation can sometimes be
greatly simplified if we treat part of the unknown
parameters as data and fit the model in successive
stages. To apply this idea, one needs to observe that
Stochastic OT grammars are learned fromordinal
data, as seen in (1). In other words, only one as-
pect of the structure generated by those normal dis-
tributions — the ordering of constraints — is used
to generate outputs.

This observation points to the possibility of
treating the sample values of constraints~y =
(y1, y2, · · · , yN ) that satisfy the ordering relations
as missing data. It is appropriate to refer to them
as “missing” because a language learner obviously
cannot observe real numbers from the constraints,
which are postulated by linguistic theory. When
the observed data are augmented with missing data
and become acomplete datamodel, computation be-
comes significantly simpler. This type of idea is of-
ficially known asData Augmentation(Tanner and
Wong, 1987). More specifically, we also make the
following intuitive observations:

• The complete data model consists of 3 random
variables: the observed ordering relationsD,
the grammarG, and the missing samples of
constraint valuesY that generate the ordering
D.

• G andY are interdependent:

– For each fixedd, values ofY that respectd
can be obtained easily onceG is given: we
just sample fromp(Y |G) and only keep

3Notice even computing the gradient is non-trivial.

those that observed. Then we letd vary
with its frequency in the data, and obtain
a sample ofp(Y |G,D);

– Once we have the values ofY that respect
the ranking relationsD, G becomes in-
dependent ofD. Thus, samplingG from
p(G|Y, D) becomes the same as sampling
from p(G|Y ).

4 Gibbs sampler for the joint posterior —
p(G, Y |D)

The interdependence ofG andY helps design iter-
ative algorithms for samplingp(G, Y |D). In this
case, since each step samples from a conditional
distribution (p(G|Y, D) or p(Y |G,D)), they can be
combined to form a Gibbs sampler (Geman and Ge-
man, 1984). In the same order as described in Sec-
tion 3, the two conditional sampling steps are imple-
mented as follows:

1. Sample an ordering relationd according to
the prior p(D), which is simply normalized
frequency counts; sample a vector of con-
straint valuesy = {y1, · · · , yN} from the nor-

mal distributionsN(µ(t)
1 , σ2), · · · , N(µ(t)

N , σ2)
such thaty observes the ordering ind;

2. Repeat Step 1 and obtainM samples of miss-
ing data: y1, · · · , yM ; sample µ

(t+1)
i from

N(
∑

j yj
i /M, σ2/M).

The grammarG = (µ1, · · · , µN ), and the su-
perscript(t) represents a sample ofG in iteration
t. As explained in 3, Step 1 samples missing data
from p(Y |G,D), and Step 2 is equivalent to sam-
pling from p(G|Y, D), by the conditional indepen-
dence ofG andD given Y . The normal posterior
distributionN(

∑
j yj

i /M, σ2/M) is derived by us-
ing p(G|Y ) ∝ p(Y |G)p(G), wherep(Y |G) is nor-
mal, andp(G) ∼ N(µ0, σ0) is chosen to be an non-
informative prior withσ0 →∞.

M (the number of missing data) is not a crucial
parameter. In our experiments,M is set to the total
number of observed forms4. Although it may seem
thatσ2/M is small for a largeM and does not play

4Other choices ofM , e.g.M = 1, lead to more or less the
same running time.
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a significant role in the sampling ofµ(t+1)
i , the vari-

ance of the sampling distribution is a necessary in-
gredient of the Gibbs sampler5.

Under fairly general conditions (Geman and Ge-
man, 1984), the Gibbs sampler iterates these two
steps until it converges to a unique stationary dis-
tribution. In practice, convergence can be monitored
by calculating cross-sample statistics from multiple
Markov chains with different starting points (Gel-
man and Rubin, 1992). After the simulation is
stopped at convergence, we will have obtained a
perfect sample ofp(G,Y |D). These samples can
be used to derive our target distributionp(G|D) by
simply keeping all theG components, sincep(G|D)
is a marginal distribution ofp(G,Y |D). Thus, the
sampling-based approach gives us the advantage of
doing inference without performing any integration.

5 Computational issues in implementation

In this section, I will sketch some key steps in the
implementation of the Gibbs sampler. Particular at-
tention is paid to samplingp(Y |G,D), since a direct
implementation may require an unrealistic running
time.

5.1 Computingp(D) from linguistic data

The prior probabilityp(D) determines the number
of samples (missing data) that are drawn under each
ordering relation. The following example illustrates
how the orderingD andp(D) are calculated from
data collected in a linguistic analysis. Consider a
data set that contains 2 inputs and a few outputs,
each associated with an observed frequency in the
lexicon:

C1 C2 C3 C4 C5 Freq.
x1 y11 0 1 0 1 0 4

y12 1 0 0 0 0 3
y13 0 1 1 0 1 0
y14 0 0 1 0 0 0

x2 y21 1 1 0 0 0 3
y22 0 0 1 1 1 0

Table 2: A Stochastic OT grammar with 2 inputs

The three ordering relations (corresponding to 3
attested outputs) andp(D) are computed as follows:

5As required by the proof in (Geman and Geman, 1984).

Ordering RelationD p(D)



C1>max{C2, C4}
max{C3, C5}>C4

C3>max{C2, C4}
.4





max{C2, C4}>C1
max{C2, C3, C5}>C1

C3>C1
.3

max{C3, C4, C5} > max{C1, C2} .3

Table 3: The ordering relationsD andp(D)

computed from Table 2.

Here each ordering relation has several conjuncts,
and the number of conjuncts is equal to the number
of competing candidates for each given input. These
conjuncts need to hold simultaneously because each
winning candidate needs to be more harmonic than
all other competing candidates. The probabilities
p(D) are obtained by normalizing the frequencies of
the surface forms in the original data. This will have
the consequence of placing more weight on lexical
items that occur frequently in the corpus.

5.2 Samplingp(Y |G,D) under complex
ordering relations

A direct implementationp(Y |G, d) is straightfor-
ward: 1) first obtainN samples fromN Gaussian
distributions; 2) check each conjunct to see if the
ordering relation is satisfied. If so, then keep the
sample; if not, discard the sample and try again.

However, this can be highly inefficient in many
cases. For example, ifm constraints appear in the
ordering relationd and the sample is rejected, the
N −m random numbers for constraints not appear-
ing in d are also discarded. Whend has several con-
juncts, the chance of rejecting samples for irrelevant
constraints is even greater.

In order to save the generated random
numbers, the vector Y can be decom-
posed into its 1-dimensional components
(Y1, Y2, · · · , YN ). The problem then becomes
samplingp(Y1, · · · , YN |G,D). Again, we may use
conditional sampling to drawyi one at a time: we
keepyj 6=i andd fixed6, and drawyi so thatd holds
for y. There are now two cases: ifd holds regardless
of yi, then any sample fromN(µ(t)

i , σ2) will do;
otherwise, we will need to drawyi from a truncated

6Here we useyj 6=i for all components ofy except thei-th
dimension.

349



normal distribution.
To illustrate this idea, consider an example used

earlier whered=“max{c1, c2} > c3”, and the ini-

tial sample and parameters are(y(0)
1 , y

(0)
2 , y

(0)
3 ) =

(µ(0)
1 , µ

(0)
2 , µ

(0)
3 ) = (1,−1, 0).

Sampling dist. Y1 Y2 Y3

p(Y1|µ1, Y1 > y3) 2.3799 -1.0000 0
p(Y2|µ2) 2.3799 -0.7591 0
p(Y3|µ3, Y3 < y1) 2.3799 -0.7591 -1.0328
p(Y1|µ1) -1.4823 -0.7591 -1.0328
p(Y2|µ2, Y2 > y3) -1.4823 2.1772 -1.0328
p(Y3|µ3, Y3 < y2) -1.4823 2.1772 1.0107

Table 4: Conditional sampling steps for

p(Y |G, d) = p(Y1, Y2, Y3|µ1, µ2, µ3, d)

Notice that in each step, the sampling density is
either just a normal, or a truncated normal distribu-
tion. This is because we only need to make sure that
d will continue to hold for the next sampley(t+1),
which differs fromy(t) by just 1 constraint.

In our experiment, sampling from truncated nor-
mal distributions is realized by using the idea ofre-
jection sampling: to sample from a truncated nor-
mal7 πc(x) = 1

Z(c) ·N(µ, σ) ·I{x>c}, we first find an
envelopedensity functiong(x) that is easy to sam-
ple directly, such thatπc(x) is uniformly bounded by
M · g(x) for some constantM that does not depend
onx. It can be shown that once each samplex from
g(x) is rejected with probabilityr(x) = 1− πc(x)

M ·g(x) ,
the resulting histogram will provide a perfect sample
for πc(x). In the current work, the exponential dis-
tribution g(x) = λ exp {−λx} is used as the enve-
lope, with the following choices forλ and the rejec-
tion ratior(x), which have been optimized to lower
the rejection rate:

λ =
c +

√
c + 4σ2

2σ2

r(x) = exp
{

(x + c)2

2
+ λ0(x + c)− σ2λ2

0

2

}

Putting these ideas together, the final version of
Gibbs sampler is constructed by implementing Step
1 in Section 4 as a sequence of conditional sam-
pling steps forp(Yi|Yj 6=i, d), and combining them

7Notice the truncated distribution needs to be re-normalized
in order to be a proper density.

with the sampling ofp(G|Y, D). Notice the order in
whichYi is updated is fixed, which makes our imple-
mentation an instance of thesystematic-scanGibbs
sampler (Liu, 2001). This implementation may be
improved even further by utilizing the structure of
the ordering relationd, and optimizing the order in
whichYi is updated.

5.3 Model identifiability

Identifiability is related to the uniqueness of solu-
tion in model fitting. GivenN constraints, a gram-
mar G ∈ RN is not identifiable becauseG + C
will have the same behavior asG for any constant
C = (c0, · · · , c0). To remove translation invariance,
in Step 2 the average ranking value is subtracted
from G, such that

∑
i µi = 0.

Another problem related to identifiability arises
when the data contains the so-called “categorical
domination”, i.e., there may be data of the follow-
ing form:

c1 > c2 with probability1.

In theory, the mode of the posterior tends to infin-
ity and the Gibbs sampler will not converge. Since
having categorical dominance relations is a com-
mon practice in linguistics, we avoid this problem
by truncating the posterior distribution8 by I|µ|<K ,
whereK is chosen to be a positive number large
enough to ensure that the model be identifiable. The
role of truncation/renormalization may be seen as a
strong prior that makes the model identifiable on a
bounded set.

A third problem related to identifiability occurs
when the posterior has multiple modes, which sug-
gests that multiple grammars may generate the same
output frequencies. This situation is common when
the grammar contains interactions between many
constraints, and greedy algorithms like GLA tend to
find one of the many solutions. In this case, one
can either introduce extra ordering relations or use
informative priors to samplep(G|Y ), so that the in-
ference on the posterior can be done with a relatively
small number of samples.

5.4 Posterior inference

Once the Gibbs sampler has converged to its station-
ary distribution, we can use the samples to make var-

8The implementation of sampling from truncated normals is
the same as described in 5.2.
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ious inferences on the posterior. In the experiments
reported in this paper, we are primarily interested in
the mode of the posterior marginal9 p(µi|D), where
i = 1, · · · , N . In cases where the posterior marginal
is symmetric and uni-modal, its mode can be esti-
mated by the sample median.

In real linguistic applications, the posterior
marginal may be a skewed distribution, and many
modes may appear in the histogram. In these cases,
more sophisticated non-parametric methods, such as
kernel density estimation, can be used to estimate
the modes. To reduce the computation in identifying
multiple modes, a mixture approximation (by EM
algorithm or its relatives) may be necessary.

6 Experiments

6.1 Ilokano reduplication

The following Ilokano grammar and data set, used
in (Boersma and Hayes, 2001), illustrate a complex
type of constraint interaction: the interaction be-
tween the three constraints:∗COMPLEX-ONSET,
ALIGN, andIDENTBR([long]) cannot be factored
into interactions between 2 constraints. For any
given candidate to be optimal, the constraint that
prefers such a candidate must simultaneously dom-
inate the other two constraints. Hence it is not im-
mediately clear whether there is a grammar that will
assign equal probability to the 3 candidates.

/HRED-bwaja/ p(.) ∗C-ONS AL IBR

bu:.bwa.ja .33 1 0 1
bwaj.bwa.ja .33 2 0 0
bub.wa.ja .33 0 1 0

Table 5: Data for Ilokano reduplication.

Since it does not address the problem of identifi-
ability, the GLA does not always converge on this
data set, and the returned grammar does not always
fit the input frequencies exactly, depending on the
choice of parameters10.

In comparison, the Gibbs sampler converges
quickly11, regardless of the parameters. The result
suggests the existence of a unique grammar that will

9Note G = (µ1, · · · , µN ), andp(µi|D) is a marginal of
p(G|D).

10B &H reported results of averaging many runs of the algo-
rithm. Yet there appears to be significant randomness in each
run of the algorithm.

11Within 1000 iterations.

assign equal probabilities to the 3 candidates. The
posterior samples and histograms are displayed in
Figure 1. Using the median of the marginal posteri-
ors, the estimated grammar generates an exact fit to
the frequencies in the input data.
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Figure 1: Posterior marginal samples and histograms for

Experiment 2.

6.2 Spanish diminutive suffixation

The second experiment uses linguistic data on Span-
ish diminutives and the analysis proposed in (Arbisi-
Kelm, 2002). There are 3 base forms, each as-
sociated with 2 diminutive suffixes. The gram-
mar consists of 4 constraints: ALIGN(TE,Word,R),
MAX-OO(V), DEP-IO and BaseTooLittle. The data
presents the problem of learning from noise, since
no Stochastic OT grammar can provide an exact fit
to the data: the candidate [ubita] violates an extra
constraint compared to [liri.ito], and [ubasita] vio-
lates the same constraint as [liryosito]. Yet unlike
[lityosito], [ubasita] is not observed.

Input Output Freq. A M D B
/uba/ [ubita] 10 0 1 0 1

[ubasita] 0 1 0 0 0
/mar/ [marEsito] 5 0 0 1 0

[marsito] 5 0 0 0 1
/liryo/ [liri.ito] 9 0 1 0 0

[liryosito] 1 1 0 0 0

Table 6: Data for Spanish diminutive suffixation.

In the results found by GLA, [marEsito] always
has a lower frequency than [marsito] (See Table 7).
This is not accidental. Instead it reveals a problem-
atic use of heuristics in GLA12: since the constraint
B is violated by [ubita], it is always demoted when-
ever the underlying form /uba/ is encountered dur-
ing learning. Therefore, even though the expected

12Thanks to Bruce Hayes for pointing out this problem.
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model assigns equal values toµ3 and µ4 (corre-
sponding toD and B, respectively),µ3 is always
less thanµ4, simply because there is more chance
of penalizingD rather thanB. This problem arises
precisely because of the heuristic (i.e. demoting
the constraint that prefers the wrong candidate) that
GLA uses to find the target grammar.

The Gibbs sampler, on the other hand, does not
depend on heuristic rules in its search. Since modes
of the posteriorp(µ3|D) andp(µ4|D) reside in neg-
ative infinity, the posterior is truncated byIµi<K ,
with K = 6, based on the discussion in 5.3. Re-
sults of the Gibbs sampler and two runs of GLA13

are reported in Table 7.

Input Output Obs Gibbs GLA1 GLA2

/uba/ [ubita] 100% 95% 96% 96%
[ubasita] 0% 5% 4% 4%

/mar/ [marEsito] 50% 50% 38% 45%
[marsito] 50% 50% 62% 55%

/liryo/ [liri.ito] 90% 95% 96% 91.4%
[liryosito] 10% 5% 4% 8.6%

Table 7: Comparison of Gibbs sampler and GLA

7 A comparison with Max-Ent models

Previously, problems with the GLA14 have inspired
other OT-like models of linguistic variation. One
such proposal suggests using the more well-known
Maximum Entropymodel (Goldwater and Johnson,
2003). In Max-Ent models, a grammarG is also
parameterized by a real vector of weightsw =
(w1, · · · , wN ), but the conditional likelihood of an
outputy given an inputx is given by:

p(y|x) =
exp{∑i wifi(y, x)}∑
z exp{∑i wifi(z, x)} (2)

wherefi(y, x) is the violation each constraint as-
signs to the input-output pair(x, y).

Clearly, Max-Ent is a rather different type of
model from Stochastic OT, not only in the use
of constraint ordering, but also in the objective
function (conditional likelihood rather than likeli-
hood/posterior). However, it may be of interest to
compare these two types of models. Using the same

13The two runs here both use 0.002 and 0.0001 as the final
plasticity. The initial plasticity and the iterations are set to 2
and 1.0e7. Slightly better fits can be found by tuning these pa-
rameters, but the observation remains the same.

14See (Keller and Asudeh, 2002) for a summary.

data as in 6.2, results of fitting Max-Ent (using con-
jugate gradient descent) and Stochastic OT (using
Gibbs sampler) are reported in Table 8:

Input Output Obs SOT ME MEsm

/uba/ [ubita] 100% 95% 100% 97.5%
[ubasita] 0% 5% 0% 2.5%

/mar/ [marEsito] 50% 50% 50% 48.8%
[marsito] 50% 50% 50% 51.2%

/liryo/ [liri.ito] 90% 95% 90% 91.4%
[liryosito] 10% 5% 10% 8.6%

Table 8: Comparison of Max-Ent and Stochastic OT models

It can be seen that the Max-Ent model, in the ab-
sence of a smoothing prior, fits the data perfectly by
assigning positive weights to constraintsB andD. A
less exact fit (denoted by MEsm) is obtained when
the smoothing Gaussian prior is used withµi = 0,
σ2

i = 1. But as observed in 6.2, an exact fit is im-
possible to obtain using Stochastic OT, due to the
difference in the way variation is generated by the
models. Thus it may be seen that Max-Ent is a more
powerful class of models than Stochastic OT, though
it is not clear how the Max-Ent model’s descriptive
power is related to generative linguistic theories like
phonology.

Although the abundance of well-behaved opti-
mization algorithms has been pointed out in favor
of Max-Ent models, it is the author’s hope that the
MCMC approach also gives Stochastic OT a sim-
ilar underpinning. However, complex Stochastic
OT models often bring worries about identifiability,
whereas the convexity property of Max-Ent may be
viewed as an advantage15.

8 Discussion

From a non-Bayesian perspective, the MCMC-based
approach can be seen as a randomized strategy for
learning a grammar. Computing resources make it
possible to explore the entire space of grammars and
discover where good hypotheses are likely to occur.
In this paper, we have focused on the frequently vis-
ited areas of the hypothesis space.

It is worth pointing out that the Graduate Learning
Algorithm can also be seen from this perspective.
An examination of the GLA shows that when the
plasticity term is fixed, parameters found by GLA
also form a Markov chainG(t) ∈ RN , t = 1, 2, · · · .
Therefore, assuming the model is identifiable, it

15Concerns about identifiability appear much more fre-
quently in statistics than in linguistics.
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seems possible to use GLA in the same way as the
MCMC methods: rather than forcing it to stop, we
can run GLA until it reaches stationary distribution,
if it exists.

However, it is difficult to interpret the results
found by this “random walk-GLA” approach: the
stationary distribution of GLA may not be the target
distribution — the posteriorp(G|D). To construct
a Markov chain that converges top(G|D), one may
consider turning GLA into a real MCMC algorithm
by designingreversible jumps, or theMetropolis al-
gorithm. But this may not be easy, due to the diffi-
culty in likelihood evaluation (including likelihood
ratio) discussed in Section 2.

In contrast, our algorithm provides a general solu-
tion to the problem of learning Stochastic OT gram-
mars. Instead of looking for a Markov chain inRN ,
we go to a higher dimensional spaceRN ×RN , us-
ing the idea of data augmentation. By taking advan-
tage of the interdependence ofG andY , the Gibbs
sampler provides a Markov chain that converges to
p(G,Y |D), which allows us to return to the original
subspace and derivep(G|D) — the target distribu-
tion. Interestingly, by adding more parameters, the
computation becomes simpler.

9 Future work

This work can be extended in two directions. First,
it would be interesting to consider other types of
OT grammars, in connection with the linguistics lit-
erature. For example, the variances of the normal
distribution are fixed in the current paper, but they
may also be treated as unknown parameters (Nagy
and Reynolds, 1997). Moreover, constraints may be
parameterized as mixture distributions, which rep-
resent other approaches to using OT for modeling
linguistic variation (Anttila, 1997).

The second direction is to introduce informative
priors motivated by linguistic theories. It is found
through experimentation that for more sophisticated
grammars, identifiability often becomes an issue:
some constraints may have multiple modes in their
posterior marginal, and it is difficult to extract modes
in high dimensions16. Therefore, use of priors is
needed in order to make more reliable inferences. In
addition, priors also have a linguistic appeal, since

16Notice that posterior marginals do not provide enough in-
formation for modes of the joint distribution.

current research on the “initial bias” in language ac-
quisition can be formulated as priors (e.g.Faithful-
ness Low(Hayes, 2004)) from a Bayesian perspec-
tive.

Implementing these extensions will merely in-
volve modifyingp(G|Y, D), which we leave for fu-
ture work.
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Abstract

Conditional random fields (Lafferty et al., 2001) are
quite effective at sequence labeling tasks like shal-
low parsing (Sha and Pereira, 2003) and named-
entity extraction (McCallum and Li, 2003). CRFs
are log-linear, allowing the incorporation of arbi-
trary features into the model. To train onunlabeled
data, we requireunsupervisedestimation methods
for log-linear models; few exist. We describe a novel
approach,contrastive estimation. We show that the
new technique can be intuitively understood as ex-
ploiting implicit negative evidenceand is computa-
tionally efficient. Applied to a sequence labeling
problem—POS tagging given a tagging dictionary
and unlabeled text—contrastive estimation outper-
forms EM (with the same feature set), is more robust
to degradations of the dictionary, and can largely re-
cover by modeling additional features.

1 Introduction

Finding linguistic structure in raw text is not easy.
The classical forward-backward and inside-outside
algorithms try to guide probabilistic models to dis-
cover structure in text, but they tend to get stuck in
local maxima (Charniak, 1993). Even when they
avoid local maxima (e.g., through clever initializa-
tion) they typically deviate from human ideas of
what the “right” structure is (Merialdo, 1994).

One strategy is to incorporate domain knowledge
into the model’s structure. Instead of blind HMMs
or PCFGs, one could use models whose features

∗This work was supported by a Fannie and John Hertz
Foundation fellowship to the first author and NSF ITR grant IIS-
0313193 to the second author. The views expressed are not nec-
essarily endorsed by the sponsors. The authors also thank three
anonymous ACL reviewers for helpful comments, colleagues
at JHU CLSP (especially David Smith and Roy Tromble) and
Miles Osborne for insightful feedback, and Eric Goldlust and
Markus Dreyer for Dyna language support.

are crafted to pay attention to a range of domain-
specific linguistic cues.Log-linearmodels can be so
crafted and have already achieved excellent perfor-
mance when trained onannotateddata, where they
are known as “maximum entropy” models (Ratna-
parkhi et al., 1994; Rosenfeld, 1994).

Our goal is to learn log-linear models from
unannotateddata. Since the forward-backward
and inside-outside algorithms are instances of
Expectation-Maximization (EM) (Dempster et al.,
1977), a natural approach is to construct EM algo-
rithms that handle log-linear models. Riezler (1999)
did so, then resorted to an approximation because
the true objective function was hard to normalize.

Stepping back from EM, we may generally en-
vision parameter estimation for probabilistic mod-
eling as pushing probability mass toward the train-
ing examples. We must consider not only where
the learner pushes the mass, but alsofrom wherethe
mass istaken. In this paper, we describe an alterna-
tive to EM: contrastive estimation(CE), which (un-
like EM) explicitly states the source of the probabil-
ity mass that is to be given to an example.1

One reason is to make normalizationefficient. In-
deed, CE generalizes EM and other practical tech-
niques used to train log-linear models, including
conditional estimation (for the supervised case) and
Riezler’s approximation (for the unsupervised case).

The other reason to use CE is to improveaccu-
racy. CE offers an additional way to inject domain
knowledge into unsupervised learning (Smith and
Eisner, 2005). CE hypothesizes that each positive
example in training implies a domain-specific set
of examples which are (for the most part) degraded
(§2). This class ofimplicit negative evidencepro-
vides the source of probability mass for the observed
example. We discuss the application of CE to log-
linear models in§3.

1Not to be confused withcontrastive divergenceminimiza-
tion (Hinton, 2003), a technique for training products of experts.
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We are particularly interested in log-linear models
over sequences, like the conditional random fields
(CRFs) of Lafferty et al. (2001) and weighted CFGs
(Miyao and Tsujii, 2002). For a given sequence, im-
plicit negative evidence can be represented as alat-
tice derived by finite-state operations (§4). Effec-
tiveness of the approach on POS tagging using un-
labeled data is demonstrated (§5). We discuss future
work (§6) and conclude (§7).

2 Implicit Negative Evidence

Natural language is a delicate thing. For any plausi-
ble sentence, there are many slight perturbations of
it that will make it implausible. Consider, for ex-
ample, the first sentence of this section. Suppose
we choose one of its six words at random and re-
move it; on this example, odds are two to one that
the resulting sentence will be ungrammatical. Or,
we could randomly choose two adjacent words and
transpose them; none of the results are valid conver-
sational English. The learner we describe here takes
into account not only the observed positive exam-
ple, but also a set of similar but deprecated negative
examples.

2.1 Learning setting

Let ~x = 〈x1, x2, ...〉, be our observed example sen-
tences, where eachxi ∈ X, and lety∗i ∈ Y be the
unobserved correct hidden structure forxi (e.g., a
POS sequence). We seek a model, parameterized by
~θ, such that the (unknown) correct analysisy∗i is the
best analysis forxi (under the model). Ify∗i were ob-
served, a variety of training criteria would be avail-
able (see Tab. 1), buty∗i is unknown, so none apply.
Typically one turns to the EM algorithm (Dempster
et al., 1977), which locally maximizes

∏
i

p
(
X = xi | ~θ

)
=

∏
i

∑
y∈Y

p
(
X = xi, Y = y | ~θ

)
(1)

whereX is a random variable over sentences and
Y a random variable over analyses (notation is of-
ten abbreviated, eliminating the random variables).
An often-used alternative to EM is a class of so-
called Viterbi approximations, which iteratively find
the probabilistically-best̂y and then, on each itera-
tion, solve a supervised problem (see Tab. 1).

joint likelihood (JL) ∏
i

p
(
xi, y

∗
i | ~θ

)
conditional
likelihood (CL)

∏
i

p
(
y∗i | xi, ~θ

)
classification
accuracy (Juang
and Katagiri, 1992)

∑
i

δ(y∗i , ŷ(xi))

expected
classification
accuracy (Klein and
Manning, 2002)

∑
i

p
(
y∗i | xi, ~θ

)

negated boosting
loss (Collins, 2000) −

∑
i

p
(
y∗i | xi, ~θ

)−1

margin (Crammer
and Singer, 2001)

γ s.t.‖~θ‖ ≤ 1;∀i,∀y 6= y∗i ,

~θ · (~f(xi, y
∗
i )− ~f(xi, y)) ≥ γ

expected local
accuracy (Altun et
al., 2003)

∏
i

∏
j

p
(
`j(Y ) = `j(y

∗
i ) | xi, ~θ

)
Table 1: Various supervised training criteria. All functions are
written so as to be maximized. None of these criteria are avail-
able forunsupervisedestimation because they all depend on the
correct label,y∗.

2.2 A new approach: contrastive estimation

Our approach instead maximizes∏
i

p
(
Xi = xi | Xi ∈ N(xi), ~θ

)
(2)

where the “neighborhood”N(xi) ⊆ X is a set of
implicit negative examples plus the examplexi it-
self. As in EM,p(xi | ..., ~θ) is found by marginal-
izing over hidden variables (Eq. 1). Note that the
x′ ∈ N(xi) are not treated as hard negative exam-
ples; we merely seek to move probability mass from
them to the observedx.

The neighborhood ofx, N(x), contains examples
that are perturbations ofx. We refer to the mapping
N : X → 2X as the neighborhood function, and the
optimization of Eq. 2 ascontrastive estimation(CE).

CE seeks to move probability mass from the
neighborhood of an observedxi to xi itself. The
learner hypothesizes that good models are those
which discriminate an observed example from its
neighborhood. Put another way, the learner assumes
not only thatxi is good, but thatxi is locally op-
timal in example space (X), and that alternative,
similar examples (from the neighborhood) are infe-
rior. Rather than explain all of the data, the model
must only explain (using hidden variables) why the
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observed sentence is better than its neighbors. Of
course, the validity of this hypothesis will depend
on the form of the neighborhood function.

Consider, as a concrete example, learning nat-
ural language syntax. In Smith and Eisner (2005),
we define a sentence’s neighborhood to be a set of
slightly-altered sentences that use the same lexemes,
as suggested at the start of this section. While their
syntax is degraded, the inferred meaning of any of
these altered sentences is typically close to the in-
tended meaning, yet the speakerchosex and not
one of the otherx′ ∈ N(x). Why? Deletions
are likely to violate subcategorization requirements,
and transpositions are likely to violate word order
requirements—both of which have something to do
with syntax.x was the most grammatical option that
conveyed the speaker’s meaning, hence (we hope)
roughly the most grammatical option in the neigh-
borhoodN(x), and the syntactic model should make
it so.

3 Log-Linear Models

We have not yet specified the form of our probabilis-
tic model, only that it is parameterized by~θ ∈ Rn.
Log-linear models, which we will show are a natural
fit for CE, assign probability to an (example, label)
pair (x, y) according to

p
(
x, y | ~θ

)
def
=

1

Z
(
~θ
)u

(
x, y | ~θ

)
(3)

where the “unnormalized score”u(x, y | ~θ) is

u
(
x, y | ~θ

)
def
= exp

(
~θ · ~f(x, y)

)
(4)

The notation above is defined as follows.~f : X ×
Y → Rn

≥0 is a nonnegative vector feature function,

and~θ ∈ Rn are the corresponding feature weights
(the model’s parameters). Because the features can
take any form and need not be orthogonal, log-linear
models can capture arbitrary dependencies in the
data and cleanly incorporate them into a model.

Z(~θ) (the partition function) is chosen so that∑
(x,y) p(x, y | ~θ) = 1; i.e.,Z(~θ) =

∑
(x,y) u(x, y |

~θ). u is typically easy to compute for a given(x, y),
but Z may be much harder to compute. All the ob-
jective functions in this paper take the form∏

i

∑
(x,y)∈Ai

p
(
x, y | ~θ

)
∑

(x,y)∈Bi
p

(
x, y | ~θ

) (5)

likelihood criterion Ai Bi

joint {(xi, y
∗
i )} X× Y

conditional {(xi, y
∗
i )} {xi} × Y

marginal (a là EM) {xi} × Y X× Y
contrastive {xi} × Y N(xi)× Y

Table 2: Supervised (upper box) and unsupervised (lower box)
estimation with log-linear models in terms of Eq. 5.

whereAi ⊂ Bi (for eachi). For log-linear models
this is simply∏

i

∑
(x,y)∈Ai

u
(
x, y | ~θ

)
∑

(x,y)∈Bi
u

(
x, y | ~θ

) (6)

So there is no need to computeZ(~θ), but wedoneed
to compute sums overA andB. Tab. 2 summarizes
some concrete examples; see also§3.1–3.2.

We would prefer to choose an objective function
such that these sums are easy. CE focuses on choos-
ing appropriate small contrast setsBi, both for effi-
ciency and to guide the learner. The natural choice
for Ai (which is usually easier to sum over) is the set
of (x, y) that are consistent with what was observed
(partially or completely) about theith training ex-
ample, i.e., the numerator

∑
(x,y)∈Ai

p(x, y | ~θ) is

designed to findp(observationi | ~θ). The idea is to
focus the probability mass withinBi on the subset
Ai where thei the training example is known to be.

It is possible to build log-linear models where
eachxi is a sequence.2 In this paper, each model
is a weighted finite-state automaton (WFSA) where
states correspond to POS tags. The parameter vector
~θ ∈ Rn specifies a weight for each of then transi-
tions in the automaton.y is a hidden path through
the automaton (determining a POS sequence), andx
is the string it emits.u(x, y | ~θ) is defined by ap-
plying exp to the total weight of all transitions iny.
This is an example of Eqs. 4 and 6 wherefj(x, y) is
the number of times the pathy takes thejth transi-
tion.

The partition functionZ(~θ) of the WFSA is found
by adding up theu-scores of all paths through the
WFSA. For ak-state WFSA, this equates to solving
a linear system ofk equations ink variables (Tarjan,
1981). But if the WFSA contains cycles this infi-
nite sum may diverge. Alternatives to exact com-

2These are exemplified by CRFs (Lafferty et al., 2001),
which can be viewed alternately as undirected dynamic graph-
ical models with a chain topology, as log-linear models over
entire sequences with local features, or as WFSAs. Because
“CRF” implies CL estimation, we use the term “WFSA.”
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putation, like random sampling (see, e.g., Abney,
1997), will not help to avoid this difficulty; in addi-
tion, convergence rates are in general unknown and
bounds difficult to prove. We would prefer to sum
over finitely many paths inBi.

3.1 Parameter estimation (supervised)

For log-linear models, both CL and JL estimation
(Tab. 1) are available. In terms of Eq. 5, both
set Ai = {(xi, y

∗
i )}. The difference is inB: for

JL, Bi = X × Y, so summing overBi is equiva-
lent to computing the partition functionZ(~θ). Be-
cause that sum is typically difficult, CL is preferred;
Bi = {xi} × Y for xi, which is often tractable.
For sequence models like WFSAs it is computed us-
ing a dynamic programming algorithm (the forward
algorithm for WFSAs). Klein and Manning (2002)
argue for CL on grounds of accuracy, but see also
Johnson (2001). See Tab. 2; other contrast setsBi

are also possible.
WhenBi contains onlyxi paired with the current

best competitor (̂y) to y∗i , we have a technique that
resembles maximum margin training (Crammer and
Singer, 2001). Note that̂y will then change across
training iterations, makingBi dynamic.

3.2 Parameter estimation (unsupervised)

The difference between supervised and unsuper-
vised learning is that in the latter case,Ai is forced
to sum over label sequencesy because they weren’t
observed. In the unsupervised case, CE maximizes

LN

(
~θ
)

= log
∏

i

∑
y∈Y

u
(
xi, y | ~θ

)
∑

(x,y)∈N(xi)×Y

u
(
x, y | ~θ

) (7)

In terms of Eq. 5,A = {xi}×Y andB = N(xi)×Y.
EM’s objective function (Eq. 1) is a special case
where N(xi) = X, for all i, and the denomina-
tor becomesZ(~θ). An alternative is to restrict the
neighborhood to the set of observed training exam-
ples rather than all possible examples (Riezler, 1999;
Johnson et al., 1999; Riezler et al., 2000):∏

i

[
u

(
xi | ~θ

) /∑
j

u
(
xj | ~θ

)]
(8)

Viewed as a CE method, this approach (though ef-
fective when there are few hypotheses) seems mis-
guided; the objective says to move mass to each ex-
ample at the expense of all other training examples.

Another variant isconditional EM. Let xi be a
pair (xi,1, xi,2) and define the neighborhood to be
N(xi) = {x̄ = (x̄1, xi,2)}. This approach has
been applied to conditional densities (Jebara and
Pentland, 1998) and conditional training of acoustic
models with hidden variables (Valtchev et al., 1997).

Generally speaking, CE is equivalent to some
kind of EM whenN(·) is an equivalence relation
on examples, so that the neighborhoods partitionX.
Then if q is any fixed (untrained) distribution over
neighborhoods, CE equates to running EM on the
model defined by

p′
(
x, y | ~θ

)
def
= q (N(x)) · p

(
x, y | N(x), ~θ

)
(9)

CE may also be viewed as an importance sam-
pling approximation to EM, where the sample space
X is replaced byN(xi). We will demonstrate ex-
perimentally that CE is not just an approximation to
EM; it makes sense from a modeling perspective.

In §4, we will describe neighborhoods of se-
quences that can be represented as acycliclattices
built directly from an observed sequence. The sum
overBi is then the totalu-score in our model of all
paths in the neighborhood lattice. To compute this,
intersect the WFSA and the lattice, obtaining a new
acyclicWFSA, and sum theu-scores of all its paths
(Eisner, 2002) using a simple dynamic programming
algorithm akin to the forward algorithm. The sum
overAi may be computed similarly.

CE with lattice neighborhoods is not confined to
the WFSAs of this paper; when estimating weighted
CFGs, the key algorithm is the inside algorithm for
lattice parsing (Smith and Eisner, 2005).

3.3 Numerical optimization

To maximize the neighborhood likelihood (Eq. 7),
we apply a standard numerical optimization method
(L-BFGS) that iteratively climbs the function using
knowledge of its value and gradient (Liu and No-
cedal, 1989). The partial derivative ofLN with re-
spect to thejth feature weightθj is

∂LN

∂θj
=

∑
i

E~θ [fj | xi]−E~θ [fj | N(xi)] (10)

This looks similar to the gradient of log-linear like-
lihood functions on complete data, though the ex-
pectation on the left is in those cases replaced by an
observed feature valuefj(xi, y

∗
i ). In this paper, the
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natural language is a delicate thing

a. DEL1WORD:
natural language is a delicate thing

language is a delicate thing

is a
delicate

thing ?:ε

? ?

b. TRANS1:
natural language a delicate thingis

delicate
is

is

a
natural

a

is a delicate thing

language

language

delicate
thing

: xx2 1x2x1 :

:x x2 3 :x x3 2

:x xm m−1
xm−1

:xm

? ?
...

(Each bigramxi+1
i in the sentence has an

arc pair(xi : xi+1, xi+1 : xi).)

c. DEL1SUBSEQ:
natural language is a delicate thing

language
is

is
a

a
a delicate thing

?:ε

?:ε

?:ε

?

?

?

?

ε

ε

Figure 1: A sentence and three lattices representing some of its neighborhoods. The transducer used to generate each neighborhood
lattice (via composition with the sentence, followed by determinization and minimization) is shown to its right.

expectations in Eq. 10 are computed by the forward-
backward algorithm generalized to lattices.

We emphasize that the functionLN is not glob-
ally concave; our search will lead only to a local op-
timum.3 Therefore, as with all unsupervised statisti-
cal learning, the bias in the initialization of~θ will af-
fect the quality of the estimate and the performance
of the method. In future we might wish to apply
techniques for avoiding local optima, such as deter-
ministic annealing (Smith and Eisner, 2004).

4 Lattice Neighborhoods

We next consider some non-classical neighborhood
functions for sequences. WhenX = Σ+ for some
symbol alphabetΣ, certain kinds of neighborhoods
have natural, compact representations. Given an in-
put string x = 〈x1, x2, ..., xm〉, we write xj

i for
the substring〈xi, xi+1, ..., xj〉 andxm

1 for the whole
string. Consider first the neighborhood consisting of
all sequences generated by deleting a single symbol
from them-length sequencexm

1 :

DEL1WORD(xm
1 ) =

{
x`−1

1 xm
`+1 | 1 ≤ ` ≤ m

}
∪ {xm

1 }

This set consists ofm + 1 strings and can be com-
pactly represented as a lattice (see Fig. 1a). Another

3Without any hidden variables,LN is globally concave.

neighborhood involves transposing any pair of adja-
cent words:

TRANS1(xm
1 ) =

{
x`−1

1 x`+1x`x
m
`+2 | 1 ≤ ` < m

}
∪ {xm

1 }

This set can also be compactly represented as a lat-
tice (Fig. 1b). We can combine DEL1WORD and
TRANS1 by taking their union; this gives a larger
neighborhood, DELORTRANS1.4

The DEL1SUBSEQneighborhood allows the dele-
tion of any contiguous subsequence of words that is
strictly smaller than the whole sequence. This lattice
is similar to that of DEL1WORD, but adds some arcs
(Fig. 1c); the size of this neighborhood isO(m2).

A final neighborhood we will consider is
LENGTH, which consists ofΣm. CE with the
LENGTH neighborhood is very similar to EM; it is
equivalent to using EM to estimate the parameters
of a model defined by Eq. 9 whereq is any fixed
(untrained) distribution over lengths.

When the vocabularyΣ is the set of words in a
natural language, it is never fully known; approx-
imations for defining LENGTH = Σm include us-
ing observedΣ from the training set (as we do) or
adding a specialOOV symbol.

4In general, the lattices are obtained by composing the ob-
served sequence with a small FST and determinizing and mini-
mizing the result; the relevant transducers are shown in Fig. 1.
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12K 24K 48K 96K
sel. oracle sel. oracle sel. oracle sel. oracle

CRF (supervised) 100.0 99.8 99.8 99.5

HMM (supervised) 99.3 98.5 97.9 97.2

LENGTH 74.9 77.4 78.7 81.5 78.3 81.3 78.9 79.3
DELORTR1 70.8 70.8 78.6 78.6 78.3 79.1 75.2 78.8
TRANS1 72.7 72.7 77.2 77.2 78.1 79.4 74.7 79.0
EM 49.5 52.9 55.5 58.0 59.4 60.9 60.9 62.1
DEL1WORD 55.4 55.6 58.6 60.3 59.9 60.2 59.9 60.4
DEL1SSQ 53.0 53.3 55.0 56.7 55.3 55.4 57.3 58.7
random expected 35.2 35.1 35.1 35.1

ambiguous words 6,244 12,923 25,879 51,521

Figure 2: Percent ambiguous words tagged correctly in the 96K dataset, as the smoothing parameter (λ in the case of EM,σ2 in the
CE cases) varies. The model selected from each criterion using unlabeled development data is circled in the plot. Dataset size is
varied in the table at right, which shows models selected using unlabeled development data (“sel.”) and using an oracle (“oracle,”
the highest point on a curve). Across conditions, some neighborhood roughly splits the difference between supervised models and
EM.

5 Experiments

We compare CE (using neighborhoods from§4)
with EM on POS tagging using unlabeled data.

5.1 Comparison with EM

Our experiments are inspired by those in
Merialdo (1994); we train a trigram tagger using
only unlabeled data, assuming complete knowledge
of the tagging dictionary.5 In our experiments,
we varied the amount of data available (12K–96K
words of WSJ), the heaviness of smoothing, and the
estimation criterion. In all cases, training stopped
when the relative change in the criterion fell below
10−4 between steps (typically≤ 100 steps). For this
corpus and tag set, on average, a tagger must decide
between 2.3 tags for a given token.

The generative model trained by EM was identical
to Merialdo’s: a second-order HMM. We smoothed
using a flat Dirichlet prior with single parameterλ
for all distributions (λ-values from 0 to 10 were
tested).6 The model was initialized uniformly.

The log-linear models trained by CE used the
same feature set, though the feature weights are no
longer log-probabilities and there are no sum-to-one
constraints. In addition to an unsmoothed trial, we
tried diagonal Gaussian priors (quadratic penalty)
with σ2 ranging from 0.1 to 10. The models were
initialized with allθj = 0.

Unsupervised model selection.For each (crite-

5Without a tagging dictionary, tag names are interchange-
able and cannot be evaluated on gold-standard accuracy. We
address the tagging dictionary assumption in§5.2.

6This is equivalent to add-λ smoothing within every M step.

rion, dataset) pair, we selected the smoothing trial
that gave the highest estimation criterion score on a
5K-word development set (also unlabeled).

Results. The plot in Fig. 2 shows the Viterbi ac-
curacy of each criterion trained on the 96K-word
dataset as smoothing was varied; the table shows,
for each (criterion, dataset) pair the performance of
the selectedλ or σ2 and the one chosen by an oracle.
LENGTH, TRANS1, and DELORTRANS1 are con-
sistently the best, far out-stripping EM. These gains
dwarf the performance of EM on over 1.1M words
(66.6% as reported by Smith and Eisner (2004)),
even when the latter uses improved search (70.0%).
DEL1WORD and DEL1SUBSEQ, on the other hand,
are poor, even worse than EM on larger datasets.

An important result is that neighborhoods do not
succeed by virtue ofapproximatinglog-linear EM;
if that were so, we would expect larger neighbor-
hoods (like DEL1SUBSEQ) to out-perform smaller
ones (like TRANS1)—this is not so. DEL1SUBSEQ

and DEL1WORD are poor because they do not give
helpful classes of negative evidence: deleting a word
or a short subsequence often does very little dam-
age. Put another way, models that do a good job of
explaining why no word or subsequence should be
deleted do not do so using the familiar POS cate-
gories.

The LENGTH neighborhood is as close to log-
linear EM as it is practical to get. The inconsis-
tencies in the LENGTH curve (Fig. 2) are notable
and also appeared at the other training set sizes.
Believing this might be indicative of brittleness in
Viterbi label selection, we computed theexpected
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DELORTRANS1 TRANS1 LENGTH EM
words in trigram

trigram
+ spelling trigram

trigram
+ spelling trigram

trigram
+ spelling trigram

tagging dict. sel. oracle sel. oracle sel. oracle sel. oracle sel. oracle sel. oracle sel. oracle ra
nd

om
ex
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ed

am
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ta
gs

/to
ke

n

all train & dev. 78.3 90.1 80.9 91.1 90.4 90.4 88.7 90.9 87.8 90.4 87.1 91.9 78.0 84.4 69.5 13,150 2.3

1st 500 sents. 72.3 84.8 80.2 90.8 80.8 82.9 88.1 90.1 68.1 78.3 76.9 83.2 77.2 80.5 60.5 13,841 3.7

count≥ 2 69.5 81.3 79.5 90.3 77.0 78.6 78.7 90.1 65.3 75.2 73.3 73.8 70.1 70.9 56.6 14,780 4.4

count≥ 3 65.0 77.2 78.3 89.8 71.7 73.4 78.4 89.5 62.8 72.3 73.2 73.6 66.5 66.5 51.0 15,996 5.5

Table 3: Percent ofall words correctly tagged in the 24K dataset, as the tagging dictionary is diluted. Unsupervised model selection
(“sel.”) and oracle model selection (“oracle”) across smoothing parameters are shown. Note that we evaluated onall words (unlike
Fig. 3) and used 17 coarse tags, giving higher scores than in Fig. 2.

accuracy of the LENGTH models; the same “dips”
were present. This could indicate that the learner
was trapped in a local maximum, suggesting that,
since other criteria did not exhibit this behavior,
LENGTH might be a bumpier objective surface. It
would be interesting to measure the bumpiness (sen-
sitivity to initial conditions) of different contrastive
objectives.7

5.2 Removing knowledge, adding features

The assumption that the tagging dictionary is com-
pletely known is difficult to justify. While a POS
lexicon might be available for a new language, cer-
tainly it will not give exhaustive information about
all word types in a corpus. We experimented with
removing knowledge from the tagging dictionary,
thereby increasing the difficulty of the task, to see
how well various objective functions could recover.
One means to recovery is the addition of features to
the model—this is easy with log-linear models but
not with classical generative models.

We compared the performance of the best
neighborhoods (LENGTH, DELORTRANS1, and
TRANS1) from the first experiment, plus EM, us-
ing threediluted dictionaries and the original one,
on the 24K dataset. A diluted dictionary adds (tag,
word) entries so that rare words are allowed with
any tag, simulating zero prior knowledge about the
word. “Rare” might be defined in different ways;
we used three definitions: words unseen in the first
500 sentences (about half of the 24K training cor-
pus); singletons (words with count≤ 1); and words
with count≤ 2. To allow more trials, we projected
the original 45 tags onto a coarser set of 17 (e.g.,

7A reviewer suggested including a table comparing different
criterion values for each learned model (i.e., each neighborhood
evaluated on each other neighborhood). This table contained no
big surprises; we note only that most models were the best on
their own criterion, and among unsupervised models, LENGTH
performed best on the CL criterion.

RB∗ →ADV).
To take better advantage of the power of log-

linear models—specifically, their ability to incorpo-
rate novel features—we also ran trials augmenting
the model withspellingfeatures, allowing exploita-
tion of correlations betweenpartsof the word and a
possible tag. Our spelling features included all ob-
served 1-, 2-, and 3-character suffixes, initial capital-
ization, containing a hyphen, and containing a digit.

Results. Fig. 3 plots tagging accuracy (on am-
biguous words) for each dictionary on the 24K
dataset. Thex-axis is the smoothing parameter (λ
for EM, σ2 for CE). Note that the different plots are
not comparable, because theiry-axes are based on
different sets of ambiguous words.

So that models under different dilution conditions
could be compared, we computed accuracy onall
words; these are shown in Tab. 3. The reader will
notice that there is often a large gap between unsu-
pervised and oracle model selection; this draws at-
tention to a need for better unsupervised regulariza-
tion and model selection techniques.

Without spelling features, all models perform
worse as knowledge is removed. But LENGTH suf-
fers most substantially, relative to its initial perfor-
mance. Why is this? LENGTH (like EM) requires
the model to explain why a given sentence was seen
instead of some other sentence of the same length.
One way to make this explanation is to manipulate
emission weights (i.e., for (tag, word) features): the
learner can construct a good class-basedunigram
model of the text (where classes are tags). This is
good for the LENGTH objective, but not for learning
good POS tag sequences.

In contrast, DELORTRANS1 and TRANS1 do not
allow the learner to manipulate emission weights for
words not in the sentence. The sentence’s good-
ness must be explained in a way other than by the
words it contains: namely through the POS tags. To
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check this intuition, we built local normalized mod-
els p(word | tag) from the parameters learned by
TRANS1 and LENGTH. For each tag, these were
compared by KL divergence to the empirical lexical
distributions (from labeled data). For the ten tags
accounting for 95.6% of the data, LENGTH more
closely matched the empirical lexical distributions.
LENGTH is learning a correct distribution, but that
distribution is not helpful for the task.

The improvement from adding spelling features
is striking: DELORTRANS1 and TRANS1 recover
nearly completely (modulo the model selection
problem) from the diluted dictionaries. LENGTH

sees far less recovery. Hence even our improved fea-
ture sets cannot compensate for the choice of neigh-
borhood. This highlights our argument that a neigh-
borhood is not an approximation to log-linear EM;
LENGTH tries very hard to approximate log-linear
EM but requires a good dictionary to be on par with
the other criteria. Good neighborhoods, rather, per-
form well in their own right.

6 Future Work

Foremost for future work is the “minimally super-
vised” paradigm in which a small amount of la-
beled data is available (see, e.g., Clark et al. (2003)).
Unlike well-known “bootstrapping” approaches
(Yarowsky, 1995), EM and CE have the possible ad-
vantage of maintaining posteriors over hidden labels
(or structure) throughout learning; bootstrapping ei-
ther chooses, for each example, a single label, or
remains completely agnostic. One can envision a
mixedobjective function that tries to fit the labeled
examples while discriminating unlabeled examples
from their neighborhoods.8

Regardless of how much (if any) data are labeled,
the question of good smoothing techniques requires
more attention. Here we used a single zero-mean,
constant-variance Gaussian prior for all parameters.
Better performance might be achieved by allowing
different variances for different feature types. This

8Zhu and Ghahramani (2002) explored the semi-supervised
classification problem for spatially-distributed data, where
some data are labeled, using a Boltzmann machine to model
the dataset. For them, the Markov random field is over label-
ing configurations for all examples, not, as in our case, com-
plex structured labels for a particular example. Hence theirB
(Eq. 5), though very large, was finite and could be sampled.

All train & development words are in the tagging dictionary:
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Figure 3: Percent ambiguous words tagged correctly (with
coarse tags) on the 24K dataset, as the dictionary is diluted and
with spelling features. Each graph corresponds to a different
level of dilution. Models selected using unlabeled development
data are circled. These plots (unlike Tab. 3) arenot compara-
ble to each other because each is measured on a different set of
ambiguous words.
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leads to a need for more efficient tuning of the prior
parameters on development data.

The effectiveness of CE (and different neighbor-
hoods) for dependency grammar induction is ex-
plored in Smith and Eisner (2005) with considerable
success. We introduce there the notion of design-
ing neighborhoods to guide learning for particular
tasks. Instead of guiding an unsupervised learner to
match linguists’ annotations, the choice of neighbor-
hood might be made to direct the learner toward hid-
den structure that is helpful for error-correction tasks
like spelling correction and punctuation restoration
that may benefit from a grammatical model.

Wang et al. (2002) discuss the latent maximum
entropy principle. They advocate running EM many
times and selecting the local maximum that maxi-
mizes entropy. One might do the same for the local
maxima of any CE objective, though theoretical and
experimental support for this idea remain for future
work.

7 Conclusion

We have presentedcontrastive estimation, a new
probabilistic estimation criterion that forces a model
to explain why the given training data were better
than bad data implied by the positive examples. We
have shown that for unsupervised sequence model-
ing, this technique is efficient and drastically out-
performs EM; for POS tagging, the gain in accu-
racy over EM is twice what we would get from ten
times as much data and improved search, sticking
with EM’s criterion (Smith and Eisner, 2004). On
this task, with certain neighborhoods, contrastive
estimation suffers less than EM does from dimin-
ished prior knowledge and is able to exploit new
features—that EM can’t—to largely recover from
the loss of knowledge.
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Abstract

Most current statistical natural language process-
ing models use only local features so as to permit
dynamic programming in inference, but this makes
them unable to fully account for the long distance
structure that is prevalent in language use. We
show how to solve this dilemma withGibbs sam-
pling, a simple Monte Carlo method used to per-
form approximate inference in factored probabilis-
tic models. By using simulated annealing in place
of Viterbi decoding in sequence models such as
HMMs, CMMs, and CRFs, it is possible to incorpo-
rate non-local structure while preserving tractable
inference. We use this technique to augment an
existing CRF-based information extraction system
with long-distance dependency models, enforcing
label consistency and extraction template consis-
tency constraints. This technique results in an error
reduction of up to 9% over state-of-the-art systems
on two established information extraction tasks.

1 Introduction

Most statistical models currently used in natural lan-
guage processing represent only local structure. Al-
though this constraint is critical in enabling tractable
model inference, it is a key limitation in many tasks,
since natural language contains a great deal of non-
local structure. A general method for solving this
problem is to relax the requirement of exact infer-
ence, substituting approximate inference algorithms
instead, thereby permitting tractable inference in
models with non-local structure. One such algo-
rithm isGibbs sampling, a simple Monte Carlo algo-
rithm that is appropriate for inference in any factored
probabilistic model, including sequence models and
probabilistic context free grammars (Geman and Ge-
man, 1984). Although Gibbs sampling is widely
used elsewhere, there has been extremely little use

of it in natural language processing.1 Here, we use
it to add non-local dependencies to sequence models
for information extraction.

Statistical hidden state sequence models, such
as Hidden Markov Models (HMMs) (Leek, 1997;
Freitag and McCallum, 1999), Conditional Markov
Models (CMMs) (Borthwick, 1999), and Condi-
tional Random Fields (CRFs) (Lafferty et al., 2001)
are a prominent recent approach to information ex-
traction tasks. These models all encode the Markov
property: decisions about the state at a particular po-
sition in the sequence can depend only on a small lo-
cal window. It is this property which allows tractable
computation: the Viterbi, Forward Backward, and
Clique Calibration algorithms all become intractable
without it.

However, information extraction tasks can benefit
from modeling non-local structure. As an example,
several authors (see Section 8) mention the value of
enforcing label consistency in named entity recogni-
tion (NER) tasks. In the example given in Figure 1,
the second occurrence of the tokenTanjug is mis-
labeled by our CRF-based statistical NER system,
because by looking only at local evidence it is un-
clear whether it is a person or organization. The first
occurrence ofTanjugprovides ample evidence that
it is an organization, however, and by enforcing la-
bel consistency the system should be able to get it
right. We show how to incorporate constraints of
this form into a CRF model by using Gibbs sam-
pling instead of the Viterbi algorithm as our infer-
ence procedure, and demonstrate that this technique
yields significant improvements on two established
IE tasks.

1Prior uses in NLP of which we are aware include: Kim et
al. (1995), Della Pietra et al. (1997) and Abney (1997).
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the news agency Tanjug reported . . . airport , Tanjug said .

Figure 1: An example of the label consistency problem excerpted from a document in the CoNLL 2003 English dataset.

2 Gibbs Sampling for Inference in
Sequence Models

In hidden state sequence models such as HMMs,
CMMs, and CRFs, it is standard to use the Viterbi
algorithm, a dynamic programming algorithm, to in-
fer the most likely hidden state sequence given the
input and the model (see, e.g., Rabiner (1989)). Al-
though this is the only tractable method for exact
computation, there are other methods for comput-
ing an approximate solution. Monte Carlo methods
are a simple and effective class of methods for ap-
proximate inference based on sampling. Imagine
we have a hidden state sequence model which de-
fines a probability distribution over state sequences
conditioned on any given input. With such a model
M we should be able to compute the conditional
probability PM (s|o) of any state sequences =
{s0, . . . , sN} given some observed input sequence
o = {o0, . . . , oN}. One can then sample se-
quences from the conditional distribution defined by
the model. These samples are likely to be in high
probability areas, increasing our chances of finding
the maximum. The challenge is how to sample se-
quences efficiently from the conditional distribution
defined by the model.

Gibbs samplingprovides a clever solution (Ge-
man and Geman, 1984). Gibbs sampling defines a
Markov chain in the space of possible variable as-
signments (in this case, hidden state sequences) such
that the stationary distribution of the Markov chain
is the joint distribution over the variables. Thus it
is called a Markov Chain Monte Carlo (MCMC)
method; see Andrieu et al. (2003) for a good MCMC
tutorial. In practical terms, this means that we
can walk the Markov chain, occasionally outputting
samples, and that these samples are guaranteed to
be drawn from the target distribution. Furthermore,
the chain is defined in very simple terms: from each
state sequence we can only transition to a state se-

quence obtained by changing the state at any one
position i, and the distribution over these possible
transitions is just

PG(s(t)|s(t−1)) = PM (s
(t)
i |s

(t−1)
−i ,o). (1)

wheres−i is all states exceptsi. In other words, the
transition probability of the Markov chain is the con-
ditional distribution of the label at the position given
the rest of the sequence. This quantity is easy to
compute in any Markov sequence model, including
HMMs, CMMs, and CRFs. One easy way to walk
the Markov chain is to loop through the positionsi

from 1 toN , and for each one, to resample the hid-
den state at that position from the distribution given
in Equation 1. By outputting complete sequences
at regular intervals (such as after resampling allN

positions), we can sample sequences from the con-
ditional distribution defined by the model.

This is still a gravely inefficient process, how-
ever. Random sampling may be a good way to es-
timate the shape of a probability distribution, but it
is not an efficient way to do what we want: find
the maximum. However, we cannot just transi-
tion greedily to higher probability sequences at each
step, because the space is extremely non-convex. We
can, however, borrow a technique from the study
of non-convex optimization and usesimulated an-
nealing (Kirkpatrick et al., 1983). Geman and Ge-
man (1984) show that it is easy to modify a Gibbs
Markov chain to do annealing; at timet we replace
the distribution in (1) with

PA(s(t)|s(t−1)) =
PM (s

(t)
i |s

(t−1)
−i ,o)1/ct

∑

j PM (s
(t)
j |s

(t−1)
−j ,o)1/ct

(2)

wherec = {c0, . . . , cT } defines acooling schedule.
At each step, we raise each value in the conditional
distribution to an exponent and renormalize before
sampling from it. Note that whenc = 1 the distri-
bution is unchanged, and asc → 0 the distribution
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Inference CoNLL Seminars
Viterbi 85.51 91.85
Gibbs 85.54 91.85
Sampling 85.51 91.85

85.49 91.85
85.51 91.85
85.51 91.85
85.51 91.85
85.51 91.85
85.51 91.85
85.51 91.86

Mean 85.51 91.85
Std. Dev. 0.01 0.004

Table 1: An illustration of the effectiveness of Gibbs sampling,
compared to Viterbi inference, for the two tasks addressed in
this paper: the CoNLL named entity recognition task, and the
CMU Seminar Announcements information extraction task. We
show 10 runs of Gibbs sampling in the same CRF model that
was used for Viterbi. For each run the sampler was initialized
to a random sequence, and used a linear annealing schedule that
sampled the complete sequence 1000 times. CoNLL perfor-
mance is measured as per-entity F1, and CMU Seminar An-
nouncements performance is measured as per-token F1.

becomes sharper, and whenc = 0 the distribution
places all of its mass on the maximal outcome, hav-
ing the effect that the Markov chain always climbs
uphill. Thus if we gradually decreasec from 1 to
0, the Markov chain increasingly tends to go up-
hill. This annealing technique has been shown to
be an effective technique for stochastic optimization
(Laarhoven and Arts, 1987).

To verify the effectiveness of Gibbs sampling and
simulated annealing as an inference technique for
hidden state sequence models, we compare Gibbs
and Viterbi inference methods for a basic CRF, with-
out the addition of any non-local model. The results,
given in Table 1, show that if the Gibbs sampler is
run long enough, its accuracy is the same as a Viterbi
decoder.

3 A Conditional Random Field Model

Our basic CRF model follows that of Lafferty et al.
(2001). We choose a CRF because it represents the
state of the art in sequence modeling, allowing both
discriminative training and the bi-directional flow of
probabilistic information across the sequence. A
CRF is a conditional sequence model which rep-
resents the probability of a hidden state sequence
given some observations. In order to facilitate ob-
taining the conditional probabilities we need for
Gibbs sampling, we generalize the CRF model in a

Feature NER TF
Current Word X X

Previous Word X X

Next Word X X

Current Word Character n-gram all length≤ 6
Current POS Tag X

Surrounding POS Tag Sequence X

Current Word Shape X X

Surrounding Word Shape Sequence X X

Presence of Word in Left Window size 4 size 9
Presence of Word in Right Window size 4 size 9

Table 2: Features used by the CRF for the two tasks: named
entity recognition (NER) and template filling (TF).

way that is consistent with the Markov Network lit-
erature (see Cowell et al. (1999)): we create a linear
chain ofcliques, where each clique,c, represents the
probabilistic relationship between an adjacent pair
of states2 using aclique potentialφc, which is just
a table containing a value for each possible state as-
signment. The table is not a true probability distribu-
tion, as it only accounts for local interactions within
the clique. The clique potentials themselves are de-
fined in terms of exponential models conditioned on
features of the observation sequence, and must be
instantiated for each new observation sequence. The
sequence of potentials in the clique chain then de-
fines the probability of a state sequence (given the
observation sequence) as

PCRF(s|o) ∝
N
∏

i=1

φi(si−1, si) (3)

whereφi(si−1, si) is the element of the clique po-
tential at positioni corresponding to statessi−1 and
si.3

Although a full treatment of CRF training is be-
yond the scope of this paper (our technique assumes
the model is already trained), we list the features
used by our CRF for the two tasks we address in
Table 2. During training, we regularized our expo-
nential models with a quadratic prior and used the
quasi-Newton method for parameter optimization.
As is customary, we used the Viterbi algorithm to
infer the most likely state sequence in a CRF.

2CRFs with larger cliques are also possible, in which case
the potentials represent the relationship between a subsequence
of k adjacent states, and contain|S|k elements.

3To handle the start condition properly, imagine also that we
define a distinguished start states0.
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The clique potentials of the CRF, instantiated for
some observation sequence, can be used to easily
compute the conditional distribution over states at
a position given in Equation 1. Recall that at posi-
tion i we want to condition on the states in the rest
of the sequence. The state at this position can be
influenced by any other state that it shares a clique
with; in particular, when the clique size is 2, there
are 2 such cliques. In this case the Markov blanket
of the state (the minimal set of states that renders
a state conditionally independent of all other states)
consists of the two neighboring states and the obser-
vation sequence, all of which are observed. The con-
ditional distribution at positioni can then be com-
puted simply as

PCRF(si|s−i,o) ∝ φi(si−1, si)φi+1(si, si+1) (4)

where the factor tablesF in the clique chain are al-
ready conditioned on the observation sequence.

4 Datasets and Evaluation

We test the effectiveness of our technique on two es-
tablished datasets: the CoNLL 2003 English named
entity recognition dataset, and the CMU Seminar
Announcements information extraction dataset.

4.1 The CoNLL NER Task

This dataset was created for the shared task of the
Seventh Conference on Computational Natural Lan-
guage Learning (CoNLL),4 which concerned named
entity recognition. The English data is a collection
of Reuters newswire articles annotated with four en-
tity types: person (PER), location (LOC), organi-
zation (ORG), andmiscellaneous(MISC). The data
is separated into a training set, a development set
(testa), and a test set (testb). The training set con-
tains 945 documents, and approximately 203,000 to-
kens. The development set has 216 documents and
approximately 51,000 tokens, and the test set has
231 documents and approximately 46,000 tokens.

We evaluate performance on this task in the man-
ner dictated by the competition so that results can be
properly compared. Precision and recall are evalu-
ated on a per-entity basis (and combined into an F1

score). There is no partial credit; an incorrect entity

4Available athttp://cnts.uia.ac.be/conll2003/ner/.

boundary is penalized as both a false positive and as
a false negative.

4.2 The CMU Seminar Announcements Task

This dataset was developed as part of Dayne Fre-
itag’s dissertation research Freitag (1998).5 It con-
sists of 485 emails containing seminar announce-
ments at Carnegie Mellon University. It is annotated
for four fields:speaker, location, start time, andend
time. Sutton and McCallum (2004) used 5-fold cross
validation when evaluating on this dataset, so we ob-
tained and used their data splits, so that results can
be properly compared. Because the entire dataset is
used for testing, there is no development set. We
also used their evaluation metric, which is slightly
different from the method for CoNLL data. Instead
of evaluating precision and recall on a per-entity ba-
sis, they are evaluated on a per-token basis. Then, to
calculate the overall F1 score, the F1 scores for each
class are averaged.

5 Models of Non-local Structure

Our models of non-local structure are themselves
just sequence models, defining a probability distri-
bution over all possible state sequences. It is pos-
sible to flexibly model various forms of constraints
in a way that is sensitive to the linguistic structure
of the data (e.g., one can go beyond imposing just
exact identity conditions). One could imagine many
ways of defining such models; for simplicity we use
the form

PM (s|o) ∝
∏

λ∈Λ

θ
#(λ,s,o)
λ (5)

where the product is over a set of violation typesΛ,
and for each violation typeλ we specify a penalty
parameterθλ. The exponent#(λ, s,o) is the count
of the number of times that the violationλ occurs
in the state sequences with respect to the observa-
tion sequenceo. This has the effect of assigning
sequences with more violations a lower probabil-
ity. The particular violation types are defined specif-
ically for each task, and are described in the follow-
ing two sections.

This model, as defined above, is not normalized,
and clearly it would be expensive to do so. This

5Available athttp://nlp.shef.ac.uk/dot.kom/resources.html.
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PER LOC ORG MISC

PER 3141 4 5 0
LOC 6436 188 3
ORG 2975 0
MISC 2030

Table 3: Counts of the number of times multiple occurrences of
a token sequence is labeled as different entity types in the same
document. Taken from the CoNLL training set.

PER LOC ORG MISC

PER 1941 5 2 3
LOC 0 167 6 63
ORG 22 328 819 191
MISC 14 224 7 365

Table 4: Counts of the number of times an entity sequence is
labeled differently from an occurrence of a subsequence of it
elsewhere in the document. Rows correspond to sequences, and
columns to subsequences. Taken from the CoNLL training set.

doesn’t matter, however, because we only use the
model for Gibbs sampling, and so only need to com-
pute the conditional distribution at a single position
i (as defined in Equation 1). One (inefficient) way
to compute this quantity is to enumerate all possi-
ble sequences differing only at positioni, compute
the score assigned to each by the model, and renor-
malize. Although it seems expensive, this compu-
tation can be made very efficient with a straightfor-
ward memoization technique: at all times we main-
tain data structures representing the relationship be-
tween entity labels and token sequences, from which
we can quickly compute counts of different types of
violations.

5.1 CoNLL Consistency Model

Label consistency structure derives from the fact that
within a particular document, different occurrences
of a particular token sequence are unlikely to be la-
beled as different entity types. Although any one
occurrence may be ambiguous, it is unlikely that all
instances are unclear when taken together.

The CoNLL training data empirically supports the
strength of the label consistency constraint. Table 3
shows the counts of entity labels for each pair of
identical token sequences within a document, where
both are labeled as an entity. Note that inconsis-
tent labelings are very rare.6 In addition, we also

6A notable exception is the labeling of the same text as both
organization and location within the same document. This isa
consequence of the large portion of sports news in the CoNLL

want to model subsequence constraints: having seen
Geoff Woodsearlier in a document as a person is
a good indicator that a subsequent occurrence of
Woodsshould also be labeled as a person. How-
ever, if we examine all cases of the labelings of
other occurrences of subsequences of a labeled en-
tity, we find that the consistency constraint does not
hold nearly so strictly in this case. As an exam-
ple, one document contains references to bothThe
China Daily, a newspaper, andChina, the country.
Counts of subsequence labelings within a document
are listed in Table 4. Note that there are many off-
diagonal entries: theChina Daily case is the most
common, occurring 328 times in the dataset.

The penalties used in the long distance constraint
model for CoNLL are the Empirical Bayes estimates
taken directly from the data (Tables 3 and 4), except
that we change counts of 0 to be 1, so that the dis-
tribution remains positive. So the estimate of aPER

also being anORG is 5
3151 ; there were5 instance of

an entity being labeled as both,PER appeared3150
times in the data, and we add1 to this for smoothing,
becausePER-MISC never occured. However, when
we have a phrase labeled differently in two differ-
ent places, continuing with thePER-ORG example,
it is unclear if we should penalize it asPER that is
also anORG or anORG that is also aPER. To deal
with this, we multiply the square roots of each esti-
mate together to form the penalty term. The penalty
term is then multiplied in a number of times equal
to the length of the offending entity; this is meant to
“encourage” the entity to shrink.7 For example, say
we have a document with three entities,Rotor Vol-
gogradtwice, once labeled asPERand once asORG,
andRotor, labeled as anORG. The likelihood of a
PER also being anORG is 5

3151 , and of anORG also
being aPER is 5

3169 , so the penalty for this violation

is (
√

5
3151 ×

√

5
3151 )2. The likelihood of aORG be-

ing a subphrase of aPER is 2
842 . So the total penalty

would be 5
3151 × 5

3169 × 2
842 .

dataset, so that city names are often also team names.
7While there is no theoretical justification for this, we found

it to work well in practice.
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5.2 CMU Seminar Announcements
Consistency Model

Due to the lack of a development set, our consis-
tency model for the CMU Seminar Announcements
is much simpler than the CoNLL model, the num-
bers where selected due to our intuitions, and we did
not spend much time hand optimizing the model.
Specifically, we had three constraints. The first is
that all entities labeled asstart time are normal-
ized, and are penalized if they are inconsistent. The
second is a corresponding constraint for end times.
The last constraint attempts to consistently label the
speakers. If a phrase is labeled as aspeaker, we as-
sume that the last word is the speaker’s last name,
and we penalize for each occurrance of that word
which is not also labeledspeaker. For the start and
end times the penalty is multiplied in based on how
many words are in the entity. For the speaker, the
penalty is only multiplied in once. We used a hand
selected penalty ofexp−4.0.

6 Combining Sequence Models

In the previous section we defined two models of
non-local structure. Now we would like to incor-
porate them into the local model (in our case, the
trained CRF), and use Gibbs sampling to find the
most likely state sequence. Because both the trained
CRF and the non-local models are themselves se-
quence models, we simply combine the two mod-
els into afactoredsequence model of the following
form

PF (s|o) ∝ PM (s|o)PL(s|o) (6)

whereM is the local CRF model,L is the new non-
local model, andF is the factored model.8 In this
form, the probability again looks difficult to com-
pute (because of the normalizing factor, a sum over
all hidden state sequences of lengthN ). However,
since we are only using the model for Gibbs sam-
pling, we never need to compute the distribution ex-
plicitly. Instead, we need only the conditional prob-
ability of each position in the sequence, which can
be computed as

PF (si|s−i,o) ∝ PM (si|s−i,o)PL(si|s−i,o). (7)

8This model double-generates the state sequence condi-
tioned on the observations. In practice we don’t find this to
be a problem.

CoNLL
Approach LOC ORG MISC PER ALL

B&M LT-RMN – – – – 80.09
B&M GLT-RMN – – – – 82.30
Local+Viterbi 88.16 80.83 78.51 90.36 85.51
NonLoc+Gibbs 88.51 81.72 80.43 92.29 86.86

Table 5: F1 scores of the local CRF and non-local models on the
CoNLL 2003 named entity recognition dataset. We also provide
the results from Bunescu and Mooney (2004) for comparison.

CMU Seminar Announcements
Approach STIME ETIME SPEAK LOC ALL

S&M CRF 97.5 97.5 88.3 77.3 90.2
S&M Skip-CRF 96.7 97.2 88.1 80.4 90.6
Local+Viterbi 96.67 97.36 83.39 89.98 91.85
NonLoc+Gibbs 97.11 97.89 84.16 90.00 92.29

Table 6: F1 scores of the local CRF and non-local models on
the CMU Seminar Announcements dataset. We also provide
the results from Sutton and McCallum (2004) for comparison.

At inference time, we then sample from the Markov
chain defined by this transition probability.

7 Results and Discussion

In our experiments we compare the impact of adding
the non-local models with Gibbs sampling to our
baseline CRF implementation. In the CoNLL named
entity recognition task, the non-local models in-
crease the F1 accuracy by about 1.3%. Although
such gains may appear modest, note that they are
achieved relative to a near state-of-the-art NER sys-
tem: the winner of the CoNLL English task reported
an F1 score of 88.76. In contrast, the increases pub-
lished by Bunescu and Mooney (2004) are relative
to a baseline system which scores only 80.9% on
the same task. Our performance is similar on the
CMU Seminar Announcements dataset. We show
the per-field F1 results that were reported by Sutton
and McCallum (2004) for comparison, and note that
we are again achieving gains against a more compet-
itive baseline system.

For all experiments involving Gibbs sampling, we
used a linear cooling schedule. For the CoNLL
dataset we collected 200 samples per trial, and for
the CMU Seminar Announcements we collected 100
samples. We report the average of all trials, and in all
cases we outperform the baseline with greater than
95% confidence, using the standard t-test. The trials
had low standard deviations - 0.083% and 0.007% -
and high minimun F-scores - 86.72%, and 92.28%
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- for the CoNLL and CMU Seminar Announce-
ments respectively, demonstrating the stability of
our method.

The biggest drawback to our model is the com-
putational cost. Taking 100 samples dramatically
increases test time. Averaged over 3 runs on both
Viterbi and Gibbs, CoNLL testing time increased
from 55 to 1738 seconds, and CMU Seminar An-
nouncements testing time increases from 189 to
6436 seconds.

8 Related Work

Several authors have successfully incorporated a
label consistency constraint into probabilistic se-
quence model named entity recognition systems.
Mikheev et al. (1999) and Finkel et al. (2004) in-
corporate label consistency information by using ad-
hoc multi-stage labeling procedures that are effec-
tive but special-purpose. Malouf (2002) and Curran
and Clark (2003) condition the label of a token at
a particular position on the label of the most recent
previous instance of that same token in a prior sen-
tence of the same document. Note that this violates
the Markov property, but is achieved by slightly re-
laxing the requirement of exact inference. Instead
of finding the maximum likelihood sequence over
the entire document, they classify one sentence at a
time, allowing them to condition on the maximum
likelihood sequence of previous sentences. This ap-
proach is quite effective for enforcing label consis-
tency in many NLP tasks, however, it permits a for-
ward flow of information only, which is not suffi-
cient for all cases of interest. Chieu and Ng (2002)
propose a solution to this problem: for each to-
ken, they define additional features taken from other
occurrences of the same token in the document.
This approach has the added advantage of allowing
the training procedure to automatically learn good
weightings for these “global” features relative to the
local ones. However, this approach cannot easily
be extended to incorporate other types of non-local
structure.

The most relevant prior works are Bunescu and
Mooney (2004), who use aRelational Markov Net-
work (RMN) (Taskar et al., 2002) to explicitly mod-
els long-distance dependencies, and Sutton and Mc-
Callum (2004), who introduceskip-chain CRFs,

which maintain the underlying CRF sequence model
(which (Bunescu and Mooney, 2004) lack) while
addingskip edgesbetween distant nodes. Unfortu-
nately, in the RMN model, the dependencies must
be defined in the model structure before doing any
inference, and so the authors use crude heuristic
part-of-speech patterns, and then add dependencies
between these text spans usingclique templates.
This generates a extremely large number of over-
lapping candidate entities, which then necessitates
additional templates to enforce the constraint that
text subsequences cannot both be different entities,
something that is more naturally modeled by a CRF.
Another disadvantage of this approach is that it uses
loopy belief propagationand a voted perceptron for
approximate learning and inference – ill-founded
and inherently unstable algorithms which are noted
by the authors to have caused convergence prob-
lems. In theskip-chain CRFsmodel, the decision
of which nodes to connect is also made heuristi-
cally, and because the authors focus on named entity
recognition, they chose to connect all pairs of identi-
cal capitalized words. They also utilize loopy belief
propagation for approximate learning and inference.

While the technique we propose is similar math-
ematically and in spirit to the above approaches, it
differs in some important ways. Our model is im-
plemented by adding additional constraints into the
model at inference time, and does not require the
preprocessing step necessary in the two previously
mentioned works. This allows for a broader class of
long-distance dependencies, because we do not need
to make any initial assumptions about which nodes
should be connected, and is helpful when you wish
to model relationships between nodes which are the
same class, but may not be similar in any other way.
For instance, in the CMU Seminar Announcements
dataset, we can normalize all entities labeled as a
start timeand penalize the model if multiple, non-
consistent times are labeled. This type of constraint
cannot be modeled in an RMN or a skip-CRF, be-
cause it requires the knowledge that both entities are
given the same class label.

We also allow dependencies between multi-word
phrases, and not just single words. Additionally,
our model can be applied on top of a pre-existing
trained sequence model. As such, our method does
not require complex training procedures, and can
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instead leverage all of the established methods for
training high accuracy sequence models. It can in-
deed be used in conjunction with any statistical hid-
den state sequence model: HMMs, CMMs, CRFs, or
even heuristic models. Third, our technique employs
Gibbs sampling for approximate inference, a simple
and probabilistically well-founded algorithm. As a
consequence of these differences, our approach is
easier to understand, implement, and adapt to new
applications.

9 Conclusions

We have shown that a constraint model can be effec-
tively combined with an existing sequence model in
a factored architecture to successfully impose var-
ious sorts of long distance constraints. Our model
generalizes naturally to other statistical models and
other tasks. In particular, it could in the future
be applied to statistical parsing. Statistical context
free grammars provide another example of statistical
models which are restricted to limiting local struc-
ture, and which could benefit from modeling non-
local structure.
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Abstract

The applicability of many current information ex-
traction techniques is severely limited by the need
for supervised training data. We demonstrate that
for certain field structuredextraction tasks, such
as classified advertisements and bibliographic ci-
tations, small amounts of prior knowledge can be
used to learn effective models in a primarily unsu-
pervised fashion. Although hidden Markov models
(HMMs) provide a suitable generative model for
field structured text, general unsupervised HMM
learning fails to learn useful structure in either of
our domains. However, one can dramatically im-
prove the quality of the learned structure by ex-
ploiting simple prior knowledge of the desired so-
lutions. In both domains, we found that unsuper-
vised methods can attain accuracies with 400 un-
labeled examples comparable to those attained by
supervised methods on 50 labeled examples, and
that semi-supervised methods can make good use
of small amounts of labeled data.

1 Introduction

Information extraction is potentially one of the most
useful applications enabled by current natural lan-
guage processing technology. However, unlike gen-
eral tools like parsers or taggers, which generalize
reasonably beyond their training domains, extraction
systems must be entirely retrained for each appli-
cation. As an example, consider the task of turn-
ing a set of diverse classified advertisements into a
queryable database; each type of ad would require
tailored training data for a supervised system. Ap-
proaches which required little or no training data
would therefore provide substantial resource savings
and extend the practicality of extraction systems.

The terminformation extractionwas introduced
in the MUC evaluations for the task of finding short
pieces of relevant information within a broader text

that is mainly irrelevant, and returning it in a struc-
tured form. For such “nugget extraction” tasks, the
use of unsupervised learning methods is difficult and
unlikely to be fully successful, in part because the
nuggets of interest are determined only extrinsically
by the needs of the user or task. However, the term
information extractionwas in time generalized to a
related task that we distinguish asfield segmenta-
tion. In this task, a document is regarded as a se-
quence of pertinent fields, and the goal is to segment
the document into fields, and to label the fields. For
example, bibliographic citations, such as the one in
Figure 1(a), exhibit clear field structure, with fields
such asauthor, title, anddate. Classified advertise-
ments, such as the one in Figure 1(b), also exhibit
field structure, if less rigidly: an ad consists of de-
scriptions of attributes of an item or offer, and a set
of ads for similar items share the same attributes. In
these cases, the fields present a salient, intrinsic form
of linguistic structure, and it is reasonable to hope
that field segmentation models could be learned in
an unsupervised fashion.

In this paper, we investigate unsupervised learn-
ing of field segmentation models in two domains:
bibliographic citations and classified advertisements
for apartment rentals. General, unconstrained induc-
tion of HMMs using the EM algorithm fails to detect
useful field structure in either domain. However, we
demonstrate that small amounts of prior knowledge
can be used to greatly improve the learned model. In
both domains, we found that unsupervised methods
can attain accuracies with 400 unlabeled examples
comparable to those attained by supervised methods
on 50 labeled examples, and that semi-supervised
methods can make good use of small amounts of la-
beled data.
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Figure 1: Examples of three domains for HMM learning: the bibliographic citation fields in (a) and classified advertisements for
apartment rentals shown in (b) exhibit field structure. Contrast these to part-of-speech tagging in (c) which does not.

2 Hidden Markov Models

Hidden Markov models (HMMs) are commonly
used to represent a wide range of linguistic phe-
nomena in text, including morphology, parts-of-
speech (POS), named entity mentions, and even
topic changes in discourse. An HMM consists of
a set of statesS, a set of observations (in our case
words or tokens)W , a transition model specify-
ing P(st|st−1), the probability of transitioning from
statest−1 to statest, and an emission model specify-
ing P(w|s) the probability of emitting wordw while
in states. For a good tutorial on general HMM tech-
niques, see Rabiner (1989).

For all of the unsupervised learning experiments
we fit an HMM with the same number of hidden
states as gold labels to an unannotated training set
using EM.1 To compute hidden state expectations
efficiently, we use the Forward-Backward algorithm
in the standard way. Emission models are initialized
to almost-uniform probability distributions, where
a small amount of noise is added to break initial
symmetry. Transition model initialization varies by
experiment. We run the EM algorithm to conver-
gence. Finally, we use the Viterbi algorithm with
the learned parameters to label the test data.

All baselines and experiments use the same tok-
enization, normalization, and smoothing techniques,
which were not extensively investigated. Tokeniza-
tion was performed in the style of the Penn Tree-
bank, and tokens were normalized in various ways:
numbers, dates, phone numbers, URLs, and email

1EM is a greedy hill-climbing algorithm designed for this
purpose, but it is not the only option; one could also use coordi-
nate ascent methods or sampling methods.

addresses were collapsed to dedicated tokens, and
all remaining tokens were converted to lowercase.
Unless otherwise noted, the emission models use
simple add-λ smoothing, whereλ was0.001 for su-
pervised techniques, and0.2 for unsupervised tech-
niques.

3 Datasets and Evaluation

The bibliographic citations data is described in
McCallum et al. (1999), and is distributed at
http://www.cs.umass.edu/~mccallum/. It consists of
500 hand-annotated citations, each taken from the
reference section of a different computer science re-
search paper. The citations are annotated with 13
fields, includingauthor, title, date, journal, and so
on. The average citation has 35 tokens in 5.5 fields.
We split this data, using its natural order, into a 300-
document training set, a 100-document development
set, and a 100-document test set.

The classified advertisements data set is
novel, and consists of 8,767 classified ad-
vertisements for apartment rentals in the San
Francisco Bay Area downloaded in June 2004
from the Craigslist website. It is distributed at
http://www.stanford.edu/~grenager/. 302 of the
ads have been labeled with 12 fields, including
size, rent, neighborhood, features, and so on.
The average ad has 119 tokens in 8.7 fields. The
annotated data is divided into a 102-document
training set, a 100-document development set,
and a 100-document test set. The remaining 8465
documents form an unannotated training set.

In both cases, all system development and param-
eter tuning was performed on the development set,
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Figure 2: Matrix representations of the target transition structure in two field structured domains: (a) classified advertisements
(b) bibliographic citations. Columns and rows are indexed by the same sequence of fields. Also shown is (c) a submatrix of the
transition structure for a part-of-speech tagging task. Inall cases the column labels are the same as the row labels.

and the test set was only used once, for running fi-
nal experiments. Supervised learning experiments
train on documents selected randomly from the an-
notated training set and test on the complete test set.
Unsupervised learning experiments also test on the
complete test set, but create a training set by first
adding documents from the test set (without anno-
tation), then adding documents from the annotated
training set (without annotation), and finally adding
documents from the unannotated training set. Thus
if an unsupervised training set is larger than the test
set, it fully contains the test set.

To evaluate our models, we first learn a set of
model parameters, and then use the parameterized
model to label the sequence of tokens in the test data
with the model’s hidden states. We then compare
the similarity of the guessed sequence to the human-
annotated sequence of gold labels, and compute ac-
curacy on a per-token basis.2 In evaluation of su-
pervised methods, the model states and gold labels
are the same. For models learned in a fully unsuper-
vised fashion, we map each model state in a greedy
fashion to the gold label to which it most often cor-
responds in the gold data. There is a worry with
this kind of greedy mapping: it increasingly inflates
the results as the number of hidden states grows. To
keep the accuracies meaningful, all of our models
have exactly the same number of hidden states as
gold labels, and so the comparison is valid.

2This evaluation method is used by McCallum et al. (1999)
but otherwise is not very standard. Compared to other evalu-
ation methods for information extraction systems, it leadsto a
lower penalty for boundary errors, and allows long fields also
contribute more to accuracy than short ones.

4 Unsupervised Learning

Consider the general problem of learning an HMM
from an unlabeled data set. Even abstracting away
from concrete search methods and objective func-
tions, the diversity and simultaneity of linguistic
structure is already worrying; in Figure 1 compare
the field structure in (a) and (b) to the parts-of-
speech in (c). If strong sequential correlations exist
at multiple scales, any fixed search procedure will
detect and model at most one of these levels of struc-
ture, not necessarily the level desired at the moment.
Worse, as experience with part-of-speech and gram-
mar learning has shown, induction systems are quite
capable of producing some uninterpretable mix of
various levels and kinds of structure.

Therefore, if one is to preferentially learn one
kind of inherent structure over another, there must
be some way of constraining the process. We could
hope that field structure is the strongest effect in
classified ads, while parts-of-speech is the strongest
effect in newswire articles (or whatever we would
try to learn parts-of-speech from). However, it is
hard to imagine how one could bleach the local
grammatical correlations and long-distance topical
correlations from our classified ads; they are still
English text with part-of-speech patterns. One ap-
proach is to vary the objective function so that the
search prefers models which detect the structures
which we have in mind. This is the primary way
supervised methods work, with the loss function rel-
ativized to training label patterns. However, for un-
supervised learning, the primary candidate for an
objective function is the data likelihood, and we
don’t have another suggestion here. Another ap-
proach is to inject some prior knowledge into the
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search procedure by carefully choosing the starting
point; indeed smart initialization has been critical
to success in many previous unsupervised learning
experiments. The central idea of this paper is that
we can instead restrict the entire search domain by
constraining the model class to reflect the desired
structure in the data, thereby directing the search to-
ward models of interest. We do this in several ways,
which are described in the following sections.

4.1 Baselines

To situate our results, we provide three different
baselines (see Table 1). First is the most-frequent-
field accuracy, achieved by labeling all tokens with
the same single label which is then mapped to the
most frequent field. This gives an accuracy of46.4%
on the advertisements data and27.9% on the cita-
tions data. The second baseline method is to pre-
segment the unlabeled data using a crude heuristic
based on punctuation, and then to cluster the result-
ing segments using a simple Naı̈ve Bayes mixture
model with the Expectation-Maximization (EM) al-
gorithm. This approach achieves an accuracy of
62.4% on the advertisements data, and46.5% on the
citations data.

As a final baseline, we trained a supervised first-
order HMM from the annotated training data using
maximum likelihood estimation. With 100 training
examples, supervised models achieve an accuracy of
74.4% on the advertisements data, and72.5% on the
citations data. With 300 examples, supervised meth-
ods achieve accuracies of80.4 on the citations data.
The learning curves of the supervised training ex-
periments for different amounts of training data are
shown in Figure 4. Note that other authors have
achieved much higher accuracy on the the citation
dataset using HMMs trained with supervision: Mc-
Callum et al. (1999) report accuracies as high as
92.9% by using more complex models and millions
of words of BibTeX training data.

4.2 Unconstrained HMM Learning

From the supervised baseline above we know that
there is some first-order HMM over|S| states which
captures the field structure we’re interested in, and
we would like to find such a model without super-
vision. As a first attempt, we try fitting an uncon-
strained HMM, where the transition function is ini-
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(b) Citations

Figure 3: Matrix representations of typical transition models
learned by initializing the transition model uniformly.

tialized randomly, to the unannotated training data.
Not surprisingly, the unconstrained approach leads
to predictions which poorly align with the desired
field segmentation: with 400 unannotated training
documents, the accuracy is just48.8% for the ad-
vertisements and49.7% for the citations: better than
the single state baseline but far from the supervised
baseline. To illustrate what is (and isn’t) being
learned, compare typical transition models learned
by this method, shown in Figure 3, to the maximum-
likelihood transition models for the target annota-
tions, shown in Figure 2. Clearly, they aren’t any-
thing like the target models: the learned classified
advertisements matrix has some but not all of the
desired diagonal structure, and the learned citations
matrix has almost no mass on the diagonal, and ap-
pears to be modeling smaller scale structure.

4.3 Diagonal Transition Models

To adjust our procedure to learn larger-scale pat-
terns, we can constrain the parametric form of the
transition model to be

P(st|st−1) =







σ + (1−σ)
|S| if st = st−1

(1−σ)
|S| otherwise

where|S| is the number of states, andσ is a global
free parameter specifying the self-loop probability:
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(a) Classified advertisements

(b) Bibliographic citations

Figure 4: Learning curves for supervised learning and unsuper-
vised learning with a diagonal transition matrix on (a) classified
advertisements, and (b) bibliographic citations. Resultsare av-
eraged over 50 runs.

the probability of a state transitioning to itself. (Note
that the expected mean field length for transition
functions of this form is 1

1−σ
.) This constraint pro-

vides a notable performance improvement: with 400
unannotated training documents the accuracy jumps
from 48.8% to 70.0% for advertisements and from
49.7% to66.3% for citations. The complete learning
curves for models of this form are shown in Figure 4.
We have tested training on more unannotated data;
the slope of the learning curve is leveling out, but
by training on8000 unannotated ads, accuracy im-
proves significantly to72.4%. On the citations task,
an accuracy of approximately66% can be achieved
either using supervised training on50 annotated ci-
tations, or unsupervised training using400 unanno-
tated citations.3

Although σ can easily be reestimated with EM
(even on a per-field basis), doing so does not yield

3We also tested training on 5000 additional unannotated ci-
tations collected from papers found on the Internet. Unfortu-
nately the addition of this data didn’t help accuracy. This prob-
ably results from the fact that the datasets were collected from
different sources, at different times.

Figure 5: Unsupervised accuracy as a function of the expected
mean field length 1

1−σ
for the classified advertisements dataset.

Each model was trained with 500 documents and tested on the
development set. Results are averaged over 50 runs.

better models.4 On the other hand, model accuracy
is not very sensitive to the exact choice ofσ, as
shown in Figure 5 for the classified advertisements
task (the result for the citations task has a similar
shape). For the remaining experiments on the adver-
tisements data, we useσ = 0.9, and for those on the
citations data, we useσ = 0.5.

4.4 Hierarchical Mixture Emission Models

Consider the highest-probability state emissions
learned by the diagonal model, shown in Figure 6(a).
In addition to its characteristic content words, each
state also emits punctuation and English function
words devoid of content. In fact, state 3 seems to
have specialized entirely in generating such tokens.
This can become a problem when labeling decisions
are made on the basis of the function words rather
than the content words. It seems possible, then,
that removing function words from the field-specific
emission models could yield an improvement in la-
beling accuracy.

One way to incorporate this knowledge into the
model is to delete stopwords, which, while perhaps
not elegant, has proven quite effective in the past.
A better founded way of making certain words un-
available to the model is to emit those words from
all states with equal probability. This can be accom-
plished with the following simple hierarchical mix-
ture emission model

Ph(w|s) = αPc(w) + (1 − α)P(w|s)

wherePc is the common word distribution, andα is
4While it may be surprising that disallowing reestimation of

the transition function is helpful here, the same has been ob-
served in acoustic modeling (Rabiner and Juang, 1993).
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State 10 Most Common Words
1 . $ no ! month deposit , pets rent avail-

able
2 , . room and with in large living kitchen

-
3 . a the is and for this to , in
4 [NUM1] [NUM0] , bedroom bath / - .

car garage
5 , . and a in - quiet with unit building
6 - . [TIME] [PHONE] [DAY] call

[NUM8] at

(a)

State 10 Most Common Words
1 [NUM2] bedroom [NUM1] bath bed-

rooms large sq car ft garage
2 $ no month deposit pets lease rent avail-

able year security
3 kitchen room new , with living large

floors hardwood fireplace
4 [PHONE] call please at or for [TIME] to

[DAY] contact
5 san street at ave st # [NUM:DDD] fran-

cisco ca [NUM:DDDD]
6 of the yard with unit private back a

building floor
Comm. *CR* . , and - the in a / is with : of for

to

(b)

Figure 6: Selected state emissions from a typical model learned
from unsupervised data using the constrained transition func-
tion: (a) with a flat emission model, and (b) with a hierarchical
emission model.

a new global free parameter. In such a model, before
a state emits a token it flips a coin, and with probabil-
ity α it allows the common word distribution to gen-
erate the token, and with probability(1−α) it gener-
ates the token from its state-specific emission model
(see Vaithyanathan and Dom (2000) and Toutanova
et al. (2001) for more on such models). We tuned
α on the development set and found that a range of
values work equally well. We used a value of0.5 in
the following experiments.

We ran two experiments on the advertisements
data, both using the fixed transition model described
in Section 4.3 and the hierarchical emission model.
First, we initialized the emission model ofPc to a
general-purpose list of stopwords, and did not rees-
timate it. This improved the average accuracy from
70.0% to 70.9%. Second, we learned the emission
model ofPc using EM reestimation. Although this
method did not yield a significant improvement in
accuracy, it learns sensible common words: Fig-
ure 6(b) shows a typical emission model learned
with this technique. Unfortunately, this technique

does not yield improvements on the citations data.

4.5 Boundary Models

Another source of error concerns field boundaries.
In many cases, fields are more or less correct, but the
boundaries are off by a few tokens, even when punc-
tuation or syntax make it clear to a human reader
where the exact boundary should be. One way to ad-
dress this is to model the fact that in this data fields
often end with one of a small set of boundary tokens,
such as punctuation and new lines, which are shared
across states.

To accomplish this, we enriched the Markov pro-
cess so that each fields is now modeled by two
states, a non-finals− ∈ S− and a finals+ ∈ S+.
The transition model for final states is the same as
before, but the transition model for non-final states
has two new global free parameters:λ, the probabil-
ity of staying within the field, andµ, the probability
of transitioning to the final state given that we are
staying in the field. The transition function for non-
final states is then

P(s′|s−) =



























(1 − µ)(λ + (1−λ)
|S−| ) if s′ = s−

µ(λ + (1−λ)
|S−| ) if s′ = s+

(1−λ)
|S−| if s′ ∈ S−\s−

0 otherwise.

Note that it can bypass the final state, and transi-
tion directly to other non-final states with probabil-
ity (1 − λ), which models the fact that not all field
occurrences end with a boundary token. The transi-
tion function for non-final states is then

P(s′|s+) =















σ + (1−σ)
|S−| if s′ = s−

(1−σ)
|S−| if s′ ∈ S−\s−

0 otherwise.

Note that this has the form of the standard diagonal
function. The reason for the self-loop from the fi-
nal state back to the non-final state is to allow for
field internal punctuation. We tuned the free param-
eters on the development set, and found thatσ = 0.5
andλ = 0.995 work well for the advertisements do-
main, andσ = 0.3 andλ = 0.9 work well for the
citations domain. In all cases it works well to set
µ = 1 − λ. Emissions from non-final states are as
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Ads Citations
Baseline 46.4 27.9
Segment and cluster 62.4 46.5
Supervised 74.4 72.5
Unsup. (learned trans) 48.8 49.7
Unsup. (diagonal trans) 70.0 66.3
+ Hierarchical (learned) 70.1 39.1
+ Hierarchical (given) 70.9 62.1
+ Boundary (learned) 70.4 64.3
+ Boundary (given) 71.9 68.2
+ Hier. + Bnd. (learned) 71.0 —
+ Hier. + Bnd. (given) 72.7 —

Table 1: Summary of results. For each experiment, we report
percentage accuracy on the test set. Supervised experiments
use 100 training documents, and unsupervised experiments use
400 training documents. Because unsupervised techniques are
stochastic, those results are averaged over 50 runs, and differ-
ences greater than 1.0% are significant at p=0.05% or better ac-
cording to the t-test. The last 6 rows are not cumulative.

before (hierarchical or not depending on the experi-
ment), while all final states share a boundary emis-
sion model. Note that the boundary emissions are
not smoothed like the field emissions.

We tested both supplying the boundary token dis-
tributions and learning them with reestimation dur-
ing EM. In experiments on the advertisements data
we found that learning the boundary emission model
gives an insignificant raise from70.0% to 70.4%,
while specifying the list of allowed boundary tokens
gives a significant increase to71.9%. When com-
bined with the given hierarchical emission model
from the previous section, accuracy rises to72.7%,
our best unsupervised result on the advertisements
data with 400 training examples. In experiments on
the citations data we found that learning boundary
emission model hurts accuracy, but that given the set
of boundary tokens it boosts accuracy significantly:
increasing it from66.3% to 68.2%.

5 Semi-supervised Learning

So far, we have largely focused on incorporating
prior knowledge in rather general and implicit ways.
As a final experiment we tested the effect of adding
a small amount of supervision: augmenting the large
amount of unannotated data we use for unsuper-
vised learning with a small amount of annotated
data. There are many possible techniques for semi-
supervised learning; we tested a particularly simple
one. We treat the annotated labels as observed vari-
ables, and when computing sufficient statistics in the
M-step of EM we add the observed counts from the

Figure 7: Learning curves for semi-supervised learning on the
citations task. A separate curve is drawn for each number of
annotated documents. All results are averaged over 50 runs.

annotated documents to the expected counts com-
puted in the E-step. We estimate the transition
function using maximum likelihood from the an-
notated documents only, and do not reestimate it.
Semi-supervised results for the citations domain are
shown in Figure 7. Adding 5 annotated citations
yields no improvement in performance, but adding
20 annotated citations to 300 unannotated citations
boosts performance greatly from65.2% to 71.3%.
We also tested the utility of this approach in the clas-
sified advertisement domain, and found that it did
not improve accuracy. We believe that this is be-
cause the transition information provided by the su-
pervised data is very useful for the citations data,
which has regular transition structure, but is not as
useful for the advertisements data, which does not.

6 Previous Work

A good amount of prior research can be cast as
supervised learning of field segmentation models,
using various model families and applied to var-
ious domains. McCallum et al. (1999) were the
first to compare a number of supervised methods
for learning HMMs for parsing bibliographic cita-
tions. The authors explicitly claim that the domain
would be suitable for unsupervised learning, but
they do not present experimental results. McCallum
et al. (2000) applied supervised learning of Maxi-
mum Entropy Markov Models (MEMMs) to the do-
main of parsing Frequently Asked Question (FAQ)
lists into their component field structure. More re-
cently, Peng and McCallum (2004) applied super-
vised learning of Conditional Random Field (CRF)
sequence models to the problem of parsing the head-
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ers of research papers.
There has also been some previous work on un-

supervised learning of field segmentation models in
particular domains. Pasula et al. (2002) performs
limited unsupervised segmentation of bibliographic
citations as a small part of a larger probabilistic
model of identity uncertainty. However, their sys-
tem does not explicitly learn a field segmentation
model for the citations, and encodes a large amount
of hand-supplied information about name forms, ab-
breviation schemes, and so on. More recently, Barzi-
lay and Lee (2004) definedcontent models, which
can be viewed as field segmentation models occur-
ring at the level of discourse. They perform un-
supervised learning of these models from sets of
news articles which describe similar events. The
fields in that case are the topics discussed in those
articles. They consider a very different set of ap-
plications from the present work, and show that
the learned topic models improve performance on
two discourse-related tasks: information ordering
and extractive document summarization. Most im-
portantly, their learning method differs significantly
from ours; they use a complex and special purpose
algorithm, which is difficult to adapt, while we see
our contribution to be a demonstration of the inter-
play between model family and learned structure.
Because the structure of the HMMs they learn is
similar to ours it seems that their system could ben-
efit from the techniques of this paper. Finally, Blei
and Moreno (2001) use an HMM augmented by an
aspect model to automatically segment documents,
similar in goal to the system of Hearst (1997), but
using techniques more similar to the present work.

7 Conclusions

In this work, we have examined the task of learn-
ing field segmentation models using unsupervised
learning. In two different domains, classified ad-
vertisements and bibliographic citations, we showed
that by constraining the model class we were able
to restrict the search space of EM to models of in-
terest. We used unsupervised learning methods with
400 documents to yield field segmentation models
of a similar quality to those learned using supervised
learning with 50 documents. We demonstrated that
further refinements of the model structure, including

hierarchical mixture emission models and boundary
models, produce additional increases in accuracy.
Finally, we also showed that semi-supervised meth-
ods with a modest amount of labeled data can some-
times be effectively used to get similar good results,
depending on the nature of the problem.

While there are enough resources for the citation
task that much better numbers than ours can be and
have been obtained (with more knowledge and re-
source intensive methods), in domains like classi-
fied ads for lost pets or used bicycles unsupervised
learning may be the only practical option. In these
cases, we find it heartening that the present systems
do as well as they do, even without field-specific
prior knowledge.
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Abstract

This paper presents a novel algorithm for
the acquisition of Information Extraction
patterns. The approach makes the assump-
tion that useful patterns will have simi-
lar meanings to those already identified
as relevant. Patterns are compared using
a variation of the standard vector space
model in which information from an on-
tology is used to capture semantic sim-
ilarity. Evaluation shows this algorithm
performs well when compared with a
previously reported document-centric ap-
proach.

1 Introduction

Developing systems which can be easily adapted to
new domains with the minimum of human interven-
tion is a major challenge in Information Extraction
(IE). Early IE systems were based on knowledge en-
gineering approaches but suffered from a knowledge
acquisition bottleneck. For example, Lehnert et al.
(1992) reported that their system required around
1,500 person-hours of expert labour to modify for
a new extraction task. One approach to this problem
is to use machine learning to automatically learn the
domain-specific information required to port a sys-
tem (Riloff, 1996). Yangarber et al. (2000) proposed
an algorithm for learning extraction patterns for a
small number of examples which greatly reduced the
burden on the application developer and reduced the
knowledge acquisition bottleneck.

Weakly supervised algorithms, which bootstrap
from a small number of examples, have the advan-
tage of requiring only small amounts of annotated
data, which is often difficult and time-consuming
to produce. However, this also means that there
are fewer examples of the patterns to be learned,
making the learning task more challenging. Pro-
viding the learning algorithm with access to addi-
tional knowledge can compensate for the limited
number of annotated examples. This paper presents
a novel weakly supervised algorithm for IE pattern
induction which makes use of the WordNet ontology
(Fellbaum, 1998).

Extraction patterns are potentially useful for many
language processing tasks, including question an-
swering and the identification of lexical relations
(such as meronomy and hyponymy). In addition, IE
patterns encode the different ways in which a piece
of information can be expressed in text. For exam-
ple, “Acme Inc. fired Jones”, “Acme Inc. let Jones
go”, and “Jones was given notice by his employers,
Acme Inc.” are all ways of expressing the same fact.
Consequently the generation of extraction patterns is
pertinent to paraphrase identification which is cen-
tral to many language processing problems.

We begin by describing the general process of pat-
tern induction and an existing approach, based on
the distribution of patterns in a corpus (Section 2).
We then introduce a new algorithm which makes use
of WordNet to generalise extraction patterns (Sec-
tion 3) and describe an implementation (Section 4).
Two evaluation regimes are described; one based on
the identification of relevant documents and another
which aims to identify sentences in a corpus which
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are relevant for a particular IE task (Section 5). Re-
sults on each of these evaluation regimes are then
presented (Sections 6 and 7).

2 Extraction Pattern Learning

We begin by outlining the general process of learn-
ing extraction patterns, similar to one presented by
(Yangarber, 2003).

1. For a given IE scenario we assume the exis-
tence of a set of documents against which the
system can be trained. The documents are
unannotated and may be either relevant (con-
tain the description of an event relevant to the
scenario) or irrelevant although the algorithm
has no access to this information.

2. This corpus is pre-processed to generate the set
of all patterns which could be used to represent
sentences contained in the corpus, call this set
S. The aim of the learning process is to identify
the subset of S representing patterns which are
relevant to the IE scenario.

3. The user provides a small set of seed patterns,
Sseed, which are relevant to the scenario. These
patterns are used to form the set of currently
accepted patterns, Sacc, so Sacc ← Sseed. The
remaining patterns are treated as candidates for
inclusion in the accepted set, these form the set
Scand(= S − Sacc).

4. A function, f , is used to assign a score to
each pattern in Scand based on those which
are currently in Sacc. This function as-
signs a real number to candidate patterns so
∀ c ε Scand, f(c, Sacc) 7→ <. A set of high
scoring patterns (based on absolute scores or
ranks after the set of patterns has been ordered
by scores) are chosen as being suitable for in-
clusion in the set of accepted patterns. These
form the set Slearn.

5. The patterns in Slearn are added to Sacc and
removed from Scand, so Sacc ← Sacc ∪ Slearn

and Scand ← Sacc − Slearn

6. If a suitable set of patterns has been learned
then stop, otherwise go to step 4

2.1 Document-centric approach

A key choice in the development of such an algo-
rithm is step 4, the process of ranking the candidate

patterns, which effectively determines which of the
candidate patterns will be learned. Yangarber et al.
(2000) chose an approach motivated by the assump-
tion that documents containing a large number of
patterns already identified as relevant to a particu-
lar IE scenario are likely to contain further relevant
patterns. This approach, which can be viewed as be-
ing document-centric, operates by associating confi-
dence scores with patterns and relevance scores with
documents. Initially seed patterns are given a maxi-
mum confidence score of 1 and all others a 0 score.
Each document is given a relevance score based on
the patterns which occur within it. Candidate pat-
terns are ranked according to the proportion of rele-
vant and irrelevant documents in which they occur,
those found in relevant documents far more than in
irrelevant ones are ranked highly. After new patterns
have been accepted all patterns’ confidence scores
are updated, based on the documents in which they
occur, and documents’ relevance according to the
accepted patterns they contain.

This approach has been shown to successfully ac-
quire useful extraction patterns which, when added
to an IE system, improved its performance (Yangar-
ber et al., 2000). However, it relies on an assump-
tion about the way in which relevant patterns are dis-
tributed in a document collection and may learn pat-
terns which tend to occur in the same documents as
relevant ones whether or not they are actually rele-
vant. For example, we could imagine an IE scenario
in which relevant documents contain a piece of in-
formation which is related to, but distinct from, the
information we aim to extract. If patterns expressing
this information were more likely to occur in rele-
vant documents than irrelevant ones the document-
centric approach would also learn the irrelevant pat-
terns.

Rather than focusing on the documents matched
by a pattern, an alternative approach is to rank pat-
terns according to how similar their meanings are
to those which are known to be relevant. This
semantic-similarity approach avoids the problem
which may be present in the document-centric ap-
proach since patterns which happen to co-occur in
the same documents as relevant ones but have dif-
ferent meanings will not be ranked highly. We now
go on to describe a new algorithm which implements
this approach.

380



3 Semantic IE Pattern Learning

For these experiments extraction patterns consist of
predicate-argument structures, as proposed by Yan-
garber (2003). Under this scheme patterns consist
of triples representing the subject, verb and object
(SVO) of a clause. The first element is the “se-
mantic” subject (or agent), for example “John” is a
clausal subject in each of these sentences “John hit
Bill”, “Bill was hit by John”, “Mary saw John hit
Bill”, and “John is a bully”. The second element is
the verb in the clause and the third the object (pa-
tient) or predicate. “Bill” is a clausal object in the
first three example sentences and “bully” in the final
one. When a verb is being used intransitively, the
pattern for that clause is restricted to only the first
pair of elements.

The filler of each pattern element can be either
a lexical item or semantic category such as per-
son name, country, currency values, numerical ex-
pressions etc. In this paper lexical items are rep-
resented in lower case and semantic categories are
capitalised. For example, in the pattern COM-
PANY+fired+ceo, fired and ceo are lexical
items and COMPANY a semantic category which
could match any lexical item belonging to that type.

The algorithm described here relies on identify-
ing patterns with similar meanings. The approach
we have developed to do this is inspired by the
vector space model which is commonly used in
Information Retrieval (Salton and McGill, 1983)
and language processing in general (Pado and La-
pata, 2003). Each pattern can be represented as
a set of pattern element-filler pairs. For exam-
ple, the pattern COMPANY+fired+ceo consists
of three pairs: subject COMPANY, verb fired
and object ceo. Each pair consists of either a
lexical item or semantic category, and pattern ele-
ment. Once an appropriate set of pairs has been es-
tablished a pattern can be represented as a binary
vector in which an element with value 1 denotes that
the pattern contains a particular pair and 0 that it
does not.

3.1 Pattern Similarity

The similarity of two pattern vectors can be com-
pared using the measure shown in Equation 1. Here
~a and~b are pattern vectors, ~bT the transpose of~b and

Patterns Matrix labels
a. chairman+resign 1. subject chairman
b. ceo+quit 2. subject ceo
c. chairman+comment 3. verb resign

4. verb quit
5. verb comment

Similarity matrix Similarity values
1 0.95 0 0 0

0.95 1 0 0 0

0 0 1 0.9 0.1

0 0 0.9 1 0.1

0 0 0.1 0.1 1

sim(~a,~b) = 0.925
sim(~a, ~c) = 0.55
sim(~b, ~c) = 0.525

Figure 1: Similarity scores and matrix for an exam-
ple vector space formed from three patterns

W a matrix that lists the similarity between each of
the possible pattern element-filler pairs.

sim(~a,~b) =
~aW ~bT

|~a||~b|
(1)

The semantic similarity matrix W contains infor-
mation about the similarity of each pattern element-
filler pair stored as non-negative real numbers and is
crucial for this measure. Assume that the set of pat-
terns, P , consists of n element-filler pairs denoted
by p1, p2, ...pn. Each row and column of W rep-
resents one of these pairs and they are consistently
labelled. So, for any i such that 1 ≤ i ≤ n, row i and
column i are both labelled with pair pi. If wij is the
element of W in row i and column j then the value
of wij represents the similarity between the pairs pi

and pj . Note that we assume the similarity of two
element-filler pairs is symmetric, so wij = wji and,
consequently, W is a symmetric matrix. Pairs with
different pattern elements (i.e. grammatical roles)
are automatically given a similarity score of 0. Di-
agonal elements of W represent the self-similarity
between pairs and have the greatest values.

Figure 1 shows an example using three patterns,
chairman+resign, ceo+quit and chair-
man+comment. This shows how these patterns are
represented as vectors and gives a sample semantic
similarity matrix. It can be seen that the first pair
of patterns are the most similar using the proposed
measure.

The measure in Equation 1 is similar to the cosine
metric, commonly used to determine the similarity
of documents in the vector space model approach
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to Information Retrieval. However, the cosine met-
ric will not perform well for our application since it
does not take into account the similarity between el-
ements of a vector and would assign equal similarity
to each pair of patterns in the example shown in Fig-
ure 1.1 The semantic similarity matrix in Equation 1
provides a mechanism to capture semantic similar-
ity between lexical items which allows us to identify
chairman+resign and ceo+quit as the most
similar pair of patterns.

3.2 Populating the Matrix

It is important to choose appropriate values for the
elements of W . We chose to make use of the re-
search that has concentrated on computing similar-
ity between pairs of lexical items using the WordNet
hierarchy (Resnik, 1995; Jiang and Conrath, 1997;
Patwardhan et al., 2003). We experimented with
several of the measures which have been reported
in the literature and found that the one proposed by
Jiang and Conrath (1997) to be the most effective.

The similarity measure proposed by Jiang and
Conrath (1997) relies on a technique developed by
Resnik (1995) which assigns numerical values to
each sense in the WordNet hierarchy based upon
the amount of information it represents. These val-
ues are derived from corpus counts of the words in
the synset, either directly or via the hyponym rela-
tion and are used to derive the Information Content
(IC) of a synset c thus IC(c) = − log(Pr(c)). For
two senses, s1 and s2, the lowest common subsumer,
lcs(s1, s2), is defined as the sense with the highest
information content (most specific) which subsumes
both senses in the WordNet hierarchy. Jiang and
Conrath used these elements to calculate the seman-
tic distance between a pair or words, w1 and w2, ac-
cording to this formula (where senses(w) is the set

1The cosine metric for a pair of vectors is given by the cal-
culation a.b

|a||b|
. Substituting the matrix multiplication in the nu-

merator of Equation 1 for the dot product of vectors ~a and ~b

would give the cosine metric. Note that taking the dot product
of a pair of vectors is equivalent to multiplying by the identity
matrix, i.e. ~a.~b = ~aI ~bT . Under our interpretation of the simi-
larity matrix, W , this equates to each pattern element-filler pair
being identical to itself but not similar to anything else.

of all possible WordNet senses for word w):

ARGMAX

s1 ε senses(w1),

s2 ε senses(w2)

IC(s1)+IC(s2)−2×IC(lcs(s1, s2))

(2)
Patwardhan et al. (2003) convert this distance

metric into a similarity measure by taking its mul-
tiplicative inverse. Their implementation was used
in the experiments described later.

As mentioned above, the second part of a pattern
element-filler pair can be either a lexical item or a
semantic category, such as company. The identifiers
used to denote these categories, i.e. COMPANY, do
not appear in WordNet and so it is not possible to
directly compare their similarity with other lexical
items. To avoid this problem these tokens are man-
ually mapped onto the most appropriate node in the
WordNet hierarchy which is then used for similar-
ity calculations. This mapping process is not partic-
ularly time-consuming since the number of named
entity types with which a corpus is annotated is usu-
ally quite small. For example, in the experiments
described in this paper just seven semantic classes
were sufficient to annotate the corpus.

3.3 Learning Algorithm

This pattern similarity measure can be used to create
a weakly supervised approach to pattern acquisition
following the general outline provided in Section 2.
Each candidate pattern is compared against the set
of currently accepted patterns using the measure de-
scribed in Section 3.1. We experimented with sev-
eral techniques for ranking candidate patterns based
on these scores, including using the best and aver-
age score, and found that the best results were ob-
tained when each candidate pattern was ranked ac-
cording to its score when compared against the cen-
troid vector of the set of currently accepted patterns.
We also experimented with several schemes for de-
ciding which of the scored patterns to accept (a full
description would be too long for this paper) result-
ing in a scheme where the four highest scoring pat-
terns whose score is within 0.95 of the best pattern
are accepted.

Our algorithm disregards any patterns whose cor-
pus occurrences are below a set threshold, α, since
these may be due to noise. In addition, a second
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threshold, β, is used to determine the maximum
number of documents in which a pattern can occur
since these very frequent patterns are often too gen-
eral to be useful for IE. Patterns which occur in more
than β ×C, where C is the number of documents in
the collection, are not learned. For the experiments
in this paper we set α to 2 and β to 0.3.

4 Implementation

A number of pre-processing stages have to be ap-
plied to documents in order for the set of patterns to
be extracted before learning can take place. Firstly,
items belonging to semantic categories are identi-
fied by running the text through the named entity
identifier in the GATE system (Cunningham et al.,
2002). The corpus is then parsed, using a ver-
sion of MINIPAR (Lin, 1999) adapted to process
text marked with named entities, to produce depen-
dency trees from which SVO-patterns are extracted.
Active and passive voice is taken into account in
MINIPAR’s output so the sentences “COMPANY
fired their C.E.O.” and “The C.E.O. was fired by
COMPANY” would yield the same triple, COM-
PANY+fire+ceo. The indirect object of ditran-
sitive verbs is not extracted; these verbs are treated
like transitive verbs for the purposes of this analysis.

An implementation of the algorithm described
in Section 3 was completed in addition to an im-
plementation of the document-centric algorithm de-
scribed in Section 2.1. It is important to mention
that this implementation is not identical to the one
described by Yangarber et al. (2000). Their system
makes some generalisations across pattern elements
by grouping certain elements together. However,
there is no difference between the expressiveness of
the patterns learned by either approach and we do
not believe this difference has any effect on the re-
sults of our experiments.

5 Evaluation

Various approaches have been suggested for the
evaluation of automatic IE pattern acquisition.
Riloff (1996) judged the precision of patterns
learned by reviewing them manually. Yangarber et
al. (2000) developed an indirect method which al-
lowed automatic evaluation. In addition to learning
a set of patterns, their system also notes the rele-

vance of documents based on the current set of ac-
cepted patterns. Assuming the subset of documents
relevant to a particular IE scenario is known, it is
possible to use these relevance judgements to de-
termine how accurately a given set of patterns can
discriminate the relevant documents from the irrele-
vant. This evaluation is similar to the “text-filtering”
sub-task used in the sixth Message Understanding
Conference (MUC-6) (1995) in which systems were
evaluated according to their ability to identify the
documents relevant to the extraction task. The doc-
ument filtering evaluation technique was used to al-
low comparison with previous studies.

Identifying the document containing relevant in-
formation can be considered as a preliminary stage
of an IE task. A further step is to identify the sen-
tences within those documents which are relevant.
This “sentence filtering” task is a more fine-grained
evaluation and is likely to provide more information
about how well a given set of patterns is likely to
perform as part of an IE system. Soderland (1999)
developed a version of the MUC-6 corpus in which
events are marked at the sentence level. The set of
patterns learned by the algorithm after each iteration
can be compared against this corpus to determine
how accurately they identify the relevant sentences
for this extraction task.

5.1 Evaluation Corpus

The evaluation corpus used for the experiments was
compiled from the training and testing corpus used
in MUC-6, where the task was to extract information
about the movements of executives from newswire
texts. A document is relevant if it has a filled tem-
plate associated with it. 590 documents from a ver-
sion of the MUC-6 evaluation corpus described by
Soderland (1999) were used.

After the pre-processing stages described in Sec-
tion 4, the MUC-6 corpus produced 15,407 pattern
tokens from 11,294 different types. 10,512 patterns
appeared just once and these were effectively dis-
carded since our learning algorithm only considers
patterns which occur at least twice (see Section 3.3).

The document-centric approach benefits from a
large corpus containing a mixture of relevant and ir-
relevant documents. We provided this using a subset
of the Reuters Corpus Volume I (Rose et al., 2002)
which, like the MUC-6 corpus, consists of newswire
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COMPANY+appoint+PERSON
COMPANY+elect+PERSON
COMPANY+promote+PERSON
COMPANY+name+PERSON
PERSON+resign
PERSON+depart
PERSON+quit

Table 1: Seed patterns for extraction task

texts. 3000 documents relevant to the management
succession task (identified using document meta-
data) and 3000 irrelevant documents were used to
produce the supplementary corpus. This supple-
mentary corpus yielded 126,942 pattern tokens and
79,473 types with 14,576 of these appearing more
than once. Adding the supplementary corpus to the
data set used by the document-centric approach led
to an improvement of around 15% on the document
filtering task and over 70% for sentence filtering. It
was not used for the semantic similarity algorithm
since there was no benefit.

The set of seed patterns listed in Table 1 are in-
dicative of the management succession extraction
task and were used for these experiments.

6 Results

6.1 Document Filtering

Results for both the document and sentence filter-
ing experiments are reported in Table 2 which lists
precision, recall and F-measure for each approach
on both evaluations. Results from the document fil-
tering experiment are shown on the left hand side
of the table and continuous F-measure scores for
the same experiment are also presented in graphi-
cal format in Figure 2. While the document-centric
approach achieves the highest F-measure of either
system (0.83 on the 33rd iteration compared against
0.81 after 48 iterations of the semantic similarity ap-
proach) it only outperforms the proposed approach
for a few iterations. In addition the semantic sim-
ilarity approach learns more quickly and does not
exhibit as much of a drop in performance after it has
reached its best value. Overall the semantic sim-
ilarity approach was found to be significantly bet-
ter than the document-centric approach (p < 0.001,
Wilcoxon Signed Ranks Test).

Although it is an informative evaluation, the doc-
ument filtering task is limited for evaluating IE pat-
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Figure 2: Evaluating document filtering.

tern learning. This evaluation indicates whether the
set of patterns being learned can identify documents
containing descriptions of events but does not pro-
vide any information about whether it can find those
events within the documents. In addition, the set of
seed patterns used for these experiments have a high
precision and low recall (Table 2). We have found
that the distribution of patterns and documents in
the corpus means that learning virtually any pattern
will help improve the F-measure. Consequently, we
believe the sentence filtering evaluation to be more
useful for this problem.

6.2 Sentence Filtering

Results from the sentence filtering experiment are
shown in tabular format in the right hand side of
Table 22 and graphically in Figure 3. The seman-
tic similarity algorithm can be seen to outperform
the document-centric approach. This difference is
also significant (p < 0.001, Wilcoxon Signed Ranks
Text).

The clear difference between these results shows
that the semantic similarity approach can indeed
identify relevant sentences while the document-
centric method identifies patterns which match rel-
evant documents, although not necessarily relevant
sentences.

2The set of seed patterns returns a precision of 0.81 for this
task. The precision is not 1 since the pattern PERSON+resign
matches sentences describing historical events (“Jones resigned
last year.”) which were not marked as relevant in this corpus
following MUC guidelines.
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Document Filtering Sentence Filtering
Number of Document-centric Semantic similarity Document-centric Semantic similarity
Iterations P R F P R F P R F P R F

0 1.00 0.26 0.42 1.00 0.26 0.42 0.81 0.10 0.18 0.81 0.10 0.18
20 0.75 0.68 0.71 0.77 0.78 0.77 0.30 0.29 0.29 0.61 0.49 0.54
40 0.72 0.96 0.82 0.70 0.93 0.80 0.40 0.67 0.51 0.47 0.64 0.55
60 0.65 0.96 0.78 0.68 0.96 0.80 0.32 0.70 0.44 0.42 0.73 0.54
80 0.56 0.96 0.71 0.61 0.98 0.76 0.18 0.71 0.29 0.37 0.89 0.52

100 0.56 0.96 0.71 0.58 0.98 0.73 0.18 0.73 0.28 0.28 0.92 0.42
120 0.56 0.96 0.71 0.58 0.98 0.73 0.17 0.75 0.28 0.26 0.95 0.41

Table 2: Comparison of the different approaches over 120 iterations
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Figure 3: Evaluating sentence filtering.

The precision scores for the sentence filtering task
in Table 2 show that the semantic similarity al-
gorithm consistently learns more accurate patterns
than the existing approach. At the same time it
learns patterns with high recall much faster than the
document-centric approach, by the 120th iteration
the pattern set covers almost 95% of relevant sen-
tences while the document-centric approach covers
only 75%.

7 Discussion

The approach to IE pattern acquisition presented
here is related to other techniques but uses differ-
ent assumptions regarding which patterns are likely
to be relevant to a particular extraction task. Eval-
uation has showed that the semantic generalisa-
tion approach presented here performs well when
compared to a previously reported document-centric

method. Differences between the two approaches
are most obvious when the results of the sentence
filtering task are considered and it seems that this is
a more informative evaluation for this problem. The
semantic similarity approach has the additional ad-
vantage of not requiring a large corpus containing a
mixture of documents relevant and irrelevant to the
extraction task. This corpus is unannotated, and so
may not be difficult to obtain, but is nevertheless an
additional requirement.

The best score recorded by the proposed algo-
rithm on the sentence filtering task is an F-measure
of 0.58 (22nd iteration). While this result is lower
than those reported for IE systems based on knowl-
edge engineering approaches these results should be
placed in the context of a weakly supervised learning
algorithm which could be used to complement man-
ual approaches. These results could be improved by
manual filtering the patterns identified by the algo-
rithm.

The learning algorithm presented in Section 3 in-
cludes a mechanism for comparing two extraction
patterns using information about lexical similarity
derived from WordNet. This approach is not re-
stricted to this application and could be applied to
other language processing tasks such as question an-
swering, paraphrase identification and generation or
as a variant of the vector space model commonly
used in Information Retrieval. In addition, Sudo
et al. (2003) proposed representations for IE pat-
terns which extends the SVO representation used
here and, while they did not appear to significantly
improve IE, it is expected that it will be straightfor-
ward to extend the vector space model to those pat-
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tern representations.
One of the reasons for the success of the approach

described here is the appropriateness of WordNet
which is constructed on paradigmatic principles,
listing the words which may be substituted for one
another, and is consequently an excellent resource
for this application. WordNet is also a generic
resource not associated with a particular domain
which means the learning algorithm can make use
of that knowledge to acquire patterns for a diverse
range of IE tasks. This work represents a step to-
wards truly domain-independent IE systems. Em-
ploying a weakly supervised learning algorithm re-
moves much of the requirement for a human anno-
tator to provide example patterns. Such approaches
are often hampered by a lack of information but the
additional knowledge in WordNet helps to compen-
sate.
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Abstract

We directly investigate a subject of much
recent debate: do word sense disambiga-
tion models help statistical machine trans-
lation quality? We present empirical re-
sults casting doubt on this common, but
unproved, assumption. Using a state-of-
the-art Chinese word sense disambigua-
tion model to choose translation candi-
dates for a typical IBM statistical MT
system, we find that word sense disam-
biguation doesnot yield significantly bet-
ter translation quality than the statistical
machine translation system alone. Error
analysis suggests several key factors be-
hind this surprising finding, including in-
herent limitations of current statistical MT
architectures.

1 Introduction

Word sense disambiguation or WSD, the task of de-
termining the correct sense of a word in context, is
a much studied problem area with a long and hon-
orable history. Recent years have seen steady ac-
curacy gains in WSD models, driven in particular
by controlled evaluations such as the Senseval series
of workshops. Word sense disambiguation is often
assumed to be an intermediate task, which should
then help higher level applications such as machine

1The authors would like to thank the Hong Kong Re-
search Grants Council (RGC) for supporting this research
in part through grants RGC6083/99E, RGC6256/00E, and
DAG03/04.EG09, and several anonymous reviewers for in-
sights and suggestions.

translation or information retrieval. However, WSD
is usually performed and evaluated as a standalone
task, and to date there have been very few efforts to
integrate the learned WSD models into full statisti-
cal MT systems.

An energetically debated question at conferences
over the past year is whether even the new state-
of-the-art word sense disambiguation models actu-
ally have anything to offer to full statistical machine
translation systems. Among WSD circles, this can
sometimes elicit responses that border on implying
that even asking the question is heretical. In efforts
such as Senseval we tend to regard the construction
of WSD models as an obviously correct, if necessar-
ily simplified, approach that will eventually lead to
essential disambiguation components within larger
applications like machine translation.

There is no question that the word sense disam-
biguation perspective has led to numerous insights in
machine translation, even of the statistical variety. It
is often simply an unstated assumption that any full
translation system, to achieve full performance, will
sooner or later have to incorporate individual WSD
components.

However, in some translation architectures and
particularly in statistical machine translation (SMT),
the translation engine already implicitly factors in
many contextual features into lexical choice. From
this standpoint, SMT models can be seen as WSD
models in their own right, albeit with several major
caveats.

But typical statistical machine translation models
only rely on a local context to choose among lexical
translation candidates, as discussed in greater detail
later. It is therefore often assumed that dedicated
WSD-based lexical choice models, which can incor-
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porate a wider variety of context features, can make
better predictions than the “weaker” models implicit
in statistical MT, and that these predictions will help
the translation quality.

Nevertheless, this assumption has not been em-
pirically verified, and we should not simply assume
that WSD models can contribute more than what the
SMT models perform. It may behoove us to take
note of the sobering fact that, perhaps analogously,
WSD has yet to be conclusively shown to help in-
formation retrieval systems after many years of at-
tempts.

In this work, we propose to directly investigate
whether word sense disambiguation—at least as it is
typically currently formulated—is useful for statis-
tical machine translation. We tackle a real Chinese
to English translation task using a state-of-the-art su-
pervised WSD system and a typical SMT model. We
show that the unsupervised SMT model, trained on
parallel data without any manual sense annotation,
yields higher BLEU scores than the case where the
SMT model makes use of the lexical choice predic-
tions from the supervised WSD model, which are
more expensive to create. The reasons for the sur-
prising difficulty of improving over the translation
quality of the SMT model are then discussed and
analyzed.

2 Word sense disambiguation vs.
statistical machine translation

We begin by examining the respective strengths and
weaknesses of dedicated WSD models versus full
SMT models, that could be expected to be relevant
to improving lexical choice.

2.1 Features Unique to WSD

Dedicated WSD is typically cast as a classification
task with a predefined sense inventory. Sense dis-
tinctions and granularity are often manually prede-
fined, which means that they can be adapted to the
task at hand, but also that the translation candidates
are limited to an existing set.

To improve accuracy, dedicated WSD models typ-
ically employ features that are not limited to the lo-
cal context, and that include more linguistic infor-
mation than the surface form of words. This of-
ten requires several stages of preprocessing, such

as part-of-speech tagging and/or parsing. (Prepro-
cessor domain can be an issue, since WSD accu-
racy may suffer from domain mismatches between
the data the preprocessors were trained on, and the
data they are applied to.) For example, a typi-
cal dedicated WSD model might employ features
as described by Yarowsky and Florian (2002) in
their “feature-enhanced naive Bayes model”, with
position-sensitive, syntactic, and local collocational
features. The feature set made available to the WSD
model to predict lexical choices is therefore much
richer than that used by a statistical MT model.

Also, dedicated WSD models can be supervised,
which yields significantly higher accuracies than un-
supervised. For the experiments described in this
study we employed supervised training, exploit-
ing the annotated corpus that was produced for the
Senseval-3 evaluation.

2.2 Features Unique to SMT

Unlike lexical sample WSD models, SMT models
simultaneously translate complete sentences rather
than isolated target words. The lexical choices are
made in a way that heavily prefersphrasal cohesion
in the output target sentence, as scored by the lan-
guage model. That is, the predictions benefit from
the sentential context of thetarget language. This
has the general effect of improving translation flu-
ency.

The WSD accuracy of the SMT model depends
critically on the phrasal cohesion of the target lan-
guage. As we shall see, this phrasal cohesion prop-
erty has strong implications for the utility of WSD.

In other work (forthcoming), we investigated
the inverse question of evaluating the Chinese-to-
English SMT model on word sense disambigua-
tion performance, using standard WSD evaluation
methodology and datasets from the Senseval-3 Chi-
nese lexical sample task. We showed the accuracy of
the SMT model to be significantly lower than that of
all the dedicated WSD models considered, even af-
ter adding the lexical sample data to the training set
for SMT to allow for a fair comparison. These re-
sults highlight the relative strength, and the potential
hoped-for advantage of dedicated supervised WSD
models.
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3 The WSD system

The WSD system used for the experiments is based
on the model that achieved the best performance, by
a large margin, on the Senseval-3 Chinese lexical
sample task (Carpuatet al., 2004).

3.1 Classification model

The model consists of an ensemble of four voting
models combined by majority vote.

The first voting model is a naive Bayes model,
since Yarowsky and Florian (2002) found this model
to be the most accurate classifier in a comparative
study on a subset of Senseval-2 English lexical sam-
ple data.

The second voting model is a maximum entropy
model (Jaynes, 1978), since Klein and Manning
(2002) found that this model yielded higher accu-
racy than naive Bayes in a subsequent comparison
of WSD performance. (Note, however, that a differ-
ent subset of either Senseval-1 or Senseval-2 English
lexical sample data was used for their comparison.)

The third voting model is a boosting model (Fre-
und and Schapire, 1997), since has consistently
turned in very competitive scores on related tasks
such as named entity classification (Carreraset al.,
2002) . Specifically, an AdaBoost.MH model was
used (Schapire and Singer, 2000), which is a multi-
class generalization of the original boosting algo-
rithm, with boosting on top of decision stump clas-
sifiers (i.e., decision trees of depth one).

The fourth voting model is a Kernel PCA-based
model (Wuet al., 2004). Kernel Principal Compo-
nent Analysis (KPCA) is a nonlinear kernel method
for extracting nonlinear principal components from
vector sets where, conceptually, then-dimensional
input vectors are nonlinearly mapped from their
original spaceRn to a high-dimensional feature
spaceF where linear PCA is performed, yielding a
transform by which the input vectors can be mapped
nonlinearly to a new set of vectors (Schölkopf et al.,
1998). WSD can be performed by a Nearest Neigh-
bor Classifier in the high-dimensional KPCA feature
space. (Carpuatet al., 2004) showed that KPCA-
based WSD models achieve close accuracies to the
best individual WSD models, while having a signif-
icantly different bias.

All these classifiers have the ability to handle

large numbers of sparse features, many of which
may be irrelevant. Moreover, the maximum entropy
and boosting models are known to be well suited to
handling features that are highly interdependent.

The feature set used consists of position-sensitive,
syntactic, and local collocational features, as de-
scribed by Yarowsky and Florian (2002).

3.2 Lexical choice mapping model

Ideally, we would like the WSD model to predict En-
glish translations given Chinese target words in con-
text. Such a model requires Chinese training data
annotated with English senses, but such data is not
available. Instead, the WSD system was trained us-
ing the Senseval-3 Chinese lexical sample task data.
(This is suboptimal, but reflects the difficulties that
arise when considering a real translation task; we
cannot assume that sense-annotated data will always
be available for all language pairs.)

The Chinese lexical sample task includes 20 tar-
get words. For each word, several senses are defined
using the HowNet knowledge base. There are an av-
erage of 3.95 senses per target word type, ranging
from 2 to 8. Only about 37 training instances per
target word are available.

For the purpose of Chinese to English translation,
the WSD model should predict English translations
instead of HowNet senses. Fortunately, HowNet
provides English glosses. This allows us to map
each HowNet sense candidate to a set of English
translations, converting the monolingual Chinese
WSD system into a translation lexical choice model.
We further extended the mapping to include any sig-
nificant translation choice considered by the SMT
system but not in HowNet.

4 The SMT system

To build a representative baseline statistical machine
translation system, we restricted ourselves to mak-
ing use of freely available tools, since the potential
contribution of WSD should be easier to see against
this baseline. Note that our focus here is not on the
SMT model itself; our aim is to evaluate the impact
of WSD on a real Chinese to English statistical ma-
chine translation task.
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Table 1: Example of the translation candidates before and after mapping for the target word “4” ( lu)

HowNet Sense ID HowNet glosses HowNet glosses + improved transla-
tions

56520 distance distance
56521 sort sort
56524 Lu Lu
56525, 56526, 56527, 56528 path, road, route, way path, road, route, way, circuit, roads
56530, 56531, 56532 line, means, sequence line, means, sequence, lines
56533, 56534 district, region district, region

4.1 Alignment model

The alignment model was trained with GIZA++
(Och and Ney, 2003), which implements the most
typical IBM and HMM alignment models. Transla-
tion quality could be improved using more advanced
hybrid phrasal or tree models, but this would inter-
fere with the questions being investigated here. The
alignment model used is IBM-4, as required by our
decoder. The training scheme consists of IBM-1,
HMM, IBM-3 and IBM-4, following (Och and Ney,
2003).

The training corpus consists of about 1 million
sentences from the United Nations Chinese-English
parallel corpus from LDC. This corpus was automat-
ically sentence-aligned, so the training data does not
require as much manual annotation as for the WSD
model.

4.2 Language model

The English language model is a trigram model
trained on the Gigaword newswire data and on the
English side of the UN and Xinhua parallel corpora.
The language model is also trained using a publicly
available software, the CMU-Cambridge Statistical
Language Modeling Toolkit (Clarkson and Rosen-
feld, 1997).

4.3 Decoding

The ISI ReWrite decoder (Germann, 2003), which
implements an efficient greedy decoding algorithm,
is used to translate the Chinese sentences, using the
alignment model and language model previously de-
scribed.

Notice that very little contextual information is
available to the SMT models. Lexical choice dur-

ing decoding essentially depends on the translation
probabilities learned for the target word, and on the
English language model scores.

5 Experimental method

5.1 Test set selection

We extracted the Chinese sentences from the NIST
MTEval-04 test set that contain any of the 20 target
words from the Senseval-3 Chinese lexical sample
target set. For a couple of targets, no instances were
available from the test set. The resulting test set con-
tains a total of 175 sentences, which is smaller than
typical MT evaluation test sets, but slightly larger
than the one used for the Senseval Chinese lexical
sample task.

5.2 Integrating the WSD system predictions
with the SMT model

There are numerous possible ways to integrate the
WSD system predictions with the SMT model. We
choose two different straightforward approaches,
which will help analyze the effect of the different
components of the SMT system, as we will see in
Section 6.5.

5.2.1 Using WSD predictions for decoding

In the first approach, we use the WSD sense pre-
dictions to constrain the set of English sense candi-
dates considered by the decoder for each of the tar-
get words. Instead of allowing all the word transla-
tion candidates from the translation model, when we
use the WSD predictions we override the translation
model and force the decoder to choose the best trans-
lation from the predefined set of glosses that maps to
the HowNet sense predicted by the WSD model.
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Table 2: Translation quality with and without the WSD model

Translation System BLEU score
SMT 0.1310
SMT + WSD for postprocessing 0.1253
SMT + WSD for decoding 0.1239
SMT + WSD for decoding with improved translation candidates0.1232

5.2.2 Using WSD predictions for
postprocessing

In the second approach, we use the WSD predic-
tions to postprocess the output of the SMT system:
in each output sentence, the translation of the target
word chosen by the SMT model is directly replaced
by the WSD prediction. When the WSD system pre-
dicts more than one candidate, a unique translation
is randomly chosen among them. As discussed later,
this approach can be used to analyze the effect of the
language model on the output.

It would also be interesting to use the gold stan-
dard or correct sense of the target words instead of
the WSD model predictions in these experiments.
This would give an upper-bound on performance
and would quantify the effect of WSD errors. How-
ever, we do not have a corpus which contains both
sense annotation and multiple reference translations:
the MT evaluation corpus is not annotated with the
correct senses of Senseval target words, and the Sen-
seval corpus does not include English translations of
the sentences.

6 Results

6.1 Even state-of-the-art WSD does not help
BLEU score

Table 2 summarizes the translation quality scores
obtained with and without the WSD model. Using
our WSD model to constrain the translation candi-
dates given to the decoder hurts translation quality,
as measured by the automated BLEU metric (Pap-
ineniet al., 2002).

Note that we are evaluating on only difficult sen-
tences containing the problematic target words from
the lexical sample task, so BLEU scores can be ex-
pected to be on the low side.

6.2 WSD still does not help BLEU score with
improved translation candidates

One could argue that the translation candidates cho-
sen by the WSD models do not help because they
are only glosses obtained from the HowNet dictio-
nary. They consist of the root form of words only,
while the SMT model can learn many more transla-
tions for each target word, including inflected forms
and synonyms.

In order to avoid artificially penalizing the WSD
system by limiting its translation candidates to the
HowNet glosses, we expand the translation set us-
ing the bilexicon learned during translation model
training. For each target word, we consider the En-
glish words that are given a high translation prob-
ability, and manually map each of these English
words to the sense categories defined for the Sen-
seval model. At decoding time, the set of transla-
tion candidates considered by the language model is
therefore larger, and closer to that considered by the
pure SMT system.

The results in Table 2 show that the improved
translation candidates do not help BLEU score. The
translation quality obtained with SMT alone is still
better than when the improved WSD Model is used.
The simpler approach of using WSD predictions in
postprocessing yields better BLEU score than the
decoding approach, but still does not outperform the
SMT model.

6.3 WSD helps translation quality for very few
target words

If we break down the test set and evaluate the effect
of the WSD per target word, we find that for all but
two of the target words WSD either hurts the BLEU
score or does not help it, which shows that the de-
crease in BLEU is not only due to a few isolated tar-
get words for which the Senseval sense distinctions
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are not helpful.

6.4 The “language model effect”

Error analysis revealed some surprising effects. One
particularly dismaying effect is that even in cases
where the WSD model is able to predict a better tar-
get word translation than the SMT model, to use the
better target word translation surprisingly often still
leads to a lower BLEU score.

The phrasal coherence property can help explain
this surprising effect we observed. The translation
chosen by the SMT model will tend to be more likely
than the WSD prediction according to the language
model; otherwise, it would also have been predicted
by SMT. The translation with the higher language
model probability influences the translation of its
neighbors, thus potentially improving BLEU score,
while the WSD prediction may not have been seen
occurring within phrases often enough, thereby low-
ering BLEU score.

For example, we observe that the WSD model
sometimes correctly predicts “impact” as a better
translation for “àâ” (chongji), where the SMT
model selects “shock”. In these cases, some of
the reference translations also use “impact”. How-
ever, even when the WSD model constrains the de-
coder to select “impact” rather than “shock”, the
resulting sentence translation yields a lower BLEU
score. This happens because the SMT model does
not know how to use “impact” correctly (if it did, it
would likely have chosen “impact” itself). Forcing
the lexical choice “impact” simply causes the SMT
model to generate phrases such as “against Japan for
peace constitution impact” instead of “against Japan
for peace constitution shocks”. This actually lowers
BLEU score, because of the n-gram effects.

6.5 Using WSD predictions in postprocessing
does not help BLEU score either

In the postprocessing approach, decoding is done
before knowing the WSD predictions, which elim-
inates the “language model effect”. Even in these
conditions, the SMT model alone is still the best per-
forming system.

The postprocessing approach also outperforms
the integrated decoding approach, which shows that
the language model is not able to make use of the
WSD predictions. One could expect that letting the

Table 3: BLEU scores per target word: WSD helps
for very few target words

Target word SMT SMT +
WSD

²º bawo 0.1482 0.1484
Ý bao 0.1891 0.1891
aî cailiao 0.0863 0.0863
àâ chongji 0.1396 0.1491
�0 difang 0.1233 0.1083
I� fengzi 0.1404 0.1402
ÙÄ huodong 0.1365 0.1465
� lao 0.1153 0.1136
4 lu 0.1322 0.1208
åu qilai 0.1104 0.1082
� qian 0.1948 0.1814
Bñ tuchu 0.0975 0.0989
ÏÄ yanjiu 0.1089 0.1089
äÄ zhengdong 0.1267 0.1251
� zhou 0.0825 0.0808

decoder choose among the WSD translations also
yields a better translation of the context. This is
indeed the case, but for very few examples only:
for instance the target word “�0” (difang) is bet-
ter used in the integrated decoding ouput “the place
of local employment” , than in the postprocessing
output “the place employment situation”. Instead,
the majority of cases follow the pattern illustrated
by the following example where the target word is
“�” ( lao): the SMT system produces the best output
(“the newly elected President will still face old prob-
lems”), the postprocessed output uses the fluent sen-
tence with a different translation (“the newly elected
President will still face outdated problems”), while
the translation is not used correctly with the decod-
ing approach (“the newly elected President will face
problems still to be outdated”).

6.6 BLEU score bias

The “language model effect” highlights one of the
potential weaknesses of the BLEU score. BLEU pe-
nalizes for phrasal incoherence, which in the present
study means that it can sometimes sacrifice ade-
quacy for fluency.

However, the characteristics of BLEU are by
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no means solely responsible for the problems with
WSD that we observed. To doublecheck that n-gram
effects were not unduly impacting our study, we also
evaluated using BLEU-1, which gave largely simi-
lar results as the standard BLEU-4 scores reported
above.

7 Related work

Most translation disambiguation tasks are defined
similarly to the Senseval Multilingual lexical sam-
ple tasks. In Senseval-3, the English to Hindi trans-
lation disambigation task was defined identically to
the English lexical sample task, except that the WSD
models are expected to predict Hindi translations in-
stead of WordNet senses. This differs from our ap-
proach which consists of producing the translation
of complete sentences, and not only of a predefined
set of target words.

Brownet al.(1991) proposed a WSD algorithm to
disambiguate English translations of French target
words based on the single most informative context
feature. In a pilot study, they found that using this
WSD method in their French-English SMT system
helped translation quality, manually evaluated using
the number of acceptable translations. However, this
study is limited to the unrealistic case of words that
have exactly two senses in the other language.

Most previous work has focused on the distinct
problem of exploiting various bilingual resources
(e.g., parallel or comparable corpora, or even MT
systems) to help WSD. The goal is to achieve accu-
rate WSD with minimum amounts of annotated data.
Again, this differs from our objective which consists
of using WSD to improve performance on a full ma-
chine translation task, and is measured in terms of
translation quality.

For instance, Nget al. (2003) showed that it is
possible to use word aligned parallel corpora to train
accurate supervised WSD models. The objective is
different; it is not possible for us to use this method
to train our WSD model without undermining the
question we aim to investigate: we would need to
use the SMT model to word-align the parallel sen-
tences, which could too strongly bias the predic-
tions of the WSD model towards those of the SMT
model, instead of combining predictive information
from independent sources as we aim to study here.

Other work includes Li and Li (2002) who pro-
pose a bilingual bootstrapping method to learn a
translation disambiguation WSD model, and Diab
(2004) who exploited large amounts of automati-
cally generated noisy parallel data to learn WSD
models in an unsupervised bootstrapping scheme.

8 Conclusion

The empirical study presented here argues that we
can expect that it will be quite difficult, at the least,
to use standard WSD models to obtain significant
improvements to statistical MT systems, even when
supervised WSD models are used. This casts signif-
icant doubt on a commonly-held, but unproven, as-
sumption to the contrary. We have presented empiri-
cally based analysis of the reasons for this surprising
finding.

We have seen that one major factor is that the
statistical MT model is sufficiently accurate so that
within the training domain, even the state-of-the-art
dedicated WSD model is only able to improve on its
lexical choice predictions in a relatively small pro-
portion of cases.

A second major factor is that even when the ded-
icated WSD model makes better predictions, cur-
rent statistical MT models are unable to exploit this.
Under this interpretation of our results, the depen-
dence on the language model in current SMT ar-
chitectures is excessive. One could of course ar-
gue that drastically increasing the amount of train-
ing data for the language model might overcome the
problems from the language model effect. Given
combinatorial problems, however, there is no way at
present of telling whether the amount of data needed
to achieve this is realistic, particularly for translation
across many different domains. On the other hand, if
the SMT architecture cannot make use of WSD pre-
dictions, even when they are in fact better than the
SMT’s lexical choices, then perhaps some alterna-
tive model striking a different balance of adequacy
and fluency is called for. Ultimately, after all, WSD
is a method of compensating for sparse data. Thus
it may be that the present inability of WSD models
to help improve accuracy of SMT systems stems not
from an inherent weakness of dedicated WSD mod-
els, but rather from limitations of present-day SMT
architectures.
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To further test this, our experiments could be
tried on other statistical MT models. For exam-
ple, the WSD model’s predictions could be em-
ployed in a Bracketing ITG translation model such
as Wu (1996) or Zenset al. (2004), or alternatively
they could be incorporated as features for rerank-
ing in a maximum-entropy SMT model (Och and
Ney, 2002), instead of using them to constrain the
sentence translation hypotheses as done here. How-
ever, the preceding discussion argues that it is doubt-
ful that this would produce significantly different re-
sults, since the inherent problem from the “language
model effect” would largely remain, causing sen-
tence translations that include the WSD’s preferred
lexical choices to be discounted. For similar rea-
sons, we suspect our findings may also hold even for
more sophisticated statistical MT models that rely
heavily on n-gram language models. A more gram-
matically structured statistical MT model that less n-
gram oriented, such as the ITG based “grammatical
channel” translation model (Wu and Wong, 1998),
might make more effective use of the WSD model’s
predictions.
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Abstract

Shortage of manually sense-tagged data is
an obstacle to supervised word sense dis-
ambiguation methods. In this paper we in-
vestigate a label propagation based semi-
supervised learning algorithm for WSD,
which combines labeled and unlabeled
data in learning process to fully realize
a global consistency assumption: simi-
lar examples should have similar labels.
Our experimental results on benchmark
corpora indicate that it consistently out-
performs SVM when only very few la-
beled examples are available, and its per-
formance is also better than monolingual
bootstrapping, and comparable to bilin-
gual bootstrapping.

1 Introduction

In this paper, we address the problem of word sense
disambiguation (WSD), which is to assign an appro-
priate sense to an occurrence of a word in a given
context. Many methods have been proposed to deal
with this problem, including supervised learning al-
gorithms (Leacock et al., 1998), semi-supervised
learning algorithms (Yarowsky, 1995), and unsuper-
vised learning algorithms (Schütze, 1998).

Supervised sense disambiguation has been very
successful, but it requires a lot of manually sense-
tagged data and can not utilize raw unannotated data
that can be cheaply acquired. Fully unsupervised
methods do not need the definition of senses and
manually sense-tagged data, but their sense cluster-
ing results can not be directly used in many NLP
tasks since there is no sense tag for each instance in
clusters. Considering both the availability of a large
amount of unlabelled data and direct use of word

senses, semi-supervised learning methods have re-
ceived great attention recently.

Semi-supervised methods for WSD are character-
ized in terms of exploiting unlabeled data in learning
procedure with the requirement of predefined sense
inventory for target words. They roughly fall into
three categories according to what is used for su-
pervision in learning process: (1) using external re-
sources, e.g., thesaurus or lexicons, to disambiguate
word senses or automatically generate sense-tagged
corpus, (Lesk, 1986; Lin, 1997; McCarthy et al.,
2004; Seo et al., 2004; Yarowsky, 1992), (2) exploit-
ing the differences between mapping of words to
senses in different languages by the use of bilingual
corpora (e.g. parallel corpora or untagged monolin-
gual corpora in two languages) (Brown et al., 1991;
Dagan and Itai, 1994; Diab and Resnik, 2002; Li and
Li, 2004; Ng et al., 2003), (3) bootstrapping sense-
tagged seed examples to overcome the bottleneck of
acquisition of large sense-tagged data (Hearst, 1991;
Karov and Edelman, 1998; Mihalcea, 2004; Park et
al., 2000; Yarowsky, 1995).

As a commonly used semi-supervised learning
method for WSD, bootstrapping algorithm works
by iteratively classifying unlabeled examples and
adding confidently classified examples into labeled
dataset using a model learned from augmented la-
beled dataset in previous iteration. It can be found
that the affinity information among unlabeled ex-
amples is not fully explored in this bootstrapping
process. Bootstrapping is based on a local consis-
tency assumption: examples close to labeled exam-
ples within same class will have same labels, which
is also the assumption underlying many supervised
learning algorithms, such as kNN.

Recently a promising family of semi-supervised
learning algorithms are introduced, which can ef-
fectively combine unlabeled data with labeled data
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in learning process by exploiting cluster structure
in data (Belkin and Niyogi, 2002; Blum et al.,
2004; Chapelle et al., 1991; Szummer and Jaakkola,
2001; Zhu and Ghahramani, 2002; Zhu et al., 2003).
Here we investigate a label propagation based semi-
supervised learning algorithm (LP algorithm) (Zhu
and Ghahramani, 2002) for WSD, which works by
representing labeled and unlabeled examples as ver-
tices in a connected graph, then iteratively propagat-
ing label information from any vertex to nearby ver-
tices through weighted edges, finally inferring the
labels of unlabeled examples after this propagation
process converges.

Compared with bootstrapping, LP algorithm is
based on a global consistency assumption. Intu-
itively, if there is at least one labeled example in each
cluster that consists of similar examples, then unla-
beled examples will have the same labels as labeled
examples in the same cluster by propagating the la-
bel information of any example to nearby examples
according to their proximity.

This paper is organized as follows. First, we will
formulate WSD problem in the context of semi-
supervised learning in section 2. Then in section
3 we will describe LP algorithm and discuss the
difference between a supervised learning algorithm
(SVM), bootstrapping algorithm and LP algorithm.
Section 4 will provide experimental results of LP al-
gorithm on widely used benchmark corpora. Finally
we will conclude our work and suggest possible im-
provement in section 5.

2 Problem Setup

Let X = {xi}
n
i=1 be a set of contexts of occur-

rences of an ambiguous wordw, wherexi repre-
sents the context of thei-th occurrence, andn is
the total number of this word’s occurrences. Let
S = {sj}

c
j=1 denote the sense tag set ofw. The first

l examplesxg(1 ≤ g ≤ l) are labeled asyg (yg ∈ S)
and otheru (l+u = n) examplesxh(l+1 ≤ h ≤ n)
are unlabeled. The goal is to predict the sense ofw
in contextxh by the use of label information ofxg

and similarity information among examples inX.
The cluster structure inX can be represented as a

connected graph, where each vertex corresponds to
an example, and the edge between any two examples
xi andxj is weighted so that the closer the vertices

in some distance measure, the larger the weight as-
sociated with this edge. The weights are defined as

follows: Wij = exp(−
d2

ij

σ2 ) if i 6= j andWii = 0
(1 ≤ i, j ≤ n), wheredij is the distance (ex. Euclid-
ean distance) betweenxi andxj , andσ is used to
control the weightWij .

3 Semi-supervised Learning Method

3.1 Label Propagation Algorithm

In LP algorithm (Zhu and Ghahramani, 2002), label
information of any vertex in a graph is propagated
to nearby vertices through weighted edges until a
global stable stage is achieved. Larger edge weights
allow labels to travel through easier. Thus the closer
the examples, more likely they have similar labels
(the global consistency assumption).

In label propagation process, the soft label of each
initial labeled example is clamped in each iteration
to replenish label sources from these labeled data.
Thus the labeled data act like sources to push out la-
bels through unlabeled data. With this push from la-
beled examples, the class boundaries will be pushed
through edges with large weights and settle in gaps
along edges with small weights. If the data structure
fits the classification goal, then LP algorithm can use
these unlabeled data to help learning classification
plane.

Let Y 0 ∈ Nn×c represent initial soft labels at-
tached to vertices, whereY 0

ij = 1 if yi is sj and0
otherwise. LetY 0

L be the topl rows ofY 0 andY 0
U

be the remainingu rows. Y 0
L is consistent with the

labeling in labeled data, and the initialization ofY 0
U

can be arbitrary.
Optimally we expect that the value ofWij across

different classes is as small as possible and the value
of Wij within same class is as large as possible.
This will make label propagation to stay within same
class. In later experiments, we setσ as the aver-
age distance between labeled examples from differ-
ent classes.

Definen × n probability transition matrixTij =

P (j → i) =
Wij∑n

k=1
Wkj

, whereTij is the probability

to jump from examplexj to examplexi.
Compute the row-normalized matrixT by T ij =

Tij/
∑n

k=1 Tik. This normalization is to maintain
the class probability interpretation ofY .
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Figure 1: Classification result on two-moon pattern dataset.
(a) Two-moon pattern dataset with two labeled points, (b) clas-
sification result by SVM, (c) labeling procedure of bootstrap-
ping algorithm, (d) ideal classification.

Then LP algorithm is defined as follows:
1. Initially set t=0, wheret is iteration index;
2. Propagate the label byY t+1 = TY t;
3. Clamp labeled data by replacing the topl row

of Y t+1 with Y 0
L . Repeat from step 2 untilY t con-

verges;
4. Assignxh(l + 1 ≤ h ≤ n) with a labelsĵ ,

whereĵ = argmaxjYhj .
This algorithm has been shown to converge to

a unique solution, which iŝYU = limt→∞ Y t
U =

(I − T uu)−1T ulY
0
L (Zhu and Ghahramani, 2002).

We can see that this solution can be obtained with-
out iteration and the initialization ofY 0

U is not im-
portant, sinceY 0

U does not affect the estimation of
ŶU . I is u × u identity matrix. T uu andT ul are
acquired by splitting matrixT after thel-th row and
thel-th column into 4 sub-matrices.

3.2 Comparison between SVM, Bootstrapping
and LP

For WSD, SVM is one of the state of the art super-
vised learning algorithms (Mihalcea et al., 2004),
while bootstrapping is one of the state of the art
semi-supervised learning algorithms (Li and Li,
2004; Yarowsky, 1995). For comparing LP with
SVM and bootstrapping, let us consider a dataset
with two-moon pattern shown in Figure 1(a). The
upper moon consists of 9 points, while the lower
moon consists of 13 points. There is only one la-
beled point in each moon, and other 20 points are un-
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Figure 2: Classification result of LP on two-moon pattern
dataset. (a) Minimum spanning tree of this dataset. The conver-
gence process of LP algorithm witht varying from1 to 100 is
shown from (b) to (f).

labeled. The distance metric is Euclidian distance.
We can see that the points in one moon should be
more similar to each other than the points across the
moons.

Figure 1(b) shows the classification result of
SVM. Vertical line denotes classification hyper-
plane, which has the maximum separating margin
with respect to the labeled points in two classes. We
can see that SVM does not work well when labeled
data can not reveal the structure (two moon pattern)
in each class. The reason is that the classification
hyperplane was learned only from labeled data. In
other words, the coherent structure (two-moon pat-
tern) in unlabeled data was not explored when infer-
ring class boundary.

Figure 1(c) shows bootstrapping procedure using
kNN (k=1) as base classifier with user-specified pa-
rameterb = 1 (the number of added examples from
unlabeled data into classified data for each class in
each iteration). Termination condition is that the dis-
tance between labeled and unlabeled points is more
than inter-class distance (the distance betweenA0

and B0). Each arrow in Figure 1(c) represents
one classification operation in each iteration for each
class. After eight iterations,A1 ∼ A8 were tagged
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as +1, and B1 ∼ B8 were tagged as−1, while
A9 ∼ A10 andB9 ∼ B10 were still untagged. Then
at the ninth iteration,A9 was tagged as+1 since the
label ofA9 was determined only by labeled points in
kNN model:A9 is closer to any point in{A0 ∼ A8}
than to any point in{B0 ∼ B8}, regardless of the
intrinsic structure in data:A9 ∼ A10 andB9 ∼ B10

are closer to points in lower moon than to points in
upper moon. In other words, bootstrapping method
uses the unlabeled data under a local consistency
based strategy. This is the reason that two pointsA9

andA10 are misclassified (shown in Figure 1(c)).
From above analysis we see that both SVM and

bootstrapping are based on a local consistency as-
sumption.

Finally we ran LP on a connected graph-minimum
spanning tree generated for this dataset, shown in
Figure 2(a). A, B, C represent three points, and
the edgeA − B connects the two moons. Figure
2(b)- 2(f) shows the convergence process of LP with
t increasing from1 to 100. Whent = 1, label in-
formation of labeled data was pushed to only nearby
points. After seven iteration steps (t = 7), point B
in upper moon was misclassified as−1 since it first
received label information from pointA through the
edge connecting two moons. After another three it-
eration steps (t=10), this misclassified point was re-
tagged as+1. The reason of this self-correcting be-
havior is that with the push of label information from
nearby points, the value ofYB,+1 became higher
than YB,−1. In other words, the weight of edge
B − C is larger than that of edgeB − A, which
makes it easier for+1 label of pointC to travel to
point B. Finally, whent ≥ 12 LP converged to a
fixed point, which achieved the ideal classification
result.

4 Experiments and Results

4.1 Experiment Design

For empirical comparison with SVM and bootstrap-
ping, we evaluated LP on widely used benchmark
corpora - “interest”, “line”1 and the data in English
lexical sample task of SENSEVAL-3 (including all
57 English words )2.

1Available at http://www.d.umn.edu/∼tpederse/data.html
2Available at http://www.senseval.org/senseval3

Table 1: The upper two tables summarize accuracies (aver-
aged over 20 trials) and paired t-test results of SVM and LP on
SENSEVAL-3 corpus with percentage of training set increasing
from 1% to 100%. The lower table lists the official result of
baseline (using most frequent sense heuristics) and top 3 sys-
tems in ELS task of SENSEVAL-3.

Percentage SVM LPcosine LPJS

1% 24.9±2.7% 27.5±1.1% 28.1±1.1%
10% 53.4±1.1% 54.4±1.2% 54.9±1.1%
25% 62.3±0.7% 62.3±0.7% 63.3±0.9%
50% 66.6±0.5% 65.7±0.5% 66.9±0.6%
75% 68.7±0.4% 67.3±0.4% 68.7±0.3%
100% 69.7% 68.4% 70.3%

Percentage SVM vs. LPcosine SVM vs. LPJS

p-value Sign. p-value Sign.
1% 8.7e-004 ≪ 8.5e-005 ≪
10% 1.9e-006 ≪ 1.0e-008 ≪
25% 9.2e-001 ∼ 3.0e-006 ≪
50% 1.9e-006 ≫ 6.2e-002 ∼
75% 7.4e-013 ≫ 7.1e-001 ∼
100% - - - -

Systems Baseline htsa3 IRST-Kernels nusels
Accuracy 55.2% 72.9% 72.6% 72.4%

We used three types of features to capture con-
textual information: part-of-speech of neighboring
words with position information, unordered sin-
gle words in topical context, and local collocations
(as same as the feature set used in (Lee and Ng,
2002) except that we did not use syntactic relations).
For SVM, we did not perform feature selection on
SENSEVAL-3 data since feature selection deterio-
rates its performance (Lee and Ng, 2002). When
running LP on the three datasets, we removed the
features with occurrence frequency (counted in both
training set and test set) less than 3 times.

We investigated two distance measures for LP: co-
sine similarity and Jensen-Shannon (JS) divergence
(Lin, 1991).

For the three datasets, we constructed connected
graphs following (Zhu et al., 2003): two instances
u, v will be connected by an edge ifu is amongv’s
k nearest neighbors, or ifv is amongu’s k nearest
neighbors as measured by cosine or JS distance mea-
sure. For “interest” and “line” corpora, k is 10 (fol-
lowing (Zhu et al., 2003)), while for SENSEVAL-3
data, k is 5 since the size of dataset for each word
in SENSEVAL-3 is much less than that of “interest”
and “line” datasets.
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4.2 Experiment 1: LP vs. SVM

In this experiment, we evaluated LP and SVM
3 on the data of English lexical sample task in
SENSEVAL-3. We usedl examples from training
set as labeled data, and the remaining training ex-
amples and all the test examples as unlabeled data.
For each labeled set sizel, we performed 20 trials.
In each trial, we randomly sampledl labeled exam-
ples for each word from training set. If any sense
was absent from the sampled labeled set, we redid
the sampling. We conducted experiments with dif-
ferent values ofl, including1%×Nw,train, 10%×
Nw,train, 25%×Nw,train, 50%×Nw,train, 75%×
Nw,train, 100%×Nw,train (Nw,train is the number
of examples in training set of wordw). SVM and LP
were evaluated using accuracy4 (fine-grained score)
on test set of SENSEVAL-3.

We conducted paired t-test on the accuracy fig-
ures for each value ofl. Paired t-test is not run when
percentage= 100%, since there is only one paired
accuracy figure. Paired t-test is usually used to esti-
mate the difference in means between normal pop-
ulations based on a set of random paired observa-
tions. {≪, ≫}, {<, >}, and∼ correspond to p-
value≤ 0.01, (0.01, 0.05], and> 0.05 respectively.
≪ (or≫) means that the performance of LP is sig-
nificantly better (or significantly worse) than SVM.
< (or >) means that the performance of LP is better
(or worse) than SVM.∼means that the performance
of LP is almost as same as SVM.

Table 1 reports the average accuracies and paired
t-test results of SVM and LP with different sizes
of labled data. It also lists the official results of
baseline method and top 3 systems in ELS task of
SENSEVAL-3.

From Table 1, we see that with small labeled
dataset (percentage of labeled data≤ 10%), LP per-
forms significantly better than SVM. When the per-
centage of labeled data increases from50% to 75%,
the performance ofLPJS and SVM become almost
same, whileLPcosine performs significantly worse
than SVM.

3we used linear SV M light, available at
http://svmlight.joachims.org/.

4If there are multiple sense tags for an instance in training
set or test set, then only the first tag is considered as correct
answer. Furthermore, if the answer of the instance in test set is
“U”, then this instance will be removed from test set.

Table 2: Accuracies from (Li and Li, 2004) and average ac-
curacies of LP withc × b labeled examples on “interest” and
“line” corpora. Major is a baseline method in which they al-
ways choose the most frequent sense. MB-D denotes monolin-
gual bootstrapping with decision list as base classifier, MB-B
represents monolingual bootstrapping with ensemble of Naive
Bayes as base classifier, and BB is bilingual bootstrapping with
ensemble of Naive Bayes as base classifier.

Ambiguous Accuracies from (Li and Li, 2004)
words Major MB-D MB-B BB
interest 54.6% 54.7% 69.3% 75.5%

line 53.5% 55.6% 54.1% 62.7%

Ambiguous Our results
words #labeled examples LPcosine LPJS

interest 4×15=60 80.2±2.0% 79.8±2.0%
line 6×15=90 60.3±4.5% 59.4±3.9%

4.3 Experiment 2: LP vs. Bootstrapping

Li and Li (2004) used “interest” and “line” corpora
as test data. For the word “interest”, they used its
four major senses. For comparison with their re-
sults, we took reduced “interest” corpus (constructed
by retaining four major senses) and complete “line”
corpus as evaluation data. In their algorithm,c is
the number of senses of ambiguous word, andb
(b = 15) is the number of examples added into clas-
sified data for each class in each iteration of boot-
strapping. c × b can be considered as the size of
initial labeled data in their bootstrapping algorithm.
We ran LP with 20 trials on reduced “interest” cor-
pus and complete “line” corpus. In each trial, we
randomly sampledb labeled examples for each sense
of “interest” or “line” as labeled data. The rest
served as both unlabeled data and test data.

Table 2 summarizes the average accuracies of LP
on the two corpora. It also lists the accuracies of
monolingual bootstrapping algorithm (MB), bilin-
gual bootstrapping algorithm (BB) on “interest” and
“line” corpora. We can see that LP performs much
better than MB-D and MB-B on both “interest” and
“line” corpora, while the performance of LP is com-
parable to BB on these two corpora.

4.4 An Example: Word “use”

For investigating the reason for LP to outperform
SVM and monolingual bootstrapping, we used the
data of word “use” in English lexical sample task of
SENSEVAL-3 as an example (totally 26 examples
in training set and 14 examples in test set). For data
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Figure 3: Comparison of sense disambiguation results be-
tween SVM, monolingual bootstrapping and LP on word “use”.
(a) only one labeled example for each sense of word “use”
as training data before sense disambiguation (◦ and⊲ denote
the unlabeled examples in SENSEVAL-3 training set and test
set respectively, and other five symbols (+, ×, △, ⋄, and∇)
represent the labeled examples with different sense tags sam-
pled from SENSEVAL-3 training set.), (b) ground-truth re-
sult, (c) classification result on SENSEVAL-3 test set by SVM
(accuracy= 3

14
= 21.4%), (d) classified data after bootstrap-

ping, (e) classification result on SENSEVAL-3 training set and
test set by 1NN (accuracy= 6

14
= 42.9% ), (f) classifica-

tion result on SENSEVAL-3 training set and test set by LP
(accuracy= 10

14
= 71.4% ).

visualization, we conducted unsupervised nonlinear
dimensionality reduction5 on these 40 feature vec-
tors with 210 dimensions. Figure 3 (a) shows the
dimensionality reduced vectors in two-dimensional
space. We randomly sampled only one labeled ex-
ample for each sense of word “use” as labeled data.
The remaining data in training set and test set served
as unlabeled data for bootstrapping and LP. All of
these three algorithms are evaluated using accuracy
on test set.

From Figure 3 (c) we can see that SVM misclassi-
5We usedIsomap to perform dimensionality reduction by

computing two-dimensional, 39-nearest-neighbor-preserving
embedding of 210-dimensional input.Isomap is available at
http://isomap.stanford.edu/.

fied many examples from class+ into class× since
using only features occurring in training set can not
reveal the intrinsic structure in full dataset.

For comparison, we implemented monolingual
bootstrapping with kNN (k=1) as base classifier.
The parameterb is set as 1. Onlyb unlabeled ex-
amples nearest to labeled examples and with the
distance less thandinter−class (the minimum dis-
tance between labeled examples with different sense
tags) will be added into classified data in each itera-
tion till no such unlabeled examples can be found.
Firstly we ran this monolingual bootstrapping on
this dataset to augment initial labeled data. The re-
sulting classified data is shown in Figure 3 (d). Then
a 1NN model was learned on this classified data and
we used this model to perform classification on the
remaining unlabeled data. Figure 3 (e) reports the
final classification result by this 1NN model. We can
see that bootstrapping does not perform well since it
is susceptible to small noise in dataset. For example,
in Figure 3 (d), the unlabeled exampleB 6 happened
to be closest to labeled exampleA, then 1NN model
tagged exampleB with label⋄. But the correct label
of B should be+ as shown in Figure 3 (b). This
error caused misclassification of other unlabeled ex-
amples that should have label+.

In LP, the label information of exampleC can
travel toB through unlabeled data. Then exampleA
will compete withC and other unlabeled examples
aroundB when determining the label ofB. In other
words, the labels of unlabeled examples are deter-
mined not only by nearby labeled examples, but also
by nearby unlabeled examples. Using this classifi-
cation strategy achieves better performance than the
local consistency based strategy adopted by SVM
and bootstrapping.

4.5 Experiment 3: LPcosine vs. LPJS

Table 3 summarizes the performance comparison
betweenLPcosine andLPJS on three datasets. We
can see that on SENSEVAL-3 corpus,LPJS per-

6In the two-dimensional space, exampleB is not the closest
example toA. The reason is that: (1)A is not close to most
of nearby examples aroundB, andB is not close to most of
nearby examples aroundA; (2) we usedIsomap to maximally
preserve the neighborhood information between any example
and all other examples, which caused the loss of neighborhood
information between a few example pairs for obtaining a glob-
ally optimal solution.
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Table 3: Performance comparison betweenLPcosine and
LPJS and the results of three model selection criteria are re-
ported in following two tables. In the lower table,< (or >)
means that the average value of functionH(Qcosine) is lower
(or higher) thanH(QJS), and it will result in selecting cosine
(or JS) as distance measure.Qcosine (or QJS) represents a ma-
trix using cosine similarity (or JS divergence).

√
and× denote

correct and wrong prediction results respectively, while◦means
that any prediction is acceptable.

LPcosine vs. LPJS

Data p-value Significance
SENSEVAL-3 (1%) 1.1e-003 ≪
SENSEVAL-3 (10%) 8.9e-005 ≪
SENSEVAL-3 (25%) 9.0e-009 ≪
SENSEVAL-3 (50%) 3.2e-010 ≪
SENSEVAL-3 (75%) 7.7e-013 ≪
SENSEVAL-3 (100%) - -

interest 3.3e-002 >
line 8.1e-002 ∼

H(D) H(W ) H(YU )
Data cos. vs. JS cos. vs. JS cos. vs. JS

SENSEVAL-3 (1%) > (
√

) > (
√

) < (×)
SENSEVAL-3 (10%) < (×) > (

√
) < (×)

SENSEVAL-3 (25%) < (×) > (
√

) < (×)
SENSEVAL-3 (50%) > (

√
) > (

√
) > (

√
)

SENSEVAL-3 (75%) > (
√

) > (
√

) > (
√

)
SENSEVAL-3 (100%) < (◦) > (◦) < (◦)

interest < (
√

) > (×) < (
√

)
line > (◦) > (◦) > (◦)

forms significantly better thanLPcosine, but their
performance is almost comparable on “interest” and
“line” corpora. This observation motivates us to au-
tomatically select a distance measure that will boost
the performance of LP on a given dataset.

Cross-validation on labeled data is not feasi-
ble due to the setting of semi-supervised learning
(l ≪ u). In (Zhu and Ghahramani, 2002; Zhu et
al., 2003), they suggested a label entropy criterion
H(YU ) for model selection, whereY is the label
matrix learned by their semi-supervised algorithms.
The intuition behind their method is that good para-
meters should result in confident labeling. Entropy
on matrixW (H(W )) is a commonly used measure
for unsupervised feature selection (Dash and Liu,
2000), which can be considered here. Another pos-
sible criterion for model selection is to measure the
entropy ofc × c inter-class distance matrixD cal-
culated on labeled data (denoted asH(D)), where
Di,j represents the average distance between thei-
th class and thej-th class. We will investigate three
criteria, H(D), H(W ) andH(YU ), for model se-
lection. The distance measure can be automatically

selected by minimizing the average value of function
H(D), H(W ) or H(YU ) over 20 trials.

Let Q be theM ×N matrix. FunctionH(Q) can
measure the entropy of matrixQ, which is defined
as (Dash and Liu, 2000):

Si,j = exp (−α ∗Qi,j), (1)

H(Q) = −
M∑

i=1

N∑

j=1

(Si,j log Si,j + (1− Si,j) log (1− Si,j)),

(2)

whereα is positive constant. The possible value ofα
is− ln 0.5

Ī
, whereĪ = 1

MN

∑
i,j Qi,j . S is introduced

for normalization of matrixQ. For SENSEVAL-
3 data, we calculated an overall average score of
H(Q) by

∑
w

Nw,test∑
w

Nw,test
H(Qw). Nw,test is the

number of examples in test set of wordw. H(D),
H(W ) andH(YU ) can be obtained by replacingQ
with D, W andYU respectively.

Table 3 reports the automatic prediction results
of these three criteria.

From Table 3, we can see that usingH(W )
can consistently select the optimal distance measure
when the performance gap betweenLPcosine and
LPJS is very large (denoted by≪ or≫). ButH(D)
andH(YU ) fail to find the optimal distance measure
when only very few labeled examples are available
(percentage of labeled data≤ 10%).

H(W ) measures the separability of matrixW .
Higher value ofH(W ) means that distance mea-
sure decreases the separability of examples in full
dataset. Then the boundary between clusters is ob-
scured, which makes it difficult for LP to locate this
boundary. Therefore higher value ofH(W ) results
in worse performance of LP.

When labeled dataset is small, the distances be-
tween classes can not be reliably estimated, which
results in unreliable indication of the separability
of examples in full dataset. This is the reason that
H(D) performs poorly on SENSEVAL-3 corpus
when the percentage of labeled data is less than25%.

For H(YU ), small labeled dataset can not reveal
intrinsic structure in data, which may bias the esti-
mation ofYU . Then labeling confidence (H(YU ))
can not properly indicate the performance of LP.
This may interpret the poor performance ofH(YU )
on SENSEVAL-3 data when percentage≤ 25%.
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5 Conclusion

In this paper we have investigated a label propaga-
tion based semi-supervised learning algorithm for
WSD, which fully realizes a global consistency as-
sumption: similar examples should have similar la-
bels. In learning process, the labels of unlabeled ex-
amples are determined not only by nearby labeled
examples, but also by nearby unlabeled examples.
Compared with semi-supervised WSD methods in
the first and second categories, our corpus based
method does not need external resources, includ-
ing WordNet, bilingual lexicon, aligned parallel cor-
pora. Our analysis and experimental results demon-
strate the potential of this cluster assumption based
algorithm. It achieves better performance than SVM
when only very few labeled examples are avail-
able, and its performance is also better than mono-
lingual bootstrapping and comparable to bilingual
bootstrapping. Finally we suggest an entropy based
method to automatically identify a distance measure
that can boost the performance of LP algorithm on a
given dataset.

It has been shown that one sense per discourse
property can improve the performance of bootstrap-
ping algorithm (Li and Li, 2004; Yarowsky, 1995).
This heuristics can be integrated into LP algorithm
by setting weightWi,j = 1 if the i-th and j-th in-
stances are in the same discourse.

In the future we may extend the evaluation of LP
algorithm and related cluster assumption based al-
gorithms using more benchmark data for WSD. An-
other direction is to use feature clustering technique
to deal with data sparseness and noisy feature prob-
lem.
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Abstract

In this paper we present a supervised
Word Sense Disambiguation methodol-
ogy, that exploits kernel methods to model
sense distinctions. In particular a combi-
nation of kernel functions is adopted to
estimate independently both syntagmatic
and domain similarity. We defined a ker-
nel function, namely the Domain Kernel,
that allowed us to plug “external knowl-
edge” into the supervised learning pro-
cess. External knowledge is acquired from
unlabeled data in a totally unsupervised
way, and it is represented by means of Do-
main Models. We evaluated our method-
ology on several lexical sample tasks in
different languages, outperforming sig-
nificantly the state-of-the-art for each of
them, while reducing the amount of la-
beled training data required for learning.

1 Introduction

The main limitation of many supervised approaches
for Natural Language Processing (NLP) is the lack
of available annotated training data. This problem is
known as the Knowledge Acquisition Bottleneck.

To reach high accuracy, state-of-the-art systems
for Word Sense Disambiguation (WSD) are de-
signed according to a supervised learning frame-
work, in which the disambiguation of each word
in the lexicon is performed by constructing a dif-
ferent classifier. A large set of sense tagged exam-
ples is then required to train each classifier. This

methodology is called word expert approach (Small,
1980; Yarowsky and Florian, 2002). However this
is clearly unfeasible for all-words WSD tasks, in
which all the words of an open text should be dis-
ambiguated.

On the other hand, the word expert approach
works very well for lexical sample WSD tasks (i.e.
tasks in which it is required to disambiguate only
those words for which enough training data is pro-
vided). As the original rationale of the lexical sam-
ple tasks was to define a clear experimental settings
to enhance the comprehension of WSD, they should
be considered as preceding exercises to all-words
tasks. However this is not the actual case. Algo-
rithms designed for lexical sample WSD are often
based on pure supervision and hence “data hungry”.

We think that lexical sample WSD should regain
its original explorative role and possibly use a min-
imal amount of training data, exploiting instead ex-
ternal knowledge acquired in an unsupervised way
to reach the actual state-of-the-art performance.

By the way, minimal supervision is the basis
of state-of-the-art systems for all-words tasks (e.g.
(Mihalcea and Faruque, 2004; Decadt et al., 2004)),
that are trained on small sense tagged corpora (e.g.
SemCor), in which few examples for a subset of the
ambiguous words in the lexicon can be found. Thus
improving the performance of WSD systems with
few learning examples is a fundamental step towards
the direction of designing a WSD system that works
well on real texts.

In addition, it is a common opinion that the per-
formance of state-of-the-art WSD systems is not sat-
isfactory from an applicative point of view yet.
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To achieve these goals we identified two promis-
ing research directions:

1. Modeling independently domain and syntag-
matic aspects of sense distinction, to improve
the feature representation of sense tagged ex-
amples (Gliozzo et al., 2004).

2. Leveraging external knowledge acquired from
unlabeled corpora.

The first direction is motivated by the linguistic
assumption that syntagmatic and domain (associa-
tive) relations are both crucial to represent sense
distictions, while they are basically originated by
very different phenomena. Syntagmatic relations
hold among words that are typically located close
to each other in the same sentence in a given tempo-
ral order, while domain relations hold among words
that are typically used in the same semantic domain
(i.e. in texts having similar topics (Gliozzo et al.,
2004)). Their different nature suggests to adopt dif-
ferent learning strategies to detect them.

Regarding the second direction, external knowl-
edge would be required to help WSD algorithms to
better generalize over the data available for train-
ing. On the other hand, most of the state-of-the-art
supervised approaches to WSD are still completely
based on “internal” information only (i.e. the only
information available to the training algorithm is the
set of manually annotated examples). For exam-
ple, in the Senseval-3 evaluation exercise (Mihal-
cea and Edmonds, 2004) many lexical sample tasks
were provided, beyond the usual labeled training
data, with a large set of unlabeled data. However,
at our knowledge, none of the participants exploited
this unlabeled material. Exploring this direction is
the main focus of this paper. In particular we ac-
quire a Domain Model (DM) for the lexicon (i.e.
a lexical resource representing domain associations
among terms), and we exploit this information in-
side our supervised WSD algorithm. DMs can be
automatically induced from unlabeled corpora, al-
lowing the portability of the methodology among
languages.

We identified kernel methods as a viable frame-
work in which to implement the assumptions above
(Strapparava et al., 2004).

Exploiting the properties of kernels, we have de-
fined independently a set of domain and syntagmatic
kernels and we combined them in order to define a
complete kernel for WSD. The domain kernels esti-
mate the (domain) similarity (Magnini et al., 2002)
among contexts, while the syntagmatic kernels eval-
uate the similarity among collocations.

We will demonstrate that using DMs induced
from unlabeled corpora is a feasible strategy to in-
crease the generalization capability of the WSD al-
gorithm. Our system far outperforms the state-of-
the-art systems in all the tasks in which it has been
tested. Moreover, a comparative analysis of the
learning curves shows that the use of DMs allows
us to remarkably reduce the amount of sense-tagged
examples, opening new scenarios to develop sys-
tems for all-words tasks with minimal supervision.

The paper is structured as follows. Section 2 in-
troduces the notion of Domain Model. In particular
an automatic acquisition technique based on Latent
Semantic Analysis (LSA) is described. In Section 3
we present a WSD system based on a combination
of kernels. In particular we define a Domain Ker-
nel (see Section 3.1) and a Syntagmatic Kernel (see
Section 3.2), to model separately syntagmatic and
domain aspects. In Section 4 our WSD system is
evaluated in the Senseval-3 English, Italian, Spanish
and Catalan lexical sample tasks.

2 Domain Models

The simplest methodology to estimate the similar-
ity among the topics of two texts is to represent
them by means of vectors in the Vector Space Model
(VSM), and to exploit the cosine similarity. More
formally, let C = {t1, t2, . . . , tn} be a corpus, let
V = {w1, w2, . . . , wk} be its vocabulary, let T be
the k × n term-by-document matrix representing C ,
such that ti,j is the frequency of word wi into the text
tj . The VSM is a k-dimensional space R

k, in which
the text tj ∈ C is represented by means of the vec-
tor ~tj such that the ith component of ~tj is ti,j. The
similarity among two texts in the VSM is estimated
by computing the cosine among them.

However this approach does not deal well with
lexical variability and ambiguity. For example the
two sentences “he is affected by AIDS” and “HIV is
a virus” do not have any words in common. In the
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VSM their similarity is zero because they have or-
thogonal vectors, even if the concepts they express
are very closely related. On the other hand, the sim-
ilarity between the two sentences “the laptop has
been infected by a virus” and “HIV is a virus” would
turn out very high, due to the ambiguity of the word
virus.

To overcome this problem we introduce the notion
of Domain Model (DM), and we show how to use it
in order to define a domain VSM in which texts and
terms are represented in a uniform way.

A DM is composed by soft clusters of terms. Each
cluster represents a semantic domain, i.e. a set of
terms that often co-occur in texts having similar top-
ics. A DM is represented by a k×k′ rectangular ma-
trix D, containing the degree of association among
terms and domains, as illustrated in Table 1.

MEDICINE COMPUTER SCIENCE

HIV 1 0
AIDS 1 0
virus 0.5 0.5
laptop 0 1

Table 1: Example of Domain Matrix

DMs can be used to describe lexical ambiguity
and variability. Lexical ambiguity is represented
by associating one term to more than one domain,
while variability is represented by associating dif-
ferent terms to the same domain. For example the
term virus is associated to both the domain COM-
PUTER SCIENCE and the domain MEDICINE (ambi-
guity) while the domain MEDICINE is associated to
both the terms AIDS and HIV (variability).

More formally, let D = {D1, D2, ..., Dk′} be a
set of domains, such that k′ � k. A DM is fully
defined by a k×k′ domain matrix D representing in
each cell di,z the domain relevance of term wi with
respect to the domain Dz . The domain matrix D is
used to define a function D : R

k → R
k′ , that maps

the vectors ~tj expressed into the classical VSM, into
the vectors ~t′j in the domain VSM. D is defined by1

D(~tj) = ~tj(I
IDF

D) = ~t′j (1)

1In (Wong et al., 1985) the formula 1 is used to define a
Generalized Vector Space Model, of which the Domain VSM is
a particular instance.

where I
IDF is a k × k diagonal matrix such that

iIDF
i,i = IDF (wi), ~tj is represented as a row vector,

and IDF (wi) is the Inverse Document Frequency of
wi.

Vectors in the domain VSM are called Domain
Vectors (DVs). DVs for texts are estimated by ex-
ploiting the formula 1, while the DV ~w′

i, correspond-
ing to the word wi ∈ V is the ith row of the domain
matrix D. To be a valid domain matrix such vectors
should be normalized (i,e. 〈 ~w′

i,
~w′

i〉 = 1).
In the Domain VSM the similarity among DVs is

estimated by taking into account second order rela-
tions among terms. For example the similarity of the
two sentences “He is affected by AIDS” and “HIV
is a virus” is very high, because the terms AIDS,
HIV and virus are highly associated to the domain
MEDICINE.

A DM can be estimated from hand made lexical
resources such as WORDNET DOMAINS (Magnini
and Cavaglià, 2000), or by performing a term clus-
tering process on a large corpus. We think that the
second methodology is more attractive, because it
allows us to automatically acquire DMs for different
languages.

In this work we propose the use of Latent Seman-
tic Analysis (LSA) to induce DMs from corpora.
LSA is an unsupervised technique for estimating the
similarity among texts and terms in a corpus. LSA
is performed by means of a Singular Value Decom-
position (SVD) of the term-by-document matrix T

describing the corpus. The SVD algorithm can be
exploited to acquire a domain matrix D from a large
corpus C in a totally unsupervised way. SVD de-
composes the term-by-document matrix T into three
matrixes T ' VΣk′U

T where Σk′ is the diagonal
k × k matrix containing the highest k ′ � k eigen-
values of T, and all the remaining elements set to
0. The parameter k′ is the dimensionality of the Do-
main VSM and can be fixed in advance2 . Under this
setting we define the domain matrix DLSA as

DLSA = I
N
V

√

Σk′ (2)

where I
N is a diagonal matrix such that i

N
i,i =

1
q

〈 ~w′

i,
~w′

i〉
, ~w′

i is the ith row of the matrix V
√

Σk′ .3

2It is not clear how to choose the right dimensionality. In
our experiments we used 50 dimensions.

3When DLSA is substituted in Equation 1 the Domain VSM
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3 Kernel Methods for WSD

In the introduction we discussed two promising di-
rections for improving the performance of a super-
vised disambiguation system. In this section we
show how these requirements can be efficiently im-
plemented in a natural and elegant way by using ker-
nel methods.

The basic idea behind kernel methods is to embed
the data into a suitable feature space F via a map-
ping function φ : X → F , and then use a linear al-
gorithm for discovering nonlinear patterns. Instead
of using the explicit mapping φ, we can use a kernel
function K : X × X → R, that corresponds to the
inner product in a feature space which is, in general,
different from the input space.

Kernel methods allow us to build a modular sys-
tem, as the kernel function acts as an interface be-
tween the data and the learning algorithm. Thus
the kernel function becomes the only domain spe-
cific module of the system, while the learning algo-
rithm is a general purpose component. Potentially
any kernel function can work with any kernel-based
algorithm. In our system we use Support Vector Ma-
chines (Cristianini and Shawe-Taylor, 2000).

Exploiting the properties of the kernel func-
tions, it is possible to define the kernel combination
schema as

KC(xi, xj) =
n

∑

l=1

Kl(xi, xj)
√

Kl(xj, xj)Kl(xi, xi)
(3)

Our WSD system is then defined as combination
of n basic kernels. Each kernel adds some addi-
tional dimensions to the feature space. In particular,
we have defined two families of kernels: Domain
and Syntagmatic kernels. The former is composed
by both the Domain Kernel (KD) and the Bag-of-
Words kernel (KBoW ), that captures domain aspects
(see Section 3.1). The latter captures the syntag-
matic aspects of sense distinction and it is composed
by two kernels: the collocation kernel (KColl) and

is equivalent to a Latent Semantic Space (Deerwester et al.,
1990). The only difference in our formulation is that the vectors
representing the terms in the Domain VSM are normalized by
the matrix I

N, and then rescaled, according to their IDF value,
by matrix I

IDF. Note the analogy with the tf idf term weighting
schema (Salton and McGill, 1983), widely adopted in Informa-
tion Retrieval.

the Part of Speech kernel (KPoS) (see Section 3.2).
The WSD kernels (K ′

WSD and KWSD) are then de-
fined by combining them (see Section 3.3).

3.1 Domain Kernels
In (Magnini et al., 2002), it has been claimed that
knowing the domain of the text in which the word
is located is a crucial information for WSD. For
example the (domain) polysemy among the COM-
PUTER SCIENCE and the MEDICINE senses of the
word virus can be solved by simply considering
the domain of the context in which it is located.

This assumption can be modeled by defining a
kernel that estimates the domain similarity among
the contexts of the words to be disambiguated,
namely the Domain Kernel. The Domain Kernel es-
timates the similarity among the topics (domains) of
two texts, so to capture domain aspects of sense dis-
tinction. It is a variation of the Latent Semantic Ker-
nel (Shawe-Taylor and Cristianini, 2004), in which a
DM (see Section 2) is exploited to define an explicit
mapping D : R

k → R
k′ from the classical VSM into

the Domain VSM. The Domain Kernel is defined by

KD(ti, tj) =
〈D(ti),D(tj)〉

√

〈D(ti),D(tj)〉〈D(ti),D(tj)〉
(4)

where D is the Domain Mapping defined in equa-
tion 1. Thus the Domain Kernel requires a Domain
Matrix D. For our experiments we acquire the ma-
trix DLSA, described in equation 2, from a generic
collection of unlabeled documents, as explained in
Section 2.

A more traditional approach to detect topic (do-
main) similarity is to extract Bag-of-Words (BoW)
features from a large window of text around the
word to be disambiguated. The BoW kernel, de-
noted by KBoW , is a particular case of the Domain
Kernel, in which D = I, and I is the identity ma-
trix. The BoW kernel does not require a DM, then it
can be applied to the “strictly” supervised settings,
in which an external knowledge source is not pro-
vided.

3.2 Syntagmatic kernels
Kernel functions are not restricted to operate on vec-
torial objects ~x ∈ R

k. In principle kernels can be
defined for any kind of object representation, as for
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example sequences and trees. As stated in Section 1,
syntagmatic relations hold among words collocated
in a particular temporal order, thus they can be mod-
eled by analyzing sequences of words.

We identified the string kernel (or word se-
quence kernel) (Shawe-Taylor and Cristianini, 2004)
as a valid instrument to model our assumptions.
The string kernel counts how many times a (non-
contiguous) subsequence of symbols u of length
n occurs in the input string s, and penalizes non-
contiguous occurrences according to the number of
gaps they contain (gap-weighted subsequence ker-
nel).

Formally, let V be the vocabulary, the feature
space associated with the gap-weighted subsequence
kernel of length n is indexed by a set I of subse-
quences over V of length n. The (explicit) mapping
function is defined by

φn
u(s) =

∑

i:u=s(i)

λl(i), u ∈ V n (5)

where u = s(i) is a subsequence of s in the posi-
tions given by the tuple i, l(i) is the length spanned
by u, and λ ∈]0, 1] is the decay factor used to penal-
ize non-contiguous subsequences.

The associate gap-weighted subsequence kernel is
defined by

k
n(si, sj) = 〈φn(si), φ

n(sj)〉 =
X

u∈V n

φ
n(si)φ

n(sj) (6)

We modified the generic definition of the string
kernel in order to make it able to recognize collo-
cations in a local window of the word to be disam-
biguated. In particular we defined two Syntagmatic
kernels: the n-gram Collocation Kernel and the n-
gram PoS Kernel. The n-gram Collocation ker-
nel Kn

Coll is defined as a gap-weighted subsequence
kernel applied to sequences of lemmata around the
word l0 to be disambiguated (i.e. l−3, l−2, l−1, l0,
l+1, l+2, l+3). This formulation allows us to esti-
mate the number of common (sparse) subsequences
of lemmata (i.e. collocations) between two exam-
ples, in order to capture syntagmatic similarity. In
analogy we defined the PoS kernel Kn

PoS , by setting
s to the sequence of PoSs p−3, p−2, p−1, p0, p+1,
p+2, p+3, where p0 is the PoS of the word to be dis-
ambiguated.

The definition of the gap-weighted subsequence
kernel, provided by equation 6, depends on the pa-
rameter n, that represents the length of the sub-
sequences analyzed when estimating the similarity
among sequences. For example, K2

Coll allows us to
represent the bigrams around the word to be disam-
biguated in a more flexible way (i.e. bigrams can be
sparse). In WSD, typical features are bigrams and
trigrams of lemmata and PoSs around the word to
be disambiguated, then we defined the Collocation
Kernel and the PoS Kernel respectively by equations
7 and 84.

KColl(si, sj) =

p
∑

l=1

K l
Coll(si, sj) (7)

KPoS(si, sj) =

p
∑

l=1

K l
PoS(si, sj) (8)

3.3 WSD kernels
In order to show the impact of using Domain Models
in the supervised learning process, we defined two
WSD kernels, by applying the kernel combination
schema described by equation 3. Thus the following
WSD kernels are fully specified by the list of the
kernels that compose them.

Kwsd composed by KColl, KPoS and KBoW

K
′
wsd composed by KColl, KPoS , KBoW and KD

The only difference between the two systems is
that K ′

wsd uses Domain Kernel KD. K ′
wsd exploits

external knowledge, in contrast to Kwsd, whose only
available information is the labeled training data.

4 Evaluation and Discussion

In this section we present the performance of our
kernel-based algorithms for WSD. The objectives of
these experiments are:

• to study the combination of different kernels,

• to understand the benefits of plugging external
information using domain models,

• to verify the portability of our methodology
among different languages.

4The parameters p and λ are optimized by cross-validation.
The best results are obtained setting p = 2, λ = 0.5 for KColl

and λ → 0 for KPoS .
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4.1 WSD tasks

We conducted the experiments on four lexical sam-
ple tasks (English, Catalan, Italian and Spanish)
of the Senseval-3 competition (Mihalcea and Ed-
monds, 2004). Table 2 describes the tasks by re-
porting the number of words to be disambiguated,
the mean polysemy, and the dimension of training,
test and unlabeled corpora. Note that the organiz-
ers of the English task did not provide any unlabeled
material. So for English we used a domain model
built from a portion of BNC corpus, while for Span-
ish, Italian and Catalan we acquired DMs from the
unlabeled corpora made available by the organizers.

#w pol # train # test # unlab
Catalan 27 3.11 4469 2253 23935
English 57 6.47 7860 3944 -
Italian 45 6.30 5145 2439 74788
Spanish 46 3.30 8430 4195 61252

Table 2: Dataset descriptions

4.2 Kernel Combination

In this section we present an experiment to em-
pirically study the kernel combination. The basic
kernels (i.e. KBoW , KD , KColl and KPoS) have
been compared to the combined ones (i.e. Kwsd and
K ′

wsd) on the English lexical sample task.
The results are reported in Table 3. The results

show that combining kernels significantly improves
the performance of the system.

KD KBoW KPoS KColl Kwsd K′

wsd

F1 65.5 63.7 62.9 66.7 69.7 73.3

Table 3: The performance (F1) of each basic ker-
nel and their combination for English lexical sample
task.

4.3 Portability and Performance

We evaluated the performance of K ′
wsd and Kwsd on

the lexical sample tasks described above. The results
are showed in Table 4 and indicate that using DMs
allowed K ′

wsd to significantly outperform Kwsd.
In addition, K ′

wsd turns out the best systems for
all the tested Senseval-3 tasks.

Finally, the performance of K ′
wsd are higher than

the human agreement for the English and Spanish
tasks5.

Note that, in order to guarantee an uniform appli-
cation to any language, we do not use any syntactic
information provided by a parser.

4.4 Learning Curves
The Figures 1, 2, 3 and 4 show the learning curves
evaluated on K ′

wsd and Kwsd for all the lexical sam-
ple tasks.

The learning curves indicate that K ′
wsd is far su-

perior to Kwsd for all the tasks, even with few ex-
amples. The result is extremely promising, for it
demonstrates that DMs allow to drastically reduce
the amount of sense tagged data required for learn-
ing. It is worth noting, as reported in Table 5, that
K ′

wsd achieves the same performance of Kwsd using
about half of the training data.

% of training
English 54
Catalan 46
Italian 51
Spanish 50

Table 5: Percentage of sense tagged examples re-
quired by K ′

wsd to achieve the same performance of
Kwsd with full training.

5 Conclusion and Future Works

In this paper we presented a supervised algorithm
for WSD, based on a combination of kernel func-
tions. In particular we modeled domain and syn-
tagmatic aspects of sense distinctions by defining
respectively domain and syntagmatic kernels. The
Domain kernel exploits Domain Models, acquired
from “external” untagged corpora, to estimate the
similarity among the contexts of the words to be dis-
ambiguated. The syntagmatic kernels evaluate the
similarity between collocations.

We evaluated our algorithm on several Senseval-
3 lexical sample tasks (i.e. English, Spanish, Ital-
ian and Catalan) significantly improving the state-ot-
the-art for all of them. In addition, the performance

5It is not clear if the inter-annotator-agreement can be con-
siderated the upper bound for a WSD system.
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MF Agreement BEST Kwsd K ′
wsd DM+

English 55.2 67.3 72.9 69.7 73.3 3.6
Catalan 66.3 93.1 85.2 85.2 89.0 3.8
Italian 18.0 89.0 53.1 53.1 61.3 8.2
Spanish 67.7 85.3 84.2 84.2 88.2 4.0

Table 4: Comparative evaluation on the lexical sample tasks. Columns report: the Most Frequent baseline,
the inter annotator agreement, the F1 of the best system at Senseval-3, the F1 of Kwsd, the F1 of K ′

wsd,
DM+ (the improvement due to DM, i.e. K ′

wsd − Kwsd).
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Figure 1: Learning curves for English lexical sample
task.
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Figure 2: Learning curves for Catalan lexical sample
task.

of our system outperforms the inter annotator agree-
ment in both English and Spanish, achieving the up-
per bound performance.

We demonstrated that using external knowledge
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Figure 3: Learning curves for Italian lexical sample
task.
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Figure 4: Learning curves for Spanish lexical sam-
ple task.

inside a supervised framework is a viable method-
ology to reduce the amount of training data required
for learning. In our approach the external knowledge
is represented by means of Domain Models automat-
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ically acquired from corpora in a totally unsuper-
vised way. Experimental results show that the use
of Domain Models allows us to reduce the amount
of training data, opening an interesting research di-
rection for all those NLP tasks for which the Knowl-
edge Acquisition Bottleneck is a crucial problem. In
particular we plan to apply the same methodology to
Text Categorization, by exploiting the Domain Ker-
nel to estimate the similarity among texts. In this im-
plementation, our WSD system does not exploit syn-
tactic information produced by a parser. For the fu-
ture we plan to integrate such information by adding
a tree kernel (i.e. a kernel function that evaluates the
similarity among parse trees) to the kernel combi-
nation schema presented in this paper. Last but not
least, we are going to apply our approach to develop
supervised systems for all-words tasks, where the
quantity of data available to train each word expert
classifier is very low.
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Abstract 

Information extraction systems incorpo-
rate multiple stages of linguistic analysis.  
Although errors are typically compounded 
from stage to stage, it is possible to re-
duce the errors in one stage by harnessing 
the results of the other stages.  We dem-
onstrate this by using the results of 
coreference analysis and relation extrac-
tion to reduce the errors produced by a 
Chinese name tagger.  We use an N-best 
approach to generate multiple hypotheses 
and have them re-ranked by subsequent 
stages of processing.  We obtained 
thereby a reduction of 24% in spurious 
and incorrect name tags, and a reduction 
of 14% in missed tags. 

1 Introduction 

Systems which extract relations or events from a 
document typically perform a number of types of 
linguistic analysis in preparation for information 
extraction.  These include name identification and 
classification, parsing (or partial parsing), semantic 
classification of noun phrases, and coreference 
analysis.  These tasks are reflected in the evalua-
tion tasks introduced for MUC-6 (named entity, 
coreference, template element) and MUC-7 (tem-
plate relation). 

In most extraction systems, these stages of 
analysis are arranged sequentially, with each stage 
using the results of prior stages and generating a 

single analysis that gets enriched by each stage.  
This provides a simple modular organization for 
the extraction system.  

Unfortunately, each stage also introduces a cer-
tain level of error into the analysis.  Furthermore, 
these errors are compounded – for example, errors 
in name recognition may lead to errors in parsing.  
The net result is that the final output (relations or 
events) may be quite inaccurate. 

This paper considers how interactions between 
the stages can be exploited to reduce the error rate. 
For example, the results of coreference analysis or 
relation identification may be helpful in name clas-
sification, and the results of relation or event ex-
traction may be helpful in coreference. 

Such interactions are not easily exploited in a 
simple sequential model … if name classification 
is performed at the beginning of the pipeline, it 
cannot make use of the results of subsequent stages. 
It may even be difficult to use this information im-
plicitly, by using features which are also used in 
later stages, because the representation used in the 
initial stages is too limited. 

To address these limitations, some recent sys-
tems have used more parallel designs, in which a 
single classifier (incorporating a wide range of fea-
tures) encompasses what were previously several 
separate stages (Kambhatla, 2004; Zelenko et al., 
2004).  This can reduce the compounding of errors 
of the sequential design.  However, it leads to a 
very large feature space and makes it difficult to 
select linguistically appropriate features for par-
ticular analysis tasks.  Furthermore, because these 
decisions are being made in parallel, it becomes 
much harder to express interactions between the 
levels of analysis based on linguistic intuitions. 
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In order to capture these interactions more ex-
plicitly, we have employed a sequential design in 
which multiple hypotheses are forwarded from 
each stage to the next, with hypotheses being rer-
anked and pruned using the information from later 
stages. We shall apply this design to show how 
named entity classification can be improved by 
‘feedback’ from coreference analysis and relation 
extraction.  We shall show that this approach can 
capture these interactions in a natural and efficient 
manner, yielding a substantial improvement in 
name identification and classification. 

2 Prior Work 

A wide variety of trainable models have been ap-
plied to the name tagging task, including HMMs 
(Bikel et al., 1997), maximum entropy models 
(Borthwick, 1999), support vector machines 
(SVMs), and conditional random fields.  People 
have spent considerable effort in engineering ap-
propriate features to improve performance; most of 
these involve internal name structure or the imme-
diate local context of the name. 

Some other named entity systems have explored 
global information for name tagging. (Borthwick,  
1999) made a second tagging pass which uses in-
formation on token sequences tagged in the first 
pass; (Chieu and Ng, 2002) used as features infor-
mation about features assigned to other instances 
of the same token. 

Recently, in (Ji and Grishman, 2004) we pro-
posed a name tagging method which applied an 
SVM based on coreference information to filter the 
names with low confidence, and used coreference 
rules to correct and recover some names. One limi-
tation of this method is that in the process of dis-
carding many incorrect names, it also discarded 
some correct names. We attempted to recover 
some of these names by heuristic rules which are 
quite language specific. In addition, this single-
hypothesis method placed an upper bound on recall. 

Traditional statistical name tagging methods 
have generated a single name hypothesis. BBN 
proposed the N-Best algorithm for speech recogni-
tion in (Chow and Schwartz, 1989). Since then N-
Best methods have been widely used by other re-
searchers (Collins, 2002; Zhai et al., 2004). 

In this paper, we tried to combine the advan-
tages of the prior work, and incorporate broader 
knowledge into a more general re-ranking model. 

3 Task and Terminology 

Our experiments were conducted in the context of 
the ACE Information Extraction evaluations, and 
we will use the terminology of these evaluations: 

entity:  an object or a set of objects in one of the 
semantic categories of interest 

mention:  a reference to an entity (typically, a noun 
phrase) 

name mention:  a reference by name to an entity 
nominal mention:  a reference by a common noun 

or noun phrase to an entity 
relation:  one of a specified set of relationships be-

tween a pair of entities 
The 2004 ACE evaluation had 7 types of entities, 

of which the most common were PER (persons), 
ORG (organizations), and GPE (‘geo-political enti-
ties’ – locations which are also political units, such 
as countries, counties, and cities).  There were 7 
types of relations, with 23 subtypes.  Examples of 
these relations are “the CEO of Microsoft” (an em-
ploy-exec relation), “Fred’s wife” (a family rela-
tion), and “a military base in Germany” (a located 
relation). 

In this paper we look at the problem of identify-
ing name mentions in Chinese text and classifying 
them as persons, organizations, or GPEs.  Because 
Chinese has neither capitalization nor overt word 
boundaries, it poses particular problems for name 
identification. 

4 Baseline System 

4.1 Baseline Name Tagger 

Our baseline name tagger consists of a HMM tag-
ger augmented with a set of post-processing rules.  
The HMM tagger generally follows the Nymble 
model (Bikel et al, 1997), but with multiple hy-
potheses as output and a larger number of states 
(12) to handle name prefixes and suffixes, and 
transliterated foreign names separately.  It operates 
on the output of a word segmenter from Tsinghua 
University.   

Within each of the name class states, a statistical 
bigram model is employed, with the usual one-
word-per-state emission. The various probabilities 
involve word co-occurrence, word features, and 
class probabilities. Then it uses A* search decod-
ing to generate multiple hypotheses. Since these 
probabilities are estimated based on observations 
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seen in a corpus, “back-off models” are used to 
reflect the strength of support for a given statistic, 
as for the Nymble system. 

We also add post-processing rules to correct 
some omissions and systematic errors using name 
lists (for example, a list of all Chinese last names; 
lists of organization and location suffixes) and par-
ticular contextual patterns (for example, verbs oc-
curring with people’s names).  They also deal with 
abbreviations and nested organization names. 

The HMM tagger also computes the margin – 
the difference between the log probabilities of the 
top two hypotheses.  This is used as a rough meas-
ure of confidence in the top hypothesis (see sec-
tions 5.3 and 6.2, below). 

The name tagger used for these experiments 
identifies the three main ACE entity types: Person 
(PER), Organization (ORG), and GPE (names of 
the other ACE types are identified by a separate 
component of our system, not involved in the ex-
periments reported here). 

4.2 Nominal Mention Tagger 

Our nominal mention tagger (noun group recog-
nizer) is a maximum entropy tagger trained on the 
Chinese TreeBank from the University of Pennsyl-
vania, supplemented by list matching. 

4.3  Reference Resolver  

Our baseline reference resolver goes through two 
successive stages: first, coreference rules will iden-
tify some high-confidence positive and negative 
mention pairs, in training data and test data; then 
the remaining samples will be used as input of a 
maximum entropy tagger. The features used in this 
tagger involve distance, string matching, lexical 
information, position, semantics, etc. We separate 
the task into different classifiers for different men-
tion types (name / noun / pronoun). Then we in-
corporate the results from the relation tagger to 
adjust the probabilities from the classifiers. Finally 
we apply a clustering algorithm to combine them 
into entities (sets of coreferring mentions). 

4.4 Relation Tagger 

The relation tagger uses a k-nearest-neighbor algo-
rithm. For both training and test, we consider all 
pairs of entity mentions where there is at most one 
other mention between the heads of the two men-

tions of interest1.  Each training / test example con-
sists of the pair of mentions and the sequence of 
intervening words. Associated with each training 
example is either one of the ACE relation types or 
no relation at all. We defined a distance metric be-
tween two examples based on 

 whether the heads of the mentions match 
 whether the ACE types of the heads of the mentions 

match (for example, both are people or both are or-
ganizations) 

 whether the intervening words match 
To tag a test example, we find the k nearest 

training examples (where k = 3) and use the dis-
tance to weight each neighbor, then select the most 
common class in the weighted neighbor set. 

To provide a crude measure of the confidence of 
our relation tagger, we define two thresholds, Dnear 
and Dfar.  If the average distance d to the nearest 
neighbors d < Dnear, we consider this a definite re-
lation.  If Dnear < d < Dfar, we consider this a possi-
ble relation.  If d > Dfar, the tagger assumes that no 
relation exists (regardless of the class of the nearest 
neighbor). 

5 Information from Coreference and Re-
lations 

Our system is processing a document consisting of 
multiple sentences.  For each sentence, the name 
recognizer generates multiple hypotheses, each of 
which is an NE tagging of the entire sentence. The 
names in the hypothesis, plus the nouns in the 
categories of interest constitute the mention set for 
that hypothesis. Coreference resolution links these 
mentions, assigning each to an entity.  In symbols: 

 Si  is the i-th sentence in the document. 
Hi  is the hypotheses set for Si  
 hij

 is the j-th hypothesis in Si  

Mij
 is the mention set for hij

 

mijk
 is the k-th mention in Mij

 

eijk
 is the entity which mijk

belongs to according to 
the current reference resolution results 

5.1 Coreference Features 

For each mention we compute seven quantities 
based on the results of name tagging and reference 
resolution: 
                                                           
1 This constraint is relaxed for parallel structures such as “mention1, mention2, 
[and] mention3….”; in such cases there can be more than one intervening men-
tion. 
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CorefNumijk  is the number of mentions in eijk  

WeightSumijk  is the sum of all the link weights be-

tween mijk and other mentions in eijk , 0.8 for 
name-name coreference; 0.5 for apposition;  
0.3 for other name-nominal coreference 

FirstMentionijk  is 1 if mijk is the first name mention 
in the entity; otherwise 0 

Headijk  is 1 if mijk includes the head word of name; 
otherwise 0 

Withoutidiomijk  is 1 if mijk is not part of an idiom; 
otherwise 0 

PERContextijk  is the number of PER context words 
around a PER name such as a title or an ac-
tion verb involving a PER 

ORGSuffixijk  is 1 if ORG mijk includes a suffix word; 
otherwise 0 

The first three capture evidence of the correct-
ness of a name provided by reference resolution; 
for example, a name which is coreferenced with 
more other mentions is more likely to be correct.  
The last four capture local or name-internal evi-
dence; for instance, that an organization name in-
cludes an explicit, organization-indicating suffix. 

We then compute, for each of these seven quan-
tities, the sum over all mentions k in a sentence, 
obtaining values for CorefNumij, WeightSumij, etc.: 

CorefNum CorefNumij ijk
k

= ∑   etc. 

Finally, we determine, for a given sentence and 
hypothesis, for each of these seven quantities, 
whether this quantity achieves the maximum of its 
values for this hypothesis: 

BestCorefNumij ≡  
 CorefNumij = maxq CorefNumiq   etc. 

We will use these properties of the hypothesis as 
features in assessing the quality of a hypothesis.  

5.2 Relation Word Clusters 

In addition to using relation information for 
reranking name hypotheses, we used the relation 
training corpus to build word clusters which could 
more directly improve name tagging.  Name tag-
gers rely heavily on words in the immediate con-
text to identify and classify names; for example, 
specific job titles, occupations, or family relations 
can be used to identify people names.  Such words 
are learned individually from the name tagger’s 
training corpus.  If we can provide the name tagger 
with clusters of related words, the tagger will be 

able to generalize from the examples in the training 
corpus to other words in the cluster. 

The set of ACE relations includes several in-
volving employment, social, and family relations.  
We gathered the words appearing as an argument 
of one of these relations in the training corpus, 
eliminated low-frequency terms and manually ed-
ited the ten resulting clusters to remove inappro-
priate terms.  These were then combined with lists 
(of titles, organization name suffixes, location suf-
fixes) used in the baseline tagger. 

5.3 Relation Features 

Because the performance of our relation tagger 
is not as good as our coreference resolver, we have 
used the results of relation detection in a relatively 
simple way to enhance name detection.  The basic 
intuition is that a name which has been correctly 
identified is more likely to participate in a relation 
than one which has been erroneously identified. 

For a given range of margins (from the HMM), 
the probability that a name in the first hypothesis is 
correct is shown in the following table, for names 
participating and not participating in a relation: 

 
Margin In Relation(%) Not in Relation(%)

<4 90.7 55.3 
<3 89.0 50.1 
<2 86.9 42.2 

<1.5 81.3 28.9 
<1.2 78.8 23.1 
<1 75.7 19.0 

<0.5 66.5 14.3 
Table 1 Probability of a name being correct 

 
Table 1 confirms that names participating in re-

lations are much more likely to be correct than 
names that do not participate in relations.  We also 
see, not surprisingly, that these probabilities are 
strongly affected by the HMM hypothesis margin 
(the difference in log probabilities) between the 
first hypothesis and the second hypothesis.  So it is 
natural to use participation in a relation (coupled 
with a margin value) as a valuable feature for re-
ranking name hypotheses. 

Let mijk be the k-th name mention for hypothe-
sis hij of sentence; then we define: 
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Inrelationijk  = 1 if mijk  is in a definite relation 
   = 0 if mijk is in a possible relation 
   = -1 if mijk is not in a relation  

 Inrelation Inrelationij ijk
k

= ∑  

Mostrelated Inrelation Inrelationij ij q iq≡ =( max )
  Finally, to capture the interaction with the margin, 
we let zi  = the margin for sentence Si and divide 
the range of values of zi into six intervals Mar1, … 
Mar6.  And we define the hypothesis ranking in-
formation: FirstHypothesisij = 1 if j =1; otherwise 0. 

We will use as features for ranking hij the con-
junction of Mostrelatedij, zi ∈ Marp (p = 1, …, 6), 
and FirstHypothesisij . 

6 Using the Information from Corefer-
ence and Relations 

6.1 Word Clustering based on Relations 

As we described in section 5.2, we can generate 
word clusters based on relation information. If a 
word is not part of a relation cluster, we consider it 
an independent (1-word) cluster.  

The Nymble name tagger (Bikel et al., 1999) re-
lies on a multi-level linear interpolation model for 
backoff. We extended this model by adding a level 
from word to cluster, so as to estimate more reli-
able probabilities for words in these clusters. Table 
2 shows the extended backoff model for each of 
the three probabilities used by Nymble.  

 
Transition  
Probability 

First-Word 
Emission  

Probability 

Non-First-Word
Emission  

Probability 
P(NC2|NC1, 
 <w1, f1>) 

P(<w2,f2>| 
NC1, NC2) 

P(<w2,f2>| 
<w1,f1>, NC2) 

 P(<Cluster2,f2>| 
NC1, NC2) 

P(<Cluster2,f2>|
<w1,f1>, NC2) 

P(NC2|NC1,  
<Cluster1, 
f1>) 

P(<Cluster2,f2>| 
<+begin+, other>, 
NC2) 

P(<Cluster2,f2>|
<Cluster1,f1>, 
NC2) 

P(NC2|NC1) P(<Cluster2, f2>|NC2) 
P(NC2)  P(Cluster2|NC2) * P(f2|NC2) 
1/#(name 
classes) 

1/#(cluster)  *  1/#(word features) 

Table2 Extended Backoff Model 
 

6.2 Pre-pruning by Margin 

The HMM tagger produces the N best hypotheses 
for each sentence.2  In order to decide when we 
need to rely on global (coreference and relation) 
information for name tagging, we want to have 
some assessment of the confidence that the name 
tagger has in the first hypothesis.  In this paper, we 
use the margin for this purpose. A large margin 
indicates greater confidence that the first hypothe-
sis is correct.3  So if the margin of a sentence is 
above a threshold, we select the first hypothesis, 
dropping the others and by-passing the reranking. 

6.3 Re-ranking based on Coreference 

We described in section 5.1, above, the coreference 
features which will be used for reranking the hy-
potheses after pre-pruning. A maximum entropy 
model for re-ranking these hypotheses is then 
trained and applied as follows: 
 
Training 

1. Use K-fold cross-validation to generate multi-
ple name tagging hypotheses for each docu-
ment in the training data Dtrain (in each of the K 
iterations, we use K-1 subsets to train the 
HMM and then generate hypotheses from the 
Kth subset). 

2. For each document d in Dtrain, where d includes 
n sentences S1…Sn 

For i = 1…n, let m = the number of hy-
potheses for Si 
(1) Pre-prune the candidate hypotheses us-

ing the HMM margin 
(2) For each hypothesis hij, j = 1…m 

(a) Compare hij with the key, set the 
prediction Valueij “Best” or “Not 
Best” 

(b) Run the Coreference Resolver on 
hij and the best hypothesis for each 
of the other sentences, generate 
entity results for each candidate 
name in hij 

(c) Generate a coreference feature vec-
tor Vij for hij 

(d) Output Vij and Valueij 
                                                           
2 We set different N = 5, 10, 20 or 30 for different margin ranges, by cross-
validation checking the training data about the ranking position of the best 
hypothesis for each sentence.  With this N, optimal reranking (selecting the best 
hypothesis among the N best) would yield Precision = 96.9 Recall = 94.5 F = 
95.7 on our test corpus. 
3 Similar methods based on HMM margins were used by (Scheffer et al., 2001). 
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3. Train Maxent Re-ranking system on all Vij and 
Valueij 

 
Test 
1. Run the baseline name tagger to generate mul-

tiple name tagging hypotheses for each docu-
ment in the test data Dtest 

2. For each document d in Dtest, where d includes 
n sentences S1…Sn 
(1) Initialize: Dynamic input of coreference re-

solver H = {hi-best | i = 1…n, hi-best is the 
current best hypothesis for Si} 

(2) For i = 1…n, assume m = the number of 
hypotheses  for Si 
(a) Pre-prune the candidate hypotheses us-

ing the HMM margin 
(b) For each hypothesis hij, j = 1…m 

• hi-best = hij  
• Run the Coreference Resolver on H, 

generate entity results for each name 
candidate in hij 

• Generate a coreference feature vec-
tor Vij for hij 

• Run Maxent Re-ranking system on 
Vij, produce Probij of “Best” value 

(c) hi-best = the hypothesis with highest 
Probij of “Best” value, update H and 
output hi-best 

6.4 Re-ranking based on Relations 

From the above first-stage re-ranking by corefer-
ence, for each hypothesis we got the probability of 
its being the best one. By using these results and 
relation information we proceed to a second-stage 
re-ranking. As we described in section 5.3, the in-
formation of “in relation or not” can be used to-
gether with margin as another important measure 
of confidence. 
  In addition, we apply the mechanism of weighted 
voting among hypotheses (Zhai et al., 2004) as an 
additional feature in this second-stage re-ranking. 
This approach allows all hypotheses to vote on a 
possible name output. A recognized name is con-
sidered correct only when it occurs in more than 30 
percent of the hypotheses (weighted by their prob-
ability).  

In our experiments we use the probability pro-
duced by the HMM, probij , for hypothesis hij . We 
normalize this probability weight as: 

W
prob

probij
ij

iq
q

=
∑

exp( )
exp( )

 

For each name mention mijk in hij , we define:  

Occur mq ijk( )  = 1 if mijk occurs in hq  
   = 0 otherwise 
Then we count its voting value as follows: 

Votingijk  is 1 if W Occur miq q ijk
q

×∑ ( ) >0.3;  

  otherwise 0. 
The voting value of hij is:  

Voting Votingij ijk
k

= ∑  

Finally we define the following voting feature: 
BestVoting Voting Votingij ij q iq≡ =( max )  

This feature is used, together with the features 
described at the end of section 5.3 and the prob-
ability score from the first stage, for the second-
stage maxent re-ranking model. 

One appeal of the above two re-ranking algo-
rithms is its flexibility in incorporating features 
into a learning model: essentially any coreference 
or relation features which might be useful in dis-
criminating good from bad structures can be in-
cluded.  

7 System Pipeline 

Combining all the methods presented above, the 
flow of our final system is shown in figure 1.  

8 Evaluation Results 

8.1 Training and Test Data 

We took 346 documents from the 2004 ACE train-
ing corpus and official test set, including both 
broadcast news and newswire, as our blind test set. 
To train our name tagger, we used the Beijing Uni-
versity Insititute of Computational Linguistics cor-
pus – 2978 documents from the People’s Daily in 
1998 – and 667 texts in the training corpus for the 
2003 & 2004 ACE evaluation. Our reference re-
solver is trained on these 667 ACE texts. The rela-
tion tagger is trained on 546 ACE 2004 texts, from 
which we also extracted the relation clusters. The 
test set included 11715 names: 3551 persons, 5100 
GPEs and 3064 organizations. 
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Figure 1  System Flow 

8.2 Overall Performance Comparison 

Table 3 shows the performance of the baseline sys-
tem; Table 4 is the system with relation word clus-
ters; Table 5 is the system with both relation 
clusters and re-ranking based on coreference fea-
tures; and Table 6 is the whole system with sec-
ond-stage re-ranking using relations. 

The results indicate that relation word clusters 
help to improve the precision and recall of most 
name types. Although the overall gain in F-score is 
small (0.7%), we believe further gain can be 
achieved if the relation corpus is enlarged in the 
future. The re-ranking using the coreference fea-
tures had the largest impact, improving precision 
and recall consistently for all types. Compared to 
our system in (Ji and Grishman, 2004), it helps to 
distinguish the good and bad hypotheses without 
any loss of recall. The second-stage re-ranking us-
ing the relation participation feature yielded a 
small further gain in F score for each type, improv-
ing precision at a slight cost in recall. 

The overall system achieves a 24.1% relative re-
duction on the spurious and incorrect tags, and 
14.3% reduction in the missing rate over a state-of-

the-art baseline HMM trained on the same material. 
Furthermore, it helps to disambiguate many name 
type errors: the number of cases of type confusion 
in name classification was reduced from 191 to 
102. 

 
Name Precision Recall F 
PER 88.6 89.2 88.9 
GPE 88.1 84.9 86.5 
ORG 88.8 87.3 88.0 
ALL 88.4 86.7 87.5 

Table 3 Baseline Name Tagger 
 

Name Precision Recall F 
PER 89.4 90.1 89.7 
GPE 88.9 85.8 89.4 
ORG 88.7 87.4 88.0 
ALL 89.0 87.4 88.2 

Table 4 Baseline + Word Clustering by Relation 
 

Name Precision Recall F 
PER 90.1 91.2 90.5 
GPE 89.7 86.8 88.2 
ORG 90.6 89.8 90.2 
ALL 90.0 88.8 89.4 

Table 5 Baseline + Word Clustering by Relation + 
Re-ranking by Coreference 

 
Name Precision Recall F 
PER 90.7 91.0 90.8 
GPE 91.2 86.9 89.0 
ORG 91.7 89.1 90.4 
ALL 91.2 88.6 89.9 

Table 6 Baseline + Word Clustering by Relation +   
Re-ranking by Coreference +  

Re-ranking by Relation 
 
In order to check how robust these methods are, 

we conducted significance testing (sign test) on the 
346 documents. We split them into 5 folders, 70 
documents in each of the first four folders and 66 
in the fifth folder. We found that each enhance-
ment (word clusters, coreference reranking, rela-
tion reranking) produced an improvement in F 
score for each folder, allowing us to reject the hy-
pothesis that these improvements were random at a 
95% confidence level. The overall F-measure im-
provements (using all enhancements) for the 5 
folders were: 2.3%, 1.6%, 2.1%, 3.5%, and 2.1%. 
 

HMM Name Tagger, word 
clustering based on rela-
tions, pruned by margin 

Multiple name 
hypotheses 

Maxent Re-ranking
by coreference 

Single name
 hypothesis 

Post-processing  
by heuristic rules

Input 

Nominal 
Mention 
Tagger 

Nominal 
Mentions

Relation 
Tagger 

Maxent Re-ranking
by relation 

Coreference 
Resolver 
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9 Conclusion 

This paper explored methods for exploiting the 
interaction of analysis components in an informa-
tion extraction system to reduce the error rate of 
individual components.  The ACE task hierarchy 
provided a good opportunity to explore these inter-
actions, including the one presented here between 
reference resolution/relation detection and name 
tagging. We demonstrated its effectiveness for 
Chinese name tagging, obtaining an absolute im-
provement of 2.4% in F-measure (a reduction of 
19% in the (1 – F) error rate). These methods are 
quite low-cost because we don’t need any extra 
resources or components compared to the baseline 
information extraction system. 

Because no language-specific rules are involved 
and no additional training resources are required, 
we expect that the approach described here can be 
straightforwardly applied to other languages.  It 
should also be possible to extend this re-ranking 
framework to other levels of analysis in informa-
tion extraction –- for example, to use event detec-
tion to improve name tagging; to incorporate 
subtype tagging results to improve name tagging; 
and to combine name tagging, reference resolution 
and relation detection to improve nominal mention 
tagging.  For Chinese (and other languages without 
overt word segmentation) it could also be extended 
to do character-based name tagging, keeping mul-
tiple segmentations among the N-Best hypotheses.  
Also, as information extraction is extended to cap-
ture cross-document information, we should expect 
further improvements in performance of the earlier 
stages of analysis, including in particular name 
identification. 

For some levels of analysis, such as name tag-
ging, it will be natural to apply lattice techniques to 
organize the multiple hypotheses, at some gain in 
efficiency. 
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Abstract 

Entity relation detection is a form of in-
formation extraction that finds predefined 
relations between pairs of entities in text. 
This paper describes a relation detection 
approach that combines clues from differ-
ent levels of syntactic processing using 
kernel methods. Information from three 
different levels of processing is consid-
ered: tokenization, sentence parsing and 
deep dependency analysis. Each source of 
information is represented by kernel func-
tions. Then composite kernels are devel-
oped to integrate and extend individual 
kernels so that processing errors occurring 
at one level can be overcome by informa-
tion from other levels. We present an 
evaluation of these methods on the 2004 
ACE relation detection task, using Sup-
port Vector Machines, and show that each 
level of syntactic processing contributes 
useful information for this task. When 
evaluated on the official test data, our ap-
proach produced very competitive ACE 
value scores. We also compare the SVM 
with KNN on different kernels.  

1 Introduction 

Information extraction subsumes a broad range of 
tasks, including the extraction of entities, relations 
and events from various text sources, such as 
newswire documents and broadcast transcripts. 
One such task, relation detection, finds instances 
of predefined relations between pairs of entities, 

such as a Located-In relation between the entities 
Centre College and Danville, KY in the phrase 
Centre College in Danville, KY. The ‘entities’ are 
the individuals of selected semantic types (such as 
people, organizations, countries, …) which are re-
ferred to in the text. 
    Prior approaches to this task (Miller et al., 2000; 
Zelenko et al., 2003) have relied on partial or full 
syntactic analysis. Syntactic analysis can find rela-
tions not readily identified based on sequences of 
tokens alone. Even ‘deeper’ representations, such 
as logical syntactic relations or predicate-argument 
structure, can in principle capture additional gener-
alizations and thus lead to the identification of ad-
ditional instances of relations. However, a general 
problem in Natural Language Processing is that as 
the processing gets deeper, it becomes less accu-
rate. For instance, the current accuracy of tokeniza-
tion, chunking and sentence parsing for English is 
about 99%, 92%, and 90% respectively. Algo-
rithms based solely on deeper representations in-
evitably suffer from the errors in computing these 
representations. On the other hand, low level proc-
essing such as tokenization will be more accurate, 
and may also contain useful information missed by 
deep processing of text. Systems based on a single 
level of representation are forced to choose be-
tween shallower representations, which will have 
fewer errors, and deeper representations, which 
may be more general. 
    Based on these observations, Zhao et al. (2004) 
proposed a discriminative model to combine in-
formation from different syntactic sources using a 
kernel SVM (Support Vector Machine). We 
showed that adding sentence level word trigrams 
as global information to local dependency context 
boosted the performance of finding slot fillers for 
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management succession events. This paper de-
scribes an extension of this approach to the identi-
fication of entity relations, in which syntactic 
information from sentence tokenization, parsing 
and deep dependency analysis is combined using 
kernel methods. At each level, kernel functions (or 
kernels) are developed to represent the syntactic 
information. Five kernels have been developed for 
this task, including two at the surface level, one at 
the parsing level and two at the deep dependency 
level. Our experiments show that each level of 
processing may contribute useful clues for this 
task, including surface information like word bi-
grams. Adding kernels one by one continuously 
improves performance. The experiments were car-
ried out on the ACE RDR (Relation Detection and 
Recognition) task with annotated entities. Using 
SVM as a classifier along with the full composite 
kernel produced the best performance on this task. 
This paper will also show a comparison of SVM 
and KNN (k-Nearest-Neighbors) under different 
kernel setups. 

2 Kernel Methods  

Many machine learning algorithms involve only 
the dot product of vectors in a feature space, in 
which each vector represents an object in the ob-
ject domain. Kernel methods (Muller et al., 2001) 
can be seen as a generalization of feature-based 
algorithms, in which the dot product is replaced by 
a kernel function (or kernel) Ψ(X,Y) between two 
vectors, or even between two objects. Mathemati-
cally, as long as Ψ(X,Y) is symmetric and the ker-
nel matrix formed by Ψ is positive semi-definite, it 
forms a valid dot product in an implicit Hilbert 
space. In this implicit space, a kernel can be bro-
ken down into features, although the dimension of 
the feature space could be infinite. 
   Normal feature-based learning can be imple-
mented in kernel functions, but we can do more 
than that with kernels. First, there are many well-
known kernels, such as polynomial and radial basis 
kernels, which extend normal features into a high 
order space with very little computational cost. 
This could make a linearly non-separable problem 
separable in the high order feature space. Second, 
kernel functions have many nice combination 
properties: for example, the sum or product of ex-
isting kernels is a valid kernel. This forms the basis 
for the approach described in this paper. With 

these combination properties, we can combine in-
dividual kernels representing information from 
different sources in a principled way.  
   Many classifiers can be used with kernels. The 
most popular ones are SVM, KNN, and voted per-
ceptrons. Support Vector Machines (Vapnik, 1998; 
Cristianini and Shawe-Taylor, 2000) are linear 
classifiers that produce a separating hyperplane 
with largest margin. This property gives it good 
generalization ability in high-dimensional spaces, 
making it a good classifier for our approach where 
using all the levels of linguistic clues could result 
in a huge number of features. Given all the levels 
of features incorporated in kernels and training 
data with target examples labeled, an SVM can 
pick up the features that best separate the targets 
from other examples, no matter which level these 
features are from. In cases where an error occurs in 
one processing result (especially deep processing) 
and the features related to it become noisy, SVM 
may pick up clues from other sources which are 
not so noisy. This forms the basic idea of our ap-
proach. Therefore under this scheme we can over-
come errors introduced by one processing level; 
more particularly, we expect accurate low level 
information to help with less accurate deep level 
information. 

3 Related Work  

Collins et al. (1997) and Miller et al. (2000) used 
statistical parsing models to extract relational facts 
from text, which avoided pipeline processing of 
data. However, their results are essentially based 
on the output of sentence parsing, which is a deep 
processing of text. So their approaches are vulner-
able to errors in parsing. Collins et al. (1997) ad-
dressed a simplified task within a confined context 
in a target sentence.  

Zelenko et al. (2003) described a recursive ker-
nel based on shallow parse trees to detect person-
affiliation and organization-location relations, in 
which a relation example is the least common sub-
tree containing two entity nodes. The kernel 
matches nodes starting from the roots of two sub-
trees and going recursively to the leaves. For each 
pair of nodes, a subsequence kernel on their child 
nodes is invoked, which matches either contiguous 
or non-contiguous subsequences of node. Com-
pared with full parsing, shallow parsing is more 
reliable. But this model is based solely on the out-
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put of shallow parsing so it is still vulnerable to 
irrecoverable parsing errors. In their experiments, 
incorrectly parsed sentences were eliminated.  

Culotta and Sorensen (2004) described a slightly 
generalized version of this kernel based on de-
pendency trees. Since their kernel is a recursive 
match from the root of a dependency tree down to 
the leaves where the entity nodes reside, a success-
ful match of two relation examples requires their 
entity nodes to be at the same depth of the tree. 
This is a strong constraint on the matching of syn-
tax so it is not surprising that the model has good 
precision but very low recall. In their solution a 
bag-of-words kernel was used to compensate for 
this problem. In our approach, more flexible ker-
nels are used to capture regularization in syntax, 
and more levels of syntactic information are con-
sidered. 

Kambhatla (2004) described a Maximum En-
tropy model using features from various syntactic 
sources, but the number of features they used is 
limited and the selection of features has to be a 
manual process.1 In our model, we use kernels to 
incorporate more syntactic information and let a 
Support Vector Machine decide which clue is cru-
cial. Some of the kernels are extended to generate 
high order features. We think a discriminative clas-
sifier trained with all the available syntactic fea-
tures should do better on the sparse data. 

4 Kernel Relation Detection 

4.1 ACE Relation Detection Task 

ACE (Automatic Content Extraction)2 is a research 
and development program in information extrac-
tion sponsored by the U.S. Government. The 2004 
evaluation defined seven major types of relations 
between seven types of entities. The entity types 
are PER (Person), ORG (Organization), FAC (Fa-
cility), GPE (Geo-Political Entity: countries, cities, 
etc.), LOC (Location), WEA (Weapon) and VEH 
(Vehicle). Each mention of an entity has a mention 
type: NAM (proper name), NOM (nominal) or 
                                                           
1 Kambhatla also evaluated his system on the ACE relation 
detection task, but the results are reported for the 2003 task, 
which used different relations and different training and test 
data, and did not use hand-annotated entities, so they cannot 
be readily compared to our results. 
2Task description: http://www.itl.nist.gov/iad/894.01/tests/ace/ 
  ACE guidelines: http://www.ldc.upenn.edu/Projects/ACE/ 

PRO (pronoun); for example George W. Bush, the 
president and he respectively. The seven relation 
types are EMP-ORG (Employ-
ment/Membership/Subsidiary), PHYS (Physical), 
PER-SOC (Personal/Social), GPE-AFF (GPE-
Affiliation), Other-AFF (Person/ORG Affiliation), 
ART (Agent-Artifact) and DISC (Discourse). 
There are also 27 relation subtypes defined by 
ACE, but this paper only focuses on detection of 
relation types. Table 1 lists examples of each rela-
tion type. 
 

Type Example 
EMP-ORG the CEO of Microsoft 

PHYS a military base in Germany 
GPE-AFF U.S.  businessman 
PER-SOC a spokesman for the senator 

DISC many of these people 
ART the makers of the Kursk 

Other-AFF Cuban-American  people 
 

Table 1. ACE relation types and examples. The 
heads of the two entity arguments in a relation are 
marked. Types are listed in decreasing order of 
frequency of occurrence in the ACE corpus. 
 
  Figure 1 shows a sample newswire sentence, in 
which three relations are marked. In this sentence, 
we expect to find a PHYS relation between Hez-
bollah forces and areas, a PHYS relation between 
Syrian troops and areas and an EMP-ORG relation 
between Syrian troops and Syrian. In our ap-
proach, input text is preprocessed by the Charniak 
sentence parser (including tokenization and POS 
tagging) and the GLARF (Meyers et al., 2001) de-
pendency analyzer produced by NYU. Based on 
treebank parsing, GLARF produces labeled deep 
dependencies between words (syntactic relations 
such as logical subject and logical object). It han-
dles linguistic phenomena like passives, relatives, 
reduced relatives, conjunctions, etc.  

 
Figure 1. Example sentence from newswire text  

4.2 Definitions 

In our model, kernels incorporate information from 

PHYS PHYS EMP-ORG

That's because Israel was expected to retaliate against 
Hezbollah forces in areas controlled by Syrian troops. 
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tokenization, parsing and deep dependency analy-
sis. A relation candidate R is defined as 

 R = (arg1, arg2, seq, link, path), 
where arg1 and arg2 are the two entity arguments 
which may be related; seq=(t1, t2, …, tn) is a token 
vector that covers the arguments and intervening 
words; link=(t1, t2, …, tm) is also a token vector, 
generated from seq and the parse tree; path is a 
dependency path connecting arg1 and arg2 in the 
dependency graph produced by GLARF. path can 
be empty if no such dependency path exists. The 
difference between link and seq is that link only 
retains the “important” words in seq in terms of 
syntax. For example, all noun phrases occurring in 
seq are replaced by their heads. Words and con-
stituent types in a stop list, such as time expres-
sions, are also removed. 
  A token T is defined as a string triple, 

T = (word, pos, base), 
where word, pos and base are strings representing 
the word, part-of-speech and morphological base 
form of T. Entity is a token augmented with other 
attributes, 
             E = (tk, type, subtype, mtype), 
where tk is the token associated with E; type, sub-
type and mtype are strings representing the entity 
type, subtype and mention type of E. The subtype 
contains more specific information about an entity. 
For example, for a GPE entity, the subtype tells 
whether it is a country name, city name and so on. 
Mention type includes NAM, NOM and PRO. 
  It is worth pointing out that we always treat an 
entity as a single token: for a nominal, it refers to 
its head, such as boys in the two boys; for a proper 
name, all the words are connected into one token, 
such as Bashar_Assad. So in a relation example R 
whose seq is (t1, t2, …, tn), it is always true that 
arg1=t1 and arg2=tn. For names, the base form of 
an entity is its ACE type (person, organization, 
etc.). To introduce dependencies, we define a de-
pendency token to be a token augmented with a 
vector of dependency arcs, 
           DT=(word, pos, base, dseq),     
where dseq = (arc1, ... , arcn ). A dependency arc is 
            ARC = (w, dw, label, e),  
where w is the current token; dw is a token con-
nected by a dependency to w; and label and e are 
the role label and direction of this dependency arc 
respectively. From now on we upgrade the type of 
tk in arg1 and arg2 to be dependency tokens. Fi-
nally, path is a vector of dependency arcs, 

     path = (arc1 , ... , arcl ),  
where l is the length of the path and arci (1≤i≤l) 
satisfies arc1.w=arg1.tk, arci+1.w=arci.dw and 
arcl.dw=arg2.tk. So path is a chain of dependencies 
connecting the two arguments in R. The arcs in it 
do not have to be in the same direction. 
 

 
 
Figure 2. Illustration of a relation example R. The 
link sequence is generated from seq by removing 
some unimportant words based on syntax. The de-
pendency links are generated by GLARF. 
 
  Figure 2 shows a relation example generated from 
the text “… in areas controlled by Syrian troops”. 
In this relation example R, arg1 is ((“areas”, 
“NNS”, “area”, dseq), “LOC”, “Region”, 
“NOM”), and arg1.dseq is ((OBJ, areas, in, 1), 
(OBJ, areas, controlled, 1)). arg2 is ((“troops”, 
“NNS”, “troop”, dseq), “ORG”, “Government”, 
“NOM”) and arg2.dseq = ((A-POS, troops, Syrian, 
0), (SBJ, troops, controlled, 1)). path is ((OBJ, ar-
eas, controlled, 1), (SBJ, controlled, troops, 0)). 
The value 0 in a dependency arc indicates forward 
direction from w to dw, and 1 indicates backward 
direction. The seq and link sequences of R are 
shown in Figure 2. 
  Some relations occur only between very restricted 
types of entities, but this is not true for every type 
of relation. For example, PER-SOC is a relation 
mainly between two person entities, while PHYS 
can happen between any type of entity and a GPE 
or LOC entity. 

4.3 Syntactic Kernels 

In this section we will describe the kernels de-
signed for different syntactic sources and explain 
the intuition behind them. 
  We define two kernels to match relation examples 
at surface level. Using the notation just defined, we 
can write the two surface kernels as follows: 
1) Argument kernel 

troopsareas controlled by 

A-POS OBJ 

arg1 arg2 SBJ 
OBJ

path 

in

seq 

link 

areas controlled by Syrian troops

COMP 
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where KE is a kernel that matches two entities, 
 
 
 
 
 
 
KT is a kernel that matches two tokens. I(x, y) is a 
binary string match operator that gives 1 if x=y 
and 0 otherwise. Kernel Ψ1 matches attributes of 
two entity arguments respectively, such as type, 
subtype and lexical head of an entity. This is based 
on the observation that there are type constraints 
on the two arguments. For instance PER-SOC is a 
relation mostly between two person entities. So the 
attributes of the entities are crucial clues. Lexical 
information is also important to distinguish relation 
types. For instance, in the phrase U.S. president 
there is an EMP-ORG relation between president 
and U.S., while in a U.S. businessman there is a 
GPE-AFF relation between businessman and U.S. 
2)  Bigram kernel 
 
 
where  
 
 
 
Operator <t1, t2> concatenates all the string ele-
ments in tokens t1 and t2 to produce a new token. 
So Ψ2 is a kernel that simply matches unigrams and 
bigrams between the seq sequences of two relation 
examples. The information this kernel provides is 
faithful to the text. 
3) Link sequence kernel 
 
 
 
 
where min_len is the length of the shorter link se-
quence in R1 and R2. Ψ3 is a kernel that matches 
token by token between the link sequences of two 
relation examples. Since relations often occur in a 
short context, we expect many of them have simi-
lar link sequences. 
4) Dependency path kernel 
 
 
where  

 
 
 
 
             ).',.()).',.( earcearcIdwarcdwarcK jijiT ×  
  Intuitively the dependency path connecting two 
arguments could provide a high level of syntactic 
regularization. However, a complete match of two 
dependency paths is rare. So this kernel matches 
the component arcs in two dependency paths in a 
pairwise fashion. Two arcs can match only when 
they are in the same direction. In cases where two 
paths do not match exactly, this kernel can still tell 
us how similar they are. In our experiments we 
placed an upper bound on the length of depend-
ency paths for which we computed a non-zero ker-
nel. 
5) Local dependency 
 
 
where 
 
 
 
 
         ).',.()).',.( earcearcIdwarcdwarcK jijiT ×  
  This kernel matches the local dependency context 
around the relation arguments. This can be helpful 
especially when the dependency path between ar-
guments does not exist. We also hope the depend-
encies on each argument may provide some useful 
clues about the entity or connection of the entity to 
the context outside of the relation example.  

4.4 Composite Kernels 

Having defined all the kernels representing shallow 
and deep processing results, we can define com-
posite kernels to combine and extend the individ-
ual kernels.  
1) Polynomial extension  
 
 
  This kernel combines the argument kernel Ψ1 and 
link kernel Ψ3 and applies a second-degree poly-
nomial kernel to extend them. The combination of 
Ψ1 and Ψ3 covers the most important clues for this 
task: information about the two arguments and the 
word link between them. The polynomial exten-
sion is equivalent to adding pairs of features as 
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new features. Intuitively this introduces new fea-
tures like: the subtype of the first argument is a 
country name and the word of the second argument 
is president, which could be a good clue for an 
EMP-ORG relation. The polynomial kernel is 
down weighted by a normalization factor because 
we do not want the high order features to over-
whelm the original ones. In our experiment, using 
polynomial kernels with degree higher than 2 does 
not produce better results. 
2) Full kernel 
 
 
This is the final kernel we used for this task, which 
is a combination of all the previous kernels. In our 
experiments, we set all the scalar factors to 1. Dif-
ferent values were tried, but keeping the original 
weight for each kernel yielded the best results for 
this task. 
  All the individual kernels we designed are ex-
plicit. Each kernel can be seen as a matching of 
features and these features are enumerable on the 
given data. So it is clear that they are all valid ker-
nels. Since the kernel function set is closed under 
linear combination and polynomial extension, the 
composite kernels are also valid. The reason we 
propose to use a feature-based kernel is that we can 
have a clear idea of what syntactic clues it repre-
sents and what kind of information it misses. This 
is important when developing or refining kernels, 
so that we can make them generate complementary 
information from different syntactic processing 
results. 

5 Experiments  

Experiments were carried out on the ACE RDR 
(Relation Detection and Recognition) task using 
hand-annotated entities, provided as part of the 
ACE evaluation. The ACE corpora contain docu-
ments from two sources: newswire (nwire) docu-
ments and broadcast news transcripts (bnews). In 
this section we will compare performance of dif-
ferent kernel setups trained with SVM, as well as 
different classifiers, KNN and SVM, with the same 
kernel setup. The SVM package we used is 
SVMlight. The training parameters were chosen us-
ing cross-validation. One-against-all classification 
was applied to each pair of entities in a sentence. 
When SVM predictions conflict on a relation ex-

ample, the one with larger margin will be selected 
as the final answer. 

5.1 Corpus 

The ACE RDR training data contains 348 docu-
ments, 125K words and 4400 relations. It consists 
of both nwire and bnews documents. Evaluation of 
kernels was done on the training data using 5-fold 
cross-validation. We also evaluated the full kernel 
setup with SVM on the official test data, which is 
about half the size of the training data. All the data 
is preprocessed by the Charniak parser and 
GLARF dependency analyzer. Then relation ex-
amples are generated based these results. 

5.2 Results 

  Table 2 shows the performance of the SVM on 
different kernel setups. The kernel setups in this 
experiment are incremental. From this table we can 
see that adding kernels continuously improves the 
performance, which indicates they provide 
additional clues to the previous setup. The argu-
ment kernel treats the two arguments as 
independent entities. The link sequence kernel 
introduces the syntactic connection between 
arguments, so adding it to the argument kernel 
boosted the performance. Setup F shows the 
performance of adding only dependency kernels to 
the argument kernel. The performance is not as 
good as setup B, indicating that dependency 
information alone is not as crucial as the link 
sequence.  
 

 Kernel           Performance 
  prec       recall    F-score 

A Argument (Ψ1) 52.96%    58.47%   55.58% 
B A + link (Ψ1+Ψ3) 58.77%    71.25%   64.41%* 
C B-poly (Φ1) 66.98%    70.33%   68.61%* 
D C + dep (Φ1+Ψ4+Ψ5) 69.10%    71.41%   70.23%* 
E D + bigram (Φ2) 69.23%    70.50%   70.35% 
F A + dep (Ψ1+Ψ4+Ψ5) 57.86%    68.50%   62.73% 

 
Table 2. SVM performance on incremental kernel 
setups. Each setup adds one level of kernels to the 
previous one except setup F. Evaluated on the 
ACE training data with 5-fold cross-validation. F-
scores marked by * are significantly better than the 
previous setup (at 95% confidence level). 
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  Another observation is that adding the bigram 
kernel in the presence of all other level of kernels 
improved both precision and recall, indicating that 
it helped in both correcting errors in other 
processing results and providing supplementary 
information missed by other levels of analysis. In 
another experiment evaluated on the nwire data 
only (about half of the training data), adding the 
bigram kernel improved F-score 0.5% and this 
improvement is statistically significant.  
   

Type KNN (Ψ1+Ψ3) KNN (Φ2) SVM (Φ2) 
EMP-ORG 75.43% 72.66% 77.76% 

PHYS 62.19 % 61.97% 66.37% 
GPE-AFF 58.67% 56.22% 62.13% 
PER-SOC 65.11% 65.61% 73.46% 

DISC 68.20% 62.91% 66.24% 
ART 69.59% 68.65% 67.68% 

Other-AFF 51.05% 55.20% 46.55% 
Total 67.44% 65.69% 70.35% 

 
Table 3. Performance of SVM and KNN (k=3) on 
different kernel setups. Types are ordered in de-
creasing order of frequency of occurrence in the 
ACE corpus. In SVM training, the same 
parameters were used for all 7 types.  
 
  Table 3 shows the performance of SVM and 
KNN (k Nearest Neighbors) on different kernel 
setups. For KNN, k was set to 3. In the first setup 
of KNN, the two kernels which seem to contain 
most of the important information are used. It 
performs quite well when compared with the SVM 
result. The other two tests are based on the full 
kernel setup. For the two KNN experiments, 
adding more kernels (features) does not help. The 
reason might be that all kernels (features) were 
weighted equally in the composite kernel Φ2 and 
this may not be optimal for KNN. Another reason 
is that the polynomial extension of kernels does not 
have any benefit in KNN because it is a monotonic 
transformation of similarity values. So the results 
of KNN on kernel (Ψ1+Ψ3) and Φ1 would be ex-
actly the same. We also tried different k for KNN 
and k=3 seems to be the best choice in either case.  
  For the four major types of relations SVM does 
better than KNN, probably due to SVM’s 
generalization ability in the presence of large 
numbers of features. For the last three types with 
many fewer examples, performance of SVM is not 
as good as KNN. The reason we think is that 
training of SVM on these types is not sufficient. 

We tried different training parameters for the types 
with fewer examples, but no dramatic 
improvement obtained. 
  We also evaluated our approach on the official 
ACE RDR test data and obtained very competitive 
scores.3 The primary scoring metric4 for the ACE 
evaluation is a 'value' score, which is computed by 
deducting from 100 a penalty for each missing and 
spurious relation; the penalty depends on the types 
of the arguments to the relation. The value scores 
produced by the ACE scorer for nwire and bnews 
test data are 71.7 and 68.0 repectively. The value 
score on all data is 70.1.5 The scorer also reports an 
F-score based on full or partial match of relations 
to the keys. The unweighted F-score for this test 
produced by the ACE scorer on all data is 76.0%. 
For this evaluation we used nearest neighbor to 
determine argument ordering and relation 
subtypes. 
  The classification scheme in our experiments is 
one-against-all. It turned out there is not so much 
confusion between relation types. The confusion 
matrix of predictions is fairly clean. We also tried 
pairwise classification, and it did not help much. 

6 Discussion 

In this paper, we have shown that using kernels to 
combine information from different syntactic 
sources performed well on the entity relation 
detection task. Our experiments show that each 
level of syntactic processing contains useful 
information for the task. Combining them may 
provide complementary information to overcome 
errors arising from linguistic analysis. Especially, 
low level information obtained with high reliability 
helped with the other deep processing results. This 
design feature of our approach should be best 
employed when the preprocessing errors at each 
level are independent, namely when there is no 
dependency between the preprocessing modules. 
The model was tested on text with annotated 
entities, but its design is generic. It can work with 
                                                           
3 As ACE participants, we are bound by the participation 
agreement not to disclose other sites’ scores, so no direct 
comparison can be provided. 
4 http://www.nist.gov/speech/tests/ace/ace04/software.htm 
5 No comparable inter-annotator agreement scores are avail-
able for this task, with pre-defined entities.  However, the 
agreement scores across multiple sites for similar relation 
tagging tasks done in early 2005, using the value metric, 
ranged from about 0.70 to 0.80. 
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noisy entity detection input from an automatic 
tagger. With all the existing information from other 
processing levels, this model can be also expected 
to recover from errors in entity tagging. 

7 Further Work 

Kernel functions have many nice properties. There 
are also many well known kernels, such as radial 
basis kernels, which have proven successful in 
other areas. In the work described here, only linear 
combinations and polynomial extensions of kernels 
have been evaluated. We can explore other kernel 
properties to integrate the existing syntactic 
kernels. In another direction, training data is often 
sparse for IE tasks. String matching is not 
sufficient to capture semantic similarity of words. 
One solution is to use general purpose corpora to 
create clusters of similar words; another option is 
to use available resources like WordNet. These 
word similarities can be readily incorporated into 
the kernel framework.  To deal with sparse data, 
we can also use deeper text analysis to capture 
more regularities from the data. Such analysis may 
be based on newly-annotated corpora like 
PropBank (Kingsbury and Palmer, 2002) at the 
University of Pennsylvania and NomBank (Meyers 
et al., 2004) at New York University. Analyzers 
based on these resources can generate regularized 
semantic representations for lexically or 
syntactically related sentence structures. Although 
deeper analysis may even be less accurate, our 
framework is designed to handle this and still 
obtain some improvement in performance. 
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Abstract 

Extracting semantic relationships between en-
tities is challenging. This paper investigates 
the incorporation of diverse lexical, syntactic 
and semantic knowledge in feature-based rela-
tion extraction using SVM. Our study illus-
trates that the base phrase chunking 
information is very effective for relation ex-
traction and contributes to most of the per-
formance improvement from syntactic aspect 
while additional information from full parsing 
gives limited further enhancement. This sug-
gests that most of useful information in full 
parse trees for relation extraction is shallow 
and can be captured by chunking. We also 
demonstrate how semantic information such as 
WordNet and Name List, can be used in fea-
ture-based relation extraction to further im-
prove the performance. Evaluation on the 
ACE corpus shows that effective incorporation 
of diverse features enables our system outper-
form previously best-reported systems on the 
24 ACE relation subtypes and significantly 
outperforms tree kernel-based systems by over 
20 in F-measure on the 5 ACE relation types. 

1 Introduction 

With the dramatic increase in the amount of textual 
information available in digital archives and the 
WWW, there has been growing interest in tech-
niques for automatically extracting information 
from text. Information Extraction (IE) systems are 
expected to identify relevant information (usually 
of pre-defined types) from text documents in a cer-
tain domain and put them in a structured format.  

According to the scope of the NIST Automatic 
Content Extraction (ACE) program, current 
research in IE has three main objectives: Entity 
Detection and Tracking (EDT), Relation Detection 

and Characterization (RDC), and Event Detection 
and Characterization (EDC). The EDT task entails 
the detection of entity mentions and chaining them 
together by identifying their coreference. In ACE 
vocabulary, entities are objects, mentions are 
references to them, and relations are semantic 
relationships between entities. Entities can be of 
five types: persons, organizations, locations, 
facilities and geo-political entities (GPE: 
geographically defined regions that indicate a 
political boundary, e.g. countries, states, cities, 
etc.). Mentions have three levels: names, nomial 
expressions or pronouns. The RDC task detects 
and classifies implicit and explicit relations1 
between entities identified by the EDT task. For 
example, we want to determine whether a person is 
at a location, based on the evidence in the context. 
Extraction of semantic relationships between 
entities can be very useful for applications such as 
question answering, e.g. to answer the query “Who 
is the president of the United States?”.  

This paper focuses on the ACE RDC task and 
employs diverse lexical, syntactic and semantic 
knowledge in feature-based relation extraction 
using Support Vector Machines (SVMs). Our 
study illustrates that the base phrase chunking 
information contributes to most of the performance 
inprovement from syntactic aspect while additional 
full parsing information does not contribute much, 
largely due to the fact that most of relations 
defined in ACE corpus are within a very short 
distance. We also demonstrate how semantic in-
formation such as WordNet (Miller 1990) and 
Name List can be used in the feature-based frame-
work. Evaluation shows that the incorporation of 
diverse features enables our system achieve best 
reported performance. It also shows that our fea-
                                                           
1 In ACE (http://www.ldc.upenn.edu/Projects/ACE), 
explicit relations occur in text with explicit evidence 
suggesting the relationships. Implicit relations need not 
have explicit supporting evidence in text, though they 
should be evident from a reading of the document.  
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ture-based approach outperforms tree kernel-based 
approaches by 11 F-measure in relation detection 
and more than 20 F-measure in relation detection 
and classification on the 5 ACE relation types.  

The rest of this paper is organized as follows. 
Section 2 presents related work. Section 3 and 
Section 4 describe our approach and various 
features employed respectively. Finally, we present 
experimental setting and  results in Section 5 and 
conclude with some general observations in 
relation extraction in Section 6. 

2 Related Work 

The relation extraction task was formulated at the 
7th Message Understanding Conference (MUC-7 
1998) and is starting to be addressed more and 
more within the natural language processing and 
machine learning communities.  

Miller et al (2000) augmented syntactic full 
parse trees with semantic information correspond-
ing to entities and relations, and built generative 
models for the augmented trees. Zelenko et al 
(2003) proposed extracting relations by computing 
kernel functions between parse trees. Culotta et al 
(2004) extended this work to estimate kernel func-
tions between augmented dependency trees and 
achieved 63.2 F-measure in relation detection and 
45.8 F-measure in relation detection and classifica-
tion on the 5 ACE relation types. Kambhatla 
(2004) employed Maximum Entropy models for 
relation extraction with features derived from 
word, entity type, mention level, overlap, depend-
ency tree and parse tree. It achieves 52.8 F-
measure on the 24 ACE relation subtypes. Zhang 
(2004) approached relation classification by com-
bining various lexical and syntactic features with 
bootstrapping on top of Support Vector Machines. 

Tree kernel-based approaches proposed by Ze-
lenko et al (2003) and Culotta et al (2004) are able 
to explore the implicit feature space without much 
feature engineering. Yet further research work is 
still expected to make it effective with complicated 
relation extraction tasks such as the one defined in 
ACE. Complicated relation extraction tasks may 
also impose a big challenge to the modeling ap-
proach used by Miller et al (2000) which integrates 
various tasks such as part-of-speech tagging, 
named entity recognition, template element extrac-
tion and relation extraction, in a single model.   

This paper will further explore the feature-based 
approach with a systematic study on the extensive 
incorporation of diverse lexical, syntactic and se-
mantic information. Compared with Kambhatla 
(2004), we separately incorporate the base phrase 
chunking information, which contributes to most 
of the performance improvement from syntactic 
aspect. We also show how semantic information 
like WordNet and Name List can be equipped to 
further improve the performance. Evaluation on 
the ACE corpus shows that our system outper-
forms Kambhatla (2004) by about 3 F-measure on 
extracting 24 ACE relation subtypes. It also shows 
that our system outperforms tree kernel-based sys-
tems (Culotta et al 2004) by over 20 F-measure on 
extracting 5 ACE relation types. 

3 Support Vector Machines 

Support Vector Machines (SVMs) are a supervised 
machine learning technique motivated by the sta-
tistical learning theory (Vapnik 1998). Based on 
the structural risk minimization of the statistical 
learning theory, SVMs seek an optimal separating 
hyper-plane to divide the training examples into 
two classes and make decisions based on support 
vectors which are selected as the only effective 
instances in the training set. 

Basically, SVMs are binary classifiers. 
Therefore, we must extend SVMs to multi-class 
(e.g. K) such as the ACE RDC task. For efficiency, 
we apply the one vs. others strategy, which builds 
K classifiers so as to separate one class from all 
others, instead of the pairwise strategy, which 
builds K*(K-1)/2 classifiers considering all pairs of 
classes. The final decision of an instance in the 
multiple binary classification is determined by the 
class which has the maximal SVM output. 
Moreover, we only apply the simple linear kernel, 
although other kernels can peform better.  

The reason why we choose SVMs for this 
purpose is that SVMs represent the state-of–the-art 
in  the machine learning research community, and 
there are good implementations of the algorithm 
available. In this paper, we use the binary-class 
SVMLight2 deleveloped by Joachims (1998). 

                                                           
2 Joachims has just released a new version of SVMLight 
for multi-class classification. However, this paper only 
uses the binary-class version. For details about 
SVMLight, please see http://svmlight.joachims.org/ 
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4 Features 

The semantic relation is determined between two 
mentions. In addition, we distinguish the argument 
order of the two mentions (M1 for the first mention 
and M2 for the second mention), e.g. M1-Parent-
Of-M2 vs. M2-Parent-Of-M1. For each pair of 
mentions3, we compute various lexical, syntactic 
and semantic features. 

4.1 Words 

According to their positions, four categories of 
words are considered: 1) the words of both the 
mentions, 2) the words between the two mentions, 
3) the words before M1, and 4) the words after M2. 
For the words of both the mentions, we also differ-
entiate the head word4 of a mention from other 
words since the head word is generally much more 
important. The words between the two mentions 
are classified into three bins: the first word in be-
tween, the last word in between and other words in 
between. Both the words before M1 and after M2 
are classified into two bins: the first word next to 
the mention and the second word next to the men-
tion. Since a pronominal mention (especially neu-
tral pronoun such as ‘it’ and ‘its’) contains little 
information about the sense of the mention, the co-
reference chain is used to decide its sense. This is 
done by replacing the pronominal mention with the 
most recent non-pronominal antecedent when de-
termining the word features, which include: 
• WM1: bag-of-words in M1 
• HM1: head word of M1 

                                                           
3 In ACE, each mention has a head annotation and an 
extent annotation. In all our experimentation, we only 
consider the word string between the beginning point of 
the extent annotation and the end point of the head an-
notation. This has an effect of choosing the base phrase 
contained in the extent annotation. In addition, this also 
can reduce noises without losing much of information in 
the mention. For example, in the case where the noun 
phrase “the former CEO of McDonald” has the head 
annotation of “CEO” and the extent annotation of “the 
former CEO of McDonald”, we only consider “the for-
mer CEO” in this paper. 
4 In this paper, the head word of a mention is normally 
set as the last word of the mention. However, when a 
preposition exists in the mention, its head word is set as 
the last word before the preposition. For example, the 
head word of the name mention “University of Michi-
gan” is “University”. 

• WM2: bag-of-words in M2 
• HM2: head word of M2 
• HM12: combination of HM1 and HM2 
• WBNULL: when no word in between 
• WBFL: the only word in between when only 

one word in between 
• WBF: first word in between when at least two 

words in between 
• WBL: last word in between when at least two 

words in between 
• WBO: other words in between except first and 

last words when at least three words in between 
• BM1F: first word before M1 
• BM1L: second word before M1 
• AM2F: first word after M2 
• AM2L: second word after M2 

4.2 Entity Type 

This feature concerns about the entity type of both 
the mentions, which can be PERSON, 
ORGANIZATION, FACILITY, LOCATION and 
Geo-Political Entity or GPE: 
• ET12: combination of mention entity types 

4.3 Mention Level 

This feature considers the entity level of both the 
mentions, which can be NAME, NOMIAL and 
PRONOUN: 
• ML12: combination of mention levels 

4.4 Overlap 

This category of features includes: 
• #MB: number of other mentions in between 
• #WB: number of words in between 
• M1>M2 or M1<M2: flag indicating whether 

M2/M1is included in M1/M2.  
Normally, the above overlap features are too 

general to be effective alone. Therefore, they are 
also combined with other features: 1) 
ET12+M1>M2; 2) ET12+M1<M2; 3) 
HM12+M1>M2; 4) HM12+M1<M2. 

4.5 Base Phrase Chunking 

It is well known that chunking plays a critical role 
in the Template Relation task of the 7th Message 
Understanding Conference (MUC-7 1998). The 
related work mentioned in Section 2 extended to 
explore the information embedded in the full parse 
trees. In this paper, we separate the features of base 
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phrase chunking from those of full parsing. In this 
way, we can separately evaluate the contributions 
of base phrase chunking and full parsing. Here, the 
base phrase chunks are derived from full parse 
trees using the Perl script5 written by Sabine 
Buchholz from Tilburg University and the Collins’ 
parser (Collins 1999) is employed for full parsing. 
Most of the chunking features concern about the 
head words of the phrases between the two men-
tions. Similar to word features, three categories of 
phrase heads are considered: 1) the phrase heads in 
between are also classified into three bins: the first 
phrase head in between, the last phrase head in 
between and other phrase heads in between; 2) the 
phrase heads before M1 are classified into two 
bins: the first phrase head before and the second 
phrase head before; 3) the phrase heads after M2 
are classified into two bins: the first phrase head 
after and the second phrase head after. Moreover, 
we also consider the phrase path in between. 
• CPHBNULL when no phrase in between 
• CPHBFL: the only phrase head when only one 

phrase in between 
• CPHBF: first phrase head in between when at 

least two phrases in between 
• CPHBL: last phrase head in between when at 

least two phrase heads in between 
• CPHBO: other phrase heads in between except 

first and last phrase heads when at least three 
phrases in between 

• CPHBM1F: first phrase head before M1 
• CPHBM1L: second phrase head before M1 
• CPHAM2F: first phrase head after M2 
• CPHAM2F: second phrase head after M2 
• CPP: path of phrase labels connecting the two 

mentions in the chunking  
• CPPH: path of phrase labels connecting the two 

mentions in the chunking augmented with head 
words, if at most two phrases in between 

4.6 Dependency Tree 

This category of features includes information 
about the words, part-of-speeches and phrase la-
bels of the words on which the mentions are de-
pendent in the dependency tree derived from the 
syntactic full parse tree. The dependency tree is 
built by using the phrase head information returned 
by the Collins’ parser and linking all the other 

                                                           
5 http://ilk.kub.nl/~sabine/chunklink/ 

fragments in a phrase to its head. It also includes 
flags indicating whether the two mentions are in 
the same NP/PP/VP. 
• ET1DW1: combination of the entity type and 

the dependent word for M1 
• H1DW1: combination of the head word and the 

dependent word for M1 
• ET2DW2: combination of the entity type and 

the dependent word for M2 
• H2DW2: combination of the head word and the 

dependent word for M2 
• ET12SameNP: combination of ET12 and 

whether M1 and M2 included in the same NP 
• ET12SamePP: combination of ET12 and 

whether M1 and M2 exist in the same PP 
• ET12SameVP: combination of ET12 and 

whether M1 and M2 included in the same VP 

4.7 Parse Tree 

This category of features concerns about the in-
formation inherent only in the full parse tree.  
• PTP: path of phrase labels (removing dupli-

cates) connecting M1 and M2 in the parse tree  
• PTPH: path of phrase labels (removing dupli-

cates) connecting M1 and M2 in the parse tree 
augmented with the head word of the top phrase 
in the path.  

4.8 Semantic Resources 

Semantic information from various resources, such 
as WordNet, is used to classify important words 
into different semantic lists according to their indi-
cating relationships. 

Country Name List 

This is to differentiate the relation subtype 
“ROLE.Citizen-Of”, which defines the relationship 
between a person and the country of the person’s 
citizenship, from other subtypes, especially 
“ROLE.Residence”, where defines the relationship 
between a person and the location in which the 
person lives. Two features are defined to include 
this information: 
• ET1Country: the entity type of M1 when M2 is 

a country name 
• CountryET2: the entity type of M2 when M1 is 

a country name 
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Personal Relative Trigger Word List 

This is used to differentiate the six personal social 
relation subtypes in ACE: Parent, Grandparent, 
Spouse, Sibling, Other-Relative and Other-
Personal. This trigger word list is first gathered 
from WordNet by checking whether a word has the 
semantic class “person|…|relative”. Then, all the 
trigger words are semi-automatically6 classified 
into different categories according to their related 
personal social relation subtypes. We also extend 
the list by collecting the trigger words from the 
head words of the mentions in the training data 
according to their indicating relationships. Two 
features are defined to include this information: 
• ET1SC2: combination of the entity type of M1 

and the semantic class of M2 when M2 triggers 
a personal social subtype. 

• SC1ET2: combination of the entity type of M2 
and the semantic class of M1 when the first 
mention triggers a personal social subtype. 

5 Experimentation 

This paper uses the ACE corpus provided by LDC 
to train and evaluate our feature-based relation ex-
traction system. The ACE corpus is gathered from 
various newspapers, newswire and broadcasts. In 
this paper, we only model explicit relations be-
cause of poor inter-annotator agreement in the an-
notation of implicit relations and their limited 
number. 

5.1 Experimental Setting 

We use the official ACE corpus from LDC. The 
training set consists of 674 annotated text docu-
ments (~300k words) and 9683 instances of rela-
tions. During development, 155 of 674 documents 
in the training set are set aside for fine-tuning the 
system. The testing set is held out only for final 
evaluation. It consists of 97 documents (~50k 
words) and 1386 instances of relations. Table 1 
lists the types and subtypes of relations for the 
ACE Relation Detection and Characterization 
(RDC) task, along with their frequency of occur-
rence in the ACE training set. It shows that the 
                                                           
6 Those words that have the semantic classes “Parent”, 
“GrandParent”, “Spouse” and “Sibling” are automati-
cally set with the same classes without change. How-
ever, The remaining words that do not have above four 
classes are manually classified. 

ACE corpus suffers from a small amount of anno-
tated data for a few subtypes such as the subtype 
“Founder” under the type “ROLE”. It also shows 
that the ACE RDC task defines some difficult sub-
types such as the subtypes “Based-In”, “Located” 
and “Residence” under the type “AT”, which are 
difficult even for human experts to differentiate.  

Type Subtype Freq 
AT(2781) Based-In 347 
 Located 2126 
 Residence 308 
NEAR(201) Relative-Location 201 
PART(1298) Part-Of 947 
 Subsidiary 355 
 Other 6 
ROLE(4756) Affiliate-Partner 204 
 Citizen-Of 328 
 Client 144 
 Founder 26 
 General-Staff 1331 
 Management 1242 
 Member 1091 
 Owner 232 
 Other 158 
SOCIAL(827) Associate 91 
 Grandparent 12 
 Other-Personal 85 
 Other-Professional 339 
 Other-Relative 78 
 Parent 127 
 Sibling 18 
 Spouse 77 
Table 1: Relation types and subtypes in the ACE 

training data 

In this paper, we explicitly model the argument 
order of the two mentions involved. For example, 
when comparing mentions m1 and m2, we distin-
guish between m1-ROLE.Citizen-Of-m2 and m2-
ROLE.Citizen-Of-m1. Note that only 6 of these 24 
relation subtypes are symmetric: “Relative-
Location”, “Associate”, “Other-Relative”, “Other-
Professional”, “Sibling”, and “Spouse”. In this 
way, we model relation extraction as a multi-class 
classification problem with 43 classes, two for 
each relation subtype (except the above 6 symmet-
ric subtypes) and a “NONE” class for the case 
where the two mentions are not related. 

5.2 Experimental Results 
In this paper, we only measure the performance of 
relation extraction on “true” mentions with “true” 
chaining of coreference (i.e. as annotated by the 
corpus annotators) in the ACE corpus. Table 2 
measures the performance of our relation extrac-
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tion system over the 43 ACE relation subtypes on 
the testing set. It shows that our system achieves 
best performance of 63.1%/49.5%/ 55.5 in preci-
sion/recall/F-measure when combining diverse 
lexical, syntactic and semantic features. Table 2 
also measures the contributions of different fea-
tures by gradually increasing the feature set. It 
shows that: 

Features P R F 
Words 69.2 23.7 35.3 
+Entity Type 67.1 32.1 43.4 
+Mention Level 67.1 33.0 44.2 
+Overlap 57.4 40.9 47.8 
+Chunking 61.5 46.5 53.0 
+Dependency Tree 62.1 47.2 53.6 
+Parse Tree 62.3 47.6 54.0 
+Semantic Resources 63.1 49.5 55.5 

Table 2: Contribution of different features over 43 
relation subtypes in the test data 

• Using word features only achieves the perform-
ance of 69.2%/23.7%/35.3 in precision/recall/F-
measure.  

• Entity type features are very useful and improve 
the F-measure by 8.1 largely due to the recall 
increase. 

• The usefulness of mention level features is quite 
limited. It only improves the F-measure by 0.8 
due to the recall increase. 

• Incorporating the overlap features gives some 
balance between precision and recall. It in-
creases the F-measure by 3.6 with a big preci-
sion decrease and a big recall increase. 

• Chunking features are very useful. It increases 
the precision/recall/F-measure by 4.1%/5.6%/ 
5.2 respectively. 

• To our surprise, incorporating the dependency 
tree and parse tree features only improve the F-
measure by 0.6 and 0.4 respectively. This may 
be due to the fact that most of relations in the 
ACE corpus are quite local. Table 3 shows that 
about 70% of relations exist where two men-
tions are embedded in each other or separated 
by at most one word. While short-distance rela-
tions dominate and can be resolved by above 
simple features, the dependency tree and parse 
tree features can only take effect in the remain-
ing much less long-distance relations. However, 
full parsing is always prone to long distance er-
rors although the Collins’ parser used in our 
system represents the state-of-the-art in full 
parsing. 

• Incorporating semantic resources such as the 
country name list and the personal relative trig-
ger word list further increases the F-measure by 
1.5 largely due to the differentiation of the rela-
tion subtype “ROLE.Citizen-Of” from “ROLE. 
Residence” by distinguishing country GPEs 
from other GPEs. The effect of personal relative 
trigger words is very limited due to the limited 
number of testing instances over personal social 
relation subtypes. 
Table 4 separately measures the performance of 

different relation types and major subtypes. It also 
indicates the number of testing instances, the num-
ber of correctly classified instances and the number 
of wrongly classified instances for each type or 
subtype. It is not surprising that the performance 
on the relation type “NEAR” is low because it oc-
curs rarely in both the training and testing data. 
Others like “PART.Subsidary” and “SOCIAL. 
Other-Professional” also suffer from their low oc-
currences. It also shows that our system performs 
best on the subtype “SOCIAL.Parent” and “ROLE. 
Citizen-Of”. This is largely due to incorporation of 
two semantic resources, i.e. the country name list 
and the personal relative trigger word list. Table 4 
also indicates the low performance on the relation 
type “AT” although it frequently occurs in both the 
training and testing data. This suggests the diffi-
culty of detecting and classifying the relation type 
“AT” and its subtypes. 

Table 5 separates the performance of relation 
detection from overall performance on the testing 
set. It shows that our system achieves the perform-
ance of 84.8%/66.7%/74.7 in precision/recall/F-
measure on relation detection. It also shows that 
our system achieves overall performance of 
77.2%/60.7%/68.0 and 63.1%/49.5%/55.5 in preci-
sion/recall/F-measure on the 5 ACE relation types 
and the best-reported systems on the ACE corpus. 
It shows that our system achieves better perform-
ance by ~3 F-measure largely due to its gain in 
recall. It also shows that feature-based methods 
dramatically outperform kernel methods. This sug-
gests that feature-based methods can effectively 
combine different features from a variety of 
sources (e.g. WordNet and gazetteers) that can be 
brought to bear on relation extraction. The tree 
kernels developed in Culotta et al (2004) are yet to 
be effective on the ACE RDC task. 

Finally, Table 6 shows the distributions of er-
rors. It shows that 73% (627/864) of errors results 
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from relation detection and 27% (237/864) of er-
rors results from relation characterization, among 
which 17.8% (154/864) of errors are from misclas-
sification across relation types and 9.6% (83/864) 

of errors are from misclassification of relation sub-
types inside the same relation types. This suggests 
that relation detection is critical for relation extrac-
tion. 

# of other mentions in between # of relations 
0 1 2 3 >=4 Overall 

0 3991 161 11 0 0 4163 
1 2350 315 26 2 0 2693 
2 465 95 7 2 0 569 
3 311 234 14 0 0 559 
4 204 225 29 2 3 463 
5 111 113 38 2 1 265 

>=6 262 297 277 148 134 1118 

#  
of  

the words 
 in  

between 

Overall 7694 1440 402 156 138 9830 
Table 3: Distribution of relations over #words and #other mentions in between in the training data 

Type Subtype #Testing Instances #Correct #Error P R F 
AT  392 224 105 68.1 57.1 62.1 
 Based-In 85 39 10 79.6 45.9 58.2 
 Located 241 132 120 52.4 54.8 53.5 
 Residence 66 19 9 67.9 28.8 40.4 
NEAR  35 8 1 88.9 22.9 36.4 
 Relative-Location 35 8 1 88.9 22.9 36.4 
PART  164 106 39 73.1 64.6 68.6 
 Part-Of 136 76 32 70.4 55.9 62.3 
 Subsidiary 27 14 23 37.8 51.9 43.8 
ROLE  699 443 82 84.4 63.4 72.4 
 Citizen-Of 36 25 8 75.8 69.4 72.6 
 General-Staff 201 108 46 71.1 53.7 62.3 
 Management 165 106 72 59.6 64.2 61.8 
 Member 224 104 36 74.3 46.4 57.1 
SOCIAL  95 60 21 74.1 63.2 68.5 
 Other-Professional 29 16 32 33.3 55.2 41.6 
 Parent 25 17 0 100 68.0 81.0 

Table 4: Performance of different relation types and major subtypes in the test data 
Relation Detection RDC on Types RDC on Subtypes System 
P R F P R F P R F 

Ours: feature-based 84.8 66.7 74.7 77.2 60.7 68.0 63.1 49.5 55.5 
Kambhatla (2004):feature-based - - - - - - 63.5 45.2 52.8 
Culotta et al (2004):tree kernel 81.2 51.8 63.2 67.1 35.0 45.8 - - - 

Table 5: Comparison of our system with other best-reported systems on the ACE corpus 
Error Type #Errors 

False Negative 462 Detection Error 
False Positive 165 
Cross Type Error 154 Characterization  

Error Inside Type Error 83 
Table 6: Distribution of errors 

6 Discussion and Conclusion 

In this paper, we have presented a feature-based 
approach for relation extraction where diverse 
lexical, syntactic and semantic knowledge are em-
ployed. Instead of exploring the full parse tree in-
formation directly as previous related work, we 
incorporate the base phrase chunking information 

first. Evaluation on the ACE corpus shows that 
base phrase chunking contributes to most of the 
performance improvement from syntactic aspect 
while further incorporation of the parse tree and 
dependence tree information only slightly im-
proves the performance. This may be due to three 
reasons: First, most of relations defined in ACE 
have two mentions being close to each other. 
While short-distance relations dominate and can be 
resolved by simple features such as word and 
chunking features, the further dependency tree and 
parse tree features can only take effect in the re-
maining much less and more difficult long-distance 
relations. Second, it is well known that full parsing 
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is always prone to long-distance parsing errors al-
though the Collins’ parser used in our system 
achieves the state-of-the-art performance. There-
fore, the state-of-art full parsing still needs to be 
further enhanced to provide accurate enough in-
formation, especially PP (Preposition Phrase) at-
tachment. Last, effective ways need to be explored 
to incorporate information embedded in the full 
parse trees. Besides, we also demonstrate how se-
mantic information such as WordNet and Name 
List, can be used in feature-based relation extrac-
tion to further improve the performance. 

The effective incorporation of diverse features 
enables our system outperform previously best-
reported systems on the ACE corpus. Although 
tree kernel-based approaches facilitate the explora-
tion of the implicit feature space with the parse tree 
structure, yet the current technologies are expected 
to be further advanced to be effective for relatively 
complicated relation extraction tasks such as the 
one defined in ACE where 5 types and 24 subtypes 
need to be extracted. Evaluation on the ACE RDC 
task shows that our approach of combining various 
kinds of evidence can scale better to problems, 
where we have a lot of relation types with a rela-
tively small amount of annotated data. The ex-
periment result also shows that our feature-based 
approach outperforms the tree kernel-based ap-
proaches by more than 20 F-measure on the extrac-
tion of 5 ACE relation types.  

In the future work, we will focus on exploring 
more semantic knowledge in relation extraction, 
which has not been covered by current research. 
Moreover, our current work is done when the En-
tity Detection and Tracking (EDT) has been per-
fectly done. Therefore, it would be interesting to 
see how imperfect EDT affects the performance in 
relation extraction. 
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Abstract

In this work, we provide an empiri-
cal analysis of differences in word use
between genders in telephone conversa-
tions, which complements the consid-
erable body of work in sociolinguistics
concerned with gender linguistic differ-
ences. Experiments are performed on a
large speech corpus of roughly 12000 con-
versations. We employ machine learn-
ing techniques to automatically catego-
rize the gender of each speaker given only
the transcript of his/her speech, achiev-
ing 92% accuracy. An analysis of the
most characteristic words for each gender
is also presented. Experiments reveal that
the gender of one conversation side influ-
ences lexical use of the other side. A sur-
prising result is that we were able to clas-
sify male-only vs. female-only conversa-
tions with almost perfect accuracy.

1 Introduction

Linguistic and prosodic differences between gen-
ders in American English have been studied for
decades. The interest in analyzing the gender lin-
guistic differences is two-fold. From the scientific
perspective, it will increase our understanding
of language production. From the engineering
perspective, it can help improve the performance
of a number of natural language processing tasks,
such as text classification, machine translation or

automatic speech recognition by training better lan-
guage models. Traditionally, these differences have
been investigated in the fields of sociolinguistics
and psycholinguistics, see for example (Coates,
1997), (Eckert and McConnell-Ginet, 2003) or
http://www.ling.lancs.ac.uk/groups/gal/genre.htm
for a comprehensive bibliography on language and
gender. Sociolinguists have approached the issue
from a mostly non-computational perspective using
relatively small and very focused data collections.
Recently, the work of (Koppel et al., 2002) has
used computational methods to characterize the
differences between genders in written text, such
as literary books. A number of monologues have
been analyzed in (Singh, 2001) in terms of lexical
richness using multivariate analysis techniques.
The question of gender linguistic differences
shares a number of issues with stylometry and
author/speaker attribution research (Stamatatos et
al., 2000), (Doddington, 2001), but novel issues
emerge with analysis of conversational speech, such
as studying the interaction of genders.

In this work, we focus on lexical differences be-
tween genders on telephone conversations and use
machine learning techniques applied on text catego-
rization and feature selection to characterize these
differences. Therefore our conclusions are entirely
data-driven. We use a very large corpus created for
automatic speech recognition - the Fisher corpus de-
scribed in (Cieri et al., 2004). The Fisher corpus is
annotated with the gender of each speaker making
it an ideal resource to study not only the character-
istics of individual genders but also of gender pairs
in spontaneous, conversational speech. The size and
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scope of the Fisher corpus is such that robust results
can be derived for American English. The compu-
tational methods we apply can assist us in answer-
ing questions, such as“To which degree are gender-
discriminative words content-bearing words?”or
“Which words are most characteristic for males in
general or males talking to females?”.

In section 2, we describe the corpus we have
based our analysis on. In section 3, the machine
learning tools are explained, while the experimen-
tal results are described in section 4 with a specific
research question for each subsection. We conclude
in section 5 with a summary and future directions.

2 The Corpus and Data Preparation

The Fisher corpus (Cieri et al., 2004) was used in
all our experiments. It consists of telephone con-
versations between two people, randomly assigned
to speak to each other. At the beginning of each
conversation a topic is suggested at random from a
list of 40. The latest release of the Fisher collection
has more than 16 000 telephone conversations av-
eraging 10 minutes each. Each person participates
in 1-3 conversations, and each conversation is an-
notated with a topicality label. The topicality label
gives the degree to which the suggested topic was
followed and is an integer number from 0 to 4, 0
being the worse. In our site, we had an earlier ver-
sion of the Fisher corpus with around 12 000 con-
versations. After removing conversations where at
least one of the speakers was non-native1 and con-
versations with topicality 0 or 1 we were left with
10 127 conversations. The original transcripts were
minimally processed; acronyms were normalized to
a sequence of characters with no intervening spaces,
e.g. t. v. to tv; word fragments were converted to
the same tokenwordfragment; all words were lower-
cased; and punctuation marks and special characters
were removed. Some non-lexical tokens are main-
tained such aslaughterand filled pauses such asuh,
um. Backchannels and acknowledgments such as
uh-huh, mm-hmmare also kept. The gender distri-
bution of the Fisher corpus is 53% female and 47%
male. Age distribution is 38% 16-29, 45% 30-49%
and 17% 50+. Speakers were connected at random

1About 10% of speakers are non-native making this corpus
suitable for investigating their lexical differences compared to
American English speakers.

from a pool recruited in a national ad campaign. It
is unlikely that the speakers knew their conversation
partner. All major American English dialects are
well represented, see (Cieri et al., 2004) for more de-
tails. The Fisher corpus was primarily created to fa-
cilitate automatic speech recognition research. The
subset we have used has about 17.8M words or about
1 600 hours of speech and it is the largest resource
ever used to analyze gender linguistic differences.
In comparison, (Singh, 2001) has used about 30 000
words for their analysis.

Before attempting to analyze the gender differ-
ences, there are two main biases that need to be re-
moved. The first bias, which we term thetopic bias
is introduced by not accounting for the fact that the
distribution of topics in males and females is uneven,
despite the fact that the topic is pre-assigned ran-
domly. For example, if topic A happened to be more
common for males than females and we failed to ac-
count for that, then we would be implicitly building
a topic classifier rather than a gender classifier. Our
intention here is to analyze gender linguistic differ-
ences controlling for the topic effect as if both gen-
ders talk equally about the same topics. The sec-
ond bias, which we termspeaker biasis introduced
by not accounting for the fact that specific speakers
have idiosyncratic expressions. If our training data
consisted of a small number of speakers appearing
in both training and testing data, then we will be
implicitly modeling speaker differences rather than
gender differences.

To normalize for these two important biases, we
made sure that both genders have the same percent
of conversation sides for each topic and there are
8899 speakers in training and 2000 in testing with no
overlap between the two sets. After these two steps,
there were 14969 conversation sides used for train-
ing and 3738 sides for testing. The median length of
a conversation side was 954.

3 Machine Learning Methods Used

The methods we have used for characterizing the
differences between genders and gender pairs are
similar to what has been used for the task of text
classification. In text classification, the objective is
to classify a document~d to one (or more) ofT pre-
defined topicsy. A number ofN tuples(~dn, yn)
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are provided for training the classifier. A major
challenge of text classification is the very high di-
mensionality for representing each document which
brings forward the need for feature selection, i.e. se-
lecting the most discriminative words and discarding
all others.

In this study, we chose two ways for characteriz-
ing the differences between gender categories. The
first, is to classify the transcript of each speaker, i.e.
each conversation side, to the appropriate gender
category. This approach can show the cumulative
effect of all terms on the distinctiveness of gender
categories. The second approach is to apply feature
selection methods, similar to those used in text cate-
gorization, to reveal the most characteristic features
for each gender.

Classifying a transcript of speech according to
gender can be done with a number of different learn-
ing methods. We have compared Support Vector
Machines (SVMs), Naive Bayes, Maximum Entropy
and the tfidf/Rocchio classifier and found SVMs to
be the most successful. A possible difference be-
tween text classification and gender classification is
that different methods for feature weighting may be
appropriate. In text classification, inverse document
frequency is applied to the frequency of each term
resulting in the deweighting of common terms. This
weighting scheme is effective for text classification
because common terms do not contribute to the topic
of a document. However, the reverse may be true for
gender classification, where the common terms may
be the ones that mostly contribute to the gender cate-
gory. This is an issue that we will investigate in sec-
tion 4 and has implications for the feature weighting
scheme that needs to be applied to the vector repre-
sentation.

In addition to classification, we have applied fea-
ture selection techniques to assess the discrimina-
tive ability of each individual feature. Information
gain has been shown to be one of the most success-
ful feature selection methods for text classification
(Forman, 2003). It is given by:

IG(w) = H(C)− p(w)H(C|w)− p(w̄)H(C|w̄)
(1)

whereH(C) = −
∑C
c=1 p(c) log p(c) denotes the

entropy of the discrete gender category random vari-
able C. Each document is represented with the

Bernoulli model, i.e. a vector of 1 or 0 depending
if the word appears or not in the document. We have
also implemented another feature selection mecha-
nism, the KL-divergence, which is given by:

KL(w) = D[p(c|w)||p(c)] =
C∑
c=1

p(c|w) log
p(c|w)
p(c)

(2)
In the KL-divergence we have used the multinomial
model, i.e. each document is represented as a vector
of word counts. We smoothed thep(w|c) distribu-
tions by assuming that every word in the vocabulary
is observed at least 5 times for each class.

4 Experiments

Having explained the methods and data that we have
used, we set forward to investigate a number of
research questions concerning the nature of differ-
ences between genders. Each subsection is con-
cerned with a single question.

4.1 Given only the transcript of a conversation,
is it possible to classify conversation sides
according to the gender of the speaker?

The first hypothesis we investigate is whether sim-
ple features, such as counts of individual terms (un-
igrams) or pairs of terms (bigrams) have different
distributions between genders. The set of possible
terms consists of all words in the Fisher corpus plus
some non-lexical tokens such as laughter and filled
pauses. One way to assess the difference in their
distribution is by attempting to classify conversation
sides according to the gender of the speaker. The
results are shown in Table 1, where a number of
different text classification algorithms were applied
to classify conversation sides. 14969 conversation
sides are used for training and 3738 sides are used
for testing. No feature selection was performed; in
all classifiers a vocabulary of all unigrams or bi-
grams with 5 or more occurrences is used (20513 for
unigrams, 306779 for bigrams). For all algorithms,
except Naive Bayes, we have used the tf·idf repre-
sentation. TheRainbowtoolkit (McCallum, 1996)
was used for training the classifiers. Results show
that differences between genders are clear and the
best results are obtained by using SVMs. The fact
that classification performance is significantly above
chance for a variety of learning methods shows that
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lexical differences between genders are inherent in
the data and not in a specific choice of classifier.

From Table 1 we also observe that using bigrams
is consistently better than unigrams, despite the fact
that the number of unique terms rises from∼20K
to∼300K. This suggests that gender differences be-
come even more profound for phrases, a finding sim-
ilar to (Doddington, 2001) for speaker differences.

Table 1: Classification accuracy of different learn-
ing methods for the task of classifying the transcript
of a conversation side according to the gender -
male/female - of the speaker.

Unigrams Bigrams

Rocchio 76.3 86.5
Naive Bayes 83.0 89.2
MaxEnt 85.6 90.3
SVM 88.6 92.5

4.2 Does the gender of a conversation side
influence lexical usage of the other
conversation side?

Each conversation always consists of two people
talking to each other. Up to this point, we have only
attempted to analyze a conversation side in isola-
tion, i.e. without using transcriptions from the other
side. In this subsection, we attempt to assess the
degree to which, if any, the gender of one speaker
influences the language of the other speaker. In
the first experiment, instead of defining two cate-
gories we define four; the Cartesian product of the
gender of the current speaker and the gender of the
other speaker. These categories are symbolized with
two letters: the first characterizing the gender of the
current speaker and the second the gender of the
other speaker, i.e. FF, FM, MF, MM. The task re-
mains the same: given the transcript of a conver-
sation side, classify it according to the appropriate
category. This is a task much harder than the bi-
nary classification we had in subsection 4.1, because
given only the transcript of a conversation side we
must make inferences about the gender of the current
as well as the other conversation side. We have used
SVMs as the learning method. In their basic formu-
lation, SVMs are binary classifiers (although there
has been recent work on multi-class SVMs). We fol-

lowed the original binary formulation and converted
the 4-class problem to 6 2-class problems. The final
decision is taken by voting of the individual systems.
The confusion matrix of the 4-way classification is
shown in Table 2.

Table 2: Confusion matrix for 4-way classification
of gender of both sides using transcripts from one
side. Unigrams are used as features, SVMs as clas-
sification method. Each row represents the true cat-
egory and each column the hypothesized category.

FF FM MF MM F-measure

FF 1447 30 40 65 .778
FM 456 27 43 77 .074
MF 167 25 104 281 .214
MM 67 44 210 655 .638

The results show that although two of the four cat-
egories, FF and MM, are quite robustly detected the
other two, FM and MF, are mostly confused with FF
and MM respectively. These results can be mapped
to single gender detection, giving accuracy of 85.9%
for classifying the gender of the given transcript (as
in Table 1) and 68.5% for classifying the gender of
the conversational partner. The accuracy of 68.5% is
higher than chance (57.8%) showing that genders al-
ter their linguistic patterns depending on the gender
of their conversational partner.

In the next experiment we design two binary clas-
sifiers. In the first classifier, the task is to correctly
classify FF vs. MM transcripts, and in the second
classifier the task is to classify FM vs. MF tran-
scripts. Therefore, we attempt to classify the gender
of a speaker given knowledge of whether the con-
versation is same-gender or cross-gender. For both
classifiers 4526 sides were used for training equally
divided among each class. 2558 sides were used for
testing of the FF-MM classifier and 1180 sides for
the FM-MF classifier. The results are shown in Ta-
ble 3.

It is clear from Table 3 that there is a significant
difference in performance between the FF-MM and
FM-MF classifiers, suggesting that people alter their
linguistic patterns depending on the gender of the
person they are talking to. In same-gender conver-
sations, almost perfect accuracy is reached, indicat-
ing that the linguistic patterns of the two genders be-

438



Table 3: Classification accuracies in same-gender
and cross-gender conversations. SVMs are used as
the classification method; no feature selection is ap-
plied.

Unigrams Bigrams

FF-MM 98.91 99.49
FM-MF 69.15 78.90

come very distinct. In cross-gender conversations
the differences become less prominent since clas-
sification accuracy drops compared to same-gender
conversations. This result, however, does not re-
veal how this convergence of linguistic patterns is
achieved. Is it the case that the convergence is at-
tributed to one of the genders, for example males
attempting to match the patterns of females, or is it
collectively constructed? To answer this question,
we can examine the classification performance of
two other binary classifiers FF vs. FM and MM vs.
MF. The results are shown in Table 4. In both clas-
sifiers 4608 conversation sides are used for training,
equally divided in each class. The number of sides
used for testing is 989 and 689 for the FF-FM and
MM-MF classifier respectively.

Table 4: Classifying the gender of speaker B given
only the transcript of speaker A. SVMs are used as
the classification method; no feature selection is ap-
plied.

Unigrams Bigrams

FF-FM 57.94 59.66
MM-MF 60.38 59.80

The results in Table 4 suggest that both genders
equally alter their linguistic patterns to match the
opposite gender. It is interesting to see that the gen-
der of speaker B can be detected better than chance
given only the transcript and gender of speaker A.
The results are better than chance at the 0.0005 sig-
nificance level.

4.3 Are some features more indicative of
gender than other?

Having shown that gender lexical differences are
prominent enough to classify each speaker accord-

ing to gender quite robustly, another question is
whether the high classification accuracies can be at-
tributed to a small number of features or are rather
the cumulative effect of a high number of them. In
Table 5 we apply the two feature selection criteria
that were described in 3.

Table 5: Effect of feature selection criteria on gen-
der classification using SVM as the learning method.
Horizontal axis refers to the fraction of the original
vocabulary size (∼20K for unigrams,∼300K for bi-
grams) that was used.

1.0 0.7 0.4 0.1 0.03

KL 1-gram 88.6 88.8 87.8 86.3 85.6
2-gram 92.5 92.6 92.2 91.9 90.3

IG 1-gram 88.6 88.5 88.9 87.6 87.0
2-gram 92.5 92.4 92.6 91.8 90.8

The results of Table 5 show that lexical differ-
ences between genders are not isolated in a small set
of words. The best results are achieved with 40%
(IG) and 70% (KL) of the features, using fewer fea-
tures steadily degrades the performance. Using the
5000 least discriminative unigrams and Naive Bayes
as the classification method resulted in 58.4% clas-
sification accuracy which is not statistically better
than chance (this is the test set of Tables 1 and 2 not
of Table 4) . Using the 15000 least useful unigrams
resulted in a classification accuracy of 66.4%, which
shows that the number of irrelevant features is rather
small, about 5K features.

It is also instructive to see which features are most
discriminative for each gender. The features that
when present are most indicative of each gender
(positive features) are shown in Table 6. They are
sorted using the KL distance and dropping the sum-
mation over both genders in equation (2). Looking
at the top 2000 features for each number we ob-
served that a number of swear words appear as
most discriminative for males and family-relation
terms are often associated with females. For ex-
ample the following words are in the top 2000 (out
of 20513) most useful features for malesshit, bull-
shit, shitty, fuck, fucking, fucked, bitching, bastards,
ass, asshole, sucks, sucked, suck, sucker, damn, god-
damn, damned. The following words are in the
top 2000 features for femaleschildren, grandchild,
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Table 6: The 10 most discriminative features for
each gender according to KL distance. Words higher
in the list are more discriminative.

Male Female

dude husband
shit husband’s
fucking refunding
wife goodness
wife’s boyfriend
matt coupons
steve crafts
bass linda
ben gosh
fuck cute

child, grandchildren, childhood, childbirth, kids,
grandkids, son, grandson, daughter, granddaugh-
ter, boyfriend, marriage, mother, grandmother. It
is also interesting to note that a number of non-
lexical tokens are strongly associated with a certain
gender. For example,[laughter] and acknowledg-
ments/backchannels such asuh-huh,uhuhwere in
the top 2000 features for females. On the other hand,
filled pauses such asuhwere strong male indicators.
Our analysis also reveals that a high number of use-
ful features are names. A possible explanation is
that people usually introduce themselves at the be-
ginning of the conversation. In the top 30 words per
gender, names represent over half of the words for
males and nearly a quarter for females. Nearly a
third were family-relations words for females, and
17

When examining cross-gender conversations, the
discriminative words were quite substantially differ-
ent. We can quantify the degree of change by mea-
suringKLSG(w)−KLCG(w) whereKLSG(w) is
the KL measure of wordw for same-gender con-
versations. The analysis reveals that swear terms
are highly associated with male-only conversations,
while family-relation words are highly associated
with female-only conversations.

From the traditional sociolinguistic perspective,
these methods offer a way of discovering rather than
testing words or phrases that have distinct usage
between genders. For example, in a recent paper
(Kiesling, in press) the worddude is analyzed as

a male-to-male indicator. In our work, the word
dude emerged as a male feature. As another ex-
ample, our observation that some acknowledgments
and backchannels (uh-huh) are more common for fe-
males than males while the reverse is true for filled
pauses asserts a popular theory in sociolinguistics
that males assume a more dominant role than fe-
males in conversations (Coates, 1997). Males tend
to hold the floor more than women (more filled
pauses) and females tend to be more responsive
(more acknowledgments/backchannels).

4.4 Are gender-discriminative features
content-bearing words?

Do the most gender-discriminative words contribute
to the topic of the conversation, or are they simple
fill-in words with no content? Since each conversa-
tion is labeled with one of 40 possible topics, we can
rank features with IG or KL using topics instead of
genders as categories. In fact, this is the standard
way of performing feature selection for text classi-
fication. We can then compare the performance of
classifying conversations to topics using the top-N
features according to the gender or topic ranking.
The results are shown in Table 7.

Table 7: Classification accuracies using topic- and
gender-discriminative words, sorted using the infor-
mation gain criterion. When randomly selecting
5000 features, 10 independent runs were performed
and numbers reported are mean and standard devia-
tion. Using the bottom 5000 topic words resulted in
chance performance (∼5.0)

Top 5K Bottom 5K Random 5K

Gender ranking 78.51 66.72 74.99±2.2
Topic ranking 87.72 - 74.99±2.2

From Table 7 we can observe that gender-
discriminative words are clearly not the most rele-
vant nor the most irrelevant features for topic clas-
sification. They are slightly more topic-relevant
features than topic-irrelevant but not by a signifi-
cant margin. The bottom 5000 features for gen-
der discrimination are more strongly topic-irrelevant
words.

These results show that gender linguistic differ-
ences are not merely isolated in a set of words that
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would function as markers of gender identity but are
rather closely intertwined with semantics. We at-
tempted to improve topic classification by training
gender-dependent topic models but we did not ob-
serve any gains.

4.5 Can gender lexical differences be exploited
to improve automatic speech recognition?

Are the observed gender linguistic differences valu-
able from an engineering perspective as well? In
other words, can a natural language processing task
benefit from modeling these differences? In this sub-
section, we train gender-dependent language models
and compare their perplexities with standard base-
lines. An advantage of using gender information
for automatic speech recognition is that it can be
robustly detected using acoustic features. In Ta-
bles 8 and 9 the perplexities of different gender-
dependent language models are shown. The SRILM
toolkit (Stolcke, 2002) was used for training the lan-
guage models using Kneser-Ney smoothing (Kneser
and Ney, 1987). The perplexities reported include
the end-of-turn as a separate token. 2300 con-
versation sides are used for training each one of
{FF,FM,MF,MM} models of Table 8, while 7670
conversation sides are used for training each one of
{F,M} models of Table 9. In both tables, the same
1678 sides are used for testing.

Table 8: Perplexity of gender-dependent bigram lan-
guage models. Four gender categories are used.
Each column has the perplexities for a given test set,
each row for a train set.

FF FM MF MM

FF 85.3 91.1 96.5 99.9
FM 85.7 90.0 94.5 97.5
MF 87.8 91.4 93.3 95.4
MM 89.9 93.1 94.1 95.2
ALL 82.1 86.3 89.8 91.7

In Tables 8 and 9 we observe that we get lower
perplexities in matched than mismatched conditions
in training and testing. This is another way to show
that different data do exhibit different properties.
However, the best results are obtained by pooling
all the data and training a single language model.
Therefore, despite the fact there are different modes,

Table 9: Perplexity of gender-dependent bigram lan-
guage models. Two gender categories are used.
Each column has the perplexities for a given test set,
each row for a train set.

F M

F 82.8 94.2
M 86.0 90.6
ALL 81.8 89.5

the benefit of more training data outweighs the ben-
efit of gender-dependent models. Interpolating ALL
with F and ALL with M resulted in insignificant im-
provements (81.6 for F and 89.3 for M).

5 Conclusions

We have presented evidence of linguistic differences
between genders using a large corpus of telephone
conversations. We have approached the issue from
a purely computational perspective and have shown
that differences are profound enough that we can
classify the transcript of a conversation side ac-
cording to the gender of the speaker with accuracy
close to 93%. Our computational tools have al-
lowed us to quantitatively show that the gender of
one speaker influences the linguistic patterns of the
other speaker. Specifically, classifying same-gender
conversations can be done with almost perfect accu-
racy, while evidence of some convergence of male
and female linguistic patterns in cross-gender con-
versations was observed. An analysis of the fea-
tures revealed that the most characteristic features
for males are swear words while for females are
family-relation words. Leveraging these differences
in simple gender-dependent language models is not
a win, but this does not imply that more sophisti-
cated language model training methods cannot help.
For example, instead of conditioning every word in
the vocabulary on gender we can choose to do so
only for the top-N, determined by KL or IG. The
probability estimates for the rest of the words will
be tied for both genders. Future work will examine
empirical differences in other features such as dialog
acts or turntaking.

441



References

C. Cieri, D. Miller, and K. Walker. 2004. The Fisher
corpus: a resource for the next generations of speech-
to-text. In4th International Conference on Language
Resources and Evaluation, LREC, pages 69–71.

J. Coates, editor. 1997.Language and Gender: A
Reader. Blackwell Publishers.

G. Doddington. 2001. Speaker recognition based on
idiolectal differences between speakers. InProceed-
ings of the 7th European Conference on Speech Com-
munication and Technology (Eurospeech 2001), pages
2251–2254.

P. Eckert and S. McConnell-Ginet, editors. 2003.Lan-
guage and Gender. Cambridge University Press.

G. Forman. 2003. An extensive empirical study of fea-
ture selection metrics for text classification.Machine
Learning Research, 3:1289–1305.

S. Kiesling. in press. Dude.American Speech.

R. Kneser and H. Ney. 1987. Improved backing-off for
m-gram language modeling. InProc. Intl. Conf. on
Acoustics, Speech and Signal Processing (ICASSP),
pages 181–184.

M. Koppel, S. Argamon, and A.R. Shimoni. 2002. Auto-
matically categorizing written texts by author gender.
Literary and Linguistic Computing, 17(4):401–412.

A. McCallum. 1996. Bow: A toolkit for statistical lan-
guage modeling, text retrieval, classification and clus-
tering. http://www.cs.cmu.edu/ mccallum/bow.

S. Singh. 2001. A pilot study on gender differences
in conversational speech on lexical richness measures.
Literary and Linguistic Computing, 16(3):251–264.

E. Stamatatos, N. Fakotakis, and G. Kokkinakis. 2000.
Automatic text categorization in terms of genre and
author.Computational Linguistics, 26:471–495.

A. Stolcke. 2002. An extensible language modeling
toolkit. In Proc. Intl. Conf. on Spoken Language Pro-
cessing (ICSLP), pages 901–904.

442



Proceedings of the 43rd Annual Meeting of the ACL, pages 443–450,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Position Specific Posterior Lattices for Indexing Speech

Ciprian Chelba and Alex Acero
Microsoft Research

Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
{chelba, alexac }@microsoft.com

Abstract

The paper presents the Position Specific
Posterior Lattice, a novel representation
of automatic speech recognition lattices
that naturally lends itself to efficient in-
dexing of position information and subse-
quent relevance ranking of spoken docu-
ments using proximity.

In experiments performed on a collec-
tion of lecture recordings — MIT iCam-
pus data — the spoken document rank-
ing accuracy was improved by 20% rela-
tive over the commonly used baseline of
indexing the 1-best output from an auto-
matic speech recognizer. The Mean Aver-
age Precision (MAP) increased from 0.53
when using 1-best output to 0.62 when us-
ing the new lattice representation. The ref-
erence used for evaluation is the output of
a standard retrieval engine working on the
manual transcription of the speech collec-
tion.

Albeit lossy, the PSPL lattice is also much
more compact than the ASR 3-gram lat-
tice from which it is computed — which
translates in reduced inverted index size
as well — at virtually no degradation in
word-error-rate performance. Since new
paths are introduced in the lattice, the OR-
ACLE accuracy increases over the origi-
nal ASR lattice.

1 Introduction

Ever increasing computing power and connectivity
bandwidth together with falling storage costs re-
sult in an overwhelming amount of data of vari-
ous types being produced, exchanged, and stored.
Consequently, search has emerged as a key applica-
tion as more and more data is being saved (Church,
2003). Text search in particular is the most active
area, with applications that range from web and in-
tranet search to searching for private information re-
siding on one’s hard-drive.

Speech search has not received much attention
due to the fact that large collections of untranscribed
spoken material have not been available, mostly
due to storage constraints. As storage is becoming
cheaper, the availability and usefulness of large col-
lections of spoken documents is limited strictly by
the lack of adequate technology to exploit them.

Manually transcribing speech is expensive and
sometimes outright impossible due to privacy con-
cerns. This leads us to exploring an automatic ap-
proach to searching and navigating spoken docu-
ment collections.

Our current work aims at extending the standard
keyword search paradigm from text documents to
spoken documents. In order to deal with limitations
of current automatic speech recognition (ASR) tech-
nology we propose an approach that uses recogni-
tion lattices — which are considerably more accu-
rate than the ASR 1-best output.

A novel contribution is the use of a representation
of ASR lattices which retains only position informa-
tion for each word. The Position Specific Posterior
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Lattice (PSPL) is a lossy but compact representa-
tion of a speech recognition lattice that lends itself
to the standard inverted indexing done in text search
— which retains the position as well as other con-
textual information for each hit.

Since our aim is to bridge the gap between text
and speech -grade search technology, we take as our
reference the output of a text retrieval engine that
runs on the manual transcription.

The rest of the paper is structured as follows: in
the next section we review previous work in the
area, followed by Section 3 which presents a brief
overview of state-of-the-art text search technology.
We then introduce the PSPL representation in Sec-
tion 4 and explain its use for indexing and searching
speech in the next section. Experiments evaluating
ASR accuracy on iCampus, highlighting empirical
aspects of PSPL lattices as well as search accuracy
results are reported in Section 6. We conclude by
outlining future work.

2 Previous Work

The main research effort aiming at spoken docu-
ment retrieval (SDR) was centered around the SDR-
TREC evaluations (Garofolo et al., 2000), although
there is a large body of work in this area prior to
the SDR-TREC evaluations, as well as more recent
work outside this community. Most notable are the
contributions of (Brown et al., 1996) and (James,
1995).

One problem encountered in work published prior
or outside the SDR-TREC community is that it
doesn’t always evaluate performance from a doc-
ument retrieval point of view — using a metric
like Mean Average Precision (MAP) or similar, see
trec_eval (NIST, www) — but rather uses word-
spotting measures, which are more technology-
rather than user- centric.We believe that ultimately
it is the document retrieval performance that matters
and the word-spotting accuracy is just an indicator
for how a SDR system might be improved.

The TREC-SDR 8/9 evaluations — (Garofolo et
al., 2000) Section 6 — focused on using Broadcast
News speech from various sources: CNN, ABC,
PRI, Voice of America. About 550 hrs of speech
were segmented manually into 21,574 stories each
comprising about 250 words on the average. The

approximate manual transcriptions — closed cap-
tioning for video — used for SDR system compar-
ison with text-only retrieval performance had fairly
high WER: 14.5% video and 7.5% radio broadcasts.
ASR systems tuned to the Broadcast News domain
were evaluated on detailed manual transcriptions
and were able to achieve 15-20% WER, not far from
the accuracy of the approximate manual transcrip-
tions. In order to evaluate the accuracy of retrieval
systems, search queries —“topics” — along with bi-
nary relevance judgments were compiled by human
assessors.

SDR systems indexed the ASR 1-best output and
their retrieval performance — measured in terms of
MAP — was found to be flat with respect to ASR
WER variations in the range of 15%-30%. Simply
having a common task and an evaluation-driven col-
laborative research effort represents a huge gain for
the community. There are shortcomings however to
the SDR-TREC framework.

It is well known that ASR systems are very brit-
tle to mismatched training/test conditions and it is
unrealistic to expect error rates in the range 10-15%
when decoding speech mismatched with respect to
the training data. It is thus very important to con-
sider ASR operating points which have higher WER.

Also, the out-of-vocabulary (OOV) rate was very
low, below 1%. Since the “topics”/queries were
long and stated in plain English rather than using
the keyword search paradigm, the query-side OOV
(Q-OOV) was very low as well, an unrealistic situ-
ation in practice. (Woodland et al., 2000) evaluates
the effect of Q-OOV rate on retrieval performance
by reducing the ASR vocabulary size such that the
Q-OOV rate comes closer to 15%, a much more re-
alistic figure since search keywords are typically rare
words. They show severe degradation in MAP per-
formance — 50% relative, from 44 to 22.

The most common approach to dealing with OOV
query words is to represent both the query and the
spoken document using sub-word units — typically
phones or phone n-grams — and then match se-
quences of such units. In his thesis, (Ng, 2000)
shows the feasibility of sub-word SDR and advo-
cates for tighter integration between ASR and IR
technology. Similar conclusions are drawn by the
excellent work in (Siegler, 1999).

As pointed out in (Logan et al., 2002), word level
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indexing and querying is still more accurate, were
it not for the OOV problem. The authors argue in
favor of a combination of word and sub-word level
indexing. Another problem pointed out by the pa-
per is the abundance of word-spotting false-positives
in the sub-word retrieval case, somewhat masked by
the MAP measure.

Similar approaches are taken by (Seide and Yu,
2004). One interesting feature of this work is a two-
pass system whereby an approximate match is car-
ried out at the document level after which the costly
detailed phonetic match is carried out on only 15%
of the documents in the collection.

More recently, (Saraclar and Sproat, 2004) shows
improvement in word-spotting accuracy by using
lattices instead of 1-best. An inverted index from
symbols — word or phone — to links allows to
evaluate adjacency of query words but more gen-
eral proximity information is harder to obtain — see
Section 4. Although no formal comparison has been
carried out, we believe our approach should yield a
more compact index.

Before discussing our architectural design deci-
sions it is probably useful to give a brief presentation
of a state-of-the-art text document retrieval engine
that is using the keyword search paradigm.

3 Text Document Retrieval

Probably the most widespread text retrieval model is
the TF-IDF vector model (Baeza-Yates and Ribeiro-
Neto, 1999). For a given queryQ = q1 . . . qi . . . qQ

and documentDj one calculates a similarity mea-
sure by accumulating the TF-IDF scorewi,j for each
query termqi, possibly weighted by a document spe-
cific weight:

S(Dj ,Q) =
Q∑

i=1

wi,j

wi,j = fi,j · idfi

wherefi,j is the normalized frequency of wordqi in
documentDj and the inverse document frequency
for query termqi is idfi = log N

ni
whereN is the

total number of documents in the collection andni

is the number of documents containingqi.
The main criticism to the TF-IDF relevance score

is the fact that the query terms are assumed to be
independent.Proximity informationis not taken into

account at all, e.g. whether the words LANGUAGE
and MODELING occur next to each other or not in
a document is not used for relevance scoring.

Another issue is that query terms may be encoun-
tered in differentcontextsin a given document: ti-
tle, abstract, author name, font size, etc. For hy-
pertext document collections even more context in-
formation is available: anchor text, as well as other
mark-up tags designating various parts of a given
document being just a few examples. The TF-IDF
ranking scheme completely discards such informa-
tion although it is clearly important in practice.

3.1 Early Google Approach

Aside from the use of PageRank for relevance rank-
ing, (Brin and Page, 1998) also uses bothproxim-
ity andcontextinformation heavily when assigning
a relevance score to a given document — see Sec-
tion 4.5.1 of (Brin and Page, 1998) for details.

For each given query termqi one retrieves the list
of hits corresponding toqi in documentD. Hits
can be of various types depending on thecontextin
which the hit occurred: title, anchor text, etc. Each
type of hit has its owntype-weightand the type-
weights are indexed by type.

For a single word query, their ranking algorithm
takes the inner-product between the type-weight
vector and a vector consisting of count-weights (ta-
pered counts such that the effect of large counts is
discounted) and combines the resulting score with
PageRank in a final relevance score.

For multiple word queries, terms co-occurring in a
given document are considered as forming different
proximity-typesbased on their proximity, from adja-
cent to “not even close”. Each proximity type comes
with a proximity-weight and the relevance score in-
cludes the contribution of proximity information by
taking the inner product over all types, including the
proximity ones.

3.2 Inverted Index

Of essence to fast retrieval on static document col-
lections of medium to large size is the use of anin-
verted index. The inverted index stores a list of hits
for each word in a given vocabulary. The hits are
grouped by document. For each document, the list
of hits for a given query term must include position
— needed to evaluate counts of proximity types —
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as well as all the context information needed to cal-
culate the relevance score of a given document us-
ing the scheme outlined previously. For details, the
reader is referred to (Brin and Page, 1998), Sec-
tion 4.

4 Position Specific Posterior Lattices

As highlighted in the previous section, position in-
formation is crucial for being able to evaluate prox-
imity information when assigning a relevance score
to a given document.

In the spoken document case however, we are
faced with a dilemma. On one hand, using 1-best
ASR output as the transcription to be indexed is sub-
optimal due to the high WER, which is likely to lead
to low recall — query terms that were in fact spo-
ken are wrongly recognized and thus not retrieved.
On the other hand, ASR lattices do have much bet-
ter WER — in our case the 1-best WER was 55%
whereas the lattice WER was 30% — but the posi-
tion information is not readily available: it is easy to
evaluate whether two words are adjacent but ques-
tions about the distance in number of links between
the occurrences of two query words in the lattice are
very hard to answer.

The position information needed for recording a
given word hit is not readily available in ASR lat-
tices — for details on the format of typical ASR
lattices and the information stored in such lattices
the reader is referred to (Young et al., 2002). To
simplify the discussion let’s consider that a tradi-
tional text-document hit for given word consists of
just (document id, position) .

The occurrence of a given word in a lattice ob-
tained from a given spoken document is uncertain
and so is the position at which the word occurs in
the document.

The ASR lattices do contain the information
needed to evaluate proximity information, since on a
given path through the lattice we can easily assign a
position index to each link/word in the normal way.
Each path occurs with a given posterior probability,
easily computable from the lattice, so in principle
one could indexsoft-hitswhich specify

(document id, position,
posterior probability)

for each word in the lattice. Since it is likely that

s_1

s_i

s_q

n

P(l_1)

P(l_i)

P(l_q)

Figure 1: State Transitions

more than one path contains the same word in the
same position, one would need to sum over all pos-
sible paths in a lattice that contain a given word at a
given position.

A simple dynamic programming algorithm which
is a variation on the standard forward-backward al-
gorithm can be employed for performing this com-
putation. The computation for the backward pass
stays unchanged, whereas during the forward pass
one needs to split the forward probability arriving
at a given noden, αn, according to the lengthl —
measured in number of links along the partial path
that contain a word; null (ε) links are not counted
when calculating path length — of the partial paths
that start at the start node of the lattice and end at
noden:

αn[l] .=
∑

π:end(π)=n,length(π)=l

P (π)

The backward probabilityβn has the standard defi-
nition (Rabiner, 1989).

To formalize the calculation of the position-
specific forward-backward pass, the initialization,
and one elementary forward step in the forward pass
are carried out using Eq. (1), respectively — see Fig-
ure 1 for notation:

αn[l + 1] =
q∑

i=1

αsi [l + δ(li, ε)] · P (li)

αstart[l] =
{

1.0, l = 0
0.0, l 6= 0

(1)

The “probability”P (li) of a given linkli is stored
as a log-probability and commonly evaluated in
ASR using:

log P (li) = FLATw · [1/LMw · log PAM (li)+
log PLM (word(li))− 1/LMw · logPIP ] (2)
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where log PAM (li) is the acoustic model score,
log PLM (word(li)) is the language model score,
LMw > 0 is the language model weight,logPIP >
0 is the “insertion penalty” andFLATw is a flat-
tening weight. InN -gram lattices whereN ≥ 2,
all links ending at a given noden must contain the
same wordword(n), so the posterior probability of
a given wordw occurring at a given positionl can
be easily calculated using:

P (w, l|LAT ) =
∑

n s.t. αn[l]·βn>0
αn[l]·βn

βstart
· δ(w, word(n))

The Position Specific Posterior Lattice (PSPL) is a
representation of theP (w, l|LAT ) distribution: for
each position binl store the wordsw along with their
posterior probabilityP (w, l|LAT ).

5 Spoken Document Indexing and Search
Using PSPL

Spoken documents rarely contain only speech. Of-
ten they have a title, author and creation date. There
might also be a text abstract associated with the
speech, video or even slides in some standard for-
mat. The idea of savingcontext informationwhen
indexing HTML documents and web pages can thus
be readily used for indexing spoken documents, al-
though the context information is of a different na-
ture.

As for the actualspeech contentof a spoken doc-
ument, the previous section showed how ASR tech-
nology and PSPL lattices can be used to automati-
cally convert it to a format that allows the indexing
of soft hits— a soft indexstores posterior proba-
bility along with the position information for term
occurrences in a given document.

5.1 Speech Content Indexing Using PSPL

Speech content can be very long. In our case the
speech content of a typical spoken document was ap-
proximately 1 hr long; it is customary to segment a
given speech file in shorter segments.

A spoken document thus consists of an ordered
list of segments. For each segment we generate a
corresponding PSPL lattice. Each document and
each segment in a given collection are mapped to an
integer value using acollection descriptor filewhich
lists all documents and segments. Eachsoft hit in

our index will store the PSPL position and posterior
probability.

5.2 Speech Content Relevance Ranking Using
PSPL Representation

Consider a given queryQ = q1 . . . qi . . . qQ and
a spoken documentD represented as a PSPL. Our
ranking scheme follows the description in Sec-
tion 3.1.

The words in the documentD clearly belong to
the ASR vocabularyV whereas the words in the
query may be out-of-vocabulary (OOV). As argued
in Section 2, the query-OOV rate is an important
factor in evaluating the impact of having a finite
ASR vocabulary on the retrieval accuracy. We as-
sume that the words in the query are all contained
in V; OOV words are mapped toUNKand cannot be
matched in any documentD.

For all query terms, a1-gram score is calculated
by summing the PSPL posterior probability across
all segmentss and positionsk. This is equivalent
to calculating the expected count of a given query
term qi according to the PSPL probability distribu-
tion P (wk(s)|D) for each segments of document
D. The results are aggregated in a common value
S1−gram(D,Q):

S(D, qi) = log

[
1 +

∑
s

∑

k

P (wk(s) = qi|D)

]

S1−gram(D,Q) =
Q∑

i=1

S(D, qi) (3)

Similar to (Brin and Page, 1998), the logarithmic ta-
pering off is used for discounting the effect of large
counts in a given document.

Our current ranking scheme takes into account
proximity in the form of matchingN -grams present
in the query. Similar to the 1-gram case, we cal-
culate an expected tapered-count for each N-gram
qi . . . qi+N−1 in the query and then aggregate the re-
sults in a common valueSN−gram(D,Q) for each
orderN :

S(D, qi . . . qi+N−1) = (4)

log
[
1 +

∑
s

∑
k

∏N−1
l=0 P (wk+l(s) = qi+l|D)

]

SN−gram(D,Q) =
Q−N+1∑

i=1

S(D, qi . . . qi+N−1)
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The different proximity types, one for eachN -
gram order allowed by the query length, are com-
bined by taking the inner product with a vector of
weights.

S(D,Q) =
Q∑

N=1

wN · SN−gram(D,Q) (5)

Only documents containing all the terms in the
query are returned. In the current implementation
the weights increase linearly with the N-gram order.
Clearly, better weight assignments must exist, and
as the hit types are enriched beyond using justN -
grams, the weights will have to be determined using
machine learning techniques.

It is worth noting that the transcription for any
given segment can also be represented as a PSPL
with exactly one word per position bin. It is easy to
see that in this case the relevance scores calculated
according to Eq. (3-4) are the ones specified by 3.1.

6 Experiments

We have carried all our experiments on the iCampus
corpus prepared by MIT CSAIL. The main advan-
tages of the corpus are: realistic speech recording
conditions — all lectures are recorded using a lapel
microphone — and the availability of accurate man-
ual transcriptions — which enables the evaluation of
a SDR system against its text counterpart.

6.1 iCampus Corpus

The iCampus corpus (Glass et al., 2004) consists
of about 169 hours of lecture materials: 20 Intro-
duction to Computer Programming Lectures (21.7
hours), 35 Linear Algebra Lectures (27.7 hours), 35
Electro-magnetic Physics Lectures (29.1 hours), 79
Assorted MIT World seminars covering a wide vari-
ety of topics (89.9 hours). Each lecture comes with
a word-level manual transcription that segments the
text into semantic units that could be thought of as
sentences; word-level time-alignments between the
transcription and the speech are also provided. The
speech style is in between planned and spontaneous.
The speech is recorded at a sampling rate of 16kHz
(wide-band) using a lapel microphone.

The speech was segmented at the sentence level
based on the time alignments; each lecture is consid-
ered to be a spoken document consisting of a set of

one-sentence long segments determined this way —
see Section 5.1. The final collection consists of 169
documents, 66,102 segments and an average docu-
ment length of 391 segments.

We have then used a standard large vocabulary
ASR system for generating 3-gram ASR lattices and
PSPL lattices. The 3-gram language model used for
decoding is trained on a large amount of text data,
primarily newswire text. The vocabulary of the ASR
system consisted of 110kwds, selected based on fre-
quency in the training data. The acoustic model
is trained on a variety of wide-band speech and it
is a standard clustered tri-phone, 3-states-per-phone
model. Neither model has been tuned in any way to
the iCampus scenario.

On the first lectureL01 of the Introduction to
Computer Programming Lectures the WER of the
ASR system was 44.7%; the OOV rate was 3.3%.
For the entire set of lectures in the Introduction
to Computer Programming Lectures, the WER was
54.8%, with a maximum value of 74% and a mini-
mum value of 44%.

6.2 PSPL lattices

We have then proceeded to generate 3-gram lattices
and PSPL lattices using the above ASR system. Ta-
ble 1 compares the accuracy/size of the 3-gram lat-
tices and the resulting PSPL lattices for the first lec-
ture L01 . As it can be seen the PSPL represen-

Lattice Type 3-gram PSPL
Size on disk 11.3MB 3.2MB
Link density 16.3 14.6
Node density 7.4 1.1
1-best WER 44.7% 45%
ORACLE WER 26.4% 21.7%

Table 1: Comparison between 3-gram and PSPL lat-
tices for lecture L01 (iCampus corpus): node and
link density, 1-best and ORACLE WER, size on disk

tation is much more compact than the original 3-
gram lattices at a very small loss in accuracy: the
1-best path through the PSPL lattice is only 0.3%
absolute worse than the one through the original 3-
gram lattice. As expected, the main reduction comes
from the drastically smaller node density — 7 times
smaller, measured in nodes per word in the refer-
ence transcription. Since the PSPL representation
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introduces new paths compared to the original 3-
gram lattice, the ORACLE WER path — least error-
ful path in the lattice — is also about 20% relative
better than in the original 3-gram lattice — 5% ab-
solute. Also to be noted is the much better WER in
both PSPL/3-gram lattices versus 1-best.

6.3 Spoken Document Retrieval

Our aim is to narrow the gap between speech and
text document retrieval. We have thus taken as our
reference the output of a standard retrieval engine
working according to one of the TF-IDF flavors, see
Section 3. The engine indexes the manual transcrip-
tion using an unlimited vocabulary. All retrieval re-
sults presented in this section have used the stan-
dardtrec_eval package used by the TREC eval-
uations.

The PSPL lattices for each segment in the spo-
ken document collection were indexed as explained
in 5.1. In addition, we generated the PSPL repre-
sentation of the manual transcript and of the 1-best
ASR output and indexed those as well. This allows
us to compare our retrieval results against the results
obtained using the reference engine when working
on the same text document collection.

6.3.1 Query Collection and Retrieval Setup

The missing ingredient for performing retrieval
experiments are the queries. We have asked a few
colleagues to issue queries against a demo shell us-
ing the index built from the manual transcription.
The only information1 provided to them was the
same as the summary description in Section 6.1.

We have collected 116 queries in this manner. The
query out-of-vocabulary rate (Q-OOV) was 5.2%
and the average query length was 1.97 words. Since
our approach so far does not index sub-word units,
we cannot deal with OOV query words. We have
thus removed the queries which contained OOV
words — resulting in a set of 96 queries — which
clearly biases the evaluation. On the other hand, the
results on both the 1-best and the lattice indexes are
equally favored by this.

1Arguably, more motivated users that are also more famil-
iar with the document collection would provide a better query
collection framework

6.3.2 Retrieval Experiments

We have carried out retrieval experiments in the
above setup. Indexes have been built from:

• trans : manual transcription filtered through
ASR vocabulary

• 1-best : ASR 1-best output
• lat : PSPL lattices.

No tuning of retrieval weights, see Eq. (5), or link
scoring weights, see Eq. (2) has been performed. Ta-
ble 2 presents the results. As a sanity check, the re-
trieval results on transcription —trans — match
almost perfectly the reference. The small difference
comes from stemming rules that the baseline engine
is using for query enhancement which are not repli-
cated in our retrieval engine. The results on lat-
tices (lat ) improve significantly on (1-best ) —
20% relative improvement in mean average preci-
sion (MAP).

trans 1-best lat

# docs retrieved 1411 3206 4971
# relevant docs 1416 1416 1416
# rel retrieved 1411 1088 1301

MAP 0.99 0.53 0.62
R-precision 0.99 0.53 0.58

Table 2: Retrieval performance on indexes built
from transcript, ASR 1-best and PSPL lattices, re-
spectively

6.3.3 Why Would This Work?

A legitimate question at this point is:why would
anyone expect this to work when the 1-best ASR ac-
curacy is so poor?

In favor of our approach, the ASR lattice WER is
much lower than the 1-best WER, and PSPL have
even lower WER than the ASR lattices. As re-
ported in Table 1, the PSPL WER forL01 was
22% whereas the 1-best WER was 45%. Consider
matching a 2-gram in the PSPL —the average query
length is indeed 2 wds so this is a representative sit-
uation. A simple calculation reveals that it is twice
— (1 − 0.22)2/(1 − 0.45)2 = 2 — more likely to
find a query match in the PSPL than in the 1-best —
if the query 2-gram was indeed spoken at that posi-
tion. According to this heuristic argument one could
expect a dramatic increase in Recall. Another aspect
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is that people entertypical N-gramsas queries. The
contents of adjacent PSPL bins are fairly random in
nature so if a typical 2-gram is found in the PSPL,
chances are it was actually spoken. This translates
in little degradation in Precision.

7 Conclusions and Future work

We have developed a new representation for ASR
lattices — the Position Specific Posterior Lattice
(PSPL) — that lends itself naturally to indexing
speech content and integrating state-of-the-art IR
techniques that make use ofproximity and context
information. In addition, the PSPL representation is
also much more compact at no loss in WER — both
1-best and ORACLE.

The retrieval results obtained by indexing the
PSPL and performing adequate relevance ranking
are 20% better than when using the ASR 1-best out-
put, although still far from the performance achieved
on text data.

The experiments presented in this paper are truly
a first step. We plan to gather a much larger num-
ber of queries. The binary relevance judgments — a
given document is deemed either relevant or irrele-
vant to a given query in the reference “ranking” —
assumed by the standardtrec_eval tool are also
a serious shortcoming; a distance measure between
rankingsof documents needs to be used. Finally, us-
ing a baseline engine that in fact makes use of prox-
imity and context information is a priority if such
information is to be used in our algorithms.
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Abstract

Sentence boundary detection in speech is
important for enriching speech recogni-
tion output, making it easier for humans to
read and downstream modules to process.
In previous work, we have developed hid-
den Markov model (HMM) and maximum
entropy (Maxent) classifiers that integrate
textual and prosodic knowledge sources
for detecting sentence boundaries. In this
paper, we evaluate the use of a condi-
tional random field (CRF) for this task
and relate results with this model to our
prior work. We evaluate across two cor-
pora (conversational telephone speech and
broadcast news speech) on both human
transcriptions and speech recognition out-
put. In general, our CRF model yields a
lower error rate than the HMM and Max-
ent models on the NIST sentence bound-
ary detection task in speech, although it
is interesting to note that the best results
are achieved by three-way voting among
the classifiers. This probably occurs be-
cause each model has different strengths
and weaknesses for modeling the knowl-
edge sources.

1 Introduction

Standard speech recognizers output an unstructured
stream of words, in which the important structural
features such as sentence boundaries are missing.

Sentence segmentation information is crucial and as-
sumed in most of the further processing steps that
one would want to apply to such output: tagging
and parsing, information extraction, summarization,
among others.

1.1 Sentence Segmentation Using HMM

Most prior work on sentence segmentation (Shriberg
et al., 2000; Gotoh and Renals, 2000; Christensen
et al., 2001; Kim and Woodland, 2001; NIST-
RT03F, 2003) have used an HMM approach, in
which the word/tag sequences are modeled by N-
gram language models (LMs) (Stolcke and Shriberg,
1996). Additional features (mostly related to speech
prosody) are modeled as observation likelihoods at-
tached to the N-gram states of the HMM (Shriberg
et al., 2000). Figure 1 shows the graphical model
representation of the variables involved in the HMM
for this task. Note that the words appear in both
the states1 and the observations, such that the
word stream constrains the possible hidden states
to matching words; the ambiguity in the task stems
entirely from the choice of events. This architec-
ture differs from the one typically used for sequence
tagging (e.g., part-of-speech tagging), in which the
“hidden” states represent only the events or tags.
Empirical investigations have shown that omitting
words in the states significantly degrades system
performance for sentence boundary detection (Liu,
2004). The observation probabilities in the HMM,
implemented using a decision tree classifier, capture
the probabilities of generating the prosodic features

1In this sense, the states are only partially “hidden”.
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P (FijEi;Wi).2 An N-gram LM is used to calculate
the transition probabilities:P (WiEijW1E1 : : :Wi�1Ei�1) =P (WijW1E1 : : :Wi�1Ei�1)�P (EijW1E1 : : :Wi�1Ei�1Ei)
In the HMM, the forward-backward algorithm is
used to determine the event with the highest poste-
rior probability for each interword boundary:Êi = argmaxEi P (EijW;F ) (1)

The HMM is a generative modeling approach since
it describes a stochastic process with hidden vari-
ables (sentence boundary) that produces the observ-
able data. This HMM approach has two main draw-
backs. First, standard training methods maximize
the joint probability of observed and hidden events,
as opposed to the posterior probability of the correct
hidden variable assignment given the observations,
which would be a criterion more closely related to
classification performance. Second, the N-gram LM
underlying the HMM transition model makes it dif-
ficult to use features that are highly correlated (such
as words and POS labels) without greatly increas-
ing the number of model parameters, which in turn
would make robust estimation difficult. More details
about using textual information in the HMM system
are provided in Section 3.

1.2 Sentence Segmentation Using Maxent

A maximum entropy (Maxent) posterior classifica-
tion method has been evaluated in an attempt to
overcome some of the shortcomings of the HMM
approach (Liu et al., 2004; Huang and Zweig, 2002).
For a boundary positioni, the Maxent model takes
the exponential form:P (EijTi; Fi) = 1Z�(Ti; Fi)ePk �kgk(Ei;Ti;Fi) (2)

whereZ�(Ti; Fi) is a normalization term andTi
represents textual information. The indicator func-
tions gk(Ei; Ti; Fi) correspond to features defined
over events, words, and prosody. The parameters in

2In the prosody model implementation, we ignore the word
identity in the conditions, only using the timing or word align-
ment information.
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Figure 1: A graphical model of HMM for the
sentence boundary detection problem. Only one
word+event pair is depicted in each state, but in
a model based on N-grams, the previousN � 1
tokens would condition the transition to the next
state.O are observations consisting of wordsW and
prosodic featuresF , andE are sentence boundary
events.

Maxent are chosen to maximize the conditional like-
lihood

Qi P (EijTi; Fi) over the training data, bet-
ter matching the classification accuracy metric. The
Maxent framework provides a more principled way
to combine the largely correlated textual features, as
confirmed by the results of (Liu et al., 2004); how-
ever, it does not model the state sequence.

A simple combination of the results from the
Maxent and HMM was found to improve upon the
performance of either model alone (Liu et al., 2004)
because of the complementary strengths and weak-
nesses of the two models. An HMM is a generative
model, yet it is able to model the sequence via the
forward-backward algorithm. Maxent is a discrimi-
native model; however, it attempts to make decisions
locally, without using sequential information.

A conditional random field (CRF) model (Laf-
ferty et al., 2001) combines the benefits of the HMM
and Maxent approaches. Hence, in this paper we
will evaluate the performance of the CRF model and
relate the results to those using the HMM and Max-
ent approaches on the sentence boundary detection
task. The rest of the paper is organized as follows.
Section 2 describes the CRF model and discusses
how it differs from the HMM and Maxent models.
Section 3 describes the data and features used in the
models to be compared. Section 4 summarizes the
experimental results for the sentence boundary de-
tection task. Conclusions and future work appear in
Section 5.
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2 CRF Model Description

A CRF is a random field that is globally conditioned
on an observation sequenceO. CRFs have been suc-
cessfully used for a variety of text processing tasks
(Lafferty et al., 2001; Sha and Pereira, 2003; McCal-
lum and Li, 2003), but they have not been widely ap-
plied to a speech-related task with both acoustic and
textual knowledge sources. The top graph in Figure
2 is a general CRF model. The states of the model
correspond to event labelsE. The observationsO
are composed of the textual features, as well as the
prosodic features. The most likely event sequenceÊ
for the given input sequence (observations)O isÊ = argmaxE ePk �kGk(E;O)Z�(O) (3)

where the functionsG are potential functions over
the events and the observations, andZ� is the nor-
malization term:Z�(O) =XE ePk �kGk(E;O) (4)

Even though a CRF itself has no restriction on
the potential functionsGk(E;O), to simplify the
model (considering computational cost and the lim-
ited training set size), we use a first-order CRF in
this investigation, as at the bottom of Figure 2. In
this model, an observationOi (consisting of textual
featuresTi and prosodic featuresFi) is associated
with a stateEi.

The model is trained to maximize the conditional
log-likelihood of a given training set. Similar to the
Maxent model, the conditional likelihood is closely
related to the individual event posteriors used for
classification, enabling this type of model to explic-
itly optimize discrimination of correct from incor-
rect labels. The most likely sequence is found using
the Viterbi algorithm.3

A CRF differs from an HMM with respect to its
training objective function (joint versus conditional
likelihood) and its handling of dependent word fea-
tures. Traditional HMM training does not maxi-
mize the posterior probabilities of the correct la-
bels; whereas, the CRF directly estimates posterior

3The forward-backward algorithm would most likely be bet-
ter here, but it is not implemented in the software we used (Mc-
Callum, 2002).
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Figure 2: Graphical representations of a general
CRF and the first-order CRF used for the sentence
boundary detection problem.E represent the state
tags (i.e., sentence boundary or not).O are observa-
tions consisting of wordsW or derived textual fea-
turesT and prosodic featuresF .

boundary label probabilitiesP (EjO). The under-
lying N-gram sequence model of an HMM does
not cope well with multiple representations (fea-
tures) of the word sequence (e.g., words, POS), es-
pecially when the training set is small; however, the
CRF model supports simultaneous correlated fea-
tures, and therefore gives greater freedom for incor-
porating a variety of knowledge sources. A CRF
differs from the Maxent method with respect to its
ability to model sequence information. The primary
advantage of the CRF over the Maxent approach is
that the model is optimized globally over the entire
sequence; whereas, the Maxent model makes a local
decision, as shown in Equation (2), without utilizing
any state dependency information.

We use the Mallet package (McCallum, 2002) to
implement the CRF model. To avoid overfitting, we
employ a Gaussian prior with a zero mean on the
parameters (Chen and Rosenfeld, 1999), similar to
what is used for training Maxent models (Liu et al.,
2004).

3 Experimental Setup

3.1 Data and Task Description

The sentence-like units in speech are different from
those in written text. In conversational speech,
these units can be well-formed sentences, phrases,
or even a single word. These units are called SUs
in the DARPA EARS program. SU boundaries, as
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well as other structural metadata events, were an-
notated by LDC according to an annotation guide-
line (Strassel, 2003). Both the transcription and the
recorded speech were used by the annotators when
labeling the boundaries.

The SU detection task is conducted on two cor-
pora: Broadcast News (BN) and Conversational
Telephone Speech (CTS). BN and CTS differ in
genre and speaking style. The average length of SUs
is longer in BN than in CTS, that is, 12.35 words
(standard deviation 8.42) in BN compared to 7.37
words (standard deviation 8.72) in CTS. This dif-
ference is reflected in the frequency of SU bound-
aries: about 14% of interword boundaries are SUs in
CTS compared to roughly 8% in BN. Training and
test data for the SU detection task are those used in
the NIST Rich Transcription 2003 Fall evaluation.
We use both the development set and the evalua-
tion set as the test set in this paper in order to ob-
tain more meaningful results. For CTS, there are
about 40 hours of conversational data (around 480K
words) from the Switchboard corpus for training
and 6 hours (72 conversations) for testing. The BN
data has about 20 hours of Broadcast News shows
(about 178K words) in the training set and 3 hours
(6 shows) in the test set. Note that the SU-annotated
training data is only a subset of the data used for
the speech recognition task because more effort is
required to annotate the boundaries.

For testing, the system determines the locations
of sentence boundaries given the word sequenceW
and the speech. The SU detection task is evaluated
on both the reference human transcriptions (REF)
and speech recognition outputs (STT). Evaluation
across transcription types allows us to obtain the per-
formance for the best-case scenario when the tran-
scriptions are correct; thus factoring out the con-
founding effect of speech recognition errors on the
SU detection task. We use the speech recognition
output obtained from the SRI recognizer (Stolcke et
al., 2003).

System performance is evaluated using the offi-
cial NIST evaluation tools.4 System output is scored
by first finding a minimum edit distance alignment
between the hypothesized word string and the refer-

4See http://www.nist.gov/speech/tests/rt/rt2003/fall/for
more details about scoring.

ence transcriptions, and then comparing the aligned
event labels. The SU error rate is defined as the total
number of deleted or inserted SU boundary events,
divided by the number of true SU boundaries. In
addition to thisNIST SU error metric, we use the
total number of interword boundaries as the denomi-
nator, and thus obtain results for theper-boundary-
based metric.

3.2 Feature Extraction and Modeling

To obtain a good-quality estimation of the condi-
tional probability of the event tag given the obser-
vationsP (EijOi), the observations should be based
on features that are discriminative of the two events
(SU versus not). As in (Liu et al., 2004), we utilize
both textual and prosodic information.

We extract prosodic features that capture duration,
pitch, and energy patterns associated with the word
boundaries (Shriberg et al., 2000). For all the model-
ing methods, we adopt a modular approach to model
the prosodic features, that is, a decision tree classi-
fier is used to model them. During testing, the de-
cision tree prosody model estimates posterior prob-
abilities of the events given the associated prosodic
features for a word boundary. The posterior prob-
ability estimates are then used in various modeling
approaches in different ways as described later.

Since words and sentence boundaries are mu-
tually constraining, the word identities themselves
(from automatic recognition or human transcrip-
tions) constitute a primary knowledge source for
sentence segmentation. We also make use of vari-
ous automatic taggers that map the word sequence to
other representations. Tagged versions of the word
stream are provided to support various generaliza-
tions of the words and to smooth out possibly un-
dertrained word-based probability estimates. These
tags include part-of-speech tags, syntactic chunk
tags, and automatically induced word classes. In ad-
dition, we use extra text corpora, which were not an-
notated according to the guideline used for the train-
ing and test data (Strassel, 2003). For BN, we use
the training corpus for the LM for speech recogni-
tion. For CTS, we use the Penn Treebank Switch-
board data. There is punctuation information in
both, which we use to approximate SUs as defined
in the annotation guideline (Strassel, 2003).

As explained in Section 1, the prosody model and
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Table 1: Knowledge sources and their representations in different modeling approaches: HMM, Maxent,
and CRF.

HMM Maxent CRF
generative model conditional approach

Sequence information yes no yes
LDC data set (words or tags) LM N-grams as indicator functions

Probability from prosody model real-valued cumulatively binned
Additional text corpus N-gram LM binned posteriors
Speaker turn change in prosodic features a separate feature,

in addition to being in the prosodic feature set
Compound feature no POS tags and decisions from prosody model

the N-gram LM can be integrated in an HMM. When
various textual information is used, jointly modeling
words and tags may be an effective way to model the
richer feature set; however, a joint model requires
more parameters. Since the training set for the SU
detection task in the EARS program is quite limited,
we use a loosely coupled approach:� Linearly combine three LMs: the word-based

LM from the LDC training data, the automatic-
class-based LMs, and the word-based LM
trained from the additional corpus.� These interpolated LMs are then combined
with the prosody model via the HMM. The
posterior probabilities of events at each bound-
ary are obtained from this step, denoted asPHMM (EijW;C;F ).� Apply the POS-based LM alone to the POS
sequence (obtained by running the POS tag-
ger on the word sequenceW ) and generate the
posterior probabilities for each word boundaryPposLM(EijPOS), which are then combined
from the posteriors from the previous step,
i.e.,Pfinal(EijT; F ) = PHMM (EijW;C;F )+PposLM(EijP ).

The features used for the CRF are the same as
those used for the Maxent model devised for the SU
detection task (Liu et al., 2004), briefly listed below.� N-grams of words or various tags (POS tags,

automatically induced classes). DifferentNs
and different position information are used (N
varies from one through four).

� The cumulative binned posterior probabilities
from the decision tree prosody model.� The N-gram LM trained from the extra cor-
pus is used to estimate posterior event proba-
bilities for the LDC-annotated training and test
sets, and these posteriors are then thresholded
to yield binary features.� Other features: speaker or turn change, and
compound features of POS tags and decisions
from the prosody model.

Table 1 summarizes the features and their repre-
sentations used in the three modeling approaches.
The same knowledge sources are used in these ap-
proaches, but with different representations. The
goal of this paper is to evaluate the ability of these
three modeling approaches to combine prosodic and
textual knowledge sources, not in a rigidly parallel
fashion, but by exploiting the inherent capabilities
of each approach. We attempt to compare the mod-
els in as parallel a fashion as possible; however, it
should be noted that the two discriminative methods
better model the textual sources and the HMM bet-
ter models prosody given its representation in this
study.

4 Experimental Results and Discussion

SU detection results using the CRF, HMM, and
Maxent approaches individually, on the reference
transcriptions or speech recognition output, are
shown in Tables 2 and 3 for CTS and BN data, re-
spectively. We present results when different knowl-
edge sources are used: word N-gram only, word N-
gram and prosodic information, and using all the
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Table 2: Conversational telephone speech SU detection results reported using the NIST SU error rate (%)
and the boundary-based error rate (% in parentheses) using the HMM, Maxent, and CRF individually and in
combination. Note that the ‘all features’ condition uses all the knowledge sources described in Section 3.2.
‘Vote’ is the result of the majority vote over the three modeling approaches, each of which uses all the
features. The baseline error rate when assuming there is no SU boundary at each word boundary is 100%
for the NIST SU error rate and 15.7% for the boundary-based metric.

Conversational Telephone Speech

HMM Maxent CRF
word N-gram 42.02 (6.56) 43.70 (6.82) 37.71 (5.88)

REF word N-gram + prosody 33.72 (5.26) 35.09 (5.47) 30.88 (4.82)
all features 31.51 (4.92) 30.66 (4.78) 29.47 (4.60)

Vote: 29.30 (4.57)
word N-gram 53.25 (8.31) 53.92 (8.41) 50.20 (7.83)

STT word N-gram + prosody 44.93 (7.01) 45.50 (7.10) 43.12 (6.73)
all features 43.05 (6.72) 43.02 (6.71) 42.00 (6.55)

Vote: 41.88 (6.53)

features described in Section 3.2. The word N-
grams are from the LDC training data and the extra
text corpora. ‘All the features’ means adding textual
information based on tags, and the ‘other features’ in
the Maxent and CRF models as well. The detection
error rate is reported using the NIST SU error rate,
as well as the per-boundary-based classification er-
ror rate (in parentheses in the table) in order to factor
out the effect of the different SU priors. Also shown
in the tables are the majority vote results over the
three modeling approaches when all the features are
used.

4.1 CTS Results

For CTS, we find from Table 2 that the CRF is supe-
rior to both the HMM and the Maxent model across
all conditions (the differences are significant atp <0:05). When using only the word N-gram informa-
tion, the gain of the CRF is the greatest, with the dif-
ferences among the models diminishing as more fea-
tures are added. This may be due to the impact of the
sparse data problem on the CRF or simply due to the
fact that differences among modeling approaches are
less when features become stronger, that is, the good
features compensate for the weaknesses in models.
Notice that with fewer knowledge sources (e.g., us-
ing only word N-gram and prosodic information),
the CRF is able to achieve performance similar to or
even better than other methods using all the knowl-

edges sources. This may be useful when feature ex-
traction is computationally expensive.

We observe from Table 2 that there is a large
increase in error rate when evaluating on speech
recognition output. This happens in part because
word information is inaccurate in the recognition
output, thus impacting the effectiveness of the LMs
and lexical features. The prosody model is also af-
fected, since the alignment of incorrect words to the
speech is imperfect, thereby degrading prosodic fea-
ture extraction. However, the prosody model is more
robust to recognition errors than textual knowledge,
because of its lesser dependence on word identity.
The results show that the CRF suffers most from the
recognition errors. By focusing on the results when
only word N-gram information is used, we can see
the effect of word errors on the models. The SU
detection error rate increases more in the STT con-
dition for the CRF model than for the other models,
suggesting that the discriminative CRF model suf-
fers more from the mismatch between the training
(using the reference transcription) and the test con-
dition (features obtained from the errorful words).

We also notice from the CTS results that when
only word N-gram information is used (with or
without combining with prosodic information), the
HMM is superior to the Maxent; only when various
additional textual features are included in the fea-
ture set does Maxent show its strength compared to
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Table 3: Broadcast news SU detection results reported usingthe NIST SU error rate (%) and the boundary-
based error rate (% in parentheses) using the HMM, Maxent, and CRF individually and in combination. The
baseline error rate is 100% for the NIST SU error rate and 7.2%for the boundary-based metric.

Broadcast News

HMM Maxent CRF
word N-gram 80.44 (5.83) 81.30 (5.89) 74.99 (5.43)

REF word N-gram + prosody 59.81 (4.33) 59.69 (4.33) 54.92 (3.98)
all features 48.72 (3.53) 48.61 (3.52) 47.92 (3.47)

Vote: 46.28 (3.35)
word N-gram 84.71 (6.14) 86.13 (6.24) 80.50 (5.83)

STT word N-gram + prosody 64.58 (4.68) 63.16 (4.58) 59.52 (4.31)
all features 55.37 (4.01) 56.51 (4.10) 55.37 (4.01)

Vote: 54.29 (3.93)

the HMM, highlighting the benefit of Maxent’s han-
dling of the textual features.

The combined result (using majority vote) of the
three approaches in Table 2 is superior to any model
alone (the improvement is not significant though).
Previously, it was found that the Maxent and HMM
posteriors combine well because the two approaches
have different error patterns (Liu et al., 2004). For
example, Maxent yields fewer insertion errors than
HMM because of its reliance on different knowledge
sources. The toolkit we use for the implementation
of the CRF does not generate a posterior probabil-
ity for a sequence; therefore, we do not combine
the system output via posterior probability interpola-
tion, which is expected to yield better performance.

4.2 BN Results

Table 3 shows the SU detection results for BN. Sim-
ilar to the patterns found for the CTS data, the CRF
consistently outperforms the HMM and Maxent, ex-
cept on the STT condition when all the features are
used. The CRF yields relatively less gain over the
other approaches on BN than on CTS. One possible
reason for this difference is that there is more train-
ing data for the CTS task, and both the CRF and
Maxent approaches require a relatively larger train-
ing set than the HMM. Overall the degradation on
the STT condition for BN is smaller than on CTS.
This can be easily explained by the difference in
word error rates, 22.9% on CTS and 12.1% on BN.
Finally, the vote among the three approaches outper-
forms any model on both the REF and STT condi-

tions, and the gain from voting is larger for BN than
CTS.

Comparing Table 2 and Table 3, we find that the
NIST SU error rate on BN is generally higher than
on CTS. This is partly because the NIST error rate
is measured as the percentage of errors per refer-
ence SU, and the number of SUs in CTS is much
larger than for BN, giving a large denominator and
a relatively lower error rate for the same number of
boundary detection errors. Another reason is that the
training set is smaller for BN than for CTS. Finally,
the two genres differ significantly: CTS has the ad-
vantage of the frequent backchannels and first per-
son pronouns that provide good cues for SU detec-
tion. When the boundary-based classification metric
is used (results in parentheses), the SU error rate is
lower on BN than on CTS; however, it should also
be noted that the baseline error rate (i.e., the priors
of the SUs) is lower on BN than CTS.

5 Conclusion and Future Work

Finding sentence boundaries in speech transcrip-
tions is important for improving readability and aid-
ing downstream language processing modules. In
this paper, prosodic and textual knowledge sources
are integrated for detecting sentence boundaries in
speech. We have shown that a discriminatively
trained CRF model is a competitive approach for
the sentence boundary detection task. The CRF
combines the advantages of being discriminatively
trained and able to model the entire sequence, and
so it outperforms the HMM and Maxent approaches
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consistently across various testing conditions. The
CRF takes longer to train than the HMM and Max-
ent models, especially when the number of features
becomes large; the HMM requires the least training
time of all approaches. We also find that as more fea-
tures are used, the differences among the modeling
approaches decrease. We have explored different ap-
proaches to modeling various knowledge sources in
an attempt to achieve good performance for sentence
boundary detection. Note that we have not fully op-
timized each modeling approach. For example, for
the HMM, using discriminative training methods is
likely to improve system performance, but possibly
at a cost of reducing the accuracy of the combined
system.

In future work, we will examine the effect of
Viterbi decoding versus forward-backward decoding
for the CRF approach, since the latter better matches
the classification accuracy metric. To improve SU
detection results on the STT condition, we plan to
investigate approaches that model recognition un-
certainty in order to mitigate the effect of word er-
rors. Another future direction is to investigate how
to effectively incorporate prosodic features more di-
rectly in the Maxent or CRF framework, rather than
using a separate prosody model and then binning the
resulting posterior probabilities.

Important ongoing work includes investigating
the impact of SU detection on downstream language
processing modules, such as parsing. For these ap-
plications, generating probabilistic SU decisions is
crucial since that information can be more effec-
tively used by subsequent modules.
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Abstract

We present a framework for word align-
ment based on log-linear models. All
knowledge sources are treated as feature
functions, which depend on the source
langauge sentence, the target language
sentence and possible additional vari-
ables. Log-linear models allow statis-
tical alignment models to be easily ex-
tended by incorporating syntactic infor-
mation. In this paper, we use IBM Model
3 alignment probabilities, POS correspon-
dence, and bilingual dictionary cover-
age as features. Our experiments show
that log-linear models significantly out-
perform IBM translation models.

1 Introduction

Word alignment, which can be defined as an object
for indicating the corresponding words in a parallel
text, was first introduced as an intermediate result of
statistical translation models (Brown et al., 1993). In
statistical machine translation, word alignment plays
a crucial role as word-aligned corpora have been
found to be an excellent source of translation-related
knowledge.

Various methods have been proposed for finding
word alignments between parallel texts. There are
generally two categories of alignment approaches:
statistical approachesand heuristic approaches.
Statistical approaches, which depend on a set of
unknown parameters that are learned from training

data, try to describe the relationship between a bilin-
gual sentence pair (Brown et al., 1993; Vogel and
Ney, 1996). Heuristic approaches obtain word align-
ments by using various similarity functions between
the types of the two languages (Smadja et al., 1996;
Ker and Chang, 1997; Melamed, 2000). The cen-
tral distinction between statistical and heuristic ap-
proaches is that statistical approaches are based on
well-founded probabilistic models while heuristic
ones are not. Studies reveal that statistical alignment
models outperform the simple Dice coefficient (Och
and Ney, 2003).

Finding word alignments between parallel texts,
however, is still far from a trivial work due to the di-
versity of natural languages. For example, the align-
ment of words within idiomatic expressions, free
translations, and missing content or function words
is problematic. When two languages widely differ
in word order, finding word alignments is especially
hard. Therefore, it is necessary to incorporate all
useful linguistic information to alleviate these prob-
lems.

Tiedemann (2003) introduced a word alignment
approach based on combination of association clues.
Clues combination is done by disjunction of single
clues, which are defined as probabilities of associa-
tions. The crucial assumption of clue combination
that clues are independent of each other, however,
is not always true. Och and Ney (2003) proposed
Model 6, a log-linear combination of IBM transla-
tion models and HMM model. Although Model 6
yields better results than naive IBM models, it fails
to include dependencies other than IBM models and
HMM model. Cherry and Lin (2003) developed a
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statistical model to find word alignments, which al-
low easy integration of context-specific features.

Log-linear models, which are very suitable to in-
corporate additional dependencies, have been suc-
cessfully applied to statistical machine translation
(Och and Ney, 2002). In this paper, we present a
framework for word alignment based on log-linear
models, allowing statistical models to be easily ex-
tended by incorporating additional syntactic depen-
dencies. We use IBM Model 3 alignment proba-
bilities, POS correspondence, and bilingual dictio-
nary coverage as features. Our experiments show
that log-linear models significantly outperform IBM
translation models.

We begin by describing log-linear models for
word alignment. The design of feature functions
is discussed then. Next, we present the training
method and the search algorithm for log-linear mod-
els. We will follow with our experimental results
and conclusion and close with a discussion of possi-
ble future directions.

2 Log-linear Models

Formally, we use following definition for alignment.
Given a source (’English’) sentencee = eI

1 = e1,
. . . , ei, . . . ,eI and a target language (’French’) sen-
tencef = fJ

1 = f1, . . . ,fj , . . . ,fJ . We define a link
l = (i, j) to exist if ei andfj are translation (or part
of a translation) of one another. We define the null
link l = (i, 0) to exist if ei does not correspond to a
translation for any French word inf . The null link
l = (0, j) is defined similarly. An alignmenta is
defined as a subset of the Cartesian product of the
word positions:

a ⊆ {(i, j) : i = 0, . . . , I; j = 0, . . . , J} (1)

We define the alignment problem as finding the
alignmenta that maximizesPr(a | e, f ) givene and
f .

We directly model the probabilityPr(a | e, f ).
An especially well-founded framework is maximum
entropy (Berger et al., 1996). In this framework, we
have a set ofM feature functionshm(a, e, f), m =
1, . . . , M . For each feature function, there exists
a model parameterλm, m = 1, . . . ,M . The direct

alignment probability is given by:

Pr(a|e, f) =
exp[

∑M
m=1 λmhm(a, e, f)]∑

a′ exp[
∑M

m=1 λmhm(a′, e, f)]
(2)

This approach has been suggested by (Papineni et
al., 1997) for a natural language understanding task
and successfully applied to statistical machine trans-
lation by (Och and Ney, 2002).

We obtain the following decision rule:

â = argmax
a

{ M∑

m=1

λmhm(a, e, f)
}

(3)

Typically, the source language sentencee and the
target sentencef are the fundamental knowledge
sources for the task of finding word alignments. Lin-
guistic data, which can be used to identify associ-
ations between lexical items are often ignored by
traditional word alignment approaches. Linguistic
tools such as part-of-speech taggers, parsers, named-
entity recognizers have become more and more ro-
bust and available for many languages by now. It
is important to make use of linguistic information
to improve alignment strategies. Treated as feature
functions, syntactic dependencies can be easily in-
corporated into log-linear models.

In order to incorporate a new dependency which
contains extra information other than the bilingual
sentence pair, we modify Eq.2 by adding a new vari-
ablev:

Pr(a|e, f ,v) =
exp[

∑M
m=1 λmhm(a, e, f ,v)]∑

a′ exp[
∑M

m=1 λmhm(a′, e, f ,v)]
(4)

Accordingly, we get a new decision rule:

â = argmax
a

{ M∑

m=1

λmhm(a, e, f ,v)
}

(5)

Note that our log-linear models are different from
Model 6 proposed by Och and Ney (2003), which
defines the alignment problem as finding the align-
menta that maximizesPr(f , a | e) givene.

3 Feature Functions

In this paper, we use IBM translation Model 3 as the
base feature of our log-linear models. In addition,
we also make use of syntactic information such as
part-of-speech tags and bilingual dictionaries.
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3.1 IBM Translation Models

Brown et al. (1993) proposed a series of statisti-
cal models of the translation process. IBM trans-
lation models try to model the translation probabil-
ity Pr(fJ

1 |eI
1), which describes the relationship be-

tween a source language sentenceeI
1 and a target

language sentencefJ
1 . In statistical alignment mod-

elsPr(fJ
1 , aJ

1 |eI
1), a ’hidden’ alignmenta = aJ

1 is
introduced, which describes a mapping from a tar-
get positionj to a source positioni = aj . The
relationship between the translation model and the
alignment model is given by:

Pr(fJ
1 |eI

1) =
∑

aJ
1

Pr(fJ
1 , aJ

1 |eI
1) (6)

Although IBM models are considered more co-
herent than heuristic models, they have two draw-
backs. First, IBM models are restricted in a way
such that each target wordfj is assigned to exactly
one source wordeaj . A more general way is to
model alignment as an arbitrary relation between
source and target language positions. Second, IBM
models are typically language-independent and may
fail to tackle problems occurred due to specific lan-
guages.

In this paper, we use Model 3 as our base feature
function, which is given by1:

h(a, e, f) = Pr(fJ
1 , aJ

1 |eI
1)

=

(
m− φ0

φ0

)
p0

m−2φ0p1
φ0

l∏

i=1

φi!n(φi|ei)×
m∏

j=1

t(fj |eaj )d(j|aj , l, m) (7)

We distinguish between two translation directions
to use Model 3 as feature functions: treating English
as source language and French as target language or
vice versa.

3.2 POS Tags Transition Model

The first linguistic information we adopt other than
the source language sentencee and the target lan-
guage sentencef is part-of-speech tags. The use
of POS information for improving statistical align-
ment quality of the HMM-based model is described

1If there is a target word which is assigned to more than one
source words,h(a, e, f) = 0.

in (Toutanova et al., 2002). They introduce addi-
tional lexicon probability for POS tags in both lan-
guages.

In IBM models as well as HMM models, when
one needs the model to take new information into
account, one must create an extended model which
can base its parameters on the previous model. In
log-linear models, however, new information can be
easily incorporated.

We use a POS Tags Transition Model as a fea-
ture function. This feature learns POS Tags tran-
sition probabilities from held-out data (via simple
counting) and then applies the learned distributions
to the ranking of various word alignments. We
define eT = eT I

1 = eT1, . . . , eTi, . . . , eTI and
fT = fT J

1 = fT1, . . . , fTj , . . . , fTJ as POS tag
sequences of the sentence paire and f . POS Tags
Transition Model is formally described as:

Pr(fT|a, eT) =
∏
a

t(fTa(j)|eTa(i)) (8)

wherea is an element ofa, a(i) is the corresponding
source position ofa anda(j) is the target position.

Hence, the feature function is:

h(a, e, f , eT, fT) =
∏
a

t(fTa(j)|eTa(i)) (9)

We still distinguish between two translation direc-
tions to use POS tags Transition Model as feature
functions: treating English as source language and
French as target language or vice versa.

3.3 Bilingual Dictionary

A conventional bilingual dictionary can be consid-
ered an additional knowledge source. We could use
a feature that counts how many entries of a conven-
tional lexicon co-occur in a given alignment between
the source sentence and the target sentence. There-
fore, the weight for the provided conventional dic-
tionary can be learned. The intuition is that the con-
ventional dictionary is expected to be more reliable
than the automatically trained lexicon and therefore
should get a larger weight.

We define a bilingual dictionary as a set of entries:
D = {(e, f, conf)}. e is a source language word,
f is a target langauge word, andconf is a positive
real-valued number (usually,conf = 1.0) assigned
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by lexicographers to evaluate the validity of the en-
try. Therefore, the feature function using a bilingual
dictionary is:

h(a, e, f ,D) =
∑
a

occur(ea(i), fa(j), D) (10)

where

occur(e, f, D) =

{
conf if (e, f) occurs inD
0 else

(11)

4 Training

We use the GIS (Generalized Iterative Scaling) al-
gorithm (Darroch and Ratcliff, 1972) to train the
model parametersλM

1 of the log-linear models ac-
cording to Eq. 4. By applying suitable transforma-
tions, the GIS algorithm is able to handle any type of
real-valued features. In practice, We use YASMET
2 written by Franz J. Och for performing training.

The renormalization needed in Eq. 4 requires a
sum over a large number of possible alignments. If
e has lengthl and f has lengthm, there are pos-
sible 2lm alignments betweene and f (Brown et
al., 1993). It is unrealistic to enumerate all possi-
ble alignments whenlm is very large. Hence, we
approximate this sum by sampling the space of all
possible alignments by a large set of highly proba-
ble alignments. The set of considered alignments are
also calledn-best list of alignments.

We train model parameters on a development cor-
pus, which consists of hundreds of manually-aligned
bilingual sentence pairs. Using ann-best approx-
imation may result in the problem that the param-
eters trained with the GIS algorithm yield worse
alignments even on the development corpus. This
can happen because with the modified model scaling
factors then-best list can change significantly and
can include alignments that have not been taken into
account in training. To avoid this problem, we iter-
atively combinen-best lists to train model parame-
ters until the resultingn-best list does not change,
as suggested by Och (2002). However, as this train-
ing procedure is based on maximum likelihood cri-
terion, there is only a loose relation to the final align-
ment quality on unseen bilingual texts. In practice,

2Available at http://www.fjoch.com/YASMET.html

having a series of model parameters when the itera-
tion ends, we select the model parameters that yield
best alignments on the development corpus.

After the bilingual sentences in the develop-
ment corpus are tokenized (or segmented) and POS
tagged, they can be used to train POS tags transition
probabilities by counting relative frequencies:

p(fT |eT ) =
NA(fT, eT )

N(eT )

Here,NA(fT, eT ) is the frequency that the POS tag
fT is aligned to POS tageT andN(eT ) is the fre-
quency ofeT in the development corpus.

5 Search

We use a greedy search algorithm to search the
alignment with highest probability in the space of all
possible alignments. A state in this space is a partial
alignment. A transition is defined as the addition of
a single link to the current state. Our start state is
the empty alignment, where all words ine andf are
assigned to null. A terminal state is a state in which
no more links can be added to increase the probabil-
ity of the current alignment. Our task is to find the
terminal state with the highest probability.

We can computegain, which is a heuristic func-
tion, instead of probability for efficiency. A gain is
defined as follows:

gain(a, l) =
exp[

∑M
m=1 λmhm(a ∪ l, e, f)]

exp[
∑M

m=1 λmhm(a, e, f)]
(12)

wherel = (i, j) is a link added toa.
The greedy search algorithm for general log-

linear models is formally described as follows:

Input: e, f , eT, fT, andD

Output: a

1. Start witha = φ.

2. Do for eachl = (i, j) andl /∈ a:

Computegain(a, l)
3. Terminate if∀l, gain(a, l) ≤ 1.

4. Add the linkl̂ with the maximalgain(a, l)
to a.

5. Goto 2.
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The above search algorithm, however, is not effi-
cient for our log-linear models. It is time-consuming
for each feature to figure out a probability when
adding a new link, especially when the sentences
are very long. For our models,gain(a, l) can be
obtained in a more efficient way3:

gain(a, l) =
M∑

m=1

λmlog
(

hm(a ∪ l, e, f)
hm(a, e, f)

)
(13)

Note that we restrict thath(a, e, f) ≥ 0 for all fea-
ture functions.

The original terminational condition for greedy
search algorithm is:

gain(a, l) =
exp[

∑M
m=1 λmhm(a ∪ l, e, f)]

exp[
∑M

m=1 λmhm(a, e, f)]
≤ 1.0

That is:

M∑

m=1

λm[hm(a ∪ l, e, f)− hm(a, e, f)] ≤ 0.0

By introducing gain thresholdt, we obtain a new
terminational condition:

M∑

m=1

λmlog
(

hm(a ∪ l, e, f)
hm(a, e, f)

)
≤ t

where

t =
M∑

m=1

λm

{
log

(
hm(a ∪ l, e, f)

hm(a, e, f)

)

−[hm(a ∪ l, e, f)− hm(a, e, f)]
}

Note that we restricth(a, e, f) ≥ 0 for all feature
functions. Gain thresholdt is a real-valued number,
which can be optimized on the development corpus.

Therefore, we have a new search algorithm:

Input: e, f , eT, fT, D andt

Output: a

1. Start witha = φ.

2. Do for eachl = (i, j) andl /∈ a:

Computegain(a, l)
3We still call the new heuristic functiongain to reduce no-

tational overhead, although thegain in Eq. 13 is not equivalent
to the one in Eq. 12.

3. Terminate if∀l, gain(a, l) ≤ t.

4. Add the linkl̂ with the maximalgain(a, l)
to a.

5. Goto 2.

The gain thresholdt depends on the added link
l. We remove this dependency for simplicity when
using it in search algorithm by treating it as a fixed
real-valued number.

6 Experimental Results

We present in this section results of experiments on
a parallel corpus of Chinese-English texts. Statis-
tics for the corpus are shown in Table 1. We use a
training corpus, which is used to train IBM transla-
tion models, a bilingual dictionary, a development
corpus, and a test corpus.

Chinese English

Train Sentences 108 925
Words 3 784 106 3 862 637
Vocabulary 49 962 55 698

Dict Entries 415 753
Vocabulary 206 616 203 497

Dev Sentences 435
Words 11 462 14 252
Ave. SentLen 26.35 32.76

Test Sentences 500
Words 13 891 15 291
Ave. SentLen 27.78 30.58

Table 1. Statistics of training corpus (Train), bilin-
gual dictionary (Dict), development corpus (Dev),
and test corpus (Test).

The Chinese sentences in both the development
and test corpus are segmented and POS tagged by
ICTCLAS (Zhang et al., 2003). The English sen-
tences are tokenized by a simple tokenizer of ours
and POS tagged by a rule-based tagger written by
Eric Brill (Brill, 1995). We manually aligned 935
sentences, in which we selected 500 sentences as
test corpus. The remaining 435 sentences are used
as development corpus to train POS tags transition
probabilities and to optimize the model parameters
and gain threshold.

Provided with human-annotated word-level align-
ment, we use precision, recall and AER (Och and
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Size of Training Corpus
1K 5K 9K 39K 109K

Model 3 E→ C 0.4497 0.4081 0.4009 0.3791 0.3745
Model 3 C→ E 0.4688 0.4261 0.4221 0.3856 0.3469
Intersection 0.4588 0.4106 0.4044 0.3823 0.3687
Union 0.4596 0.4210 0.4157 0.3824 0.3703
Refined Method 0.4154 0.3586 0.3499 0.3153 0.3068

Model 3 E→ C 0.4490 0.3987 0.3834 0.3639 0.3533
+ Model 3 C→ E 0.3970 0.3317 0.3217 0.2949 0.2850
+ POS E→ C 0.3828 0.3182 0.3082 0.2838 0.2739
+ POS C→ E 0.3795 0.3160 0.3032 0.2821 0.2726
+ Dict 0.3650 0.3092 0.2982 0.2738 0.2685

Table 2. Comparison of AER for results of using IBM Model 3 (GIZA++) and log-linear models.

Ney, 2003) for scoring the viterbi alignments of each
model against gold-standard annotated alignments:

precision=
|A ∩ P |
|A|

recall=
|A ∩ S|
|S|

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

whereA is the set of word pairs aligned by word
alignment systems,S is the set marked in the gold
standard as ”sure” andP is the set marked as ”pos-
sible” (including the ”sure” pairs). In our Chinese-
English corpus, only one type of alignment was
marked, meaning thatS = P .

In the following, we present the results of log-
linear models for word alignment. We used GIZA++
package (Och and Ney, 2003) to train IBM transla-
tion models. The training scheme is15H535, which
means that Model 1 are trained for five iterations,
HMM model for five iterations and finally Model
3 for five iterations. Except for changing the iter-
ations for each model, we use default configuration
of GIZA++. After that, we used three types of meth-
ods for performing a symmetrization of IBM mod-
els: intersection, union, and refined methods (Och
and Ney , 2003).

The base feature of our log-linear models, IBM
Model 3, takes the parameters generated by GIZA++
as parameters for itself. In other words, our log-
linear models share GIZA++ with the same parame-

ters apart from POS transition probability table and
bilingual dictionary.

Table 2 compares the results of our log-linear
models with IBM Model 3. From row 3 to row 7
are results obtained by IBM Model 3. From row 8
to row 12 are results obtained by log-linear models.

As shown in Table 2, our log-linear models
achieve better results than IBM Model 3 in all train-
ing corpus sizes. Considering Model 3 E→ C of
GIZA++ and ours alone, greedy search algorithm
described in Section 5 yields surprisingly better
alignments than hillclimbing algorithm in GIZA++.

Table 3 compares the results of log-linear mod-
els with IBM Model 5. The training scheme is
15H5354555. Our log-linear models still make use
of the parameters generated by GIZA++.

Comparing Table 3 with Table 2, we notice that
our log-linear models yield slightly better align-
ments by employing parameters generated by the
training scheme15H5354555 rather than15H535,
which can be attributed to improvement of param-
eters after further Model 4 and Model 5 training.

For log-linear models, POS information and an
additional dictionary are used, which is not the case
for GIZA++/IBM models. However, treated as a
method for performing symmetrization, log-linear
combination alone yields better results than intersec-
tion, union, and refined methods.

Figure 1 shows how gain threshold has an effect
on precision, recall and AER with fixed model scal-
ing factors.

Figure 2 shows the effect of number of features
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Size of Training Corpus
1K 5K 9K 39K 109K

Model 5 E→ C 0.4384 0.3934 0.3853 0.3573 0.3429
Model 5 C→ E 0.4564 0.4067 0.3900 0.3423 0.3239
Intersection 0.4432 0.3916 0.3798 0.3466 0.3267
Union 0.4499 0.4051 0.3923 0.3516 0.3375
Refined Method 0.4106 0.3446 0.3262 0.2878 0.2748

Model 3 E→ C 0.4372 0.3873 0.3724 0.3456 0.3334
+ Model 3 C→ E 0.3920 0.3269 0.3167 0.2842 0.2727
+ POS E→ C 0.3807 0.3122 0.3039 0.2732 0.2667
+ POS C→ E 0.3731 0.3091 0.3017 0.2722 0.2657
+ Dict 0.3612 0.3046 0.2943 0.2658 0.2625

Table 3. Comparison of AER for results of using IBM Model 5 (GIZA++) and log-linear models.
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Figure 1. Precision, recall and AER over different
gain thresholds with the same model scaling factors.

and size of training corpus on search efficiency for
log-linear models.

Table 4 shows the resulting normalized model
scaling factors. We see that adding new features also
has an effect on the other model scaling factors.

7 Conclusion

We have presented a framework for word alignment
based on log-linear models between parallel texts. It
allows statistical models easily extended by incor-
porating syntactic information. We take IBM Model
3 as base feature and use syntactic information such
as POS tags and bilingual dictionary. Experimental
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Figure 2. Effect of number of features and size of
training corpus on search efficiency.

MEC +MCE +PEC +PCE +Dict
λ1 1.000 0.466 0.291 0.202 0.151
λ2 - 0.534 0.312 0.212 0.167
λ3 - - 0.397 0.270 0.257
λ4 - - - 0.316 0.306
λ5 - - - - 0.119

Table 4. Resulting model scaling factors:λ1: Model
3 E→ C (MEC); λ2: Model 3 C→ E (MCE); λ3:
POS E→C (PEC);λ4: POS C→ E (PCE);λ5: Dict
(normalized such that

∑5
m=1 λm = 1).

results show that log-linear models for word align-
ment significantly outperform IBM translation mod-
els. However, the search algorithm we proposed is
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supervised, relying on a hand-aligned bilingual cor-
pus, while the baseline approach of IBM alignments
is unsupervised.

Currently, we only employ three types of knowl-
edge sources as feature functions. Syntax-based
translation models, such astree-to-stringmodel (Ya-
mada and Knight, 2001) andtree-to-tree model
(Gildea, 2003), may be very suitable to be added into
log-linear models.

It is promising to optimize the model parameters
directly with respect to AER as suggested in statisti-
cal machine translation (Och, 2003).
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Abstract 

This paper proposes an alignment 
adaptation approach to improve 
domain-specific (in-domain) word 
alignment. The basic idea of alignment 
adaptation is to use out-of-domain corpus 
to improve in-domain word alignment 
results. In this paper, we first train two 
statistical word alignment models with the 
large-scale out-of-domain corpus and the 
small-scale in-domain corpus respectively, 
and then interpolate these two models to 
improve the domain-specific word 
alignment. Experimental results show that 
our approach improves domain-specific 
word alignment in terms of both precision 
and recall, achieving a relative error rate 
reduction of 6.56% as compared with the 
state-of-the-art technologies. 

1 Introduction 
Word alignment was first proposed as an 
intermediate result of statistical machine 
translation (Brown et al., 1993). In recent years, 
many researchers have employed statistical models 
(Wu, 1997; Och and Ney, 2003; Cherry and Lin, 
2003) or association measures  (Smadja et al., 
1996; Ahrenberg et al., 1998; Tufis and Barbu, 
2002) to build alignment links. In order to achieve 
satisfactory results, all of these methods require a 
large-scale bilingual corpus for training. When the 
large-scale bilingual corpus is not available, some 
researchers use existing dictionaries to improve 
word alignment (Ker and Chang, 1997). However, 
only a few studies (Wu and Wang, 2004) directly 
address the problem of domain-specific word 
alignment when neither the large-scale 

domain-specific bilingual corpus nor the 
domain-specific translation dictionary is available. 

In this paper, we address the problem of word 
alignment in a specific domain, in which only a 
small-scale corpus is available. In the 
domain-specific (in-domain) corpus, there are two 
kinds of words: general words, which also 
frequently occur in the out-of-domain corpus, and 
domain-specific words, which only occur in the 
specific domain. Thus, we can use the 
out-of-domain bilingual corpus to improve the 
alignment for general words and use the in-domain 
bilingual corpus for domain-specific words. We 
implement this by using alignment model 
adaptation. 

Although the adaptation technology is widely 
used for other tasks such as language modeling 
(Iyer et al., 1997), only a few studies, to the best of 
our knowledge, directly address word alignment 
adaptation. Wu and Wang (2004) adapted the 
alignment results obtained with the out-of-domain 
corpus to the results obtained with the in-domain 
corpus. This method first trained two models and 
two translation dictionaries with the in-domain 
corpus and the out-of-domain corpus, respectively. 
Then these two models were applied to the 
in-domain corpus to get different results. The 
trained translation dictionaries were used to select 
alignment links from these different results. Thus, 
this method performed adaptation through result 
combination. The experimental results showed a 
significant error rate reduction as compared with 
the method directly combining the two corpora as 
training data.  

In this paper, we improve domain-specific word 
alignment through statistical alignment model 
adaptation instead of result adaptation. Our method 
includes the following steps: (1) two word 
alignment models are trained using a small-scale 
in-domain bilingual corpus and a large-scale 
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out-of-domain bilingual corpus, respectively. (2) A 
new alignment model is built by interpolating the 
two trained models. (3) A translation dictionary is 
also built by interpolating the two dictionaries that 
are trained from the two training corpora. (4) The 
new alignment model and the translation dictionary 
are employed to improve domain-specific word 
alignment results. Experimental results show that 
our approach improves domain-specific word 
alignment in terms of both precision and recall, 
achieving a relative error rate reduction of 6.56% 
as compared with the state-of-the-art technologies. 

The remainder of the paper is organized as 
follows. Section 2 introduces the statistical word 
alignment model. Section 3 describes our 
alignment model adaptation method. Section 4 
describes the method used to build the translation 
dictionary. Section 5 describes the model 
adaptation algorithm. Section 6 presents the 
evaluation results. The last section concludes our 
approach. 

2 Statistical Word Alignment 
According to the IBM models (Brown et al., 1993), 
the statistical word alignment model can be 
generally represented as in Equation (1).  

∑
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In this paper, we use a simplified IBM model 4 
(Al-Onaizan et al., 1999), which is shown in 
Equation (2). This simplified version does not take 
word classes into account as described in (Brown 
et al., 1993). 
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(2)

ml,  are the lengths of the target sentence and the  
source sentence respectively. 

j  is the position index of the source word. 
ja  is the position of the target word aligned to 

    the jth source word. 
iφ  is the fertility of . ie

1p  is the fertility probability for e , and 
. 

0

110 =+ pp
)

jaj|et(f  is the word translation probability. 

)|( ii en φ  is the fertility probability. 
)(1 ja

cjd ρ−  is the distortion probability for the  

head of each cept1. 
))((1 jpjd −>  is the distortion probability for the  

remaining words of the cept. 
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 is the center of cept i. 

During the training process, IBM model 3 is 
first trained, and then the parameters in model 3 
are employed to train model 4. During the testing 
process, the trained model 3 is also used to get an 
initial alignment result, and then the trained model 
4 is employed to improve this alignment result. For 
convenience, we describe model 3 in Equation (3). 
The main difference between model 3 and model 4 
lies in the calculation of distortion probability. 

∏∏

∏∏

∑

≠=

==

−

⋅

⋅⋅

⋅






 −
=

=

m

aj
j

m

j
aj

l

i
i

l

i
ii

m

j

j
mlajdeft

en

pp
m

ap

0:1

11

1
2

0
0

0

),(

),,|()|(                     

!  )|(                     

                   

)|,Pr()|,(

00

φφ

φ
φ

πτ

φφ

πτ

eef

(3)

                                                           
1 A cept is defined as the set of target words connected to a source word 
(Brown et al., 1993).  
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However, both model 3 and model 4 do not 
take the multiword cept into account. Only 
one-to-one and many-to-one word alignments are 
considered. Thus, some multi-word units in the 
domain-specific corpus cannot be correctly aligned. 
In order to deal with this problem, we perform 
word alignment in two directions (source to target, 
and target to source) as described in (Och and Ney, 
2000). The GIZA++ toolkit2 is used to perform 
statistical word alignment. 

We use  and  to represent the 
bi-directional alignment sets, which are shown in 
Equation (4) and (5). For alignment in both sets, 
we use j for source words and i for target words. If 
a target word in position i is connected to source 
words in positions  and , then . 
We call an element in the alignment set an 
alignment link. 

1SG 2SG

2j1j },{ 21 jjAi =

}}0 ,|{|),{(1 ≥=== jjii aiajAiASG  (4)
}}0  ,|{|),{(2 ≥=== jjjj aaiiAAjSG (5)

3 Word Alignment Model Adaptation 
In this paper, we first train two models using the 
out-of-domain training data and the in-domain 
training data, and then build a new alignment 
model through linear interpolation of the two 
trained models. In other words, we make use of the 
out-of-domain training data and the in-domain 
training data by interpolating the trained alignment 
models. One method to perform model adaptation 
is to directly interpolate the alignment models as 
shown in Equation (6).  

),|()1(),|(),|( efapefapefap OI ⋅−+⋅= λλ
 

(6)

),|( efapI  and  are the alignment 
model trained using the in-domain corpus and the 
out-of-domain corpus, respectively.

),|( efapO

λ  is an 
interpolation weight. It can be a constant or a 
function of  and . f e

However, in both model 3 and model 4, there 
are mainly three kinds of parameters: translation 
probability, fertility probability and distortion 
probability. These three kinds of parameters have 
their own interpretation in these two models. In 
order to obtain fine-grained interpolation models, 
we separate the alignment model interpolation into 

three parts: translation probability interpolation, 
fertility probability interpolation and distortion 
probability interpolation. For these probabilities, 
we use different interpolation methods to calculate 
the interpolation weights. After interpolation, we 
replace the corresponding parameters in equation 
(2) and (3) with the interpolated probabilities to get 
new alignment models. 

                                                           
2 It is located at http://www.fjoch.com/GIZA++.html. 

In the following subsections, we will perform 
linear interpolation for word alignment in the 
source to target direction. For the word alignment 
in the target to source direction, we use the same 
interpolation method. 

3.1 Translation Probability Interpolation 

The word translation probability  is 

very important in translation models. The same 
word may have different distributions in the 
in-domain corpus and the out-of-domain corpus. 
Thus, the interpolation weight for the translation 
probability is taken as a variant. The interpolation 
model for  is described in Equation (7).  
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The interpolation weight  in (7) is a 

function of . It is calculated as shown in 
Equation (8).  
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)(
jaI ep  and  are the relative 

frequencies of  in the in-domain corpus and in 

the out-of-domain corpus, respectively. 
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α  is an 
adaptation coefficient, such that 0≥α . 

Equation (8) indicates that if a word occurs 
more frequently in a specific domain than in the 
general domain, it can usually be considered as a 
domain-specific word (Peñas et al., 2001). For 
example, if  is much larger than , 

the word  is a domain-specific word and the 
interpolation weight approaches to 1. In this case, 
we trust more on the translation probability 
obtained from the in-domain corpus than that 
obtained from the out-of-domain corpus. 

)(
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3.2 

3.3 

4 

Fertility Probability Interpolation 

The fertility probability describes the 
distribution of the number of words that  is 
aligned to. The interpolation model is shown in (9). 

)|( ii en φ

ie

)|()1()|()|( iiOniiInii enenen φλφλφ ⋅−+⋅= (9)

Where,  is a constant. This constant is obtained 
using a manually annotated held-out data set. In 
fact, we can also set the interpolation weight to be 
a function of the word . From the word 
alignment results on the held-out set, we conclude 
that these two weighting schemes do not perform 
quite differently. 

nλ

ie

Distortion Probability Interpolation 

The distortion probability describes the distribution 
of alignment positions. We separate it into two 
parts: one is the distortion probability in model 3, 
and the other is the distortion probability in model 
4. The interpolation model for the distortion 
probability in model 3 is shown in (10). Since the 
distortion probability is irrelevant with any specific 
source or target words, we take  as a constant. 
This constant is obtained using the held-out set. 
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For the distortion probability in model 4, we 
use the same interpolation method and take the 
interpolation weight as a constant.  

Translation Dictionary Acquisition 

We use the translation dictionary trained from the 
training data to further improve the alignment 
results. When we train the bi-directional statistical 
word alignment models with the training data, we 
get two word alignment results for the training data. 
By taking the intersection of the two word 
alignment results, we build a new alignment set. 
The alignment links in this intersection set are 
extended by iteratively adding word alignment 
links into it as described in (Och and Ney, 2000). 
Based on the extended alignment links, we build a 
translation dictionary. In order to filter the noise 
caused by the error alignment links, we only retain 
those translation pairs whose log-likelihood ratio 
scores (Dunning, 1993) are above a threshold. 

Based on the alignment results on the 

out-of-domain corpus, we build a translation 
dictionary  filtered with a threshold . Based 
on the alignment results on a small-scale 
in-domain corpus, we build another translation 
dictionary  filtered with a threshold .  

1D

2D

1δ

2δ
After obtaining the two dictionaries, we 

combine two dictionaries through linearly 
interpolating the translation probabilities in the two 
dictionaries, which is shown in (11). The symbols f 
and e represent a single word or a phrase in the 
source and target languages. This differs from the 
translation probability in Equation (7), where these 
two symbols only represent single words. 

)|())(1()|()()|( efpeefpeefp OI ⋅−+⋅= λλ (11)

The interpolation weight is also a function of e. It 
is calculated as shown in (12)3. 

)()(
)(

)(
epep

ep
e

OI

I

+
=λ  (12)

)(epI  and  represent the relative 
frequencies of e  in the in-domain corpus and 
out-of-domain corpus, respectively.  

)(epO

5 

6 Evaluation 

                                                          

Adaptation Algorithm 
The adaptation algorithms include two parts: a 
training algorithm and a testing algorithm. The 
training algorithm is shown in Figure 1.  

After getting the two adaptation models and the 
translation dictionary, we apply them to the 
in-domain corpus to perform word alignment. Here 
we call it testing algorithm. The detailed algorithm 
is shown in Figure 2. For each sentence pair, there 
are two different word alignment results, from 
which the final alignment links are selected 
according to their translation probabilities in the 
dictionary D. The selection order is similar to that 
in the competitive linking algorithm (Melamed, 
1997). The difference is that we allow many-to-one 
and one-to-many alignments. 

We compare our method with four other methods. 
The first method is descried in (Wu and Wang, 
2004). We call it “Result Adaptation (ResAdapt)”. 

 
3 We also tried an adaptation coefficient to calculate the 
interpolation weight as in (8). However, the alignment results 
are not improved by using this coefficient for the dictionary. 
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Input: In-domain training data 
      Out-of-domain training data 
(1) Train two alignment models 

(source to target) and  (target to 
source) using the in-domain corpus. 

st
IM

ts
IM

(2) Train the other two alignment models 
 and  using the out-of-domain 

corpus. 

st
OM ts

OM

(3) Build an adaptation model stM  based on 
 and , and build the other 

adaptation model 

st
IM st

OM
tsM  based on 

and  using the interpolation methods 
described in section 3. 

ts
IM

ts
OM

(4) Train a dictionary  using the 
alignment results on the in-domain 
training data. 

1D

(5) Train another dictionary  using the 
alignment results on the out-of-domain 
training data. 

2D

(6) Build an adaptation dictionary D  based 
on  and  using the interpolation 
method described in section 4. 

1D 2D

Output: Alignment models stM  and tsM  
       Translation dictionary D  

Figure 1. Training Algorithm 

Input: Alignment models stM  and tsM , 
translation dictionary D , and testing 
data 

(1) Apply the adaptation model stM and 
tsM  to the testing data to get two 

different alignment results. 
(2) Select the alignment links with higher 

translation probability in the translation 
dictionary D . 

Output: Alignment results on the testing data

Figure 2. Testing Algorithm 

The second method “Gen+Spec” directly combines 
the out-of-domain corpus and the in-domain corpus 
as training data. The third method “Gen” only uses 
the out-of-domain corpus as training data. The 
fourth method “Spec” only uses the in-domain 
corpus as training data. For each of the last three 
methods, we first train bi-directional alignment 

models using the training data. Then we build a 
translation dictionary based on the alignment 
results on the training data and filter it using 
log-likelihood ratio as described in section 4. 

6.1 

6.2 

Training and Testing Data 

In this paper, we take English-Chinese word 
alignment as a case study. We use a sentence- 
aligned out-of-domain English-Chinese bilingual 
corpus, which includes 320,000 bilingual sentence 
pairs. The average length of the English sentences 
is 13.6 words while the average length of the 
Chinese sentences is 14.2 words. 

We also use a sentence-aligned in-domain 
English-Chinese bilingual corpus (operation 
manuals for diagnostic ultrasound systems), which 
includes 5,862 bilingual sentence pairs. The 
average length of the English sentences is 12.8 
words while the average length of the Chinese 
sentences is 11.8 words. From this domain-specific 
corpus, we randomly select 416 pairs as testing 
data. We also select 400 pairs to be manually 
annotated as held-out set (development set) to 
adjust parameters. The remained 5,046 pairs are 
used as domain-specific training data. 

The Chinese sentences in both the training set 
and the testing set are automatically segmented 
into words. In order to exclude the effect of the 
segmentation errors on our alignment results, the 
segmentation errors in our testing set are 
post-corrected. The alignments in the testing set 
are manually annotated, which includes 3,166 
alignment links. Among them, 504 alignment links 
include multiword units.  

Evaluation Metrics 

We use the same evaluation metrics as described in 
(Wu and Wang, 2004). If we use  to represent 
the set of alignment links identified by the 
proposed methods and  to denote the reference 
alignment set, the methods to calculate the 
precision, recall, f-measure, and alignment error 
rate (AER) are shown in Equation (13), (14), (15), 
and (16). It can be seen that the higher the 
f-measure is, the lower the alignment error rate is. 
Thus, we will only show precision, recall and AER 
scores in the evaluation results. 

GS

CS

|S|
|SS|

G

CG ∩
=precision      

(13)
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6.3 Evaluation Results 

We use the held-out set described in section 6.1 to 
set the interpolation weights. The coefficient α  in 
Equation (8) is set to 0.8, the interpolation weight 

 in Equation (9) is set to 0.1, the interpolation 
weight  in model 3 in Equation (10) is set to 
0.1, and the interpolation weight  in model 4 is 
set to 1. In addition, log-likelihood ratio score 
thresholds are set to  and . With 
these parameters, we get the lowest alignment error 
rate on the held-out set. 

nλ

dλ

dλ

301 =δ 252 =δ

Using these parameters, we build two 
adaptation models and a translation dictionary on 
the training data, which are applied to the testing 
set. The evaluation results on our testing set are 
shown in Table 1. From the results, it can be seen 
that our approach performs the best among all of 
the methods, achieving the lowest alignment error 
rate. Compared with the method “ResAdapt”, our 
method achieves a higher precision without loss of 
recall, resulting in an error rate reduction of 6.56%. 
Compared with the method “Gen+Spec”, our 
method gets a higher recall, resulting in an error 
rate reduction of 17.43%. This indicates that our 
model adaptation method is very effective to 
alleviate the data-sparseness problem of 
domain-specific word alignment. 

Method Precision Recall AER 
Ours 0.8490 0.7599 0.1980

ResAdapt 0.8198 0.7587 0.2119
Gen+Spec 0.8456 0.6905 0.2398

Gen 0.8589 0.6576 0.2551
Spec 0.8386 0.6731 0.2532

Table 1. Word Alignment Adaptation Results 

The method that only uses the large-scale 
out-of-domain corpus as training data does not 

produce good result. The alignment error rate is 
almost the same as that of the method only using 
the in-domain corpus. In order to further analyze 
the result, we classify the alignment links into two 
classes: single word alignment links (SWA) and 
multiword alignment links (MWA). Single word 
alignment links only include one-to-one 
alignments. The multiword alignment links include 
those links in which there are multiword units in 
the source language or/and the target language. 
The results are shown in Table 2. From the results, 
it can be seen that the method “Spec” produces 
better results for multiword alignment while the 
method “Gen” produces better results for single 
word alignment. This indicates that the multiword 
alignment links mainly include the domain-specific 
words. Among the 504 multiword alignment links, 
about 60% of the links include domain-specific 
words. In Table 2, we also present the results of 
our method. Our method achieves the lowest error 
rate results on both single word alignment and 
multiword alignment.  

Method Precision Recall AER 
Ours (SWA) 0.8703 0.8621 0.1338
Ours (MWA) 0.5635 0.2202 0.6833
Gen (SWA) 0.8816 0.7694 0.1783
Gen (MWA) 0.3366 0.0675 0.8876
Spec (SWA) 0.8710 0.7633 0.1864
Spec (MWA) 0.4760 0.1964 0.7219
Table 2. Single Word and Multiword Alignment 

Results 

In order to further compare our method with the 
method described in (Wu and Wang, 2004). We do 
another experiment using almost the same-scale 
in-domain training corpus as described in (Wu and 
Wang, 2004). From the in-domain training corpus, 
we randomly select about 500 sentence pairs to 
build the smaller training set. The testing data is 
the same as shown in section 6.1. The evaluation 
results are shown in Table 3. 

Method Precision Recall AER 
Ours 0.8424 0.7378 0.2134

ResAdapt 0.8027 0.7262 0.2375
Gen+Spec 0.8041 0.6857 0.2598

Table 3. Alignment Adaptation Results Using a 
Smaller In-Domain Corpus 

Compared with the method “Gen+Spec”, our 
method achieves an error rate reduction of 17.86% 
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while the method “ResAdapt” described in (Wu 
and Wang, 2004) only achieves an error rate 
reduction of 8.59%. Compared with the method 
“ResAdapt”, our method achieves an error rate 
reduction of 10.15%. 

This result is different from that in (Wu and 
Wang, 2004), where their method achieved an 
error rate reduction of 21.96% as compared with 
the method “Gen+Spec”. The main reason is that 
the in-domain training corpus and testing corpus in 
this paper are different from those in (Wu and 
Wang, 2004). The training data and the testing data 
described in (Wu and Wang, 2004) are from a 
single manual. The data in our corpus are from 
several manuals describing how to use the 
diagnostic ultrasound systems. 

In addition to the above evaluations, we also 
evaluate our model adaptation method using the 
"refined" combination in Och and Ney (2000) 
instead of the translation dictionary. Using the 
"refined" method to select the alignments produced 
by our model adaptation method (AER: 0.2371) 
still yields better result than directly combining 
out-of-domain and in-domain corpora as training 
data of the "refined" method (AER: 0.2290). 

6.4 The Effect of In-Domain Corpus 

In general, it is difficult to obtain large-scale 
in-domain bilingual corpus. For some domains, 
only a very small-scale bilingual sentence pairs are 
available. Thus, in order to analyze the effect of the 
size of in-domain corpus, we randomly select 
sentence pairs from the in-domain training corpus 
to generate five training sets. The numbers of 
sentence pairs in these five sets are 1,010, 2,020, 
3,030, 4,040 and 5,046. For each training set, we 
use model 4 in section 2 to train an in-domain 
model. The out-of-domain corpus for the 
adaptation experiments and the testing set are the 
same as described in section 6.1. 

# Sentence 
Pairs Precision Recall AER 

1010 0.8385 0.7394 0.2142
2020 0.8388 0.7514 0.2073
3030 0.8474 0.7558 0.2010
4040 0.8482 0.7555 0.2008
5046 0.8490 0.7599 0.1980

Table 4. Alignment Adaptation Results Using 
In-Domain Corpora of Different Sizes 

# Sentence 
Pairs Precision Recall AER 

1010 0.8737 0.6642 0.2453
2020 0.8502 0.6804 0.2442
3030 0.8473 0.6874 0.2410
4040 0.8430 0.6917 0.2401
5046 0.8456 0.6905 0.2398

Table 5. Alignment Results Directly Combining 
Out-of-Domain and In-Domain Corpora  

The results are shown in Table 4 and Table 5. 
Table 4 describes the alignment adaptation results 
using in-domain corpora of different sizes. Table 5 
describes the alignment results by directly 
combining the out-of-domain corpus and the 
in-domain corpus of different sizes.  From the 
results, it can be seen that the larger the size of 
in-domain corpus is, the smaller the alignment 
error rate is. However, when the number of the 
sentence pairs increase from 3030 to 5046, the 
error rate reduction in Table 4 is very small. This is 
because the contents in the specific domain are 
highly replicated. This also shows that increasing 
the domain-specific corpus does not obtain great 
improvement on the word alignment results. 
Comparing the results in Table 4 and Table 5, we 
find out that our adaptation method reduces the 
alignment error rate on all of the in-domain 
corpora of different sizes.  

6.5 The Effect of Out-of-Domain Corpus 

In order to further analyze the effect of the 
out-of-domain corpus on the adaptation results, we 
randomly select sentence pairs from the 
out-of-domain corpus to generate five sets. The 
numbers of sentence pairs in these five sets are 
65,000, 130,000, 195,000, 260,000, and 320,000 
(the entire out-of-domain corpus). In the adaptation 
experiments, we use the entire in-domain corpus 
(5046 sentence pairs). The adaptation results are 
shown in Table 6. 

From the results in Table 6, it can be seen that 
the larger the size of out-of-domain corpus is, the 
smaller the alignment error rate is. However, when 
the number of the sentence pairs is more than 
130,000, the error rate reduction is very small. This 
indicates that we do not need a very large bilingual 
out-of-domain corpus to improve domain-specific 
word alignment results. 
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# Sentence 
Pairs (k) Precision Recall AER 

65 0.8441 0.7284 0.2180
130 0.8479 0.7413 0.2090
195 0.8454 0.7461 0.2073
260 0.8426 0.7508 0.2059
320 0.8490 0.7599 0.1980

Table 6. Adaptation Alignment Results Using 
Out-of-Domain Corpora of Different Sizes 

7 Conclusion 
This paper proposes an approach to improve 
domain-specific word alignment through alignment 
model adaptation. Our approach first trains two 
alignment models with a large-scale out-of-domain 
corpus and a small-scale domain-specific corpus. 
Second, we build a new adaptation model by 
linearly interpolating these two models. Third, we 
apply the new model to the domain-specific corpus 
and improve the word alignment results. In 
addition, with the training data, an interpolated 
translation dictionary is built to select the word 
alignment links from different alignment results. 
Experimental results indicate that our approach 
achieves a precision of 84.90% and a recall of 
75.99% for word alignment in a specific domain. 
Our method achieves a relative error rate reduction 
of 17.43% as compared with the method directly 
combining the out-of-domain corpus and the 
in-domain corpus as training data.  It also 
achieves a relative error rate reduction of 6.56% as 
compared with the previous work in (Wu and 
Wang, 2004). In addition, when we train the model 
with a smaller-scale in-domain corpus as described 
in (Wu and Wang, 2004), our method achieves an 
error rate reduction of 10.15% as compared with 
the method in (Wu and Wang, 2004). 

We also use in-domain corpora and 
out-of-domain corpora of different sizes to perform 
adaptation experiments. The experimental results 
show that our model adaptation method improves 
alignment results on in-domain corpora of different 
sizes.  The experimental results also show that 
even a not very large out-of-domain corpus can 
help to improve the domain-specific word 
alignment through alignment model adaptation. 
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Abstract

We present a version of Inversion Trans-
duction Grammar where rule probabili-
ties are lexicalized throughout the syn-
chronous parse tree, along with pruning
techniques for efficient training. Align-
ment results improve over unlexicalized
ITG on short sentences for which full EM
is feasible, but pruning seems to have a
negative impact on longer sentences.

1 Introduction

The Inversion Transduction Grammar (ITG) of Wu
(1997) is a syntactically motivated algorithm for
producing word-level alignments of pairs of transla-
tionally equivalent sentences in two languages. The
algorithm builds a synchronous parse tree for both
sentences, and assumes that the trees have the same
underlying structure but that the ordering of con-
stituents may differ in the two languages.

This probabilistic, syntax-based approach has in-
spired much subsequent reasearch. Alshawi et
al. (2000) use hierarchical finite-state transducers.
In the tree-to-string model of Yamada and Knight
(2001), a parse tree for one sentence of a transla-
tion pair is projected onto the other string. Melamed
(2003) presents algorithms for synchronous parsing
with more complex grammars, discussing how to
parse grammars with greater than binary branching
and lexicalization of synchronous grammars.

Despite being one of the earliest probabilistic
syntax-based translation models, ITG remains state-
of-the art. Zens and Ney (2003) found that the con-
straints of ITG were a better match to the decod-
ing task than the heuristics used in the IBM decoder

of Berger et al. (1996). Zhang and Gildea (2004)
found ITG to outperform the tree-to-string model for
word-level alignment, as measured against human
gold-standard alignments. One explanation for this
result is that, while a tree representation is helpful
for modeling translation, the trees assigned by the
traditional monolingual parsers (and the treebanks
on which they are trained) may not be optimal for
translation of a specific language pair. ITG has the
advantage of being entirely data-driven – the trees
are derived from an expectation maximization pro-
cedure given only the original strings as input.

In this paper, we extend ITG to condition the
grammar production probabilities on lexical infor-
mation throughout the tree. This model is reminis-
cent of lexicalization as used in modern statistical
parsers, in that a unique head word is chosen for
each constituent in the tree. It differs in that the
head words are chosen through EM rather than de-
terministic rules. This approach is designed to retain
the purely data-driven character of ITG, while giving
the model more information to work with. By condi-
tioning on lexical information, we expect the model
to be able capture the same systematic differences in
languages’ grammars that motive the tree-to-string
model, for example, SVO vs. SOV word order or
prepositions vs. postpositions, but to be able to do
so in a more fine-grained manner. The interaction
between lexical information and word order also ex-
plains the higher performance of IBM model 4 over
IBM model 3 for alignment.

We begin by presenting the probability model in
the following section, detailing how we address is-
sues of pruning and smoothing that lexicalization in-
troduces. We present alignment results on a parallel
Chinese-English corpus in Section 3.
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2 Lexicalization of Inversion Transduction
Grammars

An Inversion Transduction Grammar can generate
pairs of sentences in two languages by recursively
applying context-free bilingual production rules.
Most work on ITG has focused on the 2-normal
form, which consists of unary production rules that
are responsible for generating word pairs:

X → e/f

and binary production rules in two forms that are
responsible for generating syntactic subtree pairs:

X → [Y Z]

and

X → 〈Y Z〉

The rules with square brackets enclosing the right
hand side expand the left hand side symbol into the
two symbols on the right hand side in the same order
in the two languages, whereas the rules with pointed
brackets expand the left hand side symbol into the
two right hand side symbols in reverse order in the
two languages.

One special case of ITG is the bracketing ITG that
has only one nonterminal that instantiates exactly
one straight rule and one inverted rule. The ITG we
apply in our experiments has more structural labels
than the primitive bracketing grammar: it has a start
symbolS, a single preterminalC, and two interme-
diate nonterminalsA andB used to ensure that only
one parse can generate any given word-level align-
ment, as discussed by Wu (1997) and Zens and Ney
(2003).

As an example, Figure 1 shows the alignment and
the corresponding parse tree for the sentence pairJe
les vois / I see them using the unambiguous bracket-
ing ITG.

A stochastic ITG can be thought of as a stochastic
CFG extended to the space of bitext. The indepen-
dence assumptions typifying S-CFGs are also valid
for S-ITGs. Therefore, the probability of an S-ITG
parse is calculated as the product of the probabili-
ties of all the instances of rules in the parse tree. For
instance, the probability of the parse in Figure 1 is:

P (S → A) · P (A → [CB])

· P (B → 〈CC〉) · P (C → I/Je)

· P (C → see/vois) · P (C → them/les)

It is important to note that besides the bottom-
level word-pairing rules, the other rules are all non-
lexical, which means the structural alignment com-
ponent of the model is not sensitive to the lexical
contents of subtrees. Although the ITG model can
effectively restrict the space of alignment to make
polynomial time parsing algorithms possible, the
preference for inverted or straight rules only pas-
sively reflect the need of bottom level word align-
ment. We are interested in investigating how much
help it would be if we strengthen the structural align-
ment component by making the orientation choices
dependent on the real lexical pairs that are passed up
from the bottom.

The first step of lexicalization is to associate a lex-
ical pair with each nonterminal. The head word pair
generation rules are designed for this purpose:

X → X(e/f)

The word paire/f is representative of the lexical
content ofX in the two languages.

For binary rules, the mechanism of head selection
is introduced. Now there are 4 forms of binary rules:

X(e/f) → [Y (e/f)Z]

X(e/f) → [Y Z(e/f)]

X(e/f) → 〈Y (e/f)Z〉

X(e/f) → 〈Y Z(e/f)〉

determined by the four possible combinations of
head selections (Y or Z) and orientation selections
(straight or inverted).

The rules for generating lexical pairs at the leaves
of the tree are now predetermined:

X(e/f) → e/f

Putting them all together, we are able to derive a
lexicalized bilingual parse tree for a given sentence
pair. In Figure 2, the example in Figure 1 is revisited.
The probability of the lexicalized parse is:

P (S → S(see/vois))

· P (S(see/vois) → A(see/vois))

· P (A(see/vois) → [CB(see/vois)])

· P (C → C(I/Je))
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Je les vois

C

B

C

A

see/vois them/les

I/Je

S

C

Figure 1: ITG Example

I

see

them

Je les vois

S(see/vois)

C(see/vois)C(I/Je)

C

S

C(them/les)

C

B(see/vois)

A(see/vois)

Figure 2: Lexicalized ITG Example.see/vois is the headword of both the 2x2 cell and the entire alignment.

· P (B(see/vois) → 〈C(see/vois)C〉)

· P (C → C(them/les))

The factors of the product are ordered to show
the generative process of the most probable parse.
Starting from the start symbolS, we first choose
the head word pair forS, which is see/vois in the
example. Then, we recursively expand the lexical-
ized head constituents using the lexicalized struc-
tural rules. Since we are only lexicalizing rather than
bilexicalizing the rules, the non-head constituents
need to be lexicalized using head generation rules
so that the top-down generation process can proceed
in all branches. By doing so, word pairs can appear
at all levels of the final parse tree in contrast with the
unlexicalized parse tree in which the word pairs are
generated only at the bottom.

The binary rules are lexicalized rather than bilexi-
calized.1 This is a trade-off between complexity and
expressiveness. After our lexicalization, the number
of lexical rules, thus the number of parameters in the
statistical model, is still at the order ofO(|V ||T |),
where |V | and |T | are the vocabulary sizes of the

1In a sense our rules are bilexicalized in that they condition
on words from both languages; however they do not capture
head-modifier relations within a language.

two languages.

2.1 Parsing

Given a bilingual sentence pair, a synchronous parse
can be built using a two-dimensional extension of
chart parsing, where chart items are indexed by their
nonterminalX, head word paire/f if specified, be-
ginning and ending positionsl, m in the source lan-
guage string, and beginning and ending positionsi, j
in the target language string. For Expectation Max-
imization training, we compute lexicalized inside
probabilitiesβ(X(e/f), l, m, i, j), as well as un-
lexicalized inside probabilitiesβ(X, l, m, i, j), from
the bottom up as outlined in Algorithm 1.

The algorithm has a complexity ofO(N4
s N4

t ),
whereNs andNt are the lengths of source and tar-
get sentences respectively. The complexity of pars-
ing for an unlexicalized ITG isO(N3

s N3
t ). Lexical-

ization introduces an additional factor ofO(NsNt),
caused by the choice of headwordse andf in the
pseudocode.

Assuming that the lengths of the source and target
sentences are proportional, the algorithm has a com-
plexity of O(n8), wheren is the average length of
the source and target sentences.
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Algorithm 1 LexicalizedITG(s, t)
for all l, m such that0 ≤ l ≤ m ≤ Ns do

for all i, j such that0 ≤ i ≤ j ≤ Nt do
for all e ∈ {el+1 . . . em} do

for all f ∈ {fi+1 . . . fj} do
for all n such thatl ≤ n ≤ m do

for all k such thati ≤ k ≤ j do
for all rulesX → Y Z ∈ G do

β(X(e/f), l, m, i, j) +=
� straight rule, whereY is head

P ([Y (e/f)Z] | X(e/f)) ·β(Y (e/f), l, n, i, k) · β(Z, n, m, k, j)
� inverted rule, whereY is head
+ P (〈Y (e/f)Z〉 | X(e/f)) ·β(Y (e/f), n, m, i, k) · β(Z, l, n, k, j)
� straight rule, whereZ is head
+ P ([Y Z(e/f)] | X(e/f)) ·β(Y, l, n, i, k) · β(Z(e/f), n, m, k, j)
� inverted rule, whereZ is head
+ P (〈Y Z(e/f)〉 | X(e/f)) ·β(Y, n, m, i, k) · β(Z(e/f), l, n, k, j)

end for
end for

end for
� word pair generation rule
β(X, l, m, i, j) += P (X(e/f) | X) ·β(X(e/f), l, m, i, j)

end for
end for

end for
end for

2.2 Pruning

We need to further restrict the space of alignments
spanned by the source and target strings to make the
algorithm feasible. Our technique involves comput-
ing an estimate of how likely each of then4 cells in
the chart is before considering all ways of building
the cell by combining smaller subcells. Our figure
of merit for a cell involves an estimate of both the
inside probability of the cell (how likely the words
within the box in both dimensions are to align) and
the outside probability (how likely the words out-
side the box in both dimensions are to align). In
including an estimate of the outside probability, our
technique is related to A* methods for monolingual
parsing (Klein and Manning, 2003), although our
estimate is not guaranteed to be lower than com-
plete outside probabity assigned by ITG. Figure 3(a)
displays the tic-tac-toe pattern for the inside and
outside components of a particular cell. We use
IBM Model 1 as our estimate of both the inside and

outside probabilities. In the Model 1 estimate of
the outside probability, source and target words can
align using any combination of points from the four
outside corners of the tic-tac-toe pattern. Thus in
Figure 3(a), there is one solid cell (corresponding
to the Model 1 Viterbi alignment) in each column,
falling either in the upper or lower outside shaded
corner. This can be also be thought of as squeezing
together the four outside corners, creating a new cell
whose probability is estimated using IBM Model
1. Mathematically, our figure of merit for the cell
(l, m, i, j) is a product of the inside Model 1 proba-
bility and the outside Model 1 probability:

P (f (i,j) | e(l,m)) · P (f
(i,j)

| e
(l,m)

) (1)

= λ|(l,m)|,|(i,j)|

∏

t∈(i,j)

∑

s∈{0,(l,m)}

t(ft | es)

· λ
|(l,m)|,|(i,j)|

∏

t∈(i,j)

∑

s∈{0,(l,m)}

t(ft | es)
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Figure 3: The tic-tac-toe figure of merit used for pruning bitext cells. Theshaded regions in (a) show
alignments included in the figure of merit for bitext cell(l, m, i, j) (Equation 1); solid black cells show the
Model 1 Viterbi alignment within the shaded area. (b) shows how to compute the inside probability of a
unit-width cell by combining basic cells (Equation 2), and (c) shows how to compute the inside probability
of any cell by combining unit-width cells (Equation 3).

where(l, m) and(i, j) represent the complementary
spans in the two languages.λL1,L2

is the probability
of any word alignment template for a pair ofL1-
word source string andL2-word target string, which
we model as a uniform distribution of word-for-
word alignment patterns after a Poisson distribution
of target string’s possible lengths, following Brown
et al. (1993). As an alternative, the

∑
operator can

be replaced by themax operator as the inside opera-
tor over the translation probabilities above, meaning
that we use the Model 1 Viterbi probability as our
estimate, rather than the total Model 1 probability.2

A näıve implementation would takeO(n6) steps
of computation, because there areO(n4) cells, each
of which takesO(n2) steps to compute its Model 1
probability. Fortunately, we can exploit the recur-
sive nature of the cells. LetINS(l, m, i, j) denote
the major factor of our Model 1 estimate of a cell’s
inside probability,

∏
t∈(i,j)

∑
s∈{0,(l,m)} t(ft | es). It

turns out that one can compute cells of width one
(i = j) in constant time from a cell of equal width
and lower height:

INS(l, m, j, j) =
∏

t∈(j,j)

∑

s∈{0,(l,m)}

t(ft | es)

=
∑

s∈{0,(l,m)}

t(fj | es)

= INS(l, m − 1, j, j)

+ t(fj | em) (2)

Similarly, one can compute cells of width greater
than one by combining a cell of one smaller width

2The experimental difference of the two alternatives was
small. For our results, we used themax version.

with a cell of width one:

INS(l, m, i, j) =
∏

t∈(i,j)

∑

s∈{0,(l,m)}

t(ft | es)

=
∏

t∈(i,j)

INS(l, m, t, t)

= INS(l, m, i, j − 1)

· INS(l, m, j, j) (3)

Figure 3(b) and (c) illustrate the inductive compu-
tation indicated by the two equations. Each of the
O(n4) inductive steps takes one additive or mul-
tiplicative computation. A similar dynammic pro-
graming technique can be used to efficiently com-
pute the outside component of the figure of merit.
Hence, the algorithm takes justO(n4) steps to com-
pute the figure of merit for all cells in the chart.

Once the cells have been scored, there can be
many ways of pruning. In our experiments, we ap-
plied beam ratio pruning to each individual bucket of
cells sharing a common source substring. We prune
cells whose probability is lower than a fixed ratio be-
low the best cell for the same source substring. As a
result, at least one cell will be kept for each source
substring. We safely pruned more than 70% of cells
using10−5 as the beam ratio for sentences up to 25
words. Note that this pruning technique is applica-
ble to both the lexicalized ITG and the conventional
ITG.

In addition to pruning based on the figure of merit
described above, we use top-k pruning to limit the
number of hypotheses retained for each cell. This
is necessary for lexicalized ITG because the number
of distinct hypotheses in the two-dimensional ITG
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chart has increased toO(N3
s N3

t ) from O(N2
s N2

t )
due to the choice one ofO(Ns) source language
words and one ofO(Nt) target language words as
the head. We keep only the top-k lexicalized items
for a given chart cell of a certain nonterminalY con-
tained in the celll, m, i, j. Thus the additional com-
plexity of O(NsNt) will be replaced by a constant
factor.

The two pruning techniques can work for both the
computation of expected counts during the training
process and for the Viterbi-style algorithm for ex-
tracting the most probable parse after training. How-
ever, if we initialize EM from a uniform distribution,
all probabilties are equal on the first iteration, giving
us no basis to make pruning decisions. So, in our
experiments, we initialize the head generation prob-
abilities of the formP (X(e/f) | X) to be the same
asP (e/f | C) from the result of the unlexicalized
ITG training.

2.3 Smoothing

Even though we have controlled the number of pa-
rameters of the model to be at the magnitude of
O(|V ||T |), the problem of data sparseness still ren-
ders a smoothing method necessary. We use back-
ing off smoothing as the solution. The probabilities
of the unary head generation rules are in the form of
P (X(e/f) | X). We simply back them off to the
uniform distribution. The probabilities of the binary
rules, which are conditioned on lexicalized nonter-
minals, however, need to be backed off to the prob-
abilities of generalized rules in the following forms:

P ([Y (∗)Z] | X(∗))

P ([Y Z(∗)] | X(∗))

P (〈Y (∗)Z〉 | X(∗))

P (〈Y Z(∗)〉 | X(∗))

where∗ stands for any lexical pair. For instance,

P ([Y (e/f)Z] | X(e/f)) =

(1 − λ)PEM ([Y (e/f)Z] | X(e/f))

+ λP ([Y (∗)Z] | X(∗))

where

λ = 1/(1 + Expected Counts(X(e/f)))

The more oftenX(e/f) occurred, the more reli-
able are the estimated conditional probabilities with
the condition part beingX(e/f).

3 Experiments

We trained both the unlexicalized and the lexical-
ized ITGs on a parallel corpus of Chinese-English
newswire text. The Chinese data were automati-
cally segmented into tokens, and English capitaliza-
tion was retained. We replaced words occurring only
once with an unknown word token, resulting in a
Chinese vocabulary of 23,783 words and an English
vocabulary of 27,075 words.

In the first experiment, we restricted ourselves to
sentences of no more than 15 words in either lan-
guage, resulting in a training corpus of 6,984 sen-
tence pairs with a total of 66,681 Chinese words and
74,651 English words. In this experiment, we didn’t
apply the pruning techniques for the lexicalized ITG.

In the second experiment, we enabled the pruning
techniques for the LITG with the beam ratio for the
tic-tac-toe pruning as10−5 and the numberk for the
top-k pruning as 25. We ran the experiments on sen-
tences up to 25 words long in both languages. The
resulting training corpus had 18,773 sentence pairs
with a total of 276,113 Chinese words and 315,415
English words.

We evaluate our translation models in terms of
agreement with human-annotated word-level align-
ments between the sentence pairs. For scoring the
Viterbi alignments of each system against gold-
standard annotated alignments, we use the alignment
error rate (AER) of Och and Ney (2000), which mea-
sures agreement at the level of pairs of words:

AER = 1 −
|A ∩ GP | + |A ∩ GS |

|A| + |GS |

where A is the set of word pairs aligned by the
automatic system,GS is the set marked in the
gold standard as “sure”, andGP is the set marked
as “possible” (including the “sure” pairs). In our
Chinese-English data, only one type of alignment
was marked, meaning thatGP = GS .

In our hand-aligned data, 20 sentence pairs are
less than or equal to 15 words in both languages,
and were used as the test set for the first experiment,
and 47 sentence pairs are no longer than 25 words in
either language and were used to evaluate the pruned
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Alignment
Precision Recall Error Rate

IBM Model 1 .59 .37 .54
IBM Model 4 .63 .43 .49
ITG .62 .47 .46
Lexicalized ITG .66 .50 .43

Table 1: Alignment results on Chinese-English corpus (≤ 15 words on both sides). Full ITG vs. Full LITG

Alignment
Precision Recall Error Rate

IBM Model 1 .56 .42 .52
IBM Model 4 .67 .43 .47
ITG .68 .52 .40
Lexicalized ITG .69 .51 .41

Table 2: Alignment results on Chinese-English corpus (≤ 25 words on both sides). Full ITG vs. Pruned
LITG

LITG against the unlexicalized ITG.

A separate development set of hand-aligned sen-
tence pairs was used to control overfitting. The sub-
set of up to 15 words in both languages was used for
cross-validating in the first experiment. The subset
of up to 25 words in both languages was used for the
same purpose in the second experiment.

Table 1 compares results using the full (unpruned)
model of unlexicalized ITG with the full model of
lexicalized ITG.

The two models were initialized from uniform
distributions for all rules and were trained until AER
began to rise on our held-out cross-validation data,
which turned out to be 4 iterations for ITG and 3
iterations for LITG.

The results from the second experiment are shown
in Table 2. The performance of the full model of un-
lexicalized ITG is compared with the pruned model
of lexicalized ITG using more training data and eval-
uation data.

Under the same check condition, we trained ITG
for 3 iterations and the pruned LITG for 1 iteration.

For comparison, we also included the results from
IBM Model 1 and Model 4. The numbers of itera-
tions for the training of the IBM models were cho-
sen to be the turning points of AER changing on the
cross-validation data.

4 Discussion

As shown by the numbers in Table 1, the full lexical-
ized model produced promising alignment results on
sentence pairs that have no more than 15 words on
both sides. However, due to its prohibitiveO(n8)
computational complexity, our C++ implementation
of the unpruned lexicalized model took more than
500 CPU hours, which were distributed over multi-
ple machines, to finish one iteration of training. The
number of CPU hours would increase to a point that
is unacceptable if we doubled the average sentence
length. Some type of pruning is a must-have. Our
pruned version of LITG controlled the running time
for one iteration to be less than 1200 CPU hours, de-
spite the fact that both the number of sentences and
the average length of sentences were more than dou-
bled. To verify the safety of the tic-tac-toe pruning
technique, we applied it to the unlexicalized ITG us-
ing the same beam ratio (10−5) and found that the
AER on the test data was not changed. However,
whether or not the top-k lexical head pruning tech-
nique is equally safe remains a question. One no-
ticeable implication of this technique for training is
the reliance on initial probabilities of lexical pairs
that are discriminative enough. The comparison of
results for ITG and LITG in Table 2 and the fact that
AER began to rise after only one iteration of train-
ing seem to indicate that keeping few distinct lex-
ical heads caused convergence on a suboptimal set
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of parameters, leading to a form of overfitting. In
contrast, overfitting did not seem to be a problem for
LITG in the unpruned experiment of Table 1, despite
the much larger number of parameters for LITG than
for ITG and the smaller training set.

We also want to point out that for a pair of long
sentences, it would be hard to reflect the inherent
bilingual syntactic structure using the lexicalized bi-
nary bracketing parse tree. In Figure 2,A(see/vois)
echoes IP (see/vois) and B(see/vois) echoes
V P (see/vois) so that it meansIP (see/vois) is not
inverted from English to French but its right child
V P (see/vois) is inverted. However, for longer sen-
tences with more than 5 levels of bracketing and the
same lexicalized nonterminal repeatedly appearing
at different levels, the correspondences would be-
come less linguistically plausible. We think the lim-
itations of the bracketing grammar are another rea-
son for not being able to improve the AER of longer
sentence pairs after lexicalization.

The space of alignments that is to be considered
by LITG is exactly the space considered by ITG
since the structural rules shared by them define the
alignment space. The lexicalized ITG is designed
to be more sensitive to the lexical influence on the
choices of inversions so that it can find better align-
ments. Wu (1997) demonstrated that for pairs of
sentences that are less than 16 words, the ITG align-
ment space has a good coverage over all possibili-
ties. Hence, it’s reasonable to see a better chance
of improving the alignment result for sentences less
than 16 words.

5 Conclusion

We presented the formal description of a Stochastic
Lexicalized Inversion Transduction Grammar with
its EM training procedure, and proposed specially
designed pruning and smoothing techniques. The
experiments on a parallel corpus of Chinese and En-
glish showed that lexicalization helped for aligning
sentences of up to 15 words on both sides. The prun-
ing and the limitations of the bracketing grammar
may be the reasons that the result on sentences of up
to 25 words on both sides is not better than that of
the unlexicalized ITG.
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Abstract

In this paper, we examine the task of extracting a
set of biographic facts about target individuals from
a collection of Web pages. We automatically anno-
tate training text with positive and negative exam-
ples of fact extractions and train Rote, Naı̈ve Bayes,
and Conditional Random Field extraction models
for fact extraction from individual Web pages. We
then propose and evaluate methods for fusing the
extracted information across documents to return a
consensus answer. A novel cross-field bootstrapping
method leverages data interdependencies to yield
improved performance.

1 Introduction

Much recent statistical information extraction re-
search has applied graphical models to extract in-
formation from one particular document after train-
ing on a large corpus of annotated data (Leek, 1997;
Freitag and McCallum, 1999).1 Such systems are
widely applicable, yet there remain many informa-
tion extraction tasks that are not readily amenable to
these methods. Annotated data required for training
statistical extraction systems is sometimes unavail-
able, while there are examples of the desired infor-
mation. Further, the goal may be to find a few inter-
related pieces of information that are stated multiple
times in a set of documents.

Here, we investigate one task that meets the above
criteria. Given the name of a celebrity such as

1Alternatively, Riloff (1996) trains on in-domain and
out-of-domain texts and then has a human filtering step.
Huffman (1995) proposes a method to train a different type of
extraction system by example.

“Frank Zappa”, our goal is to extract a set of bio-
graphic facts (e.g., birthdate, birth place and occupa-
tion) about that person from documents on the Web.

First, we describe a general method of automatic
annotation for training from positive and negative
examples and use the method to train Rote, Naı̈ve
Bayes, and Conditional Random Field models (Sec-
tion 2). We then examine how multiple extractions
can be combined to form one consensus answer
(Section 3). We compare fusion methods and show
that frequency voting outperforms the single high-
est confidence answer by an average of 11% across
the various extractors. Increasing the number of re-
trieved documents boosts the overall system accu-
racy as additional documents which mention the in-
dividual in question lead to higher recall. This im-
proved recall more than compensates for a loss in
per-extraction precision from these additional doc-
uments. Next, we present a method for cross-field
bootstrapping (Section 4) which improves per-field
accuracy by 7%. We demonstrate that a small train-
ing set with only the most relevant documents can be
as effective as a larger training set with additional,
less relevant documents (Section 5).

2 Training by Automatic Annotation

Typically, statistical extraction systems (such as
HMMs and CRFs) are trained using hand-annotated
data. Annotating the necessary data by hand is time-
consuming and brittle, since it may require large-
scale re-annotation when the annotation scheme
changes. For the special case of Rote extrac-
tors, a more attractive alternative has been proposed
by Brin (1998), Agichtein and Gravano (2000), and
Ravichandran and Hovy (2002).
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Essentially, for any text snippet of the form
A1pA2qA3, these systems estimate the probability
that a relationshipr(p, q) holds between entitiesp
andq, given the interstitial context, as2

P (r(p, q) | pA2q) = P (r(p, q) | pA2q)

=

∑
x,y∈T c(xA2y)∑

x c(xA2)

That is, the probability of a relationshipr(p, q) is
the number of times that patternxA2y predicts any
relationshipr(x, y) in the training setT . c(.) is the
count. We will refer tox as thehook3 andy as the
target. In this paper, the hook is always an indi-
vidual. Training a Rote extractor is straightforward
given a setT of example relationshipsr(x, y). For
each hook, download a separate set of relevant doc-
uments (ahook corpus, Dx) from the Web.4 Then
for any particular patternA2 and an elementx, count
how often the patternxA2 predictsy and how often
it retrieves a spurious̄y.5

This annotation method extends to training other
statistical models with positive examples, for exam-
ple a Näıve Bayes (NB) unigram model. In this
model, instead of looking for an exactA2 pattern
as above, each individual word in the patternA2 is
used to predict the presence of a relationship.

P (r(p, q) | pA2q)
∝P (pA2q | r(p, q))P (r(p, q))
=P (A2 | r(p, q))

=
∏

a∈A2

P (a | r(p, q))

We perform add-lambda smoothing for out-of-
vocabulary words and thus assign a positive prob-
ability to any sequence. As before, a set of relevant

2The above Rote models also condition on the preceding and
trailing words, for simplicity we only model interstitial words
A2.

3Following (Ravichandran and Hovy, 2002).
4In the following experiments we assume that there is one

main object of interestp, for whom we want to find certain
pieces of informationr(p, q), wherer denotes the type of re-
lationship (e.g., birthday) andq is a value (e.g., May 20th). We
require one hook corpus for each hook, not a separate one for
each relationship.

5Having afunctional constraint ∀q̄ 6= q, r̄(p, q̄) makes this
estimate much more reliable, but it is possible to use this method
of estimation even when this constraint does not hold.

documents is downloaded for each particular hook.
Then every hook and target is annotated. From that
markup, we can pick out the interstitialA2 patterns
and calculate the necessary probabilities.

Since the NB model assigns a positive probability
to every sequence, we need to pick out likely tar-
gets from those proposed by the NB extractor. We
construct abackground modelwhich is a basic un-
igram language model,P (A2) =

∏
a∈A2

P (a). We
then pick targets chosen by the confidence estimate

CNB(q) = log
P (A2 | r(p, q))

P (A2)

However, this confidence estimate does not work-
well in our dataset.

We propose to use negative examples to estimate
P (A2 | r̄(p, q))6 as well asP (A2 | r(p, q)). For
each relationship, we define thetarget setEr to be
all potential targets and model it using regular ex-
pressions.7 In training, for each relationshipr(p, q),
we markup the hookp, the targetq, and allspuri-
ous targets(q̄ ∈ {Er − q}) which provide negative
examples. Targets can then be chosen with the fol-
lowing confidence estimate

CNB+E(q) = log
P (A2 | r(p, q))
P (A2 | r̄(p, q))

We call thisNB+E in the following experiments.
The above process describes a general method for

automatically annotating a corpus with positive and
negative examples, and this corpus can be used to
train statistical models that rely on annotated data.8

In this paper, we test automatic annotation using
Conditional Random Fields (CRFs) (Lafferty et al.,
2001) which have achieved high performance for in-
formation extraction. CRFs are undirected graphical
models that estimate the conditional probability of a
state sequence given an output sequence

P (s | o) =
1
Z

exp
( T∑

t=1

∑
k

λkfk(st−1, st, o, t)
)

6r̄ stands in for all other possible relationships (including no
relationship) betweenp andq. P (A2 | r̄(p, q)) is estimated as
P (A2 | r(p, q)) is, except with spurious targets.

7e.g.,Ebirthyear = {\d\d\d\d}. This is the only source of
human knowledge put into the system and required only around
4 hours of effort, less effort than annotating an entire corpus or
writing information extraction rules.

8This corpus markup gives automatic annotation that yields
noisier training data than manual annotation would.
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Figure 1: CRF state-transition graphs for extracting a relation-
shipr(p, q) from a sentencepA2q. Left: CRF Extraction with
a background model (B). Right:CRF+E As before but with
spurious target prediction (pA2q̄).

We use the Mallet system (McCallum, 2002) for
training and evaluation of the CRFs. In order to ex-
amine the improvement by using negative examples,
we train CRFs with two topologies (Figure 1). The
first, CRF, models the target relationship and back-
ground sequences and is trained on a corpus where
targets (positive examples) are annotated. The sec-
ond, CRF+E, models the target relationship, spu-
rious targets and background sequences, and it is
trained on a corpus where targets (positive exam-
ples) as well as spurious targets (negative examples)
are annotated.

Experimental Results

To test the performance of the different ex-
tractors, we collected a set of 152 semi-
structured mini-biographies from an online site
(www.infoplease.com), and used simple rules to
extract a biographic fact database of birthday and
month (henceforth birthday), birth year, occupation,
birth place, and year of death (when applicable).
An example of the data can be found in Table
1. In our system, we normalized birthdays, and
performed capitalization normalization for the
remaining fields. We did no further normalization,
such as normalizing state names to their two letter
acronyms (e.g., California→ CA). Fifteen names
were set aside as training data, and the rest were
used for testing. For each name, 150 documents
were downloaded from Google to serve as the hook
corpus for either training or testing.9

In training, we automatically annotated docu-
ments using people in the training set as hooks, and
in testing, tried to get targets that exactly matched
what was present in the database. This is a very strict
method of evaluation for three reasons. First, since
the facts were automatically collected, they contain

9Name polyreference, along with ranking errors, result in
the retrieval of undesired documents.

Aaron Neville Frank Zappa
Birthday January 24 December 21
Birth year 1941 1940
Occupation Singer Musician
Birthplace New Orleans Baltimore,Maryland
Year of Death - 1993

Table 1: Two of 152 entries in the Biographic Database. Each
entry contains incomplete information about various celebrities.
Here, Aaron Neville’s birth state is missing, and Frank Zappa
could be equally well described as a guitarist or rock-star.

errors and thus the system is tested against wrong
answers.10 Second, the extractors might have re-
trieved information that was simply not present in
the database but nevertheless correct (e.g., some-
one’s occupation might be listed as writer and the
retrieved occupation might be novelist). Third, since
the retrieved targets were not normalized, there sys-
tem may have retrieved targets that were correct but
were not recognized (e.g., the database birthplace is
New York, and the system retrieves NY).

In testing, we rejected candidate targets that were
not present in our target set modelsEr. In some
cases, this resulted in the system being unable to find
the correct target for a particular relationship, since
it was not in the target set.

Before fusion (Section 3), we gathered all the
facts extracted by the system and graded them in iso-
lation. We present the per-extractionprecision

Pre-Fusion Precision=
# Correct Extracted Targets
# Total Extracted Targets

We also present thepseudo-recall, which is the av-
erage number of times per person a correct target
was extracted. It is difficult to calculate true re-
call without manual annotation of the entire corpus,
since it cannot be known for certain how many times
the document set contains the desired information.11

Pre-Fusion Pseudo-Recall=
# Correct Extracted Targets

#People

The precision of each of the various extraction
methods is listed in Table 2. The data show that
on average the Rote method has the best precision,

10These deficiencies in testing also have implications for
training, since the models will be trained on annotated data that
has errors. The phenomenon of missing and inaccurate data
was most prevalent for occupation and birthplace relationships,
though it was observed for other relationships as well.

11It is insufficient to count all text matches as instances that
the system should extract. To obtain the true recall, it is nec-
essary to decide whether each sentence contains the desired re-
lationship, even in cases where the information is not what the
biographies have listed.
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Birthday Birth year Occupation Birthplace Year of Death Avg.
Rote .789 .355 .305 .510 .527 .497
NB+E .423 .361 .255 .217 .088 .269
CRF .509 .342 .219 .139 .267 .295
CRF+E .680 .654 .246 .357 .314 .450

Table 2: Pre-Fusion Precision of extracted facts for various extraction systems, trained on 15 people each with 150 documents, and
tested on 137 people each with 150 documents.

Birthday Birth year Occupation Birthplace Year of Death Avg.
Rote 4.8 1.9 1.5 1.0 0.1 1.9
NB+E 9.6 11.5 20.3 11.3 0.7 10.9
CRF 3.0 16.3 31.1 10.7 3.2 12.9
CRF+E 6.8 9.9 3.2 3.6 1.4 5.0

Table 3: Pre-Fusion Pseudo-Recall of extract facts with the identical training/testing set-up as above.

while the NB+E extractor has the worst. Train-
ing the CRF with negative examples (CRF+E) gave
better precision in extracted information then train-
ing it without negative examples. Table 3 lists the
pseudo-recall or average number of correctly ex-
tracted targets per person. The results illustrate that
the Rote has the worst pseudo-recall, and the plain
CRF, trained without negative examples, has the best
pseudo-recall.

To test how the extraction precision changes as
more documents are retrieved from the ranked re-
sults from Google, we created retrieval sets of 1, 5,
15, 30, 75, and 150 documents per person and re-
peated the above experiments with the CRF+E ex-
tractor. The data in Figure 2 suggest that there is a
gradual drop in extraction precision throughout the
corpus, which may be caused by the fact that doc-
uments further down the retrieved list are less rele-
vant, and therefore less likely to contain the relevant
biographic data.
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Figure 2: As more documents are retrieved per person, pre-
fusion precision drops.

However, even though the extractor’s precision
drops, the data in Figure 3 indicate that there con-
tinue to be instances of the relevant biographic data.
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Figure 3: Pre-fusion pseudo-recall increases as more documents
are added.

3 Cross-Document Information Fusion

The per-extraction performance was presented in
Section 2, but the final task is to find the single cor-
rect target for each person.12 In this section, we ex-
amine two basic methodologies for combining can-
didate targets. Masterson and Kushmerick (2003)
propose Best which gives each candidate a
score equal to its highest confidence extraction:
Best(x) = argmax

x
C(x).13 We further consider

Voting, which counts the number of times each can-
didatex was extracted:Vote(x) = |C(x) > 0|.
Each of these methods ranks the candidate targets
by score and chooses the top-ranked one.

The experimental setup used in the fusion exper-
iments was the same as before: training on 15 peo-
ple, and testing on 137 people. However, the post-
fusion evaluation differs from the pre-fusion evalua-
tion. After fusion, the system returns one consensus
target for each person and thus the evaluation is on
the accuracy of those targets. That is, missing tar-

12This is a simplifying assumption, since there are many
cases where there might exist multiple possible values, e.g., a
person may be both a writer and a musician.

13C(x) is either the confidence estimate (NB+E) or the prob-
ability score (Rote,CRF,CRF+E).
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Best Vote
Rote .364 .450
NB+E .385 .588
CRF .513 .624
CRF+E .650 .678

Table 4: Average Accuracy of the Highest Confidence (Best)
and Most Frequent (Vote) across five extraction fields.

gets are graded as wrong.14

Post-Fusion Accuracy=
# People with Correct Target

# People

Additionally, since the targets are ranked, we also
calculated the mean reciprocal rank (MRR).15 The
data in Table 4 show the average system perfor-
mance with the different fusion methods. Frequency
voting gave anywhere from a 2% to a 20% improve-
ment over picking the highest confidence candidate.
CRF+E (the CRF trained with negative examples)
was the highest performing system overall.

Birth Day
Fusion Accuracy Fusion MRR

Rote Vote .854 .877
NB+E Vote .854 .889
CRF Vote .650 .703
CRF+E Vote .883 .911

Birth year
Rote Vote .387 .497
NB+E Vote .778 .838
CRF Vote .796 .860
CRF+E Vote .869 .876

Occupation
Rote Vote .299 .405
NB+E Vote .642 .751
CRF Vote .606 .740
CRF+E Vote .423 .553

Birthplace
Rote Vote .321 .338
NB+E Vote .474 .586
CRF Vote .321 .476
CRF+E Vote .467 .560

Year of Death
Rote Vote .389 .389
NB+E Vote .194 .383
CRF .750 .840
CRF+E Vote .750 .827

Table 5: Voting for information fusion, evaluated per person.
CRF+E has best average performance (67.8%).

Table 5 shows the results of using each of these
extractors to extract correct relationships from the
top 150 ranked documents downloaded from the

14For year of death, we only graded cases where the person
had died.

15The reciprocal rank = 1 / the rank of the correct target.

Web. CRF+E was a top performer in 3/5 of the
cases. In the other 2 cases, the NB+E was the most
successful, perhaps because NB+E’s increased re-
call was more useful than CRF+E’s improved pre-
cision.

Retrieval Set Size and Performance

As with pre-fusion, we performed a set of exper-
iments with different retrieval set sizes and used
the CRF+E extraction system trained on 150 docu-
ments per person. The data in Figure 4 show that
performance improves as the retrieval set size in-
creases. Most of the gains come in the first 30 doc-
uments, where average performance increased from
14% (1 document) to 63% (30 documents). Increas-
ing the retrieval set size to 150 documents per person
yielded an additional 5% absolute improvement.
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Figure 4: Fusion accuracy increases with more documents per
person

Post-fusion errors come from two major sources.
The first source is the misranking of correct relation-
ships. The second is the case where relevant infor-
mation is not retrieved at all, which we measure as

Post-Fusion Missing=
# Missing Targets

# People

The data in Figure 5 suggest that the decrease in
missing targets is a significant contributing factor
to the improvement in performance with increased
document size. Missing targets were a major prob-
lem for Birthplace, constituting more than half the
errors (32% at 150 documents).

4 Cross-Field Bootstrapping

Sections 2 and 3 presented methods for training sep-
arate extractors for particular relationships and for
doing fusion across multiple documents. In this sec-
tion, we leverage data interdependencies to improve
performance.

The method we propose is to bootstrap across
fields and use knowledge of one relationship to im-
prove performance on the extraction of another. For
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fusion missing targets, targets which are never extracted in any
document.

Birth year
Extraction Precision Fusion Accuracy

CRF .342 .797
+ birthday .472 .861

CRF+E .654 .869
+ birthday .809 .891

Occupation
Extraction Precision Fusion Accuracy

CRF .219 .606
+ birthday .217 .569
+ birth year(f) 21.9 .599
+ all .214 .591

CRF+E .246 .423
+ birthday .325 .577
+ birth year(f) .387 .672
+ all .382 .642

Birthplace
Extraction Precision Fusion Accuracy

CRF .139 .321
+ birthday .158 .372
+ birth year(f) .156 .350

CRF+E .357 .467
+ birthday .350 .474
+ birth year(f) .294 .350
+ occupation(f) .314 .354
+ all .362 .532

Table 6: Performance of Cross-Field Bootstrapping Models.
(f) indicates that the best fused result was taken. birth year(f)
means birth years were annotated using the system that discov-
ered the most accurate birth years.

example, to extract birth year given knowledge of
the birthday, in training we mark up each hook cor-
pusDx with the known birthdayb : birthday(x, b)
and the target birth yeary : birthyear(x, y) and
add an additional feature to the CRF that indicates
whether the birthday has been seen in the sentence.16

In testing, for each hook, we first find the birthday
using the methods presented in the previous sec-
tions, annotate the corpus with the extracted birth-
day, and then apply the birth year CRF (see Figure 6
next page).

16The CRF state model doesn’t change. When bootstrapping
from multiple fields, we add the conjunctions of the fields as
features.

Table 6 shows the effect of using this bootstrapped
data to estimate other fields. Based on the relative
performance of each of the individual extraction sys-
tems, we chose the following schedule for perform-
ing the bootstrapping: 1) Birthday, 2) Birth year, 3)
Occupation, 4) Birthplace. We tried adding in all
knowledge available to the system at each point in
the schedule.17 There are gains in accuracy for birth
year, occupation and birthplace by using cross-field
bootstrapping. The performance of the plain CRF+E
averaged across all five fields is 67.4%, while for the
best bootstrapped system it is 74.6%, a gain of 7%.

Doing bootstrapping in this way improves for
people whose information is already partially cor-
rect. As a result, the percentage of people who
have completely correct information improves to
37% from 13.8%, a gain of 24% over the non-
bootstrapped CRF+E system. Additionally, erro-
neous extractions do not hurt accuracy on extraction
of other fields. Performance in the bootstrapped sys-
tem for birthyear, occupation and birth place when
the birthday is wrong is almost the same as perfor-
mance in the non-bootstrapped system.

5 Training Set Size Reduction

One of the results from Section 2 is that lower
ranked documents are less likely to contain the rel-
evant biographic information. While this does not
have an dramatic effect on the post-fusion accuracy
(which improves with more documents), it suggests
that training on a smaller corpus, with more relevant
documents and more sentences with the desired in-
formation, might lead to equivalent or improved per-
formance. In a final set of experiments we looked at
system performance when the extractor is trained on
fewer than 150 documents per person.

The data in Figure 7 show that training on 30 doc-
uments per person yields around the same perfor-
mance as training on 150 documents per person. Av-
erage performance when the system was trained on
30 documents per person is 70%, while average per-
formance when trained on 150 documents per per-
son is 68%. Most of this loss in performance comes
from losses in occupation, but the other relationships

17This system has the extra knowledge of which fused
method is the best for each relationship. This was assessed by
inspection.
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Frank Zappa was born on December 21.

1. Birthday
Zappa : December 21, 1940.

2. Birthyear1. Birthday

2. Birthyear 3. Birthplace
Zappa was born in 1940 in Baltimore. 

Figure 6: Cross-Field Bootstrapping: In step (1) The birthday,
December 21, is extracted and the text marked. In step 2, cooc-
currences with the discovered birthday make 1940 a better can-
didate for birthyear. In step (3), the discovered birthyear ap-
pears in contexts where the discovered birthday does not and
improves extraction of birth place.
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Figure 7: Fusion accuracy doesn’t improve with more than 30
training documents per person.

have either little or no gain from training on addi-
tional documents. There are two possible reasons
why more training data may not help, and even may
hurt performance.

One possibility is that higher ranked retrieved
documents are more likely to contain biographical
facts, while in later documents it is more likely that
automatically annotated training instances are in fact
false positives. That is, higher ranked documents are
cleaner training data. Pre-Fusion precision results
(Figure 8) support this hypothesis since it appears
that later instances are often contaminating earlier
models.
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Figure 8: Pre-Fusion precision shows slight drops with in-
creased training documents.

The data in Figure 9 suggest an alternate possibil-
ity that later documents also shift the prior toward
a model where it is less likely that a relationship is
observed as fewer targets are extracted.
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training documents.

6 Related Work

The closest related work to the task of biographic
fact extraction was done by Cowie et al. (2000) and
Schiffman et al. (2001), who explore the problem of
biographic summarization.

There has been rather limited published
work in multi-document information extrac-
tion. The closest work to what we present here is
Masterson and Kushmerick (2003), who perform
multi-document information extraction trained on
manually annotated training data and use Best
Confidence to resolve each particular template slot.
In summarizarion, many systems have examined
the multi-document case. Notable systems are
SUMMONS (Radev and McKeown, 1998) and
RIPTIDE (White et al., 2001), which assume per-
fect extracted information and then perform closed
domain summarization. Barzilay et al. (1999) does
not explicitly extract facts, but instead picks out
relevant repeated elements and combines them to
obtain a summary which retains the semantics of
the original.

In recent question answering research, informa-
tion fusion has been used to combine multiple
candidate answers to form a consensus answer.
Clarke et al. (2001) use frequency of n-gram occur-
rence to pick answers for particular questions. An-
other example of answer fusion comes in (Brill et
al., 2001) which combines the output of multiple
question answering systems in order to rank an-
swers. Dalmas and Webber (2004) use a WordNet
cover heuristic to choose an appropriate location
from a large candidate set of answers.

There has been a considerable amount of work in
training information extraction systems from anno-
tated data since the mid-90s. The initial work in the
field used lexico-syntactic template patterns learned
using a variety of different empirical approaches
(Riloff and Schmelzenbach, 1998; Huffman, 1995;
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Soderland et al., 1995). Seymore et al. (1999) use
HMMs for information extraction and explore ways
to improve the learning process.

Nahm and Mooney (2002) suggest a method to
learn word-to-word relationships across fields by do-
ing data mining on information extraction results.
Prager et al. (2004) uses knowledge of birth year to
weed out candidate years of death that are impos-
sible. Using the CRF extractors in our data set,
this heuristic did not yield any improvement. More
distantly related work for multi-field extraction sug-
gests methods for combining information in graphi-
cal models across multiple extraction instances (Sut-
ton et al., 2004; Bunescu and Mooney, 2004) .

7 Conclusion

This paper has presented new experimental method-
ologies and results for cross-document information
fusion, focusing on the task of biographic fact ex-
traction and has proposed a new method for cross-
field bootstrapping. In particular, we have shown
that automatic annotation can be used effectively
to train statistical information extractors such Naı̈ve
Bayes and CRFs, and that CRF extraction accuracy
can be improved by 5% with a negative example
model. We looked at cross-document fusion and
demonstrated that voting outperforms choosing the
highest confidence extracted information by 2% to
20%. Finally, we introduced a cross-field bootstrap-
ping method that improved average accuracy by 7%.

References
E. Agichtein and L. Gravano. 2000. Snowball: Extracting re-

lations from large plain-text collections. InProceedings of
ICDL, pages 85–94.

R. Barzilay, K. R. McKeown, and M. Elhadad. 1999. Informa-
tion fusion in the context of multi-document summarization.
In Proceedings of ACL, pages 550–557.

E. Brill, J. Lin, M. Banko, S. Dumais, and A. Ng. 2001. Data-
intensive question answering. InProceedings of TREC,
pages 183–189.

S. Brin. 1998. Extracting patterns and relations from the world
wide web. InWebDB Workshop at 6th International Confer-
ence on Extending Database Technology, EDBT’98, pages
172–183.

R. Bunescu and R. Mooney. 2004. Collective information ex-
traction with relational markov networks. InProceedings of
ACL, pages 438–445.

C. L. A. Clarke, G. V. Cormack, and T. R. Lynam. 2001. Ex-
ploiting redundancy in question answering. InProceedings
of SIGIR, pages 358–365.

J. Cowie, S. Nirenburg, and H. Molina-Salgado. 2000. Gener-
ating personal profiles. InThe International Conference On
MT And Multilingual NLP.

T. Dalmas and B. Webber. 2004. Information fusion
for answering factoid questions. InProceedings of 2nd
CoLogNET-ElsNET Symposium. Questions and Answers:
Theoretical Perspectives.

D. Freitag and A. McCallum. 1999. Information extraction
with hmms and shrinkage. InProceedings of the AAAI-99
Workshop on Machine Learning for Information Extraction,
pages 31–36.

S. B. Huffman. 1995. Learning information extraction patterns
from examples. InWorking Notes of the IJCAI-95 Workshop
on New Approaches to Learning for Natural Language Pro-
cessing, pages 127–134.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional
random fields: Probabilistic models for segmenting and la-
beling sequence data. InProceedings of ICML, pages 282–
289.

T. R. Leek. 1997. Information extraction using hidden markov
models. Master’s Thesis, UC San Diego.

D. Masterson and N. Kushmerick. 2003. Information ex-
traction from multi-document threads. InProceedings of
ECML-2003: Workshop on Adaptive Text Extraction and
Mining, pages 34–41.

A. McCallum. 2002. Mallet: A machine learning for language
toolkit.

U. Nahm and R. Mooney. 2002. Text mining with information
extraction. InProceedings of the AAAI 2220 Spring Sympo-
sium on Mining Answers from Texts and Knowledge Bases,
pages 60–67.

J. Prager, J. Chu-Carroll, and K. Czuba. 2004. Question an-
swering by constraint satisfaction: Qa-by-dossier with con-
straints. InProceedings of ACL, pages 574–581.

D. R. Radev and K. R. McKeown. 1998. Generating natural
language summaries from multiple on-line sources.Compu-
tational Linguistics, 24(3):469–500.

D. Ravichandran and E. Hovy. 2002. Learning surface text
patterns for a question answering system. InProceedings of
ACL, pages 41–47.

E. Riloff and M. Schmelzenbach. 1998. An empirical ap-
proach to conceptual case frame acquisition. InProceedings
of WVLC, pages 49–56.

E. Riloff. 1996. Automatically Generating Extraction Patterns
from Untagged Text. InProceedings of AAAI, pages 1044–
1049.

B. Schiffman, I. Mani, and K. J. Concepcion. 2001. Produc-
ing biographical summaries: Combining linguistic knowl-
edge with corpus statistics. InProceedings of ACL, pages
450–457.

K. Seymore, A. McCallum, and R. Rosenfeld. 1999. Learning
hidden markov model structure for information extraction.
In AAAI’99 Workshop on Machine Learning for Information
Extraction, pages 37–42.

S. Soderland, D. Fisher, J. Aseltine, and W. Lehnert. 1995.
CRYSTAL: Inducing a conceptual dictionary. InProceed-
ings of IJCAI, pages 1314–1319.

C. Sutton, K. Rohanimanesh, and A. McCallum. 2004. Dy-
namic conditional random fields: factorize probabilistic
models for labeling and segmenting sequence data. InPro-
ceedings of ICML.

M. White, T. Korelsky, C. Cardie, V. Ng, D. Pierce, and
K. Wagstaff. 2001. Multi-document summarization via in-
formation extraction. InProceedings of HLT.

490



Proceedings of the 43rd Annual Meeting of the ACL, pages 491–498,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Simple Algorithms for Complex Relation Extraction
with Applications to Biomedical IE

Ryan McDonald1 Fernando Pereira1 Seth Kulick2

1CIS and 2IRCS, University of Pennsylvania, Philadelphia, PA
{ryantm,pereira}@cis.upenn.edu, skulick@linc.cis.upenn.edu

Scott Winters Yang Jin Pete White
Division of Oncology, Children’s Hospital of Pennsylvania, Philadelphia, PA

{winters,jin,white}@genome.chop.edu

Abstract

A complex relation is any n-ary relation
in which some of the arguments may be
be unspecified. We present here a simple
two-stage method for extracting complex
relations between named entities in text.
The first stage creates a graph from pairs
of entities that are likely to be related, and
the second stage scores maximal cliques
in that graph as potential complex relation
instances. We evaluate the new method
against a standard baseline for extracting
genomic variation relations from biomed-
ical text.

1 Introduction

Most research on text information extraction (IE)
has focused on accurate tagging of named entities.
Successful early named-entity taggers were based
on finite-state generative models (Bikel et al., 1999).
More recently, discriminatively-trained models have
been shown to be more accurate than generative
models (McCallum et al., 2000; Lafferty et al., 2001;
Kudo and Matsumoto, 2001). Both kinds of mod-
els have been developed for tagging entities such
as people, places and organizations in news mate-
rial. However, the rapid development of bioinfor-
matics has recently generated interest on the extrac-
tion of biological entities such as genes (Collier et
al., 2000) and genomic variations (McDonald et al.,
2004b) from biomedical literature.

The next logical step for IE is to begin to develop
methods for extracting meaningful relations involv-

ing named entities. Such relations would be ex-
tremely useful in applications like question answer-
ing, automatic database generation, and intelligent
document searching and indexing. Though not as
well studied as entity extraction, relation extraction
has still seen a significant amount of work. We dis-
cuss some previous approaches at greater length in
Section 2.

Most relation extraction systems focus on the spe-
cific problem of extracting binary relations, such
as the employee of relation or protein-protein in-
teraction relation. Very little work has been done
in recognizing and extracting more complex rela-
tions. We define a complex relation as any n-ary
relation among n typed entities. The relation is
defined by the schema (t1, . . . , tn) where ti ∈ T

are entity types. An instance (or tuple) in the rela-
tion is a list of entities (e1, . . . , en) such that either
type(ei) = ti, or ei =⊥ indicating that the ith ele-
ment of the tuple is missing.

For example, assume that the entity types
are T = {person, job, company} and we are
interested in the ternary relation with schema
(person, job, company) that relates a person
to their job at a particular company. For
the sentence “John Smith is the CEO at Inc.
Corp.”, the system would ideally extract the tu-
ple (John Smith, CEO, Inc. Corp.). However, for
the sentence “Everyday John Smith goes to his
office at Inc. Corp.”, the system would extract
(John Smith,⊥, Inc. Corp.), since there is no men-
tion of a job title. Hence, the goal of complex re-
lation extraction is to identify all instances of the
relation of interest in some piece of text, including
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incomplete instances.
We present here several simple methods for ex-

tracting complex relations. All the methods start by
recognized pairs of entity mentions, that is, binary
relation instances, that appear to be arguments of the
relation of interest. Those pairs can be seen as the
edges of a graph with entity mentions as nodes. The
algorithms then try to reconstruct complex relations
by making tuples from selected maximal cliques in
the graph. The methods are general and can be ap-
plied to any complex relation fitting the above def-
inition. We also assume throughout the paper that
the entities and their type are known a priori in the
text. This is a fair assumption given the current high
standard of state-of-the-art named-entity extractors.

A primary advantage of factoring complex rela-
tions into binary relations is that it allows the use of
standard classification algorithms to decide whether
particular pairs of entity mentions are related. In ad-
dition, the factoring makes training data less sparse
and reduces the computational cost of extraction.
We will discuss these benefits further in Section 4.

We evaluated the methods on a large set of anno-
tated biomedical documents to extract relations re-
lated to genomic variations, demonstrating a consid-
erable improvement over a reasonable baseline.

2 Previous work

A representative approach to relation extraction is
the system of Zelenko et al. (2003), which attempts
to identify binary relations in news text. In that
system, each pair of entity mentions of the correct
types in a sentence is classified as to whether it is
a positive instance of the relation. Consider the bi-
nary relation employee of and the sentence “John
Smith, not Jane Smith, works at IBM”. The pair
(John Smith, IBM) is a positive instance, while the
pair (Jane Smith, IBM) is a negative instance. In-
stances are represented by a pair of entities and their
position in a shallow parse tree for the containing
sentence. Classification is done by a support-vector
classifier with a specialized kernel for that shallow
parse representation.

This approach — enumerating all possible en-
tity pairs and classifying each as positive or nega-
tive — is the standard method in relation extraction.
The main differences among systems are the choice

of trainable classifier and the representation for in-
stances.

For binary relations, this approach is quite
tractable: if the relation schema is (t1, t2), the num-
ber of potential instances is O(|t1| |t2|), where |t| is
the number of entity mentions of type t in the text
under consideration.

One interesting system that does not belong to
the above class is that of Miller et al. (2000), who
take the view that relation extraction is just a form
of probabilistic parsing where parse trees are aug-
mented to identify all relations. Once this augmen-
tation is made, any standard parser can be trained
and then run on new sentences to extract new re-
lations. Miller et al. show such an approach can
yield good results. However, it can be argued that
this method will encounter problems when consid-
ering anything but binary relations. Complex re-
lations would require a large amount of tree aug-
mentation and most likely result in extremely sparse
probability estimates. Furthermore, by integrating
relation extraction with parsing, the system cannot
consider long-range dependencies due to the local
parsing constraints of current probabilistic parsers.
The higher the arity of a relation, the more likely
it is that entities will be spread out within a piece
of text, making long range dependencies especially
important.

Roth and Yih (2004) present a model in which en-
tity types and relations are classified jointly using a
set of global constraints over locally trained classi-
fiers. This joint classification is shown to improve
accuracy of both the entities and relations returned
by the system. However, the system is based on con-
straints for binary relations only.

Recently, there has also been many results from
the biomedical IE community. Rosario and Hearst
(2004) compare both generative and discriminative
models for extracting seven relationships between
treatments and diseases. Though their models are
very flexible, they assume at most one relation per
sentence, ruling out cases where entities participate
in multiple relations, which is a common occurrence
in our data. McDonald et al. (2004a) use a rule-
based parser combined with a rule-based relation
identifier to extract generic binary relations between
biological entities. As in predicate-argument extrac-
tion (Gildea and Jurafsky, 2002), each relation is
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always associated with a verb in the sentence that
specifies the relation type. Though this system is
very general, it is limited by the fact that the design
ignores relations not expressed by a verb, as the em-
ployee of relation in“John Smith, CEO of Inc. Corp.,
announced he will resign”.

Most relation extraction systems work primarily
on a sentential level and never consider relations that
cross sentences or paragraphs. Since current data
sets typically only annotate intra-sentence relations,
this has not yet proven to be a problem.

3 Definitions

3.1 Complex Relations

Recall that a complex n-ary relation is specified by
a schema (t1, . . . , tn) where ti ∈ T are entity types.
Instances of the relation are tuples (e1, . . . , en)
where either type(ei) = ti, or ei =⊥ (missing ar-
gument). The only restriction this definition places
on a relation is that the arity must be known. As we
discuss it further in Section 6, this is not required by
our methods but is assumed here for simplicity. We
also assume that the system works on a single rela-
tion type at a time, although the methods described
here are easily generalizable to systems that can ex-
tract many relations at once.

3.2 Graphs and Cliques

An undirected graph G = (V,E) is specified by a
set of vertices V and a set of edges E, with each
edge an unordered pair (u, v) of vertices. G′ =
(V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ =
{(u, v) : u, v ∈ V ′, (u, v) ∈ E}. A clique C of G is
a subgraph of G in which there is an edge between
every pair of vertices. A maximal clique of G is a
clique C = (VC , EC) such that there is no other
clique C ′ = (VC′ , EC′) such that VC ⊂ VC′ .

4 Methods

We describe now a simple method for extracting
complex relations. This method works by first fac-
toring all complex relations into a set of binary re-
lations. A classifier is then trained in the standard
manner to recognize all pairs of related entities. Fi-
nally a graph is constructed from the output of this
classifier and the complex relations are determined
from the cliques of this graph.

a. All possible
relation instances

(John, CEO, Inc. Corp.)
(John,⊥, Inc. Corp.)
(John, CEO, Biz. Corp.)
(John,⊥, Biz. Corp.)
(John, CEO,⊥)
(Jane, CEO, Inc. Corp.)
(Jane,⊥, Inc. Corp.)
(Jane, CEO, Biz. Corp.)
(Jane,⊥, Biz. Corp.)
(Jane, CEO,⊥)
(⊥, CEO, Inc. Corp.)
(⊥, CEO, Biz. Corp.)

b. All possible
binary relations

(John, CEO)
(John, Inc. Corp.)
(John, Biz. Corp.)
(CEO, Inc. Corp.)
(CEO, Biz. Corp.)
(Jane, CEO)
(Jane, Inc. Corp.)
(Jane, Biz. Corp.)

Figure 1: Relation factorization of the sentence:
John and Jane are CEOs at Inc. Corp. and Biz.
Corp. respectively.

4.1 Classifying Binary Relations

Consider again the motivating example of the
(person, job, company) relation and the sentence
“John and Jane are CEOs at Inc. Corp. and Biz.
Corp. respectively”. This sentence contains two
people, one job title and two companies.

One possible method for extracting the rela-
tion of interest would be to first consider all 12
possible tuples shown in Figure 1a. Using all
these tuples, it should then be possible to train
a classifier to distinguish valid instances such as
(John, CEO, Inc. Corp.) from invalid ones such as
(Jane, CEO, Inc. Corp.). This is analogous to the
approach taken by Zelenko et al. (2003) for binary
relations.

There are problems with this approach. Computa-
tionally, for an n-ary relation, the number of possi-
ble instances is O(|t1| |t2| · · · |tn|). Conservatively,
letting m be the smallest |ti|, the run time is O(mn),
exponential in the arity of the relation. The second
problem is how to manage incomplete but correct
instances such as (John,⊥, Inc. Corp.) when train-
ing the classifier. If this instance is marked as neg-
ative, then the model might incorrectly disfavor fea-
tures that correlate John to Inc. Corp.. However,
if this instance is labeled positive, then the model
may tend to prefer the shorter and more compact in-
complete relations since they will be abundant in the
positive training examples. We could always ignore
instances of this form, but then the data would be
heavily skewed towards negative instances.
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Instead of trying to classify all possible relation
instances, in this work we first classify pairs of en-
tities as being related or not. Then, as discussed in
Section 4.2, we reconstruct the larger complex rela-
tions from a set of binary relation instances.

Factoring relations into a set of binary decisions
has several advantages. The set of possible pairs is
much smaller then the set of all possible complex
relation instances. This can be seen in Figure 1b,
which only considers pairs that are consistent with
the relation definition. More generally, the num-
ber of pairs to classify is O((

∑

i |ti|)
2) , which is

far better than the exponentially many full relation
instances. There is also no ambiguity when label-
ing pairs as positive or negative when constructing
the training data. Finally, we can rely on previous
work on classification for binary relation extraction
to identify pairs of related entities.

To train a classifier to identify pairs of related
entities, we must first create the set of all positive
and negative pairs in the data. The positive in-
stances are all pairs that occur together in a valid
tuple. For the example sentence in Figure 1, these
include the pairs (John, CEO), (John, Inc. Corp.),
(CEO, Inc. Corp.), (CEO, Biz. Corp.), (Jane, CEO)
and (Jane, Biz. Corp.). To gather negative in-
stances, we extract all pairs that never occur to-
gether in a valid relation. From the same exam-
ple these would be the pairs (John, Biz. Corp.) and
(Jane, Inc. Corp.).

This leads to a large set of positive and negative
binary relation instances. At this point we could em-
ploy any binary relation classifier and learn to iden-
tify new instances of related pairs of entities. We
use a standard maximum entropy classifier (Berger
et al., 1996) implemented as part of MALLET (Mc-
Callum, 2002). The model is trained using the fea-
tures listed in Table 1.

This is a very simple binary classification model.
No deep syntactic structure such as parse trees is
used. All features are basically over the words sepa-
rating two entities and their part-of-speech tags. Of
course, it would be possible to use more syntactic
information if available in a manner similar to that
of Zelenko et al. (2003). However, the primary pur-
pose of our experiments was not to create a better
binary relation extractor, but to see if complex re-
lations could be extracted through binary factoriza-

Feature Set
entity type of e1 and e2

words in e1 and e2

word bigrams in e1 and e2

POS of e1 and e2

words between e1 and e2

word bigrams between e1 and e2

POS between e1 and e2

distance between e1 and e2

concatenations of above features

Table 1: Feature set for maximum entropy binary
relation classifier. e1 and e2 are entities.

a. Relation graph G

John Jane

CEO

Inc. Corp. Biz. Corp.

b. Tuples from G
(John, CEO,⊥)
(John,⊥, Inc. Corp.)
(John,⊥, Biz. Corp.)
(Jane, CEO,⊥)
(⊥, CEO, Inc. Corp.)
(⊥, CEO, Biz. Corp.)
(John, CEO, Inc. Corp.)
(John, CEO, Biz. Corp.)

Figure 2: Example of a relation graph and tuples
from all the cliques in the graph.

tion followed by reconstruction. In Section 5.2 we
present an empirical evaluation of the binary relation
classifier.

4.2 Reconstructing Complex Relations

4.2.1 Maximal Cliques

Having identified all pairs of related entities in the
text, the next stage is to reconstruct the complex re-
lations from these pairs. Let G = (V,E) be an undi-
rected graph where the vertices V are entity men-
tions in the text and the edges E represent binary
relations between entities. We reconstruct the com-
plex relation instances by finding maximal cliques
in the graphs.

The simplest approach is to create the graph
so that two entities in the graph have an edge
if the binary classifier believes they are related.
For example, consider the binary factoriza-
tion in Figure 1 and imagine the classifier
identified the following pairs as being related:
(John, CEO), (John, Inc. Corp.), (John, Biz. Corp.),
(CEO, Inc. Corp.), (CEO, Biz. Corp.) and
(Jane, CEO). The resulting graph can be seen
in Figure 2a.

Looking at this graph, one solution to construct-
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ing complex relations would be to consider all the
cliques in the graph that are consistent with the def-
inition of the relation. This is equivalent to having
the system return only relations in which the binary
classifier believes that all of the entities involved are
pairwise related. All the cliques in the example are
shown in Figure 2b. We add ⊥ fields to the tuples to
be consistent with the relation definition.

This could lead to a set of overlapping
cliques, for instance (John, CEO, Inc. Corp.) and
(John, CEO,⊥). Instead of having the system re-
turn all cliques, our system just returns the maximal
cliques, that is, those cliques that are not subsets of
other cliques. Hence, for the example under con-
sideration in Figure 2, the system would return the
one correct relation, (John, CEO, Inc. Corp.), and
two incorrect relations, (John, CEO, Biz. Corp.) and
(Jane, CEO,⊥). The second is incorrect since it
does not specify the company slot of the relation
even though that information is present in the text.

It is possible to find degenerate sentences in which
perfect binary classification followed by maximal
clique reconstruction will lead to errors. One such
sentence is, “John is C.E.O. and C.F.O. of Inc. Corp.
and Biz. Corp. respectively and Jane vice-versa”.
However, we expect such sentences to be rare; in
fact, they never occur in our data.

The real problem with this approach is that an ar-
bitrary graph can have exponentially many cliques,
negating any efficiency advantage over enumerating
all n-tuples of entities. Fortunately, there are algo-
rithms for finding all maximal cliques that are effi-
cient in practice. We use the algorithm of Bron and
Kerbosch (1973). This is a well known branch and
bound algorithm that has been shown to empirically
run linearly in the number of maximal cliques in the
graph. In our experiments, this algorithm found all
maximal cliques in a matter of seconds.

4.2.2 Probabilistic Cliques

The above approach has a major shortcom-
ing in that it assumes the output of the bi-
nary classifier to be absolutely correct. For
instance, the classifier may have thought with
probability 0.49, 0.99 and 0.99 that the fol-
lowing pairs were related: (Jane, Biz. Corp.),
(CEO, Biz. Corp.) and (Jane, CEO) respectively.
The maximal clique method would not produce the

tuple (Jane, CEO, Biz. Corp.) since it never consid-
ers the edge between Jane and Biz. Corp. However,
given the probability of the edges, we would almost
certainly want this tuple returned.

What we would really like to model is a belief
that on average a clique represents a valid relation
instance. To do this we use the complete graph
G = (V,E) with edges between all pairs of entity
mentions. We then assign weight w(e) to edge e

equal to the probability that the two entities in e are
related, according to the classifier. We define the
weight of a clique w(C) as the mean weight of the
edges in the clique. Since edge weights represent
probabilities (or ratios), we use the geometric mean

w(C) =





∏

e∈EC

w(e)





1/|EC |

We decide that a clique C represents a valid tuple if
w(C) ≥ 0.5. Hence, the system finds all maximal
cliques as before, but considers only those where
w(C) ≥ 0.5, and it may select a non-maximal clique
if the weight of all larger cliques falls below the
threshold. The cutoff of 0.5 is not arbitrary, since it
ensures that the average probability of a clique rep-
resenting a relation instance is at least as large as
the average probability of it not representing a rela-
tion instance. We ran experiments with varying lev-
els of this threshold and found that, roughly, lower
thresholds result in higher precision at the expense
of recall since the system returns fewer but larger
tuples. Optimum results were obtained for a cutoff
of approximately 0.4, but we report results only for
w(C) ≥ 0.5.

The major problem with this approach is that
there will always be exponentially many cliques
since the graph is fully connected. However, in our
experiments we pruned all edges that would force
any containing clique C to have w(C) < 0.5. This
typically made the graphs very sparse.

Another problem with this approach is the as-
sumption that the binary relation classifier outputs
probabilities. For maximum entropy and other prob-
abilistic frameworks this is not an issue. However,
many classifiers, such as SVMs, output scores or
distances. It is possible to transform the scores from
those models through a sigmoid to yield probabili-
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ties, but there is no guarantee that those probability
values will be well calibrated.

5 Experiments

5.1 Problem Description and Data

We test these methods on the task of extracting ge-
nomic variation events from biomedical text (Mc-
Donald et al., 2004b). Briefly, we define a varia-
tion event as an acquired genomic aberration: a spe-
cific, one-time alteration at the genomic level and
described at the nucleic acid level, amino acid level
or both. Each variation event is identified by the re-
lationship between a type of variation, its location,
and the corresponding state change from an initial-
state to an altered-state. This can be formalized as
the following complex schema

(var-type, location, initial-state, altered-state)

A simple example is the sentence

“At codons 12 and 61, the occurrence of
point mutations from G/A to T/G were observed”

which gives rise to the tuples

(point mutation, codon 12, G, T)
(point mutation, codon 61, A, G)

Our data set consists of 447 abstracts selected
from MEDLINE as being relevant to populating a
database with facts of the form: gene X with vari-
ation event Y is associated with malignancy Z. Ab-
stracts were randomly chosen from a larger corpus
identified as containing variation mentions pertain-
ing to cancer.

The current data consists of 4691 sentences that
have been annotated with 4773 entities and 1218 re-
lations. Of the 1218 relations, 760 have two ⊥ ar-
guments, 283 have one ⊥ argument, and 175 have
no ⊥ arguments. Thus, 38% of the relations tagged
in this data cannot be handled using binary relation
classification alone. In addition, 4% of the relations
annotated in this data are non-sentential. Our sys-
tem currently only produces sentential relations and
is therefore bounded by a maximum recall of 96%.
Finally, we use gold standard entities in our exper-
iments. This way we can evaluate the performance
of the relation extraction system isolated from any
kind of pipelined entity extraction errors. Entities in
this domain can be found with fairly high accuracy
(McDonald et al., 2004b).

It is important to note that just the presence of two
entity types does not entail a relation between them.
In fact, 56% of entity pairs are not related, due either
to explicit disqualification in the text (e.g. “... the
lack of G to T transversion ...”) or ambiguities that
arise from multiple entities of the same type.

5.2 Results

Because the data contains only 1218 examples of re-
lations we performed 10-fold cross-validation tests
for all results. We compared three systems:

• MC: Uses the maximum entropy binary classi-
fier coupled with the maximal clique complex
relation reconstructor.

• PC: Same as above, except it uses the proba-
bilistic clique complex relation reconstructor.

• NE: A maximum entropy classifier that naively
enumerates all possible relation instances as
described in Section 4.1.

In training system NE, all incomplete but correct
instances were marked as positive since we found
this had the best performance. We used the same
pairwise entity features in the binary classifier of
the above two systems. However, we also added
higher order versions of the pairwise features. For
this system we only take maximal relations,that is,
if (John, CEO, Inc. Corp.) and (John,⊥, Inc. Corp.)
are both labeled positive, the system would only re-
turn the former.

Table 2 contains the results of the maximum en-
tropy binary relation classifier (used in systems MC
and PC). The 1218 annotated complex relations pro-
duced 2577 unique binary pairs of related entities.
We can see that the maximum entropy classifier per-
forms reasonably well, although performance may
be affected by the lack of rich syntactic features,
which have been shown to help performance (Miller
et al., 2000; Zelenko et al., 2003).

Table 3 compares the three systems on the real
problem of extracting complex relations. An ex-
tracted complex relation is considered correct if and
only if all the entities in the relation are correct.
There is no partial credit. All training and clique
finding algorithms took under 5 minutes for the en-
tire data set. Naive enumeration took approximately
26 minutes to train.
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ACT PRD COR
2577 2722 2101
Prec Rec F-Meas

0.7719 0.8153 0.7930

Table 2: Binary relation classification results for the
maximum entropy classifier. ACT: actual number of
related pairs, PRD: predicted number of related pairs
and COR: correctly identified related pairs.

System Prec Rec F-Meas
NE 0.4588 0.6995 0.5541
MC 0.5812 0.7315 0.6480
PC 0.6303 0.7726 0.6942

Table 3: Full relation classification results. For a
relation to be classified correctly, all the entities in
the relation must be correctly identified.

First we observe that the maximal clique method
combined with maximum entropy (system MC) re-
duces the relative error rate over naively enumer-
ating and classifying all instances (system NE) by
21%. This result is very positive. The system based
on binary factorization not only is more efficient
then naively enumerating all instances, but signifi-
cantly outperforms it as well. The main reason naive
enumeration does so poorly is that all correct but
incomplete instances are marked as positive. Thus,
even slight correlations between partially correct en-
tities would be enough to classify an instance as cor-
rect, which results in relatively good recall but poor
precision. We tried training only with correct and
complete positive instances, but the result was a sys-
tem that only returned few relations since negative
instances overwhelmed the training set. With fur-
ther tuning, it may be possible to improve the per-
formance of this system. However, we use it only as
a baseline and to demonstrate that binary factoriza-
tion is a feasible and accurate method for extracting
complex relations.

Furthermore, we see that using probabilistic
cliques (system PC) provides another large im-
provement, a relative error reduction of 13%
over using maximal cliques and 31% reduction
over enumeration. Table 4 shows the breakdown
of relations returned by type. There are three
types of relations, 2-ary, 3-ary and 4-ary, each
with 2, 1 and 0 ⊥ arguments respectively, e.g.

System 2-ary 3-ary 4-ary
NE 760:1097:600 283:619:192 175:141:60
MC 760:1025:601 283:412:206 175:95:84
PC 760:870:590 283:429:223 175:194:128

Table 4: Breakdown of true positive relations by
type that were returned by each system. Each cell
contains three numbers, Actual:Predicted:Correct,
which represents for each arity the actual, predicted
and correct number of relations for each system.

(point mutation, codon 12,⊥,⊥) is a 2-ary relation.
Clearly the probabilistic clique method is much
more likely to find larger non-binary relations, veri-
fying the motivation that there are some low proba-
bility edges that can still contribute to larger cliques.

6 Conclusions and Future Work

We presented a method for complex relation extrac-
tion, the core of which was to factorize complex re-
lations into sets of binary relations, learn to identify
binary relations and then reconstruct the complex re-
lations by finding maximal cliques in graphs that
represent relations between pairs of entities. The
primary advantage of this method is that it allows
for the use of almost any binary relation classifier,
which have been well studied and are often accu-
rate. We showed that such a method can be suc-
cessful with an empirical evaluation on a large set
of biomedical data annotated with genomic varia-
tion relations. In fact, this approach is both signifi-
cantly quicker and more accurate then enumerating
and classifying all possible instances. We believe
this work provides a good starting point for contin-
ued research in this area.

A distinction may be made between the factored
system presented here and one that attempts to clas-
sify complex relations without factorization. This
is related to the distinction between methods that
learn local classifiers that are combined with global
constraints after training and methods that incorpo-
rate the global constraints into the learning process.
McCallum and Wellner (2003) showed that learning
binary co-reference relations globally improves per-
formance over learning relations in isolation. How-
ever, their model relied on the transitive property in-
herent in the co-reference relation. Our system can
be seen as an instance of a local learner. Punyakanok
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et al. (2004) argued that local learning actually out-
performs global learning in cases when local deci-
sions can easily be learnt by the classifier. Hence, it
is reasonable to assume that our binary factorization
method will perform well when binary relations can
be learnt with high accuracy.

As for future work, there are many things that we
plan to look at. The binary relation classifier we em-
ploy is quite simplistic and most likely can be im-
proved by using features over a deeper representa-
tion of the data such as parse trees. Other more pow-
erful binary classifiers should be tried such as those
based on tree kernels (Zelenko et al., 2003). We also
plan on running these algorithms on more data sets
to test if the algorithms empirically generalize to dif-
ferent domains.

Perhaps the most interesting open problem is how
to learn the complex reconstruction phase. One pos-
sibility is recent work on supervised clustering. Let-
ting the edge probabilities in the graphs represent a
distance in some space, it may be possible to learn
how to cluster vertices into relational groups. How-
ever, since a vertex/entity can participate in one or
more relation, any clustering algorithm would be re-
quired to produce non-disjoint clusters.

We mentioned earlier that the only restriction of
our complex relation definition is that the arity of
the relation must be known in advance. It turns out
that the algorithms we described can actually handle
dynamic arity relations. All that is required is to
remove the constraint that maximal cliques must be
consistent with the structure of the relation. This
represents another advantage of binary factorization
over enumeration, since it would be infeasible to
enumerate all possible instances for dynamic arity
relations.
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Abstract 

This paper presents an effective approach 
for resume information extraction to 
support automatic resume management 
and routing. A cascaded information 
extraction (IE) framework is designed. In 
the first pass, a resume is segmented into 
a consecutive blocks attached with labels 
indicating the information types. Then in 
the second pass, the detailed information, 
such as Name and Address, are identified 
in certain blocks (e.g. blocks labelled 
with Personal Information), instead of 
searching globally in the entire resume. 
The most appropriate model is selected 
through experiments for each IE task in 
different passes. The experimental results 
show that this cascaded hybrid model 
achieves better F-score than flat models 
that do not apply the hierarchical 
structure of resumes. It also shows that 
applying different IE models in different 
passes according to the contextual 
structure is effective. 

1 Introduction 

Big enterprises and head-hunters receive 
hundreds of resumes from job applicants every day.  
Automatically extracting structured information 
from resumes of different styles and formats is 
needed to support the automatic construction of 
database, searching and resume routing.  The 
definition of resume information fields varies in 
different applications. Normally, resume 
information is described as a hierarchical structure 
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with two layers. The first layer is composed of 
consecutive general information blocks such as 
Personal Information, Education etc. Then within 
each general information block, detailed 
information pieces can be found, e.g., in Personal 
Information block, detailed information such as 
Name, Address, Email etc. can be further extracted.  

Info Hierarchy Info Type (Label) 

General Info 

Personal Information(G1); 
Education(G2); Research 
Experience(G3); Award(G4); 
Activity(G5); Interests(G6); 
Skill(G7) 

Personal 
Detailed Info 

(Personal 
Information)

Name(P1); Gender(P2); 
Birthday(P3); Address(P4); Zip 
code(P5); Phone(P6); 
Mobile(P7); Email(P8); 
Registered Residence(P9); 
Marriage(P10); Residence(P11); 
Graduation School(P12); 
Degree(P13); Major(P14) 

Detailed 
Info 

Educational 
Detailed Info 
(Education) 

Graduation School(D1); 
Degree(D2); Major(D3); 
Department(D4) 

Table 1. Predefined information types. 

Based on the requirements of an ongoing 
recruitment management system which 
incorporates database construction with IE 
technologies and resume recommendation 
(routing), as shown in Table 1, 7 general 
information fields are defined. Then, for Personal 
Information, 14 detailed information fields are 
designed; for Education, 4 detailed information 
fields are designed. The IE task, as exemplified in 
Figure 1, includes segmenting a resume into 
consecutive blocks labelled with general 
information types, and further extracting the 
detailed information such as Name and Address 
from certain blocks. 

Extracting information from resumes with high 
precision and recall is not an easy task. In spite of  
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Figure 1. Example of a resume and the extracted information.

constituting a restricted domain, resumes can be 
written in multitude of formats (e.g. structured 
tables or plain texts), in different languages (e.g. 
Chinese and English) and in different file types 
(e.g. Text, PDF, Word etc.). Moreover, writing 
styles could be very diversified. 

Among the methods in IE, Hidden Markov 
modelling has been widely used (Freitag and 
McCallum, 1999; Borkar et al., 2001). As a state-
based model, HMMs are good at extracting 
information fields that hold a strong order of 
sequence. Classification is another popular method 
in IE. By assuming the independence of 
information types, it is feasible to classify 
segmented units as either information types to be 
extracted (Kushmerick et al., 2001; Peshkin and 
Pfeffer, 2003; Sitter and Daelemans, 2003), or 
information boundaries (Finn and Kushmerick, 
2004). This method specializes in settling the 
extraction problem of independent information 
types.  

Resume shares a document-level hierarchical 
contextual structure where the related information 
units usually occur in the same textual block, and 
text blocks of different information categories 
usually occur in a relatively fixed order. Such 
characteristics have been successfully used in the 

categorization of multi-page documents by 
Frasconi et al. (2001).  

In this paper, given the hierarchy of resume 
information, a cascaded two-pass IE framework is 
designed. In the first pass, the general information 
is extracted by segmenting the entire resume into 
consecutive blocks and each block is annotated 
with a label indicating its category. In the second 
pass, detailed information pieces are further 
extracted within the boundary of certain blocks. 
Moreover, for different types of information, the 
most appropriate extraction method is selected 
through experiments. For the first pass, since there 
exists a strong sequence among blocks, a HMM 
model is applied to segment a resume and each 
block is labelled with a category of general 
information. We also apply HMM for the 
educational detailed information extraction for the 
same reason. In addition, classification based 
method is selected for the personal detailed 
information extraction where information items 
appear relatively independently.  

Tested with 1,200 Chinese resumes, 
experimental results show that exploring the 
hierarchical structure of resumes with this 
proposed cascaded framework improves the 
average F-score of detailed information extraction 
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greatly, and combining different IE models in 
different layer properly is effective to achieve 
good precision and recall.  

The remaining part of this paper is structured as 
follows. Section 2 introduces the related work. 
Section 3 presents the structure of the cascaded 
hybrid IE model and introduces the HMM model 
and SVM model in detail. Experimental results 
and analysis are shown in Section 4. Section 5 
provides a discussion of our cascaded hybrid 
model. Section 6 is the conclusion and future work. 

2 Related Work 

As far as we know, there are few published 
works on resume IE except some products, for 
which there is no way to determine the technical 
details. One of the published results on resume IE 
was shown in Ciravegna and Lavelli (2004). In 
this work, they applied (LP)2 , a toolkit of IE, to 
learn information extraction rules for resumes 
written in English. The information defined in 
their task includes a flat structure of Name, Street, 
City, Province, Email, Telephone, Fax and Zip 
code. This flat setting is not only different from 
our hierarchical structure but also different from 
our detailed information pieces.   

Besides, there are some applications that are 
analogous to resume IE, such as seminar 
announcement IE (Freitag and McCallum, 1999), 
job posting IE (Sitter and Daelemans, 2003; Finn 
and Kushmerick, 2004) and address segmentation 
(Borkar et al., 2001; Kushmerick et al., 2001). 
Most of the approaches employed in these 
applications view a text as flat and extract 
information from all the texts directly (Freitag and 
McCallum, 1999; Kushmerick et al., 2001; 
Peshkin and Pfeffer, 2003; Finn and Kushmerick, 
2004). Only a few approaches extract information 
hierarchically like our model. Sitter and 
Daelemans (2003) present a double classification 
approach to perform IE by extracting words from 
pre-extracted sentences. Borkar et al. (2001) 
develop a nested model, where the outer HMM 
captures the sequencing relationship among 
elements and the inner HMMs learn the finer 
structure within each element. But these 
approaches employ the same IE methods for all 
the information types. Compared with them, our 
model applies different methods in different sub-

tasks to fit the special contextual structure of 
information in each sub-task well. 

3 Cascaded Hybrid Model 

Figure 2 is the structure of our cascaded hybrid 
model. The first pass (on the left hand side) 
segments a resume into consecutive blocks with a 
HMM model. Then based on the result, the second 
pass (on the right hand side) uses HMM to extract 
the educational detailed information and SVM to 
extract the personal detailed information, 
respectively. The block selection module is used to 
decide the range of detailed information extraction 
in the second pass. 

 
 

Figure 2. Structure of cascaded hybrid model. 

3.1 HMM Model 

3.1.1 Model Design 
For general information, the IE task is viewed as 

labelling the segmented units with predefined class 
labels. Given an input resume T which is a 
sequence of words w1,w2,…,wk, the result of 
general information extraction is a sequence of 
blocks in which some words are grouped into a 
certain block T = t1, t2,…, tn, where ti is a block. 
Assuming the expected label sequence of T is L=l1, 
l2,…, ln,  with each block being assigned a label li, 
we get the sequence of block and label pairs Q=(t1, 
l1), (t2, l2),…,(tn, ln). In our research, we simply 
assume that the segmentation is based on the 
natural paragraph of T. 

Table 1 gives the list of information types to be 
extracted, where general information is 
represented as G1~G7. For each kind of general 
information, say Gi, two labels are set: Gi-B means 
the beginning of Gi, Gi-M means the remainder 
part of Gi. In addition, label O is defined to 
represent a block that does not belong to any 
general information types. With these positional 
information labels, general information can be 
obtained. For instance, if the label sequence Q for 
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a resume with 10 paragraphs is Q=(t1, G1-B), (t2, 
G1-M) , (t3, G2-B) , (t4, G2-M) , (t5, G2-M) , (t6, O) , 
(t7, O) , (t8, G3-B) , (t9, G3-M) , (t10, G3-M), three 
types of general information can be extracted as 
follows: G1:[t1, t2], G2:[t3, t4, t5], G3:[t8, t9, t10].  

Formally, given a resume T=t1,t2,…,tn, seek a 
label sequence L*=l1,l2,…,ln, such that the 
probability of the sequence of labels is maximal. 

   )|(maxarg* TLPL
L

=  (1)

According to Bayes’ equation, we have 
       )()|(maxarg* LPLTPL

L
×=  (2)

If we assume the independent occurrence of 
blocks labelled as the same information types, we 
have 
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We assume the independence of words 
occurring in ti and use a unigram model, which 
multiplies the probabilities of these words to get 
the probability of ti.  
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If a tri-gram model is used to estimate P(L), we 
have 
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To extract educational detailed information 
from Education general information, we use 
another HMM. It also uses two labels Di-B and Di-
M to represent the beginning and remaining part of 
Di, respectively. In addition, we use label O to 
represent that the corresponding word does not 
belong to any kind of educational detailed 
information. But this model expresses a text T as 
word sequence T=w1,w2,…,wn. Thus in this model, 
the probability P(L) is calculated with Formula 5 
and the probability P(T|L) is calculated by 

∏
=

=
n

i
ii lwPLTP

1

)|()|(  (6)

Here we assume the independent occurrence of 
words labelled as the same information types.  

3.1.2 Parameter Estimation 
Both words and named entities are used as 

features in our HMMs. A Chinese resume C= 
c1’,c2’,…,ck’ is first tokenized into C= w1,w2,…,wk 
with a Chinese word segmentation system LSP 
(Gao et al., 2003). This system outputs predefined 

features, including words and named entities in 8 
types (Name, Date, Location, Organization, Phone, 
Number, Period, and Email). The named entities 
of the same type are normalized into single ID in 
feature set.  

In both HMMs, fully connected structure with 
one state representing one information label is 
applied due to its convenience. To estimate the 
probabilities introduced in 3.1.1, maximum 
likelihood estimation is used, which are 
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3.1.3 Smoothing 
Short of training data to estimate probability is a 

big problem for HMMs. Such problems may occur 
when estimating either P(T|L) with unknown word 
wi or P(L) with unknown events.  

Bikel et al. (1999) mapped all unknown words 
to one token _UNK_ and then used a held-out data 
to train the bi-gram models where unknown words 
occur. They also applied a back-off strategy to 
solve the data sparseness problem when estimating 
the context model with unknown events, which 
interpolates the estimation from training corpus 
and the estimation from the back-off model with 
calculated parameter λ (Bikel et al., 1999). Freitag 
and McCallum (1999) used shrinkage to estimate 
the emission probability of unknown words, which 
combines the estimates from data-sparse states of 
the complex model and the estimates in related 
data-rich states of the simpler models with a 
weighted average.  

In our HMMs, we first apply Good Turing 
smoothing (Gale, 1995) to estimate the probability 
P(wr|li) when training data is sparse. For word wr 
seen in training data, the emission probability is 
P(wr|li)×(1-x), where P(wr|li) is the emission 
probability calculated with Formula 9 and x=Ei/Si 
(Ei is the number of words appearing only once in 
state i and Si is the total number of words 
occurring in state i). For unknown word wr, the 
emission probability is x/(M-mi), where M is the 
number of all the words appearing in training data, 
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and mi is the number of distinct words occurring in 
state i. Then, we use a back-off schema (Katz, 
1987) to deal with the data sparseness problem 
when estimating the probability P(L) (Gao et al., 
2003). 

3.2 SVM Model 

3.2.1 Model Design 
We convert personal detailed information 

extraction into a classification problem. Here we 
select SVM as the classification model because of 
its robustness to over-fitting and high performance 
(Sebastiani, 2002). In the SVM model, the IE task 
is also defined as labelling segmented units with 
predefined class labels. We still use two labels to 
represent personal detailed information Pi: Pi-B 
represents the beginning of Pi and Pi-M represents 
the remainder part of Pi. Besides of that, label O 
means that the corresponding unit does not belong 
to any personal detailed information boundaries 
and information types. For example, for part of a 
resume “Name:Alice (Female)”, we got three units 
after segmentation with punctuations, i.e. “Name”, 
“Alice”, “Female”. After applying SVM 
classification, we can get the label sequence as P1-
B,P1-M,P2-B. With this sequence of unit and label 
pairs, two types of personal detailed information 
can be extracted as P1: [Name:Alice] and P2: 
[Female]. 

Various ways can be applied to segment T. In 
our work, segmentation is based on the natural 
sentence of T. This is based on the empirical 
observation that detailed information is usually 
separated by punctuations (e.g. comma, Tab tag or 
Enter tag). 

The extraction of personal detailed information 
can be formally expressed as follows: given a text 
T=t1,t2,…,tn, where ti is a unit defined by the 
segmenting method mentioned above, seek a label 
sequence L* = l1,l2,…,ln, such that the probability 
of the sequence of labels is maximal. 

    )|(maxarg* TLPL
L

=  (10) 
The key assumption to apply classification in IE 

is the independence of label assignment between 
units. With this assumption, Formula 10 can be 
described as 
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Thus this probability can be maximized by 
maximizing each term in turn. Here, we use the 
SVM score of labelling ti with li to replace P(li|ti). 

3.2.2 Multi-class Classification 
SVM is a binary classification model. But in our 

IE task, it needs to classify units into N classes, 
where  N is two times of the number of personal 
detailed information types. There are two popular 
strategies to extend a binary classification task to 
N classes (A.Berger, 1999). The first is One vs. All 
strategy, where N classifiers are built to separate 
one class from others. The other is Pairwise 
strategy, where N×(N-1)/2 classifiers considering 
all pairs of classes are built and final decision is 
given by their weighted voting. In our model, we 
apply the One vs. All strategy for its good 
efficiency in classification. We construct one 
classifier for each type, and classify each unit with 
all these classifiers. Then we select the type that 
has the highest score in classification. If the 
selected score is higher than a predefined threshold, 
then the unit is labelled as this type. Otherwise it is 
labelled as O. 

3.2.3 Feature Definition 
Features defined in our SVM model are 

described as follows: 
Word: Words that occur in the unit. Each word 

appearing in the dictionary is a feature. We use 
TF×IDF as feature weight, where TF means word 
frequency in the text, and IDF is defined as: 

wN
NLogwIDF 2)( =  (12) 

N: the total number of training examples;  
Nw: the total number of positive examples that contain word w 

Named Entity: Similar to the HMM models, 8 
types of named entities identified by LSP, i.e., 
Name, Date, Location, Organization, Phone, 
Number, Period, Email, are selected as binary 
features. If any one type of them appears in the 
text, then the weight of this feature is 1, otherwise 
is 0. 

3.3 Block Selection 

Block selection is used to select the blocks 
generated from the first pass as the input of the 
second pass for detailed information extraction.  

Error analysis of preliminary experiments shows 
that the majority of the mistakes of general 
information extraction resulted from labelling non- 
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Personal Detailed Info (SVM) Educational Detailed Info (HMM) Model Avg.P (%) Avg.R (%) Avg.F (%) Avg.P (%) Avg.R (%) Avg.F (%) 
Flat 77.49 82.02 77.74 58.83 77.35 66.02 

Cascaded 86.83 (+9.34) 76.89 (-5.13) 80.44 (+2.70) 70.78 (+11.95) 76.80 (-0.55) 73.40 (+7.38)

Table 2. IE results with cascaded model and flat model.

boundary blocks as boundaries in the first pass. 
Therefore we apply a fuzzy block selection 
strategy, which not only selects the blocks labelled 
with target general information, but also selects 
their neighboring two blocks, so as to enlarge the 
extracting range. 

4 Experiments and Analysis 

4.1 Data and Experimental Setting 

We evaluated this cascaded hybrid model with 
1,200 Chinese resumes. The data set was divided 
into 3 parts: training data, parameter tuning data 
and testing data with the proportion of 4:1:1. 6-
folder cross validation was conducted in all the 
experiments. We selected SVMlight (Joachims, 
1999) as the SVM classifier toolkit and LSP (Gao 
et al., 2003) for Chinese word segmentation and 
named entity identification. Precision (P), recall (R) 
and F-score (F=2PR/(P+R)) were used as the basic 
evaluation metrics and macro-averaging strategy 
was used to calculate the average results. For the 
special application background of our resume IE 
model, the “Overlap” criterion (Lavelli et al., 2004) 
was used to match reference instances and 
extracted instances. We define that if the 
proportion of the overlapping part of extracted 
instance and reference instance is over 90%, then 
they match each other. 

A set of experiments have been designed to 
verify the effectiveness of exploring document-
level hierarchical structure of resume and choose 
the best IE models (HMM vs. classification) for 
each sub-task. 

 Cascaded model vs. flat model 
Two flat models with different IE methods 

(SVM and HMM) are designed to extract personal 
detailed information and educational detailed 
information respectively. In these models, no 
hierarchical structure is used and the detailed 
information is extracted from the entire resume 
texts rather than from specific blocks. These two 
flat models will be compared with our proposed 
cascaded model. 

 Model selection for different IE tasks 
Both SVM and HMM are tested for all the IE 

tasks in first pass and in second pass.  

4.2 Cascaded Model vs. Flat Model 

We tested the flat model and cascaded model 
with detailed information extraction to verify the 
effectiveness of exploring document-level 
hierarchical structure. Results (see Table 2) show 
that with the cascaded model, the precision is 
greatly improved compared with the flat model 
with identical IE method, especially for 
educational detailed information. Although there is 
some loss in recall, the average F-score is still 
largely improved in the cascaded model.  

4.3 Model Selection for Different IE Tasks 

Then we tested different models for the general 
information and detailed information to choose the 
most appropriate IE model for each sub-task.  

Model Avg.P (%) Avg.R (%) 
SVM 80.95 72.87 
HMM 75.95 75.89 

Table 3. General information extraction with 
different models. 

Personal Detailed 
Info 

Educational 
Detailed Info Model Avg.P 

(%) 
Avg.R 

(%) 
Avg.P 

(%) 
Avg.R 

(%) 
SVM 86.83 76.89 67.36 66.21 
HMM 79.64 60.16 70.78 76.80 

Table 4. Detailed information extraction with 
different models. 

Results (see Table 3) show that compared with 
SVM, HMM achieves better recall. In our 
cascaded framework, the extraction range of 
detailed information is influenced by the result of 
general information extraction. Thus better recall 
of general information leads to better recall of 
detailed information subsequently. For this reason, 
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we choose HMM in the first pass of our cascaded 
hybrid model. 

Then in the second pass, different IE models are 
tested in order to select the most appropriate one 
for different sub-tasks. Results (see Table 4) show 
that HMM performs much better in both precision 
and recall than SVM for educational detailed 
information extraction. We think that this is 
reasonable because HMM takes into account the 
sequence constraints among educational detailed 
information types. Therefore HMM model is 
selected to extract educational detailed information 
in our cascaded hybrid model. While for the 
personal detailed information extraction, we find 
that the SVM model gets better precision and 
recall than HMM model. We think that this is 
because of the independent occurrence of personal 
detailed information. Therefore, we select SVM to 
extract personal detailed information in our 
cascaded model. 

5 Discussion 

Our cascaded framework is a “pipeline” 
approach and it may suffer from error propagation. 
For instance, the error in the first pass may be 
transferred to the second pass when determining 
the extraction range of detailed information. 
Therefore the precision and recall of detailed 
information extraction in the second pass may be 
decreased subsequently. But we are not sure 
whether N-Best approach (Zhai et al., 2004) would 
be helpful. Because our cascaded hybrid model 
applies different IE methods for different sub-tasks, 
it is difficult to incorporate the N-best strategy by 
either simply combining the scores of the first pass 
and the second pass, or using the scores of the 
second pass to do re-ranking to select the best 
results. Instead of using N-best, we apply a fuzzy 
block selection strategy to enlarge the search scope. 
Experimental results of personal detailed 
information extraction show that compared with 
the exact block selection strategy, this fuzzy 
strategy improves the average recall of personal 
detailed information from 68.48% to 71.34% and 
reduce the average precision from 83.27% to 
81.71%. Therefore the average F-score is 
improved by the fuzzy strategy from 75.15% to 
76.17%.  

Features are crucial to our SVM model. For 
some fields (such as Name, Address and 

Graduation School), only using words as features 
may result in low accuracy in IE. The named 
entity (NE) features used in our model enhance the 
accuracy of detailed information extraction. As 
exemplified by the results (see Table 5) on 
personal detailed information extraction, after 
adding named entity features, the F-score are 
improved greatly.  

Field Word +NE (%)  Word  (%)
Name 90.22 3.11 

Birthday 87.31 84.82 
Address 67.76 49.16 
Phone 81.57 75.31 
Mobile 70.64 58.01 
Email 88.76 85.96 

Registered Residence 75.97 72.73 
Residence 51.61 42.86 

Graduation School 40.96 15.38 
Degree 73.20 63.16 
Major 63.09 43.24 

Table 5. Personal detailed information extraction 
with different features (Avg.F). 

In our cascaded hybrid model, we apply HMM 
and SVM in different pass separately to explore 
the contextual structure of information types. It 
guarantees the simplicity of our hybrid model. 
However, there are other ways to combine state-
based and discriminative ideas. For example, Peng 
and McCallum (2004) applied Conditional 
Random Fields to extract information, which 
draws together the advantages of both HMM and 
SVM. This approach could be considered in our 
future experiments. 

Some personal detailed information types do not 
achieve good average F-score in our model, such 
as Zip code (74.50%) and Mobile (73.90%). Error 
analysis shows that it is because these fields do not 
contain distinguishing words and named entities. 
For example, it is difficult to extract Mobile from 
the text “Phone: 010-62617711 (13859750123)”. 
But these fields can be easily distinguished with 
their internal characteristics. For example, Mobile 
often consists of certain length of digital figures. 
To identify these fields, the Finite-State 
Automaton (FSA) that employs hand-crafted 
grammars is very effective (Hsu and Chang, 1999). 
Alternatively, rules learned from annotated data 
are also very promising in handling this case 
(Ciravegna and Lavelli, 2004).  

We assume the independence of words 
occurring in unit ti to calculate the probability 
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P(ti|li) in HMM model. While in Bikel et al. (1999), 
a bi-gram model is applied where each word is 
conditioned on its immediate predecessor when 
generating words inside the current name-class. 
We will compare this method with our current 
method in the future.  

6 Conclusions and Future Work 

We have shown that a cascaded hybrid model 
yields good results for the task of information 
extraction from resumes. We tested different 
models for the first pass and the second pass, and 
for different IE tasks. Our experimental results 
show that the HMM model is effective in handling 
the general information extraction and educational 
detailed information extraction, where there exists 
strong sequence of information pieces. And the 
SVM model is effective for the personal detailed 
information extraction.  

We hope to continue this work in the future by 
investigating the use of other well researched IE 
methods. As our future works, we will apply FSA 
or learned rules to improve the precision and recall 
of some personal detailed information (such as Zip 
code and Mobile). Other smoothing methods such 
as (Bikel et al. 1999) will be tested in order to 
better overcome the data sparseness problem. 
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Abstract

We describe a method for discriminative
training of a language model that makes
use of syntactic features. We follow
a reranking approach, where a baseline
recogniser is used to produce 1000-best
output for each acoustic input, and a sec-
ond “reranking” model is then used to
choose an utterance from these 1000-best
lists. The reranking model makes use of
syntactic features together with a parame-
ter estimation method that is based on the
perceptron algorithm. We describe exper-
iments on the Switchboard speech recog-
nition task. The syntactic features provide
an additional 0.3% reduction in test–set
error rate beyond the model of (Roark et
al., 2004a; Roark et al., 2004b) (signifi-
cant at p < 0.001), which makes use of
a discriminatively trained n-gram model,
giving a total reduction of 1.2% over the
baseline Switchboard system.

1 Introduction

The predominant approach within language model-
ing for speech recognition has been to use an n-
gram language model, within the “source-channel”
or “noisy-channel” paradigm. The language model
assigns a probability Pl(w) to each string w in the
language; the acoustic model assigns a conditional
probability Pa(a|w) to each pair (a,w) where a is a
sequence of acoustic vectors, and w is a string. For
a given acoustic input a, the highest scoring string
under the model is

w∗ = arg max
w

(β log Pl(w) + log Pa(a|w)) (1)

where β > 0 is some value that reflects the rela-
tive importance of the language model; β is typi-
cally chosen by optimization on held-out data. In

an n-gram language model, a Markov assumption
is made, namely that each word depends only on
the previous (n − 1) words. The parameters of the
language model are usually estimated from a large
quantity of text data. See (Chen and Goodman,
1998) for an overview of estimation techniques for
n-gram models.

This paper describes a method for incorporating
syntactic features into the language model, using
discriminative parameter estimation techniques. We
build on the work in Roark et al. (2004a; 2004b),
which was summarized and extended in Roark et al.
(2005). These papers used discriminative methods
for n-gram language models. Our approach reranks
the 1000-best output from the Switchboard recog-
nizer of Ljolje et al. (2003).1 Each candidate string
w is parsed using the statistical parser of Collins
(1999) to give a parse tree T (w). Information from
the parse tree is incorporated in the model using
a feature-vector approach: we define Φ(a,w) to
be a d-dimensional feature vector which in princi-
ple could track arbitrary features of the string w

together with the acoustic input a. In this paper
we restrict Φ(a,w) to only consider the string w

and/or the parse tree T (w) for w. For example,
Φ(a,w) might track counts of context-free rule pro-
ductions in T (w), or bigram lexical dependencies
within T (w). The optimal string under our new
model is defined as

w
∗ = arg max

w

(β log Pl(w) + 〈ᾱ, Φ(a,w)〉+

log Pa(a|w)) (2)

where the arg max is taken over all strings in the
1000-best list, and where ᾱ ∈ R

d is a parameter
vector specifying the “weight” for each feature in
Φ (note that we define 〈x, y〉 to be the inner, or dot

1Note that (Roark et al., 2004a; Roark et al., 2004b) give
results for an n-gram approach on this data which makes use of
both lattices and 1000-best lists. The results on 1000-best lists
were very close to results on lattices for this domain, suggesting
that the 1000-best approximation is a reasonable one.

507



product, between vectors x and y). For this paper,
we train the parameter vector ᾱ using the perceptron
algorithm (Collins, 2004; Collins, 2002). The per-
ceptron algorithm is a very fast training method, in
practice requiring only a few passes over the train-
ing set, allowing for a detailed comparison of a wide
variety of feature sets.

A number of researchers have described work
that incorporates syntactic language models into a
speech recognizer. These methods have almost ex-
clusively worked within the noisy channel paradigm,
where the syntactic language model has the task
of modeling a distribution over strings in the lan-
guage, in a very similar way to traditional n-gram
language models. The Structured Language Model
(Chelba and Jelinek, 1998; Chelba and Jelinek,
2000; Chelba, 2000; Xu et al., 2002; Xu et al., 2003)
makes use of an incremental shift-reduce parser to
enable the probability of words to be conditioned on
k previous c-commanding lexical heads, rather than
simply on the previous k words. Incremental top-
down and left-corner parsing (Roark, 2001a; Roark,
2001b) and head-driven parsing (Charniak, 2001)
approaches have directly used generative PCFG
models as language models. In the work of Wen
Wang and Mary Harper (Wang and Harper, 2002;
Wang, 2003; Wang et al., 2004), a constraint depen-
dency grammar and a finite-state tagging model de-
rived from that grammar were used to exploit syn-
tactic dependencies.

Our approach differs from previous work in a cou-
ple of important respects. First, through the feature-
vector representations Φ(a,w) we can essentially
incorporate arbitrary sources of information from
the string or parse tree into the model. We would ar-
gue that our method allows considerably more flexi-
bility in terms of the choice of features in the model;
in previous work features were incorporated in the
model through modification of the underlying gen-
erative parsing or tagging model, and modifying a
generative model is a rather indirect way of chang-
ing the features used by a model. In this respect, our
approach is similar to that advocated in Rosenfeld et
al. (2001), which used Maximum Entropy modeling
to allow for the use of shallow syntactic features for
language modeling.

A second contrast between our work and previ-
ous work, including that of Rosenfeld et al. (2001),

is in the use of discriminative parameter estimation
techniques. The criterion we use to optimize the pa-
rameter vector ᾱ is closely related to the end goal
in speech recognition, i.e., word error rate. Previ-
ous work (Roark et al., 2004a; Roark et al., 2004b)
has shown that discriminative methods within an n-
gram approach can lead to significant reductions in
WER, in spite of the features being of the same type
as the original language model. In this paper we ex-
tend this approach, by including syntactic features
that were not in the baseline speech recognizer.

This paper describe experiments using a variety
of syntactic features within this approach. We tested
the model on the Switchboard (SWB) domain, using
the recognizer of Ljolje et al. (2003). The discrim-
inative approach for n-gram modeling gave a 0.9%
reduction in WER on this domain; the syntactic fea-
tures we describe give a further 0.3% reduction.

In the remainder of this paper, section 2 describes
previous work, including the parameter estimation
methods we use, and section 3 describes the feature-
vector representations of parse trees that we used in
our experiments. Section 4 describes experiments
using the approach.

2 Background

2.1 Previous Work

Techniques for exploiting stochastic context-free
grammars for language modeling have been ex-
plored for more than a decade. Early approaches
included algorithms for efficiently calculating string
prefix probabilities (Jelinek and Lafferty, 1991; Stol-
cke, 1995) and approaches to exploit such algo-
rithms to produce n-gram models (Stolcke and Se-
gal, 1994; Jurafsky et al., 1995). The work of Chelba
and Jelinek (Chelba and Jelinek, 1998; Chelba and
Jelinek, 2000; Chelba, 2000) involved the use of a
shift-reduce parser trained on Penn treebank style
annotations, that maintains a weighted set of parses
as it traverses the string from left-to-right. Each
word is predicted by each candidate parse in this set
at the point when the word is shifted, and the con-
ditional probability of the word given the previous
words is taken as the weighted sum of the condi-
tional probabilities provided by each parse. In this
approach, the probability of a word is conditioned
by the top two lexical heads on the stack of the par-
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ticular parse. Enhancements in the feature set and
improved parameter estimation techniques have ex-
tended this approach in recent years (Xu et al., 2002;
Xu et al., 2003).

Roark (2001a; 2001b) pursued a different deriva-
tion strategy from Chelba and Jelinek, and used the
parse probabilities directly to calculate the string
probabilities. This work made use of a left-to-right,
top-down, beam-search parser, which exploits rich
lexico-syntactic features from the left context of
each derivation to condition derivation move proba-
bilities, leading to a very peaked distribution. Rather
than normalizing a prediction of the next word over
the beam of candidates, as in Chelba and Jelinek,
in this approach the string probability is derived by
simply summing the probabilities of all derivations
for that string in the beam.

Other work on syntactic language modeling in-
cludes that of Charniak (2001), which made use of
a non-incremental, head-driven statistical parser to
produce string probabilities. In the work of Wen
Wang and Mary Harper (Wang and Harper, 2002;
Wang, 2003; Wang et al., 2004), a constraint depen-
dency grammar and a finite-state tagging model de-
rived from that grammar, were used to exploit syn-
tactic dependencies. The processing advantages of
the finite-state encoding of the model has allowed
for the use of probabilities calculated off-line from
this model to be used in the first pass of decoding,
which has provided additional benefits. Finally, Och
et al. (2004) use a reranking approach with syntactic
information within a machine translation system.

Rosenfeld et al. (2001) investigated the use of
syntactic features in a Maximum Entropy approach.
In their paper, they used a shallow parser to anno-
tate base constituents, and derived features from se-
quences of base constituents. The features were in-
dicator features that were either (1) exact matches
between a set or sequence of base constituents with
those annotated on the hypothesis transcription; or
(2) tri-tag features from the constituent sequence.
The generative model that resulted from their fea-
ture set resulted in only a very small improvement
in either perplexity or word-error-rate.

2.2 Global Linear Models

We follow the framework of Collins (2002; 2004),
recently applied to language modeling in Roark et

al. (2004a; 2004b). The model we propose consists
of the following components:
• GEN(a) is a set of candidate strings for an

acoustic input a. In our case, GEN(a) is a set of
1000-best strings from a first-pass recognizer.
• T (w) is the parse tree for string w.
• Φ(a,w) ∈ R

d is a feature-vector representation
of an acoustic input a together with a string w.
• ᾱ ∈ R

d is a parameter vector.
• The output of the recognizer for an input a is

defined as

F (a) = argmax
w∈GEN(a)

〈Φ(a,w), ᾱ〉 (3)

In principle, the feature vector Φ(a,w) could take
into account any features of the acoustic input a to-
gether with the utterance w. In this paper we make
a couple of restrictions. First, we define the first fea-
ture to be

Φ1(a,w) = β log Pl(w) + log Pa(a|w)

where Pl(w) and Pa(a|w) are language and acous-
tic model scores from the baseline speech recog-
nizer. In our experiments we kept β fixed at the
value used in the baseline recogniser. It can then
be seen that our model is equivalent to the model
in Eq. 2. Second, we restrict the remaining features
Φ2(a,w) . . . Φd(a,w) to be sensitive to the string
w alone.2 In this sense, the scope of this paper is
limited to the language modeling problem. As one
example, the language modeling features might take
into account n-grams, for example through defini-
tions such as

Φ2(a,w) = Count of the the in w

Previous work (Roark et al., 2004a; Roark et al.,
2004b) considered features of this type. In this pa-
per, we introduce syntactic features, which may be
sensitive to the parse tree for w, for example

Φ3(a,w) = Count of S → NP VP in T (w)

where S → NP VP is a context-free rule produc-
tion. Section 3 describes the full set of features used
in the empirical results presented in this paper.

2Future work may consider features of the acoustic sequence
a together with the string w, allowing the approach to be ap-
plied to acoustic modeling.
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2.2.1 Parameter Estimation

We now describe how the parameter vector ᾱ is
estimated from a set of training utterances. The
training set consists of examples (ai,wi) for i =
1 . . .m, where ai is the i’th acoustic input, and wi

is the transcription of this input. We briefly review
the two training algorithms described in Roark et al.
(2004b), the perceptron algorithm and global condi-
tional log-linear models (GCLMs).

Figure 1 shows the perceptron algorithm. It is an
online algorithm, which makes several passes over
the training set, updating the parameter vector after
each training example. For a full description of the
algorithm, see Collins (2004; 2002).

A second parameter estimation method, which
was used in (Roark et al., 2004b), is to optimize
the log-likelihood under a log-linear model. Sim-
ilar approaches have been described in Johnson et
al. (1999) and Lafferty et al. (2001). The objective
function used in optimizing the parameters is

L(ᾱ) =
∑

i

log P (si|ai, ᾱ)− C
∑

j

α2
j (4)

where P (si|ai, ᾱ) = e〈Φ(ai,si),ᾱ〉∑
w∈GEN(ai)

e〈Φ(ai,w),ᾱ〉 .

Here, each si is the member of GEN(ai) which
has lowest WER with respect to the target transcrip-
tion wi. The first term in L(ᾱ) is the log-likelihood
of the training data under a conditional log-linear
model. The second term is a regularization term
which penalizes large parameter values. C is a con-
stant that dictates the relative weighting given to the
two terms. The optimal parameters are defined as

ᾱ∗ = arg max
ᾱ

L(ᾱ)

We refer to these models as global conditional log-
linear models (GCLMs).

Each of these algorithms has advantages. A num-
ber of results—e.g., in Sha and Pereira (2003) and
Roark et al. (2004b)—suggest that the GCLM ap-
proach leads to slightly higher accuracy than the per-
ceptron training method. However the perceptron
converges very quickly, often in just a few passes
over the training set—in comparison GCLM’s can
take tens or hundreds of gradient calculations before
convergence. In addition, the perceptron can be used
as an effective feature selection technique, in that

Input: A parameter specifying the number of iterations over

the training set, T . A value for the first parameter, α. A

feature-vector representation Φ(a,w) ∈ R
d. Training exam-

ples (ai,wi) for i = 1 . . . m. An n-best list GEN(ai) for each

training utterance. We take si to be the member of GEN(ai)

which has the lowest WER when compared to wi.

Initialization: Set α1 = α, and αj = 0 for j =
2 . . . d.

Algorithm: For t = 1 . . . T, i = 1 . . . m

•Calculate yi = arg maxw∈GEN(ai) 〈Φ(ai,w), ᾱ〉

• For j = 2 . . .m, set ᾱj = ᾱj + Φj(ai, si) −
Φj(ai,yi)

Output: Either the final parameters ᾱ, or the averaged pa-

rameters ᾱavg defined as ᾱavg =
∑

t,i
ᾱt,i/mT where ᾱt,i is

the parameter vector after training on the i’th training example

on the t’th pass through the training data.

Figure 1: The perceptron training algorithm. Following
Roark et al. (2004a), the parameter α1 is set to be some con-
stant α that is typically chosen through optimization over the
development set. Recall that α1 dictates the weight given to the
baseline recognizer score.

at each training example it only increments features
seen on si or yi, effectively ignoring all other fea-
tures seen on members of GEN(ai). For example,
in the experiments in Roark et al. (2004a), the per-
ceptron converged in around 3 passes over the train-
ing set, while picking non-zero values for around 1.4
million n-gram features out of a possible 41 million
n-gram features seen in the training set.

For the present paper, to get a sense of the relative
effectiveness of various kinds of syntactic features
that can be derived from the output of a parser, we
are reporting results using just the perceptron algo-
rithm. This has allowed us to explore more of the po-
tential feature space than we would have been able
to do using the more costly GCLM estimation tech-
niques. In future we plan to apply GLCM parameter
estimation methods to the task.

3 Parse Tree Features

We tagged each candidate transcription with (1)
part-of-speech tags, using the tagger documented in
Collins (2002); and (2) a full parse tree, using the
parser documented in Collins (1999). The models
for both of these were trained on the Switchboard
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house

Figure 2: An example parse tree

treebank, and applied to candidate transcriptions in
both the training and test sets. Each transcription
received one POS-tag annotation and one parse tree
annotation, from which features were extracted.

Figure 2 shows a Penn Treebank style parse tree
that is of the sort produced by the parser. Given such
a structure, there is a tremendous amount of flexibil-
ity in selecting features. The first approach that we
follow is to map each parse tree to sequences encod-
ing part-of-speech (POS) decisions, and “shallow”
parsing decisions. Similar representations have been
used by (Rosenfeld et al., 2001; Wang and Harper,
2002). Figure 3 shows the sequential representations
that we used. The first simply makes use of the POS
tags for each word. The latter representations make
use of sequences of non-terminals associated with
lexical items. In 3(b), each word in the string is asso-
ciated with the beginning or continuation of a shal-
low phrase or “chunk” in the tree. We include any
non-terminals above the level of POS tags as poten-
tial chunks: a new “chunk” (VP, NP, PP etc.) begins
whenever we see the initial word of the phrase dom-
inated by the non-terminal. In 3(c), we show how
POS tags can be added to these sequences. The final
type of sequence mapping, shown in 3(d), makes a
similar use of chunks, but preserves only the head-
word seen with each chunk.3

From these sequences of categories, various fea-
tures can be extracted, to go along with the n-gram
features used in the baseline. These include n-tag
features, e.g. ti−2ti−1ti (where ti represents the

3It should be noted that for a very small percentage of hy-
potheses, the parser failed to return a full parse tree. At the
end of every shallow tag or category sequence, a special end of
sequence tag/word pair “</parse> </parse>” was emit-
ted. In contrast, when a parse failed, the sequence consisted of
solely “<noparse> <noparse>”.

(a)
we/PRP helped/VBD her/PRP paint/VB the/DT

house/NN

(b)
we/NPb helped/VPb her/NPb paint/VPb the/NPb

house/NPc

(c)
we/PRP-NPb helped/VBD-VPb her/PRP-NPb

paint/VB-VPb the/DT-NPb house/NN-NPc

(d)
we/NP helped/VP her/NP paint/VP house/NP

Figure 3: Sequences derived from a parse tree: (a) POS-tag
sequence; (b) Shallow parse tag sequence—the superscripts b
and c refer to the beginning and continuation of a phrase re-
spectively; (c) Shallow parse tag plus POS tag sequence; and
(d) Shallow category with lexical head sequence

tag in position i); and composite tag/word features,
e.g. tiwi (where wi represents the word in posi-
tion i) or, more complicated configurations, such as
ti−2ti−1wi−1tiwi. These features can be extracted
from whatever sort of tag/word sequence we pro-
vide for feature extraction, e.g. POS-tag sequences
or shallow parse tag sequences.

One variant that we performed in feature extrac-
tion had to do with how speech repairs (identified as
EDITED constituents in the Switchboard style parse
trees) and filled pauses or interjections (labeled with
the INTJ label) were dealt with. In the simplest ver-
sion, these are simply treated like other constituents
in the parse tree. However, these can disrupt what
may be termed the intended sequence of syntactic
categories in the utterance, so we also tried skipping
these constituents when mapping from the parse tree
to shallow parse sequences.

The second set of features we employed made
use of the full parse tree when extracting features.
For this paper, we examined several features tem-
plates of this type. First, we considered context-free
rule instances, extracted from each local node in the
tree. Second, we considered features based on lex-
ical heads within the tree. Let us first distinguish
between POS-tags and non-POS non-terminal cate-
gories by calling these latter constituents NTs. For
each constituent NT in the tree, there is an associ-
ated lexical head (HNT) and the POS-tag of that lex-
ical head (HPNT). Two simple features are NT/HNT

and NT/HPNT for every NT constituent in the tree.
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Feature Examples from figure 2

(P,HCP,Ci,{+,-}{1,2},HP,HCi
) (VP,VB,NP,1,paint,house)

(S,VP,NP,-1,helped,we)

(P,HCP,Ci,{+,-}{1,2},HP,HPCi
) (VP,VB,NP,1,paint,NN)

(S,VP,NP,-1,helped,PRP)

(P,HCP,Ci,{+,-}{1,2},HPP,HCi
) (VP,VB,NP,1,VB,house)

(S,VP,NP,-1,VBD,we)

(P,HCP,Ci,{+,-}{1,2},HPP,HPCi
) (VP,VB,NP,1,VB,NN)

(S,VP,NP,-1,VBD,PRP)

Table 1: Examples of head-to-head features. The examples
are derived from the tree in figure 2.

Using the heads as identified in the parser, example
features from the tree in figure 2 would be S/VBD,
S/helped, NP/NN, and NP/house.

Beyond these constituent/head features, we can
look at the head-to-head dependencies of the sort
used by the parser. Consider each local tree, con-
sisting of a parent node (P), a head child (HCP), and
k non-head children (C1 . . . Ck). For each non-head
child Ci, it is either to the left or right of HCP, and is
either adjacent or non-adjacent to HCP. We denote
these positional features as an integer, positive if to
the right, negative if to the left, 1 if adjacent, and 2 if
non-adjacent. Table 1 shows four head-to-head fea-
tures that can be extracted for each non-head child
Ci. These features include dependencies between
pairs of lexical items, between a single lexical item
and the part-of-speech of another item, and between
pairs of part-of-speech tags in the parse.

4 Experiments

The experimental set-up we use is very similar to
that of Roark et al. (2004a; 2004b), and the exten-
sions to that work in Roark et al. (2005). We make
use of the Rich Transcription 2002 evaluation test
set (rt02) as our development set, and use the Rich
Transcription 2003 Spring evaluation CTS test set
(rt03) as test set. The rt02 set consists of 6081 sen-
tences (63804 words) and has three subsets: Switch-
board 1, Switchboard 2, Switchboard Cellular. The
rt03 set consists of 9050 sentences (76083 words)
and has two subsets: Switchboard and Fisher.

The training set consists of 297580 transcribed
utterances (3297579 words)4. For each utterance,

4Note that Roark et al. (2004a; 2004b; 2005) used 20854 of
these utterances (249774 words) as held out data. In this work
we simply use the rt02 test set as held out and development data.

a weighted word-lattice was produced, represent-
ing alternative transcriptions, from the ASR system.
The baseline ASR system that we are comparing
against then performed a rescoring pass on these first
pass lattices, allowing for better silence modeling,
and replaces the trigram language model score with
a 6-gram model. 1000-best lists were then extracted
from these lattices. For each candidate in the 1000-
best lists, we identified the number of edits (inser-
tions, deletions or substitutions) for that candidate,
relative to the “target” transcribed utterance. The or-
acle score for the 1000-best lists was 16.7%.

To produce the word-lattices, each training utter-
ance was processed by the baseline ASR system. In
a naive approach, we would simply train the base-
line system (i.e., an acoustic model and language
model) on the entire training set, and then decode
the training utterances with this system to produce
lattices. We would then use these lattices with the
perceptron algorithm. Unfortunately, this approach
is likely to produce a set of training lattices that are
very different from test lattices, in that they will have
very low word-error rates, given that the lattice for
each utterance was produced by a model that was
trained on that utterance. To somewhat control for
this, the training set was partitioned into 28 sets, and
baseline Katz backoff trigram models were built for
each set by including only transcripts from the other
27 sets. Lattices for each utterance were produced
with an acoustic model that had been trained on the
entire training set, but with a language model that
was trained on the 27 data portions that did not in-
clude the current utterance. Since language mod-
els are generally far more prone to overtraining than
standard acoustic models, this goes a long way to-
ward making the training conditions similar to test-
ing conditions. Similar procedures were used to
train the parsing and tagging models for the training
set, since the Switchboard treebank overlaps exten-
sively with the ASR training utterances.

Table 2 presents the word-error rates on rt02 and
rt03 of the baseline ASR system, 1000-best percep-
tron and GCLM results from Roark et al. (2005)
under this condition, and our 1000-best perceptron
results. Note that our n-best result, using just n-
gram features, improves upon the perceptron result
of (Roark et al., 2005) by 0.2 percent, putting us
within 0.1 percent of their GCLM result for that
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WER
Trial rt02 rt03
ASR system output 37.1 36.4
Roark et al. (2005) perceptron 36.6 35.7
Roark et al. (2005) GCLM 36.3 35.4
n-gram perceptron 36.4 35.5

Table 2: Baseline word-error rates versus Roark et al. (2005)

rt02
Trial WER
ASR system output 37.1
n-gram perceptron 36.4
n-gram + POS (1) perceptron 36.1
n-gram + POS (1,2) perceptron 36.1
n-gram + POS (1,3) perceptron 36.1

Table 3: Use of POS-tag sequence derived features

condition. (Note that the perceptron–trained n-gram
features were trigrams (i.e., n = 3).) This is due to
a larger training set being used in our experiments;
we have added data that was used as held-out data in
(Roark et al., 2005) to the training set that we use.

The first additional features that we experimented
with were POS-tag sequence derived features. Let
ti and wi be the POS tag and word at position i,
respectively. We experimented with the following
three feature definitions:

1. (ti−2ti−1ti), (ti−1ti), (ti), (tiwi)

2. (ti−2ti−1wi)

3. (ti−2wi−2ti−1wi−1tiwi), (ti−2ti−1wi−1tiwi),
(ti−1wi−1tiwi), (ti−1tiwi)

Table 3 summarizes the results of these trials on
the held out set. Using the simple features (num-
ber 1 above) yielded an improvement beyond just
n-grams, but additional, more complicated features
failed to yield additional improvements.

Next, we considered features derived from shal-
low parsing sequences. Given the results from the
POS-tag sequence derived features, for any given se-
quence, we simply use n-tag and tag/word features
(number 1 above). The first sequence type from
which we extracted features was the shallow parse
tag sequence (S1), as shown in figure 3(b). Next,
we tried the composite shallow/POS tag sequence
(S2), as in figure 3(c). Finally, we tried extract-
ing features from the shallow constituent sequence
(S3), as shown in figure 3(d). When EDITED and

rt02
Trial WER
ASR system output 37.1
n-gram perceptron 36.4
n-gram + POS perceptron 36.1
n-gram + POS + S1 perceptron 36.1
n-gram + POS + S2 perceptron 36.0
n-gram + POS + S3 perceptron 36.0
n-gram + POS + S3-E perceptron 36.0
n-gram + POS + CF perceptron 36.1
n-gram + POS + H2H perceptron 36.0

Table 4: Use of shallow parse sequence and full parse derived
features

INTJ nodes are ignored, we refer to this condition
as S3-E. For full-parse feature extraction, we tried
context-free rule features (CF) and head-to-head fea-
tures (H2H), of the kind shown in table 1. Table 4
shows the results of these trials on rt02.

Although the single digit precision in the table
does not show it, the H2H trial, using features ex-
tracted from the full parses along with n-grams and
POS-tag sequence features, was the best performing
model on the held out data, so we selected it for ap-
plication to the rt03 test data. This yielded 35.2%
WER, a reduction of 0.3% absolute over what was
achieved with just n-grams, which is significant at
p < 0.001,5 reaching a total reduction of 1.2% over
the baseline recognizer.

5 Conclusion

The results presented in this paper are a first step in
examining the potential utility of syntactic features
for discriminative language modeling for speech
recognition. We tried two possible sets of features
derived from the full annotation, as well as a va-
riety of possible feature sets derived from shallow
parse and POS tag sequences, the best of which
gave a small but significant improvement beyond
what was provided by the n-gram features. Future
work will include a further investigation of parser–
derived features. In addition, we plan to explore the
alternative parameter estimation methods described
in (Roark et al., 2004a; Roark et al., 2004b), which
were shown in this previous work to give further im-
provements over the perceptron.

5We use the Matched Pair Sentence Segment test for WER,
a standard measure of significance, to calculate this p-value.
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Abstract 

We have established a phonotactic lan-
guage model as the solution to spoken 
language identification (LID). In this 
framework, we define a single set of 
acoustic tokens to represent the acoustic 
activities in the world’s spoken languages. 
A voice tokenizer converts a spoken 
document into a text-like document of 
acoustic tokens. Thus a spoken document 
can be represented by a count vector of 
acoustic tokens and token n-grams in the 
vector space. We apply latent semantic 
analysis to the vectors, in the same way 
that it is applied in information retrieval, 
in order to capture salient phonotactics 
present in spoken documents. The vector 
space modeling of spoken utterances con-
stitutes a paradigm shift in LID technol-
ogy and has proven to be very successful. 
It presents a 12.4% error rate reduction 
over one of the best reported results on 
the 1996 NIST Language Recognition 
Evaluation database. 

1 Introduction 

Spoken language and written language are similar 
in many ways. Therefore, much of the research in 
spoken language identification, LID, has been in-
spired by text-categorization methodology. Both 
text and voice are generated from language de-
pendent vocabulary. For example, both can be seen 
as stochastic time-sequences corrupted by a chan-
nel noise. The n-gram language model has 
achieved equal amounts of success in both tasks, 
e.g. n-character slice for text categorization by lan-
guage (Cavnar and Trenkle, 1994) and Phone Rec-
ognition followed by n-gram Language Modeling, 
or PRLM (Zissman, 1996) .  

Orthographic forms of language, ranging from 
Latin alphabet to Cyrillic script to Chinese charac-
ters, are far more unique to the language than their 
phonetic counterparts. From the speech production 
point of view, thousands of spoken languages from 
all over the world are phonetically articulated us-
ing only a few hundred distinctive sounds or pho-
nemes (Hieronymus, 1994). In other words, 
common sounds are shared considerably across 
different spoken languages. In addition, spoken 
documents1, in the form of digitized wave files, are 
far less structured than written documents and need 
to be treated with techniques that go beyond the 
bounds of written language. All of this makes the 
identification of spoken language based on pho-
netic units much more challenging than the identi-
fication of written language. In fact, the challenge 
of LID is inter-disciplinary, involving digital signal 
processing, speech recognition and natural lan-
guage processing.  

In general, a LID system usually has three fun-
damental components as follows:  
1) A voice tokenizer which segments incoming 

voice feature frames and associates the seg-
ments with acoustic or phonetic labels, called 
tokens; 

2) A statistical language model which captures 
language dependent phonetic and phonotactic 
information from the sequences of tokens; 

3) A language classifier which identifies the lan-
guage based on discriminatory characteristics 
of acoustic score from the voice tokenizer and 
phonotactic score from the language model.  

In this paper, we present a novel solution to the 
three problems, focusing on the second and third 
problems from a computational linguistic perspec-
tive. The paper is organized as follows: In Section 
2, we summarize relevant existing approaches to 
the LID task. We highlight the shortcomings of 
existing approaches and our attempts to address the 
                                                           
1 A spoken utterance is regarded as a spoken document in this 
paper. 
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issues. In Section 3 we propose the bag-of-sounds 
paradigm to turn the LID task into a typical text 
categorization problem. In Section 4, we study the 
effects of different settings in experiments on the 
1996 NIST Language Recognition Evaluation 
(LRE) database2. In Section 5, we conclude our 
study and discuss future work. 

2 Related Work 

Formal evaluations conducted by the National In-
stitute of Science and Technology (NIST) in recent 
years demonstrated that the most successful ap-
proach to LID used the phonotactic content of the 
voice signal to discriminate between a set of lan-
guages (Singer et al., 2003). We briefly discuss 
previous work cast in the formalism mentioned 
above: tokenization, statistical language modeling, 
and language identification. A typical LID system 
is illustrated in Figure 1 (Zissman, 1996), where 
language dependent voice tokenizers (VT) and lan-
guage models (LM) are deployed in the Parallel 
PRLM architecture, or P-PRLM. 

 

 
Figure 1.  L monolingual phoneme recognition 
front-ends are used in parallel to tokenize the input 
utterance, which is analyzed by LMs to predict the 
spoken language 

2.1 Voice Tokenization 

A voice tokenizer is a speech recognizer that 
converts a spoken document into a sequence of 
tokens. As illustrated in Figure 2, a token can be of 
different sizes, ranging from a speech feature 
frame, to a phoneme, to a lexical word. A token is 
defined to describe a distinct acoustic/phonetic 
activity. In early research, low level spectral 

                                                           
2 http://www.nist.gov/speech/tests/ 

frames, which are assumed to be independent of 
each other, were used as a set of prototypical spec-
tra for each language (Sugiyama, 1991). By adopt-
ing hidden Markov models, people moved beyond 
low-level spectral analysis towards modeling a 
frame sequence into a larger unit such as a pho-
neme and even a lexical word.  

Since the lexical word is language specific, the 
phoneme becomes the natural choice when build-
ing a language-independent voice tokenization 
front-end. Previous studies show that parallel lan-
guage-dependent phoneme tokenizers effectively 
serve as the tokenization front-ends with P-PRLM 
being the typical example. However, a language-
independent phoneme set has not been explored 
yet experimentally. In this paper, we would like to 
explore the potential of voice tokenization using a 
unified phoneme set. 

 

 
Figure 2 Tokenization at different resolutions 

2.2 n-gram Language Model 

With the sequence of tokens, we are able to es-
timate an n-gram language model (LM) from the 
statistics. It is generally agreed that phonotactics, 
i.e. the rules governing the phone/phonemes se-
quences admissible in a language, carry more lan-
guage discriminative information than the 
phonemes themselves. An n-gram LM over the 
tokens describes well n-local phonotactics among 
neighboring tokens. While some systems model 
the phonotactics at the frame level (Torres-
Carrasquillo et al., 2002), others have proposed P-
PRLM. The latter has become one of the most 
promising solutions so far (Zissman, 1996).  

  A variety of cues can be used by humans and 
machines to distinguish one language from another. 
These cues include phonology, prosody, morphol-
ogy, and syntax in the context of an utterance. 

VT-1: Chinese 

VT-2: English 

VT-L: French 

 
 

 LM-L: French 

LM-1 … LM-L 

 
 

 LM-L: French 

LM-1 … LM-L 

 
 

 LM-L: French 

LM-1 … LM-L 

language classifier 

spoken utterance  

hypothesized
language

word 

phoneme 

frame
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However, global phonotactic cues at the level of 
utterance or spoken document remains unexplored 
in previous work. In this paper, we pay special at-
tention to it. A spoken language always contains a 
set of high frequency function words, prefixes, and 
suffixes, which are realized as phonetic token sub-
strings in the spoken document. Individually, those 
substrings may be shared across languages. How-
ever, the pattern of their co-occurrences discrimi-
nates one language from another.  

Perceptual experiments have shown (Mut-
husamy, 1994) that with adequate training, human 
listeners’ language identification ability increases 
when given longer excerpts of speech.  Experi-
ments have also shown that increased exposure to 
each language and longer training sessions im-
prove listeners’ language identification perform-
ance. Although it is not entirely clear how human 
listeners make use of the high-order phonotac-
tic/prosodic cues present in longer spans of a spo-
ken document, strong evidence shows that 
phonotactics over larger context provides valuable 
LID cues beyond n-gram, which will be further 
attested by our experiments in Section 4. 

2.3 Language Classifier 

The task of a language classifier is to make 
good use of the LID cues that are encoded in the 
model lλ  to hypothesize from among L lan-
guages, Λ , as the one that is actually spoken in a 
spoken document O. The LID model 

l̂

lλ  in P-
PRLM refers to extracted information from acous-
tic model and n-gram LM for language l.  We have 

and { ,AM } LLM
l l lλ λ λ=  ( 1,..., )l lλ ∈Λ = . A maxi-

mum-likelihood classifier can be formulated as 
follows: 

( ) (

ˆ arg max ( / )

arg max / , /

l
l

AM LM
l l

l T

l P O

P O T P T

λ

λ λ
∈Λ

∈Λ ∈Γ

=

≈ ∑ )

)

      (1) 

The exact computation in Eq.(1) involves sum-
ming over all possible decoding of token se-
quences T given O. In many implementations, 
it is approximated by the maximum over all se-
quences in the sum by finding the most likely to-
ken sequence, , for each language l, using the 
Viterbi algorithm: 

∈Γ

l̂T

( ) (ˆ ˆ ˆarg max[ / , / ]AM LM
l l l l

l
l P O T P Tλ λ

∈Λ
≈         (2) 

Intuitively, individual sounds are heavily shared 
among different spoken languages due to the com-
mon speech production mechanism of humans. 
Thus, the acoustic score has little language dis-
criminative ability. Many experiments (Yan and 
Barnard, 1995; Zissman, 1996) have further at-
tested that the n-gram LM score provides more 
language discriminative information than their 
acoustic counterparts. In Figure 1, the decoding of 
voice tokenization is governed by the acoustic 
model AM

lλ to arrive at an acoustic score 

( )ˆ/ , AM
l lP O T λ  and a token sequence . The n-

gram LM derives the n-local phonotactic score 
l̂T

( )ˆ / LM
l lP T λ from the language model LM

lλ .  

Clearly, the n-gram LM suffers the major short-
coming of having not exploited the global phono-
tactics in the larger context of a spoken utterance. 
Speech recognition researchers have so far chosen 
to only use n-gram local statistics for primarily 
pragmatic reasons, as this n-gram is easier to attain. 
In this work, a language independent voice tokeni-
zation front-end is proposed, that uses a unified 
acoustic model  AMλ  instead of multiple language 
dependent acoustic models AM

lλ .  The n-gram 
LM LM

lλ is generalized to model both local and 
global phonotactics. 

3 Bag-of-Sounds Paradigm 

The bag-of-sounds concept is analogous to the 
bag-of-words paradigm originally formulated in 
the context of information retrieval (IR) and text 
categorization (TC) (Salton 1971; Berry et al., 
1995; Chu-Caroll and Carpenter, 1999). One focus 
of IR is to extract informative features for docu-
ment representation. The bag-of-words paradigm 
represents a document as a vector of counts. It is 
believed that it is not just the words, but also the 
co-occurrence of words that distinguish semantic 
domains of text documents.   

Similarly, it is generally believed in LID that, al-
though the sounds of different spoken languages 
overlap considerably, the phonotactics differenti-
ates one language from another. Therefore, one can 
easily draw the analogy between an acoustic token 
in bag-of-sounds and a word in bag-of-words. 
Unlike words in a text document, the phonotactic 
information that distinguishes spoken languages is 
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concealed in the sound waves of spoken languages. 
After transcribing a spoken document into a text 
like document of tokens, many IR or TC tech-
niques can then be readily applied. 

It is beyond the scope of this paper to discuss 
what would be a good voice tokenizer. We adopt 
phoneme size language-independent acoustic to-
kens to form a unified acoustic vocabulary in our 
voice tokenizer. Readers are referred to (Ma et al., 
2005) for details of acoustic modeling. 

3.1 Vector Space Modeling 

In human languages, some words invariably occur 
more frequently than others. One of the most 
common ways of expressing this idea is known as 
Zipf’s Law (Zipf, 1949). This law states that there 
is always a set of words which dominates most of 
the other words of the language in terms of their 
frequency of use. This is true both of written words 
and of spoken words. The short-term, or local pho-
notactics, is devised to describe Zipf’s Law.  

The local phonotactic constraints can be typi-
cally described by the token n-grams, or phoneme 
n-grams as in (Ng et al., 2000), which represents 
short-term statistics such as lexical constraints. 
Suppose that we have a token sequence, t1 t2 t3 t4. 
We derive the unigram statistics from the token 
sequence itself. We derive the bigram statistics 
from t1(t2) t2(t3) t3(t4) t4(#) where the token vo-
cabulary is expanded over the token’s right context. 
Similarly, we derive the trigram statistics from the 
t1(#,t2) t2(t1,t3) t3(t2,t4) t4(t3,#) to account for left 
and right contexts. The # sign is a place holder for 
free context. In the interest of manageability, we 
propose to use up to token trigram. In this way, for 
an acoustic system of Y  tokens, we have poten-
tially bigram and Y trigram in the vocabulary.  2Y 3

Meanwhile, motivated by the ideas of having 
both short-term and long-term phonotactic statis-
tics, we propose to derive global phonotactics in-
formation to account for long-term phonotactics: 

The global phonotactic constraint is the high-
order statistics of n-grams. It represents document 
level long-term phonotactics such as co-
occurrences of n-grams. By representing a spoken 
document as a count vector of n-grams, also called 
bag-of-sounds vector, it is possible to explore the 
relations and higher-order statistics among the di-
verse n-grams through latent semantic analysis 
(LSA).  

It is often advantageous to weight the raw 
counts to refine the contribution of each n-gram to 
LID. We begin by normalizing the vectors repre-
senting the spoken document by making each vec-
tor of unit length. Our second weighting is based 
on the notion that an n-gram that only occurs in a 
few languages is more discriminative than an n-
gram that occurs in nearly every document. We use 
the inverse-document frequency (idf) weighting 
scheme (Spark Jones, 1972), in which a word is 
weighted inversely to the number of documents in 
which it occurs, by means of 

( ) log / ( )idf w D d w=  , where w is a word in the 
vocabulary of W token n-grams. D is the total num-
ber of documents in the training corpus from L lan-
guages. Since each language has at least one 
document in the training corpus, we have D L≥ . 

is the number of documents containing the 
word w. Letting be the count of word w in 
document d, we have the weighted count as 

( )d w

,w dc

2 1/ 2
, , ,

1
( ) /( )w d w d w d

w W
c c idf w c ′

′≤ ≤

′ = × ∑  (3) 

and a vector to represent 
document d. A corpus is then represented by a 
term-document matrix

1, 2, ,{ , ,..., }T
d d d W dc c c c′ ′ ′=

1 2{ , ,..., }DH c c c= of W D× .  

3.2 Latent Semantic Analysis 

The fundamental idea in LSA is to reduce the 
dimension of a document vector, W to Q, where 
Q W<< and Q D<<  , by projecting the problem 
into the space spanned by the rows of the closest 
rank-Q matrix to H in the Frobenius norm (Deer-
wester et al, 1990).  Through singular value de-
composition (SVD) of H, we construct a modified 
matrix HQ from the Q-largest singular values: 

T
Q Q Q QH U S V=                         (4) 

QU is a W Q× left singular matrix with rows 

,1wu w W≤ ≤ QS; is a Q Q×  diagonal matrix of Q-

largest singular values of H; is QV D Q× right sin-

gular matrix with rows , 1 . dv d D≤ ≤
With the SVD, we project the D document vec-

tors in H into a reduced space  , referred to as 
Q-space in the rest of this paper. A test document 

of unknown language ID is mapped to a 

pseudo-document in the Q-space by matrix  

QV

pc

pv QU
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1T
p p p Qc v c U S −→ = Q   (5) 

After SVD, it is straightforward to arrive at a 
natural metric for the closeness between two spo-
ken documents  and in Q-space instead of  

their original W-dimensional space  and . 
iv jv

ic jc

( , ) cos( , )
|| || || ||

T
i j

i j i j
i j

v v
g c c v v

v v
⋅

≈ =
⋅

   (6) 

( , )i jg c c  indicates the similarity between two vec-
tors, which can be transformed to a distance meas-
ure . 1( , ) cos ( , )i j i jk c c g c c−=

In the forced-choice classification, a test docu-
ment, supposedly monolingual, is classified into 
one of the L languages. Note that the test document 
is unknown to the H matrix. We assume consis-
tency between the test document’s intrinsic phono-
tactic pattern and one of the D patterns, that is 
extracted from the training data and is presented in 
the H matrix, so that the SVD matrices still apply 
to the test document, and Eq.(5) still holds for di-
mension reduction. 

3.3 Bag-of-Sounds Language Classifier 

The bag-of-sounds phonotactic LM benefits from 
several properties of vector space modeling and 
LSA.  
1) It allows for representing a spoken document 

as a vector of n-gram features, such as unigram, 
bigram, trigram, and the mixture of them; 

2) It provides a well-defined distance metric for 
measurement of phonotactic distance between 
spoken documents;  

3) It processes spoken documents in a lower di-
mensional Q-space, that makes the bag-of-
sounds phonotactic language modeling, LM

lλ , 
and classification computationally manageable. 

Suppose we have only one prototypical vector 
and its projection in the Q-space to represent 

language l. Applying LSA to the term-document 
matrix

lc lv

:H W L× , a minimum distance classifier is 
formulated: 

ˆ arg min ( , )p l
l

l k v
∈Λ

= v    (7) 

In Eq.(7), is the Q-space projection of , a test 
document. 

pv pc

Apparently, it is very restrictive for each lan-
guage to have just one prototypical vector, also 

referred to as a centroid. The pattern of language 
distribution is inherently multi-modal, so it is 
unlikely well fitted by a single vector. One solution 
to this problem is to span the language space with 
multiple vectors. Applying LSA to a term-
document matrix :H W L′× , where L L as-
suming each language l is represented by a set of 
M vectors, 

M′ = ×

lΦ , a new classifier, using k-nearest 
neighboring rule (Duda and Hart, 1973) , is formu-
lated, named k-nearest classifier (KNC): 

ˆ arg min ( , )
l

p l
l l

l k
φ

′
∈Λ ′∈

= v v∑               (8) 

where lφ is the set of k-nearest-neighbor to  and  pv

l lφ ⊂ Φ . 
Among many ways to derive the M centroid vec-

tors, here is one option. Suppose that we have a set 
of training documents Dl for language l , as subset 
of corpus Ω ,  and . To derive 
the M vectors, we choose to carry out vector quan-
tization (VQ) to partition D

lD ⊂Ω 1
L
l lD=∪ = Ω

l

l  into M cells Dl,m in the 
Q-space such that 1 ,

M
m l mD D=∪ =  using similarity 

metric Eq.(6). All the documents in each cell 
,l mD can then be merged to form a super-document, 

which is further projected into a Q-space vector 
. This results in M prototypical centroids 

. Using KNC, a test vector is 
compared with M vectors to arrive at the k-nearest 
neighbors for each language, which can be compu-
tationally expensive when M is large. 

,l mv

, ( 1,...l m l )M∈Φv m =

Alternatively, one can account for multi-modal 
distribution through finite mixture model. A mix-
ture model is to represent the M discrete compo-
nents with soft combination. To extend the KNC 
into a statistical framework, it is necessary to map 
our distance metric Eq.(6) into a probability meas-
ure. One way is for the distance measure to induce 
a family of exponential distributions with pertinent 
marginality constraints. In practice, what we need 
is a reasonable probability distribution, which 
sums to one, to act as a lookup table for the dis-
tance measure. We here choose to use the empiri-
cal multivariate distribution constructed by 
allocating the total probability mass in proportion 
to the distances observed with the training data. In 
short, this reduces the task to a histogram normali-
zation. In this way, we map the distance  

to a conditional probability distribution 

( , )i jk c c
( | )i jp v v  
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subject to . Now that we are in the 
probability domain, techniques such as mixture 
smoothing can be readily applied to model a lan-
guage class with finer fitting. 

| |

1
( | ) 1i ji

p v vΩ

=
=∑

Let’s re-visit the task of L language forced-
choice classification. Similar to KNC, suppose we 
have M centroids  in the Q-
space for each language l. Each centroid represents 
a class.  The class conditional probability can be 
described as a linear combination of

,  ( 1,... )l m lv m∈Φ = M

,( | )i l mp v v : 

,
1

( | ) ( ) ( | )
M

LM
i l l m i l m

m
,p v p v p vλ

=

=∑ v

)

           (9) 

the probability ,( l mp v , functionally serves as a 

mixture weight of ,( | )i l mp v v . Together with a set 
of centroids , ,  ( 1,...l m lv m )∈Φ = ,( | )i l mM p v v

)

and 

,( l mp v  define a mixture model LM
lλ .  ,( | )i l mp v v  

is estimated by histogram normalization and 
,( l m )p v is estimated under the maximum likelihood 

criteria, , ,( ) /l m m l lp v C= C  , where C  is total 
number of documents in D

l

l, of which C docu-
ments fall into the cell m.  

,m l

An Expectation-Maximization iterative process 
can be devised for training of LM

lλ  to maximize the 
likelihood Eq.(9) over the entire training corpus: 

| |

1 1

( | ) ( | )
lDL

LM
d l

l d

p p v λ
= =

Ω Λ =∏∏            (10) 

Using the phonotactic LM score ( )ˆ / LM
l lP T for 

classification, with T  being represented by the 
bag-of-sounds vector v ,  Eq.(2) can be reformu-
lated as Eq.(11),  named mixture-model classifier 
(MMC): 

λ

l̂

p

, ,
1

ˆ arg max ( | )

 arg max ( ) ( | )

LM
p l

l
M

l m p l m
l m

l p v

p v p v v

λ
∈Λ

∈Λ =

=

= ∑
 (11) 

To establish fair comparison with P-PRLM, as 
shown in Figure 3, we devise our bag-of-sounds 
classifier to solely use the LM score 

( )ˆ / LM
l lP T λ for classification decision whereas the 

acoustic score ( )ˆ/ , AM
l lP O may potentially help 

as reported in (Singer et al., 2003).  

T λ
                                                          

 

 
Figure 3.  A bag-of-sounds classifier. A unified 
front-end followed by L parallel bag-of-sounds 
phonotactic LMs. 

4 Experiments 

This section will experimentally analyze the per-
formance of the proposed bag-of-sounds frame-
work using the 1996 NIST Language Recognition 
Evaluation (LRE) data. The database was intended 
to establish a baseline of performance capability 
for language recognition of conversational tele-
phone speech. The database contains recorded 
speech of 12 languages: Arabic, English, Farsi, 
French, German, Hindi, Japanese, Korean, Manda-
rin, Spanish, Tamil and Vietnamese. We use the 
training set and development set from LDC Call-
Friend corpus3 as the training data. Each conversa-
tion is segmented into overlapping sessions of 
about 30 seconds each, resulting in about 12,000 
sessions for each language. The evaluation set con-
sists of 1,492 30-sec sessions, each distributed 
among the various languages of interest. We treat a 
30-sec session as a spoken document in both train-
ing and testing. We report error rates (ER) of the 
1,492 test trials. 

4.1 Effect of Acoustic Vocabulary 

The choice of n-gram affects the performance of 
LID systems. Here we would like to see how a bet-
ter choice of acoustic vocabulary can help convert 
a spoken document into a phonotactically dis-
criminative space. There are two parameters that 
determine the acoustic vocabulary: the choice of 
acoustic token, and the choice of n-grams. In this 
paper, the former concerns the size of an acoustic 
system Y in the unified front-end. It is studied in 
more details in (Ma et al., 2005). We set Y to 32 in 

 
3 See http://www.ldc.upenn.edu/. The overlap between 1996 
NIST evaluation data and CallFriend database has been re-
moved from training data as suggested in the 2003 NIST LRE 
website http://www.nist.gov/speech/tests/index.htm 

LM
lλ LM-L:  French 

Unified VT

1
LMλ LM-1: Chinese 

2
LMλ  LM-2: English 

Language C
lassifier

spoken utterance

H
ypothesized language 

AMλ
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this experiment; the latter decides what features to 
be included in the vector space. The vector space 
modeling allows for multiple heterogeneous fea-
tures in one vector. We introduce three types of 
acoustic vocabulary (AV) with mixture of token 
unigram, bigram, and trigram:   
a) AV1: 32 broad class phonemes as unigram, 

selected from 12 languages, also referred to as 
P-ASM as detailed in (Ma et al., 2005) 

b) AV2: AV1 augmented by 32  bigrams of 
AV1, amounting to 1,056 tokens 

32×

c) AV3: AV2 augmented by 32  tri-
grams of AV1, amounting to 33,824 tokens 

32 32× ×

 
 AV1 AV2 AV3 
ER % 46.1 32.8 28.3 

Table 1.  Effect of acoustic vocabulary (KNC) 
 
We carry out experiments with KNC classifier 

of 4,800 centroids. Applying k-nearest-neighboring 
rule, k is empirically set to 3. The error rates are 
reported in Table 1 for the experiments over the 
three AV types. It is found that high-order token n-
grams improve LID performance.   This reaffirms 
many previous findings that n-gram phonotactics 
serves as a valuable cue in LID. 

4.2 Effect of Model Size 

As discussed in KNC, one would expect to im-
prove the phonotactic model by using more cen-
troids. Let’s examine how the number of centroid 
vectors M affects the performance of KNC. We set 
the acoustic system size Y to 128, k-nearest to 3, 
and only use token bigrams in the bag-of-sounds 
vector. In Table 2, it is not surprising to find that 
the performance improves as M increases. How-
ever, it is not practical to have large M be-
cause comparisons need to take place in 
each test trial.  

L L M′ = ×

 
#M 1,200 2,400 4,800 12,000 
ER % 17.0 15.7 15.4 14.8 

Table 2. Effect of number of centroids (KNC) 
 

To reduce computation, MMC attempts to use 
less number of mixtures M to represent the phono-
tactic space. With the smoothing effect of the mix-
ture model, we expect to use less computation to 
achieve similar performance as KNC. In the ex-
periment reported in Table 3, we find that MMC 

(M=1,024) achieves 14.9% error rate, which al-
most equalizes the best result in the KNC experi-
ment (M=12,000) with much less computation.  

 
#M 4 16 64 256 1,024 
ER % 29.6 26.4 19.7 16.0 14.9 

Table 3. Effect of number of mixtures (MMC) 

4.3 Discussion 

The bag-of-sounds approach has achieved equal 
success in both 1996 and 2003 NIST LRE data-
bases. As more results are published on the 1996 
NIST LRE database, we choose it as the platform 
of comparison. In Table 4, we report the perform-
ance across different approaches in terms of error 
rate for a quick comparison. MMC presents a 
12.4% ER reduction over the best reported result4 
(Torres-Carrasquillo et al., 2002). 

It is interesting to note that the bag-of-sounds 
classifier outperforms its P-PRLM counterpart by a 
wide margin (14.9% vs 22.0%). This is attributed 
to the global phonotactic features in LM

lλ .  The 
performance gain in (Torres-Carrasquillo et al., 
2002; Singer et al., 2003) was obtained mainly by 
fusing scores from several classifiers, namely 
GMM, P-PRLM and SVM, to benefit from both 
acoustic and language model scores. Noting that 
the bag-of-sounds classifier in this work solely re-
lies on the LM score, it is believed that fusing with 
scores from other classifiers will further boost the 
LID performance.  

 
 ER % 
P-PRLM5 22.0 
P-PRLM + GMM acoustic5 19.5 
P-PRLM + GMM acoustic +  
GMM tokenizer5

17.0 

Bag-of-sounds classifier (MMC) 14.9 
Table 4. Benchmark of different approaches 

 
Besides the error rate reduction, the bag-of-

sounds approach also simplifies the on-line com-
puting procedure over its P-PRLM counterpart. It 
would be interesting to estimate the on-line com-
putational need of MMC. The cost incurred has 
two main components: 1) the construction of the 
                                                           
4 Previous results are also reported in DCF, DET, and equal 
error rate (EER). Comprehensive benchmarking for bag-of-
sounds phonotactic LM will be reported soon. 
5 Results extracted from (Torres-Carrasquillo et al., 2002) 
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pseudo document vector, as done via Eq.(5); 2) 
vector comparisons. The computing 

cost is estimated to be  per test trial 
(Bellegarda, 2000). For typical values of Q, this 
amounts to less than 0.05 Mflops. While this is 
more expensive than the usual table look-up in 
conventional n-gram LM, the performance im-
provement is able to justify the relatively modest 
computing overhead. 

L L M′ = ×
2( )QO

5 Conclusion 

We have proposed a phonotactic LM approach to 
LID problem. The concept of bag-of-sounds is in-
troduced, for the first time, to model phonotactics 
present in a spoken language over a larger context. 
With bag-of-sounds phonotactic LM, a spoken 
document can be treated as a text-like document of 
acoustic tokens. This way, the well-established 
LSA technique can be readily applied. This novel 
approach not only suggests a paradigm shift in LID, 
but also brings 12.4% error rate reduction over one 
of the best reported results on the 1996 NIST LRE 
data. It has proven to be very successful.  

We would like to extend this approach to other 
spoken document categorization tasks. In monolin-
gual spoken document categorization, we suggest 
that the semantic domain can be characterized by 
latent phonotactic features. Thus it is straightfor-
ward to extend the proposed bag-of-sounds frame-
work to spoken document categorization. 
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Abstract

Reading proficiency is a fundamen-
tal component of language competency.
However, finding topical texts at an appro-
priate reading level for foreign and sec-
ond language learners is a challenge for
teachers. This task can be addressed with
natural language processing technology to
assess reading level. Existing measures
of reading level are not well suited to
this task, but previous work and our own
pilot experiments have shown the bene-
fit of using statistical language models.
In this paper, we also use support vector
machines to combine features from tradi-
tional reading level measures, statistical
language models, and other language pro-
cessing tools to produce a better method
of assessing reading level.

1 Introduction

The U.S. educational system is faced with the chal-
lenging task of educating growing numbers of stu-
dents for whom English is a second language (U.S.
Dept. of Education, 2003). In the 2001-2002 school
year, Washington state had 72,215 students (7.2% of
all students) in state programs for Limited English
Proficient (LEP) students (Bylsma et al., 2003). In
the same year, one quarter of all public school stu-
dents in California and one in seven students in
Texas were classified as LEP (U.S. Dept. of Edu-
cation, 2004). Reading is a critical part of language
and educational development, but finding appropri-
ate reading material for LEP students is often diffi-

cult. To meet the needs of their students, bilingual
education instructors seek out “high interest level”
texts at low reading levels, e.g. texts at a first or sec-
ond grade reading level that support the fifth grade
science curriculum. Teachers need to find material
at a variety of levels, since students need different
texts to read independently and with help from the
teacher. Finding reading materials that fulfill these
requirements is difficult and time-consuming, and
teachers are often forced to rewrite texts themselves
to suit the varied needs of their students.

Natural language processing (NLP) technology is
an ideal resource for automating the task of selecting
appropriate reading material for bilingual students.
Information retrieval systems successfully find top-
ical materials and even answer complex queries in
text databases and on the World Wide Web. How-
ever, an effective automated way to assess the read-
ing level of the retrieved text is still needed. In
this work, we develop a method of reading level as-
sessment that uses support vector machines (SVMs)
to combine features from statistical language mod-
els (LMs), parse trees, and other traditional features
used in reading level assessment.

The results presented here on reading level as-
sessment are part of a larger project to develop
teacher-support tools for bilingual education instruc-
tors. The larger project will include a text simpli-
fication system, adapting paraphrasing and summa-
rization techniques. Coupled with an information
retrieval system, these tools will be used to select
and simplify reading material in multiple languages
for use by language learners. In addition to students
in bilingual education, these tools will also be use-
ful for those with reading-related learning disabili-
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ties and adult literacy students. In both of these sit-
uations, as in the bilingual education case, the stu-
dent’s reading level does not match his/her intellec-
tual level and interests.

The remainder of the paper is organized as fol-
lows. Section 2 describes related work on reading
level assessment. Section 3 describes the corpora
used in our work. In Section 4 we present our ap-
proach to the task, and Section 5 contains experi-
mental results. Section 6 provides a summary and
description of future work.

2 Reading Level Assessment

This section highlights examples and features of
some commonly used measures of reading level and
discusses current research on the topic of reading
level assessment using NLP techniques.

Many traditional methods of reading level assess-
ment focus on simple approximations of syntactic
complexity such as sentence length. The widely-
used Flesch-Kincaid Grade Level index is based on
the average number of syllables per word and the
average sentence length in a passage of text (Kin-
caid et al., 1975) (as cited in (Collins-Thompson
and Callan, 2004)). Similarly, the Gunning Fog in-
dex is based on the average number of words per
sentence and the percentage of words with three or
more syllables (Gunning, 1952). These methods are
quick and easy to calculate but have drawbacks: sen-
tence length is not an accurate measure of syntactic
complexity, and syllable count does not necessar-
ily indicate the difficulty of a word. Additionally,
a student may be familiar with a few complex words
(e.g. dinosaur names) but unable to understand com-
plex syntactic constructions.

Other measures of readability focus on seman-
tics, which is usually approximated by word fre-
quency with respect to a reference list or corpus.
The Dale-Chall formula uses a combination of av-
erage sentence length and percentage of words not
on a list of 3000 “easy” words (Chall and Dale,
1995). The Lexile framework combines measures
of semantics, represented by word frequency counts,
and syntax, represented by sentence length (Stenner,
1996). These measures are inadequate for our task;
in many cases, teachers want materials with more
difficult, topic-specific words but simple structure.

Measures of reading level based on word lists do not
capture this information.

In addition to the traditional reading level metrics,
researchers at Carnegie Mellon University have ap-
plied probabilistic language modeling techniques to
this task. Si and Callan (2001) conducted prelimi-
nary work to classify science web pages using uni-
gram models. More recently, Collins-Thompson and
Callan manually collected a corpus of web pages
ranked by grade level and observed that vocabulary
words are not distributed evenly across grade lev-
els. They developed a “smoothed unigram” clas-
sifier to better capture the variance in word usage
across grade levels (Collins-Thompson and Callan,
2004). On web text, their classifier outperformed
several other measures of semantic difficulty: the
fraction of unknown words in the text, the number
of distinct types per 100 token passage, the mean log
frequency of the text relative to a large corpus, and
the Flesch-Kincaid measure. The traditional mea-
sures performed better on some commercial corpora,
but these corpora were calibrated using similar mea-
sures, so this is not a fair comparison. More impor-
tantly, the smoothed unigram measure worked better
on the web corpus, especially on short passages. The
smoothed unigram classifier is also more generaliz-
able, since it can be trained on any collection of data.
Traditional measures such as Dale-Chall and Lexile
are based on static word lists.

Although the smoothed unigram classifier outper-
forms other vocabulary-based semantic measures, it
does not capture syntactic information. We believe
that higher order n-gram models or class n-gram
models can achieve better performance by captur-
ing both semantic and syntactic information. This is
particularly important for the tasks we are interested
in, when the vocabulary (i.e. topic) and grade level
are not necessarily well-matched.

3 Corpora

Our work is currently focused on a corpus obtained
from Weekly Reader, an educational newspaper with
versions targeted at different grade levels (Weekly
Reader, 2004). These data include a variety of la-
beled non-fiction topics, including science, history,
and current events. Our corpus consists of articles
from the second, third, fourth, and fifth grade edi-
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Grade Num Articles Num Words
2 351 71.5k
3 589 444k
4 766 927k
5 691 1M

Table 1: Distribution of articles and words in the
Weekly Reader corpus.

Corpus Num Articles Num Words
Britannica 115 277k
B. Elementary 115 74k
CNN 111 51k
CNN Abridged 111 37k

Table 2: Distribution of articles and words in the
Britannica and CNN corpora.

tions of the newspaper. We design classifiers to dis-
tinguish each of these four categories. This cor-
pus contains just under 2400 articles, distributed as
shown in Table 1.

Additionally, we have two corpora consisting of
articles for adults and corresponding simplified ver-
sions for children or other language learners. Barzi-
lay and Elhadad (2003) have allowed us to use their
corpus from Encyclopedia Britannica, which con-
tains articles from the full version of the encyclope-
dia and corresponding articles from Britannica El-
ementary, a new version targeted at children. The
Western/Pacific Literacy Network’s (2004) web site
has an archive of CNN news stories and abridged
versions which we have also received permission to
use. Although these corpora do not provide an ex-
plicit grade-level ranking for each article, broad cat-
egories are distinguished. We use these data as a
supplement to the Weekly Reader corpus for learn-
ing models to distinguish broad reading level classes
than can serve to provide features for more detailed
classification. Table 2 shows the size of the supple-
mental corpora.

4 Approach

Existing reading level measures are inadequate due
to their reliance on vocabulary lists and/or a superfi-
cial representation of syntax. Our approach uses n-
gram language models as a low-cost automatic ap-

proximation of both syntactic and semantic analy-
sis. Statistical language models (LMs) are used suc-
cessfully in this way in other areas of NLP such as
speech recognition and machine translation. We also
use a standard statistical parser (Charniak, 2000) to
provide syntactic analysis.

In practice, a teacher is likely to be looking for
texts at a particular level rather than classifying a
group of texts into a variety of categories. Thus
we construct one classifier per category which de-
cides whether a document belongs in that category
or not, rather than constructing a classifier which
ranks documents into different categories relative to
each other.

4.1 Statistical Language Models

Statistical LMs predict the probability that a partic-
ular word sequence will occur. The most commonly
used statistical language model is the n-gram model,
which assumes that the word sequence is an (n−1)th
order Markov process. For example, for the com-
mon trigram model where n = 3, the probability of
sequence w is:

P (w) = P (w1)P (w2|w1)
m∏

i=3

P (wi|wi−1, wi−2).

(1)
The parameters of the model are estimated using a
maximum likelihood estimate based on the observed
frequency in a training corpus and smoothed using
modified Kneser-Ney smoothing (Chen and Good-
man, 1999). We used the SRI Language Modeling
Toolkit (Stolcke, 2002) for language model training.

Our first set of classifiers consists of one n-gram
language model per class c in the set of possible
classes C. For each text document t, we can cal-
culate the likelihood ratio between the probability
given by the model for class c and the probabilities
given by the other models for the other classes:

LR =
P (t|c)P (c)

∑
c′ 6=c P (t|c′)P (c′)

(2)

where we assume uniform prior probabilities P (c).
The resulting value can be compared to an empiri-
cally chosen threshold to determine if the document
is in class c or not. For each class c, a language
model is estimated from a corpus of training texts.
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In addition to using the likelihood ratio for classi-
fication, we can use scores from language models as
features in another classifier (e.g. an SVM). For ex-
ample, perplexity (PP ) is an information-theoretic
measure often used to assess language models:

PP = 2H(t|c), (3)

where H(t|c) is the entropy relative to class c of a
length m word sequence t = w1, ..., wm, defined as

H(t|c) = −
1

m
log2 P (t|c). (4)

Low perplexity indicates a better match between the
test data and the model, corresponding to a higher
probability P (t|c). Perplexity scores are used as fea-
tures in the SVM model described in Section 4.3.
The likelihood ratio described above could also be
used as a feature, but we achieved better results us-
ing perplexity.

4.2 Feature Selection
Feature selection is a common part of classifier
design for many classification problems; however,
there are mixed results in the literature on feature
selection for text classification tasks. In Collins-
Thompson and Callan’s work (2004) on readabil-
ity assessment, LM smoothing techniques are more
effective than other forms of explicit feature selec-
tion. However, feature selection proves to be impor-
tant in other text classification work, e.g. Lee and
Myaeng’s (2002) genre and subject detection work
and Boulis and Ostendorf’s (2005) work on feature
selection for topic classification.

For our LM classifiers, we followed Boulis and
Ostendorf’s (2005) approach for feature selection
and ranked words by their ability to discriminate
between classes. Given P (c|w), the probability of
class c given word w, estimated empirically from
the training set, we sorted words based on their in-
formation gain (IG). Information gain measures the
difference in entropy when w is and is not included
as a feature.

IG(w) = −
∑

c∈C

P (c) log P (c)

+ P (w)
∑

c∈C

P (c|w) log P (c|w)

+ P (w̄)
∑

c∈C

P (c|w̄) log P (c|w̄).(5)

The most discriminative words are selected as fea-
tures by plotting the sorted IG values and keeping
only those words below the “knee” in the curve, as
determined by manual inspection of the graph. In an
early experiment, we replaced all remaining words
with a single “unknown” tag. This did not result
in an effective classifier, so in later experiments the
remaining words were replaced with a small set of
general tags. Motivated by our goal of represent-
ing syntax, we used part-of-speech (POS) tags as la-
beled by a maximum entropy tagger (Ratnaparkhi,
1996). These tags allow the model to represent pat-
terns in the text at a higher level than that of individ-
ual words, using sequences of POS tags to capture
rough syntactic information. The resulting vocabu-
lary consisted of 276 words and 56 POS tags.

4.3 Support Vector Machines

Support vector machines (SVMs) are a machine
learning technique used in a variety of text classi-
fication problems. SVMs are based on the principle
of structural risk minimization. Viewing the data as
points in a high-dimensional feature space, the goal
is to fit a hyperplane between the positive and neg-
ative examples so as to maximize the distance be-
tween the data points and the plane. SVMs were in-
troduced by Vapnik (1995) and were popularized in
the area of text classification by Joachims (1998a).

The unit of classification in this work is a single
article. Our SVM classifiers for reading level use the
following features:

• Average sentence length

• Average number of syllables per word

• Flesch-Kincaid score

• 6 out-of-vocabulary (OOV) rate scores.

• Parse features (per sentence):
– Average parse tree height
– Average number of noun phrases
– Average number of verb phrases
– Average number of “SBAR”s.1

• 12 language model perplexity scores

The OOV scores are relative to the most common
100, 200 and 500 words in the lowest grade level

1SBAR is defined in the Penn Treebank tag set as a “clause
introduced by a (possibly empty) subordinating conjunction.” It
is an indicator of sentence complexity.
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(grade 2) 2. For each article, we calculated the per-
centage of a) all word instances (tokens) and b) all
unique words (types) not on these lists, resulting in
three token OOV rate features and three type OOV
rate features per article.

The parse features are generated using the Char-
niak parser (Charniak, 2000) trained on the standard
Wall Street Journal Treebank corpus. We chose to
use this standard data set as we do not have any
domain-specific treebank data for training a parser.
Although clearly there is a difference between news
text for adults and news articles intended for chil-
dren, inspection of some of the resulting parses
showed good accuracy.

Ideally, the language model scores would be for
LMs from domain-specific training data (i.e. more
Weekly Reader data.) However, our corpus is lim-
ited and preliminary experiments in which the train-
ing data was split for LM and SVM training were
unsuccessful due to the small size of the resulting
data sets. Thus we made use of the Britannica and
CNN articles to train models of three n-gram or-
ders on “child” text and “adult” text. This resulted
in 12 LM perplexity features per article based on
trigram, bigram and unigram LMs trained on Bri-
tannica (adult), Britannica Elementary, CNN (adult)
and CNN abridged text.

For training SVMs, we used the SVMlight toolkit
developed by Joachims (1998b). Using development
data, we selected the radial basis function kernel
and tuned parameters using cross validation and grid
search as described in (Hsu et al., 2003).

5 Experiments

5.1 Test Data and Evaluation Criteria

We divide the Weekly Reader corpus described in
Section 3 into separate training, development, and
test sets. The number of articles in each set is shown
in Table 3. The development data is used as a test
set for comparing classifiers, tuning parameters, etc,
and the results presented in this section are based on
the test set.

We present results in three different formats. For
analyzing our binary classifiers, we use Detection
Error Tradeoff (DET) curves and precision/recall

2These lists are chosen from the full vocabulary indepen-
dently of the feature selection for LMs described above.

Grade Training Dev/Test
2 315 18
3 529 30
4 690 38
5 623 34

Table 3: Number of articles in the Weekly Reader
corpus as divided into training, development and test
sets. The dev and test sets are the same size and each
consist of approximately 5% of the data for each
grade level.

measures. For comparison to other methods, e.g.
Flesch-Kincaid and Lexile, which are not binary
classifiers, we consider the percentage of articles
which are misclassified by more than one grade
level.

Detection Error Tradeoff curves show the tradeoff
between misses and false alarms for different thresh-
old values for the classifiers. “Misses” are positive
examples of a class that are misclassified as neg-
ative examples; “false alarms” are negative exam-
ples misclassified as positive. DET curves have been
used in other detection tasks in language processing,
e.g. Martin et al. (1997). We use these curves to vi-
sualize the tradeoff between the two types of errors,
and select the minimum cost operating point in or-
der to get a threshold for precision and recall calcu-
lations. The minimum cost operating point depends
on the relative costs of misses and false alarms; it
is conceivable that one type of error might be more
serious than the other. After consultation with teach-
ers (future users of our system), we concluded that
there are pros and cons to each side, so for the pur-
pose of this analysis we weighted the two types of
errors equally. In this work, the minimum cost op-
erating point is selected by averaging the percent-
ages of misses and false alarms at each point and
choosing the point with the lowest average. Unless
otherwise noted, errors reported are associated with
these actual operating points, which may not lie on
the convex hull of the DET curve.

Precision and recall are often used to assess in-
formation retrieval systems, and our task is similar.
Precision indicates the percentage of the retrieved
documents that are relevant, in this case the per-
centage of detected documents that match the target
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grade level. Recall indicates the percentage of the
total number of relevant documents in the data set
that are retrieved, in this case the percentage of the
total number of documents from the target level that
are detected.

5.2 Language Model Classifier
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Figure 1: DET curves (test set) for classifiers based
on trigram language models.

Figure 1 shows DET curves for the trigram LM-
based classifiers. The minimum cost error rates for
these classifiers, indicated by large dots in the plot,
are in the range of 33-43%, with only one over 40%.
The curves for bigram and unigram models have
similar shapes, but the trigram models outperform
the lower-order models. Error rates for the bigram
models range from 37-45% and the unigram mod-
els have error rates in the 39-49% range, with all but
one over 40%. Although our training corpus is small
the feature selection described in Section 4.2 allows
us to use these higher-order trigram models.

5.3 Support Vector Machine Classifier

By combining language model scores with other fea-
tures in an SVM framework, we achieve our best
results. Figures 2 and 3 show DET curves for this
set of classifiers on the development set and test
set, respectively. The grade 2 and 5 classifiers have
the best performance, probably because grade 3 and
4 must be distinguished from other classes at both
higher and lower levels. Using threshold values se-
lected based on minimum cost on the development
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Figure 2: DET curves (development set) for SVM
classifiers with LM features.
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Figure 3: DET curves (test set) for SVM classifiers
with LM features.

set, indicated by large dots on the plot, we calcu-
lated precision and recall on the test set. Results are
presented in Table 4. The grade 3 classifier has high
recall but relatively low precision; the grade 4 classi-
fier does better on precision and reasonably well on
recall. Since the minimum cost operating points do
not correspond to the equal error rate (i.e. equal per-
centage of misses and false alarms) there is variation
in the precision-recall tradeoff for the different grade
level classifiers. For example, for class 3, the oper-
ating point corresponds to a high probability of false
alarms and a lower probability of misses, which re-
sults in low precision and high recall. For operating
points chosen on the convex hull of the DET curves,
the equal error rate ranges from 12-25% for the dif-
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Grade Precision Recall
2 38% 61%
3 38% 87%
4 70% 60%
5 75% 79%

Table 4: Precision and recall on test set for SVM-
based classifiers.

Grade Errors
Flesch-Kincaid Lexile SVM

2 78% 33% 5.5%
3 67% 27% 3.3%
4 74% 26% 13%
5 59% 24% 21%

Table 5: Percentage of articles which are misclassi-
fied by more than one grade level.

ferent grade levels.
We investigated the contribution of individual fea-

tures to the overall performance of the SVM clas-
sifier and found that no features stood out as most
important, and performance was degraded when any
particular features were removed.

5.4 Comparison

We also compared error rates for the best per-
forming SVM classifier with two traditional read-
ing level measures, Flesch-Kincaid and Lexile. The
Flesch-Kincaid Grade Level index is a commonly
used measure of reading level based on the average
number of syllables per word and average sentence
length. The Flesch-Kincaid score for a document is
intended to directly correspond with its grade level.
We chose the Lexile measure as an example of a
reading level classifier based on word lists.3 Lexile
scores do not correlate directly to numeric grade lev-
els, however a mapping of ranges of Lexile scores to
their corresponding grade levels is available on the
Lexile web site (Lexile, 2005).

For each of these three classifiers, Table 5 shows
the percentage of articles which are misclassified by
more than one grade level. Flesch-Kincaid performs
poorly, as expected since its only features are sen-

3Other classifiers such as Dale-Chall do not have automatic
software available.

tence length and average syllable count. Although
this index is commonly used, perhaps due to its sim-
plicity, it is not accurate enough for the intended
application. Our SVM classifier also outperforms
the Lexile metric. Lexile is a more general measure
while our classifier is trained on this particular do-
main, so the better performance of our model is not
entirely surprising. Importantly, however, our clas-
sifier is easily tuned to any corpus of interest.

To test our classifier on data outside the Weekly
Reader corpus, we downloaded 10 randomly se-
lected newspaper articles from the “Kidspost” edi-
tion of The Washington Post (2005). “Kidspost” is
intended for grades 3-8. We found that our SVM
classifier, trained on the Weekly Reader corpus, clas-
sified four of these articles as grade 4 and seven ar-
ticles as grade 5 (with one overlap with grade 4).
These results indicate that our classifier can gener-
alize to other data sets. Since there was no training
data corresponding to higher reading levels, the best
performance we can expect for adult-level newspa-
per articles is for our classifiers to mark them as the
highest grade level, which is indeed what happened
for 10 randomly chosen articles from standard edi-
tion of The Washington Post.

6 Conclusions and Future Work

Statistical LMs were used to classify texts based
on reading level, with trigram models being no-
ticeably more accurate than bigrams and unigrams.
Combining information from statistical LMs with
other features using support vector machines pro-
vided the best results. Future work includes testing
additional classifier features, e.g. parser likelihood
scores and features obtained using a syntax-based
language model such as Chelba and Jelinek (2000)
or Roark (2001). Further experiments are planned
on the generalizability of our classifier to text from
other sources (e.g. newspaper articles, web pages);
to accomplish this we will add higher level text as
negative training data. We also plan to test these
techniques on languages other than English, and in-
corporate them with an information retrieval system
to create a tool that may be used by teachers to help
select reading material for their students.
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Abstract
We describe a method for incorporating syntactic informa-

tion in statistical machine translation systems. The first step
of the method is to parse the source language string that is be-
ing translated. The second step is to apply a series of trans-
formations to the parse tree, effectively reordering the surface
string on the source language side of the translation system. The
goal of this step is to recover an underlying word order that is
closer to the target language word-order than the original string.
The reordering approach is applied as a pre-processing step in
both the training and decoding phases of a phrase-based statis-
tical MT system. We describe experiments on translation from
German to English, showing an improvement from 25.2% Bleu
score for a baseline system to 26.8% Bleu score for the system
with reordering, a statistically significant improvement.

1 Introduction

Recent research on statistical machine translation
(SMT) has lead to the development of phrase-
based systems (Och et al., 1999; Marcu and Wong,
2002; Koehn et al., 2003). These methods go be-
yond the original IBM machine translation models
(Brown et al., 1993), by allowing multi-word units
(“phrases”) in one language to be translated directly
into phrases in another language. A number of em-
pirical evaluations have suggested that phrase-based
systems currently represent the state–of–the–art in
statistical machine translation.

In spite of their success, a key limitation of
phrase-based systems is that they make little or no
direct use of syntactic information. It appears likely
that syntactic information will be crucial in accu-
rately modeling many phenomena during transla-
tion, for example systematic differences between the
word order of different languages. For this reason
there is currently a great deal of interest in meth-
ods which incorporate syntactic information within
statistical machine translation systems (e.g., see (Al-
shawi, 1996; Wu, 1997; Yamada and Knight, 2001;
Gildea, 2003; Melamed, 2004; Graehl and Knight,
2004; Och et al., 2004; Xia and McCord, 2004)).

In this paper we describe an approach for the use
of syntactic information within phrase-based SMT
systems. The approach constitutes a simple, direct

method for the incorporation of syntactic informa-
tion in a phrase–based system, which we will show
leads to significant improvements in translation ac-
curacy. The first step of the method is to parse the
source language string that is being translated. The
second step is to apply a series of transformations
to the resulting parse tree, effectively reordering the
surface string on the source language side of the
translation system. The goal of this step is to re-
cover an underlying word order that is closer to the
target language word-order than the original string.
Finally, we apply a phrase-based system to the re-
ordered string to give a translation into the target
language.

We describe experiments involving machine
translation from German to English. As an illustra-
tive example of our method, consider the following
German sentence, together with a “translation” into
English that follows the original word order:

Original sentence: Ich werde Ihnen die entsprechenden An-
merkungen aushaendigen, damit Sie das eventuell bei der
Abstimmung uebernehmen koennen.

English translation: I will to you the corresponding comments
pass on, so that you them perhaps in the vote adopt can.

The German word order in this case is substan-
tially different from the word order that would be
seen in English. As we will show later in this pa-
per, translations of sentences of this type pose dif-
ficulties for phrase-based systems. In our approach
we reorder the constituents in a parse of the German
sentence to give the following word order, which is
much closer to the target English word order (words
which have been “moved” are underlined):

Reordered sentence: Ich werde aushaendigen Ihnen die
entsprechenden Anmerkungen, damit Sie koennen
uebernehmen das eventuell bei der Abstimmung.

English translation: I will pass on to you the corresponding
comments, so that you can adopt them perhaps in the vote.
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We applied our approach to translation from Ger-
man to English in the Europarl corpus. Source lan-
guage sentences are reordered in test data, and also
in training data that is used by the underlying phrase-
based system. Results using the method show an
improvement from 25.2% Bleu score to 26.8% Bleu
score (a statistically significant improvement), using
a phrase-based system (Koehn et al., 2003) which
has been shown in the past to be a highly competi-
tive SMT system.

2 Background

2.1 Previous Work

2.1.1 Research on Phrase-Based SMT

The original work on statistical machine transla-
tion was carried out by researchers at IBM (Brown
et al., 1993). More recently, phrase-based models
(Och et al., 1999; Marcu and Wong, 2002; Koehn
et al., 2003) have been proposed as a highly suc-
cessful alternative to the IBM models. Phrase-based
models generalize the original IBM models by al-
lowing multiple words in one language to corre-
spond to multiple words in another language. For
example, we might have a translation entry specify-
ing that I will in English is a likely translation for Ich
werde in German.

In this paper we use the phrase-based system
of (Koehn et al., 2003) as our underlying model.
This approach first uses the original IBM models
to derive word-to-word alignments in the corpus
of example translations. Heuristics are then used
to grow these alignments to encompass phrase-to-
phrase pairs. The end result of the training process is
a lexicon of phrase-to-phrase pairs, with associated
costs or probabilities. In translation with the sys-
tem, a beam search method with left-to-right search
is used to find a high scoring translation for an in-
put sentence. At each stage of the search, one or
more English words are added to the hypothesized
string, and one or more consecutive German words
are “absorbed” (i.e., marked as having already been
translated—note that each word is absorbed at most
once). Each step of this kind has a number of costs:
for example, the log probability of the phrase-to-
phrase correspondance involved, the log probability
from a language model, and some “distortion” score
indicating how likely it is for the proposed words in

the English string to be aligned to the corresponding
position in the German string.

2.1.2 Research on Syntax-Based SMT

A number of researchers (Alshawi, 1996; Wu,
1997; Yamada and Knight, 2001; Gildea, 2003;
Melamed, 2004; Graehl and Knight, 2004; Galley
et al., 2004) have proposed models where the trans-
lation process involves syntactic representations of
the source and/or target languages. One class of ap-
proaches make use of “bitext” grammars which si-
multaneously parse both the source and target lan-
guages. Another class of approaches make use of
syntactic information in the target language alone,
effectively transforming the translation problem into
a parsing problem. Note that these models have radi-
cally different structures and parameterizations from
phrase–based models for SMT. As yet, these sys-
tems have not shown significant gains in accuracy
in comparison to phrase-based systems.

Reranking methods have also been proposed as a
method for using syntactic information (Koehn and
Knight, 2003; Och et al., 2004; Shen et al., 2004). In
these approaches a baseline system is used to gener-
ate

�
-best output. Syntactic features are then used

in a second model that reranks the
�

-best lists, in
an attempt to improve over the baseline approach.
(Koehn and Knight, 2003) apply a reranking ap-
proach to the sub-task of noun-phrase translation.
(Och et al., 2004; Shen et al., 2004) describe the
use of syntactic features in reranking the output of
a full translation system, but the syntactic features
give very small gains: for example the majority of
the gain in performance in the experiments in (Och
et al., 2004) was due to the addition of IBM Model
1 translation probabilities, a non-syntactic feature.

An alternative use of syntactic information is to
employ an existing statistical parsing model as a lan-
guage model within an SMT system. See (Charniak
et al., 2003) for an approach of this form, which
shows improvements in accuracy over a baseline
system.

2.1.3 Research on Preprocessing Approaches

Our approach involves a preprocessing step,
where sentences in the language being translated are
modified before being passed to an existing phrase-
based translation system. A number of other re-

532



searchers (Berger et al., 1996; Niessen and Ney,
2004; Xia and McCord, 2004) have described previ-
ous work on preprocessing methods. (Berger et al.,
1996) describe an approach that targets translation
of French phrases of the form NOUN de NOUN
(e.g., conflit d’intérêt). This was a relatively lim-
ited study, concentrating on this one syntactic phe-
nomenon which involves relatively local transfor-
mations (a parser was not required in this study).
(Niessen and Ney, 2004) describe a method that
combines morphologically–split verbs in German,
and also reorders questions in English and German.
Our method goes beyond this approach in several
respects, for example considering phenomena such
as declarative (non-question) clauses, subordinate
clauses, negation, and so on.

(Xia and McCord, 2004) describe an approach for
translation from French to English, where reorder-
ing rules are acquired automatically. The reorder-
ing rules in their approach operate at the level of
context-free rules in the parse tree. Our method
differs from that of (Xia and McCord, 2004) in a
couple of important respects. First, we are consid-
ering German, which arguably has more challeng-
ing word order phenonema than French. German
has relatively free word order, in contrast to both
English and French: for example, there is consid-
erable flexibility in terms of which phrases can ap-
pear in the first position in a clause. Second, Xia
et. al’s (2004) use of reordering rules stated at the
context-free level differs from ours. As one exam-
ple, in our approach we use a single transformation
that moves an infinitival verb to the first position in
a verb phrase. Xia et. al’s approach would require
learning of a different rule transformation for every
production of the form VP => .... In practice the
German parser that we are using creates relatively
“flat” structures at the VP and clause levels, leading
to a huge number of context-free rules (the flatness
is one consequence of the relatively free word order
seen within VP’s and clauses in German). There are
clearly some advantages to learning reordering rules
automatically, as in Xia et. al’s approach. How-
ever, we note that our approach involves a hand-
ful of linguistically–motivated transformations and
achieves comparable improvements (albeit on a dif-
ferent language pair) to Xia et. al’s method, which
in contrast involves over 56,000 transformations.

S PPER-SB Ich
VAFIN-HD werde
VP PPER-DA Ihnen

NP-OA ART die
ADJA entsprechenden
NN Anmerkungen

VVINF-HD aushaendigen
, ,
S KOUS damit

PPER-SB Sie
VP PDS-OA das

ADJD eventuell
PP APPR bei

ART der
NN Abstimmung

VVINF-HD uebernehmen
VMFIN-HD koennen

Figure 1: An example parse tree. Key to non-terminals:
PPER = personal pronoun; VAFIN = finite verb; VVINF = in-
finitival verb; KOUS = complementizer; APPR = preposition;
ART = article; ADJA = adjective; ADJD = adverb; -SB = sub-
ject; -HD = head of a phrase; -DA = dative object; -OA = ac-
cusative object.

2.2 German Clause Structure

In this section we give a brief description of the syn-
tactic structure of German clauses. The character-
istics we describe motivate the reordering rules de-
scribed later in the paper.

Figure 1 gives an example parse tree for a German
sentence. This sentence contains two clauses:

Clause 1: Ich/I werde/will Ihnen/to you die/the
entsprechenden/corresponding
Anmerkungen/comments aushaendigen/pass on

Clause 2: damit/so that Sie/you das/them
eventuell/perhaps bei/in der/the Abstimmung/vote
uebernehmen/adopt koennen/can

These two clauses illustrate a number of syntactic
phenomena in German which lead to quite different
word order from English:

Position of finite verbs. In Clause 1, which is a
matrix clause, the finite verb werde is in the second
position in the clause. Finite verbs appear rigidly in
2nd position in matrix clauses. In contrast, in sub-
ordinate clauses, such as Clause 2, the finite verb
comes last in the clause. For example, note that
koennen is a finite verb which is the final element
of Clause 2.

Position of infinitival verbs. In German, infini-
tival verbs are final within their associated verb
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phrase. For example, returning to Figure 1, no-
tice that aushaendigen is the last element in its verb
phrase, and that uebernehmen is the final element of
its verb phrase in the figure.

Relatively flexible word ordering. German has
substantially freer word order than English. In par-
ticular, note that while the verb comes second in ma-
trix clauses, essentially any element can be in the
first position. For example, in Clause 1, while the
subject Ich is seen in the first position, potentially
any of the other constituents (e.g., Ihnen) could also
appear in this position. Note that this often leads
to the subject following the finite verb, something
which happens very rarely in English.

There are many other phenomena which lead to
differing word order between German and English.
Two others that we focus on in this paper are nega-
tion (the differing placement of items such as not in
English and nicht in German), and also verb-particle
constructions. We describe our treatment of these
phenomena later in this paper.

2.3 Reordering with Phrase-Based SMT

We have seen in the last section that German syntax
has several characteristics that lead to significantly
different word order from that of English. We now
describe how these characteristics can lead to dif-
ficulties for phrase–based translation systems when
applied to German to English translation.

Typically, reordering models in phrase-based sys-
tems are based solely on movement distance. In par-
ticular, at each point in decoding a “cost” is associ-
ated with skipping over 1 or more German words.
For example, assume that in translating

Ich werde Ihnen die entsprechenden An-
merkungen aushaendigen.

we have reached a state where “Ich” and “werde”
have been translated into “I will” in English. A
potential decoding decision at this point is to add
the phrase “pass on” to the English hypothesis, at
the same time absorbing “aushaendigen” from the
German string. The cost of this decoding step
will involve a number of factors, including a cost
of skipping over a phrase of length 4 (i.e., Ihnen
die entsprechenden Anmerkungen) in the German
string.

The ability to penalise “skips” of this type, and
the potential to model multi-word phrases, are es-
sentially the main strategies that the phrase-based
system is able to employ when modeling differing
word-order across different languages. In practice,
when training the parameters of an SMT system, for
example using the discriminative methods of (Och,
2003), the cost for skips of this kind is typically set
to a very high value. In experiments with the sys-
tem of (Koehn et al., 2003) we have found that in
practice a large number of complete translations are
completely monotonic (i.e., have � skips), suggest-
ing that the system has difficulty learning exactly
what points in the translation should allow reorder-
ing. In summary, phrase-based systems have rela-
tively limited potential to model word-order differ-
ences between different languages.

The reordering stage described in this paper at-
tempts to modify the source language (e.g., German)
in such a way that its word order is very similar to
that seen in the target language (e.g., English). In
an ideal approach, the resulting translation problem
that is passed on to the phrase-based system will be
solvable using a completely monotonic translation,
without any skips, and without requiring extremely
long phrases to be translated (for example a phrasal
translation corresponding to Ihnen die entsprechen-
den Anmerkungen aushaendigen).

Note than an additional benefit of the reordering
phase is that it may bring together groups of words
in German which have a natural correspondance to
phrases in English, but were unseen or rare in the
original German text. For example, in the previous
example, we might derive a correspondance between
werde aushaendigen and will pass on that was not
possible before reordering. Another example con-
cerns verb-particle constructions, for example in

Wir machen die Tuer auf

machen and auf form a verb-particle construction.
The reordering stage moves auf to precede machen,
allowing a phrasal entry that “auf machen” is trans-
lated to to open in English. Without the reordering,
the particle can be arbitrarily far from the verb that
it modifies, and there is a danger in this example of
translating machen as to make, the natural transla-
tion when no particle is present.
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Original sentence: Ich werde Ihnen die entsprechenden
Anmerkungen aushaendigen, damit Sie das eventuell bei
der Abstimmung uebernehmen koennen. (I will to you the
corresponding comments pass on, so that you them perhaps
in the vote adopt can.)

Reordered sentence: Ich werde aushaendigen Ihnen
die entsprechenden Anmerkungen, damit Sie koennen ue-
bernehmen das eventuell bei der Abstimmung.
(I will pass on to you the corresponding comments, so that you
can adopt them perhaps in the vote.)

Figure 2: An example of the reordering process, showing the
original German sentence and the sentence after reordering.

3 Clause Restructuring

We now describe the method we use for reordering
German sentences. As a first step in the reordering
process, we parse the sentence using the parser de-
scribed in (Dubey and Keller, 2003). The second
step is to apply a sequence of rules that reorder the
German sentence depending on the parse tree struc-
ture. See Figure 2 for an example German sentence
before and after the reordering step.

In the reordering phase, each of the following six
restructuring steps were applied to a German parse
tree, in sequence (see table 1 also, for examples of
the reordering steps):

[1] Verb initial In any verb phrase (i.e., phrase
with label VP-...) find the head of the phrase (i.e.,
the child with label -HD) and move it into the ini-
tial position within the verb phrase. For example,
in the parse tree in Figure 1, aushaendigen would be
moved to precede Ihnen in the first verb phrase (VP-
OC), and uebernehmen would be moved to precede
das in the second VP-OC. The subordinate clause
would have the following structure after this trans-
formation:

S-MO KOUS-CP damit
PPER-SB Sie
VP-OC VVINF-HD uebernehmen

PDS-OA das
ADJD-MO eventuell
PP-MO APPR-DA bei

ART-DA der
NN-NK Abstimmung

VMFIN-HD koennen

[2] Verb 2nd In any subordinate clause labelled
S-..., with a complementizer KOUS, PREL, PWS
or PWAV, find the head of the clause, and move it to
directly follow the complementizer.

For example, in the subordinate clause in Fig-
ure 1, the head of the clause koennen would be
moved to follow the complementizer damit, giving
the following structure:

S-MO KOUS-CP damit
VMFIN-HD koennen
PPER-SB Sie
VP-OC VVINF-HD uebernehmen

PDS-OA das
ADJD-MO eventuell
PP-MO APPR-DA bei

ART-DA der
NN-NK Abstimmung

[3] Move Subject For any clause (i.e., phrase with
label S...), move the subject to directly precede
the head. We define the subject to be the left-most
child of the clause with label ...-SB or PPER-
EP, and the head to be the leftmost child with label
...-HD.

For example, in the subordinate clause in Fig-
ure 1, the subject Sie would be moved to precede
koennen, giving the following structure:

S-MO KOUS-CP damit
PPER-SB Sie
VMFIN-HD koennen
VP-OC VVINF-HD uebernehmen

PDS-OA das
ADJD-MO eventuell
PP-MO APPR-DA bei

ART-DA der
NN-NK Abstimmung

[4] Particles In verb particle constructions, move
the particle to immediately precede the verb. More
specifically, if a finite verb (i.e., verb tagged as
VVFIN) and a particle (i.e., word tagged as PTKVZ)
are found in the same clause, move the particle to
precede the verb.

As one example, the following clause contains
both a verb (forden) as well as a particle (auf):

S PPER-SB Wir
VVFIN-HD fordern
NP-OA ART das

NN Praesidium
PTKVZ-SVP auf

After the transformation, the clause is altered to:

S PPER-SB Wir
PTKVZ-SVP auf
VVFIN-HD fordern
NP-OA ART das

NN Praesidium

535



Transformation Example

Verb Initial
Before: Ich werde Ihnen die entsprechenden Anmerkungen aushaendigen, �����
After: Ich werde aushaendigen Ihnen die entsprechenden Anmerkungen, �����
English: I shall be passing on to you some comments, �����

Verb 2nd
Before: ����� damit Sie uebernehmen das eventuell bei der Abstimmung koennen.
After: ����� damit koennen Sie uebernehmen das eventuell bei der Abstimmung .
English: ����� so that could you adopt this perhaps in the voting.

Move Subject
Before: ����� damit koennen Sie uebernehmen das eventuell bei der Abstimmung.
After: ����� damit Sie koennen uebernehmen das eventuell bei der Abstimmung .
English: ����� so that you could adopt this perhaps in the voting.

Particles
Before: Wir fordern das Praesidium auf, �����
After: Wir auf fordern das Praesidium, �����
English: We ask the Bureau, �����

Infinitives
Before: Ich werde der Sache nachgehen dann, �����
After: Ich werde nachgehen der Sache dann, �����
English: I will look into the matter then, �����

Negation
Before: Wir konnten einreichen es nicht mehr rechtzeitig, �����
After: Wir konnten nicht einreichen es mehr rechtzeitig, �����
English: We could not hand it in in time, �����

Table 1: Examples for each of the reordering steps. In each case the item that is moved is underlined.

[5] Infinitives In some cases, infinitival verbs are
still not in the correct position after transformations
[1]–[4]. For this reason we add a second step that
involves infinitives. First, we remove all internal VP
nodes within the parse tree. Second, for any clause
(i.e., phrase labeled S...), if the clause dominates
both a finite and infinitival verb, and there is an argu-
ment (i.e., a subject, or an object) between the two
verbs, then the infinitive is moved to directly follow
the finite verb.

As an example, the following clause contains an
infinitival (einreichen) that is separated from a finite
verb konnten by the direct object es:

S PPER-SB Wir
VMFIN-HD konnten
PPER-OA es
PTKNEG-NG nicht
VP-OC VVINF-HD einreichen

AP-MO ADV-MO mehr
ADJD-HD rechtzeitig

The transformation removes the VP-OC, and
moves the infinitive, giving:

S PPER-SB Wir
VMFIN-HD konnten
VVINF-HD einreichen
PPER-OA es
PTKNEG-NG nicht
AP-MO ADV-MO mehr

ADJD-HD rechtzeitig

[6] Negation As a final step, we move negative
particles. If a clause dominates both a finite and in-
finitival verb, as well as a negative particle (i.e., a
word tagged as PTKNEG), then the negative particle
is moved to directly follow the finite verb.

As an example, the previous example now has the
negative particle nicht moved, to give the following
clause structure:
S PPER-SB Wir

VMFIN-HD konnten
PTKNEG-NG nicht
VVINF-HD einreichen
PPER-OA es
AP-MO ADV-MO mehr

ADJD-HD rechtzeitig

4 Experiments

This section describes experiments with the reorder-
ing approach. Our baseline is the phrase-based
MT system of (Koehn et al., 2003). We trained
this system on the Europarl corpus, which consists
of 751,088 sentence pairs with 15,256,792 German
words and 16,052,269 English words. Translation
performance is measured on a 2000 sentence test set
from a different part of the Europarl corpus, with av-
erage sentence length of 28 words.

We use BLEU scores (Papineni et al., 2002) to
measure translation accuracy. We applied our re-
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Annotator 2
Annotator 1 R B E

R 33 2 5
B 2 13 5
E 9 4 27

Table 2: Table showing the level of agreement between two
annotators on 100 translation judgements. R gives counts cor-
responding to translations where an annotator preferred the re-
ordered system; B signifies that the annotator preferred the
baseline system; E means an annotator judged the two systems
to give equal quality translations.

ordering method to both the training and test data,
and retrained the system on the reordered training
data. The BLEU score for the new system was
26.8%, an improvement from 25.2% BLEU for the
baseline system.

4.1 Human Translation Judgements

We also used human judgements of translation qual-
ity to evaluate the effectiveness of the reordering
rules. We randomly selected 100 sentences from the
test corpus where the English reference translation
was between 10 and 20 words in length.1 For each
of these 100 translations, we presented the two anno-
tators with three translations: the reference (human)
translation, the output from the baseline system, and
the output from the system with reordering. No in-
dication was given as to which system was the base-
line system, and the ordering in which the baseline
and reordered translations were presented was cho-
sen at random on each example, to prevent ordering
effects in the annotators’ judgements. For each ex-
ample, we asked each of the annotators to make one
of two choices: 1) an indication that one translation
was an improvement over the other; or 2) an indica-
tion that the translations were of equal quality.

Annotator 1 judged 40 translations to be improved
by the reordered model; 40 translations to be of
equal quality; and 20 translations to be worse under
the reordered model. Annotator 2 judged 44 trans-
lations to be improved by the reordered model; 37
translations to be of equal quality; and 19 transla-
tions to be worse under the reordered model. Ta-
ble 2 gives figures indicating agreement rates be-
tween the annotators. Note that if we only consider
preferences where both annotators were in agree-

1We chose these shorter sentences for human evaluation be-
cause in general they include a single clause, which makes hu-
man judgements relatively straightforward.

ment (and consider all disagreements to fall into the
“equal” category), then 33 translations improved un-
der the reordering system, and 13 translations be-
came worse. Figure 3 shows a random selection
of the translations where annotator 1 judged the re-
ordered model to give an improvement; Figure 4
shows examples where the baseline system was pre-
ferred by annotator 1. We include these examples to
give a qualitative impression of the differences be-
tween the baseline and reordered system. Our (no
doubt subjective) impression is that the cases in fig-
ure 3 are more clear cut instances of translation im-
provements, but we leave the reader to make his/her
own judgement on this point.

4.2 Statistical Significance

We now describe statistical significance tests for our
results. We believe that applying significance tests
to Bleu scores is a subtle issue, for this reason we go
into some detail in this section.

We used the sign test (e.g., see page 166 of
(Lehmann, 1986)) to test the statistical significance
of our results. For a source sentence

�
, the sign test

requires a function ��� ��� that is defined as follows:

���
	���
��������� ��������

�
If reordered system produces a better
translation for

	
than the baseline

� If baseline produces a better translation
for
	

than the reordered system.
If the two systems produce equal
quality translations on

	
We assume that sentences

�
are drawn from

some underlying distribution ��� ��� , and that the test
set consists of independently, identically distributed
(IID) sentences from this distribution. We can define
the following probabilities:

��� � Probability ����� ��� ��� � (1)� � � Probability ����� ��� �"! � (2)

where the probability is taken with respect to the
distribution �#� ���

. The sign test has the null hy-
pothesis $#% � &'� �)( � �+* and the alternative
hypothesis $-, � &'�.� /)�0� * . Given a sam-
ple of 1 test points & � ,3254545432 �76 * , the sign test
depends on calculation of the following counts:85�9�;:<&3=?> ��� �7@A� ��� * : , 8B�C�D:<&3=E> ��� �7@F� �"! * : ,
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and 8 % �;:<&3=E> ��� �7@F� � � * : , where : � : is the car-
dinality of the set � .

We now come to the definition of ��� ���
— how

should we judge whether a translation from one sys-
tem is better or worse than the translation from an-
other system? A critical problem with Bleu scores is
that they are a function of an entire test corpus and
do not give translation scores for single sentences.
Ideally we would have some measure ���E� �������
of the quality of the translation of sentence

�
un-

der the reordered system, and a corresponding func-
tion ��� � ��� that measures the quality of the baseline
translation. We could then define ��� ��� as follows:

��� ��� � � If ���?� ��� / � � � ������ ��� � ! If ���?� ���
	 � � � ������ ��� � � If ���?� ��� � � � � ���
Unfortunately Bleu scores do not give per-

sentence measures ���E� ��� and � � � ��� , and thus do
not allow a definition of ��� ��� in this way. In general
the lack of per-sentence scores makes it challenging
to apply significance tests to Bleu scores.2

To get around this problem, we make the follow-
ing approximation. For any test sentence

� @
, we cal-

culate ��� �7@F� as follows. First, we define � to be the
Bleu score for the test corpus when translated by the
baseline model. Next, we define � @ to be the Bleu
score when all sentences other than

��@
are translated

by the baseline model, and where
��@

itself is trans-
lated by the reordered model. We then define

��� �7@�� ��� If � @ / ���� �7@�� �"! If � @	 ���� �7@�� � � If � @ � �
Note that strictly speaking, this definition of ��� ��@F�
is not valid, as it depends on the entire set of sample
points

� ,045454 �76 rather than
� @

alone. However, we
believe it is a reasonable approximation to an ideal

2The lack of per-sentence scores means that it is not possible
to apply standard statistical tests such as the sign test or the t-
test (which would test the hypothesis �
� �����
	������ �
� ���0�
	���� ,
where �
� � � is the expected value under

	
). Note that previous

work (Koehn, 2004; Zhang and Vogel, 2004) has suggested the
use of bootstrap tests (Efron and Tibshirani, 1993) for the cal-
culation of confidence intervals for Bleu scores. (Koehn, 2004)
gives empirical evidence that these give accurate estimates for
Bleu statistics. However, correctness of the bootstrap method
relies on some technical properties of the statistic (e.g., Bleu
scores) being used (e.g., see (Wasserman, 2004) theorem 8.3);
(Koehn, 2004; Zhang and Vogel, 2004) do not discuss whether
Bleu scores meet any such criteria, which makes us uncertain of
their correctness when applied to Bleu scores.

function ��� ��� that indicates whether the transla-
tions have improved or not under the reordered sys-
tem. Given this definition of ��� ���

, we found that85�9��� ����� , 8B� � ����� , and 8 % � � � � . (Thus 52.85%
of all test sentences had improved translations un-
der the baseline system, 36.4% of all sentences had
worse translations, and 10.75% of all sentences had
the same quality as before.) If our definition of ��� ���
was correct, these values for 8 � and 8B� would be
significant at the level � ( � 4 � � .

We can also calculate confidence intervals for the
results. Define � to be the probability that the re-
ordered system improves on the baseline system,
given that the two systems do not have equal per-
formance. The relative frequency estimate of � is�� ��� ������ � � ����� � ����� � � ��!�4"��# . Using a nor-
mal approximation (e.g., see Example 6.17 from
(Wasserman, 2004)) a 95% confidence interval for
a sample size of 1785 is

��%$&��4"'�# , giving a 95%
confidence interval of ()��*�4"!�# 2+* � 4"��#-, for � .

5 Conclusions

We have demonstrated that adding knowledge about
syntactic structure can significantly improve the per-
formance of an existing state-of-the-art statistical
machine translation system. Our approach makes
use of syntactic knowledge to overcome a weakness
of tradition SMT systems, namely long-distance re-
ordering. We pose clause restructuring as a prob-
lem for machine translation. Our current approach
is based on hand-crafted rules, which are based on
our linguistic knowledge of how German and En-
glish syntax differs. In the future we may investigate
data-driven approaches, in an effort to learn reorder-
ing models automatically. While our experiments
are on German, other languages have word orders
that are very different from English, so we believe
our methods will be generally applicable.
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R: the current difficulties should encourage us to redouble our efforts to promote cooperation in the euro-mediterranean
framework.

C: the current problems should spur us to intensify our efforts to promote cooperation within the framework of the europa-
mittelmeerprozesses.

B: the current problems should spur us, our efforts to promote cooperation within the framework of the europa-
mittelmeerprozesses to be intensified.

R: propaganda of any sort will not get us anywhere.
C: with any propaganda to lead to nothing.
B: with any of the propaganda is nothing to do here.
R: yet we would point out again that it is absolutely vital to guarantee independent financial control.
C: however, we would like once again refer to the absolute need for the independence of the financial control.
B: however, we would like to once again to the absolute need for the independence of the financial control out.
R: i cannot go along with the aims mr brok hopes to achieve via his report.
C: i cannot agree with the intentions of mr brok in his report persecuted.
B: i can intentions, mr brok in his report is not agree with.
R: on method, i think the nice perspectives, from that point of view, are very interesting.
C: what the method is concerned, i believe that the prospects of nice are on this point very interesting.
B: what the method, i believe that the prospects of nice in this very interesting point.
R: secondly, without these guarantees, the fall in consumption will impact negatively upon the entire industry.
C: and, secondly, the collapse of consumption without these guarantees will have a negative impact on the whole sector.
B: and secondly, the collapse of the consumption of these guarantees without a negative impact on the whole sector.
R: awarding a diploma in this way does not contravene uk legislation and can thus be deemed legal.
C: since the award of a diploms is not in this form contrary to the legislation of the united kingdom, it can be recognised

as legitimate.
B: since the award of a diploms in this form not contrary to the legislation of the united kingdom is, it can be recognised

as legitimate.
R: i should like to comment briefly on the directive concerning undesirable substances in products and animal nutrition.
C: i would now like to comment briefly on the directive on undesirable substances and products of animal feed.
B: i would now like to briefly to the directive on undesirable substances and products in the nutrition of them.
R: it was then clearly shown that we can in fact tackle enlargement successfully within the eu ’s budget.
C: at that time was clear that we can cope with enlargement, in fact, within the framework drawn by the eu budget.
B: at that time was clear that we actually enlargement within the framework able to cope with the eu budget, the drawn.

Figure 3: Examples where annotator 1 judged the reordered system to give an improved translation when compared to the baseline
system. Recall that annotator 1 judged 40 out of 100 translations to fall into this category. These examples were chosen at random
from these 40 examples, and are presented in random order. R is the human (reference) translation; C is the translation from the
system with reordering; B is the output from the baseline system.
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R: the fvo mission report mentioned refers specifically to transporters whose journeys originated in ireland.
C: the quoted report of the food and veterinary office is here in particular to hauliers, whose rushed into shipments of

ireland.
B: the quoted report of the food and veterinary office relates in particular, to hauliers, the transport of rushed from ireland.

Figure 4: Examples where annotator 1 judged the reordered system to give a worse translation than the baseline system. Recall
that annotator 1 judged 20 out of 100 translations to fall into this category. These examples were chosen at random from these 20
examples, and are presented in random order. R is the human (reference) translation; C is the translation from the system with
reordering; B is the output from the baseline system.
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Abstract 

Syntax-based statistical machine transla-
tion (MT) aims at applying statistical 
models to structured data. In this paper, 
we present a syntax-based statistical ma-
chine translation system based on a prob-
abilistic synchronous dependency 
insertion grammar. Synchronous depend-
ency insertion grammars are a version of 
synchronous grammars defined on de-
pendency trees. We first introduce our 
approach to inducing such a grammar 
from parallel corpora. Second, we de-
scribe the graphical model for the ma-
chine translation task, which can also be 
viewed as a stochastic tree-to-tree trans-
ducer. We introduce a polynomial time 
decoding algorithm for the model. We 
evaluate the outputs of our MT system us-
ing the NIST and Bleu automatic MT 
evaluation software. The result shows that 
our system outperforms the baseline sys-
tem based on the IBM models in both 
translation speed and quality. 

1 Introduction 

Statistical approaches to machine translation, pio-
neered by (Brown et al., 1993), achieved impres-
sive performance by leveraging large amounts of 
parallel corpora. Such approaches, which are es-
sentially stochastic string-to-string transducers, do 
not explicitly model natural language syntax or 
semantics. In reality, pure statistical systems some-
times suffer from ungrammatical outputs, which 
are understandable at the phrasal level but some-
times hard to comprehend as a coherent sentence. 

In recent years, syntax-based statistical machine 

translation, which aims at applying statistical mod-
els to structural data, has begun to emerge. With 
the research advances in natural language parsing, 
especially the broad-coverage parsers trained from 
treebanks, for example (Collins, 1999), the utiliza-
tion of structural analysis of different languages 
has been made possible. Ideally, by combining the 
natural language syntax and machine learning 
methods, a broad-coverage and linguistically well-
motivated statistical MT system can be constructed. 

However, structural divergences between lan-
guages (Dorr, 1994)，which are due to either sys-
tematic differences between languages or loose 
translations in real corpora，pose a major chal-
lenge to syntax-based statistical MT. As a result, 
the syntax based MT systems have to transduce 
between non-isomorphic tree structures. 

(Wu, 1997) introduced a polynomial-time solu-
tion for the alignment problem based on synchro-
nous binary trees. (Alshawi et al., 2000) represents 
each production in parallel dependency trees as a 
finite-state transducer.  Both approaches learn the 
tree representations directly from parallel sen-
tences, and do not make allowances for non-
isomorphic structures.  (Yamada and Knight, 2001, 
2002) modeled translation as a sequence of tree 
operations transforming a syntactic tree into a 
string of the target language.  

When researchers try to use syntax trees in both 
languages, the problem of non-isomorphism must 
be addressed. In theory, stochastic tree transducers 
and some versions of synchronous grammars pro-
vide solutions for the non-isomorphic tree based 
transduction problem and hence possible solutions 
for MT. Synchronous Tree Adjoining Grammars, 
proposed by (Shieber and Schabes, 1990), were 
introduced primarily for semantics but were later 
also proposed for translation. Eisner (2003) pro-
posed viewing the MT problem as a probabilistic 
synchronous tree substitution grammar parsing 
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problem. Melamed (2003, 2004) formalized the 
MT problem as synchronous parsing based on 
multitext grammars. Graehl and Knight (2004) de-
fined training and decoding algorithms for both 
generalized tree-to-tree and tree-to-string transduc-
ers. All these approaches, though different in for-
malism, model the two languages using tree-based 
transduction rules or a synchronous grammar, pos-
sibly probabilistic, and using multi-lemma elemen-
tary structures as atomic units. The machine 
translation is done either as a stochastic tree-to-tree 
transduction or a synchronous parsing process. 

However, few of the above mentioned formal-
isms have large scale implementations. And to the 
best of our knowledge, the advantages of syntax 
based statistical MT systems over pure statistical 
MT systems have yet to be empirically verified. 

We believe difficulties in inducing a synchro-
nous grammar or a set of tree transduction rules 
from large scale parallel corpora are caused by:  
1. The abilities of synchronous grammars and 

tree transducers to handle non-isomorphism 
are limited. At some level, a synchronous 
derivation process must exist between the 
source and target language sentences.  

2. The training and/or induction of a synchro-
nous grammar or a set of transduction rules 
are usually computationally expensive if all 
the possible operations and elementary struc-
tures are allowed. The exhaustive search for 
all the possible sub-sentential structures in a 
syntax tree of a sentence is NP-complete. 

3. The problem is aggravated by the non-perfect 
training corpora. Loose translations are less of 
a problem for string based approaches than for 
approaches that require syntactic analysis. 

Hajic et al. (2002) limited non-isomorphism by 
n-to-m matching of nodes in the two trees.  How-
ever, even after extending this model by allowing 
cloning operations on subtrees, Gildea (2003) 
found that parallel trees over-constrained the 
alignment problem, and achieved better results 
with a tree-to-string model than with a tree-to-tree 
model using two trees. In a different approach, 
Hwa et al. (2002) aligned the parallel sentences 
using phrase based statistical MT models and then 
projected the alignments back to the parse trees. 

This motivated us to look for a more efficient 
and effective way to induce a synchronous gram-
mar from parallel corpora and to build an MT sys-
tem that performs competitively with the pure 

statistical MT systems. We chose to build the syn-
chronous grammar on the parallel dependency 
structures of the sentences. The synchronous 
grammar is induced by hierarchical tree partition-
ing operations. The rest of this paper describes the 
system details as follows: Sections 2 and 3 de-
scribe the motivation behind the usage of depend-
ency structures and how a version of synchronous  
dependency grammar is learned. This grammar is 
used as the primary translation knowledge source 
for our system. Section 4 defines the tree-to-tree 
transducer and the graphical model for the stochas-
tic tree-to-tree transduction process and introduces 
a polynomial time decoding algorithm for the 
transducer.  We evaluate our system in section 5 
with the NIST/Bleu automatic MT evaluation 
software and the results are discussed in Section 6. 

2 The Synchronous Grammar 

2.1 Why Dependency Structures? 

According to Fox (2002), dependency representa-
tions have the best inter-lingual phrasal cohesion 
properties. The percentage for head crossings is 
12.62% and that of modifier crossings is 9.22%. 
Furthermore, a grammar based on dependency 
structures has the advantage of being simple in 
formalism yet having CFG equivalent formal gen-
erative capacity (Ding and Palmer, 2004b). 

Dependency structures are inherently lexical-
ized as each node is one word. In comparison, 
phrasal structures (treebank style trees) have two 
node types: terminals store the lexical items and 
non-terminals store word order and phrasal scopes. 

2.2 Synchronous Dependency Insertion Grammars 

Ding and Palmer (2004b) described one version of 
synchronous grammar: Synchronous Dependency 
Insertion Grammars. A Dependency Insertion 
Grammars (DIG) is a generative grammar formal-
ism that captures word order phenomena within the 
dependency representation. In the scenario of two 
languages, the two sentences in the source and tar-
get languages can be modeled as being generated 
from a synchronous derivation process. 

A synchronous derivation process for the two 
syntactic structures of both languages suggests the 
level of cross-lingual isomorphism between the 
two trees (e.g. Synchronous Tree Adjoining 
Grammars (Shieber and Schabes, 1990)). 
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Apart from other details, a DIG can be viewed 
as a tree substitution grammar defined on depend-
ency trees (as opposed to phrasal structure trees). 
The basic units of the grammar are elementary 
trees (ET), which are sub-sentential dependency 
structures containing one or more lexical items. 
The synchronous version, SDIG, assumes that the 
isomorphism of the two syntactic structures is at 
the ET level, rather than at the word level, hence 
allowing non-isomorphic tree to tree mapping. 

We illustrate how the SDIG works using the 
following pseudo-translation example: 
 [Source] The girl kissed her kitty cat. 
 [Target] The girl gave a kiss to her cat. 

 

Figure 1.
An example

 

Figure 2. 
Tree-to-tree 
transduction

Almost any tree-transduction operations de-
fined on a single node will fail to generate the tar-
get sentence from the source sentence without 
using insertion/deletion operations. However, if we 
view each dependency tree as an assembly of indi-
visible sub-sentential elementary trees (ETs), we 
can find a proper way to transduce the input tree to 
the output tree. An ET is a single “symbol” in a 
transducer’s language. As shown in Figure 2, each 
circle stands for an ET and thick arrows denote the 
transduction of each ET as a single symbol. 

3 Inducing a Synchronous Dependency 
Insertion Grammar 

As the start to our syntax-based SMT system, the 
SDIG must be learned from the parallel corpora.  

3.1 Cross-lingual Dependency Inconsistencies 

One straightforward way to induce a generative 
grammar is using EM style estimation on the gen-
erative process. Different versions of such training 
algorithms can be found in (Hajic et al., 2002; Eis-

ner 2003; Gildea 2003; Graehl and Knight 2004). 
However, a synchronous derivation process 

cannot handle two types of cross-language map-
pings: crossing-dependencies (parent-descendent 
switch) and broken dependencies (descendent ap-
pears elsewhere), which are illustrated below: 

 
Figure 3. Cross-lingual dependency consistencies 

In the above graph, the two sides are English 
and the foreign dependency trees. Each node in a 
tree stands for a lemma in a dependency tree. The 
arrows denote aligned nodes and those resulting 
inconsistent dependencies are marked with a “*”.  

Fox (2002) collected the statistics mainly on 
French and English data: in dependency represen-
tations, the percentage of head crossings per 
chance (case [b] in the graph) is 12.62%.  

Using the statistics on cross-lingual dependency 
consistencies from a small word to word aligned 
Chinese-English parallel corpus1, we found that the 
percentage of crossing-dependencies (case [b]) 
between Chinese and English is 4.7% while that of 
broken dependencies (case [c]) is 59.3%. 

The large number of broken dependencies pre-
sents a major challenge for grammar induction 
based on a top-down style EM learning process. 

Such broken and crossing dependencies can be 
modeled by SDIG if they appear inside a pair of 
elementary trees. However, if they appear between 
the elementary trees, they are not compatible with 
the isomorphism assumption on which SDIG is 
based. Nevertheless, the hope is that the fact that 
the training corpus contains a significant percent-
age of dependency inconsistencies does not mean 
that during decoding the target language sentence 
cannot be written in a dependency consistent way. 

3.2 Grammar Induction by Synchronous  
Hierarchical Tree Partitioning 

(Ding and Palmer, 2004a) gave a polynomial time 
solution for learning parallel sub-sentential de-

                                                           
1  Total 826 sentence pairs, 9957 Chinese words, 12660 Eng-
lish words. Data made available by the courtesy of Microsoft 
Research, Asia and IBM T.J. Watson Research. 
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pendency structures from non-isomorphic depend-
ency trees. Our approach, while similar to (Ding 
and Palmer, 2004a) in that we also iteratively parti-
tion the parallel dependency trees based on a heu-
ristic function, departs (Ding and Palmer, 2004a) 
in three ways: (1) we base the hierarchical tree par-
titioning operations on the categories of the de-
pendency trees; (2) the statistics of the resultant 
tree pairs from the partitioning operation are col-
lected at each iteration rather than at the end of the 
algorithm; (3) we do not re-train the word to word 
probabilities at each iteration. Our grammar induc-
tion algorithm is sketched below: 

Step 0. View each tree as a “bag of words” and train a 
statistical translation model on all the tree pairs to 
acquire word-to-word translation probabilities. In 
our implementation, the IBM Model 1 (Brown et 
al., 1993) is used. 

Step 1. Let i  denote the current iteration and let 
[ ]C CategorySequence i=  be the current syntac-

tic category set. 
For each tree pair in the corpus, do { 

a) For the tentative synchronous partitioning opera-
tion, use a heuristic function to select the BEST word 
pair * *( , )i je f , where both * *,i je f  are NOT “chosen”,  

*( )iCategory e C∈  and *( )jCategory f C∈ . 

b) If * *( , )i je f  is found in (a), mark * *,i je f  as “cho-
sen” and go back to (a), else go to (c). 
c) Execute the synchronous tree partitioning opera-
tion on all the “chosen” word pairs on the tree pair. 
Hence, several new tree pairs are created. Replace the 
old tree pair with the new tree pairs together with the 
rest of the old tree pair. 
d) Collect the statistics for all the new tree pairs as 
elementary tree pairs. } 

Step 2. 1i i= + . Go to Step 1 for the next iteration. 

At each iteration, one specific set of categories 
of nodes is handled. The category sequence we 
used in the grammar induction is:  

1. Top-NP: the noun phrases that do not have 
another noun phrase as parent or ancestor. 

2. NP: all the noun phrases 
3. VP, IP, S, SBAR:  verb phrases equivalents. 
4. PP, ADJP, ADVP, JJ, RB: all the modifiers 
5. CD: all the numbers. 

We first process top NP chunks because they are 
the most stable between languages. Interestingly, 
NPs are also used as anchor points to learn mono-
lingual paraphrases (Ibrahim et al., 2003). The 
phrasal structure categories can be extracted from 

automatic parsers using methods in (Xia, 2001). 
An illustration is given below (Chinese in pin-

yin form). The placement of the dependency arcs 
reflects the relative word order between a parent 
node and all its immediate children. The collected 
ETs are put into square boxes and the partitioning 
operations taken are marked with dotted arrows. 
 [English]   I have been in Canada since 1947. 
 [Chinese]  Wo 1947 nian yilai  yizhi   zhu  zai  jianada. 
 [Glossary]  I   1947 year since always live in  Canada 

[ ITERATION 1 & 2 ] Partition at word pair  
(“I” and “wo”) (“Canada” and “janada”) 

 
[ ITERATION 3 ] (“been” and “zhu”) are chosen but no 

partition operation is taken because they are roots. 

[ ITERATION 4 ] Partition at word pair  
(“since” and “yilai”) (“in” and “zai”) 

 
[ ITERATION 5 ] Partition at “1947” and “1947” 

 
[ FINALLY ] Total of 6 resultant ET pairs (figure omitted) 

Figure 4. An Example 

3.3 Heuristics 

Similar to (Ding and Palmer, 2004a), we also use a 
heuristic function in Step 1(a) of the algorithm to 
rank all the word pairs for the tentative tree parti-
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tioning operation. The heuristic function is based 
on a set of heuristics, most of which are similar to 
those in (Ding and Palmer, 2004a).  

For a word pair ( , )i je f for the tentative parti-
tioning operation, we briefly describe the heuristics: 
 Inside-outside probabilities: We borrow the 

idea from PCFG parsing. This is the probabil-
ity of an English subtree (inside) generating a 
foreign subtree and the probability of the Eng-
lish residual tree (outside) generating a for-
eign residual tree. Here both probabilities are 
based on a “bag of words” model. 

 Inside-outside penalties: here the probabilities 
of the inside English subtree generating the 
outside foreign residual tree and outside Eng-
lish residual tree generating the inside English 
subtree are used as penalty terms. 

 Entropy: the entropy of the word to word 
translation probability of the English word ie . 

 Part-of-Speech mapping template: whether the 
POS tags of the two words are in the “highly 
likely to match” POS tag pairs. 

 Word translation probability: P( | )j if e . 
 Rank: the rank of the word to word probabil-

ity of jf  in as a translation of ie  among all 
the foreign words in the current tree. 

The above heuristics are a set of real valued 
numbers. We use a Maximum Entropy model to 
interpolate the heuristics in a log-linear fashion, 
which is different from the error minimization 
training in (Ding and Palmer, 2004a).  

( )0 1P | ( , ), ( , )... ( , )

1 exp ( , )

i j i j n i j

k k i j s
k

y h e f h e f h e f

h e f
Z

λ λ 
= + 

 
∑

  (1) 

where (0,1)y =  as labeled in the training data 
whether the two words are mapped with each other. 

The MaxEnt model is trained using the same 
word level aligned parallel corpus as the one in 
Section 3.1. Although the training corpus isn’t 
large, the fact that we only have a handful of pa-
rameters to fit eased the problem.  

3.4 A Scaled-down SDIG 

It is worth noting that the set of derived parallel 
dependency Elementary Trees is not a full-fledged 
SDIG yet. Many features in the SDIG formalism 
such as arguments, head percolation, etc. are not 

yet filled. We nevertheless use this derived gram-
mar as a Mini-SDIG, assuming the unfilled fea-
tures as empty by default. A full-fledged SDIG 
remains a goal for future research. 

4 The Machine Translation System 

4.1 System Architecture 

As discussed before (see Figure 1 and 2), the archi-
tecture of our syntax based statistical MT system is 
illustrated in Figure 5. Note that this is a non-
deterministic process. The input sentence is first 
parsed using an automatic parser and a dependency 
tree is derived. The rest of the pipeline can be 
viewed as a stochastic tree transducer. The MT 
decoding starts first by decomposing the input de-
pendency tree in to elementary trees. Several dif-
ferent results of the decomposition are possible. 
Each decomposition is indeed a derivation process 
on the foreign side of SDIG. Then the elementary 
trees go through a transfer phase and target ETs are 
combined together into the output. 

 
Figure 5. System architecture 

4.2 The Graphical Model 

The stochastic tree-to-tree transducer we propose 
models MT as a probabilistic optimization process. 

Let f  be the input sentence (foreign language), 
and e  be the output sentence (English). We have 

P( | ) P( )P( | )
P( )

f e ee f
f

= , and the best translation is: 

 * arg max P( | )P( )
e

e f e e=    (2) 

P( | )f e  and P( )e  are also known as the “trans-
lation model” (TM) and the “language model” 
(LM). Assuming the decomposition of the foreign 
tree is given, our approach, which is based on ETs, 
uses the graphical model shown in Figure 6. 

In the model, the left side is the input depend-
ency tree (foreign language) and the right side is 
the output dependency tree (English). Each circle 
stands for an ET. The solid lines denote the syntac-
tical dependencies while the dashed arrows denote 
the statistical dependencies. 
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Figure 6 
The graphical 

model 

Let T( )x be the dependency tree constructed 
from sentence x . A tree-decomposition function  
D( )t  is defined on a dependency tree t , and out-
puts a certain ET derivation tree of  t , which is 
generated by decomposing t  into ETs. Given t , 
there could be multiple decompositions. Condi-
tioned on decomposition D , we can rewrite (2) as: 

* arg max P( , | )P( )

arg max P( | , )P( | )P( )
e D

e D

e f e D D

f e D e D D

=

=

∑

∑
 (3) 

By definition, the ET derivation trees of the in-
put and output trees should be isomorphic: 
D(T( )) D(T( ))f e≅ . Let Tran( )u  be a set of possi-
ble translations for the ET u . We have: 

D(T( )), D(T( )), Tran( )

P( | , ) P(T( ) | P(T( ), )
P( | )

u f v e v u

f e D f e D
u v

∈ ∈ ∈

=

= ∏           (4) 

For any ET v  in a given ET derivation tree d , 
let Root( )d  be the root ET of d , and let 
Parent( )v  denote the parent ET of  v . We have: 

( )( )

D(T( )), Root(D(T( ))

P( | ) P(T( ) | )

P Root D(T( )

P( | Parent( ))
v e v e

e D e D

e

v v
∈ ≠

=

= ⋅

 
⋅ 
 

∏

 (5) 

where, letting root( )v  denote the root word of v , 

( ) ( )( )P | Parent( ) P root( ) | root Parent( )v v v v=  (6) 
The prior probability of tree decomposition is 

defined as: ( )
D(T( ))

P D(T( )) P( )
u f

f u
∈

= ∏   (7) 

Figure 7 
 Comparing to 

the HMM 

An analogy between our model and a Hidden 
Markov Model (Figure 7) may be helpful. In Eq. 
(4), P( | )u v  is analogous to the emission probably 
P( | )i io s  in an HMM. In Eq. (5), P( | Parent( ))v v  is 
analogous to the transition probability 1P( | )i is s −  in 

an HMM. While HMM is defined on a sequence 
our model is defined on the derivation tree of ETs. 

4.3 Other Factors 

 Augmenting parallel ET pairs 
In reality, the learned parallel ETs are unlikely to 
cover all the structures that we may encounter in 
decoding. As a unified approach, we augment the 
SDIG by adding all the possible word pairs ( , )j if e   
as a parallel ET pair and using the IBM Model 1 
(Brown et al., 1993) word to word translation 
probability as the ET translation probability. 
 Smoothing the ET translation probabilities. 

The LM probabilities P( | Parent( ))v v  are simply 
estimated using the relative frequencies. In order to 
handle possible noise from the ET pair learning 
process, the ET translation probabilities P ( | )emp u v  
estimated by relative frequencies are smoothed 
using a word level model. For each ET pair ( , )u v , 
we interpolate the empirical probability with the 
“bag of words” probability and then re-normalize: 

size( )

1 1P( | ) P ( , ) P( | )
size( )

ij

emp j iv
e vf u

u v u v f e
Z u ∈∈

= ⋅ ∑∏  (8) 

4.4 Polynomial Time Decoding 

For efficiency reasons, we use maximum approxi-
mation for (3). Instead of summing over all the 
possible decompositions, we only search for the 
best decomposition as follows: 

,
*, * arg max P( | , )P( | )P( )

e D
e D f e D e D D=  (9) 

So bringing equations (4) to (9) together, the 
best translation would maximize: 

( )P( | ) P Root( ) P( | Parent( )) P( )u v e v v u 
⋅ ⋅ ⋅ 

 
∏ ∏ ∏ (10) 

Observing the similarity between our model 
and a HMM, our dynamic programming decoding 
algorithm is in spirit similar to the Viterbi algo-
rithm except that instead of being sequential the 
decoding is done on trees in a top down fashion. 

As to the relative orders of the ETs, we cur-
rently choose not to reorder the children ETs given 
the parent ET because: (1) the permutation of the 
ETs is computationally expensive (2) it is possible 
that we can resort to simple linguistic treatments 
on the output dependency tree to order the ETs. 

Currently, all the ETs are attached to each other 

546



at their root nodes. 
In our implementation, the different decomposi-

tions of the input dependency tree are stored in a 
shared forest structure, utilizing the dynamic pro-
gramming property of the tree structures explicitly. 

Suppose the input sentence has n  words and 
the shared forest representation has m  nodes. 
Suppose for each word, there are maximally k  
different ETs containing it, we have knm ≤ . Let 
b  be the max breadth factor in the packed forest, it 
can be shown that the decoder visits at most mb  
nodes during execution. Hence, we have: 

)()( kbnOdecodingT ≤             (11) 
which is linear to the input size. Combined with a 
polynomial time parsing algorithm, the whole 
decoding process is polynomial time. 

5 Evaluation  

We implemented the above approach for a Chi-
nese-English machine translation system. We used 
an automatic syntactic parser (Bikel, 2002) to pro-
duce the parallel parse trees. The parser was 
trained using the Penn English/Chinese Treebanks. 
We then used the algorithm in (Xia 2001) to con-
vert the phrasal structure trees to dependency trees 
to acquire the parallel dependency trees. The statis-
tics of the datasets we used are shown as follows: 

Dataset Xinhua FBIS NIST 
Sentence# 56263 45212 206 
Chinese word# 1456495 1185297 27.4 average
English word# 1490498 1611932 37.7 average
Usage training training testing 

Figure 8. Evaluation data details 
 The training set consists of Xinhua newswire 

data from LDC and the FBIS data (mostly news), 
both filtered to ensure parallel sentence pair quality. 
We used the development test data from the 2001 
NIST MT evaluation workshop as our test data for 
the MT system performance. In the testing data, 
each input Chinese sentence has 4 English transla-
tions as references. Our MT system was evaluated 
using the n-gram based Bleu (Papineni et al., 2002) 
and NIST machine translation evaluation software. 
We used the NIST software package “mteval” ver-
sion 11a, configured as case-insensitive. 

In comparison, we deployed the GIZA++ MT 
modeling tool kit, which is an implementation of 
the IBM Models 1 to 4 (Brown et al., 1993; Al-

Onaizan et al., 1999; Och and Ney, 2003). The 
IBM models were trained on the same training data 
as our system. We used the ISI Rewrite decoder 
(Germann et al. 2001) to decode the IBM models. 

The results are shown in Figure 9. The score 
types “I” and “C” stand for individual and cumula-
tive n-gram scores. The final NIST and Bleu scores 
are marked with bold fonts.  

Systems Score Type 1-gram 2-gram 3-gram 4-gram
NIST 2.562 0.412 0.051 0.008I Bleu 0.714 0.267 0.099 0.040
NIST 2.562 2.974 3.025 3.034

IBM 
Model 4 C Bleu 0.470 0.287 0.175 0.109

NIST 5.130 0.763 0.082 0.013I Bleu 0.688 0.224 0.075 0.029
NIST 5.130 5.892 5.978 5.987

SDIG
C Bleu 0.674 0.384 0.221 0.132

Figure 9. Evaluation Results. 

The evaluation results show that the NIST score 
achieved a 97.3% increase, while the Bleu score 
increased by 21.1%. 

In terms of decoding speed, the Rewrite de-
coder took 8102 seconds to decode the test sen-
tences on a Xeon 1.2GHz 2GB memory machine. 
On the same machine, the SDIG decoder took 3 
seconds to decode, excluding the parsing time. The 
recent advances in parsing have achieved parsers 
with 3( )O n  time complexity without the grammar 
constant (McDonald et al., 2005). It can be ex-
pected that the total decoding time for SDIG can 
be as short as 0.1 second per sentence. 

Neither of the two systems has any specific 
translation components, which are usually present 
in real world systems (E.g. components that trans-
late numbers, dates, names, etc.) It is reasonable to 
expect that the performance of SDIG can be further 
improved with such specific optimizations. 

6 Discussions 

We noticed that the SDIG system outputs tend to 
be longer than those of the IBM Model 4 system, 
and are closer to human translations in length. 

Translation Type Human SDIG IBM-4
Avg. Sent. Len. 37.7 33.6 24.2 

Figure 10. Average Sentence Word Count 
This partly explains why the IBM Model 4 system 
has slightly higher individual n-gram precision 
scores (while the SDIG system outputs are still 
better in terms of absolute matches).  
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The relative orders between the parent and child 
ETs in the output tree is currently kept the same as 
the orders in the input tree. Admittedly, we bene-
fited from the fact that both Chinese and English 
are SVO languages, and that many of orderings 
between the arguments and adjuncts can be kept 
the same. However, we did notice that this simple 
“ostrich” treatment caused outputs such as “foreign 
financial institutions the president of”. 

While statistical modeling of children reorder-
ing is one possible remedy for this problem, we 
believe simple linguistic treatment is another, as 
the output of the SDIG system is an English 
dependency tree rather than a string of words. 

7 Conclusions and Future Work 

In this paper we presented a syntax-based statisti-
cal MT system based on a Synchronous Depend-
ency Insertion Grammar and a non-isomorphic 
stochastic tree-to-tree transducer. A graphical 
model for the transducer is defined and a polyno-
mial time decoding algorithm is introduced. The 
results of our current implementation were evalu-
ated using the NIST and Bleu automatic MT 
evaluation software. The evaluation shows that the 
SDIG system outperforms an IBM Model 4 based 
system in both speed and quality. 

Future work includes a full-fledged version of 
SDIG and a more sophisticated MT pipeline with 
possibly a tri-gram language model for decoding. 
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Abstract

In this paper, we propose a new context-
dependent SMT model that is tightly cou-
pled with a language model. It is de-
signed to decrease the translation ambi-
guities and efficiently search for an opti-
mal hypothesis by reducing the hypothe-
sis search space. It works through recipro-
cal incorporation between source and tar-
get context: a source word is determined
by the context of previous and correspond-
ing target words and the next target word
is predicted by the pair consisting of the
previous target word and its correspond-
ing source word. In order to alleviate
the data sparseness in chunk-based trans-
lation, we take a stepwise back-off trans-
lation strategy. Moreover, in order to ob-
tain more semantically plausible transla-
tion results, we use bilingual verb-noun
collocations; these are automatically ex-
tracted by using chunk alignment and a
monolingual dependency parser. As a case
study, we experimented on the language
pair of Japanese and Korean. As a result,
we could not only reduce the search space
but also improve the performance.

1 Introduction

For decades, many research efforts have contributed
to the advance of statistical machine translation.
Recently, various works have improved the quality

of statistical machine translation systems by using
phrase translation (Koehn et al., 2003; Marcu et al.,
2002; Och et al., 1999; Och and Ney, 2000; Zens
et al., 2004). Most of the phrase-based translation
models have adopted the noisy-channel based IBM
style models (Brown et al., 1993):

���� � ��������
�

������ ��
�
������

�
�� (1)

In these model, we have two types of knowledge:
translation model, ������ ��

�
�� and language model,

�������. The translation model links the source lan-
guage sentence to the target language sentence. The
language model describes the well-formedness of
the target language sentence and might play a role
in restricting hypothesis expansion during decoding.
To recover the word order difference between two
languages, it also allows modeling the reordering by
introducing a relative distortion probability distribu-
tion. However, in spite of using such a language
model and a distortion model, the translation outputs
may not be fluent or in fact may produce nonsense.

To make things worse, the huge hypothesis search
space is much too large for an exhaustive search. If
arbitrary reorderings are allowed, the search prob-
lem is NP-complete (Knight, 1999). According
to a previous analysis (Koehn et al., 2004) of how
many hypotheses are generated during an exhaustive
search using the IBM models, the upper bound for
the number of states is estimated by 	 � �� �
��

�� ,
where � is the number of source words and �
�� is
the size of the target vocabulary. Even though the
number of possible translations of the last two words
is much smaller than �
��

�, we still need to make
further improvement. The main concern is the ex-
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ponential explosion from the possible configurations
of source words covered by a hypothesis. In order
to reduce the number of possible configurations of
source words, decoding algorithms based on �� as
well as the beam search algorithm have been pro-
posed (Koehn et al., 2004; Och et al., 2001). (Koehn
et al., 2004; Och et al., 2001) used heuristics for
pruning implausible hypotheses.

Our approach to this problem examines the pos-
sibility of utilizing context information in a given
language pair. Under a given target context, the cor-
responding source word of a given target word is al-
most deterministic. Conversely, if a translation pair
is given, then the related target or source context is
predictable. This implies that if we considered bilin-
gual context information in a given language pair
during decoding, we can reduce the computational
complexity of the hypothesis search; specifically, we
could reduce the possible configurations of source
words as well as the number of possible target trans-
lations.

In this study, we present a statistical machine
translation model as an alternative to the classical
IBM-style model. This model is tightly coupled
with target language model and utilizes bilingual
context information. It is designed to not only re-
duce the hypothesis search space by decreasing the
translation ambiguities but also improve translation
performance. It works through reciprocal incorpo-
ration between source and target context: source
words are determined by the context of previous
and corresponding target words, and the next target
words are predicted by the current translation pair.
Accordingly, we do not need to consider any dis-
tortion model or language model as is the case with
IBM-style models.

Under this framework, we propose a chunk-based
translation model for more grammatical, fluent and
accurate output. In order to alleviate the data sparse-
ness problem in chunk-based translation, we use a
stepwise back-off method in the order of a chunk,
sub-parts of the chunk, and word level. Moreover,
we utilize verb-noun collocations in dealing with
long-distance dependency which are automatically
extracted by using chunk alignment and a monolin-
gual dependency parser.

As a case study, we developed a Japanese-to-
Korean translation model and performed some ex-

periments on the BTEC corpus.

2 Overview of Translation Model

The goal of machine translation is to transfer the
meaning of a source language sentence, ��� �

��    �� , into a target language sentence, ��� �

��    �� . In most types of statistical machine trans-
lation, conditional probability ��������

�
� � is used to

describe the correspondence between two sentences.
This model is used directly for translation by solving
the following maximization problem:

���� � ��������
�

��������
�
� � (2)

� ��������
�

�����
�
���
�
�

�����
�
�

(3)

� ��������
�

������� �
�
� � (4)

Since a source language sentence is given and the
������ � probability is applied to all possible corre-
sponding target sentences, we can ignore the denom-
inator in equation (3). As a result, the joint proba-
bility model can be used to describe the correspon-
dence between two sentences. We apply Markov
chain rules to the joint probability model and obtain
the following decomposed model:

������� �
�
� � �

��
���

����	� ���� ����������������	����

(5)
where �� is the index of the source word that is
aligned to the word �� under the assumption of the
fixed one-to-one alignment. In this model, we have
two probabilities:

� source word prediction probability under a
given target language context, ����	� ������ ���

� target word prediction probability under the
preceding translation pair, ����������� �	����

The probability of target word prediction is used for
selecting the target word that follows the previous
target words. In order to make this more determin-
istic, we use bilingual context, i.e. the translation
pair of the preceding target word. For a given target
word, the corresponding source word is predicted by
source word prediction probability based on the cur-
rent and preceding target words.
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Since a target and a source word are predicted
through reciprocal incorporation between source
and target context from the beginning of a target
sentence, the word order in the target sentence is
automatically determined and the number of pos-
sible configurations of source words is decreased.
Thus, we do not need to perform any computation
for word re-ordering. Moreover, since correspon-
dences are provided based on bilingual contextual
evidence, translation ambiguities can be decreased.
As a result, the proposed model is expected to re-
duce computational complexity during the decoding
as well as improve performance.

Furthermore, since a word-based translation ap-
proach is often incapable of handling complicated
expressions such as an idiomatic expressions or
complicated verb phrases, it often outputs nonsense
translations. To avoid nonsense translations and to
increase explanatory power, we incorporate struc-
tural aspects of the language into the chunk-based
translation model. In our model, one source chunk
is translated by exactly one target chunk, i.e., one-
to-one chunk alignment. Thus we obtain:

��
� � ���������
�

�����
� �
��
� � (6)

�����
� �
��
� � �


�
���

��� ��	� ����� �������������������
��	����

(7)
where � is the number of chunks in a source and a
target sentence.

3 Chunk-based J/K Translation Model
with Back-Off

With the translation framework described above, we
built a chunk-based J/K translation model as a case
study. Since a chunk-based translation model causes
severe data sparseness, it is often impossible to ob-
tain any translation of a given source chunk. In order
to alleviate this problem, we apply back-off trans-
lation models while giving the consideration to lin-
guistic characteristics.

Japanese and Korean is a very close language pair.
Both are agglutinative and inflected languages in the
word formation of a bunsetsu and an eojeol. A bun-
setsu/eojeol consists of two sub parts: the head part
composed of content words and the tail part com-
posed of functional words agglutinated at the end of

the head part. The head part is related to the mean-
ing of a given segment, while the tail part indicates
a grammatical role of the head in a given sentence.

By putting this linguistic knowledge to practical
use, we build a head-tail based translation model
as a back-off version of the chunk-based translation
model. We place several constraints on this head-tail
based translation model as follows:

� The head of a given source chunk corresponds
to the head of a target chunk. The tail of the
source chunk corresponds to the tail of a target
chunk. If a chunk does not have a tail part, we
assign NUL to the tail of the chunk.

� The head of a given chunk follows the tail of the
preceding chunk and the tail follows the head of
the given chunk.

The constraints are designed to maintain the struc-
tural consistency of a chunk. Under these con-
straints, the head-tail based translation can be for-
mulated as the following equation:

��� ��	� ����� �������������������
��	���� � (8)

��� ���	� ���
�
� � ��

�
���������

�
� ���

�
���

�� �	����

��� �� �	� ���
�
�� ��

�
� ������

�
����

�
�
���	��

where ���� denotes the head of the ��� chunk and ����
means the tail of the chunk.

In the worst case, even the head-tail based model
may fail to obtain translations. In this case, we
back it off into a word-based translation model. In
the word-based translation model, the constraints
on the head-tail based translation model are not ap-
plied. The concept of the chunk-based J/K transla-
tion framework with back-off scheme can be sum-
marized as follows:

1. Input a dependency-parsed sentence at the
chunk level,

2. Apply the chunk-based translation model to the
given sentence,

3. If one of chunks does not have any correspond-
ing translation:

� divide the failed chunk into a head and a
tail part,
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Figure 1: An example of (a) chunk alignment for chunk-based, head-tail based translation and (b) bilingual
verb-noun collocation by using the chunk alignment and a monolingual dependency parser

� back-off the translation into the head-tail
based translation model,

� if the head or tail does not have any corre-
sponding translation, apply a word-based
translation model to the chunk.

Here, the back-off model is applied only to the part
that failed to get translation candidates.

3.1 Learning Chunk-based Translation

We learn chunk alignments from a corpus that has
been word-aligned by a training toolkit for word-
based translation models: the Giza++ (Och and
Ney, 2000) toolkit for the IBM models (Brown
et al., 1993). For aligning chunk pairs, we con-
sider word(bunsetsu/eojeol) sequences to be chunks
if they are in an immediate dependency relationship
in a dependency tree. To identify chunks, we use
a word-aligned corpus, in which source language
sentences are annotated with dependency parse trees
by a dependency parser (Kudo et al., 2002) and tar-
get language sentences are annotated with POS tags
by a part-of-speech tagger (Rim, 2003). If a se-
quence of target words is aligned with the words in
a single source chunk, the target word sequence is
regarded as one chunk corresponding to the given
source chunk. By applying this method to the cor-
pus, we obtain a word- and chunk-aligned corpus
(see Figure 1).

From the aligned corpus, we directly estimate
the phrase translation probabilities, ����� ����,
and the model parameters, ��� ��	� ����� ������,
������������� ��	����. These estimation are made

based on relative frequencies.

3.2 Decoding

For efficient decoding, we implement a multi-stack
decoder and a beam search with �� algorithm. At
each search level, the beam search moves through at
most �-best translation candidates, and a multi-stack
is used for partial translations according to the trans-
lation cardinality. The output sentence is generated
from left to right in the form of partial translations.

Initially, we get � translation candidates for each
source chunk with the beam size �. Every possible
translation is sorted according to its translation prob-
ability. We start the decoding with the initialized
beams and initial stack ��, the top of which has the
information of the initial hypothesis, ���� � �� ��� �

��. The decoding algorithm is described in Table 1.
In the decoding algorithm, estimating the back-

ward score is so complicated that the computational
complexity becomes too high because of the context
consideration. Thus, in order to simplify this prob-
lem, we assume the context-independence of only
the backward score estimation. The backward score
is estimated by the translation probability and lan-
guage model score of the uncovered segments. For
each uncovered segment, we select the best transla-
tion with the highest score by multiplying the trans-
lation probability of the segment by its language
model score. The translation probability and lan-
guage model score are computed without giving
consideration to context.

After estimating the forward and backward score
of each partial translation on stack ��, we try to
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1. Push the initial hypothesis ���� � �� ��� � �� on the initial
stack ��

2. for i=1 to K

� Pop the previous state information of ������� �������
from stack ����

� Get next target ��� and corresponding source ����
� for all pairs of ����� �����

– Check the head-tail consistency
– Mark the source segment as a covered one
– Estimate forward and backward score
– Push the state of pair ����� ����� onto stack ��

� Sort all translations on stack �� by the scores
� Prune the hypotheses

3. while (stack �� is not empty)

� Pop the state of the pair ���� � ���� �

� Compose translation output, ���� � � � ����

4. Output the best � translations

Table 1: �� multi-stack decoding algorithm

prune the hypotheses. In pruning, we first sort the
partial translations on stack �� according to their
scores. If the gradient of scores steeply decreases
over the given threshold at the ��� translation, we
prune the translations of lower scores than the ���

one. Moreover, if the number of filtered translations
is larger than 	 , we only take the top 	 transla-
tions. As a final translation, we output the single
best translation.

4 Resolving Long-distance Dependency

Since most of the current translation models take
only the local context into account, they cannot
account for long-distance dependency. This often
causes syntactically or semantically incorrect trans-
lation to be output. In this section, we describe
how this problem can be solved. For handling the
long-distance dependency problem, we utilize bilin-
gual verb-noun collocations that are automatically
acquired from the chunk-aligned bilingual corpora.

4.1 Automatic Extraction of Bilingual
Verb-Noun Collocation(BiVN)

To automatically extract the bilingual verb-noun
collocations, we utilize a monolingual dependency
parser and the chunk alignment result. The basic

concept is the same as that used in (Hwang et al.,
2004): bilingual dependency parses are obtained by
sharing the dependency relations of a monolingual
dependency parser among the aligned chunks. Then
bilingual verb sub-categorization patterns are ac-
quired by navigating the bilingual dependency trees.
A verb sub-categorization is the collocation of a verb
and all of its argument/adjunct nouns, i.e. verb-noun
collocation(see Figure 1).

To acquire more reliable and general knowledge,
we apply the following filtering method with statis-
tical �� test and unification operation:

� step 1. Filter out the reliable translation corre-
spondences from all of the alignment pairs by
�� test at a probability level of ��

� step 2. Filter out reliable bilingual verb-noun
collocations BiVN by a unification and �� test
at a probability level of ��: Here, we assume
that two bilingual pairs, ��� � ��� and ��� � ���
are unifiable into a frame ��� � ��� �� � ��� iff
both of them are reliable pairs filtered in step 1.
and they share the same verb pair ��� � ���.

4.2 Application of BiVN

The acquired BiVN is used to evaluate the bilingual
correspondence of a verb-noun pair dependent on
each other and to select the correct translation. It
can be applied to any verb-noun pair regardless of
the distance between them in a sentence. Moreover,
since the verb-noun relation in BiVN is bilingual
knowledge, the sense of each corresponding verb
and noun can be almost completely disambiguated
by each other.

In our translation system, we apply this BiVN
during decoding as follows:

1. Pivot verbs and their dependents in a given
dependency-parsed source sentence

2. When extending a hypothesis, if one of the piv-
oted verb and noun pairs is covered and its cor-
responding translation pair is in BiVN, we give
positive weight � � 	 to the hypothesis.

����
 	�� �

�
	 if ��
 	� � ����

 otherwise
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where ��
 	� � ��� � ��� �� � ��� and ����
 	��

is a function that indicates whether the bilingual
translation pair is in BiVN. By adding the weight
of the ����
 	�� function, we refine our model as
follows:

��
� � ������
�


��� ���
��	� ����� ������ (10)

������������ ��	�����
 ����� ����� ���

where 
 	��	�� is a function indicating whether the
pair of a verb and its argument ��� � �� � is covered
with �� � �	� or �� � �	� and ��
 	� � ��� �

��� �� � ��� is a bilingual translation pair in the hy-
pothesis.

5 Experiments

5.1 Corpus

The corpus for the experiment was extracted from
the Basic Travel Expression Corpus (BTEC), a col-
lection of conversational travel phrases for Japanese
and Korean (see Table 2). The entire corpus was
split into two parts: 162,320 sentences in parallel for
training and 10,150 sentences for test. The Japanese
sentences were automatically dependency-parsed by
CaboCha (Kudo et al., 2002) and the Korean sen-
tences were automatically POS tagged by KUTag-
ger (Rim, 2003)

5.2 Translation Systems

Four translation systems were implemented for
evaluation: 1) Word based IBM-style SMT Sys-
tem(WBIBM), 2) Chunk based IBM-style SMT Sys-
tem(CBIBM), 3) Word based LM tightly Coupled
SMT System(WBLMC), and 4) Chunk based LM
tightly Coupled SMT System(CBLMC). To exam-
ine the effect of BiVN, BiVN was optionally used
for each system.

The word-based IBM-style (WBIBM) system1

consisted of a word translation model and a bi-
gram language model. The bi-gram language
model was generated by using CMU LM toolkit
(Clarkson et al., 1997). Instead of using a fer-
tility model, we allowed a multi-word target of
a given source word if it aligned with more than
one word. We didn’t use any distortion model for
word re-ordering. And we used a log-linear model

1In this experiment, a word denotes a morpheme

������� � ����
�

� ������ ��� for weighting the
language model and the translation model. For de-
coding, we used a multi-stack decoder based on the
�� algorithm, which is almost the same as that de-
scribed in Section 3. The difference is the use of
the language model for controlling the generation of
target translations.

The chunk-based IBM-style (CBIBM) system
consisted of a chunk translation model and a bi-
gram language model. To alleviate the data sparse-
ness problem of the chunk translation model, we ap-
plied the back-off method at the head-tail or mor-
pheme level. The remaining conditions are the same
as those for WBIBM.

The word-based LM tightly coupled (WBLMC)
system was implemented for comparison with the
chunk-based systems. Except for setting the transla-
tion unit as a morpheme, the other conditions are the
same as those for the proposed chunk-based transla-
tion system.

The chunk-based LM tightly coupled (CBLMC)
system is the proposed translation system. A bi-
gram language model was used for estimating the
backward score.

5.3 Evaluation

Translation evaluations were carried out on 510 sen-
tences selected randomly from the test set. The met-
rics for the evaluations are as follows:

PER(Position independent WER), which pe-
nalizes without considering positional dis-
fluencies(Niesen et al., 2000).

mWER(multi-reference Word Error Rate), which is
based on the minimum edit distance between
the target sentence and the sentences in the ref-
erence set (Niesen et al., 2000).

BLEU, which is the ratio of the n-gram for
the translation results found in the reference
translations with a penalty for too short sen-
tences (Papineni et al., 2001).

NIST which is a weighted n-gram precision in
combination with a penalty for too short sen-
tences.

For this evaluation, we made 10 multiple references
available. We computed all of the above criteria with
respect to these multiple references.

554



Training Test
Japanese Korean Japanese Korean

# of sentences 162,320 10,150
# of total morphemes 1,153,954 1,179,753 74,366 76,540
# of bunsetsu/eojeol 448,438 587,503 28,882 38,386

vocabulary size 15,682 15,726 5,144 4,594

Table 2: Statistics of Basic Travel Expression Corpus

PER mWER BLEU NIST
WBIBM 0.3415 / 0.3318 0.3668 / 0.3591 0.5747 / 0.5837 6.9075 / 7.1110
WBLMC 0.2667 / 0.2666 0.2998 / 0.2994 0.5681 / 0.5690 9.0149 / 9.0360
CBIBM 0.2677 / 0.2383 0.2992 / 0.2700 0.6347 / 0.6741 8.0900 / 8.6981
CBLMC 0.1954 / 0.1896 0.2176 / 0.2129 0.7060 / 0.7166 9.9167 / 10.027

Table 3: Evaluation Results of Translation Systems: without BiVN/with BiVN

WBIBM WBLMC CBIBM CBLMC
0.8110 / 0.8330 2.5585 / 2.5547 0.3345 / 0.3399 0.9039 / 0.9052

Table 4: Translation Speed of Each Translation Systems(sec./sentence): without BiVN/with BiVN

5.4 Analysis and Discussion

Table 3 shows the performance evaluation of each
system. CBLMC outperformed CBIBM in overall
evaluation criteria. WBLMC showed much better
performance than WBIBM in most of the evalua-
tion criteria except for BLEU score. The interesting
point is that the performance of WBLMC is close to
that of CBIBM in PER and mWER. The BLEU score
of WBLMC is lower than that of CBIBM, but the
NIST score of WBLMC is much better than that of
CBIBM.

The reason the proposed model provided better
performance than the IBM-style models is because
the use of contextual information in CBLMC and
WBLMC enabled the system to reduce the transla-
tion ambiguities, which not only reduced the compu-
tational complexity during decoding, but also made
the translation accurate and deterministic. In addi-
tion, chunk-based translation systems outperformed
word-based systems. This is also strong evidence of
the advantage of contextual information.

To evaluate the effectiveness of bilingual verb-
noun collocations, we used the BiVN filtered with
�	 � 
�� �� � 	, where coverage is ����

on the test set and average ambiguity is ���. We

suffered a slight loss in the speed by using the
BiVN(see Table 4), but we could improve perfor-
mance in all of the translation systems(see Table
3). In particular, the performance improvement in
CBIBM with BiVN was remarkable. This is a pos-
itive sign that the BiVN is useful for handling the
problem of long-distance dependency. From this re-
sult, we believe that if we increased the coverage of
BiVN and its accuracy, we could improve the per-
formance much more.

Table 4 shows the translation speed of each sys-
tem. For the evaluation of processing time, we used
the same machine, with a Xeon 2.8 GHz CPU and
4GB memory , and checked the time of the best per-
formance of each system. The chunk-based trans-
lation systems are much faster than the word-based
systems. It may be because the translation ambi-
guities of the chunk-based models are lower than
those of the word-based models. However, the pro-
cessing speed of the IBM-style models is faster than
the proposed model. This tendency can be analyzed
from two viewpoints: decoding algorithm and DB
system for parameter retrieval. Theoretically, the
computational complexity of the proposed model is
lower than that of the IBM models. The use of a
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sorting and pruning algorithm for partial translations
provides shorter search times in all system. Since
the number of parameters for the proposed model is
much more than for the IBM-style models, it took a
longer time to retrieve parameters. To decrease the
processing time, we need to construct a more effi-
cient DB system.

6 Conclusion

In this paper, we proposed a new chunk-based statis-
tical machine translation model that is tightly cou-
pled with a language model. In order to alleviate
the data sparseness in chunk-based translation, we
applied the back-off translation method at the head-
tail and morpheme levels. Moreover, in order to
get more semantically plausible translation results
by considering long-distance dependency, we uti-
lized verb-noun collocations which were automat-
ically extracted by using chunk alignment and a
monolingual dependency parser. As a case study,
we experimented on the language pair of Japanese
and Korean. Experimental results showed that the
proposed translation model is very effective in im-
proving performance. The use of bilingual verb-
noun collocations is also useful for improving the
performance.

However, we still have some problems of the data
sparseness and the low coverage of bilingual verb-
noun collocation. In the near future, we will try to
solve the data sparseness problem and to increase the
coverage and accuracy of verb-noun collocations.
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Abstract

In this paper, we present a novel training
method for a localized phrase-basedpredic-
tion model for statisticalmachinetranslation
(SMT). Themodelpredictsblockswith orien-
tation to handlelocal phrasere-ordering. We
usea maximumlikelihoodcriterion to train a
log-linearblockbigrammodelwhichusesreal-
valuedfeatures(e.g. a languagemodelscore)
as well as binary featuresbasedon the block
identities themselves, e.g. block bigram fea-
tures.Our trainingalgorithmcaneasilyhandle
millions of features. The bestsystemobtains
a ����� � % improvementover the baselineon a
standardArabic-Englishtranslationtask.

1 Intr oduction

In this paper, we presenta block-basedmodelfor statis-
tical machinetranslation. A block is a pair of phrases
which aretranslationsof eachother. For example,Fig. 1
shows anArabic-Englishtranslationexamplethatuses�
blocks. During decoding,we view translationasa block
segmentationprocess,wherethe input sentenceis seg-
mentedfrom left to right andthetargetsentenceis gener-
atedfrom bottomto top,oneblockatatime. A monotone
block sequenceis generatedexceptfor the possibility to
swap a pair of neighborblocks. We usean orientation
modelsimilar to the lexicalizedblock re-orderingmodel
in (Tillmann,2004;Ochetal.,2004):to generateablock	

with orientation 
 relative to its predecessorblock
	��

.
During decoding,we computetheprobability �� 	�� ��� 
 � ���
of a block sequence

	�� �
with orientation 
 � � asa product

of blockbigramprobabilities:

�� 	 � � � 
 � � ��� �
��� ��� � 	 � � 
 ��� 	 ��� � � 
 ��� � ��� (1)
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Figure1: An Arabic-Englishblock translationexample,
wherethe Arabic wordsare romanized. The following
orientationsequenceis generated:
 �IHKJ � 
ML HKN � 
MO HJ � 
MP HKQ .

where
	 � is ablockand 
 �SRUT N � eft

��� Q � ight
�V� J � eutral

�6W
is a three-valued orientation componentlinked to the
block

	 � (the orientation 
 ��� � of the predecessorblock
is currentlyignored.).Here,theblocksequencewith ori-
entation � 	X� � � 
 � � � is generatedunderthe restrictionthat
theconcatenatedsourcephrasesof theblocks

	 � yield the
input sentence.In modelinga block sequence,we em-
phasizeadjacentblockneighborsthathaveRight or Left
orientation.Blockswith neutralorientationaresupposed
to belessstrongly’ linked’ to theirpredecessorblockand
are handledseparately. During decoding,most blocks
have right orientation ��
 HYQ �

, sincethe block transla-
tionsaremostlymonotone.
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The focusof this paperis to investigateissuesin dis-
criminativetrainingof decoderparameters.Insteadof di-
rectly minimizing error as in earlierwork (Och, 2003),
we decomposethe decodingprocessinto a sequenceof
local decisionstepsbasedon Eq. 1, andthentrain each
localdecisionruleusingconvex optimizationtechniques.
Theadvantageof this approachis that it caneasilyhan-
dle a large amountof features. Moreover, under this
view, SMT becomesquite similar to sequentialnatural
languageannotationproblemssuchaspart-of-speechtag-
ging,phrasechunking,andshallow parsing.
The paperis structuredasfollows: Section2 introduces
the conceptof block orientation bigrams. Section 3
describesdetails of the localized log-linear prediction
model usedin this paper. Section4 describesthe on-
line trainingprocedureandcomparesit to thewell known
perceptrontrainingalgorithm(Collins, 2002). Section5
showsexperimentalresultsonanArabic-Englishtransla-
tion task.Section6 presentsa final discussion.

2 Block Orientation Bigrams

This sectiondescribesa phrase-basedmodel for SMT
similar to the modelspresentedin (Koehnet al., 2003;
Och et al., 1999; Tillmann andXia, 2003). In our pa-
per, phrasepairsarenamedblocksandour modelis de-
signedto generateblock sequences.We alsomodel the
position of blocks relative to eachother: this is called
orientation. To define block sequenceswith orienta-
tion, we definethe notion of block orientationbigrams.
Startingpoint for collectingthesebigramsis a block setZ H 	 H �V[ �V\]� H �V^�_ �`�baXc �d� . Here,

	
is a blockcon-

sistingof a sourcephrase[ anda target phrase
\

. e is
thesourcephraselengthandf is thetargetphraselength.
Single sourceand target words are denotedby ^�g anda � respectively, where h H � �di+i+i�� e and j H � �di+ikiM� f .
We will alsousea specialsingle-word block set

Z �`l Z
which containsonly blocksfor which e H f H � . For
theexperimentsin thispaper, theblocksetis theoneused
in (Al-Onaizanet al., 2004). Although this is not inves-
tigatedin the presentpaper, differentblocksetsmay be
usedfor computingtheblock statisticsintroducedin this
paper, whichmayeffect translationresults.

For the block set
Z

and a training sentencepair, we
carry out a two-dimensionalpatternmatchingalgorithm
to find adjacentmatchingblocksalongwith theirposition
in thecoordinatesystemdefinedby sourceandtargetpo-
sitions(seeFig. 2). Here,wedonot insistonaconsistent
blockcoverageasonewoulddoduringdecoding.Among
the matchingblocks,two blocks

	��
and

	
areadjacentif

thetargetphrases
\

and
\`�

aswell asthesourcephrases[ and [ � areadjacent.
	��

is predecessorof block
	

if
	��

and
	

areadjacentand
	��

occursbelow
	
. A right adjacent

successorblock
	

is saidto have right orientation
 HmQ .
A left adjacentsuccessorblockissaidto haveleft orienta-

b

 b'

o=L

b

 b'

o=R

x axis:  source positions

nporq"sutwvx oGy6z|{ x}�~ tws x s ~�� t

Local Block Orientation

Figure 2: Block
	6�

is the predecessorof block
	
. The

successorblock
	

occurswith eitherleft 
 H�N
or right
 H�Q

orientation. ’ left’ and’right’ aredefinedrelative
to the � axis; ’below’ is definedrelativeto the � axis.For
somediscussiononglobalre-orderingseeSection6.

tion 
 H�N . Therearematchingblocks
	

thathavenopre-
decessor, sucha block hasneutralorientation( 
 HYJ

).
After matchingblocks for a training sentencepair, we
look for adjacentblock pairsto collectblock bigramori-
entationevents � of thetype � H � 	 � � 
 �k	k� . Our modelto
bepresentedin Section3 is usedto predicta futur eblock
orientationpair � 	�� 
 � givenits predecessorblockhistory	��

. In Fig. 1, thefollowing block orientationbigramsoc-
cur: � i�� J �k	 � � , � 	 � � N �+	 L � , � i�� J �+	 O � , � 	 O � Q �+	 P � . Collect-
ing orientationbigramson all parallelsentencepairs,we
obtainanorientationbigramlist ��� � :

� � � H � � �|������� � � H�� � 	X�� � 
 � �+	 � � �.���� � �u�� � � (2)

Here,� � is thenumberof orientationbigramsin the ^ -th
sentencepair. Thetotalnumber

J
of orientationbigramsJ�H �� � � � � is about

J�H�� � � million for our train-
ing dataconsistingof [ H����M���"�"�

sentencepairs. The
orientationbigramlist is usedfor theparametertraining
presentedin Section3. Ignoringthebigramswith neutral
orientation

J
reducesthe list definedin Eq. 2 to about� � � million orientationbigrams.TheNeutral orientation

is handledseparatelyasdescribedin Section5. Usingthe
reducedorientationbigramlist, we collect unigramori-
entationcounts

J�� � 	d� : how oftena block occurswith a
given orientation 
 R�T N � Q W . J`� � 	k� � � � � � i J`¡ � 	d�
typically holdsfor blocks

	
involved in block swapping

andtheorientationmodel� � � 	d� is definedas:

� � � 	k� H J�� � 	d�J`� � 	d�(¢ J�¡ � 	k�G�
In orderto train a block bigramorientationmodelasde-
scribedin Section3.2, we definea successorset £ � � 	��V�
for ablock

	��
in the ^ -th trainingsentencepair:
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£ � � 	��V� H T numberof triplesof type � 	��¤� N �+	k� or
type � 	��¤� Q �+	k� R � � �� W

The successorset £"� 	��V� is definedfor eachevent in the
list ��� � . Theaveragesizeof £"� 	6�V� is �r� � successorblocks.
If we were to computea Viterbi block alignmentfor a
trainingsentencepair, eachblock in thisblockalignment
would have at most � successor:Blocks may have sev-
eral successors,becausewe do not inforce any kind of
consistentcoverageduringtraining.

During decoding,we generatea list of block orien-
tation bigramsas describedabove. A DP-basedbeam
searchprocedureidenticalto the oneusedin (Tillmann,
2004) is usedto maximizeover all orientedblock seg-
mentations � 	X� � � 
 � � � . During decodingorientation bi-
grams � 	 � � N �+	k� with left orientationareonly generated
if
J�� � 	k�¦¥ � for thesuccessorblock

	
.

3 Localized Block Model and
Discriminati veTraining

In thissection,wedescribethecomponentsusedto com-
putethe block bigramprobability � � 	 � � 
 ��� 	 ��� � � 
 ��� � � in
Eq.1. A blockorientationpair ��
 �§�+	��V¨ 
 �k	k� is represented
asa feature-vector ©ª� 	�� 
 ¨M	 � � 
 � � R�« ¬ . For a modelthat
usesall thecomponentsdefinedbelow,  is � . As feature-
vector components,we take the negative logarithm of
someblock modelprobabilities.We usethe term ’float’
featurefor thesefeature-vectorcomponents(the model
scoreis storedasa float number). Additionally, we use
binaryblock features.Theletters(a)-(f) referto Table1:

Unigram Models: we compute(a) the unigramproba-
bility � � 	k� and(b) theorientationprobability � � � 	k� .
Theseprobabilitiesaresimplerelativefrequency es-
timatesbasedon unigramandunigramorientation
countsderived from the datain Eq. 2. For details
see(Tillmann, 2004). During decoding,the uni-
gramprobabilityis normalizedby thesourcephrase
length.

Two typesof Trigram languagemodel: (c) probability
of predictingthefirst targetword in thetargetclump
of
	 � given the final two wordsof the target clump

of
	 �¤� � , (d) probability of predictingthe restof the

wordsin thetargetclumpof
	 � . Thelanguagemodel

is trainedon a separatecorpus.

Lexical Weighting: (e) the lexical weight � ��[ � \]�
of the block

	 H ��[ �V\]� is computedsimilarly to
(Koehnetal.,2003),detailsaregivenin Section3.4.

Binary features: (f) binaryfeaturesaredefinedusingan
indicator function ©ª� 	+�+	��V� which is � if the block
pair � 	��+	��V� occursmore often than a given thresh-
old

J
, e.g

J®H¯�
. Here,theorientation
 between

theblocksis ignored.

©ª� 	��+	 � � H � J � 	��+	��V�°� J�
else

(3)

3.1 Global Model

In our linear block model, for a given source sen-
tence ^ , eachtranslationis representedas a sequence
of block/orientationpairs T 	X� � � 
 � � W consistentwith the
source. Using featuressuchas thosedescribedabove,
we canparameterizethe probability of sucha sequence
as �� 	�� � � 
 � � � ± � ^ � , where± is avectorof unknownmodel
parametersto beestimatedfrom thetrainingdata.Weuse
a log-linearprobability modelandmaximumlikelihood
training— the parameter± is estimatedby maximizing
the joint likelihoodover all sentences.Denoteby ²³��^ �
the setof possibleblock/orientationsequencesT 	�� � � 
 � � W
thatareconsistentwith thesourcesentencê , thena log-
linearprobabilitymodelcanberepresentedas

�� 	 � � � 
 � � � ± � ^ � Hµ´+¶�· � ±�¸ ©ª� 	�� � � 
 � � ���¹ �V^ � �
(4)

where ©ª� 	�� � � 
 � � � denotesthe featurevectorof the corre-
spondingblock translation,andthepartitionfunctionis:¹ �V^ � H º » ��¼ ½�¾ � �¿¼ ½SÀwÁdÂIÃ �§Ä ´+¶�· � ± ¸ ©ª� 	

��Å �Æ� 
 �uÅ �`�6� �
A disadvantageof this approachis that the summation
over ²³�V^ � can be rather difficult to compute. Conse-
quentlysomesophisticatedapproximateinferencemeth-
odsareneededto carryout thecomputation.A detailed
investigationof the global modelwill be left to another
study.

3.2 Local Model Restrictions

In the following, we considera simplificationof the di-
rect global model in Eq. 4. As in (Tillmann, 2004),
we model the block bigram probability as � � 	 � � 
 � RT N � Q W � 	 �¤� � � 
 ��� � � in Eq.1. Wedistinguishthetwo cases
(1) 
 �SRÇT N � Q W , and(2) 
 � HKJ . Orientationis modeled
only in thecontext of immediateneighborsfor blocksthat
have left or right orientation.Thelog-linearmodelis de-
finedas:

� � 	�� 
 RÇT N � Q W � 	 � � 
 � ¨ ± � ^ � (5)H ´+¶�· � ±�¸ ©ª� 	�� 
 ¨M	���� 
 �V�6�¹ � 	 � � 
 � ¨ ^ � �
where ^ is the sourcesentence,©ª� 	�� 
 ¨M	��¤� 
 �V� is a locally
definedfeaturevector that dependsonly on the current
andthe previousorientedblocks � 	+� 
 � and � 	��§� 
 �§� . The
featuresweredescribedat the beginning of the section.
Thepartitionfunctionis givenby¹ � 	 � � 
 � ¨ ^ � H Ã » ¾ � Ä ÁdÂIÃ » � ¾ � �ÉÈ �§Ä ´+¶�· � ± ¸ ©ª� 	�� 
 ¨M	

� � 
 � �6� � (6)
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Theset ²³� 	��§� 
 �§¨ ^ � is a restrictedsetof possiblesucces-
sor orientedblocks that are consistentwith the current
block positionandthesourcesentencê , to bedescribed
in the following paragraph.Note that a straightforward
normalizationover all block orientationpairs in Eq. 5
is not feasible: there are tens of millions of possible
successorblocks

	
(if we do not imposeany restriction).

For each block
	 H �V[ ��\]� , aligned with a source

sentencê , we definea source-inducedalternativeset:Z � 	k� H T all blocks
	�� � R Z thatshareanidentical

sourcephrasewith
	ÆW

The set
Z � 	k� containsthe block

	
itself and the block

target phrasesof blocks in that set might differ. To
restrict the numberof alternatives further, the elements
of
Z � 	k� aresortedaccordingto theunigramcount

J � 	�� �V�
and we keepat most the top Ê blocks for eachsource
interval ^ . We alsousea modifiedalternative set

Z � � 	k� ,
where the block

	
as well as the elementsin the setZ � � 	k� are single word blocks. The partition function

is computed slightly differently during training and
decoding:

Training: for eachevent � 	��¤� 
 �+	d� in a sentencepair ^ in
Eq.2 we computethesuccessorset £ � � 	��§� . This de-
finesa setof ’ true’ block successors.For eachtrue
successor

	
, we computethe alternative set

Z � 	k� .²³� 	6��� 
 �V¨ ^ � is theunionof thealternativesetfor each
successor

	
. Here, the orientation 
 from the true

successor
	

is assignedto eachalternative in
Z � 	k� .

Weobtainontheaverage� � � � alternativespertrain-
ing event � 	6��� 
 �+	k� in thelist ��� � .

Decoding: Here,eachblock
	

thatmatchesa sourcein-
terval following

	6�
in the sentencê is a potential

successor. Wesimplyset²³� 	 � � 
 � ¨ ^ � H Z � 	k� . More-
over, setting

¹ � 	��¤� 
 ��¨ ^ � HË� � � duringdecodingdoes
not changeperformance:the list

Z � 	k� just restricts
thepossibletargettranslationsfor asourcephrase.

Under this model, the log-probability of a possible
translationof a sourcesentencê , as in Eq. 1, can be
writtenasÌ¿Í �� 	 � � � 
 � � � ± � ^ � H (7)H �

��� � Ì�Í ´k¶�· � ±�¸ ©ª�
	 � � 
 � ¨M	 ��� � � 
 ��� � �6�¹ � 	 ��� � � 
 ��� � ¨ ^ � �

In themaximum-likelihoodtraining,we find ± by maxi-
mizing thesumof the log-likelihoodover observedsen-
tences,eachof themhastheform in Eq.7. Althoughthe
trainingmethodologyis similar to theglobalformulation
given in Eq. 4, this localizedversionis computationally
mucheasierto managesincethe summationin the par-
tition function

¹ � 	 ��� � � 
 �¤� � ¨ ^ � is now over a relatively
small set of candidates.This computationaladvantage

is the main reasonthat we adoptthe local model in this
paper.

3.3 Global versusLocal Models

Both the global andthe localizedlog-linearmodelsde-
scribedin this sectioncan be consideredas maximum-
entropy models,similar to thoseusedin naturallanguage
processing,e.g. maximum-entropy modelsfor POStag-
ging andshallow parsing.In theparsingcontext, global
modelssuchasin Eq.4 aresometimesreferredto ascon-
ditional randomfield or CRF(Lafferty etal., 2001).

Although therearesomeargumentsthat indicatethat
thisapproachhassomeadvantagesoverlocalizedmodels
suchasEq. 5, the potentialimprovementsarerelatively
small,at leastin NLP applications.For SMT, thediffer-
encecanbepotentiallymoresignificant.This is because
in our currentlocalizedmodel,successorblocksof dif-
ferent sizesaredirectly comparedto eachother, which
is intuitively not the best approach(i.e., probabilities
of blocks with identical lengthsare more comparable).
This issueis closelyrelatedto thephenomenonof multi-
ple countingof events,which meansthata source/target
sentencepair canbe decomposedinto differentoriented
blocks in our model. In our currenttraining procedure,
we selectoneasthetruth, while considertheother(pos-
sibly alsocorrect)decisionsasnon-truthalternatives. In
theglobalmodeling,with appropriatenormalization,this
issuebecomeslesssevere. With this limitation in mind,
the localized model proposedhere is still an effective
approach,as demonstratedby our experiments. More-
over, it is simplebothcomputationallyandconceptually.
Variousissuessuchas the onesdescribedabove canbe
addressedwith moresophisticatedmodelingtechniques,
which weshallbeleft to futurestudies.

3.4 Lexical Weighting

The lexical weight � ��[ � \]� of the block
	 H ��[ �V\]� is

computedsimilarly to (Koehnetal.,2003),but thelexical
translationprobability � ��^ � ad� is derived from the block
setitself ratherthanfrom a word alignment,resultingin
a simplified training. The lexical weight is computedas
follows:

� ��[ � \]� H _
g � � �JIÎ ��^ g ��\]�

c
Ï � � � ��^Mg � a � �

� ��^ g � a � � H J � 	k�» � Á Î ½ Ã » Ä J � 	 � �
Here, the single-word-based translation probability� ��^�g � a � � is derivedfrom theblock setitself.

	 H ��^�g �Va � �
and

	�� H ��^Mg ��aXÐ.� aresingle-word blocks,wheresource
andtargetphrasesareof length � . J Î �V^�g ��a c �k� is thenum-
ber of blocks

	 Ð H ��^ g ��a Ð � for Ñ R � �di+ikiM� f for which� ��^ g � a Ð �°� � � � .
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4 Online Training of Maximum-entropy
Model

The local modeldescribedin Section3 leadsto the fol-
lowing abstractmaximumentropy trainingformulation:

Ò± HËÓÕÔ�ÖS×]Ø ÍÙ Å
�C� � Ì¿Í g ÁdÂÛÚ ´k¶�· � ± ¸ � � ¾ g �´k¶�· � ± ¸ � � ¾ Ü Ú � � (8)

In thisformulation,± is theweightvectorwhichwewant
to compute.The set ² � consistsof candidatelabelsfor
the j -th training instance,with the true label � � R ² � .
The labelshereareblock identities, ² � correspondsto
the alternative set ²Ý� 	��¤� 
 �V¨ ^ � and the ’ true’ blocks are
definedby thesuccessorset £"� 	��V� . Thevector � � ¾ g is the
featurevectorof the j -th instance,correspondingto la-
bel h R ² � . Thesymbol � is short-handfor the feature-
vector ©ª� 	�� 
 ¨M	��¤� 
 �V� . This formulation is slightly differ-
entfrom thestandardmaximumentropy formulationtyp-
ically encounteredin NLP applications,in thatwerestrict
thesummationoverasubset² � of all labels.
Intuitively, this methodfavors a weight vectorsuchthat
for eachj , ±�¸ � � ¾ ÜkÚ(Þ ±�¸ � � ¾ g is largewhenhUßH � � . This
effectis desirablesinceit triestoseparatethecorrectclas-
sificationfrom the incorrectalternatives. If the problem
is completelyseparable,then it can be shown that the
computedlinear separator, with appropriateregulariza-
tion, achievesthelargestpossibleseparatingmargin. The
effectis similarto somemulti-categorygeneralizationsof
supportvectormachines(SVM). However, Eq.8 is more
suitablefor non-separableproblems(which is often the
casefor SMT) since it directly modelsthe conditional
probabilityfor thecandidatelabels.

A relatedmethodis multi-category perceptron,which
explicitly finds a weightvectorthat separatescorrectla-
belsfrom the incorrectonesin a mistake drivenfashion
(Collins, 2002). The methodworks by examining one
sampleata time,andmakesanupdate±áàâ± ¢ �u� � ¾ Ü+Ú�Þ� � ¾ g � when ±�¸ �¿� � ¾ ÜkÚªÞ � � ¾ g � is not positive. To compute
theupdatefor a traininginstancej , oneusuallypick the h
suchthat±p¸ �u� � ¾ Ü+Ú�Þ � � ¾ g � is thesmallest.It canbeshown
that if thereexist weightvectorsthatseparatethecorrect
label � � from incorrectlabelsh R ² � for all hUßH � � , then
the perceptronmethodcanfind sucha separator. How-
ever, it is not entirelyclearwhat this methoddoeswhen
thetrainingdataarenotcompletelyseparable.Moreover,
the standardmistake boundjustificationdoesnot apply
whenwe go throughthetrainingdatamorethanonce,as
typically donein practice. In spiteof someissuesin its
justification,theperceptronalgorithmis still very attrac-
tive dueto its simplicity andcomputationalefficiency. It
alsoworksquitewell for a numberof NLP applications.

In the following, we show that a simpleandefficient
online training procedurecanalsobe developedfor the

maximumentropy formulationEq. 8. Theproposedup-
daterule is similar to the perceptronmethodbut with a
soft mistake-driven updaterule, wherethe influenceof
eachfeatureis weightedby the significanceof its mis-
take. The method is essentiallya version of the so-
called stochastic gradient descentmethod, which has
beenwidely usedin complicatedstochasticoptimization
problemssuch as neural networks. It was argued re-
cently in (Zhang,2004)thatthis methodalsoworkswell
for standardconvex formulationsof binary-classification
problemsincluding SVM and logistic regression.Con-
vergenceboundssimilar to perceptronmistake bounds
canbedeveloped,althoughunlikeperceptron,thetheory
justifiesthestandardpracticeof goingthroughthetrain-
ing datamorethanonce. In the non-separablecase,the
methodsolvesa regularizedversionof Eq. 8, which has
thestatisticalinterpretationof estimatingtheconditional
probability. Consequently, it doesnot have thepotential
issuesof the perceptronmethodwhich we pointedout
earlier. Due to thenatureof onlineupdate,just like per-
ceptron,thismethodis alsoverysimpleto implementand
is scalableto largeproblemsize.This is importantin the
SMT applicationbecausewe canhave a hugenumberof
traininginstanceswhichwe arenot ableto keepin mem-
ory at thesametime.

In stochasticgradientdescent,we examineonetrain-
ing instanceat a time. At the j -th instance,we derive
the updaterule by maximizingwith respectto the term
associatedwith theinstance

N � � ± � H Ì�Í g ÁdÂ Ú ´+¶�· � ±�¸ � � ¾ g �´k¶�· � ± ¸ � � ¾ ÜkÚ �
in Eq. 8. We do a gradientdescentlocalizedto this in-
stanceas ±ãàä± Þæå �`çç Ù N � � ± � , whereå � � �

is a pa-
rameteroften referredto asthe learningrate. For Eq. 8,
theupdaterule becomes:

±áàâ± ¢ å � g ÁdÂÛÚ ´+¶�· � ±�¸ � � ¾ g � �¿� � ¾ ÜkÚ(Þ � � ¾ g �g ÁdÂÛÚ ´k¶�· � ± ¸ � � ¾ g � � (9)

Similar to online algorithmssuchasthe perceptron,we
applythisupdateruleoneby oneto eachtraininginstance
(randomlyordered),andmaygo-throughdatapointsre-
peatedly. CompareEq. 9 to theperceptronupdate,there
aretwo maindifferences,whichwe discussbelow.

The first difference is the weighting scheme. In-
stead of putting the update weight to a single
(most mistaken) feature component, as in the per-
ceptron algorithm, we use a soft-weighting scheme,
with each feature component h weighted by a fac-
tor ´+¶�· � ±p¸ � � ¾ g ��è Ð ÁdÂ Ú ´k¶�· � ±�¸ � � ¾ Ð � . A componenth
with larger ±p¸ � � ¾ g getsmore weight. This effect is in
principle similar to the perceptronupdate.The smooth-
ing effect in Eq. 9 is useful for non-separableproblems
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sinceit doesnot forceanupdaterule thatattemptsto sep-
aratethedata.Eachfeaturecomponentgetsaweightthat
is proportionalto its conditionalprobability.

The seconddifferenceis the introductionof a learn-
ing rateparameterå � . For thealgorithmto converge,one
shouldpick a decreasinglearningrate. In practice,how-
ever, it is oftenmoreconvenientto selecta fixed å � H å
for all j . This leadsto an algorithmthat approximately
solvea regularizedversionof Eq.8. If wego throughthe
datarepeatedly, onemayalsodecreasethefixedlearning
rate by monitoring the progressmadeeachtime we go
throughthedata.For practicalpurposes,a fixedsmall å
suchas å H � � �.é is usuallysufficient. We typically run
forty updatesover the training data. Using techniques
similar to thoseof (Zhang,2004),we canobtaina con-
vergencetheoremfor our algorithm. Due to the space
limitation, we will not presenttheanalysishere.

An advantageof this methodover standardmaximum
entropy training suchasGIS (generalizediterative scal-
ing) is that it doesnot require us to storeall the data
in memoryat once. Moreover, the convergenceanaly-
sis can be usedto show that if ê is large, we can get
a very goodapproximatesolutionby going throughthe
dataonly once. This desirablepropertyimplies that the
methodis particularlysuitablefor largescaleproblems.

5 Experimental Results

Thetranslationsystemis testedon anArabic-to-English
translationtask. The training datacomesfrom the UN
news sources.Somepunctuationtokenizationandsome
numberclassingare carriedout on the English and the
Arabic trainingdata.In this paper, we presentresultsfor
two test sets: (1) the devtest set usesdataprovided by
LDC, whichconsistsof � � � � sentenceswith

� � �Õ�"Ê Ara-
bic wordswith � referencetranslations.(2) theblind test
set is the MT03 Arabic-EnglishDARPA evaluationtest
setconsistingof �"� � sentenceswith �M� �b� � Arabicwords
with also � referencetranslations.Experimentalresults
arereportedin Table2: herecasedBLEU resultsarere-
portedon MT03 Arabic-Englishtestset(Papineniet al.,
2002).Theword casingis addedaspost-processingstep
usingastatisticalmodel(detailsareomittedhere).
In orderto speedup the parametertraining we filter the
original training dataaccordingto the two testsets: for
eachof thetestsetswe take all theArabic substringsup
to length � � andfilter theparalleltrainingdatato include
only thosetrainingsentencepairsthatcontainat leastone
out of thesephrases:the ’LDC’ training datacontains
about

�b�M�
thousandsentencepairsandthe’MT03’ train-

ing datacontainsabout
�Õ�"�

thousandsentencepairs.Two
block setsarederivedfor eachof the trainingsetsusing
aphrase-pairselectionalgorithmsimilar to (Koehnetal.,
2003; Tillmann and Xia, 2003). Theseblock setsalso
includeblocksthatoccuronly oncein the training data.

Additionally, someheuristicfiltering is usedto increase
phrasetranslationaccuracy (Al-Onaizanet al., 2004).

5.1 Lik elihood Training Results

Wecomparemodelperformancewith respectto thenum-
ber and type of featuresusedas well as with respect
to different re-orderingmodels. Resultsfor Ê experi-
mentsareshown in Table2, wherethe featuretypesare
describedin Table 1. The first

�
experimentalresults

areobtainedby carryingout the likelihood training de-
scribedin Section3. Line � in Table 2 shows the per-
formanceof the baselineblock unigram’MON’ model
which usestwo ’float’ features: the unigramprobabil-
ity and the boundary-word languagemodel probability.
No block re-orderingis allowed for the baselinemodel
(a monotoneblock sequenceis generated).The’SWAP’
model in line

�
usesthe sametwo features,but neigh-

bor blockscanbeswapped.No performanceincreaseis
obtainedfor this model. The ’SWAP & OR’ modeluses
anorientationmodelasdescribedin Section3. Here,we
obtainasmallbut significantimprovementoverthebase-
line model.Line � showsthatby includingtwo additional
’float’ features:the lexical weightingand the language
model probability of predicting the secondand subse-
quentwordsof the target clump yields a further signif-
icant improvement. Line

�
shows that including binary

featuresand training their weightson the training data
actuallydecreasesperformance.This issueis addressed
in Section5.2.

Thetrainingis carriedoutasfollows: theresultsin line� -� areobtainedby training ’float’ weightsonly. Here,
the training is carriedout by runningonly onceover � �
% of the training data. The model including the binary
featuresis trainedon theentiretrainingdata.We obtain
about

� � �b� million featuresof the type definedin Eq. 3
by settingthethreshold

JëHì�
. Forty iterationsover the

trainingdatatakeabout
�

hoursonasingleIntel machine.
Although the onlinealgorithmdoesnot requireus to do
so, our training procedurekeepsthe entiretraining data
andtheweightvector± in about

�
gigabytesof memory.

For blockswith neutralorientation 
 HãJ
, we train

a separatemodelthatdoesnot usetheorientationmodel
featureor thebinary features.E.g. for theresultsin line�

in Table 2, the neutralmodel would usethe features�Ví ��� �Vî �V� �� ��� ��� � , but not � 	k� and �V© � . Here, the neutral
modelis trainedon theneutralorientationbigramsubse-
quencethatis partof Eq.2.

5.2 Modified Weight Training

We implementedthe following variation of the likeli-
hood training proceduredescribedin Section3, where
we make useof the ’LDC’ devtest set. First, we train
a modelon the’LDC’ trainingdatausing

�
float features

and the binary features. We usethis model to decode
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Table 1: List of feature-vector components.For a de-
scription,seeSection3.

Description

(a)Unigramprobability
(b) Orientationprobability
(c) LM first word probability
(d) LM secondandfollowing wordsprobability
(e)Lexical weighting
(f) Binary Block BigramFeatures

Table2: CasedBLEU translationresultswith confidence
intervalson theMT03 testdata. The third columnsum-
marizesthe modelvariations.The resultsin lines � andÊ are for a cheatingexperiment: the float weightsare
trainedon thetestdataitself.

Re-ordering Components BLEU
1 ’MON’ (a),(c)

�"� � �pï �G� �
2 ’SWAP’ (a),(c)

�"� � �pï �G� �
3 ’SWAP& OR’ (a),(b),(c)

�"� � Ê ï �G� �
4 ’SWAP& OR’ (a)-(e)

��� � �ðï �G� �
5 ’SWAP& OR’ (a)-(f)

��� � �pï �G� �
6 ’SWAP& OR’ (a)-(e)(ldc devtest)

��� � � ï �G� �
7 ’SWAP& OR’ (a)-(f) (ldc devtest)

� ��� �pï �G� �
8 ’SWAP& OR’ (a)-(e)(mt03test)

� Ê�� �pï �G� �
9 ’SWAP& OR’ (a)-(f) (mt03test)

� Ê�� �pï �G� �
the devtest ’LDC’ set. During decoding,we generatea
’ translationgraph’for everyinputsentenceusingaproce-
duresimilar to (Ueffing et al., 2002): a translationgraph
is a compactway of representingcandidatetranslations
which areclosein termsof likelihood.Fromthetransla-
tion graph,we obtainthe � �Õ�"� besttranslationsaccord-
ing to the translationscore. Out of this list, we find the
blocksequencethatgeneratedthetop BLEU-scoringtar-
get translation.Computingthe top BLEU-scoringblock
sequencefor all theinputsentencesweobtain:

� � �� H � � 	 �� � 
 � �k	 � � � � ��C� �6� � �� �
(10)

where
J � � ÊÕ� �"� . Here,

J �
is the numberof blocks

neededto decodethe entiredevtestset. Alternativesfor
eachof the eventsin �M� �� aregeneratedasdescribedin
Section3.2. The setof alternativesis further restricted
by usingonly thoseblocksthatoccurin sometranslation
in the � �"�"� -bestlist. The

�
float weightsaretrainedon

the modifiedtraining datain Eq. 10, wherethe training
takesonly a few seconds.We thendecodethe ’MT03’
testsetusingthe modified’float’ weights. As shown in
line � and line � there is almostno changein perfor-
mancebetweentraining on the original training datain
Eq. 2 or on the modified training datain Eq. 10. Line

� shows thatevenwhentraining the float weightson an
event setobtainedfrom the testdataitself in a cheating
experiment,we obtainonly a moderateperformanceim-
provementfrom

�b� � � to
� Ê�� � . For the experimentalre-

sults in line
�

and Ê , we usethe samefive float weights
as trainedfor the experimentsin line � and � andkeep
themfixedwhile trainingthebinaryfeatureweightsonly.
Usingthebinaryfeaturesleadsto only a minor improve-
mentin BLEU from

�b� � � to
� ��� � in line

�
. For this best

model,we obtaina �M�ñ� � % BLEU improvementover the
baseline.

Fromour experimentalresults,we draw thefollowing
conclusions: (1) the translationperformanceis largely
dominatedby the ’float’ features,(2) usingthe sameset
of ’float’ features,theperformancedoesn’t changemuch
whentrainingon training,devtest,or eventestdata.Al-
though,wedo notobtainasignificantimprovementfrom
theuseof binaryfeatures,currently, weexpecttheuseof
binaryfeaturesto beapromisingapproachfor thefollow-
ing reasons:ò The currenttraining doesnot take into accountthe

block interactionon thesentencelevel. A moreac-
curateapproximationof the global model as dis-
cussedin Section3.1might improveperformance.ò As describedin Section3.2 and Section5.2, for
efficiency reasonsalternatives are computedfrom
sourcephrasematchesonly. During training,more
accuratelocalapproximationsfor thepartitionfunc-
tion in Eq. 6 can be obtainedby looking at block
translationsin the context of translationsequences.
Thisinvolvesthecomputationallyexpensivegenera-
tion of a translationgraphfor eachtrainingsentence
pair. This is futurework.ò As mentionedin Section1, viewing the translation
processasa sequenceof local discussionsmakesit
similar to otherNLP problemssuchasPOStagging,
phrasechunking,andalsostatisticalparsing. This
similarity may facilitate the incorporationof these
approachesinto our translationmodel.

6 Discussionand Future Work

In this paperwe proposeda methodfor discriminatively
training the parametersof a block SMT decoder. We
discussedtwo possibleapproaches:global versuslocal.
This work focusedon thelatter, dueto its computational
advantages.Somelimitationsof our approachhave also
beenpointedout, althoughour experimentsshowedthat
thissimplemethodcansignificantlyimprovethebaseline
model.

As far as the log-linearcombinationof float features
is concerned,similar trainingprocedureshave beenpro-
posedin (Och, 2003). This paperreportsthe useof �
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featureswhoseparameterare trained to optimize per-
formancein terms of different evaluation criteria, e.g.
BLEU. On the contrary, our papershows that a signifi-
cantimprovementcanalsobeobtainedusingalikelihood
trainingcriterion.

Our modifiedtraining procedureis relatedto the dis-
criminative re-rankingprocedurepresentedin (Shenet
al., 2004). In fact, onemay view discriminative rerank-
ing asa simplificationof theglobalmodelwe discussed,
in thatit restrictsthenumberof candidateglobaltransla-
tions to make the computationmoremanageable.How-
ever, the numberof possibletranslationsis often expo-
nential in the sentencelength,while the numberof can-
didatesin a typically rerankingapproachis fixed. Un-
less one employs an elaboratedprocedure,the candi-
datetranslationsmayalsobeverysimilar to oneanother,
and thus do not give a goodcoverageof representative
translations.Thereforethererankingapproachmayhave
someseverelimitationswhich needto beaddressed.For
this reason,we think thata moreprincipledtreatmentof
global modelingcan potentially lead to further perfor-
manceimprovements.

For future work, our training techniquemay be used
to trainmodelsthathandleglobalsentence-level reorder-
ings. This might be achieved by introducing orienta-
tion sequencesover phrasetypesthathave beenusedin
((SchaferandYarowsky, 2003)). To incorporatesyntac-
tic knowledgeinto theblock-basedmodel,wewill exam-
ine the useof additionalreal-valuedor binary features,
e.g. featuresthatlook at whethertheblock phrasescross
syntacticboundaries.This canbedonewith only minor
modificationsto our trainingmethod.
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Abstract

This paper describes a novel instance-
based sentence boundary determination
method for natural language generation
that optimizes a set of criteria based on
examples in a corpus. Compared to exist-
ing sentence boundary determination ap-
proaches, our work offers three signifi-
cant contributions. First, our approach
provides a general domain independent
framework that effectively addresses sen-
tence boundary determination by balanc-
ing a comprehensive set of sentence com-
plexity and quality related constraints.
Second, our approach can simulate the
characteristics and the style of naturally
occurring sentences in an application do-
main since our solutions are optimized
based on their similarities to examples
in a corpus. Third, our approach can
adapt easily to suit a natural language gen-
eration system’s capability by balancing
the strengths and weaknesses of its sub-
components (e.g. its aggregation and re-
ferring expression generation capability).
Our final evaluation shows that the pro-
posed method results in significantly bet-
ter sentence generation outcomes than a
widely adopted approach.

1 Introduction

The problem of sentence boundary determination in
natural language generation exists when more than
one sentence is needed to convey multiple concepts

and propositions. In the classic natural language
generation (NLG) architecture (Reiter, 1994), sen-
tence boundary decisions are made during the sen-
tence planning stage in which the syntactic struc-
ture and wording of sentences are decided. Sentence
boundary determination is a complex process that
directly impacts a sentence’s readability (Gunning,
1952), its semantic cohesion, its syntactic and lex-
ical realizability, and its smoothness between sen-
tence transitions. Sentences that are too complex are
hard to understand, so are sentences lacking seman-
tic cohesion and cross-sentence coherence. Further
more, bad sentence boundary decisions may even
make sentences unrealizable.

To design a sentence boundary determination
method that addresses these issues, we employ an
instance-based approach (Varges and Mellish, 2001;
Pan and Shaw, 2004). Because we optimize our so-
lutions based on examples in a corpus, the output
sentences can demonstrate properties, such as simi-
lar sentence length distribution and semantic group-
ing similar to those in the corpus. Our approach
also avoids problematic sentence boundaries by op-
timizing the solutions using all the instances in the
corpus. By taking a sentence’s lexical and syntac-
tic realizability into consideration, it can also avoid
sentence realization failures caused by bad sentence
boundary decisions. Moreover, since our solution
can be adapted easily to suit the capability of a natu-
ral language generator, we can easily tune the algo-
rithm to maximize the generation quality. To the best
of our knowledge, there is no existing comprehen-
sive solution that is domain-independent and pos-
sesses all the above qualities. In summary, our work
offers three significant contributions:

1. It provides a general and flexible sentence
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boundary determination framework which
takes a comprehensive set of sentence com-
plexity and quality related criteria into consid-
eration and ensures that the proposed algorithm
is sensitive to not only the complexity of the
generated sentences, but also their semantic co-
hesion, multi-sentence coherence and syntactic
and lexical realizability.

2. Since we employ an instance-based method,
the proposed solution is sensitive to the style
of the sentences in the application domain in
which the corpus is collected.

3. Our approach can be adjusted easily to suit
a sentence generation system’s capability and
avoid some of its known weaknesses.

Currently, our work is embodied in a multimodal
conversation application in the real-estate domain in
which potential home buyers interact with the sys-
tem using multiple modalities, such as speech and
gesture, to request residential real-estate informa-
tion (Zhou and Pan, 2001; Zhou and Chen, 2003;
Zhou and Aggarwal, 2004). After interpreting the
request, the system formulates a multimedia pre-
sentation, including automatically generated speech
and graphics, as the response (Zhou and Aggarwal,
2004). The proposed sentence boundary determi-
nation module takes a set of propositions selected
by a content planner and passes the sentence bound-
ary decisions to SEGUE (Pan and Shaw, 2004), an
instance-based sentence generator, to formulate the
final sentences. For example, our system is called
upon to generate responses to a user’s request: “Tell
me more about this house.” Even though not all of
the main attributes of a house (more than 20) will be
conveyed, it is clear that a good sentence boundary
determination module can greatly ease the genera-
tion process and improve the quality of the output.

In the rest of the paper, we start with a discussion
of related work, and then describe our instance-base
approach to sentence boundary determination. Fi-
nally, we present our evaluation results.

2 Related Work

Existing approaches to sentence boundary determi-
nation typically employ one of the following strate-
gies. The first strategy uses domain-specific heuris-
tics to decide which propositions can be combined.
For example, Proteus (Davey, 1979; Ritchie, 1984)
produces game descriptions by employing domain-
specific sentence scope heuristics. This approach

can work well for a particular application, however,
it is not readily reusable for new applications.

The second strategy is to employ syntactic, lex-
ical, and sentence complexity constraints to con-
trol the aggregation of multiple propositions (Robin,
1994; Shaw, 1998). These strategies can generate
fluent complex sentences, but they do not take other
criteria into consideration, such as semantic cohe-
sion. Further more, since these approaches do not
employ global optimization as we do, the content of
each sentence might not be distributed evenly. This
may cause dangling sentence problem (Wilkinson,
1995).

Another strategy described in Mann and
Moore(1981) guided the aggregation process by
using an evaluation score that is sensitive to the
structure and term usage of a sentence. Similar to
our approach, they rely on search to find an optimal
solution. The main difference between this approach
and ours is that their evaluation score is computed
based on preference heuristics. For example, all
the semantic groups existing in a domain have to
be coded specifically in order to handle semantic
grouping. In contrast, in our framework, the score is
computed based on a sentence’s similarity to corpus
instances, which takes advantage of the naturally
occurring semantic grouping in the corpus.

Recently, Walker (2002) and Stent (2004) used
statistical features derived from corpus to rank gen-
erated sentence plans. Because the plan ranker was
trained with existing examples, it can choose a plan
that is consistent with the examples. However, de-
pending on the features used and the size of the train-
ing examples, it is unclear how well it can capture
patterns like semantic grouping and avoid problems
likes dangling sentences.

3 Examples

Before we describe our approach in detail, we start
with a few examples from the real-estate domain
to demonstrate the properties of the proposed ap-
proach.

First, sentence complexity impacts sentence
boundary determination. As shown in Table 1, af-
ter receiving a user’s request (U1) for the details of a
house, the content planner asked the sentence plan-
ner to describe the house with a set of attributes in-
cluding its asking price, style, number of bedrooms,
number of bathrooms, square footage, garage, lot
size, property tax, and its associated town and school
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Example Turn Sentence
E1 U1 Tell me more about this house

S1 This is a 1 million dollar 3 bedroom, 2 bathroom, 2000 square foot colonial
with 2 acre of land, 2 car garage, annual taxes 8000 dollars in Armonk
and in the Byram Hills school district.

S2 This is a 1 million dollar house. This is a 3 bedroom house. This is a 2 bathroom
house. This house has 2000 square feet. This house has 2 acres of land.
This house has 2 car garage. This is a colonial house. The annual taxes are 8000 dollars.
This house is in Armonk. This house is in the Byram Hills school district.

S3 This is a 3 bedroom, 2 bathroom, 2000 square foot colonial located in Armonk
with 2 acres of land. The asking price is 1 million dollar and the annual taxes
are 8000 dollars. The house is located in the Byram Hills School District.

E2 S4 This is a 1 million dollar 3 bedroom house. This is a 2 bathroom house with
annual taxes of 8000 dollars.

S5 This is a 3 bedroom and 2 bathroom house. Its price is 1 million dollar and
its annual taxes are 8000 dollars.

E3 S6 The tax rate of the house is 3 percent.
S7 The house has an asphalt roof.

E4 S8 This is a 3 bedroom, 2 bathroom colonial with 2000 square feet and 2 acres of land.
S9 The house has 2 bedrooms and 3 bathrooms. This house is a colonial.

It has 2000 square feet. The house is on 2 acres of land.

Table 1: Examples

district name. Without proper sentence boundary
determination, a sentence planner may formulate a
single sentence to convey all the information, as in
S1. Even though S1 is grammatically correct, it
is too complex and too exhausting to read. Simi-
larly, output like S2, despite its grammatical correct-
ness, is choppy and too tedious to read. In contrast,
our instance-based sentence boundary determination
module will use examples in a corpus to partition
those attributes into several sentences in a more bal-
anced manner (S3).

Semantic cohesion also influences the quality of
output sentences. For example, in the real-estate
domain, the number of bedrooms and number of
bathrooms are two closely related concepts. Based
on our corpus, when both concepts appear, they al-
most always conveyed together in the same sen-
tence. Given this, if the content planner wants to
convey a house with the following attributes: price,
number of bedrooms, number of bathrooms, and
property tax, S4 is a less desirable solution than S5
because it splits these concepts into two separate
sentences. Since we use instance-based sentence
boundary determination, our method generates S5 to
minimize the difference from the corpus instances.

Sentence boundary placement is also sensitive to
the syntactic and lexical realizability of grouped
items. For example, if the sentence planner asks the
surface realizer to convey two propositions S6 and
S7 together in a sentence, a realization failure will
be triggered because both S6 and S7 only exist in
the corpus as independent sentences. Since neither

of them can be transformed into a modifier based on
the corpus, S6 and S7 cannot be aggregated in our
system. Our method takes a sentence’s lexical and
syntactic realizability into consideration in order to
avoid making such aggregation request to the sur-
face realizer in the first place.

A generation system’s own capability may also
influence sentence boundary determination. Good
sentence boundary decisions will balance a system’s
strengths and weaknesses. In contrast, bad decisions
will expose a system’s venerability. For example, if
a sentence generator is good at performing aggre-
gations and weak on referring expressions, we may
avoid incoherence between sentences by preferring
aggregating more attributes in one sentence (like in
S8) rather than by splitting them into multiple sen-
tences (like in S9).

In the following, we will demonstrate how our ap-
proach can achieve all the above goals in a unified
instance-based framework.

4 Instance-based boundary determination

Instance-based generation automatically creates
sentences that are similar to those generated by hu-
mans, including their way of grouping semantic con-
tent, their wording and their style. Previously, Pan
and Shaw (2004) have demonstrated that instance-
based learning can be applied successfully in gen-
erating new sentences by piecing together existing
words and segments in a corpus. Here, we want to
demonstrate that by applying the same principle, we
can make better sentence boundary decisions.

567



The key idea behind the new approach is to find a
sentence boundary solution that minimizes the ex-
pected difference between the sentences resulting
from these boundary decisions and the examples in
the corpus. Here we measure the expected differ-
ence based a set of cost functions.

4.1 Optimization Criteria

We use three sentence complexity and quality re-
lated cost functions as the optimization criteria: sen-
tence boundary cost, insertion cost and deletion cost.

Sentence boundary cost (SBC): Assuming P is
a set of propositions to be conveyed and S is a col-
lection of example sentences selected from the cor-
pus to convey P . Then we say P can be realized
by S with a sentence boundary cost that is equal to
(|S| − 1) ∗ SBC in which |S| is the number of sen-
tences and SBC is the sentence boundary cost. To
use a specific example from the real-estate domain,
the input P has three propositions:

p1. House1 has-attr (style=colonial).

p2. House1 has-attr(bedroom=3).

p3. House1 has-attr(bathroom=2).

One solution, S, contains 2 sentences:

s1. This is a 3 bedroom, 2 bathroom house.

s2. This is a colonial house.

Since only one sentence boundary is involved, S is a
solution containing one boundary cost. In the above
example, even though both s1 and s2 are grammati-
cal sentences, the transition from s1 to s2 is not quite
smooth. They sound choppy and disjointed. To pe-
nalize this, whenever there is a sentence break, there
is a SBC. In general, the SBC is a parameter that is
sensitive to a generation system’s capability such as
its competence in reference expression generation.
If a generation system does not have a robust ap-
proach for tracking the focus across sentences, it is
likely to be weak in referring expression generation
and adding sentence boundaries are likely to cause
fluency problems. In contrast, if a generation sys-
tem is very capable in maintaining the coherence be-
tween sentences, the proper sentence boundary cost
would be lower.

Insertion cost: Assume P is the set of propo-
sitions to be conveyed, and Ci is an instance in

the corpus that can be used to realize P by insert-
ing a missing proposition pj to Ci, then we say P
can be realized using Ci with an insertion cost of
icost(CH , pj), in which CH is the host sentence in
the corpus containing proposition pj . Using an ex-
ample from our real-estate domain, assume the input
P=(p2, p3, p4), where

p4. House1 has-attr (square footage=2000).

Assume Ci is a sentence selected from the cor-
pus to realize P : “This is 3 bedroom 2 bathroom
house”. Since Ci does not contain p4, p4 needs to
be added. We say that P can be realized using Ci

by inserting a proposition p4 with an insertion cost
of icost(CH , p4), in which CH is a sentence in the
corpus such as “This is a house with 2000 square
feet.”

The insertion cost is influenced by two main fac-
tors: the syntactic and lexical insertability of the
proposition pj and a system’s capability in aggre-
gating propositions. For example, if in the corpus,
the proposition pj is always realized as an indepen-
dent sentence and never as a modifier, icost(∗, pj)
should be extremely high, which effectively pro-
hibit pj from becoming a part of another sen-
tence. icost(∗, pj) is defined as the minimum in-
sertion cost among all the icost(CH , pj). Currently
icost(CH , pj) is computed dynamically based on
properties of corpus instances. In addition, since
whether a proposition is insertable depends on how
capable an aggregation module can combine propo-
sitions correctly into a sentence, the insertion cost
should be assigned high or low accordingly.

Deletion cost: Assume P is a set of input proposi-
tions to be conveyed and Ci is an instance in the cor-
pus that can be used to convey P by deleting an un-
needed proposition pj in Ci. Then, we say P can be
realized using Ci with a deletion cost dcost(Ci, pj).
As a specific example, assuming the input is P=(p2,
p3, p4), Ci is an instance in the corpus “This is a
3 bedroom, 2 bathroom, 2000 square foot colonial
house.” In addition to the propositions p2, p3 and
p4, Ci also conveys a proposition p1. Since p1 is
not needed when conveying P , we say that P can be
realized using Ci by deleting proposition p1 with a
deletion cost of dcost(Ci, p1).

The deletion cost is affected by two main fac-
tors as well: first the syntactic relation between
pj and its host sentence. Given a new instance
Ci, “This 2000 square foot 3 bedroom, 2 bathroom
house is a colonial”, deleting p1, the main object

568



of the verb, will make the rest of the sentence in-
complete. As a result, dcost(Ci, p1) is very expen-
sive. In contrast, dcost(Ci, p4) is low because the
resulting sentence is still grammatically sound. Cur-
rently dcost(Ci, pj) is computed dynamically based
on properties of corpus instances. Second, the ex-
pected performance of a generation system in dele-
tion also impacts the deletion cost. Depending on
the sophistication of the generator to handle various
deletion situations, the expected deletion cost can
be high if the method employed is naive and error
prone, or is low if the system can handle most cases
accurately.

Overall cost: Assume P is the set of propositions
to be conveyed and S is the set of instances in the
corpus that are chosen to realize P by applying a set
of insertion, deletion and sentence breaking opera-
tions, the overall cost of the solution

Cost(P ) =
∑

Ci

(Wi ∗
∑

j

icost(CHj , pj)

+Wd ∗
∑

k

dcost(Ci, pk))

+(Nb − 1) ∗ SBC

in which Wi, Wd and SBC are the insertion weight,
deletion weight and sentence boundary cost; Nb is
the number of sentences in the solution, Ci is a cor-
pus instance been selected to construct the solution
and CHj is the host sentence that proposition pj be-
longs.

4.2 Algorithm: Optimization based on overall
cost

We model the sentence boundary determination pro-
cess as a branch and bound tree search problem. Be-
fore we explain the algorithm itself, first a few no-
tations. The input P is a set of input propositions
chosen by the content planner to be realized. Σ is
the set of all possible propositions in an application
domain. Each instance Ci in the corpus C is repre-
sented as a subset of Σ. Assume S is a solution to
P , then it can be represented as the overall cost plus
a list of pairs like (Cis, Ois), in which Cis is one
of the instances selected to be used in that solution,
Ois is a set of deletion, insertion operations that can
be applied to Cis to transform it to a subsolution Si.
To explain this representation further, we use a spe-
cific example in which P=(a, d, e, f), Σ=(a, b, c, d,
e, f g, h, i). One of the boundary solution S can be

represented as

S = (Cost(S), (S1, S2))
S1 = (C1 = (a, b, d, i), delete(b, i)),
S2 = (C2 = (e), insert(f as in C3 = (f, g)))

Cost(S) = Wd ∗ (dcost(C1, b) + dcost(C1, i)) +
Wi ∗ icost(C3, f) + 1 ∗ SBC

in which C1 and C2 are two corpus instances se-
lected as the bases to formulate the solution and C3

is the host sentence containing proposition f .
The general idea behind the instance-based

branch and bound tree search algorithm is that given
an input, P , for each corpus instance Ci, we con-
struct a search branch, representing all possible
ways to realize the input using the instance plus
deletions, insertions and sentence breaks. Since
each sentence break triggers a recursive call to
our sentence boundary determination algorithm, the
complexity of the algorithm is NP-hard. To speed up
the process, for each iteration, we prune unproduc-
tive branches using an upper bound derived by sev-
eral greedy algorithms. The details of our sentence
boundary determination algorithm, sbd(P ), are de-
scribed below. P is the set of input propositions.

1. Set the current upper bound, UB, to the mini-
mum cost of solutions derived by greedy algo-
rithms, which we will describe later. This value
is used to prune unneeded branches to make the
search more efficient.

2. For each instance Ci in corpus C in which (Ci∩
P ) �= ∅, loop from step 3 to 9. The goal here
is to identify all the useful corpus instances for
realizing P .

3. Delete all the propositions pj ∈ D in which
D = Ci − P (D contains propositions in Ci

but not exist in P) with cost Costd(P ) = Wd ∗∑
Pj∈D dcost(Ci, pj). This step computes the

deletion operators and their associated costs.

4. Let I = P − Ci (I contains propositions in P
but not in Ci). For each subset Ej ⊆ I (Ej in-
cludes ∅ and I itself), iterate through step 5 to
9. These steps figure out all the possible ways
to add the missing propositions, including in-
serting into the instance Ci and separating the
rest as independent sentence(s).
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5. Generate a solution in which ∀pk ∈ Ej , insert
pk to Ci. All the propositions in Q = I − Ej

will be realized in different sentences, thus in-
curring a SBC.

6. We update the cost Cost(P ) to

Costd(P ) + Wi ∗
∑

pk∈Ej

icost(∗, pk)+

SBC + Cost(Q)

in which Cost(Q) is the cost of sbd(Q) which
recursively computes the best solution for input
Q and Q ⊂ P . To facilitate dynamic program-
ming, we remember the best solution for Q de-
rived by sbd(Q) in case Q is used to formulate
other solutions.

7. If the lower bound for Cost(P) is greater than
the established upper bound UB, prune this
branch.

8. Using the notation described in the beginning
of Sec. 4.2, we update the current solution to

sbd(P ) = (Cost(P ), (Ci, delete∀pj∈D(pj),

insert∀pk∈Ej
(pk)))

⊕
sbd(Q)

in which
⊕

is an operator that composes two
partial solutions.

9. If sbd(P) is a complete solution (either Q is
empty or have a known best solution) and
Cost(P ) < UB, update the upper bound
UB = Cost(P ).

10. Output the solution with the lowest overall cost.

To establish the initial UB for pruning, we use the
minimum of the following three bounds. In general,
the tighter the UB is, the more effective the pruning
is.

Greedy set partition: we employ a greedy set
partition algorithm in which we first match the set
S ⊂ P with the largest |S|. Repeat the same process
for P ′ where P ′ = P − S. The solution cost is
Cost(P ) = (N − 1) ∗ SBC , and N is the number
of sentences in the solution. The complexity of this
computation is O(|P |), where |P | is the number of
propositions in P .

Revised minimum set covering: we employ a
greedy minimum set covering algorithm in which

we first find the set S in the corpus that maximizes
the overlapping of propositions in the input P . The
unwanted propositions in S − P are deleted. As-
sume P ′ = P − S, repeat the same process to P′
until P ′ is empty. The only difference between this
and the previous approach is that S here might not
be a subset of P . The complexity of this computa-
tion is O(|P |).

One maximum overlapping sentence: we first
identify the instance Ci in corpus that covers the
maximum number of propositions in P . To arrive
at a solution for P , the rest of the propositions not
covered by Ci are inserted into Ci and all the un-
wanted propositions in Ci are deleted. The cost of
this solution is

Wd ∗
∑

pj∈D

dcost(Ci, pj) + Wi ∗
∑

pk∈I

icost(∗, pk)

in which D includes proposition in Ci but not in P ,
and I includes propositions in P but not in Ci.

Currently, we update UB only after a complete
solution is found. It is possible to derive better UB
by establishing the upper bound for each partial so-
lution, but the computational overhead might not
justify doing so.

4.3 Approximation Algorithm

Even with pruning and dynamic programming, the
exact solution still is very expensive computation-
ally. Computing exact solution for an input size
of 12 propositions has over 1.6 millions states and
takes more than 30 minutes (see Figure 1). To make
the search more efficient for tasks with a large num-
ber of propositions in the input, we naturally seek
a greedy strategy in which at every iteration the al-
gorithm myopically chooses the next best step with-
out regard for its implications on future moves. One
greedy search policy we implemented explores the
branch that uses the instance with maximum over-
lapping propositions with the input and ignores all
branches exploring other corpus instances. The in-
tuition behind this policy is that the more overlap
an instance has with the input, the less insertions or
sentence breaks are needed.

Figure 1 and Figure 2 demonstrate the trade-
off between computation efficiency and accuracy.
In this graph, we use instances from the real-
estate corpus with size 250, we vary the input sen-
tence length from one to twenty and the results
shown in the graphs are average value over sev-
eral typical weight configurations ((Wd,Wi,SBC)=
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(1,3,5),(1,3,7),(1,5,3),(1,7,3),(1,1,1)). Figure 2 com-
pares the quality of the solutions when using exact
solutions versus approximation. In our interactive
multimedia system, we currently use exact solution
for input size of 7 propositions or less and switch to
greedy for any larger input size to ensure sub-second
performance for the NLG component.
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Measures Ours B-3 B-6
Dangling sentence (7) 0 100% 100%
Split Semantic Group 1% 61% 21%
Realization Failure 0 56% 72%

Fluency 59% 4% 8%

Table 2: Comparisons

5 Evaluations

To evaluate the quality of our sentence boundary de-
cisions, we implemented a baseline system in which
boundary determination of the aggregation module
is based on a threshold of the maximum number
of propositions allowed in a sentence (a simplified
version of the second strategy in Section 2. We

have tested two threshold values, the average (3) and
maximum (6) number of propositions among cor-
pus instances. Other sentence complexity measures,
such as the number of words and depth of embed-
ding are not easily applicable for our comparison
because they require the propositions to be realized
first before the boundary decisions can be made.

We tune the relative weight of our approach to
best fit our system’s capability. Currently, the
weights are empirically established to Wd = 1,
Wi = 3 and SBC = 3. Based on the output gen-
erated from both systems, we derive four evaluation
metrics:

1. Dangling sentences: We define dangling sen-
tences as the short sentences with only one
proposition that follow long sentences. This
measure is used to verify our claim that because
we use global instead of local optimization,
we can avoid generating dangling sentences by
making more balanced sentence boundary de-
cisions. In contrast, the baseline approaches
have dangling sentence problem when the in-
put proposition is 1 over the multiple of the
threshold values. The first row of Table 2 shows
that when the input proposition length is set
to 7, a pathological case, among the 200 input
proposition sets randomly generated, the base-
line approach always produce dangling sen-
tences (100%). In contrast, our approach al-
ways generates more balanced sentences (0%).

2. Semantic group splitting. Since we use an
instance-based approach, we can maintain the
semantic cohesion better. To test this, we
randomly generated 200 inputs with up to 10
propositions containing semantic grouping of
both the number of bedrooms and number of
bathrooms. The second row, Split Semantic
Group, in Table 2 shows that our algorithm can
maintain semantic group much better than the
baseline approach. Only in 1% of the output
sentences, our algorithm generated number of
bedrooms and number of bathrooms in separate
sentences. In contrast, the baseline approaches
did much worse (61% and 21%).

3. Sentence realization failure. This measure is
used to verify that since we also take a sen-
tence’s lexical and syntactical realizability into
consideration, our sentence boundary decisions
will result in less sentence realization failures.
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An realization failure occurs when the aggre-
gation module failed to realize one sentence
for all the propositions grouped by the sentence
boundary determination module. The third row
in Table 2, Realization Failure, indicates that
given 200 randomly generated input proposi-
tion sets with length from 1 to 10, how many re-
alization happened in the output. Our approach
did not have any realization failure while for the
baseline approaches, there are 56% and 72%
outputs have one or more realization failures.

4. Fluency. This measure is used to verify our
claim that since we also optimize our solutions
based on boundary cost, we can reduce incoher-
ence across multiple sentences. Given 200 ran-
domly generated input propositions with length
from 1 to 10, we did a blind test and presented
pairs of generated sentences to two human sub-
jects randomly and asked them to rate which
output is more coherent. The last row, Flu-
ency, in Table 2 shows how often the human
subjects believe that a particular algorithm gen-
erated better sentences. The output of our al-
gorithm is preferred for more than 59% of the
cases, while the baseline approaches are pre-
ferred 4% and 8%, respectively. The other per-
centages not accounted for are cases where the
human subject felt there is no significant differ-
ence in fluency between the two given choices.
The result from this evaluation clearly demon-
strates the superiority of our approach in gener-
ating coherent sentences.

6 Conclusion

In the paper, we proposed a novel domain indepen-
dent instance-based sentence boundary determina-
tion algorithm that is capable of balancing a com-
prehensive set of generation capability, sentence
complexity, and quality related constraints. This
is the first domain-independent algorithm that pos-
sesses many desirable properties, including balanc-
ing a system’s generation capabilities, maintaining
semantic cohesion and cross sentence coherence,
and preventing severe syntactic and lexical realiza-
tion failures. Our evaluation results also demon-
strate the superiority of the approach over a rep-
resentative domain independent sentence boundary
solution.
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Abstract

We present an approach to using a mor-
phological analyzer for tokenizing and
morphologically tagging (including part-
of-speech tagging) Arabic words in one
process. We learn classifiers for individual
morphological features, as well as ways
of using these classifiers to choose among
entries from the output of the analyzer. We
obtain accuracy rates on all tasks in the
high nineties.

1 Introduction

Arabic is a morphologically complex language.1

The morphological analysis of a word consists of
determining the values of a large number of (or-
thogonal) features, such as basic part-of-speech (i.e.,
noun, verb, and so on), voice, gender, number, infor-
mation about the clitics, and so on.2 For Arabic, this
gives us about 333,000 theoretically possible com-
pletely specified morphological analyses, i.e., mor-
phological tags, of which about 2,200 are actually
used in the first 280,000 words of the Penn Arabic
Treebank (ATB). In contrast, English morphological
tagsets usually have about 50 tags, which cover all
morphological variation.

As a consequence, morphological disambigua-
tion of a word in context, i.e., choosing a complete

1We would like to thank Mona Diab for helpful discussions.
The work reported in this paper was supported by NSF Award
0329163. The authors are listed in alphabetical order.

2In this paper, we only discuss inflectional morphology.
Thus, the fact that the stem is composed of a root, a pattern,
and an infix vocalism is not relevant except as it affects broken
plurals and verb aspect.

morphological tag, cannot be done successfully us-
ing methods developed for English because of data
sparseness. Hajič (2000) demonstrates convincingly
that morphological disambiguation can be aided by
a morphological analyzer, which, given a word with-
out any context, gives us the set of all possible mor-
phological tags. The only work on Arabic tagging
that uses a corpus for training and evaluation (that
we are aware of), (Diab et al., 2004), does not use
a morphological analyzer. In this paper, we show
that the use of a morphological analyzer outperforms
other tagging methods for Arabic; to our knowledge,
we present the best-performing wide-coverage to-
kenizer on naturally occurring input and the best-
performing morphological tagger for Arabic.

2 General Approach

Arabic words are often ambiguous in their morpho-
logical analysis. This is due to Arabic’s rich system
of affixation and clitics and the omission of disam-
biguating short vowels and other orthographic di-
acritics in standard orthography (“undiacritized or-
thography”). On average, a word form in the ATB
has about 2 morphological analyses. An example of
a word with some of its possible analyses is shown
in Figure 1. Analyses 1 and 4 are both nouns. They
differ in that the first noun has no affixes, while the
second noun has a conjunction prefix (+� +w ‘and’)
and a pronominal possessive suffix ( � + +y ‘my’).

In our approach, tokenizing and morphologically
tagging (including part-of-speech tagging) are the
same operation, which consists of three phases.
First, we obtain from our morphological analyzer a
list of all possible analyses for the words of a given
sentence. We discuss the data and our lexicon in

573



# lexeme gloss POS Conj Part Pron Det Gen Num Per Voice Asp

1 wAliy ruler N NO NO NO NO masc sg 3 NA NA
2 <ilaY and to me P YES NO YES NA NA NA NA NA NA
3 waliy and I follow V YES NO NO NA neut sg 1 act imp
4 |l and my clan N YES NO YES NO masc sg 3 NA NA
5 |liy˜ and automatic AJ YES NO NO NO masc sg 3 NA NA

Figure 1: Possible analyses for the word ����� � wAly

more detail in Section 4.
Second, we apply classifiers for ten morphologi-

cal features to the words of the text. The full list of
features is shown in Figure 2, which also identifies
possible values and which word classes (POS) can
express these features. We discuss the training and
decoding of these classifiers in Section 5.

Third, we choose among the analyses returned by
the morphological analyzer by using the output of
the classifiers. This is a non-trivial task, as the clas-
sifiers may not fully disambiguate the options, or
they may be contradictory, with none of them fully
matching any one choice. We investigate different
ways of making this choice in Section 6.

As a result of this process, we have the origi-
nal text, with each word augmented with values for
all the features in Figure 2. These values repre-
sent a complete morphological disambiguation. Fur-
thermore, these features contain enough informa-
tion about the presence of clitics and affixes to per-
form tokenization, for any reasonable tokenization
scheme. Finally, we can determine the POS tag, for
any morphologically motivated POS tagset. Thus,
we have performed tokenization, traditional POS
tagging, and full morphological disambiguation in
one fell swoop.

3 Related Work

Our work is inspired by Hajič (2000), who con-
vincingly shows that for five Eastern European lan-
guages with complex inflection plus English, using
a morphological analyzer3 improves performance of
a tagger. He concludes that for highly inflectional
languages “the use of an independent morpholog-

3Hajič uses a lookup table, which he calls a “dictionary”.
The distinction between table-lookup and actual processing at
run-time is irrelevant for us.

ical dictionary is the preferred choice [over] more
annotated data”. Hajič (2000) uses a general expo-
nential model to predict each morphological feature
separately (such as the ones we have listed in Fig-
ure 2), but he trains different models for each am-
biguity left unresolved by the morphological ana-
lyzer, rather than training general models. For all
languages, the use of a morphological analyzer re-
sults in tagging error reductions of at least 50%.

We depart from Hajič’s work in several respects.
First, we work on Arabic. Second, we use this ap-
proach to also perform tokenization. Third, we use
the SVM-based Yamcha (which uses Viterbi decod-
ing) rather than an exponential model; however, we
do not consider this difference crucial and do not
contrast our learner with others in this paper. Fourth,
and perhaps most importantly, we do not use the no-
tion of ambiguity class in the feature classifiers; in-
stead we investigate different ways of using the re-
sults of the individual feature classifiers in directly
choosing among the options produced for the word
by the morphological analyzer.

While there have been many publications on com-
putational morphological analysis for Arabic (see
(Al-Sughaiyer and Al-Kharashi, 2004) for an excel-
lent overview), to our knowledge only Diab et al.
(2004) perform a large-scale corpus-based evalua-
tion of their approach. They use the same SVM-
based learner we do, Yamcha, for three different tag-
ging tasks: word tokenization (tagging on letters of
a word), which we contrast with our work in Sec-
tion 7; POS tagging, which we discuss in relation
to our work in Section 8; and base phrase chunking,
which we do not discuss in this paper. We take the
comparison between our results on POS tagging and
those of Diab et al. (2004) to indicate that the use of
a morphological analyzer is beneficial for Arabic as
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Feature Description Possible Values POS that Default
Name Carry Feature

POS Basic part-of-speech See Footnote 9 all X
Conj Is there a cliticized conjunction? YES, NO all NO
Part Is there a cliticized particle? YES, NO all NO
Pron Is there a pronominal clitic? YES, NO V, N, PN, AJ, P, Q NO
Det Is there a cliticized definite deter-

miner + � � Al+?
YES, NO N, PN, AJ NO

Gen Gender (intrinsic or by agreement) masc(uline), fem(inine),
neut(er)

V, N, PN, AJ, PRO,
REL, D

masc

Num Number sg (singular), du(al),
pl(ural)

V, N, PN, AJ, PRO,
REL, D

sg

Per Person 1, 2, 3 V, N, PN, PRO 3
Voice Voice act(ive), pass(ive) V act
Asp Aspect imp(erfective),

perf(ective), imperative
V perf

Figure 2: Complete list of morphological features expressed by Arabic morphemes that we tag; the last
column shows on which parts-of-speech this feature can be expressed; the value ‘NA’ is used for each
feature other than POS, Conj, and Part if the word is not of the appropriate POS

well.
Several other publications deal specifically with

segmentation. Lee et al. (2003) use a corpus of man-
ually segmented words, which appears to be a sub-
set of the first release of the ATB (110,000 words),
and thus comparable to our training corpus. They
obtain a list of prefixes and suffixes from this cor-
pus, which is apparently augmented by a manually
derived list of other affixes. Unfortunately, the full
segmentation criteria are not given. Then a trigram
model is learned from the segmented training cor-
pus, and this is used to choose among competing
segmentations for words in running text. In addi-
tion, a huge unannotated corpus (155 million words)
is used to iteratively learn additional stems. Lee
et al. (2003) show that the unsupervised use of the
large corpus for stem identification increases accu-
racy. Overall, their error rates are higher than ours
(2.9% vs. 0.7%), presumably because they do not
use a morphological analyzer.

There has been a fair amount of work on entirely
unsupervised segmentation. Among this literature,
Rogati et al. (2003) investigate unsupervised learn-
ing of stemming (a variant of tokenization in which
only the stem is retained) using Arabic as the exam-
ple language. Unsurprisingly, the results are much

worse than in our resource-rich approach. Dar-
wish (2003) discusses unsupervised identification of
roots; as mentioned above, we leave root identifica-
tion to future work.

4 Preparing the Data

The data we use comes from the Penn Arabic Tree-
bank (Maamouri et al., 2004). Like the English Penn
Treebank, the corpus is a collection of news texts.
Unlike the English Penn Treebank, the ATB is an on-
going effort, which is being released incrementally.
As can be expected in this situation, the annotation
has changed in subtle ways between the incremen-
tal releases. Even within one release (especially the
first) there can be inconsistencies in the annotation.
As our approach builds on linguistic knowledge, we
need to carefully study how linguistic facts are rep-
resented in the ATB. In this section, we briefly sum-
marize how we obtained the data in the representa-
tion we use for our machine learning experiments.4

We use the first two releases of the ATB, ATB1
and ATB2, which are drawn from different news
sources. We divided both ATB1 and ATB2 into de-

4The code used to obtain the representations is available
from the authors upon request.
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velopment, training, and test corpora with roughly
12,000 word tokens in each of the development and
test corpora, and 120,000 words in each of the train-
ing corpora. We will refer to the training corpora as
TR1 and TR2, and to the test corpora as, TE1 and
TE2. We report results on both TE1 and TE2 be-
cause of the differences in the two parts of the ATB,
both in terms of origin and in terms of data prepara-
tion.

We use the ALMORGEANA morphological ana-
lyzer (Habash, 2005), a lexeme-based morphologi-
cal generator and analyzer for Arabic.5 A sample
output of the morphological analyzer is shown in
Figure 1. ALMORGEANA uses the databases (i.e.,
lexicon) from the Buckwalter Arabic Morphological
Analyzer, but (in analysis mode) produces an output
in the lexeme-and-feature format (which we need for
our approach) rather than the stem-and-affix format
of the Buckwalter analyzer. We use the data from
first version of the Buckwalter analyzer (Buckwal-
ter, 2002). The first version is fully consistent with
neither ATB1 nor ATB2.

Our training data consists of a set of all possi-
ble morphological analyses for each word, with the
unique correct analysis marked. Since we want to
learn to choose the correct output using the features
generated by ALMORGEANA, the training data must
also be in the ALMORGEANA output format. To
obtain this data, we needed to match data in the
ATB to the lexeme-and-feature representation out-
put by ALMORGEANA. The matching included the
use of some heuristics, since the representations and
choices are not always consistent in the ATB. For
example, ����� nHw ‘towards’ is tagged as AV, N,
or V (in the same syntactic contexts). We verified
whether we introduced new errors while creating
our data representation by manually inspecting 400
words chosen at random from TR1 and TR2. In
eight cases, our POS tag differed from that in the
ATB file; all but one case were plausible changes
among Noun, Adjective, Adverb and Proper Noun
resulting from missing entries in the Buckwalter’s
lexicon. The remaining case was a failure in the
conversion process relating to the handling of bro-
ken plurals at the lexeme level. We conclude that

5The ALMORGEANA engine is available at
http://clipdemos.umiacs.umd.edu/ALMORGEANA/.

our data representation provides an adequate basis
for performing machine learning experiments.

An important issue in using morphological an-
alyzers for morphological disambiguation is what
happens to unanalyzed words, i.e., words that re-
ceive no analysis from the morphological analyzer.
These are frequently proper nouns; a typical ex-
ample is ����� �	� � ��
� brlwskwny ‘Berlusconi’, for
which no entry exists in the Buckwalter lexicon. A
backoff analysis mode in ALMORGEANA uses the
morphological databases of prefixes, suffixes, and
allowable combinations from the Buckwalter ana-
lyzer to hypothesize all possible stems along with
feature sets. Our Berlusconi example yields 41 pos-
sible analyses, including the correct one (as a sin-
gular masculine PN). Thus, with the backoff analy-
sis, unanalyzed words are distinguished for us only
by the larger number of possible analyses (making
it harder to choose the correct analysis). There are
not many unanalyzed words in our corpus. In TR1,
there are only 22 such words, presumably because
the Buckwalter lexicon our morphological analyzer
uses was developed onTR1. In TR2, we have 737
words without analysis (0.61% of the entire corpus,
giving us a coverage of about 99.4% on domain-
similar text for the Buckwalter lexicon).

In ATB1, and to a lesser degree in ATB2, some
words have been given no morphological analysis.
(These cases are not necessarily the same words that
our morphological analyzer cannot analyze.) The
POS tag assigned to these words is then NO FUNC.
In TR1 (138,756 words), we have 3,088 NO FUNC
POS labels (2.2%). In TR2 (168,296 words), the
number of NO FUNC labels has been reduced to
853 (0.5%). Since for these cases, there is no mean-
ingful solution in the data, we have removed them
from the evaluation (but not from training). In con-
trast, Diab et al. (2004) treat NO FUNC like any
other POS tag, but it is unclear whether this is mean-
ingful. Thus, when comparing results from different
approaches which make different choices about the
data (for example, the NO FUNC cases), one should
bear in mind that small differences in performance
are probably not meaningful.
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5 Classifiers for Linguistic Features

We now describe how we train classifiers for the
morphological features in Figure 2. We train one
classifier per feature. We use Yamcha (Kudo and
Matsumoto, 2003), an implementation of support
vector machines which includes Viterbi decoding.6

As training features, we use two sets. These sets
are based on the ten morphological features in Fig-
ure 2, plus four other “hidden” morphological fea-
tures, for which we do not train classifiers, but which
are represented in the analyses returned by the mor-
phological analyzer. The reason we do not train clas-
sifiers for the hidden features is that they are only
returned by the morphological analyzer when they
are marked overtly in orthography, but they are not
disambiguated in case they are not overtly marked.
The features are indefiniteness (presence of nuna-
tion), idafa (possessed), case, and mood. First, for
each of the 14 morphological features and for each
possible value (including ‘NA’ if applicable), we de-
fine a binary machine learning feature which states
whether in any morphological analysis for that word,
the feature has that value. This gives us 58 machine
learning features per word. In addition, we define
a second set of features which abstracts over the
first set: for all features, we state whether any mor-
phological analysis for that word has a value other
than ‘NA’. This yields a further 11 machine learn-
ing features (as 3 morphological features never have
the value ‘NA’). In addition, we use the untokenized
word form and a binary feature stating whether there
is an analysis or not. This gives us a total of 71
machine learning features per word. We specify a
window of two words preceding and following the
current word, using all 71 features for each word in
this 5-word window. In addition, two dynamic fea-
tures are used, namely the classification made for
the preceding two words. For each of the ten clas-
sifiers, Yamcha then returns a confidence value for
each possible value of the classifier, and in addition
it marks the value that is chosen during subsequent
Viterbi decoding (which need not be the value with
the highest confidence value because of the inclu-
sion of dynamic features).

We train on TR1 and report the results for the ten

6We use Yamcha’s default settings: standard SVM with 2nd
degree polynomial kernel and 1 slack variable.

Method BL Class BL Class
Test TE1 TE1 TE2 TE2

POS 96.6 97.7 91.1 95.5
Conj 99.9 99.9 99.7 99.9
Part 99.9 99.9 99.5 99.7
Pron 99.5 99.6 98.8 99.0
Det 98.8 99.2 96.8 98.3
Gen 98.6 99.2 95.8 98.2
Num 98.8 99.4 96.8 98.8
Per 97.6 98.7 94.8 98.1
Voice 98.8 99.3 97.5 99.0
Asp 98.8 99.4 97.4 99.1

Figure 3: Accuracy of classifiers (Class) for mor-
phological features trained on TR1, and evaluated
on TE1 and TE2; BL is the unigram baseline trained
on TR1

Yamcha classifiers on TE1 and TE2, using all sim-
ple tokens,7 including punctuation, in Figure 3. The
baseline BL is the most common value associated
in the training corpus TR1 with every feature for a
given word form (unigram). We see that the base-
line for TE1 is quite high, which we assume is due
to the fact that when there is ambiguity, often one in-
terpretation is much more prevelant than the others.
The error rates on the baseline approximately double
on TE2, reflecting the difference between TE2 and
TR1, and the small size of TR1. The performance
of our classifiers is good on TE1 (third column), and
only slightly worse on TE2 (fifth column). We at-
tribute the increase in error reduction over the base-
line for TE2 to successfully learned generalizations.

We investigated the performance of the classifiers
on unanalyzed words. The performance is gener-
ally below the baseline BL. We attribute this to the
almost complete absence of unanalyzed words in
training data TR1. In future work we could at-
tempt to improve performance in these cases; how-
ever, given their small number, this does not seem a
priority.

7We use the term orthographic token to designate tokens
determined only by white space, while simple tokens are or-
thographic tokens from which punctuation has been segmented
(becoming its own token), and from which all tatweels (the
elongation character) have been removed.
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6 Choosing an Analysis

Once we have the results from the classifiers for
the ten morphological features, we combine them to
choose an analysis from among those returned by
the morphological analyzer. We investigate several
options for how to do this combination. In the fol-
lowing, we use two numbers for each analysis. First,
the agreement is the number of classifiers agreeing
with the analysis. Second, the weighted agreement
is the sum, over all classifiers, of the classification
confidence measure of that value that agrees with
the analysis. The agreement, but not the weighted
agreement, uses Yamcha’s Viterbi decoding.

• The majority combiner (Maj) chooses the anal-
ysis with the largest agreement.

• The confidence-based combiner (Con) chooses
the analysis with the largest weighted agreement.

• The additive combiner (Add) chooses the anal-
ysis with the largest sum of agreement and weighted
agreement.

• The multiplicative combiner (Mul) chooses the
analysis with the largest product of agreement and
weighted agreement.

• We use Ripper (Cohen, 1996) to learn a rule-
based classifier (Rip) to determine whether an anal-
ysis from the morphological analyzer is a “good” or
a “bad” analysis. We use the following features for
training: for each morphological feature in Figure 2,
we state whether or not the value chosen by its clas-
sifier agrees with the analysis, and with what confi-
dence level. In addition, we use the word form. (The
reason we use Ripper here is because it allows us to
learn lower bounds for the confidence score features,
which are real-valued.) In training, only the correct
analysis is good. If exactly one analysis is classified
as good, we choose that, otherwise we use Maj to
choose.

• The baseline (BL) chooses the analysis most
commonly assigned in TR1 to the word in question.
For unseen words, the choice is made randomly.

In all cases, any remaining ties are resolved ran-
domly.

We present the performance in Figure 4. We see
that the best performing combination algorithm on
TE1 is Maj, and on TE2 it is Rip. Recall that the
Yamcha classifiers are trained on TR1; in addition,
Rip is trained on the output of these Yamcha clas-

Corpus TE1 TE2
Method All Words All Words
BL 92.1 90.2 87.3 85.3
Maj 96.6 95.8 94.1 93.2
Con 89.9 87.6 88.9 87.2
Add 91.6 89.7 90.7 89.2
Mul 96.5 95.6 94.3 93.4
Rip 96.2 95.3 94.8 94.0

Figure 4: Results (percent accuracy) on choosing the
correct analysis, measured per token (including and
excluding punctuation and numbers); BL is the base-
line

sifiers on TR2. The difference in performance be-
tween TE1 and TE2 shows the difference between
the ATB1 and ATB2 (different source of news, and
also small differences in annotation). However, the
results for Rip show that retraining the Rip classifier
on a new corpus can improve the results, without the
need for retraining all ten Yamcha classifiers (which
takes considerable time).

Figure 4 presents the accuracy of tagging using
the whole complex morphological tagset. We can
project this complex tagset to a simpler tagset, for
example, POS. Then the minimum tagging accu-
racy for the simpler tagset must be greater than or
equal to the accuracy of the complex morphological
tagset. Even if a combining algorithm chooses the
wrong analysis (and this is counted as a failure for
the evaluation in this section), the chosen analysis
may agree with some of the correct morphological
features. We discuss our performance on the POS
feature in Section 8.

7 Evaluating Tokenization

The term “tokenization” refers to the segmenting
of a naturally occurring input sequence of ortho-
graphic symbols into elementary symbols (“tokens”)
used in subsequent processing steps (such as pars-
ing) as basic units. In our approach, we determine all
morphological properties of a word at once, so we
can use this information to determine tokenization.
There is not a single possible or obvious tokeniza-
tion scheme: a tokenization scheme is an analytical
tool devised by the researcher. We evaluate in this
section how well our morphological disambiguation
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Word Token Token Token Token
Meth. Acc. Acc. Prec. Rec. F-m.
BL 99.1 99.6 98.6 99.1 98.8
Maj 99.3 99.6 98.9 99.3 99.1

Figure 5: Results of tokenization on TE1: word ac-
curacy measures for each input word whether it gets
tokenized correctly, independently of the number of
resulting tokens; the token-based measures refer to
the four token fields into which the ATB splits each
word

determines the ATB tokenization. The ATB starts
with a simple tokenization, and then splits the word
into four fields: conjunctions; particles (prepositions
in the case of nouns); the word stem; and pronouns
(object clitics in the case of verbs, possessive clitics
in the case of nouns). The ATB does not tokenize
the definite article +� � Al+.

We compare our output to the morphologically
analyzed form of the ATB, and determine if our mor-
phological choices lead to the correct identification
of those clitics that need to be stripped off.8 For our
evaluation, we only choose the Maj chooser, as it
performed best on TE1. We evaluate in two ways.
In the first evaluation, we determine for each sim-
ple input word whether the tokenization is correct
(no matter how many ATB tokens result). We re-
port the percentage of words which are correctly to-
kenized in the second column in Figure 5. In the
second evaluation, we report on the number of out-
put tokens. Each word is divided into exactly four
token fields, which can be either filled or empty (in
the case of the three clitic token fields) or correct or
incorrect (in the case of the stem token field). We
report in Figure 5 accuracy over all token fields for
all words in the test corpus, as well as recall, pre-
cision, and f-measure for the non-null token fields.
The baseline BL is the tokenization associated with
the morphological analysis most frequently chosen
for the input word in training.

8The ATB generates normalized forms of certain clitics and
of the word stem, so that the resulting tokens are not simply
the result of splitting the original words. We do not actually
generate the surface token form from our deep representation,
but this can be done in a deterministic, rule-based manner, given
our rich morphological analysis, e.g., by using ALMORGEANA
in generation mode after splitting off all separable tokens.

While the token-based evaluation is identical to
that performed by Diab et al. (2004), the results are
not directly comparable as they did not use actual
input words, but rather recreated input words from
the regenerated tokens in the ATB. Sometimes this
can simplify the analysis: for example, a � p (ta
marbuta) must be word-final in Arabic orthography,
and thus a word-medial � p in a recreated input word
reliably signals a token boundary. The rather high
baseline shows that tokenization is not a hard prob-
lem.

8 Evaluating POS Tagging

The POS tagset Diab et al. (2004) use is a subset
of the tagset for English that was introduced with
the English Penn Treebank. The large set of Arabic
tags has been mapped (by the Linguistic Data Con-
sortium) to this smaller English set, and the mean-
ing of the English tags has changed. We consider
this tagset unmotivated, as it makes morphological
distinctions because they are marked in English, not
Arabic. The morphological distinctions that the En-
glish tagset captures represent the complete mor-
phological variation that can be found in English.
However, in Arabic, much morphological variation
goes untagged. For example, verbal inflections for
subject person, number, and gender are not marked;
dual and plural are not distinguished on nouns; and
gender is not marked on nouns at all. In Arabic
nouns, arguably the gender feature is the more inter-
esting distinction (rather than the number feature) as
verbs in Arabic always agree with their nominal sub-
jects in gender. Agreement in number occurs only
when the nominal subject precedes the verb. We use
the tagset here only to compare to previous work.
Instead, we advocate using a reduced part-of-speech
tag set,9 along with the other orthogonal linguistic
features in Figure 2.

We map our best solutions as chosen by the Maj
model in Section 6 to the English tagset, and we fur-
thermore assume (as do Diab et al. (2004)) the gold
standard tokenization. We then evaluate against the
gold standard POS tagging which we have mapped

9 We use V (Verb), N (Noun), PN (Proper Noun), AJ (Ad-
jective), AV (Adverb), PRO (Nominal Pronoun), P (Preposi-
tion/Particle), D (Determiner), C (Conjunction), NEG (Negative
particle), NUM (Number), AB (Abbreviation), IJ (Interjection),
PX (Punctuation), and X (Unknown).

579



Corpus TE1 TE2
Method Tags All Words All Words
BL PTB 93.9 93.3 90.9 89.8

Smp 94.9 94.3 92.6 91.4
Maj PTB 97.6 97.5 95.7 95.2

Smp 98.1 97.8 96.5 96.0

Figure 6: Part-of-speech tagging accuracy measured
for all tokens (based on gold-standard tokenization)
and only for word tokens, using the Penn Treebank
(PTB) tagset as well as the smaller tagset (Smp) (see
Footnote 9); BL is the baseline obtained by using the
POS value from the baseline tag used in Section 6

similarly. We obtain a score for TE1 of 97.6% on all
tokens. Diab et al. (2004) report a score of 95.5% for
all tokens on a test corpus drawn from ATB1, thus
their figure is comparable to our score of 97.6%. On
our own reduced POS tagset, evaluating on TE1,
we obtain an accuracy score of 98.1% on all tokens.
The full dataset is shown in Figure 6.

9 Conclusion and Outlook

We have shown how to use a morphological ana-
lyzer for tokenization, part-of-speech tagging, and
morphological disambiguation in Arabic. We have
shown that the use of a morphological analyzer is
beneficial in POS tagging, and we believe our results
are the best published to date for tokenization of nat-
urally occurring input (in undiacritized orthography)
and POS tagging.

We intend to apply our approach to Arabic di-
alects, for which currently no annotated corpora ex-
ist, and for which very few written corpora of any
kind exist (making the dialects bad candidates even
for unsupervised learning). However, there is a fair
amount of descriptive work on dialectal morphol-
ogy, so that dialectal morphological analyzers may
be easier to come by than dialect corpora. We in-
tend to explore to what extent we can transfer mod-
els trained on Standard Arabic to dialectal morpho-
logical disambiguation.
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Abstract

Semantic role labeling is the process of
annotating the predicate-argument struc-
ture in text with semantic labels. In this
paper we present a state-of-the-art base-
line semantic role labeling system based
on Support Vector Machine classifiers.
We show improvements on this system
by: i) adding new features including fea-
tures extracted from dependency parses,
ii) performing feature selection and cali-
bration and iii) combining parses obtained
from semantic parsers trained using dif-
ferent syntactic views. Error analysis of
the baseline system showed that approx-
imately half of the argument identifica-
tion errors resulted from parse errors in
which there was no syntactic constituent
that aligned with the correct argument. In
order to address this problem, we com-
bined semantic parses from a Minipar syn-
tactic parse and from a chunked syntac-
tic representation with our original base-
line system which was based on Charniak
parses. All of the reported techniques re-
sulted in performance improvements.

1 Introduction

Semantic Role Labeling is the process of annotat-
ing the predicate-argument structure in text with se-

∗This research was partially supported by the ARDA
AQUAINT program via contract OCG4423B and by the NSF
via grants IS-9978025 and ITR/HCI 0086132

mantic labels (Gildea and Jurafsky, 2000; Gildea
and Jurafsky, 2002; Gildea and Palmer, 2002; Sur-
deanu et al., 2003; Hacioglu and Ward, 2003; Chen
and Rambow, 2003; Gildea and Hockenmaier, 2003;
Pradhan et al., 2004; Hacioglu, 2004). The architec-
ture underlying all of these systems introduces two
distinct sub-problems: the identification of syntactic
constituents that are semantic roles for a given pred-
icate, and the labeling of the those constituents with
the correct semantic role.

A detailed error analysis of our baseline system
indicates that the identification problem poses a sig-
nificant bottleneck to improving overall system per-
formance. The baseline system’s accuracy on the
task of labeling nodes known to represent semantic
arguments is 90%. On the other hand, the system’s
performance on the identification task is quite a bit
lower, achieving only 80% recall with 86% preci-
sion. There are two sources of these identification
errors: i) failures by the system to identify all and
only those constituents that correspond to semantic
roles, when those constituents are present in the syn-
tactic analysis, and ii) failures by the syntactic ana-
lyzer to provide the constituents that align with cor-
rect arguments. The work we present here is tailored
to address these two sources of error in the identifi-
cation problem.

The remainder of this paper is organized as fol-
lows. We first describe a baseline system based on
the best published techniques. We then report on
two sets of experiments using techniques that im-
prove performance on the problem of finding argu-
ments when they are present in the syntactic analy-
sis. In the first set of experiments we explore new
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features, including features extracted from a parser
that provides a different syntactic view – a Combi-
natory Categorial Grammar (CCG) parser (Hocken-
maier and Steedman, 2002). In the second set of
experiments, we explore approaches to identify opti-
mal subsets of features for each argument class, and
to calibrate the classifier probabilities.

We then report on experiments that address the
problem of arguments missing from a given syn-
tactic analysis. We investigate ways to combine
hypotheses generated from semantic role taggers
trained using different syntactic views – one trained
using the Charniak parser (Charniak, 2000), another
on a rule-based dependency parser – Minipar (Lin,
1998), and a third based on a flat, shallow syntactic
chunk representation (Hacioglu, 2004a). We show
that these three views complement each other to im-
prove performance.

2 Baseline System

For our experiments, we use Feb 2004 release of
PropBank1 (Kingsbury and Palmer, 2002; Palmer
et al., 2005), a corpus in which predicate argument
relations are marked for verbs in the Wall Street
Journal (WSJ) part of the Penn TreeBank (Marcus
et al., 1994). PropBank was constructed by as-
signing semantic arguments to constituents of hand-
corrected TreeBank parses. Arguments of a verb
are labeled ARG0 to ARG5, where ARG0 is the
PROTO-AGENT, ARG1 is the PROTO-PATIENT, etc.
In addition to these CORE ARGUMENTS, additional
ADJUNCTIVE ARGUMENTS, referred to as ARGMs
are also marked. Some examples are ARGM-LOC,
for locatives; ARGM-TMP, for temporals; ARGM-
MNR, for manner, etc. Figure 1 shows a syntax tree
along with the argument labels for an example ex-
tracted from PropBank. We use Sections 02-21 for
training, Section 00 for development and Section 23
for testing.

We formulate the semantic labeling problem as
a multi-class classification problem using Support
Vector Machine (SVM) classifier (Hacioglu et al.,
2003; Pradhan et al., 2003; Pradhan et al., 2004)
TinySVM2 along with YamCha3 (Kudo and Mat-

1
http://www.cis.upenn.edu/˜ace/

2
http://chasen.org/˜taku/software/TinySVM/

3
http://chasen.org/˜taku/software/yamcha/
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Figure 1: Syntax tree for a sentence illustrating the
PropBank tags.

sumoto, 2000; Kudo and Matsumoto, 2001) are used
to implement the system. Using what is known as
the ONE VS ALL classification strategy, n binary
classifiers are trained, where n is number of seman-
tic classes including a NULL class.

The baseline feature set is a combination of fea-
tures introduced by Gildea and Jurafsky (2002) and
ones proposed in Pradhan et al., (2004), Surdeanu et
al., (2003) and the syntactic-frame feature proposed
in (Xue and Palmer, 2004). Table 1 lists the features
used.

PREDICATE LEMMA

PATH: Path from the constituent to the predicate in the parse tree.
POSITION: Whether the constituent is before or after the predicate.
VOICE

PREDICATE SUB-CATEGORIZATION

PREDICATE CLUSTER

HEAD WORD: Head word of the constituent.
HEAD WORD POS: POS of the head word
NAMED ENTITIES IN CONSTITUENTS: 7 named entities as 7 binary features.
PARTIAL PATH: Path from the constituent to the lowest common ancestor
of the predicate and the constituent.
VERB SENSE INFORMATION: Oracle verb sense information from PropBank
HEAD WORD OF PP: Head of PP replaced by head word of NP inside it,
and PP replaced by PP-preposition
FIRST AND LAST WORD/POS IN CONSTITUENT

ORDINAL CONSTITUENT POSITION

CONSTITUENT TREE DISTANCE

CONSTITUENT RELATIVE FEATURES: Nine features representing
the phrase type, head word and head word part of speech of the
parent, and left and right siblings of the constituent.
TEMPORAL CUE WORDS

DYNAMIC CLASS CONTEXT

SYNTACTIC FRAME

CONTENT WORD FEATURES: Content word, its POS and named entities
in the content word

Table 1: Features used in the Baseline system

As described in (Pradhan et al., 2004), we post-
process the n-best hypotheses using a trigram lan-
guage model of the argument sequence.

We analyze the performance on three tasks:
• Argument Identification – This is the pro-

cess of identifying the parsed constituents in
the sentence that represent semantic arguments
of a given predicate.
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• Argument Classification – Given constituents
known to represent arguments of a predicate,
assign the appropriate argument labels to them.

• Argument Identification and Classification –
A combination of the above two tasks.

ALL ARGs Task P R F1 A
(%) (%) (%)

HAND Id. 96.2 95.8 96.0
Classification - - - 93.0
Id. + Classification 89.9 89.0 89.4

AUTOMATIC Id. 86.8 80.0 83.3
Classification - - - 90.1
Id. + Classification 80.9 76.8 78.8

Table 2: Baseline system performance on all tasks
using hand-corrected parses and automatic parses on
PropBank data.

Table 2 shows the performance of the system us-
ing the hand corrected, TreeBank parses (HAND)
and using parses produced by a Charniak parser
(AUTOMATIC). Precision (P), Recall (R) and F1

scores are given for the identification and combined
tasks, and Classification Accuracy (A) for the clas-
sification task.

Classification performance using Charniak parses
is about 3% absolute worse than when using Tree-
Bank parses. On the other hand, argument identifi-
cation performance using Charniak parses is about
12.7% absolute worse. Half of these errors – about
7% are due to missing constituents, and the other
half – about 6% are due to mis-classifications.

Motivated by this severe degradation in argument
identification performance for automatic parses, we
examined a number of techniques for improving
argument identification. We made a number of
changes to the system which resulted in improved
performance. The changes fell into three categories:
i) new features, ii) feature selection and calibration,
and iii) combining parses from different syntactic
representations.

3 Additional Features

3.1 CCG Parse Features

While the Path feature has been identified to be very
important for the argument identification task, it is
one of the most sparse features and may be diffi-
cult to train or generalize (Pradhan et al., 2004; Xue
and Palmer, 2004). A dependency grammar should

generate shorter paths from the predicate to depen-
dent words in the sentence, and could be a more
robust complement to the phrase structure grammar
paths extracted from the Charniak parse tree. Gildea
and Hockenmaier (2003) report that using features
extracted from a Combinatory Categorial Grammar
(CCG) representation improves semantic labeling
performance on core arguments. We evaluated fea-
tures from a CCG parser combined with our baseline
feature set. We used three features that were intro-
duced by Gildea and Hockenmaier (2003):

• Phrase type – This is the category of the max-
imal projection between the two words – the
predicate and the dependent word.

• Categorial Path – This is a feature formed by
concatenating the following three values: i) cat-
egory to which the dependent word belongs, ii)
the direction of dependence and iii) the slot in
the category filled by the dependent word.

• Tree Path – This is the categorial analogue of
the path feature in the Charniak parse based
system, which traces the path from the depen-
dent word to the predicate through the binary
CCG tree.

Parallel to the hand-corrected TreeBank parses,
we also had access to correct CCG parses derived
from the TreeBank (Hockenmaier and Steedman,
2002a). We performed two sets of experiments.
One using the correct CCG parses, and the other us-
ing parses obtained using StatCCG4 parser (Hocken-
maier and Steedman, 2002). We incorporated these
features in the systems based on hand-corrected
TreeBank parses and Charniak parses respectively.
For each constituent in the Charniak parse tree, if
there was a dependency between the head word of
the constituent and the predicate, then the corre-
sponding CCG features for those words were added
to the features for that constituent. Table 3 shows the
performance of the system when these features were
added. The corresponding baseline performances
are mentioned in parentheses.

3.2 Other Features

We added several other features to the system. Po-
sition of the clause node (S, SBAR) seems to be

4Many thanks to Julia Hockenmaier for providing us with
the CCG bank as well as the StatCCG parser.
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ALL ARGs Task P R F1

(%) (%)

HAND Id. 97.5 (96.2) 96.1 (95.8) 96.8 (96.0)
Id. + Class. 91.8 (89.9) 90.5 (89.0) 91.2 (89.4)

AUTOMATIC Id. 87.1 (86.8) 80.7 (80.0) 83.8 (83.3)
Id. + Class. 81.5 (80.9) 77.2 (76.8) 79.3 (78.8)

Table 3: Performance improvement upon adding
CCG features to the Baseline system.

an important feature in argument identification (Ha-
cioglu et al., 2004) therefore we experimented with
four clause-based path feature variations. We added
the predicate context to capture predicate sense vari-
ations. For some adjunctive arguments, punctuation
plays an important role, so we added some punctu-
ation features. All the new features are shown in
Table 4

CLAUSE-BASED PATH VARIATIONS:
I. Replacing all the nodes in a path other than clause nodes with an “*”.
For example, the path NP↑S↑VP↑SBAR↑NP↑VP↓VBD
becomes NP↑S↑*S↑*↑*↓VBD
II. Retaining only the clause nodes in the path, which for the above
example would produce NP↑S↑S↓VBD,
III. Adding a binary feature that indicates whether the constituent
is in the same clause as the predicate,
IV. collapsing the nodes between S nodes which gives NP↑S↑NP↑VP↓VBD.
PATH N-GRAMS: This feature decomposes a path into a series of trigrams.
For example, the path NP↑S↑VP↑SBAR↑NP↑VP↓VBD becomes:
NP↑S↑VP, S↑VP↑SBAR, VP↑SBAR↑NP, SBAR↑NP↑VP, etc. We
used the first ten trigrams as ten features. Shorter paths were padded
with nulls.
SINGLE CHARACTER PHRASE TAGS: Each phrase category is clustered
to a category defined by the first character of the phrase label.
PREDICATE CONTEXT: Two words and two word POS around the
predicate and including the predicate were added as ten new features.
PUNCTUATION: Punctuation before and after the constituent were
added as two new features.
FEATURE CONTEXT: Features for argument bearing constituents
were added as features to the constituent being classified.

Table 4: Other Features

4 Feature Selection and Calibration

In the baseline system, we used the same set of fea-
tures for all the n binary ONE VS ALL classifiers.
Error analysis showed that some features specifi-
cally suited for one argument class, for example,
core arguments, tend to hurt performance on some
adjunctive arguments. Therefore, we thought that
selecting subsets of features for each argument class
might improve performance. To achieve this, we
performed a simple feature selection procedure. For
each argument, we started with the set of features in-
troduced by (Gildea and Jurafsky, 2002). We pruned
this set by training classifiers after leaving out one
feature at a time and checking its performance on
a development set. We used the χ

2 significance

while making pruning decisions. Following that, we
added each of the other features one at a time to the
pruned baseline set of features and selected ones that
showed significantly improved performance. Since
the feature selection experiments were computation-
ally intensive, we performed them using 10k training
examples.

SVMs output distances not probabilities. These
distances may not be comparable across classifiers,
especially if different features are used to train each
binary classifier. In the baseline system, we used the
algorithm described by Platt (Platt, 2000) to convert
the SVM scores into probabilities by fitting to a sig-
moid. When all classifiers used the same set of fea-
tures, fitting all scores to a single sigmoid was found
to give the best performance. Since different fea-
ture sets are now used by the classifiers, we trained
a separate sigmoid for each classifier.

Raw Scores Probabilities
After lattice-rescoring

Uncalibrated Calibrated
(%) (%) (%)

Same Feat. same sigmoid 74.7 74.7 75.4
Selected Feat. diff. sigmoids 75.4 75.1 76.2

Table 5: Performance improvement on selecting fea-
tures per argument and calibrating the probabilities
on 10k training data.

Foster and Stine (2004) show that the pool-
adjacent-violators (PAV) algorithm (Barlow et al.,
1972) provides a better method for converting raw
classifier scores to probabilities when Platt’s algo-
rithm fails. The probabilities resulting from either
conversions may not be properly calibrated. So, we
binned the probabilities and trained a warping func-
tion to calibrate them. For each argument classifier,
we used both the methods for converting raw SVM
scores into probabilities and calibrated them using
a development set. Then, we visually inspected
the calibrated plots for each classifier and chose the
method that showed better calibration as the calibra-
tion procedure for that classifier. Plots of the pre-
dicted probabilities versus true probabilities for the
ARGM-TMP VS ALL classifier, before and after cal-
ibration are shown in Figure 2. The performance im-
provement over a classifier that is trained using all
the features for all the classes is shown in Table 5.

Table 6 shows the performance of the system af-
ter adding the CCG features, additional features ex-
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Figure 2: Plots showing true probabilities versus predicted probabilities before and after calibration on the
test set for ARGM-TMP.

tracted from the Charniak parse tree, and performing
feature selection and calibration. Numbers in paren-
theses are the corresponding baseline performances.

TASK P R F1 A
(%) (%) (%)

Id. 86.9 (86.8) 84.2 (80.0) 85.5 (83.3)
Class. - - - 92.0 (90.1)
Id. + Class. 82.1 (80.9) 77.9 (76.8) 79.9 (78.8)

Table 6: Best system performance on all tasks using
automatically generated syntactic parses.

5 Alternative Syntactic Views

Adding new features can improve performance
when the syntactic representation being used for
classification contains the correct constituents. Ad-
ditional features can’t recover from the situation
where the parse tree being used for classification
doesn’t contain the correct constituent representing
an argument. Such parse errors account for about
7% absolute of the errors (or, about half of 12.7%)
for the Charniak parse based system. To address
these errors, we added two additional parse repre-
sentations: i) Minipar dependency parser, and ii)
chunking parser (Hacioglu et al., 2004). The hope is
that these parsers will produce different errors than
the Charniak parser since they represent different
syntactic views. The Charniak parser is trained on
the Penn TreeBank corpus. Minipar is a rule based
dependency parser. The chunking parser is trained
on PropBank and produces a flat syntactic represen-
tation that is very different from the full parse tree

produced by Charniak. A combination of the three
different parses could produce better results than any
single one.

5.1 Minipar-based Semantic Labeler

Minipar (Lin, 1998; Lin and Pantel, 2001) is a rule-
based dependency parser. It outputs dependencies
between a word called head and another called mod-
ifier. Each word can modify at most one word. The
dependency relationships form a dependency tree.

The set of words under each node in Minipar’s
dependency tree form a contiguous segment in the
original sentence and correspond to the constituent
in a constituent tree. We formulate the semantic la-
beling problem in the same way as in a constituent
structure parse, except we classify the nodes that
represent head words of constituents. A similar for-
mulation using dependency trees derived from Tree-
Bank was reported in Hacioglu (Hacioglu, 2004).
In that experiment, the dependency trees were de-
rived from hand-corrected TreeBank trees using
head word rules. Here, an SVM is trained to as-
sign PropBank argument labels to nodes in Minipar
dependency trees using the following features:

Table 8 shows the performance of the Minipar-
based semantic parser.

Minipar performance on the PropBank corpus is
substantially worse than the Charniak based system.
This is understandable from the fact that Minipar
is not designed to produce constituents that would
exactly match the constituent segmentation used in
TreeBank. In the test set, about 37% of the argu-
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PREDICATE LEMMA

HEAD WORD: The word representing the node in the dependency tree.
HEAD WORD POS: Part of speech of the head word.
POS PATH: This is the path from the predicate to the head word through
the dependency tree connecting the part of speech of each node in the tree.
DEPENDENCY PATH: Each word that is connected to the head
word has a particular dependency relationship to the word. These
are represented as labels on the arc between the words. This
feature is the dependencies along the path that connects two words.
VOICE

POSITION

Table 7: Features used in the Baseline system using
Minipar parses.

Task P R F1

(%) (%)

Id. 73.5 43.8 54.6
Id. + Classification 66.2 36.7 47.2

Table 8: Baseline system performance on all tasks
using Minipar parses.

ments do not have corresponding constituents that
match its boundaries. In experiments reported by
Hacioglu (Hacioglu, 2004), a mismatch of about
8% was introduced in the transformation from hand-
corrected constituent trees to dependency trees. Us-
ing an errorful automatically generated tree, a still
higher mismatch would be expected. In case of
the CCG parses, as reported by Gildea and Hock-
enmaier (2003), the mismatch was about 23%. A
more realistic way to score the performance is to
score tags assigned to head words of constituents,
rather than considering the exact boundaries of the
constituents as reported by Gildea and Hocken-
maier (2003). The results for this system are shown
in Table 9.

Task P R F1

(%) (%)

CHARNIAK Id. 92.2 87.5 89.8
Id. + Classification 85.9 81.6 83.7

MINIPAR Id. 83.3 61.1 70.5
Id. + Classification 72.9 53.5 61.7

Table 9: Head-word based performance using Char-
niak and Minipar parses.

5.2 Chunk-based Semantic Labeler

Hacioglu has previously described a chunk based se-
mantic labeling method (Hacioglu et al., 2004). This
system uses SVM classifiers to first chunk input text
into flat chunks or base phrases, each labeled with
a syntactic tag. A second SVM is trained to assign
semantic labels to the chunks. The system is trained

on the PropBank training data.

WORDS

PREDICATE LEMMAS

PART OF SPEECH TAGS

BP POSITIONS: The position of a token in a BP using the IOB2
representation (e.g. B-NP, I-NP, O, etc.)
CLAUSE TAGS: The tags that mark token positions in a sentence
with respect to clauses.
NAMED ENTITIES: The IOB tags of named entities.
TOKEN POSITION: The position of the phrase with respect to
the predicate. It has three values as ”before”, ”after” and ”-” (for
the predicate)
PATH: It defines a flat path between the token and the predicate
CLAUSE BRACKET PATTERNS

CLAUSE POSITION: A binary feature that identifies whether the
token is inside or outside the clause containing the predicate
HEADWORD SUFFIXES: suffixes of headwords of length 2, 3 and 4.
DISTANCE: Distance of the token from the predicate as a number
of base phrases, and the distance as the number of VP chunks.
LENGTH: the number of words in a token.
PREDICATE POS TAG: the part of speech category of the predicate
PREDICATE FREQUENCY: Frequent or rare using a threshold of 3.
PREDICATE BP CONTEXT: The chain of BPs centered at the predicate
within a window of size -2/+2.
PREDICATE POS CONTEXT: POS tags of words immediately preceding
and following the predicate.
PREDICATE ARGUMENT FRAMES: Left and right core argument patterns
around the predicate.
NUMBER OF PREDICATES: This is the number of predicates in
the sentence.

Table 10: Features used by chunk based classifier.

Table 10 lists the features used by this classifier.
For each token (base phrase) to be tagged, a set of
features is created from a fixed size context that sur-
rounds each token. In addition to the above features,
it also uses previous semantic tags that have already
been assigned to the tokens contained in the linguis-
tic context. A 5-token sliding window is used for the
context.

P R F1

(%) (%)

Id. and Classification 72.6 66.9 69.6

Table 11: Semantic chunker performance on the
combined task of Id. and classification.

SVMs were trained for begin (B) and inside (I)
classes of all arguments and outside (O) class for a
total of 78 one-vs-all classifiers. Again, TinySVM5

along with YamCha6 (Kudo and Matsumoto, 2000;
Kudo and Matsumoto, 2001) are used as the SVM
training and test software.

Table 11 presents the system performances on the
PropBank test set for the chunk-based system.

5
http://chasen.org/˜taku/software/TinySVM/

6
http://chasen.org/˜taku/software/yamcha/
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6 Combining Semantic Labelers

We combined the semantic parses as follows: i)
scores for arguments were converted to calibrated
probabilities, and arguments with scores below a
threshold value were deleted. Separate thresholds
were used for each parser. ii) For the remaining ar-
guments, the more probable ones among overlap-
ping ones were selected. In the chunked system,
an argument could consist of a sequence of chunks.
The probability assigned to the begin tag of an ar-
gument was used as the probability of the sequence
of chunks forming an argument. Table 12 shows
the performance improvement after the combina-
tion. Again, numbers in parentheses are respective
baseline performances.

TASK P R F1

(%) (%)

Id. 85.9 (86.8) 88.3 (80.0) 87.1 (83.3)
Id. + Class. 81.3 (80.9) 80.7 (76.8) 81.0 (78.8)

Table 12: Constituent-based best system perfor-
mance on argument identification and argument
identification and classification tasks after combin-
ing all three semantic parses.

The main contribution of combining both the
Minipar based and the Charniak-based parsers was
significantly improved performance on ARG1 in ad-
dition to slight improvements to some other argu-
ments. Table 13 shows the effect on selected argu-
ments on sentences that were altered during the the
combination of Charniak-based and Chunk-based
parses.

Number of Propositions 107
Percentage of perfect props before combination 0.00
Percentage of perfect props after combination 45.95

Before After
P R F1 P R F1

(%) (%) (%) (%)

Overall 94.8 53.4 68.3 80.9 73.8 77.2
ARG0 96.0 85.7 90.5 92.5 89.2 90.9
ARG1 71.4 13.5 22.7 59.4 59.4 59.4
ARG2 100.0 20.0 33.3 50.0 20.0 28.5
ARGM-DIS 100.0 40.0 57.1 100.0 100.0 100.0

Table 13: Performance improvement on parses
changed during pair-wise Charniak and Chunk com-
bination.

A marked increase in number of propositions for
which all the arguments were identified correctly
from 0% to about 46% can be seen. Relatively few

predicates, 107 out of 4500, were affected by this
combination.

To give an idea of what the potential improve-
ments of the combinations could be, we performed
an oracle experiment for a combined system that
tags head words instead of exact constituents as we
did in case of Minipar-based and Charniak-based se-
mantic parser earlier. In case of chunks, first word in
prepositional base phrases was selected as the head
word, and for all other chunks, the last word was se-
lected to be the head word. If the correct argument
was found present in either the Charniak, Minipar or
Chunk hypotheses then that was selected. The re-
sults for this are shown in Table 14. It can be seen
that the head word based performance almost ap-
proaches the constituent based performance reported
on the hand-corrected parses in Table 3 and there
seems to be considerable scope for improvement.

Task P R F1

(%) (%)

C Id. 92.2 87.5 89.8
Id. + Classification 85.9 81.6 83.7

C+M Id. 98.4 90.6 94.3
Id. + Classification 93.1 86.0 89.4

C+CH Id. 98.9 88.8 93.6
Id. + Classification 92.5 83.3 87.7

C+M+CH Id. 99.2 92.5 95.7
Id. + Classification 94.6 88.4 91.5

Table 14: Performance improvement on head word
based scoring after oracle combination. Charniak
(C), Minipar (M) and Chunker (CH).

Table 15 shows the performance improvement in
the actual system for pairwise combination of the
parsers and one using all three.

Task P R F1

(%) (%)

C Id. 92.2 87.5 89.8
Id. + Classification 85.9 81.6 83.7

C+M Id. 91.7 89.9 90.8
Id. + Classification 85.0 83.9 84.5

C+CH Id. 91.5 91.1 91.3
Id. + Classification 84.9 84.3 84.7

C+M+CH Id. 91.5 91.9 91.7
Id. + Classification 85.1 85.5 85.2

Table 15: Performance improvement on head word
based scoring after combination. Charniak (C),
Minipar (M) and Chunker (CH).
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7 Conclusions

We described a state-of-the-art baseline semantic
role labeling system based on Support Vector Ma-
chine classifiers. Experiments were conducted to
evaluate three types of improvements to the sys-
tem: i) adding new features including features ex-
tracted from a Combinatory Categorial Grammar
parse, ii) performing feature selection and calibra-
tion and iii) combining parses obtained from seman-
tic parsers trained using different syntactic views.
We combined semantic parses from a Minipar syn-
tactic parse and from a chunked syntactic repre-
sentation with our original baseline system which
was based on Charniak parses. The belief was that
semantic parses based on different syntactic views
would make different errors and that the combina-
tion would be complimentary. A simple combina-
tion of these representations did lead to improved
performance.
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Abstract

Despite much recent progress on accu-
rate semantic role labeling, previous work
has largely used independent classifiers,
possibly combined with separate label se-
quence models via Viterbi decoding. This
stands in stark contrast to the linguistic
observation that a core argument frame is
a joint structure, with strong dependen-
cies between arguments. We show how to
build a joint model of argument frames,
incorporating novel features that model
these interactions into discriminative log-
linear models. This system achieves an
error reduction of 22% on all arguments
and 32% on core arguments over a state-
of-the art independent classifier for gold-
standard parse trees on PropBank.

1 Introduction

The release of semantically annotated corpora such
as FrameNet (Baker et al., 1998) and PropBank
(Palmer et al., 2003) has made it possible to develop
high-accuracy statistical models for automated se-
mantic role labeling (Gildea and Jurafsky, 2002;
Pradhan et al., 2004; Xue and Palmer, 2004). Such
systems have identified several linguistically mo-
tivated features for discriminating arguments and
their labels (see Table 1). These features usually
characterize aspects of individual arguments and the
predicate.

It is evident that the labels and the features of ar-
guments are highly correlated. For example, there
are hard constraints – that arguments cannot overlap

with each other or the predicate, and also soft con-
straints – for example, is it unlikely that a predicate
will have two or more AGENT arguments, or that a
predicate used in the active voice will have a THEME

argument prior to an AGENT argument. Several sys-
tems have incorporated such dependencies, for ex-
ample, (Gildea and Jurafsky, 2002; Pradhan et al.,
2004; Thompson et al., 2003) and several systems
submitted in the CoNLL-2004 shared task (Carreras
and Màrquez, 2004). However, we show that there
are greater gains to be had by modeling joint infor-
mation about a verb’s argument structure.

We propose a discriminative log-linear joint
model for semantic role labeling, which incorpo-
rates more global features and achieves superior
performance in comparison to state-of-the-art mod-
els. To deal with the computational complexity of
the task, we employ dynamic programming and re-
ranking approaches. We present performance re-
sults on the February 2004 version of PropBank on
gold-standard parse trees as well as results on auto-
matic parses generated by Charniak’s parser (Char-
niak, 2000).

2 Semantic Role Labeling: Task Definition
and Architectures

Consider the pair of sentences,

• [The GM-Jaguar pact]AGENT gives
[the car market]RECIPIENT

[a much-needed boost]THEME

• [A much-needed boost]THEME was given to
[the car market]RECIPIENT

by [the GM-Jaguar pact]AGENT

Despite the different syntactic positions of the la-
beled phrases, we recognize that each plays the same

589



role – indicated by the label – in the meaning of
this sense of the verb give. We call such phrases
fillers of semantic roles and our task is, given a sen-
tence and a target verb, to return all such phrases
along with their correct labels. Therefore one sub-
task is to group the words of a sentence into phrases
or constituents. As in most previous work on se-
mantic role labeling, we assume the existence of a
separate parsing model that can assign a parse tree t

to each sentence, and the task then is to label each
node in the parse tree with the semantic role of the
phrase it dominates, or NONE, if the phrase does not
fill any role. We do stress however that the joint
framework and features proposed here can also be
used when only a shallow parse (chunked) represen-
tation is available as in the CoNLL-2004 shared task
(Carreras and Màrquez, 2004).

In the February 2004 version of the PropBank cor-
pus, annotations are done on top of the Penn Tree-
Bank II parse trees (Marcus et al., 1993). Possi-
ble labels of arguments in this corpus are the core
argument labels ARG[0-5], and the modifier argu-
ment labels. The core arguments ARG[3-5] do not
have consistent global roles and tend to be verb spe-
cific. There are about 14 modifier labels such as
ARGM-LOC and ARGM-TMP, for location and tem-
poral modifiers respectively.1 Figure 1 shows an ex-
ample parse tree annotated with semantic roles.

We distinguish between models that learn to la-
bel nodes in the parse tree independently, called lo-
cal models, and models that incorporate dependen-
cies among the labels of multiple nodes, called joint
models. We build both local and joint models for se-
mantic role labeling, and evaluate the gains achiev-
able by incorporating joint information. We start
by introducing our local models, and later build on
them to define joint models.

3 Local Classifiers

In the context of role labeling, we call a classifier
local if it assigns a probability (or score) to the label
of an individual parse tree node ni independently of
the labels of other nodes.

We use the standard separation of the task of se-
mantic role labeling into identification and classifi-

1For a full listing of PropBank argument labels see (Palmer
et al., 2003)

cation phases. In identification, our task is to clas-
sify nodes of t as either ARG, an argument (includ-
ing modifiers), or NONE, a non-argument. In clas-
sification, we are given a set of arguments in t and
must label each one with its appropriate semantic
role. Formally, let L denote a mapping of the nodes
in t to a label set of semantic roles (including NONE)
and let Id(L) be the mapping which collapses L’s
non-NONE values into ARG. Then we can decom-
pose the probability of a labeling L into probabili-
ties according to an identification model PID and a
classification model PCLS .

PSRL(L|t, v) = PID(Id(L)|t, v) ×

PCLS(L|t, v, Id(L)) (1)

This decomposition does not encode any indepen-
dence assumptions, but is a useful way of thinking
about the problem. Our local models for semantic
role labeling use this decomposition. Previous work
has also made this distinction because, for example,
different features have been found to be more effec-
tive for the two tasks, and it has been a good way
to make training and search during testing more ef-
ficient.

Here we use the same features for local identifi-
cation and classification models, but use the decom-
position for efficiency of training. The identification
models are trained to classify each node in a parse
tree as ARG or NONE, and the classification models
are trained to label each argument node in the train-
ing set with its specific label. In this way the train-
ing set for the classification models is smaller. Note
that we don’t do any hard pruning at the identifica-
tion stage in testing and can find the exact labeling
of the complete parse tree, which is the maximizer
of Equation 1. Thus we do not have accuracy loss
as in the two-pass hard prune strategy described in
(Pradhan et al., 2005).

In previous work, various machine learning meth-
ods have been used to learn local classifiers for role
labeling. Examples are linearly interpolated rela-
tive frequency models (Gildea and Jurafsky, 2002),
SVMs (Pradhan et al., 2004), decision trees (Sur-
deanu et al., 2003), and log-linear models (Xue and
Palmer, 2004). In this work we use log-linear mod-
els for multi-class classification. One advantage of
log-linear models over SVMs for us is that they pro-
duce probability distributions and thus identification
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Standard Features (Gildea and Jurafsky, 2002)
PHRASE TYPE: Syntactic Category of node
PREDICATE LEMMA: Stemmed Verb
PATH: Path from node to predicate
POSITION: Before or after predicate?
VOICE: Active or passive relative to predicate
HEAD WORD OF PHRASE
SUB-CAT: CFG expansion of predicate’s parent

Additional Features (Pradhan et al., 2004)
FIRST/LAST WORD
LEFT/RIGHT SISTER PHRASE-TYPE
LEFT/RIGHT SISTER HEAD WORD/POS
PARENT PHRASE-TYPE
PARENT POS/HEAD-WORD
ORDINAL TREE DISTANCE: Phrase Type with

appended length of PATH feature
NODE-LCA PARTIAL PATH Path from constituent

to Lowest Common Ancestor with predicate node
PP PARENT HEAD WORD If parent is a PP

return parent’s head word
PP NP HEAD WORD/POS For a PP, retrieve

the head Word / POS of its rightmost NP

Selected Pairs (Xue and Palmer, 2004)
PREDICATE LEMMA & PATH
PREDICATE LEMMA & HEAD WORD
PREDICATE LEMMA & PHRASE TYPE
VOICE & POSITION
PREDICATE LEMMA & PP PARENT HEAD WORD

Table 1: Baseline Features

and classification models can be chained in a princi-
pled way, as in Equation 1.

The features we used for local identification and
classification models are outlined in Table 1. These
features are a subset of features used in previous
work. The standard features at the top of the table
were defined by (Gildea and Jurafsky, 2002), and
the rest are other useful lexical and structural fea-
tures identified in more recent work (Pradhan et al.,
2004; Surdeanu et al., 2003; Xue and Palmer, 2004).

The most direct way to use trained local identifi-
cation and classification models in testing is to se-
lect a labeling L of the parse tree that maximizes
the product of the probabilities according to the two
models as in Equation 1. Since these models are lo-
cal, this is equivalent to independently maximizing
the product of the probabilities of the two models
for the label li of each parse tree node ni as shown
below in Equation 2.

P `
SRL(L|t, v) =

∏

ni∈t

PID(Id(li)|t, v) (2)

×
∏

ni∈t

PCLS(li|t, v, Id(li))

A problem with this approach is that a maximizing
labeling of the nodes could possibly violate the con-
straint that argument nodes should not overlap with
each other. Therefore, to produce a consistent set of
arguments with local classifiers, we must have a way
of enforcing the non-overlapping constraint.

3.1 Enforcing the Non-overlapping Constraint

Here we describe a fast exact dynamic programming
algorithm to find the most likely non-overlapping
(consistent) labeling of all nodes in the parse tree,
according to a product of probabilities from local
models, as in Equation 2. For simplicity, we de-
scribe the dynamic program for the case where only
two classes are possible – ARG and NONE. The gen-
eralization to more classes is straightforward. In-
tuitively, the algorithm is similar to the Viterbi al-
gorithm for context-free grammars, because we can
describe the non-overlapping constraint by a “gram-
mar” that disallows ARG nodes to have ARG descen-
dants.

Below we will talk about maximizing the sum of
the logs of local probabilities rather than the prod-
uct of local probabilities, which is equivalent. The
dynamic program works from the leaves of the tree
up and finds a best assignment for each tree, using
already computed assignments for its children. Sup-
pose we want the most likely consistent assignment
for subtree t with children trees t1, . . . , tk each stor-
ing the most likely consistent assignment of nodes
it dominates as well as the log-probability of the as-
signment of all nodes it dominates to NONE. The
most likely assignment for t is the one that corre-
sponds to the maximum of:

• The sum of the log-probabilities of the most
likely assignments of the children subtrees
t1, . . . , tk plus the log-probability for assigning
the node t to NONE

• The sum of the log-probabilities for assign-
ing all of ti’s nodes to NONE plus the log-
probability for assigning the node t to ARG.

Propagating this procedure from the leaves to the
root of t, we have our most likely non-overlapping
assignment. By slightly modifying this procedure,
we obtain the most likely assignment according to
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a product of local identification and classification
models. We use the local models in conjunction with
this search procedure to select a most likely labeling
in testing. Test set results for our local model P `

SRL

are given in Table 2.

4 Joint Classifiers

As discussed in previous work, there are strong de-
pendencies among the labels of the semantic argu-
ment nodes of a verb. A drawback of local models
is that, when they decide the label of a parse tree
node, they cannot use information about the labels
and features of other nodes in the tree.

Furthermore, these dependencies are highly non-
local. For instance, to avoid repeating argument la-
bels in a frame, we need to add a dependency from
each node label to the labels of all other nodes.
A factorized sequence model that assumes a finite
Markov horizon, such as a chain Conditional Ran-
dom Field (Lafferty et al., 2001), would not be able
to encode such dependencies.

The need for Re-ranking

For argument identification, the number of possi-
ble assignments for a parse tree with n nodes is
2n. This number can run into the hundreds of bil-
lions for a normal-sized tree. For argument label-
ing, the number of possible assignments is ≈ 20m,
if m is the number of arguments of a verb (typi-
cally between 2 and 5), and 20 is the approximate
number of possible labels if considering both core
and modifying arguments. Training a model which
has such huge number of classes is infeasible if the
model does not factorize due to strong independence
assumptions. Therefore, in order to be able to in-
corporate long-range dependencies in our models,
we chose to adopt a re-ranking approach (Collins,
2000), which selects from likely assignments gener-
ated by a model which makes stronger independence
assumptions. We utilize the top N assignments of
our local semantic role labeling model P `

SRL to gen-
erate likely assignments. As can be seen from Table
3, for relatively small values of N , our re-ranking
approach does not present a serious bottleneck to
performance. We used a value of N = 20 for train-
ing. In Table 3 we can see that if we could pick, us-
ing an oracle, the best assignment out for the top 20

assignments according to the local model, we would
achieve an F-Measure of 98.8 on all arguments. In-
creasing the number of N to 30 results in a very
small gain in the upper bound on performance and
a large increase in memory requirements. We there-
fore selected N = 20 as a good compromise.

Generation of top N most likely joint
assignments

We generate the top N most likely non-
overlapping joint assignments of labels to nodes in
a parse tree according to a local model P `

SRL, by
an exact dynamic programming algorithm, which
is a generalization of the algorithm for finding the
top non-overlapping assignment described in section
3.1.

Parametric Models

We learn log-linear re-ranking models for joint se-
mantic role labeling, which use feature maps from a
parse tree and label sequence to a vector space. The
form of the models is as follows. Let Φ(t, v, L) ∈
R

s denote a feature map from a tree t, target verb
v, and joint assignment L of the nodes of the tree,
to the vector space R

s. Let L1, L2, · · · , LN denote
top N possible joint assignments. We learn a log-
linear model with a parameter vector W , with one
weight for each of the s dimensions of the feature
vector. The probability (or score) of an assignment
L according to this re-ranking model is defined as:

P r
SRL(L|t, v) =

e〈Φ(t,v,L),W 〉

∑N
j=1 e〈Φ(t,v,Lj ).W 〉

(3)

The score of an assignment L not in the top N

is zero. We train the model to maximize the sum
of log-likelihoods of the best assignments minus a
quadratic regularization term.

In this framework, we can define arbitrary fea-
tures of labeled trees that capture general properties
of predicate-argument structure.

Joint Model Features

We will introduce the features of the joint re-
ranking model in the context of the example parse
tree shown in Figure 1. We model dependencies not
only between the label of a node and the labels of
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S1

NP1-ARG1

Final-hour trading

VP1

VBD1 PRED

accelerated

PP1 ARG4

TO1

to

NP2

108.1 million shares

NP3 ARGM-TMP

yesterday

Figure 1: An example tree from the PropBank with Semantic Role Annotations.

other nodes, but also dependencies between the la-
bel of a node and input features of other argument
nodes. The features are specified by instantiation of
templates and the value of a feature is the number of
times a particular pattern occurs in the labeled tree.

Templates

For a tree t, predicate v, and joint assignment L

of labels to the nodes of the tree, we define the can-
didate argument sequence as the sequence of non-
NONE labeled nodes [n1, l1, . . . , vPRED, nm, lm] (li
is the label of node ni). A reasonable candidate ar-
gument sequence usually contains very few of the
nodes in the tree – about 2 to 7 nodes, as this is the
typical number of arguments for a verb. To make
it more convenient to express our feature templates,
we include the predicate node v in the sequence.
This sequence of labeled nodes is defined with re-
spect to the left-to-right order of constituents in the
parse tree. Since non-NONE labeled nodes do not
overlap, there is a strict left-to-right order among
these nodes. The candidate argument sequence that
corresponds to the correct assignment in Figure 1
will be:

[NP1-ARG1,VBD1-PRED,PP1-ARG4,NP3-ARGM-TMP]

Features from Local Models: All features included
in the local models are also included in our joint
models. In particular, each template for local fea-
tures is included as a joint template that concatenates
the local template and the node label. For exam-
ple, for the local feature PATH, we define a joint fea-
ture template, that extracts PATH from every node in
the candidate argument sequence and concatenates
it with the label of the node. Both a feature with
the specific argument label is created and a feature
with the generic back-off ARG label. This is similar
to adding features from identification and classifi-
cation models. In the case of the example candidate
argument sequence above, for the node NP1 we have

the features:

(NP↑S↓)-ARG1, (NP↑S↓)-ARG

When comparing a local and a joint model, we use
the same set of local feature templates in the two
models.

Whole Label Sequence: As observed in previous
work (Gildea and Jurafsky, 2002; Pradhan et al.,
2004), including information about the set or se-
quence of labels assigned to argument nodes should
be very helpful for disambiguation. For example, in-
cluding such information will make the model less
likely to pick multiple fillers for the same role or
to come up with a labeling that does not contain an
obligatory argument. We added a whole label se-
quence feature template that extracts the labels of
all argument nodes, and preserves information about
the position of the predicate. The template also
includes information about the voice of the predi-
cate. For example, this template will be instantiated
as follows for the example candidate argument se-
quence:

[ voice:active ARG1,PRED,ARG4,ARGM-TMP]

We also add a variant of this feature which uses a
generic ARG label instead of specific labels. This
feature template has the effect of counting the num-
ber of arguments to the left and right of the predi-
cate, which provides useful global information about
argument structure. As previously observed (Prad-
han et al., 2004), including modifying arguments in
sequence features is not helpful. This was confirmed
in our experiments and we redefined the whole label
sequence features to exclude modifying arguments.

One important variation of this feature uses the
actual predicate lemma in addition to “voice:active”.
Additionally, we define variations of these feature
templates that concatenate the label sequence with
features of individual nodes. We experimented with
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variations, and found that including the phrase type
and the head of a directly dominating PP – if one
exists – was most helpful. We also add a feature that
detects repetitions of the same label in a candidate
argument sequence, together with the phrase types
of the nodes labeled with that label. For example,
(NP-ARG0,WHNP-ARG0) is a common pattern of this
form.

Frame Features: Another very effective class of fea-
tures we defined are features that look at the label of
a single argument node and internal features of other
argument nodes. The idea of these features is to cap-
ture knowledge about the label of a constituent given
the syntactic realization of all arguments of the verb.
This is helpful to capture syntactic alternations, such
as the dative alternation. For example, consider
the sentence (i) “[Shaw Publishing]ARG0

offered [Mr.
Smith]ARG2 [a reimbursement]ARG1

” and the alterna-
tive realization (ii) “[Shaw Publishing]ARG0

offered
[a reimbursement]ARG1

[to Mr. Smith]ARG2
”. When

classifying the NP in object position, it is useful to
know whether the following argument is a PP. If
yes, the NP will more likely be an ARG1, and if not,
it will more likely be an ARG2. A feature template
that captures such information extracts, for each ar-
gument node, its phrase type and label in the con-
text of the phrase types for all other arguments. For
example, the instantiation of such a template for [a
reimbursement] in (ii) would be

[ voice:active NP,PRED,NP-ARG1,PP]
We also add a template that concatenates the identity
of the predicate lemma itself.

We should note that Xue and Palmer (2004) define
a similar feature template, called syntactic frame,
which often captures similar information. The im-
portant difference is that their template extracts con-
textual information from noun phrases surrounding
the predicate, rather than from the sequence of ar-
gument nodes. Because our model is joint, we are
able to use information about other argument nodes
when labeling a node.

Final Pipeline

Here we describe the application in testing of a
joint model for semantic role labeling, using a local
model P `

SRL, and a joint re-ranking model P r
SRL.

P `
SRL is used to generate top N non-overlapping

joint assignments L1, . . . , LN .

One option is to select the best Li according to
P r

SRL, as in Equation 3, ignoring the score from
the local model. In our experiments, we noticed that
for larger values of N , the performance of our re-
ranking model P r

SRL decreased. This was probably
due to the fact that at test time the local classifier
produces very poor argument frames near the bot-
tom of the top N for large N . Since the re-ranking
model is trained on relatively few good argument
frames, it cannot easily rule out very bad frames. It
makes sense then to incorporate the local model into
our final score. Our final score is given by:

PSRL(L|t, v) = (P `
SRL(L|t, v))α P r

SRL(L|t, v)

where α is a tunable parameter 2 for how much in-
fluence the local score has in the final score. Such in-
terpolation with a score from a first-pass model was
also used for parse re-ranking in (Collins, 2000).
Given this score, at test time we choose among the
top N local assignments L1, . . . , LN according to:

arg max
L∈{L1,...,LN}

α log P `
SRL(L|t, v) + log P r

SRL(L|t, v)

5 Experiments and Results

For our experiments we used the February 2004 re-
lease of PropBank. 3 As is standard, we used the
annotations from sections 02–21 for training, 24 for
development, and 23 for testing. As is done in
some previous work on semantic role labeling, we
discard the relatively infrequent discontinuous argu-
ments from both the training and test sets. In addi-
tion to reporting the standard results on individual
argument F-Measure, we also report Frame Accu-
racy (Acc.), the fraction of sentences for which we
successfully label all nodes. There are reasons to
prefer Frame Accuracy as a measure of performance
over individual-argument statistics. Foremost, po-
tential applications of role labeling may require cor-
rect labeling of all (or at least the core) arguments
in a sentence in order to be effective, and partially
correct labelings may not be very useful.

2We found α = 0.5 to work best
3Although the first official release of PropBank was recently

released, we have not had time to test on it.
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Task CORE ARGM

F1 Acc. F1 Acc.
Identification 95.1 84.0 95.2 80.5
Classification 96.0 93.3 93.6 85.6
Id+Classification 92.2 80.7 89.9 71.8

Table 2: Performance of local classifiers on identification, classification, and identification+classification on
section 23, using gold-standard parse trees.

N CORE ARGM

F1 Acc. F1 Acc.
1 92.2 80.7 89.9 71.8
5 97.8 93.9 96.8 89.5
20 99.2 97.4 98.8 95.3
30 99.3 97.9 99.0 96.2

Table 3: Oracle upper bounds for performance on the complete identification+classification task, using
varying numbers of top N joint labelings according to local classifiers.

Model CORE ARGM

F1 Acc. F1 Acc.
Local 92.2 80.7 89.9 71.8
Joint 94.7 88.2 92.1 79.4

Table 4: Performance of local and joint models on identification+classification on section 23, using gold-
standard parse trees.

We report results for two variations of the seman-
tic role labeling task. For CORE, we identify and
label only core arguments. For ARGM, we identify
and label core as well as modifier arguments. We
report results for local and joint models on argu-
ment identification, argument classification, and the
complete identification and classification pipeline.
Our local models use the features listed in Table 1
and the technique for enforcing the non-overlapping
constraint discussed in Section 3.1.

The labeling of the tree in Figure 1 is a specific
example of the kind of errors fixed by the joint mod-
els. The local classifier labeled the first argument in
the tree as ARG0 instead of ARG1, probably because
an ARG0 label is more likely for the subject position.

All joint models for these experiments used the
whole sequence and frame features. As can be seen
from Table 4, our joint models achieve error reduc-
tions of 32% and 22% over our local models in F-
Measure on CORE and ARGM respectively. With re-
spect to the Frame Accuracy metric, the joint error
reduction is 38% and 26% for CORE and ARGM re-
spectively.

We also report results on automatic parses (see
Table 5). We trained and tested on automatic parse

trees from Charniak’s parser (Charniak, 2000). For
approximately 5.6% of the argument constituents
in the test set, we could not find exact matches in
the automatic parses. Instead of discarding these
arguments, we took the largest constituent in the
automatic parse having the same head-word as the
gold-standard argument constituent. Also, 19 of the
propositions in the test set were discarded because
Charniak’s parser altered the tokenization of the in-
put sentence and tokens could not be aligned. As our
results show, the error reduction of our joint model
with respect to the local model is more modest in this
setting. One reason for this is the lower upper bound,
due largely to the the much poorer performance of
the identification model on automatic parses. For
ARGM, the local identification model achieves 85.9
F-Measure and 59.4 Frame Accuracy; the local clas-
sification model achieves 92.3 F-Measure and 83.1
Frame Accuracy. It seems that the largest boost
would come from features that can identify argu-
ments in the presence of parser errors, rather than
the features of our joint model, which ensure global
coherence of the argument frame. We still achieve
10.7% and 18.5% error reduction for CORE argu-
ments in F-Measure and Frame Accuracy respec-
tively.
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Model CORE ARGM

F1 Acc. F1 Acc.
Local 84.1 66.5 81.4 55.6
Joint 85.8 72.7 82.9 60.8

Table 5: Performance of local and joint models on identification+classification on section 23, using Charniak
automatically generated parse trees.

6 Related Work

Several semantic role labeling systems have success-
fully utilized joint information. (Gildea and Juraf-
sky, 2002) used the empirical probability of the set
of proposed arguments as a prior distribution. (Prad-
han et al., 2004) train a language model over label
sequences. (Punyakanok et al., 2004) use a linear
programming framework to ensure that the only ar-
gument frames which get probability mass are ones
that respect global constraints on argument labels.

The key differences of our approach compared
to previous work are that our model has all of the
following properties: (i) we do not assume a finite
Markov horizon for dependencies among node la-
bels, (ii) we include features looking at the labels
of multiple argument nodes and internal features of
these nodes, and (iii) we train a discriminative model
capable of incorporating these long-distance depen-
dencies.

7 Conclusions

Reflecting linguistic intuition and in line with cur-
rent work, we have shown that there are substantial
gains to be had by jointly modeling the argument
frames of verbs. This is especially true when we
model the dependencies with discriminative models
capable of incorporating long-distance features.
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Abstract

Previous work has used monolingual par-
allel corpora to extract and generate para-
phrases. We show that this task can be
done using bilingual parallel corpora, a
much more commonly available resource.
Using alignment techniques from phrase-
based statistical machine translation, we
show how paraphrases in one language
can be identified using a phrase in another
language as a pivot. We define a para-
phrase probability that allows paraphrases
extracted from a bilingual parallel corpus
to be ranked using translation probabili-
ties, and show how it can be refined to
take contextual information into account.
We evaluate our paraphrase extraction and
ranking methods using a set of manual
word alignments, and contrast the qual-
ity with paraphrases extracted from auto-
matic alignments.

1 Introduction

Paraphrases are alternative ways of conveying the
same information. Paraphrases are useful in a num-
ber of NLP applications. In natural language gen-
eration the production of paraphrases allows for the
creation of more varied and fluent text (Iordanskaja
et al., 1991). In multidocument summarization the
identification of paraphrases allows information re-
peated across documents to be condensed (McKe-
own et al., 2002). In the automatic evaluation of
machine translation, paraphrases may help to alle-
viate problems presented by the fact that there are

often alternative and equally valid ways of translat-
ing a text (Pang et al., 2003). In question answering,
discovering paraphrased answers may provide addi-
tional evidence that an answer is correct (Ibrahim et
al., 2003).

In this paper we introduce a novel method for ex-
tracting paraphrases that uses bilingual parallel cor-
pora. Past work (Barzilay and McKeown, 2001;
Barzilay and Lee, 2003; Pang et al., 2003; Ibrahim et
al., 2003) has examined the use of monolingual par-
allel corpora for paraphrase extraction. Examples
of monolingual parallel corpora that have been used
are multiple translations of classical French novels
into English, and data created for machine transla-
tion evaluation methods such as Bleu (Papineni et
al., 2002) which use multiple reference translations.

While the results reported for these methods are
impressive, their usefulness is limited by the scarcity
of monolingual parallel corpora. Small data sets
mean a limited number of paraphrases can be ex-
tracted. Furthermore, the narrow range of text gen-
res available for monolingual parallel corpora limits
the range of contexts in which the paraphrases can
be used.

Instead of relying on scarce monolingual parallel
data, our method utilizes the abundance of bilingual
parallel data that is available. This allows us to cre-
ate a much larger inventory of phrases that is appli-
cable to a wider range of texts.

Our method for identifying paraphrases is an
extension of recent work in phrase-based statisti-
cal machine translation (Koehn et al., 2003). The
essence of our method is to align phrases in a bilin-
gual parallel corpus, and equate different English
phrases that are aligned with the same phrase in the
other language. This assumption of similar mean-
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Emma burst into tearsand he tried to comfort
her, saying things to make her smile.
Emma cried,and he tried to consoleher, adorn-
ing his words with puns.

Figure 1: Using a monolingal parallel corpus to ex-
tract paraphrases

ing when multiple phrases map onto a single for-
eign language phrase is the converse of the assump-
tion made in the word sense disambiguation work of
Diab and Resnik (2002) which posits different word
senses when a single English word maps onto differ-
ent words in the foreign language (we return to this
point in Section 4.4).

The remainder of this paper is as follows: Section
2 contrasts our method for extracting paraphrases
with the monolingual case, and describes how we
rank the extracted paraphrases with a probability
assignment. Section 3 describes our experimental
setup and includes information about how phrases
were selected, how we manually aligned parts of the
bilingual corpus, and how we evaluated the para-
phrases. Section 4 gives the results of our evalua-
tion and gives a number of example paraphrases ex-
tracted with our technique. Section 5 reviews related
work, and Section 6 discusses future directions.

2 Extracting paraphrases

Much previous work on extracting paraphrases
(Barzilay and McKeown, 2001; Barzilay and Lee,
2003; Pang et al., 2003) has focused on finding iden-
tifying contexts within aligned monolingual sen-
tences from which divergent text can be extracted,
and treated as paraphrases. Barzilay and McKeown
(2001) gives the example shown in Figure 1 of how
identical surrounding substrings can be used to ex-
tract the paraphrases ofburst into tearsascried and
comfortasconsole.

While monolingual parallel corpora often have
identical contexts that can be used for identifying
paraphrases, bilingual parallel corpora do not. In-
stead, we use phrases in the other language as piv-
ots: we look at what foreign language phrases the
English translates to, find all occurrences of those
foreign phrases, and then look back at what other
English phrases they translate to. We treat the other

English phrases as potential paraphrases. Figure 2 il-
lustrates how a German phrase can be used as a point
of identification for English paraphrases in this way.
Section 2.1 explains which statistical machine trans-
lation techniques are used to align phrases within
sentence pairs in a bilingual corpus.

A significant difference between the present work
and that employing monolingual parallel corpora, is
that our method frequently extracts more than one
possible paraphrase for each phrase. We assign a
probability to each of the possible paraphrases. This
is a mechanism for ranking paraphrases, which can
be utilized when we come to select the correct para-
phrase for a given context . Section 2.2 explains how
we calculate the probability of a paraphrase.

2.1 Aligning phrase pairs

We use phrase alignments in a parallel corpus as
pivots between English paraphrases. We find these
alignments using recentphrase-basedapproaches to
statistical machine translation.

The original formulation of statistical machine
translation (Brown et al., 1993) was defined as a
word-based operation. The probability that a foreign
sentence is the translation of an English sentence is
calculated by summing over the probabilities of all
possible word-level alignments,a, between the sen-
tences:

p(f |e) =
∑
a

p(f ,a|e)

Thus Brown et al. decompose the problem of de-
termining whether a sentence is a good translation
of another into the problem of determining whether
there is a sensible mapping between the words in the
sentences.

More recent approaches to statistical translation
calculate the translation probability using larger
blocks of aligned text. Koehn (2004), Tillmann
(2003), and Vogel et al. (2003) describe various
heuristics for extracting phrase alignments from the
Viterbi word-level alignments that are estimated us-
ing Brown et al. (1993) models. We use the heuris-
tic for phrase alignment described in Och and Ney
(2003) which aligns phrases by incrementally build-
ing longer phrases from words and phrases which
have adjacent alignment points.1

1Note that while we induce the translations of phrases from
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what is more, the relevant cost dynamic is completely under control

im übrigen ist die diesbezügliche kostenentwicklung völlig  unter kontrolle

we owe it to the taxpayers to keep in checkthe costs

wir sind es den steuerzahlern die kosten zu habenschuldig  unter kontrolle

Figure 2: Using a bilingual parallel corpus to extract paraphrases

2.2 Assigning probabilities

We define a paraphrase probabilityp(e2|e1) in terms
of the translation model probabilitiesp(f |e1), that
the original English phrasee1 translates as a partic-
ular phrasef in the other language, andp(e2|f), that
the candidate paraphrasee2 translates as the foreign
language phrase. Sincee1 can translate as multiple
foreign language phrases, we sum overf :

ê2 = arg max
e2 6=e1

p(e2|e1) (1)

= arg max
e2 6=e1

∑
f

p(f |e1)p(e2|f) (2)

The translation model probabilities can be com-
puted using any standard formulation from phrase-
based machine translation. For example,p(e|f)
can be calculated straightforwardly using maximum
likelihood estimation by counting how often the
phrasese andf were aligned in the parallel corpus:

p(e|f) =
count(e, f)∑
e count(e, f)

(3)

Note that the paraphrase probability defined in
Equation 2 returns the single best paraphrase,ê2, ir-
respective of the context in whiche1 appears. Since
the best paraphrase may vary depending on informa-
tion about the sentence thate1 appears in, we extend
the paraphrase probability to include that sentence
S:

ê2 = arg max
e2 6=e1

p(e2|e1, S) (4)

word-level alignments in this paper, direct estimation of phrasal
translations (Marcu and Wong, 2002) would also suffice for ex-
tracting paraphrases from bilingual corpora.

a million, as far as possible, at work, big business,
carbon dioxide, central america, close to, concen-
trate on, crystal clear, do justice to, driving force,
first half, for the first time, global warming, great
care, green light, hard core, horn of africa, last re-
sort, long ago, long run, military action, military
force, moment of truth, new world, noise pollution,
not to mention, nuclear power, on average, only too,
other than, pick up, president clinton, public trans-
port, quest for, red cross, red tape, socialist party,
sooner or later, step up, task force, turn to, under
control, vocational training, western sahara, world
bank

Table 1: Phrases that were selected to paraphrase

S allows us to re-rank the candidate paraphrases
based on additional contextual information. The ex-
periments in this paper employ one variety of con-
textual information. We include a simple language
model probability, which would additionally rank
e2 based on the probability of the sentence formed
by substiutinge2 for e1 in S. A possible extension
which we do not evaluate might be permitting only
paraphrases that are the same syntactic type as the
original phrase, which we could do by extending the
translation model probabilities to count only phrase
occurrences of that type.

3 Experimental Design

We extracted 46 English phrases to paraphrase
(shown in Table 1), randomly selected from those
multi-word phrases in WordNet which also occured
multiple times in the first 50,000 sentences of our
bilingual corpus. The bilingual corpus that we used
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(b) Aligning occurrences of its German translation

Figure 3: Phrases highlighted for manual alignment

was the German-English section of the Europarl cor-
pus, version 2 (Koehn, 2002). We produced auto-
matic alignments for it with the Giza++ toolkit (Och
and Ney, 2003). Because we wanted to test our
method independently of the quality of word align-
ment algorithms, we also developed a gold standard
of word alignments for the set of phrases that we
wanted to paraphrase.

3.1 Manual alignment

The gold standard alignments were created by high-
lighting all occurrences of the English phrase to
paraphrase and manually aligning it with its Ger-
man equivalent by correcting the automatic align-
ment, as shown in Figure 3a. All occurrences of
its German equivalents were then highlighted, and
aligned with their English translations (Figure 3b).
The other words in the sentences were left with their
automatic alignments.

3.2 Paraphrase evaluation

We evaluated the accuracy of each of the para-
phrases that was extracted from the manually
aligned data, as well as the top ranked paraphrases
from the experimental conditions detailed below in
Section 3.3. Because the acccuracy of paraphrases
can vary depending on context, we substituted each

Under control
This situation isin check in terms of security.
This situation ischeckedin terms of security.
This situation iscurbed in terms of security.
This situation iscurb in terms of security.
This situation islimit in terms of security.
This situation isslow down in terms of security.

Figure 4: Paraphrases substituted in for the original
phrase

set of candidate paraphrases into between 2–10 sen-
tences which contained the original phrase. Figure 4
shows the paraphrases forunder controlsubstituted
into one of the sentences in which it occurred. We
created a total of 289 such evaluation sets, with a
total of 1366 unique sentences created through sub-
stitution.

We had two native English speakers produce
judgments as to whether the new sentences pre-
served the meaning of the original phrase and as to
whether they remained grammatical. Paraphrases
that were judged to preserve both meaning and
grammaticality were considered to be correct, and
examples which failed on either judgment were con-
sidered to be incorrect.

In Figure 4 in check, checked,and curbedwere

600



under control checked, curb, curbed,in check, limit, slow down
sooner or later at some point, eventually
military force armed forces, defence,force, forces, military forces, peace-keeping personnel
long ago a little time ago, a long time,a long time ago, a lot of time, a while ago, a while back,

far, for a long time, for some time, for such a long time, long, long period of time, long
term, long time, long while, overdue, some time, some time ago

green light approval, call,go-ahead, indication, message, sign, signal, signals, formal go-ahead
great care a careful approach, greater emphasis,particular attention, special attention, specific

attention, very careful
first half first six months
crystal clear absolutely clear, all clarity, clear, clearly, in great detail, no mistake, no uncertain,

obvious, obviously, particularly clear, perfectly clear, quite clear, quite clearly, quite
explicitly, quite openly, very clear,very clear and comprehensive, very clearly, very
sure, very unclear, very well

carbon dioxide co2
at work at the workplace, employment, held, holding, in the work sphere, operate, organised,

taken place, took place,working

Table 2: Paraphrases extracted from a manually word-aligned parallel corpus

judged to be correct andcurb, limit andslow down
were judged to be incorrect. The inter-annotator
agreement for these judgements was measured at
κ = 0.605, which is conventionally interpreted as
“good” agreement.

3.3 Experiments

We evaluated the accuracy of top ranked paraphrases
when the paraphrase probability was calculated us-
ing:

1. The manual alignments,

2. The automatic alignments,

3. Automatic alignments produced over multiple
corpora in different languages,

4. All of the above with language model re-
ranking.

5. All of the above with the candidate paraphrases
limited to the same sense as the original phrase.

4 Results

We report the percentage of correct translations (ac-
curacy) for each of these experimental conditions. A
summary of these can be seen in Table 3. This sec-
tion will describe each of the set-ups and the score
reported in more detail.

4.1 Manual alignments

Table 2 gives a set of example paraphrases extracted
from the gold standard alignments. The italicized
paraphrases are those that were assigned the highest
probability by Equation 2, which chooses a single
best paraphrase without regard for context. The 289
sentences created by substituting the italicized para-
phrases in for the original phrase were judged to be
correct an average of 74.9% of the time.

Ignoring the constraint that the new sentences re-
main grammatically correct, these paraphrases were
judged to have the correct meaning 84.7% of the
time. This suggests that the context plays a more
important role with respect to the grammaticality
of substituted paraphrases than with respect to their
meaning.

In order to allow the surrounding words in the sen-
tence to have an influence on which paraphrase was
selected, we re-ranked the paraphrase probabilities
based on a trigram language model trained on the
entire English portion of the Europarl corpus. Para-
phrases were selected from among all those in Table
2, and not constrained to the italicized phrases. In
the case of the paraphrases extracted from the man-
ual word alignments, the language model re-ranking
had virtually no influence, and resulted in a slight
dip in accuracy to 71.7%
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Paraphrase Prob Paraphrase Prob & LMCorrect Meaning
Manual Alignments 74.9 71.7 84.7
Automatic Alignments 48.9 55.3 64.5
Using Multiple Corpora 55.0 57.4 65.4
Word Sense Controlled 57.0 61.9 70.4

Table 3: Paraphrase accuracy and correct meaning for the different data conditions

4.2 Automatic alignments

In this experimental condition paraphrases were ex-
tracted from a set of automatic alignments produced
by running Giza++ over a set of 1,036,000 German-
English sentence pairs (roughly 28,000,000 words in
each language). When the single best paraphrase (ir-
respective of context) was used in place of the orig-
inal phrase in the evaluation sentence the accuracy
reached 48.9% which is quite low compared to the
74.9% of the manually aligned set.

As with the manual alignments it seems that we
are selecting phrases which have the correct mean-
ing but are not grammatical in context. Indeed our
judges thought the meaning of the paraphrases to
be correct in 64.5% of cases. Using a language
model to select the best paraphrase given the con-
text reduces the number of ungrammatical examples
and gives an improvement in quality from 48.9% to
55.3% correct.

These results suggest two things: that improving
the quality of automatic alignments would lead to
more accurate paraphrases, and that there is room
for improvement in limiting the paraphrases by their
context. We address these points below.

4.3 Using multiple corpora

Work in statistical machine translation suggests that,
like many other machine learning problems, perfor-
mance increases as the amount of training data in-
creases. Och and Ney (2003) show that the accuracy
of alignments produced by Giza++ improve as the
size of the training corpus increases.

Since we used the whole of the German-English
section of the Europarl corpus, we could not try
improving the alignments by simply adding more
German-English training data. However, there is
nothing that limits our paraphrase extraction method
to drawing on candidate paraphrases from a sin-
gle target language. We therefore re-formulated the

paraphrase probability to include multiple corpora,
as follows:

ê2 = arg max
e2 6=e1

∑
C

∑
f in C

p(f |e1)p(e2|f) (5)

whereC is a parallel corpus from a set of parallel
corpora.

For this condition we used Giza++ to align
the French-English, Spanish-English, and Italian-
English portions of the Europarl corpus in addition
to the German-English portion, for a total of around
4,000,000 sentence pairs in the training data.

The accuracy of paraphrases extracted over mul-
tiple corpora increased to 55%, and further to 57.4%
when the language model re-ranking was included.

4.4 Controlling for word sense

As mentioned in Section 1, the way that we extract
paraphrases is the converse of the methodology em-
ployed in word sense disambiguation work that uses
parallel corpora (Diab and Resnik, 2002). The as-
sumption made in the word sense disambiguation
work is that if a source language word aligns with
different target language words then those words
may represent different word senses. This can be
observed in the paraphrases forat work in Table 2.
The paraphrasesat the workplace, employment,and
in the work sphereare a different sense of the phrase
thanoperate, held,andholding, and they are aligned
with different German phrases.

When we calculate the paraphrase probability we
sum over different target language phrases. There-
fore the English phrases that are aligned with the dif-
ferent German phrases (which themselves maybe in-
dicative of different word senses) are mingled. Per-
formance may be degraded since paraphrases that
reflect different senses of the original phrase, and
which therefore have a different meaning, are in-
cluded in the same candidate set.
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We therefore performed an experiment to see
whether improvement could be had by limiting the
candidate paraphrases to be the same sense as the
original phrase in each test sentence. To do this,
we used the fact that our test sentences were drawn
from a parallel corpus. We limited phrases to the
same word sense by constraining the candidate para-
phrases to those that aligned with the same target
language phrase. Our basic paraphrase calculation
was therefore:

p(e2|e1, f) = p(f |e1)p(e2|f) (6)

Using the foreign language phrase to identify the
word sense is obviously not applicable in monolin-
gual settings, but acts as a convenient stand-in for a
proper word sense disambiguation algorithm here.

When word sense is controlled in this way, the
accuracy of the paraphrases extracted from the au-
tomatic alignments raises dramatically from 48.9%
to 57% without language model re-ranking, and fur-
ther to 61.9% when language model re-ranking was
included.

5 Related Work

Barzilay and McKeown (2001) extract both single-
and multiple-word paraphrases from a monolingual
parallel corpus. They co-train a classifier to iden-
tify whether two phrases were paraphrases of each
other based on their surrounding context. Two dis-
advantages of this method are that it requires iden-
tical bounding substrings, and has bias towards sin-
gle words. For an evaluation set of 500 paraphrases,
they report an average precision of 86% at identi-
fying paraphrases out of context, and of 91% when
the paraphrases are substituted into the original con-
text of the aligned sentence. The results of our sys-
tems are not directly comparable, since Barzilay and
McKeown (2001) evaluated their paraphrases with a
different set of criteria (they asked judges whether
to judge paraphrases based on “approximate con-
ceptual equivalence”). Furthermore, their evaluation
was carried out only by substituting the paraphrase
in for the phrase with the identical context, and not
in for arbitrary occurrences of the original phrase, as
we have done.

Lin and Pantel (2001) use a standard (non-
parallel) monolingual corpus to generate para-

phrases, based on dependancy graphs and distribu-
tional similarity. One strong disadvantage of this
method is that their paraphrases can also have op-
posite meanings.

Ibrahim et al. (2003) combine the two approaches:
aligned monolingual corpora and parsing. They
evaluated their system with human judges who were
asked whether the paraphrases were “roughly inter-
changeable given the genre”, scored an average of
41% on a set of 130 paraphrases, with the judges
all agreeing 75% of the time, and a correlation of
0.66. The shortcomings of this method are that it is
dependent upon parse quality, and is limited by the
rareness of the data.

Pang et al. (2003) use parse trees over sentences in
monolingual parallel corpus to identify paraphrases
by grouping similar syntactic constituents. They
use heuristics such as keyword checking to limit
the over-application of this method. Our alignment
method might be an improvement of their heuris-
tics for choosing which constituents ought to be
grouped.

6 Discussion and Future Work

In this paper we have introduced a novel method for
extracting paraphrases, which we believe greatly in-
creases the usefulness of paraphrasing in NLP ap-
plications. The advantages of our method are that
it:

• Produces a ranked list of high quality para-
phrases with associated probabilities, from
which the best paraphrase can be chosen ac-
cording to the target context. We have shown
how a language model can be used to select the
best paraphrase for a particular context from
this list.

• Straightforwardly handles multi-word units.
Whereas for previous approaches the evalua-
tion has been performed over mostly single
word paraphrases, our results are reported ex-
clusively over units of between 2 and 4 words.

• Because we use a much more abundant source
of data, our method can be used for a much
wider range of text genres than previous ap-
proaches, namely any for which parallel data
is available.
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One crucial thing to note is that we have demon-
strated our paraphrases to be of higher quality when
the alignments used to produce them are improved.
This means that our method will reap the benefits
of research that improvements to automatic align-
ment techniques (Callison-Burch et al., 2004), and
will further improve as more parallel data becomes
available.

In the future we plan to:

• Investigate whether our re-ranking can be fur-
ther improved by using a syntax-based lan-
guage model.

• Formulate a paraphrase probability for senten-
tial paraphrases, and use this to try to identify
paraphrases across documents in order to con-
dense information for multi-document summa-
rization.

• See whether paraphrases can be used to in-
crease coverage for statistical machine trans-
lation when translating into “low-density” lan-
guages which have small parallel corpora.
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Abstract 

This paper introduces a new method for 
identifying candidate phrasal terms (also 
known as multiword units) which applies a 
nonparametric, rank-based heuristic measure. 
Evaluation of this measure, the mutual rank 
ratio metric, shows that it produces better 
results than standard statistical measures when 
applied to this task.  

1 Introduction 

The ordinary vocabulary of a language like 
English contains thousands of phrasal terms -- 
multiword lexical units including compound 
nouns, technical terms, idioms, and fixed 
collocations. The exact number of phrasal terms is 
difficult to determine, as new ones are coined 
regularly, and it is sometimes difficult to determine 
whether a phrase is a fixed term or a regular, 
compositional expression. Accurate identification 
of phrasal terms is important in a variety of 
contexts, including natural language parsing, 
question answering systems, information retrieval 
systems, among others. 

Insofar as phrasal terms function as lexical units, 
their component words tend to cooccur more often, 
to resist substitution or paraphrase, to follow fixed 
syntactic patterns, and to display some degree of 
semantic noncompositionality (Manning, 
1999:183-186). However, none of these 
characteristics are amenable to a simple 
algorithmic interpretation. It is true that various 
term extraction systems have been developed, such 
as Xtract (Smadja 1993), Termight (Dagan & 
Church 1994), and TERMS (Justeson & Katz 
1995) among others (cf. Daille 1996, Jacquemin & 
Tzoukermann 1994, Jacquemin, Klavans, & 
Toukermann 1997, Boguraev & Kennedy 1999, 
Lin 2001). Such systems typically rely on a 
combination of linguistic knowledge and statistical 
association measures. Grammatical patterns, such 
as adjective-noun or noun-noun sequences are 
selected then ranked statistically, and the resulting 
ranked list is either used directly or submitted for 
manual filtering. 

The linguistic filters used in typical term 
extraction systems have no obvious connection 
with the criteria that linguists would argue define a 
phrasal term (noncompositionality, fixed order, 
nonsubstitutability, etc.). They function, instead, to 
reduce the number of a priori improbable terms 
and thus improve precision. The association 
measure does the actual work of distinguishing 
between terms and plausible nonterms. A variety 
of methods have been applied, ranging from simple 
frequency (Justeson & Katz 1995),  modified 
frequency measures such as c-values (Frantzi, 
Anadiou & Mima 2000, Maynard & Anadiou 
2000) and standard statistical significance tests 
such as the t-test, the chi-squared test, and log-
likelihood (Church and Hanks 1990, Dunning 
1993), and information-based methods, e.g. 
pointwise mutual information (Church & Hanks 
1990).  

Several studies of the performance of lexical 
association metrics suggest significant room for 
improvement, but also variability among tasks.  

One series of studies (Krenn 1998, 2000; Evert 
& Krenn 2001, Krenn & Evert 2001; also see Evert 
2004) focused on the use of association metrics to 
identify the best candidates in particular 
grammatical constructions, such as adjective-noun 
pairs or verb plus prepositional phrase 
constructions, and compared the performance of 
simple frequency to several common measures (the 
log-likelihood, the t-test, the chi-squared test, the 
dice coefficient, relative entropy and mutual 
information). In Krenn & Evert 2001, frequency 
outperformed mutual information though not the t-
test, while in Evert and Krenn 2001, log-likelihood 
and the t-test gave the best results, and mutual 
information again performed worse than 
frequency. However, in all these studies 
performance was generally low, with precision 
falling rapidly after the very highest ranked 
phrases in the list. 

By contrast, Schone and Jurafsky (2001) 
evaluate the identification of phrasal terms without 
grammatical filtering on a 6.7 million word extract 
from the TREC databases, applying both WordNet 
and online dictionaries as gold standards. Once 
again, the general level of performance was low, 
with precision falling off rapidly as larger portions 
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of the n-best list were included, but they report 
better performance with statistical and information 
theoretic measures (including mutual information) 
than with frequency. The overall pattern appears to 
be one where lexical association measures in 
general have very low precision and recall on 
unfiltered data, but perform far better when 
combined with other features which select 
linguistic patterns likely to function as phrasal 
terms. 

The relatively low precision of lexical 
association measures on unfiltered data no doubt 
has multiple explanations, but a logical candidate 
is the failure or inappropriacy of underlying 
statistical assumptions. For instance, many of the 
tests assume a normal distribution, despite the 
highly skewed nature of natural language 
frequency distributions, though this is not the most 
important consideration except at very low n (cf. 
Moore 2004, Evert 2004, ch. 4). More importantly, 
statistical and information-based metrics such as 
the log-likelihood and mutual information measure 
significance or informativeness relative to the 
assumption that the selection of component terms 
is statistically independent. But of course the 
possibilities for combinations of words are 
anything but random and independent. Use of 
linguistic filters such as "attributive adjective 
followed by noun" or "verb plus modifying 
prepositional phrase" arguably has the effect of 
selecting a subset of the language for which the 
standard null hypothesis -- that any word may 
freely be combined with any other word -- may be 
much more accurate. Additionally, many of the 
association measures are defined only for bigrams, 
and do not generalize well to phrasal terms of 
varying length.  

The purpose of this paper is to explore whether 
the identification of candidate phrasal terms can be 
improved by adopting a heuristic which seeks to 
take certain of these statistical issues into account. 
The method to be presented here, the mutual rank 
ratio, is a nonparametric rank-based approach 
which appears to perform significantly better than 
the standard association metrics. 

The body of the paper is organized as follows: 
Section 2 will introduce the statistical 
considerations which provide a rationale for the 
mutual rank ratio heuristic and outline how it is 
calculated. Section 3 will present the data sources 
and evaluation methodologies applied in the rest of 
the paper. Section 4 will evaluate the mutual rank 
ratio statistic and several other lexical association 
measures on a larger corpus than has been used in 
previous evaluations. As will be shown below, the 
mutual rank ratio statistic recognizes phrasal terms 
more effectively than standard statistical measures. 

2 Statistical considerations 

2.1 Highly skewed distributions 

As first observed e.g. by Zipf (1935, 1949) the 
frequency of words and other linguistic units tend 
to follow highly skewed distributions in which 
there are a large number of rare events. Zipf's 
formulation of this relationship for single word 
frequency distributions (Zipf's first law) postulates 
that the frequency of a word is inversely 
proportional to its rank in the frequency 
distribution, or more generally if we rank words by 
frequency and assign rank z, where the function 
fz(z,N) gives the frequency of rank z for a sample 
of size N, Zipf's first law states that: 

  fz(z,N) = 
C

zα  

where C is a normalizing constant and α is a free 
parameter that determines the exact degree of 
skew; typically with single word frequency data, α 
approximates 1 (Baayen 2001: 14). Ideally, an 
association metric would be designed to maximize 
its statistical validity with respect to the 
distribution which underlies natural language text  
-- which is if not a pure Zipfian distribution at least 
an LNRE (large number of rare events, cf. Baayen 
2001) distribution with a very long tail, containing 
events which differ in probability by many orders 
of magnitude. Unfortunately, research on LNRE 
distributions focuses primarily on unigram 
distributions, and generalizations to bigram and n-
gram distributions on large corpora are not as yet 
clearly feasible (Baayen 2001:221). Yet many of 
the best-performing lexical association measures, 
such as the t-test, assume normal distributions, (cf. 
Dunning 1993) or else (as with mutual 
information) eschew significance testing in favor 
of a generic information-theoretic approach. 
Various strategies could be adopted in this 
situation: finding a better model of the 
distribution,or adopting a nonparametric method.   

2.2 The independence assumption 

Even more importantly, many of the standard 
lexical association measures measure significance 
(or information content) against the default 
assumption that word-choices are statistically 
independent events. This assumption is built into 
the highest-performing measures as observed in 
Evert & Krenn 2001, Krenn & Evert 2001 and 
Schone & Jurafsky 2001. 

This is of course untrue, and justifiable only as a 
simplifying idealization in the absence of a better 
model. The actual probability of any sequence of 
words is strongly influenced by the base 
grammatical and semantic structure of language, 
particularly since phrasal terms usually conform to 
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the normal rules of linguistic structure. What 
makes a compound noun, or a verb-particle 
construction, into a phrasal term is not deviation 
from the base grammatical pattern for noun-noun 
or verb-particle structures, but rather a further 
pattern (of meaning and usage and thus heightened 
frequency) superimposed on the normal linguistic 
base. There are, of course, entirely aberrant phrasal 
terms, but they constitute the exception rather than 
the rule. 

This state of affairs poses something of a 
chicken-and-the-egg problem, in that statistical 
parsing models have to estimate probabilities from 
the same base data as the lexical association 
measures, so the usual heuristic solution as noted 
above is to impose a linguistic filter on the data, 
with the association measures being applied only 
to the subset thus selected. The result is in effect a 
constrained statistical model in which the 
independence assumption is much more accurate. 
For instance, if the universe of statistical 
possibilities is restricted to the set of sequences in 
which an adjective is followed by a noun, the null 
hypothesis that word choice is independent -- i.e., 
that any adjective may precede any noun -- is a 
reasonable idealization. Without filtering, the 
independence assumption yields the much less 
plausible null hypothesis that any word may appear 
in any order. 

It is thus worth considering whether there are 
any ways to bring additional information to bear on 
the problem of recognizing phrasal terms without 
presupposing statistical independence.  

2.3 Variable length; alternative/overlapping 
phrases 

Phrasal terms vary in length. Typically they 
range from about two to six words in length, but 
critically we cannot judge whether a phrase is 
lexical without considering both shorter and longer 
sequences. 

That is, the statistical comparison that needs to 
be made must apply in principle to the entire set of 
word sequences that must be distinguished from 
phrasal terms, including longer sequences, 
subsequences, and overlapping sequences, despite 
the fact that these are not statistically independent 
events. Of the association metrics mentioned thus 
far, only the C-Value method attempts to take 
direct notice of such word sequence information, 
and then only as a modification to the basic 
information provided by frequency. 

Any solution to the problem of variable length 
must enable normalization allowing direct 
comparison of phrases of different length. Ideally, 
the solution would also address the other issues -- 

the independence assumption and the skewed 
distributions typical of natural language data. 

 

2.4 Mutual expectation 

An interesting proposal which seeks to overcome 
the variable-length issue is the mutual expectation 
metric presented in Dias, Guilloré, and Lopes 
(1999) and implemented in the SENTA system 
(Gil and Dias 2003a). In their approach, the 
frequency of a phrase is normalized by taking into 
account the relative probability of each word 
compared to the phrase.  

Dias, Guilloré, and Lopes take as the foundation 
of their approach the idea that the cohesiveness of 
a text unit can be measured by measuring how 
strongly it resists the loss of any component term. 
This is implemented by considering, for any n-
gram, the set of [continuous or discontinuous]  
(n-1)-grams which can be formed by deleting one 
word from the n-gram. A normalized expectation 
for the n-gram is then calculated as follows: 

 
1 2

1 2

([ , ... ])

([ , ... ])

n

n

p w w w

FPE w w w
 

 
where [w1, w2 ... wn] is the phrase being evaluated 
and FPE([w1, w2 ... wn]) is: 
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  +    ∑  

 
where wi is the term omitted from the n-gram. 
 
They then calculate mutual expectation as the 
product of the probability of the n-gram and its 
normalized expectation. 
 This statistic is of interest for two reasons: 
first, it provides a single statistic that can be 
applied to n-grams of any length; second, it is not 
based upon the independence assumption. The core 
statistic, normalized expectation, is essentially 
frequency with a penalty if a phrase contains 
component parts significantly more frequent than 
the phrase itself. 
 It is of course an empirical question how 
well mutual expectation performs (and we shall 
examine this below) but mutual expectation is not 
in any sense a significance test. That is, if we are 
examining a phrase like the east end, the 
conditional probability of east given [__ end]  or of 
end given [__ east]  may be relatively low (since 
other words can appear in that context) and yet the 
phrase might still be very lexicalized if the 
association of both words with this context were 
significantly stronger than their association for 
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other phrases. That is, to the extent that phrasal 
terms follow the regular patterns of the language, a 
phrase might have a relatively low conditional 
probability (given the wide range of alternative 
phrases following the same basic linguistic 
patterns) and thus have a low mutual expectation 
yet still occur far more often than one would 
expect from chance. 
   In short, the fundamental insight -- assessing 
how tightly each word is bound to a phrase -- is 
worth adopting. There is, however, good reason to 
suspect that one could improve on this method by  
assessing relative statistical significance for each 
component word without making the independence 
assumption. In the heuristic to be outlined below, a 
nonparametric method is proposed. This method is 
novel: not a modification of mutual expectation, 
but a new technique based on ranks in a Zipfian 
frequency distribution. 

2.5 Rank ratios and mutual rank ratios 

This technique can be justified as follows. For 
each component word in the n-gram, we want to 
know whether the n-gram is more probable for that 
word than we would expect given its behavior with 
other words. Since we do not know what the 
expected shape of this distribution is going to be, a 
nonparametric method using ranks is in order, and 
there is some reason to think that frequency rank 
regardless of n-gram size will be useful. In 
particular, Ha, Sicilia-Garcia, Ming and Smith 
(2002) show that Zipf's law can be extended to the 
combined frequency distribution of n-grams of 
varying length up to rank 6, which entails that the 
relative rank of words in such a combined 
distribution provide a useful estimate of relative 
probability. The availability of new techniques for 
handling large sets of n-gram data (e.g. Gil & Dias 
2003b) make this a relatively feasible task. 

Thus, given a phrase like east end, we can rank 
how often __ end appears with east in comparison 
to how often other phrases appear with east.That 
is, if {__ end, __side, the __, toward the __, etc.} is 
the set of (variable length) n-gram contexts 
associated with east (up to a length cutoff), then 
the actual rank of __ end is the rank we calculate 
by ordering all contexts by the frequency with 
which the actual word appears in the context. 

We also rank the set of contexts associated with 
east by their overall corpus frequency. The 
resulting ranking is the expected rank of __ end 
based upon how often the competing contexts 
appear regardless of which word fills the context. 

The rank ratio (RR) for the word given the 
context can then be defined as: 

 

RR(word,context)  = 
( )
( )

,

,

ER word context

AR word context
 

 
where ER is the expected rank and AR is the actual 
rank. A normalized, or mutual rank ratio for the n-
gram can then be defined as 
 

2 11, [__ .... ] 2, [ __ ... ] , [ 1, 2... _]( )* ( )...* ( )n nw w w w n w wn RR w RR w RR w
 
The motivation for this method is that it attempts 
to address each of the major issues outlined above 
by providing a nonparametric metric which does 
not make the independence assumption and allows 
scores to be compared across n-grams of different 
lengths. 
    A few notes about the details of the method are 
in order. Actual ranks are assigned by listing all the 
contexts associated with each word in the corpus, 
and then ranking contexts by word, assigning the 
most frequent context for word n the rank 1, next 
next most frequent rank 2, etc. Tied ranks are 
given the median value for the ranks occupied by 
the tie, e.g., if two contexts with the same 
frequency would occupy ranks 2 and 3, they are 
both assigned rank 2.5. Expected ranks are 
calculated for the same set of contexts using the 
same algorithm, but substituting the unconditional 
frequency of the (n-1)-gram for the gram's 
frequency with the target word.1 

3 Data sources and methodology 

The Lexile Corpus is a collection of documents 
covering a wide range of reading materials such as 
a child might encounter at school, more or less 
evenly divided by Lexile (reading level) rating to 
cover all levels of textual complexity from 
kindergarten to college. It contains in excess of 
400 million words of running text, and has been 
made available to the Educational Testing Service 
under a research license by Metametrics 
Corporation. 

This corpus was tokenized using an in-house 
tokenization program, toksent,  which treats most 
punctuation marks as separate tokens but  makes 
single tokens out of common abbreviations, 
numbers like 1,500, and words like o'clock. It 
should be noted that some of the association 
measures are known to perform poorly if 
punctuation marks and common stopwords are 

                                                      
1 In this study the rank-ratio method was tested for 

bigrams and trigrams only, due to the small number of  
WordNet gold standard items greater than two words in 
length. Work in progress will assess the metrics' 
performance on n-grams of orders four through six.  
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included; therefore, n-gram sequences containing 
punctuation marks and the 160 most frequent word 
forms were excluded from the analysis so as not to 
bias the results against them. Separate lists of 
bigrams and trigrams were extracted and ranked 
according to several standard word association 
metrics. Rank ratios were calculated from a 
comparison set consisting of all contexts derived 
by this method from bigrams and trigrams, e.g., 
contexts of the form word1__, ___word2, 
___word1 word2, word1 ___ word3, and word1 
word2 ___.2 

Table 1 lists the standard lexical association 
measures tested in section four3. 
The logical evaluation method for phrasal term 
identification is to rank n-grams using each metric 
and then compare the results against a gold 
standard containing known phrasal terms. Since 
Schone and Jurafsky (2001) demonstrated similar 
results whether WordNet or online dictionaries 
were used as a gold standard, WordNet was 
selected. Two separate lists were derived 
containing two- and three-word phrases. The 
choice of WordNet as a gold standard tests ability 
to predict general dictionary headwords rather than 
technical terms, appropriate since the source 
corpus consists of nontechnical text. 

Following Schone & Jurafsky (2001), the bigram 
and trigram lists were ranked by each statistic then 
scored against the gold standard, with results 
evaluated using a figure of merit (FOM) roughly 
characterizable as the area under the precision-
recall curve. The formula is: 

1

1 k

i
i

P
K =

∑  

where Pi (precision at i) equals i/Hi, and Hi is the 
number of n-grams into the ranked n-gram list 
required to find the i th correct phrasal term. 

It should be noted, however, that one of the most 
pressing issues with respect to phrasal terms is that 
they display the same skewed, long-tail 
distribution as ordinary words, with a large 

                                                      
2 Excluding the 160 most frequent words prevented 

evaluation of a subset of phrasal terms such as verbal 
idioms like act up or go on. Experiments with smaller 
corpora during preliminary work indicated that this 
exclusion did not appear to bias the results. 

3 Schone & Jurafsky's results indicate similar results 
for log-likelihood & T-score, and strong parallelism 
among information-theoretic measures such as Chi-
Squared, Selectional Association (Resnik 1996), 
Symmetric Conditional Probability (Ferreira and Pereira 
Lopes, 1999) and the Z-Score (Smadja 1993). Thus it 
was not judged necessary to replicate results for all 
methods covered in Schone & Jurafsky (2001). 

proportion of the total displaying very low 
frequencies. This can be measured by considering  

 

Table 1. Some Lexical Association Measures 

the overlap between WordNet and the Lexile 
corpus. A list of 53,764 two-word phrases were 
extracted from WordNet, and 7,613 three-word 
phrases. Even though the Lexile corpus is quite 
large -- in excess of 400 million words of running 
text -- only 19,939 of the two-word phrases and 

                                                      
4 Due to the computational cost of calculating C-

Values over a very large corpus, C-Values were 
calculated over bigrams and trigrams only. More 
sophisticated versions of the C-Value method such as 
NC-values were not included as these incorporate 
linguistic knowledge and thus fall outside the scope of 
the study. 

METRIC FORMULA 
Frequency 
(Guiliano, 1964) x yf  

Pointwise 
Mutual 
Information 
[PMI] 
(Church & 
Hanks, 1990) 
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where α is the candidate string 
f(α) is its frequency in the corpus 
Tα is the set of candidate terms that   
     contain α 
P(Tα) is the number of these  
     candidate terms 
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1,700 of the three-word phrases are attested in the 
Lexile corpus. 14,045 of the 19,939 attested two-
word phrases occur at least 5 times, 11,384 occur 
at least 10 times, and only 5,366 occur at least 50 
times; in short, the strategy of cutting off the data 
at a threshold sacrifices a large percent of  total 
recall. Thus one of the issues that needs to be 
addressed is the accuracy with which lexical 
association measures can be extended to deal with 
relatively sparse data, e.g., phrases that appear less 
than ten times in the source corpus. 

A second question of interest is the effect of 
filtering for particular linguistic patterns. This is 
another method of prescreening the source data 
which can improve precision but damage recall. In 
the evaluation bigrams were classified as N-N and 
A-N sequences using a dictionary template, with 
the expected effect. For instance, if the WordNet 
two word phrase list is limited only to those which 
could be interpreted as noun-noun or adjective 
noun sequences, N>=5, the total set of WordNet 
terms that can be retrieved is reduced to 9,757..  

4 Evaluation 

Schone and Jurafsky's (2001) study examined 
the performance of various association metrics on  
a corpus of 6.7 million words with a cutoff of 
N=10. The resulting n-gram set had a maximum 
recall of 2,610 phrasal terms from the WordNet 
gold standard, and found the best figure of merit 
for any of the association metrics even with 
linguistic filterering to be 0.265. On the 
significantly larger Lexile corpus N must be set 
higher (around N=50) to make the results 
comparable. The statistics were also calculated for 
N=50, N=10 and N=5 in order to see what the 
effect of including more (relatively rare) n-grams 
would be on the overall performance for each 
statistic. Since many of the statistics are defined 
without interpolation only for bigrams, and the 
number of WordNet trigrams at N=50 is very 
small, the full set of scores were only calculated on 
the bigram data. For trigrams, in addition to rank 
ratio and frequency scores, extended pointwise 
mutual  information and true mutual information 
scores were calculated using the formulas log 
(Pxyz/PxPy Pz)) and Pxyz log (Pxyz/PxPy Pz)). Also, 
since the standard lexical association metrics 
cannot be calculated across different n-gram types, 
results for bigrams and trigrams are presented 
separately for purposes of comparison. 

The results are are shown in Tables 2-5. Two 
points should should be noted in particular. First, 
the rank ratio statistic outperformed the other 
association measures tested across the board. Its 
best performance, a score of 0.323 in the part of 
speech filtered condition with N=50, outdistanced 

METRIC POS Filtered Unfiltered 
RankRatio 0.323 0.196 
Mutual 

Expectancy 
0.144 0.069 

TMI 0.209 0.096 
PMI 0.287 0.166 
Chi-sqr 0.285 0.152 
T-Score 0.154 0.046 
C-Values 0.065 0.048 
Frequency 0.130 0.044 

Table 2. Bigram Scores for Lexical Association  
Measures with N=50 

METRIC POS Filtered Unfiltered 
RankRatio 0.218 0.125 
MutualExpectation 0.140 0.071 
TMI 0.150 0.070 
PMI 0.147 0.065 
Chi-sqr 0.145 0.065 
T-Score 0.112 0.048 
C-Values 0.096 0.036 
Frequency 0.093 0.034 

Table 3. Bigram Scores for Lexical Association  
Measures with N=10 

METRIC POS Filtered Unfiltered 
RankRatio 0.188 0.110 
Mutual 

Expectancy 
0.141 0.073 

TMI 0.131 0.063 
PMI 0.108 0.047 
Chi-sqr 0.107 0.047 
T-Score 0.098 0.043 
C-Values 0.084 0.031 
Frequency 0.081 0.021 

Table 4. Bigram Scores for Lexical Association  
Measures with N=5 

METRIC N=50 N=10 N=5 

RankRatio 0.273 0.137 0.103 

PMI 0.219 0.121 0.059 

TMI 0.137 0.074 0.056 

Frequency 0.089 0.047 0.035 

    

Table 5. Trigram scores for Lexical Association 
Measures at N=50, 10 and 5 without linguistic 
filtering. 
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the best score  in Schone & Jurafsky's study 
(0.265), and when large numbers of rare bigrams 
were included, at N=10 and N=5, it continued to 
outperform the other measures. Second, the results 
were generally consistent with those reported in 
the literature, and confirmed Schone & Jurafsky's 
observation that the information-theoretic 
measures (such as mutual information and chi-
squared) outperform frequency-based measures 
(such as the T-score and raw frequency.)5 

4.1 Discussion  

One of the potential strengths of this method is 
that is allows for a comparison between n-grams of 
varying lengths. The distribution of scores for the 
gold standard bigrams and trigrams appears to bear 
out the hypothesis that the numbers are comparable 
across n-gram length. Trigrams constitute 
approximately four percent of the gold standard 
test set, and appear in roughly the same percentage 
across the rankings; for instance, they consistute 
3.8% of the top 10,000 ngrams ranked by mutual 
rank ratio. Comparison of trigrams with their 
component bigrams also seems consistent with this 
hypothesis; e.g., the bigram Booker T. has a higher 
mutual rank ratio than the trigram Booker T. 
Washington, which has a higher rank that the 
bigram T. Washington. These results suggest that it 
would be worthwhile to examine how well the 
method succeeds at ranking n-grams of varying 
lengths, though the limitations of the current 
evaluation set to bigrams and trigrams prevented a 
full evaluation of its effectiveness across n-grams 
of varying length. 

The results of this study appear to support the 
conclusion that the Mutual Rank Ratio performs 
notably better than other association measures on 
this task. The performance is superior to the next-
best measure when N is set as low as 5 (0.110 
compared to 0.073 for Mutual Expectation and 
0.063 for true mutual information and less than .05 
for all other metrics). While this score is still fairly 
low, it indicates that the measure performs 
relatively well even when large numbers of low-
probability n-grams are included. An examination 
of the n-best list for the Mutual Rank ratio at N=5 
supports this contention.  

The top 10 bigrams are:  

                                                      
5 Schone and Jurafsky's results differ from Krenn & 

Evert (2001)'s results, which indicated that frequency 
performed better than the statistical measures in almost 
every case. However, Krenn and Evert's data consisted 
of n-grams preselected to fit particular collocational 
patterns. Frequency-based metrics seem to be 
particularly benefited by linguistic prefiltering. 

Julius Caesar, Winston Churchill, potato chips, peanut 
butter, Frederick Douglass, Ronald Reagan, Tia 
Dolores, Don Quixote, cash register, Santa Claus 

     At ranks 3,000 to 3,010, the bigrams are:  

Ted Williams, surgical technicians, Buffalo Bill, drug 
dealer, Lise Meitner, Butch Cassidy, Sandra Cisneros, 
Trey Granger,  senior prom, Ruta Skadi 

At ranks 10,000 to 10,010, the bigrams are: 

egg beater, sperm cells, lowercase letters, methane gas, 
white settlers, training program, instantly recognizable, 
dried beef, television screens, vienna sausages 

In short, the n-best list returned by the mutual 
rank ratio statistic appears to consist primarily of 
phrasal terms far down the list, even when N is as 
low as 5. False positives are typically: (i) 
morphological variants of established phrases; (ii) 
bigrams that are part of longer phrases, such as 
cream sundae (from ice cream sundae); (iii) 
examples of highly productive constructions such 
as an artist, three categories or January 2. 

The results for trigrams are relatively sparse and 
thus less conclusive, but are consistent with the 
bigram results: the mutual rank ratio measure 
performs best, with top ranking elements 
consistently being phrasal terms.  

Comparison with the n-best list for other metrics 
bears out the qualitative impression that the rank 
ratio is performing better at selecting phrasal terms 
even without filtering. The top ten bigrams for the 
true mutual information metric at N=5 are: 

a little, did not, this is, united states, new york, know 
what, a good, a long, a moment, a small 

Ranks 3000 to 3010 are: 

waste time, heavily on, earlier than, daddy said, ethnic 
groups, tropical rain, felt sure, raw materials, gold 
medals, gold rush 

Ranks 10,000 to 10,010 are: 

quite close, upstairs window, object is, lord god, private 
schools, nat turner, fire going, bering sea,little higher, 
got lots 

The behavior is consistent with known weaknesses 
of true mutual information -- its tendency to 
overvalue frequent forms.  

Next, consider the n-best lists for log-
likelihood at N=5. The top ten n-grams are: 

sheriff poulson, simon huggett, robin redbreast, eric 
torrosian, colonel hillandale, colonel sapp, nurse 
leatheran, st. catherines, karen torrio, jenny yonge 

N-grams 3000 to 3010 are: 

comes then, stuff who, dinner get, captain see, tom see, 
couple get, fish see, picture go, building go, makes will, 
pointed way 
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N-grams 10000 to 10010 are: 

sayings is, writ this, llama on, undoing this, dwahro did, 
reno on, squirted on, hardens like, mora did, millicent 
is, vets did 

Comparison thus seems to suggest that if anything 
the quality of the mutual rank ratio results are 
being understated by the evaluation metric, as the 
metric is returning a large number of phrasal terms 
in the higher portion of the n-best list that are 
absent from the gold standard. 

Conclusion 

This study has proposed a new method for 
measuring strength of lexical association for 
candidate phrasal terms based upon the use of 
Zipfian ranks over a frequency distribution 
combining n-grams of varying length. The method 
is related in general philosophy of Mutual 
Expectation, in that it assesses the strenght of 
connection for each word to the combined phrase; 
it differs by adopting a nonparametric measure of 
strength of association. Evaluation indicates that 
this method may outperform standard lexical 
association measures, including mutual 
information, chi-squared, log-likelihood, and the 
T-score. 
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Abstract

This paper describes a novel system
for acquiring adjectival subcategorization
frames (SCFs) and associated frequency
information from English corpus data.
The system incorporates a decision-tree
classifier for 30 SCF types which tests
for the presence of grammatical relations
(GRs) in the output of a robust statisti-
cal parser. It uses a powerful pattern-
matching language to classify GRs into
frames hierarchically in a way that mirrors
inheritance-based lexica. The experiments
show that the system is able to detect SCF

types with 70% precision and 66% recall
rate. A new tool for linguistic annotation
of SCFs in corpus data is also introduced
which can considerably alleviate the pro-
cess of obtaining training and test data for
subcategorization acquisition.

1 Introduction

Research into automatic acquisition of lexical in-
formation from large repositories of unannotated
text (such as the web, corpora of published text,
etc.) is starting to produce large scale lexical re-
sources which include frequency and usage infor-
mation tuned to genres and sublanguages. Such
resources are critical for natural language process-
ing (NLP), both for enhancing the performance of

∗Part of this research was conducted while this author was
at the University of Edinburgh Laboratory for Foundations of
Computer Science.

state-of-art statistical systems and for improving the
portability of these systems between domains.

One type of lexical information with particular
importance for NLP is subcategorization. Access
to an accurate and comprehensive subcategoriza-
tion lexicon is vital for the development of success-
ful parsing technology (e.g. (Carroll et al., 1998b),
important for many NLP tasks (e.g. automatic verb
classification (Schulte im Walde and Brew, 2002))
and useful for any application which can benefit
from information about predicate-argument struc-
ture (e.g. Information Extraction (IE) (Surdeanu et
al., 2003)).

The first systems capable of automatically learn-
ing a small number of verbal subcategorization
frames (SCFs) from English corpora emerged over
a decade ago (Brent, 1991; Manning, 1993). Subse-
quent research has yielded systems for English (Car-
roll and Rooth, 1998; Briscoe and Carroll, 1997; Ko-
rhonen, 2002) capable of detecting comprehensive
sets of SCFs with promising accuracy and demon-
strated success in application tasks (e.g. (Carroll et
al., 1998b; Korhonen et al., 2003)), besides systems
for a number of other languages (e.g. (Kawahara and
Kurohashi, 2002; Ferrer, 2004)).

While there has been considerable research into
acquisition of verb subcategorization, we are not
aware of any systems built for adjectives. Al-
though adjectives are syntactically less multivalent
than verbs, and although verb subcategorization dis-
tribution data appears to offer the greatest potential
boost in parser performance, accurate and compre-
hensive knowledge of the many adjective SCFs can
improve the accuracy of parsing at several levels
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(from tagging to syntactic and semantic analysis).
Automatic SCF acquisition techniques are particu-
larly important for adjectives because extant syntax
dictionaries provide very limited coverage of adjec-
tive subcategorization.

In this paper we propose a method for automatic
acquisition of adjectival SCFs from English corpus
data. Our method has been implemented using a
decision-tree classifier which tests for the presence
of grammatical relations (GRs) in the output of the
RASP (Robust Accurate Statistical Parsing) system
(Briscoe and Carroll, 2002). It uses a powerful task-
specific pattern-matching language which enables
the frames to be classified hierarchically in a way
that mirrors inheritance-based lexica. As reported
later, the system is capable of detecting 30 SCFs
with an accuracy comparable to that of best state-of-
art verbal SCF acquisition systems (e.g. (Korhonen,
2002)).

Additionally, we present a novel tool for linguistic
annotation of SCFs in corpus data aimed at alleviat-
ing the process of obtaining training and test data for
subcategorization acquisition. The tool incorporates
an intuitive interface with the ability to significantly
reduce the number of frames presented to the user
for each sentence.

We discuss adjectival subcategorization in sec-
tion 2 and introduce the system for SCF acquisition
in section 3. Details of the annotation tool and the
experimental evaluation are supplied in section 4.
Section 5 provides discussion on our results and fu-
ture work, and section 6 summarises the paper.

2 Adjectival Subcategorization

Although the number of SCF types for adjectives
is smaller than the number reported for verbs
(e.g. (Briscoe and Carroll, 1997)), adjectives never-
theless exhibit rich syntactic behaviour. Besides the
common attributive and predicative positions there
are at least six further positions in which adjec-
tives commonly occur (see figure 1). Adjectives in
predicative position can be further classified accord-
ing to the nature of the arguments with which they
combine — finite and non-finite clauses and noun
phrases, phrases with and without complementisers,
etc. — and whether they occur as subject or ob-
ject. Additional distinctions can be made concern-

Attributive “The young man”
Predicative “He is young”
Postpositive “Anyone [who is] young can do it”
Predeterminer “such a young man”;

“so young a man”
Fused modifier-head “the younger of them”; “the young”
Predicative adjunct “he died young”
Supplementive clause “Young, he was plain

in appearance”
Contingent clause “When young, he was lonely”

Figure 1: Fundamental adjectival frames

ing such features as the mood of the complement
(mandative, interrogative, etc.), preferences for par-
ticular prepositions and whether the subject is extra-
posed.

Even ignoring preposition preference, there are
more than 30 distinguishable adjectival SCFs. Some
fairly extensive frame sets can be found in large syn-
tax dictionaries, such as COMLEX (31 SCFs) (Wolff
et al., 1998) and ANLT (24 SCFs) (Boguraev et al.,
1987). While such resources are generally accu-
rate, they are disappointingly incomplete: none of
the proposed frame sets in the well-known resources
subsumes the others, the coverage of SCF types for
individual adjectives is low, and (accurate) informa-
tion on the relative frequency of SCFs for each ad-
jective is absent.

The inadequacy of manually-created dictionaries
and the difficulty of adequately enhancing and main-
taining the information by hand was a central moti-
vation for early research into automatic subcatego-
rization acquisition. The focus heretofore has re-
mained firmly on verb subcategorization, but this is
not sufficient, as countless examples show. Knowl-
edge of adjectival subcategorization can yield fur-
ther improvements in tagging (e.g. distinguishing
between “to” as an infinitive marker and as a true
preposition), parsing (e.g. distinguishing between
PP-arguments and adjuncts), and semantic analysis.
For example, if John is both easy and eager to please
then we know that he is the recipient of pleasure in
the first instance and desirous of providing it in the
second, but a computational system cannot deter-
mine this without knowledge of the subcategoriza-
tion of the two adjectives. Likewise, a natural lan-
guage generation system can legitimately apply the
extraposition transformation to the first case, but not
to the second: It is “easy to please John”, but not
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“eager” to do so, at least if “it” be expletive. Similar
examples abound.

Many of the difficulties described in the litera-
ture on acquiring verb subcategorization also arise
in the adjectival case. The most apparent is data
sparsity: among the 100M-word British National
Corpus (BNC) (Burnard, 1995), the RASP tools find
124,120 distinct adjectives, of which 70,246 occur
only once, 106,464 fewer than ten times and 119,337
fewer than a hundred times. There are fewer than
1,000 adjectives in the corpus which have more than
1,000 occurrences. Both adjective and SCF frequen-
cies have Zipfian distributions; consequently, even
the largest corpora may contain only single instances
of a particular adjective-SCF combination, which is
generally insufficient for classification.

3 Description of the System

Besides focusing on adjectives, our approach to SCF

acquisition differs from earlier work in a number
of ways. A common strategy in existing systems
(e.g. (Briscoe and Carroll, 1997)) is to extract SCFs
from parse trees, introducing an unnecessary depen-
dence on the details of a particular parser. In our ap-
proach the patterns are extracted from GRs — repre-
sentations of head-complement relations which are
designed to be largely parser-independent — mak-
ing the techniques more widely applicable and al-
lowing classification to operate at a higher level.
Further, most existing systems work by classifying
corpus occurrences into individual, mutually inde-
pendent SCFs. We adopt instead a hierarchical ap-
proach, viewing frames that share features as de-
scendants of a common parent frame. The benefits
are severalfold: specifying each feature only once
makes the system both more efficient and easier to
understand and maintain, and the multiple inheri-
tance hierarchy reflects the hierarchy of lexical types
found in modern grammars where relationships be-
tween similar frames are represented explicitly1 .

Our acquisition process consists of two main
steps: 1) extracting GRs from corpus data, and 2)
feeding the GRs as input to the classifier which in-
crementally matches parts of the GR sets to decide
which branches of a decision-tree to follow. The

1Compare the cogent argument for a inheritance-based lexi-
con in (Flickinger and Nerbonne, 1992), much of which can be
applied unchanged to the taxonomy of SCFs.

dependent

mod arg mod arg aux conj

subj or dobj
ncmod xmod cmod detmod

subj comp

ncsubj xsubj csubj obj clausal

dobj obj2 iobj xcomp ccomp

Figure 2: The GR hierarchy used by RASP

leaves of the tree correspond to SCFs. The details of
these two steps are provided in the subsequent sec-
tions, respectively2 .

3.1 Obtaining Grammatical Relations

Attempts to acquire verb subcategorization have
benefited from increasingly sophisticated parsers.
We have made use of the RASP toolkit (Briscoe and
Carroll, 2002) — a modular statistical parsing sys-
tem which includes a tokenizer, tagger, lemmatiser,
and a wide-coverage unification-based tag-sequence
parser. The parser has several modes of operation;
we invoked it in a mode in which GRs with asso-
ciated probabilities are emitted even when a com-
plete analysis of the sentence could not be found. In
this mode there is wide coverage (over 98% of the
BNC receives at least a partial analysis (Carroll and
Briscoe, 2002)) which is useful in view of the in-
frequent occurrence of some of the SCFs, although
combining the results of competing parses may in
some cases result in an inconsistent or misleading
combination of GRs.

The parser uses a scheme of GRs between lemma-
tised lexical heads (Carroll et al., 1998a; Briscoe et
al., 2002). The relations are organized as a multiple-
inheritance subsumption hierarchy where each sub-
relation extends the meaning, and perhaps the argu-
ment structure, of its parents (figure 2). For descrip-
tions and examples of each relation, see (Carroll et
al., 1998a).

The dependency relationships which the GRs em-
body correspond closely to the head-complement

2In contrast to almost all earlier work, there was no filtering
stage involved in SCF acquisition. The classifier was designed
to operate with high precision, so filtering was less necessary.
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Figure 3: Feature structure for SCF

adj-obj-for-to-inf

(|These:1_DD2| |example+s:2_NN2| |of:3_IO|
|animal:4_JJ| |senses:5_NN2| |be+:6_VBR|
|relatively:7_RR| |easy:8_JJ| |for:9_IF|
|we+:10_PPIO2| |to:11_TO| |comprehend:12_VV0|)

...
xcomp(_ be+[6] easy:[8])
xmod(to[11] be+[6] comprehend:[12])

ncsubj(be+[6] example+s[2] _)
ncmod(for[9] easy[8] we+[10])

ncsubj(comprehend[12] we+[10], _)
...

Figure 4: GRs from RASP for adj-obj-for-to-inf

structure which subcategorization acquisition at-
tempts to recover, which makes GRs ideal input to
the SCF classifier. Consider the arguments of “easy”
in the sentence:

These examples of animal senses are rel-
atively easy for us to comprehend as they
are not too far removed from our own ex-
perience.

According to the COMLEX classification, this is an
example of the frame adj-obj-for-to-inf, shown
in figure 3, (using AVM notation in place of COMLEX

s-expressions). Part of the output of RASP for this
sentence (the full output includes 87 weighted GRs)
is shown in figure 43.

Each instantiated GR in figure 4 corresponds to
one or more parts of the feature structure in figure
3. xcomp( be[6] easy[8]) establishes be[6] as
the head of the VP in which easy[8] occurs as a
complement. The first (PP)-complement is “for us”,
as indicated by ncmod(for[9] easy[8] we+[10]),
with “for” as PFORM and we+ (“us”) as NP. The
second complement is represented by xmod(to[11]

be+[6] comprehend[12]): a to-infinitive VP. The
NP headed by “examples” is marked as the subject
of the frame by ncsubj(be[6] examples[2]), and
ncsubj(comprehend[12] we+[10]) corresponds to
the coindexation marked by 3 : the subject of the

3The format is slightly more complicated than that shown
in (Carroll et al., 1998a): each argument that corresponds to a
word consists of three parts: the lexeme, the part of speech tag,
and the position (index) of the word in the sentence.

xcomp(_, [*;1;be-verb], ˜)

xmod([to;*;to], 1, [*;2;vv0])

ncsubj(1, [*;3;noun/pronoun], _)

ncmod([for;*;if], ˜, [*;4;noun/pronoun])

ncsubj(2, 4)

Figure 5: A pattern to match the frame
adj-obj-for-to-inf

VP is the NP of the PP. The only part of the feature
structure which is not represented by the GRs is coin-
dexation between the omitted direct object 1 of the
VP-complement and the subject of the whole clause.

3.2 SCF Classifier

3.2.1 SCF Frames

We used for our classifier a modified version of
the fairly extensive COMLEX frameset, including 30
SCFs. The COMLEX frameset includes mutually in-
consistent frames, such as sentential complement
with obligatory complementiser that and sentential
complement with optional that. We modified the
frameset so that an adjective can legitimately instan-
tiate any combination of frames, which simplifies
classification. We also added simple-predicative

and attributive SCFs to the set, since these ac-
count for a substantial proportion of frame instances.
Finally, frames which could only be distinguished
by information not retained in the GRs scheme of the
current version of the shallow parser were merged
(e.g. the COMLEX frames adj-subj-to-inf-rs

(“She was kind to invite me”) and adj-to-inf (“She
was able to climb the mountain”)).

3.2.2 Classifier

The classifier operates by attempting to match the
set of GRs associated with each sentence against var-
ious patterns. The patterns were developed by a
combination of knowledge of the GRs and examin-
ing a set of training sentences to determine which re-
lations were actually emitted by the parser for each
SCF. The data used during development consisted
of the sentences in the BNC in which one of the 23
adjectives4 given as examples for SCFs in (Macleod

4The adjectives used for training were: able, anxious, ap-
parent, certain, convenient, curious, desirable, disappointed,
easy, happy, helpful, imperative, impractical, insistent, kind,
obvious, practical, preferable, probable, ridiculous, unaware,
uncertain and unclear.
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et al., 1998) occur.
In our pattern matching language a pattern is a

disjunction of sets of partially instantiated GRs with
logic variables (slots) in place of indices, augmented
by ordering constraints that restrict the possible in-
stantiations of slots. A match is considered success-
ful if the set of GRs can be unified with any of the
disjuncts. Unification of a sentence-relation and a
pattern-relation occurs when there is a one-to-one
correspondence between sentence elements and pat-
tern elements that includes a mapping from slots to
indices (a substitution), and where atomic elements
in corresponding positions share a common subtype.

Figure 5 shows a pattern for matching the SCF

adj-obj-for-to-inf. For a match to suc-
ceed there must be GRs associated with the sen-
tence that match each part of the pattern. Each ar-
gument matches either anything at all (*), the “cur-
rent” adjective (˜), an empty GR argument ( ), a
[word;id;part-of-speech] 3-tuple or a nu-
meric id. In a successful match, equal ids in different
parts of the pattern must match the same word posi-
tion, and distinct ids must match different positions.

The various patterns are arranged in a tree, where
a parent node contains the elements common to all
of its children. This kind of once-only representa-
tion of particular features, together with the succes-
sive refinements provided by child nodes reflects the
organization of inheritance-based lexica. The inher-
itance structure naturally involves multiple inheri-
tance, since each frame typically includes multiple
features (such as the presence of a to-infinitive

complement or an expletive subject argument) inher-
ited from abstract parent classes, and each feature is
instantiated in several frames.

The tree structure also improves the efficiency of
the pattern matching process, which then occurs in
stages: at each matching node the classifier attempts
to match a set of relations with each child pattern
to yield a substitution that subsumes the substitution
resulting from the parent match.

Both the patterns and the pattern language itself
underwent successive refinements after investigation
of the performance on training data made it increas-
ingly clear what sort of distinctions were useful to
express. The initial pattern language had no slots; it
was easy to understand and implement, but insuffi-
ciently expressive. The final refinement was the ad-

unspecified 285 improbable 350
unsure 570 doubtful 1147
generous 2052 sure 13591
difficult 18470 clear 19617
important 33303

Table 1: Test adjectives and frequencies in the BNC

dition of ordering constraints between instantiated
slots, which are indispensable for detecting, e.g., ex-
traposition.

4 Experimental Evaluation

4.1 Data

In order to evaluate the system we selected a set of
9 adjectives which between them could instantiate
all of the frames. The test set was intentionally kept
fairly small for these first experiments with adjec-
tival SCF acquisition so that we could carry out a
thorough evaluation of all the test instances. We ex-
cluded the adjectives used during development and
adjectives with fewer than 200 instances in the cor-
pus. The final test set, together with their frequen-
cies in the tagged version of the BNC, is shown in ta-
ble 1. For each adjective we extracted 200 sentences
(evenly spaced throughout the BNC) which we pro-
cessed using the SCF acquisition system described in
the previous section.

4.2 Method

4.2.1 Annotation Tool and Gold Standard

Our gold standard was human-annotated data.
Two annotators associated a SCF with each sen-
tence/adjective pair in the test data. To alleviate the
process we developed a program which first uses re-
liable heuristics to reduce the number of SCF choices
and then allows the annotator to select the preferred
choice with a single mouse click in a browser win-
dow. The heuristics reduced the average number
of SCFs presented alongside each sentence from 30
to 9. Through the same browser interface we pro-
vided annotators with information and instructions
(with links to COMLEX documentation), the ability
to inspect and review previous decisions and deci-
sion summaries5 and an option to record that partic-

5The varying number of SCFs presented to the user and the
ability to revisit previous decisions precluded accurate measure-
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Figure 6: Sample classification screen for web an-
notation tool

ular sentences could not be classified (which is use-
ful for further system development, as discussed in
section 5). A screenshot is shown in figure 6. The
resulting annotation revealed 19 of the 30 SCFs in
the test data.

4.2.2 Evaluation Measures

We use the standard evaluation metrics: type and
token precision, recall and F-measure. Token recall
is the proportion of annotated (sentence, frame) pairs
that the system recovered correctly. Token precision
is the proportion of classified (sentence, frame) pairs
that were correct. Type precision and type recall are
analogously defined for (adjective, frame) pairs. The
F-measure (β = 1) is a weighted combination of
precision and recall.

4.3 Results

Running the system on the test data yielded the re-
sults summarised in table 2. The greater expres-
siveness of the final pattern language resulted in a
classifier that performed better than the “regression”
versions which ignored either ordering constraints,
or both ordering constraints and slots. As expected,
removing features from the classifier translated di-
rectly into degraded accuracy. The performance of
the best classifier (67.8% F-measure) is quite simi-
lar to that of the best current verbal SCF acquisition
systems (e.g. (Korhonen, 2002)).

Results for individual adjectives are given in table
3. The first column shows the number of SCFs ac-
quired for each adjective, ranging from 2 for unspec-

ments of inter-annotator agreement, but this was judged less im-
portant than the enhanced ease of use arising from the reduced
set of choices.

Type performance
System Precision Recall F

Final 69.6 66.1 67.8
No order constraints 67.3 62.7 64.9

No slots 62.7 51.4 56.5

Token performance
System Precision Recall F

Final 63.0 70.5 66.5
No order constraints 58.8 68.3 63.2

No slots 58.3 67.6 62.6

Table 2: Overall performance of the classifier and of
regression systems with restricted pattern-matching

ified to 11 for doubtful. Looking at the F-measure,
the best performing adjectives are unspecified, diffi-
cult and sure (80%) and the worst performing unsure
(50%) and and improbable (60%).

There appears to be no obvious connection be-
tween performance figures and the number of ac-
quired SCF types; differences are rather due to the
difficulty of detecting individual SCF types — an is-
sue directly related to data sparsity.

Despite the size of the BNC, 5 SCFs were not
seen at all, either for the test adjectives or for any
others. Frames involving to-infinitive complements
were particularly rare: 4 such SCFs had no exam-
ples in the corpus and a further 3 occurred 5 times or
fewer in the test data. It is more difficult to develop
patterns for SCFs that occur infrequently, and the few
instances of such SCFs are unlikely to include a set
of GRs that is adequate for classification. The ef-
fect on the results was clear: of the 9 SCFs which
the classifier did not correctly recognise at all, 4 oc-
curred 5 times or fewer in the test data and a further
2 occurred 5–10 times.

The most common error made by the clas-
sifier was to mistake a complex frame (e.g.
adj-obj-for-to-inf, or to-inf-wh-adj)
for simple-predicative, which subsumes all
such frames. This occurred whenever the GRs emit-
ted by the parser failed to include any information
about the complements of the adjective.

5 Discussion

Data sparsity is perhaps the greatest hindrance both
to recovering adjectival subcategorization and to
lexical acquisition in general. In the future, we plan
to carry out experiments with a larger set of adjec-
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Adjective SCFs Precision Recall F-measure
unspecified 2 66.7 100.0 80.0
generous 3 60.0 100.0 75.0
improbable 5 60.0 60.0 60.0
unsure 6 50.0 50.0 50.0
important 7 55.6 71.4 62.5
clear 8 83.3 62.5 71.4
difficult 8 85.7 75.0 80.0
sure 9 100.0 66.7 80.0
doubtful 11 66.7 54.5 60.0

Table 3: SCF count and classifier performance for
each adjective.

tives using more data (possibly from several corpora
and the web) to determine how severe this problem
is for adjectives. One possible way to address the
problem is to smooth the acquired SCF distributions
using SCF “back-off” (probability) estimates based
on lexical classes of adjectives in the manner pro-
posed by (Korhonen, 2002). This helps to correct the
acquired distributions and to detect low frequency
and unseen SCFs.

However, our experiment also revealed other
problems which require attention in the future.
One such is that GRs output by RASP (the ver-
sion we used in our experiments) do not re-
tain certain distinctions which are essential for
distinguishing particular SCFs. For example,
a sentential complement of an adjective with
a that-complementiser should be annotated with
ccomp(that, adjective, verbal-head), but this
relation (with that as the type argument) does not
occur in the parsed BNC. As a consequence the clas-
sifier is unable to distinguish the frame.

Another problem arises from the fact that our cur-
rent classifier operates on a predefined set of SCFs.
The COMLEX SCFs, from which ours were derived,
are extremely incomplete. Almost a quarter (477 of
1931) of sentences were annotated as “undefined”.
For example, while there are SCFs for sentential
and infinitival complement in subject position with
what6, there is no SCF for the case with a what-
prefixed complement in object position, where the
subject is an NP. The lack is especially perplexing,
because COMLEX does include the corresponding
SCFs for verbs. There is a frame for “He wondered

6(adj-subj-what-s: “What he will do is uncertain”;
adj-subj-what-to-inf: “What to do was unclear”), to-
gether with the extraposed versions (extrap-adj-what-s
and extrap-adj-what-to-inf).

what to do” (what-to-inf), but none for “He was
unsure what to do”.

While we can easily extend the current frame-
set by looking for further SCF types from dictio-
naries and from among the corpus occurrences la-
belled by our annotators as unclassified, we also plan
to extend the classifier to automatically induce pre-
viously unseen frames from data. A possible ap-
proach is to use restricted generalization on sets of
GRs to group similar sentences together. General-
ization (anti-unification) is an intersection operation
on two structures which retains the features common
to both; generalization over the sets of GRs associ-
ated with the sentences which instantiate a particular
frame can produce a pattern such as we used for clas-
sification in the experiments described above. This
approach also offers the possibility of associating
confidence levels with each pattern, corresponding
to the degree to which the generalized pattern cap-
tures the features common to the members of the
associated class. It is possible that frames could
be induced by grouping sentences according to the
“best” (e.g. most information-preserving) general-
izations for various combinations, but it is not clear
how this can be implemented with acceptable effi-
ciency.

The hierarchical approach described in this paper
may also helpful in the discovery of new frames:
missing combinations of parent classes can be ex-
plored readily, and it may be possible to combine the
various features in an SCF feature structure to gen-
erate example sentences which a human could then
inspect to judge grammaticality.

6 Conclusion

We have described a novel system for automati-
cally acquiring adjectival subcategorization and as-
sociated frequency information from corpora, along
with an annotation tool for producing training and
test data for the task. The acquisition system, which
is capable of distinguishing 30 SCF types, performs
sophisticated pattern matching on sets of GRs pro-
duced by a robust statistical parser. The informa-
tion provided by GRs closely matches the structure
that subcategorization acquisition seeks to recover.
The figures reported demonstrate the feasibility of
the approach: our classifier achieved 70% type pre-
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cision and 66% type recall on the test data. The dis-
cussion suggests several ways in which the system
may be improved, refined and extended in the fu-
ture.
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Abstract

In this paper, we explore the power of
randomized algorithm to address the chal-
lenge of working with very large amounts
of data. We apply these algorithms to gen-
erate noun similarity lists from 70 million
pages. We reduce the running time from
quadratic to practically linear in the num-
ber of elements to be computed.

1 Introduction

In the last decade, the field of Natural Language Pro-
cessing (NLP), has seen a surge in the use of cor-
pus motivated techniques. Several NLP systems are
modeled based on empirical data and have had vary-
ing degrees of success. Of late, however, corpus-
based techniques seem to have reached a plateau
in performance. Three possible areas for future re-
search investigation to overcoming this plateau in-
clude:
1. Working with large amounts of data (Banko and
Brill, 2001)
2. Improving semi-supervised and unsupervised al-
gorithms.
3. Using more sophisticated feature functions.

The above listing may not be exhaustive, but it is
probably not a bad bet to work in one of the above
directions. In this paper, we investigate the first two
avenues. Handling terabytes of data requires more
efficient algorithms than are currently used in NLP.
We propose a web scalable solution to clustering
nouns, which employs randomized algorithms. In

doing so, we are going to explore the literature and
techniques of randomized algorithms. All cluster-
ing algorithms make use of some distance similar-
ity (e.g., cosine similarity) to measure pair wise dis-
tance between sets of vectors. Assume that we are
givenn points to cluster with a maximum ofk fea-
tures. Calculating the full similarity matrix would
take time complexityn2k. With large amounts of
data, sayn in the order of millions or even billions,
having ann2k algorithm would be very infeasible.
To be scalable, we ideally want our algorithm to be
proportional tonk.

Fortunately, we can borrow some ideas from the
Math and Theoretical Computer Science community
to tackle this problem. The crux of our solution lies
in defining Locality Sensitive Hash (LSH) functions.
LSH functions involve the creation of short signa-
tures (fingerprints) for each vector in space such that
those vectors that are closer to each other are more
likely to have similar fingerprints. LSH functions
are generally based on randomized algorithms and
are probabilistic. We present LSH algorithms that
can help reduce the time complexity of calculating
our distance similarity atrix tonk.

Rabin (1981) proposed the use of hash func-
tions from random irreducible polynomials to cre-
ate short fingerprint representations for very large
strings. These hash function had the nice property
that the fingerprint of two identical strings had the
same fingerprints, while dissimilar strings had dif-
ferent fingerprints with a very small probability of
collision. Broder (1997) first introduced LSH. He
proposed the use of Min-wise independent functions
to create fingerprints that preserved the Jaccard sim-
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ilarity between every pair of vectors. These tech-
niques are used today, for example, to eliminate du-
plicate web pages. Charikar (2002) proposed the
use of random hyperplanes to generate an LSH func-
tion that preserves the cosine similarity between ev-
ery pair of vectors. Interestingly, cosine similarity is
widely used in NLP for various applications such as
clustering.

In this paper, we perform high speed similarity
list creation for nouns collected from a huge web
corpus. We linearize this step by using the LSH
proposed by Charikar (2002). This reduction in
complexity of similarity computation makes it pos-
sible to address vastly larger datasets, at the cost,
as shown in Section 5, of only little reduction in
accuracy. In our experiments, we generate a simi-
larity list for each noun extracted from 70 million
page web corpus. Although the NLP community
has begun experimenting with the web, we know
of no work in published literature that has applied
complex language analysis beyond IR and simple
surface-level pattern matching.

2 Theory

The core theory behind the implementation of fast
cosine similarity calculation can be divided into two
parts: 1. Developing LSH functions to create sig-
natures;2. Using fast search algorithm to find near-
est neighbors. We describe these two components in
greater detail in the next subsections.

2.1 LSH Function Preserving Cosine Similarity

We first begin with the formal definition of cosine
similarity.

Definition: Let u and v be two vectors in ak
dimensional hyperplane. Cosine similarity is de-
fined as the cosine of the angle between them:
cos(θ(u, v)). We can calculatecos(θ(u, v)) by the
following formula:

cos(θ(u, v)) =
|u.v|
|u||v|

(1)

Here θ(u, v) is the angle between the vectorsu
andv measured in radians.|u.v| is the scalar (dot)
product ofu and v, and |u| and |v| represent the
length of vectorsu andv respectively.

The LSH function for cosine similarity as pro-
posed by Charikar (2002) is given by the following
theorem:

Theorem: Suppose we are given a collection of
vectors in ak dimensional vector space (as written as
Rk). Choose a family of hash functions as follows:
Generate a spherically symmetric random vectorr
of unit length from thisk dimensional space. We
define a hash function,hr, as:

hr(u) =
{

1 : r.u ≥ 0
0 : r.u < 0

(2)

Then for vectorsu andv,

Pr[hr(u) = hr(v)] = 1− θ(u, v)
π

(3)

Proof of the above theorem is given by Goemans
and Williamson (1995). We rewrite the proof here
for clarity. The above theorem states that the prob-
ability that a random hyperplane separates two vec-
tors is directly proportional to the angle between the
two vectors (i,e.,θ(u, v)). By symmetry, we have
Pr[hr(u) 6= hr(v)] = 2Pr[u.r ≥ 0, v.r < 0]. This
corresponds to the intersection of two half spaces,
the dihedral angle between which isθ. Thus, we
havePr[u.r ≥ 0, v.r < 0] = θ(u, v)/2π. Proceed-
ing we havePr[hr(u) 6= hr(v)] = θ(u, v)/π and
Pr[hr(u) = hr(v)] = 1 − θ(u, v)/π. This com-
pletes the proof.

Hence from equation 3 we have,

cos(θ(u, v)) = cos((1− Pr[hr(u) = hr(v)])π)
(4)

This equation gives us an alternate method for
finding cosine similarity. Note that the above equa-
tion is probabilistic in nature. Hence, we generate a
large (d) number of random vectors to achieve the
process. Having calculatedhr(u) with d random
vectors for each of the vectorsu, we apply equation
4 to find the cosine distance between two vectors.
As we generate more number of random vectors, we
can estimate the cosine similarity between two vec-
tors more accurately. However, in practice, the num-
ber (d) of random vectors required is highly domain
dependent, i.e., it depends on the value of the total
number of vectors (n), features (k) and the way the
vectors are distributed. Usingd random vectors, we
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can represent each vector by a bit stream of length
d.

Carefully looking at equation 4, we can ob-
serve that Pr[hr(u) = hr(v)] = 1 −
(hamming distance)/d1 . Thus, the above theo-
rem, converts the problem of finding cosine distance
between two vectors to the problem of finding ham-
ming distance between their bit streams (as given by
equation 4). Finding hamming distance between two
bit streams is faster and highly memory efficient.
Also worth noting is that this step could be consid-
ered as dimensionality reduction wherein we reduce
a vector ink dimensions to that ofd bits while still
preserving the cosine distance between them.

2.2 Fast Search Algorithm

To calculate the fast hamming distance, we use the
search algorithm PLEB (Point Location in Equal
Balls) first proposed by Indyk and Motwani (1998).
This algorithm was further improved by Charikar
(2002). This algorithm involves random permuta-
tions of the bit streams and their sorting to find the
vector with the closest hamming distance. The algo-
rithm given in Charikar (2002) is described to find
the nearest neighbor for a given vector. We mod-
ify it so that we are able to find the topB closest
neighbor for each vector. We omit the math of this
algorithm but we sketch its procedural details in the
next section. Interested readers are further encour-
aged to read Theorem 2 from Charikar (2002) and
Section 3 from Indyk and Motwani (1998).

3 Algorithmic Implementation

In the previous section, we introduced the theory for
calculation of fast cosine similarity. We implement
it as follows:

1. Initially we are givenn vectors in a hugek di-
mensional space. Our goal is to find all pairs of
vectors whose cosine similarity is greater than
a particular threshold.

2. Choosed number of (d << k) unit random
vectors{r0, r1, ......, rd} each ofk dimensions.

A k dimensional unit random vector, in gen-
eral, is generated by independently sampling a

1Hamming distance is the number of bits which differ be-
tween two binary strings.

Gaussian function with mean0 and variance1,
k number of times. Each of thek samples is
used to assign one dimension to the random
vector. We generate a random number from
a Gaussian distribution by using Box-Muller
transformation (Box and Muller, 1958).

3. For every vectoru, we determine its signature
by using the functionhr(u) (as given by equa-
tion 4). We can represent the signature of vec-
tor u as: ū = {hr1(u), hr2(u), ......., hrd(u)}.
Each vector is thus represented by a set of a bit
streams of lengthd. Steps 2 and 3 takesO(nk)
time (We can assumed to be a constant since
d << k).

4. The previous step givesn vectors, each of them
represented byd bits. For calculation of fast
hamming distance, we take the original bit in-
dex of all vectors and randomly permute them
(see Appendix A for more details on random
permutation functions). A random permutation
can be considered as random jumbling of the
bits of each vector2. A random permutation
function can be approximated by the following
function:

π(x) = (ax + b)mod p (5)

where,p is prime and0 < a < p , 0 ≤ b < p,
anda andb are chosen at random.

We applyq different random permutation for
every vector (by choosing random values fora
andb, q number of times). Thus for every vec-
tor we haveq different bit permutations for the
original bit stream.

5. For each permutation functionπ, we lexico-
graphically sort the list ofn vectors (whose bit
streams are permuted by the functionπ) to ob-
tain a sorted list. This step takesO(nlogn)
time. (We can assumeq to be a constant).

6. For each sorted list (performed after applying
the random permutation functionπ), we calcu-
late the hamming distance of every vector with

2The jumbling is performed by a mapping of the bit index
as directed by the random permutation function. For a given
permutation, we reorder the bit indexes of all vectors in similar
fashion. This process could be considered as column reording
of bit vectors.
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B of its closest neighbors in the sorted list. If
the hamming distance is below a certain prede-
termined threshold, we output the pair of vec-
tors with their cosine similarity (as calculated
by equation 4). Thus,B is the beam parameter
of the search. This step takesO(n), since we
can assumeB, q, d to be a constant.

Why does the fast hamming distance algorithm
work? The intuition is that the number of bit
streams,d, for each vector is generally smaller than
the number of vectorsn (ie. d << n). Thus, sort-
ing the vectors lexicographically after jumbling the
bits will likely bring vectors with lower hamming
distance closer to each other in the sorted lists.

Overall, the algorithm takesO(nk+nlogn) time.
However, for noun clustering, we generally have the
number of nouns,n, smaller than the number of fea-
tures,k. (i.e.,n < k). This implieslogn << k and
nlogn << nk. Hence the time complexity of our
algorithm isO(nk + nlogn) ≈ O(nk). This is a
huge saving from the originalO(n2k) algorithm. In
the next section, we proceed to apply this technique
for generating noun similarity lists.

4 Building Noun Similarity Lists

A lot of work has been done in the NLP community
on clustering words according to their meaning in
text (Hindle, 1990; Lin, 1998). The basic intuition
is that words that are similar to each other tend to
occur in similar contexts, thus linking the semantics
of words with their lexical usage in text. One may
ask why is clustering of words necessary in the first
place? There may be several reasons for clustering,
but generally it boils down to one basic reason: if the
words that occur rarely in a corpus are found to be
distributionally similar to more frequently occurring
words, then one may be able to make better infer-
ences on rare words.

However, to unleash the real power of clustering
one has to work with large amounts of text. The
NLP community has started working on noun clus-
tering on a few gigabytes of newspaper text. But
with the rapidly growing amount of raw text avail-
able on the web, one could improve clustering per-
formance by carefully harnessing its power. A core
component of most clustering algorithms used in the
NLP community is the creation of a similarity ma-

trix. These algorithms are of complexityO(n2k),
wheren is the number of unique nouns andk is the
feature set length. These algorithms are thus not
readily scalable, and limit the size of corpus man-
ageable in practice to a few gigabytes. Clustering al-
gorithms for words generally use the cosine distance
for their similarity calculation (Salton and McGill,
1983). Hence instead of using the usual naive cosine
distance calculation between every pair of words we
can use the algorithm described in Section 3 to make
noun clustering web scalable.

To test our algorithm we conduct similarity based
experiments on 2 different types of corpus:1. Web
Corpus (70 million web pages, 138GB),2. Newspa-
per Corpus (6 GB newspaper corpus)

4.1 Web Corpus

We set up a spider to download roughly 70 million
web pages from the Internet. Initially, we use the
links from Open Directory project3 as seed links for
our spider. Each webpage is stripped of HTML tags,
tokenized, and sentence segmented. Each docu-
ment is language identified by the software TextCat4

which implements the paper by Cavnar and Trenkle
(1994). We retain only English documents. The web
contains a lot of duplicate or near-duplicate docu-
ments. Eliminating them is critical for obtaining bet-
ter representation statistics from our collection. The
problem of identifying near duplicate documents in
linear time is not trivial. We eliminate duplicate and
near duplicate documents by using the algorithm de-
scribed by Kolcz et al. (2004). This process of dupli-
cate elimination is carried out in linear time and in-
volves the creation of signatures for each document.
Signatures are designed so that duplicate and near
duplicate documents have the same signature. This
algorithm is remarkably fast and has high accuracy.
This entire process of removing non English docu-
ments and duplicate (and near-duplicate) documents
reduces our document set from 70 million web pages
to roughly 31 million web pages. This represents
roughly 138GB of uncompressed text.

We identify all the nouns in the corpus by us-
ing a noun phrase identifier. For each noun phrase,
we identify the context words surrounding it. Our
context window length is restricted to two words to

3http://www.dmoz.org/
4http://odur.let.rug.nl/∼vannoord/TextCat/
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Table 1: Corpus description

Corpus Newspaper Web
Corpus Size 6GB 138GB

Unique Nouns 65,547 655,495
Feature size 940,154 1,306,482

the left and right of each noun. We use the context
words as features of the noun vector.

4.2 Newspaper Corpus

We parse a 6 GB newspaper (TREC9 and
TREC2002 collection) corpus using the dependency
parser Minipar (Lin, 1994). We identify all nouns.
For each noun we take the grammatical context of
the noun as identified by Minipar5. We do not use
grammatical features in the web corpus since pars-
ing is generally not easily web scalable. This kind of
feature set does not seem to affect our results. Cur-
ran and Moens (2002) also report comparable results
for Minipar features and simple word based proxim-
ity features. Table 1 gives the characteristics of both
corpora. Since we use grammatical context, the fea-
ture set is considerably larger than the simple word
based proximity feature set for the newspaper cor-
pus.

4.3 Calculating Feature Vectors

Having collected all nouns and their features, we
now proceed to construct feature vectors (and
values) for nouns from both corpora using mu-
tual information (Church and Hanks, 1989). We
first construct a frequency count vectorC(e) =
(ce1, ce2, ..., cek), where k is the total number of
features andcef is the frequency count of feature
f occurring in worde. Here, cef is the number
of times worde occurred in contextf . We then
construct a mutual information vectorMI(e) =
(mie1,mie2, ...,miek) for each worde, wheremief
is the pointwise mutual information between worde
and featuref , which is defined as:

mief = log

cef

N∑n
i=1

cif

N ×
∑k

j=1
cej

N

(6)

where n is the number of words andN =
5We perform this operation so that we can compare the per-

formance of our system to that of Pantel and Lin (2002).

∑n
i=1

∑m
j=1 cij is the total frequency count of all

features of all words.
Having thus obtained the feature representation of

each noun we can apply the algorithm described in
Section 3 to discover similarity lists. We report re-
sults in the next section for both corpora.

5 Evaluation

Evaluating clustering systems is generally consid-
ered to be quite difficult. However, we are mainly
concerned with evaluating the quality and speed of
our high speed randomized algorithm. The web cor-
pus is used to show that our framework is web-
scalable, while the newspaper corpus is used to com-
pare the output of our system with the similarity lists
output by an existing system, which are calculated
using the traditional formula as given in equation
1. For this base comparison system we use the one
built by Pantel and Lin (2002). We perform 3 kinds
of evaluation:1. Performance of Locality Sensitive
Hash Function;2. Performance of fast Hamming
distance search algorithm;3. Quality of final simi-
larity lists.

5.1 Evaluation of Locality sensitive Hash
function

To perform this evaluation, we randomly choose 100
nouns (vectors) from the web collection. For each
noun, we calculate the cosine distance using the
traditional slow method (as given by equation 1),
with all other nouns in the collection. This process
creates similarity lists for each of the 100 vectors.
These similarity lists are cut off at a threshold of
0.15. These lists are considered to be the gold stan-
dard test set for our evaluation.

For the above 100 chosen vectors, we also calcu-
late the cosine similarity using the randomized ap-
proach as given by equation 4 and calculate the mean
squared error with the gold standard test set using
the following formula:

errorav =
√∑

i

(CSreal,i − CScalc,i)
2/total

(7)
whereCSreal,i andCScalc,i are the cosine simi-

larity scores calculated using the traditional (equa-
tion 1) and randomized (equation 4) technique re-
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Table 2: Error in cosine similarity

Number of ran-
dom vectorsd

Average error in
cosine similarity

Time (in hours)

1 1.0000 0.4
10 0.4432 0.5
100 0.1516 3
1000 0.0493 24
3000 0.0273 72
10000 0.0156 241

spectively. i is the index over all pairs of elements
that haveCSreal,i >= 0.15

We calculate the error (errorav) for various val-
ues ofd, the total number of unit random vectorsr
used in the process. The results are reported in Table
26. As we generate more random vectors, the error
rate decreases. For example, generating 10 random
vectors gives us a cosine error of 0.4432 (which is a
large number since cosine similarity ranges from 0
to 1.) However, generation of more random vectors
leads to reduction in error rate as seen by the val-
ues for 1000 (0.0493) and 10000 (0.0156). But as
we generate more random vectors the time taken by
the algorithm also increases. We choosed = 3000
random vectors as our optimal (time-accuracy) cut
off. It is also very interesting to note that by using
only 3000 bits for each of the 655,495 nouns, we
are able to measure cosine similarity between every
pair of them to within an average error margin of
0.027. This algorithm is also highly memory effi-
cient since we can represent every vector by only a
few thousand bits. Also the randomization process
makes the the algorithm easily parallelizable since
each processor can independently contribute a few
bits for every vector.

5.2 Evaluation of Fast Hamming Distance
Search Algorithm

We initially obtain a list of bit streams for all the
vectors (nouns) from our web corpus using the ran-
domized algorithm described in Section 3 (Steps 1
to 3). The next step involves the calculation of ham-
ming distance. To evaluate the quality of this search
algorithm we again randomly choose 100 vectors
(nouns) from our collection. For each of these 100
vectors we manually calculate the hamming distance

6The time is calculated for running the algorithm on a single
Pentium IV processor with 4GB of memory

with all other vectors in the collection. We only re-
tain those pairs of vectors whose cosine distance (as
manually calculated) is above 0.15. This similarity
list is used as the gold standard test set for evaluating
our fast hamming search.

We then apply the fast hamming distance search
algorithm as described in Section 3. In particular, it
involves steps 3 to 6 of the algorithm. We evaluate
the hamming distance with respect to two criteria:1.
Number of bit index random permutations functions
q; 2. Beam search parameterB.

For each vector in the test collection, we take the
topN elements from the gold standard similarity list
and calculate how many of these elements are actu-
ally discovered by the fast hamming distance algo-
rithm. We report the results in Table 3 and Table 4
with beam parameters of (B = 25) and (B = 100)
respectively. For each beam, we experiment with
various values forq, the number of random permu-
tation function used. In general, by increasing the
value for beamB and number of random permu-
tation q , the accuracy of the search algorithm in-
creases. For example in Table 4 by using a beam
B = 100 and using 1000 random bit permutations,
we are able to discover 72.8% of the elements of the
Top 100 list. However, increasing the values ofq and
B also increases search time. With a beam (B) of
100 and the number of random permutations equal
to 100 (i.e.,q = 1000) it takes 570 hours of process-
ing time on a single Pentium IV machine, whereas
with B = 25 andq = 1000, reduces processing time
by more than 50% to 240 hours.

We could not calculate the total time taken to
build noun similarity list using the traditional tech-
nique on the entire corpus. However, we estimate
that its time taken would be at least 50,000 hours
(and perhaps even more) with a few of Terabytes of
disk space needed. This is a very rough estimate.
The experiment was infeasible. This estimate as-
sumes the widely used reverse indexing technique,
where in one compares only those vector pairs that
have at least one feature in common.

5.3 Quality of Final Similarity Lists

For evaluating the quality of our final similarity lists,
we use the system developed by Pantel and Lin
(2002) as gold standard on a much smaller data set.
We use the same 6GB corpus that was used for train-
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Table 3: Hamming search accuracy (BeamB = 25)

Random permutationsq Top 1 Top 5 Top 10 Top 25 Top 50 Top 100
25 6.1% 4.9% 4.2% 3.1% 2.4% 1.9%
50 6.1% 5.1% 4.3% 3.2% 2.5% 1.9%
100 11.3% 9.7% 8.2% 6.2% 5.7% 5.1%
500 44.3% 33.5% 30.4% 25.8% 23.0% 20.4%
1000 58.7% 50.6% 48.8% 45.0% 41.0% 37.2%

Table 4: Hamming search accuracy (BeamB = 100)

Random permutationsq Top 1 Top 5 Top 10 Top 25 Top 50 Top 100
25 9.2% 9.5% 7.9% 6.4% 5.8% 4.7%
50 15.4% 17.7% 14.6% 12.0% 10.9% 9.0%
100 27.8% 27.2% 23.5% 19.4% 17.9% 16.3%
500 73.1% 67.0% 60.7% 55.2% 53.0% 50.5%
1000 87.6% 84.4% 82.1% 78.9% 75.8% 72.8%

ing by Pantel and Lin (2002) so that the results are
comparable. We randomly choose 100 nouns and
calculate the top N elements closest to each noun in
the similarity lists using the randomized algorithm
described in Section 3. We then compare this output
to the one provided by the system of Pantel and Lin
(2002). For every noun in the topN list generated
by our system we calculate the percentage overlap
with the gold standard list. Results are reported in
Table 5. The results shows that we are able to re-
trieve roughly 70% of the gold standard similarity
list. In Table 6, we list the top 10 most similar words
for some nouns, as examples, from the web corpus.

6 Conclusion

NLP researchers have just begun leveraging the vast
amount of knowledge available on the web. By
searching IR engines for simple surface patterns,
many applications ranging from word sense disam-
biguation, question answering, and mining seman-
tic resources have already benefited. However, most
language analysis tools are too infeasible to run on
the scale of the web. A case in point is generat-
ing noun similarity lists using co-occurrence statis-
tics, which has quadratic running time on the input
size. In this paper, we solve this problem by pre-
senting a randomized algorithm that linearizes this
task and limits memory requirements. Experiments
show that our method generates cosine similarities
between pairs of nouns within a score of 0.03.

In many applications, researchers have shown that

more data equals better performance (Banko and
Brill, 2001; Curran and Moens, 2002). Moreover,
at the web-scale, we are no longer limited to a snap-
shot in time, which allows broader knowledge to be
learned and processed. Randomized algorithms pro-
vide the necessary speed and memory requirements
to tap into terascale text sources. We hope that ran-
domized algorithms will make other NLP tools fea-
sible at the terascale and we believe that many al-
gorithms will benefit from the vast coverage of our
newly created noun similarity list.

Acknowledgement

We wish to thank USC Center for High Performance
Computing and Communications (HPCC) for help-
ing us use their cluster computers.

References

Banko, M. and Brill, E. 2001. Mitigating the paucity of dat-
aproblem. In Proceedings ofHLT. 2001. San Diego, CA.

Box, G. E. P. and M. E. Muller 1958.Ann. Math. Stat.29,
610–611.

Broder, Andrei 1997. On the Resemblance and Containment of
Documents. Proceedings of theCompression and Complex-
ity of Sequences.

Cavnar, W. B. and J. M. Trenkle 1994. N-Gram-Based Text
Categorization. In Proceedings of Third Annual Symposium
on Document Analysis and Information Retrieval, Las Ve-
gas, NV, UNLV Publications/Reprographics, 161–175.

628



Table 5: Final Quality of Similarity Lists

Top 1 Top 5 Top 10 Top 25 Top 50 Top 100
Accuracy 70.7% 71.9% 72.2% 71.7% 71.2% 71.1%

Table 6: Sample Top 10 Similarity Lists

JUST DO IT computer science TSUNAMI Louis Vuitton PILATES
HAVE A NICE DAY mechanical engineering tidal wave PRADA Tai Chi

FAIR AND BALANCED electrical engineering LANDSLIDE Fendi Cardio
POWER TO THE PEOPLE chemical engineering EARTHQUAKE Kate Spade SHIATSU

NEVER AGAIN Civil Engineering volcanic eruption VUITTON Calisthenics
NO BLOOD FOR OIL ECONOMICS HAILSTORM BURBERRY Ayurveda

KINGDOM OF HEAVEN ENGINEERING Typhoon GUCCI Acupressure
If Texas Wasn’t Biology Mudslide Chanel Qigong

BODY OF CHRIST environmental science windstorm Dior FELDENKRAIS
WE CAN PHYSICS HURRICANE Ferragamo THERAPEUTIC TOUCH

Weld with your mouse information science DISASTER Ralph Lauren Reflexology

Charikar, Moses 2002. Similarity Estimation Techniques from
Rounding Algorithms In Proceedings of the34th Annual
ACM Symposium on Theory of Computing.

Church, K. and Hanks, P. 1989. Word association norms, mu-
tual information, and lexicography. In Proceedings ofACL-
89. pp. 76–83. Vancouver, Canada.

Curran, J. and Moens, M. 2002. Scaling context space. In
Proceedings ofACL-02pp 231–238, Philadelphia, PA.

Goemans, M. X. and D. P. Williamson 1995. Improved Ap-
proximation Algorithms for Maximum Cut and Satisfiability
Problems Using Semidefinite Programming.JACM 42(6):
1115–1145.

Hindle, D. 1990. Noun classification from predicate-argument
structures. In Proceedings of ACL-90. pp. 268–275. Pitts-
burgh, PA.

Lin, D. 1998. Automatic retrieval and clustering of similar
words. In Proceedings ofCOLING/ACL-98. pp. 768–774.
Montreal, Canada.

Indyk, P., Motwani, R. 1998. Approximate nearest neighbors:
towards removing the curse of dimensionality Proceedings
of 30th STOC, 604–613.

A. Kolcz, A. Chowdhury, J. Alspector 2004. Improved ro-
bustness of signature-based near-replica detection via lexi-
con randomization. Proceedings ofACM-SIGKDD(2004).

Lin, D. 1994 Principar - an efficient, broad-coverage,
principle-based parser. Proceedings ofCOLING-94, pp. 42–
48. Kyoto, Japan.

Pantel, Patrick and Dekang Lin 2002. Discovering Word
Senses from Text. In Proceedings ofSIGKDD-02, pp. 613–
619. Edmonton, Canada

Rabin, M. O. 1981. Fingerprinting by random polynomials.
Center for research in Computing technology , Harvard Uni-
versity,ReportTR-15-81.

Salton, G. and McGill, M. J. 1983.Introduction to Modern
Information Retrieval. McGraw Hill.

Appendix A. Random Permutation
Functions

We define[n] = {0, 1, 2, ..., n− 1}.
[n] can thus be considered as a set of integers from
0 to n− 1.
Let π : [n] → [n] be a permutation function chosen
at random from the set of all such permutation func-
tions.
Considerπ : [4] → [4].
A permutation functionπ is a one to one mapping
from the set of[4] to the set of[4].
Thus, one possible mapping is:
π : {0, 1, 2, 3} → {3, 2, 1, 0}
Here it means:π(0) = 3, π(1) = 2, π(2) = 1,
π(3) = 0
Another possible mapping would be:
π : {0, 1, 2, 3} → {3, 0, 1, 2}
Here it means:π(0) = 3, π(1) = 0, π(2) = 1,
π(3) = 2

Thus for the set[4] there would be4! = 4∗3∗2 =
24 possibilities. In general, for a set[n] there would
ben! unique permutation functions. Choosing a ran-
dom permutation function amounts to choosing one
of n! such functions at random.
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