
 A C L   2 0 0 7

PRAGUE

The Association for Computational Linguistics

A C L  2 0 0 7

Proceedings of the Workshop on 
Deep Linguistic Processing 

June 28, 2007
Prague, Czech Republic



Production and Manufacturing by
Omnipress
2600 Anderson Street
Madison, WI 53704
USA

c©2007 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii



Preface

This workshop was conceived with the aim of bringing together the different computational linguistic sub-
communities which model language predominantly by way of theoretical syntax, either in the form of a
particular theory (e.g. CCG, HPSG, LFG, TAG or the Prague School) or a more general framework which
draws on theoretical and descriptive linguistics. We characterise this style of computational linguistic
research as deep linguistic processing, due to it aspiring to model the complexity of natural language in
rich linguistic representations. Aspects of this research have in the past had their own separate fora, such
as the ACL 2005 workshop on deep lexical acquisition, as well as TAG+, Alpino, ParGram and DELPH-
IN meetings. However, since the fundamental approach of building a linguistically-founded system, as
well as many of the techniques used to engineer efficient systems, are common across these projects and
independent of the specific grammar formalism chosen, we felt the need for a common meeting in which
experiences could be shared among a wider community.

Deep linguistic processing has traditionally been concerned with grammar development for parsing
and generation, with many deep processing systems using the same grammar for both directions. The
linguistic precision and complexity of the grammars meant that they had to be manually developed
and maintained, and were computationally expensive to run. With recent developments in computer
hardware, parsing and generation algorithms and statistical learning theory, the way has been opened for
deep linguistic processing to be successfully applied to an ever-growing range of languages, domains and
applications.

The same trends that have made broad-coverage deep linguistic processing feasible have occurred at the
same time as the rise of machine learning and statistical approaches to natural language processing. For
a time, these two approaches were pursued separately, often without reference to advances in the other
approach, even when the same problems were being addressed. In the past couple of years, this divide
has begun to close from both sides. As witnessed by many of the papers in this workshop, many deep
systems have statistical components to them (e.g., as pre- or post-processing to control ambiguity, as
means of acquiring and extending lexical resources) or even use machine learning techniques to acquire
deep grammars (semi-)automatically. From the other side of the divide, many of the largely statistical
approaches are using progressively richer linguistic based features and are taking advantage of these
deeper features to tackle problems traditionally reserved for deep systems, such as thematic role labelling.

The workshop has indeed brought together a range of theoretical perspectives, not just those originally
foreseen. The papers presented cover current approaches to grammar development and issues of
theoretical properties, as well as the application of deep linguistic techniques to large-scale applications
such as question answering and dialogue systems. Having industrial-scale, efficient parsers and
generators opens up new application domains for natural language processing, as well as interesting
new ways in which to approach existing applications, e.g., by combining statistical and deep processing
techniques in a triage process to process massive data quickly and accurately at a fine level of detail.
Notably, several of the papers addressed the relationship of deep linguistic processing to topical statistical
approaches, in particular in the area of parsing.

There were 45 submissions to the workshop, each of which was peer reviewed by three members of the
international programme committee; at the end of the process 10 were accepted as papers to be presented
orally and 10 as posters. We feel that such a large number of submissions for a one-day workshop reflects

iii



an increasing interest in deep linguistic processing, an interest which is buoyed by the realization that
new, often hybrid, techniques combined with highly engineered parsers and generators and state-of-the-
art machines open the way towards practical, real-world application of this research. We look forward
to further opportunities for the different computational linguistic sub-communities who took part in this
workshop, and others, to come together in the future.

We would like to thank all the authors who submitted papers, as well as the members of the programme
committee for the time and effort they contributed in reviewing the papers, in some cases at very short
notice. We should also like to thank Anette Frank for providing the perfect complement to the workshop
with her invited talk.

The workshop received sponsorship from the Large Scale Syntactic Annotation of written Dutch (Lassy)
project. The Lassy project is carried out within the STEVIN programme, which is funded by the Dutch
and Flemish governments (http://taalunieversum.org/taal/technologie/stevin/).

Timothy Baldwin
Mark Dras
Julia Hockenmaier
Tracy Holloway King
Gertjan van Noord

iv



Organizers

Chairs:

Timothy Baldwin (University of Melbourne)
Mark Dras (Macquarie University)
Julia Hockenmaier (University of Pennsylvania)
Tracy Holloway King (PARC)
Gertjan van Noord (University of Groningen)

Program Committee:

Jason Baldridge (University of Texas at Austin)
Emily Bender (University of Washington)
Raffaella Bernardi (University of Bolzano)
Francis Bond (NICT)
Gosse Bouma (University of Groningen)
Ted Briscoe (University of Cambridge)
Miriam Butt (University of Konstanz)
Aoife Cahill (Stuttgart University)
David Chiang (ISI)
Stephen Clark (Oxford University)
Ann Copestake (University of Cambridge)
James Curran (University of Sydney)
Stefanie Dipper (Potsdam University)
Katrin Erk (University of Texas at Austin)
Dominique Estival (Appen Pty Ltd)
Dan Flickinger (Stanford University)
Anette Frank (University of Heidelberg)
Josef van Genabith (Dublin City University)
John Hale (Michigan State University)
Ben Hutchinson (Google)
Mark Johnson (Brown University)
Aravind Joshi (University of Pennsylvania)
Laura Kallmeyer (Tübingen University)
Ron Kaplan (Powerset)
Martin Kay (Stanford University/Saarland University)
Valia Kordoni (Saarland University)
Anna Korhonen (University of Cambridge)
Jonas Kuhn (Potsdam University)
Rob Malouf (San Diego State University)
Ryan McDonald (Google)
Yusuke Miyao (University of Tokyo)
Diego Molla (Macquarie University)

v



Stefan Müller (Bremen University)
Joakim Nivre (Växjö University)
Stephan Oepen (University of Oslo and Stanford University)
Anoop Sarkar (Simon Fraser University)
David Schlangen (Potsdam University)
Mark Steedman (University of Edinburgh)
Beata Trawinski (Tübingen University)
Aline Villavicencio (Federal University of Rio Grande do Sul)
Tom Wasow (Stanford University)
Michael White (Ohio State University)
Shuly Wintner (University of Haifa)
Fei Xia (University of Washington)

Invited Speaker:

Anette Frank (University of Heidelberg)

vi



Table of Contents

Multi-Component Tree Adjoining Grammars, Dependency Graph Models, and Linguistic Analyses
Joan Chen-Main and Aravind Joshi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Perceptron Training for a Wide-Coverage Lexicalized-Grammar Parser
Stephen Clark and James Curran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Filling Statistics with Linguistics – Property Design for the Disambiguation of German LFG Parses
Martin Forst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Exploiting Semantic Information for HPSG Parse Selection
Sanae Fujita, Francis Bond, Stephan Oepen and Takaaki Tanaka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Deep Grammars in a Tree Labeling Approach to Syntax-based Statistical Machine Translation
Mark Hopkins and Jonas Kuhn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Question Answering based on Semantic Roles
Michael Kaisser and Bonnie Webber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Deep Linguistic Processing for Spoken Dialogue Systems
James Allen, Myroslava Dzikovska, Mehdi Manshadi and Mary Swift . . . . . . . . . . . . . . . . . . . . . . . . 49

Self- or Pre-Tuning? Deep Linguistic Processing of Language Variants
Branco António and Costa Francisco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Pruning the Search Space of a Hand-Crafted Parsing System with a Probabilistic Parser
Aoife Cahill, Tracy Holloway King and John T. Maxwell III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Semantic Composition with (Robust) Minimal Recursion Semantics
Ann Copestake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A Task-based Comparison of Information Extraction Pattern Models
Mark Greenwood and Mark Stevenson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Creating a Systemic Functional Grammar Corpus from the Penn Treebank
Matthew Honnibal and James R. Curran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Verb Valency Semantic Representation for Deep Linguistic Processing
Aleš Horák, Karel Pala, Marie Dužı́ and Pavel Materna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

The Spanish Resource Grammar: Pre-processing Strategy and Lexical Acquisition
Montserrat Marimon, Nria Bel, Sergio Espeja and Natalia Seghezzi . . . . . . . . . . . . . . . . . . . . . . . . . 105

Extracting a Verb Lexicon for Deep Parsing from FrameNet
Mark McConville and Myroslava O. Dzikovska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Fips, A “Deep” Linguistic Multilingual Parser
Eric Wehrli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

vii



Partial Parse Selection for Robust Deep Processing
Yi Zhang, Valia Kordoni and Erin Fitzgerald . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Validation and Regression Testing for a Cross-linguistic Grammar Resource
Emily M. Bender, Laurie Poulson, Scott Drellishak and Chris Evans . . . . . . . . . . . . . . . . . . . . . . . . 136

Local Ambiguity Packing and Discontinuity in German
Berthold Crysmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

The Corpus and the Lexicon: Standardising Deep Lexical Acquisition Evaluation
Yi Zhang, Timothy Baldwin and Valia Kordoni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

viii



Conference Program

08:35–08:45 Opening Remarks

SESSION 1: PARSING

08:45–09:15 Multi-Component Tree Adjoining Grammars, Dependency Graph Models, and Lin-
guistic Analyses
Joan Chen-Main and Aravind Joshi

09:15–09:45 Perceptron Training for a Wide-Coverage Lexicalized-Grammar Parser
Stephen Clark and James Curran

09:45–10:15 Filling Statistics with Linguistics – Property Design for the Disambiguation of Ger-
man LFG Parses
Martin Forst

10:15–10:45 Exploiting Semantic Information for HPSG Parse Selection
Sanae Fujita, Francis Bond, Stephan Oepen and Takaaki Tanaka

10:45–11:15 COFFEE BREAK

SESSION 2: APPLICATIONS OF DEEP LINGUISTIC PROCESSING

11:15–11:45 Deep Grammars in a Tree Labeling Approach to Syntax-based Statistical Machine
Translation
Mark Hopkins and Jonas Kuhn

11:45–12:15 Question Answering based on Semantic Roles
Michael Kaisser and Bonnie Webber

12:15–13:45 LUNCH

13:45–14:45 INVITED TALK

Across Languages and Grammar Paradigms – New Perspectives on Resource Ac-
quisition, Grammar Engineering and Application
Anette Frank

ix



SESSION 3: POSTERS

14:45–15:45 Deep Linguistic Processing for Spoken Dialogue Systems
James Allen, Myroslava Dzikovska, Mehdi Manshadi and Mary Swift

Self- or Pre-Tuning? Deep Linguistic Processing of Language Variants
Branco António and Costa Francisco

Pruning the Search Space of a Hand-Crafted Parsing System with a Probabilistic Parser
Aoife Cahill, Tracy Holloway King and John T. Maxwell III

Semantic Composition with (Robust) Minimal Recursion Semantics
Ann Copestake

A Task-based Comparison of Information Extraction Pattern Models
Mark Greenwood and Mark Stevenson

Creating a Systemic Functional Grammar Corpus from the Penn Treebank
Matthew Honnibal and James R. Curran

Verb Valency Semantic Representation for Deep Linguistic Processing
Aleš Horák, Karel Pala, Marie Dužı́ and Pavel Materna

The Spanish Resource Grammar: Pre-processing Strategy and Lexical Acquisition
Montserrat Marimon, Nria Bel, Sergio Espeja and Natalia Seghezzi

Extracting a Verb Lexicon for Deep Parsing from FrameNet
Mark McConville and Myroslava O. Dzikovska

Fips, A “Deep” Linguistic Multilingual Parser
Eric Wehrli

Partial Parse Selection for Robust Deep Processing
Yi Zhang, Valia Kordoni and Erin Fitzgerald

15:45–16:15 COFFEE BREAK

x



SESSION 4: GRAMMAR ENGINEERING

16:15–16:45 Validation and Regression Testing for a Cross-linguistic Grammar Resource
Emily M. Bender, Laurie Poulson, Scott Drellishak and Chris Evans

16:45–17:15 Local Ambiguity Packing and Discontinuity in German
Berthold Crysmann

17:15–17:45 The Corpus and the Lexicon: Standardising Deep Lexical Acquisition Evaluation
Yi Zhang, Timothy Baldwin and Valia Kordoni

17:45–18:15 Discussion and Closing Remarks

xi





Proceedings of the 5th Workshop on Important Unresolved Matters, pages 1–8,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Multi-Component Tree Adjoining Grammars,  
Dependency Graph Models, and Linguistic Analyses 

Joan Chen-Main* and Aravind K. Joshi*+ 
*Institute for Research in Cognitive Science, and 

+Dept of Computer and Information Science 
University of Pennsylvania 

Philadelphia, PA 19104-6228 
{chenmain,joshi}@seas.upenn.edu 

 
 

Abstract 

Recent work identifies two properties that 
appear particularly relevant to the charac-
terization of graph-based dependency mod-
els of syntactic structure1: the absence of 
interleaving substructures (well-nestedness) 
and a bound on a type of discontinuity 
(gap-degree ≤ 1) successfully describe 
more than 99% of the structures in two de-
pendency treebanks (Kuhlmann and Nivre 
2006).2 Bodirsky et al. (2005) establish that 
every dependency structure with these two 
properties can be recast as a lexicalized 
Tree Adjoining Grammar (LTAG) deriva-
tion and vice versa. However, multi-
component extensions of TAG (MC-TAG), 
argued to be necessary on linguistic 
grounds, induce dependency structures that 
do not conform to these two properties 
(Kuhlmann and Möhl 2006). In this paper, 
we observe that several types of MC-TAG 
as used for linguistic analysis are more re-
strictive than the formal system is in prin-
ciple. In particular, tree-local MC-TAG, 
tree-local MC-TAG with flexible composi-

                                                 
1 Whereas weak equivalence of grammar classes is only con-
cerned with string sets and fails to shed light on equivalence at 
the structural level, our work involves the equivalence of deri-
vations and graph based models of dependencies.  Thus, our 
work is relevant to certain aspects of grammar engineering 
that weak equivalence does not speak to. 
2 These properties hold for many of the so-called non-
projective dependency structures and the corresponding non-
context free structures associated with TAG, further allowing 
CKY type dynamic programming approaches to parsing to 
these dependency graphs. 

tion (Kallmeyer and Joshi 2003), and spe-
cial cases of set-local TAG as used to de-
scribe certain linguistic phenomena satisfy 
the well-nested and gap degree ≤ 1 criteria. 
We also observe that gap degree can dis-
tinguish between prohibited and allowed 
wh-extractions in English, and report some 
preliminary work comparing the predic-
tions of the graph approach and the MC-
TAG approach to scrambling. 

1 Introduction 

Bodirsky et al. (2005) introduce a class of graphi-
cal dependency models, called graph drawings 
(which differ from standard dependency struc-
tures), that are equivalent to lexicalized Tree Ad-
joining Grammar (LTAG) derivations (Joshi and 
Schabes 1997).  Whereas TAG is a generative 
framework in which each well-formed expression 
corresponds with a legitimate derivation in that 
system, the graph drawing approach provides a set 
of structures and a set of constraints on well-
formedness.  Bodirsky et al. offer the class of 
graph drawings that satisfy these constraints as a 
model-based perspective on TAG.  Section 2 
summarizes this relationship between TAG deriva-
tions and these graph drawings. 

In related work, Kuhlmann and Nivre (2006) 
evaluate a number of constraints that have been 
proposed to restrict the class of dependency struc-
tures characterizing natural language with respect 
to two dependency treebanks: the Prague Depend-
ency Treebank (PDT) (Hajič et al., 2001) and the 
Danish Dependency Treebank (DDT) (Kromann, 
2003).  The results indicate that two properties 
provide good coverage of the structures in both 

1



treebanks.3  The first is a binary well-nestedness 
constraint.4  The other is a bound on gap degree, a 
graded measure of discontinuity.  These results are 
given in Table 1.  What is noteworthy is that the 
graph drawings which correspond to LTAG deriva-
tions share these two properties: LTAG induced 
graph drawings are both well-nested and have gap 
degree ≤ 1, and for every graph drawing that is 
both well-nested and gap degree ≤ 1, there exists a 
corresponding LTAG derivation (Möhl 2006). In 
section 3, these two properties are defined. 

 
property Danish Dep. 

Treebank 
Prague Dep. 
Tree-bank 

all structures n = 4393 n = 73088 
well-nested 99.89% 99.89% 
gap degree 0 84.95% 76.85% 
gap degree 1 14.89% 22.72% 
gap degree ≤ 1 99.84% 99.57% 

Table 1. Relevant results from Kuhlmann and 
Nivre (2006). 

 
In section 4, we show that gap degree can be 

used to distinguish between strong island viola-
tions and weak island violations in English.  This 
supports the notion that gap-degree is a linguisti-
cally relevant measure. 

Although TAG is a linguistically expressive 
formalism, a closer look at the linguistic data has 
motivated extensions of TAG.5  One of the most 
widely used extensions for handling cases that are 
difficult for classic TAG is Multi-Component TAG 
(Weir 1988). Like basic TAG, MC-TAG is a for-
malism for rewriting nodes of a tree as other trees.  
The set of underived trees are called elementary 
trees. The rewriting is accomplished via two opera-
tions: substitution, which rewrites a leaf node la-
beled X with a tree rooted in a node labeled X, and 
adjoining, which rewrites a node X with a tree that 
labels both its root and a distinguished leaf node, 
the foot, with X.  The observation that linguistic 
dependencies typically occur within some sort of 
local domain is expressed in the TAG hypothesis 
that all such dependencies occur within the basic 

                                                 
3 A third property based on edge degree also characterizes the 
structures, but has no clear relationship to TAG-derivations.  
Thus, reference to it is omitted in the remaining text. See 
Kuhlmann and Nivre (2006) for the definition of edge degree. 
4 Well-nestedness differs from projectivity.  (See section 3.) 
5 For a readable introduction, see Chapter 1 of Frank (2002). 

building blocks of the grammar.  Recursive struc-
ture is “factored out,” which allows apparent non-
local dependencies to be recast as local ones. 
Whereas basic TAG takes the basic unit to be a 
single elementary tree, MC-TAG extends the do-
main of locality to encompass a set of elementary 
trees.  That is, these sets are the objects over which 
the combinatory operations apply. The MC-
extension allows for linguistically satisfying ac-
counts for a number of attested phenomena, such 
as: English extraposition (Kroch and Joshi 1986), 
subj-aux inversion in combination with raising 
verbs (Frank 1992), anaphoric binding (Ryant and 
Scheffler 2006), quantifier scope ambiguity (Joshi 
et al. 2003), clitic climbing in Romance (Bleam 
1994), and Japanese causatives (Heycock 1986). 

The primary concern of this paper is the recon-
ciliation of the observation noted above, that MC-
TAG appears to be on the right track for a good 
generative characterization of natural language, 
with a second observation: The graph drawings 
that correspond to MC-TAG derivations, are not 
guaranteed to retain the properties of basic-TAG 
induced graph drawings.  Kuhlmann and Möhl 
(2006) report that if an entire MC set is anchored 
by a single lexical element (the natural extension 
of “lexicalization” of TAGs to MC-TAGs), then 
the class of dependency structures is expanded 
with respect to both conditions that characterized 
the TAG-induced graph drawings: MC-TAG in-
duced graph drawings include structures that are 
not well-nested, have gap degree > 1, or both.  As 
Kuhlmann and Möhl point out, the gap degree in-
creases with the number of components, which we 
will elaborate in section 6.  This is true even if we 
require that all components of a set combine with a 
single elementary tree (i.e. tree-local MC-TAG, 
which is known to allow more derivation structures 
(i.e. derivation trees) than TAG, although they gen-
erate the same set of derived trees). If we suppose 
that the characterization of dependency structures 
as reported by Kuhlmann and Nivre (2006) for 
Czech and Danish extends cross-linguistically, i.e. 
the dependency structures for natural language 
falls within the class of well-nested and gap degree 
≤ 1 dependency structures, then MC-TAG appears 
to correspond to the wrong class of model-
theoretic dependency structures.  It is desirable to 
account for the apparent mismatch. 

One possibility is that the linguistic analyses that 
depend on a multi-component approach are ex-

2



tremely infrequent, and that this is reflected in the 
small proportion (< 1%) of data in the PDT and 
DDT that are not both well-nested and gap degree 
≤ 1.  A second possibility is that the structures in 
the PDT and DDT are actually not good represen-
tatives of the structures needed to characterize 
natural languages in general.  However, a look at 
the cases in which MC-TAG is employed reveals 
that these particular analyses yield derivations that 
correspond to graph drawings that do satisfy well-
nestedness and have gap degree ≤ 1.  In practice, 
MC-TAG seems to be used more restrictively than 
what the formal system allows in principle. This 
keeps the corresponding graph drawings within the 
class of structures identified by Bodirsky et al. 
(2005) as a model of TAG derivations, and by 
Kuhlmann and Nivre (2006) as empirically rele-
vant.  Lastly, we compare the scrambling patterns 
that are possible in an MC-TAG extension with 
those that conform to the well-nestedness and gap 
degree ≤ 1 properties of the graph approach. 

2 TAG-induced Graph Dependencies 

The next two sections are intended to provide an 
intuition for the terms defined more formally in 
Bodirsky et al. (2005) and Kuhlmann and Nivre 
(2006). In the former, the authors define their de-
pendency structures of interest, called graph draw-
ings, as a three-tuple: a set of nodes, a dominance 
relation, and a (total) precedence relation.  These 
dependency structures are based on information 
from both a TAG-derivation and that derivation’s 
final phrase structure.  The anchor of each elemen-
tary tree of a strictly lexicalized TAG (LTAG) is 
used as a node label in the induced dependency 
structure.  E.g. suppose tree A is anchored by lexi-
cal item a in the LTAG grammar.  Then a will be a 
node label in any dependency structure induced by 
an LTAG derivation involving tree A. 

To see how the dominance relation and prece-
dence relation mirror the derivation and the final 
derived phrase structure, let us further suppose that 
LTAG tree B is anchored by lexical item b.  Node 
a dominates node b in the dependency structure iff 
Tree A dominates tree B in the derivation struc-
ture. (I.e. tree B must substitute or adjoin into tree 
A during the TAG-derivation.6)  Node a precedes 

                                                 
6 Whereas in standard dependency graphs, adjunction of t2 to 
t1 generally corresponds to a dependency directed from t2 to 

node b in the dependency structure iff a linearly 
precedes b in the derived phrase structure tree. 

An example based on the cross-serial dependen-
cies seen in Dutch subordinate clauses is given in 
Figure 1.  In the graph drawing in (4), the four 
nodes names, {Jan, de kinderen, zag, zwemmen}, 
are the same set as the anchors of the elementary 
trees in (1), which is the same as the set of termi-
nals in (3), the derived phrase structure.  The or-
dering of these nodes is exactly the ordering of the 
terminals in (3). The directed edges between the 
nodes mirrors the immediate dominance relation 
represented in (2), the derivation structure showing 
how the trees in (1) combine.  E.g. Just as the 
zwemmen node has the zag and de kinderen nodes 
as its two children in (2), so does the zwemmen 
node dominate zag and de kinderen in (4). 

Möhl (2006) provides the formal details show-
ing that such LTAG-induced dependency struc-
tures have the properties of being 1) well-nested 
and 2) gap degree ≤ 1, and, conversely, that any 
structures with these properties have a correspond-
ing LTAG derivation.7  These properties are de-
fined in the next section. 

  (1) (2) 
 

 
 
    
  (2) (4) 

 
 
 

 

Figure 1. Derivation for Jan de kinderen zag 
zwemmen and corresponding graph drawing 

3 Properties of Dependency Graphs 

3.1 Gap-Degree 

It will be useful to first define the term projection. 
Definition: The projection of a node x is the set of 
nodes dominated by x (including x). (E.g. in (4), 
the projection of zag = {Jan, zag}.)  
                                                                             
t1, in a TAG-induced dependency graph, adjoining t2 to t1 
corresponds to the reverse dependency. 
7 This result refers to single graph drawings and particular 
LTAG derivation.  See Kuhlmann and Möhl (2007) on the 
relationship between sets of graph drawings and LTAGs. 

 

Y

NP X*

zag 
(saw) 

X 

NP

zwemmen
(swim) 

S 

Jan

de kinderen 
(the children) 

 

zag 

Jan 

de kinderen

zwemmen

Jan  de kinderen  zag  zwemmen 

 

Jan 

NP  

de kinderen
(the children) 

NP

 

Y

NP X*

zag
(saw)

X  

X

NP

zwemmen 
(swim) 

S 

3



Recall that the nodes of a graph drawing are in a 
precedence relation, and that this precedence rela-
tion is total. 
Definition: A gap is a discontinuity with respect to 
precedence in the projection of a node in the draw-
ing.  (E.g. in (4), de kinderen is the gap preventing 
Jan and zag from forming a contiguous interval.) 
Definition: The gap degree of a node is the num-
ber of gaps in its projection. (E.g. the gap degree of 
node zag = 1.)  
Definition: The gap degree of a drawing is the 
maximum among the gap degrees of its nodes.  
(E.g. in (4), only the projection of zag is inter-
rupted by a gap.  Thus, the gap degree of the graph 
drawing in (4) = 1.) 

In TAG drawings, a gap arises from an interrup-
tion of the dependencies in an auxiliary tree.  If B 
is adjoined into A, the gap is the material in A that 
is below the foot node of B.  E.g. in figure 1, De 
kinderen is substituted into the zwemmen tree be-
low the node into which the zag tree adjoins into 
the zwemmen tree.  Thus, de kinderen interrupts the 
pronounced material on the left of the zag tree’s 
foot node, Jan, from the pronounced material on 
the right of the foot node, zag. 

3.2 Well-Nestedness 

Definition: If the roots of two subtrees in the 
drawing are not in a dominance relation, then the 
trees are disjoint. (E.g. in (5), the subtrees rooted in 
b and c are disjoint, while the subtrees rooted in a 
and b are not.) 
Definition: If nodes x1, x2 belong to tree X, nodes 
y1, y2 belong to tree Y, precedence orders these 
nodes: x1 > y1 > x2 > y2, and X and Y are disjoint, 
then trees X and Y interleave. (E.g. in (5), b and d 
belong to the subtree rooted in b, while c and e be-
long to the subtree rooted in c.  These two subtrees 
are disjoint. Since the nodes are ordered b > c > d 
> e, the two trees interleave.) 
Definition: If there is no interleaving between dis-
joint subtrees, then a graph drawing is well-nested.  
(e.g. (4) is well-nested, but (5) is not) 
 
(5) 

 
 

Non-well nested graph drawing 
 

4 Island Effects and Gap-Degree 

When standard TAG analyses of island effects are 
adopted (see Frank 2002), we observe that differ-
ences in gap degree align with the division be-
tween wh-extractions that are attested in natural 
language (grammatical wh-movement and weak 
island effects) and those claimed to be prohibited 
(strong island effects). Specifically, four strong 
island violations, extraction from an adverbial 
modifier, relative clause, complex NP, or subject, 
correspond to structures of gap degree 1, while 
cyclic wh-movement and a weak island violation 
(extraction from a wh-island) are gap degree 0 in 
English. Interestingly, while it is clear that weak 
islands vary in their island status from language to 
language, strong islands have been claimed to 
block extraction cross-linguistically.  We tenta-
tively postulate that gap degree is useful for char-
acterizing strong islands cross-linguistically. 

An example is given in (6), a standard TAG 
derivation for adverbial modification: the after-tree 
adjoins into the buy-tree (the matrix clause), the 
got-tree substitutes into the after-tree, and the two 
arguments who and a-raise substitute into the got-
tree. In (7), the corresponding dependency struc-
ture, the projection of got includes who, which is 
separated from got by the string comprising the 
matrix clause and adverbial. Clearly, we do not 
want to claim that any gap degree of 1 is a sure 
source of ungrammaticality.  However, it is possi-
ble that a gap degree of 1 in conjunction with a wh-
element yields ungrammaticality.  For the particu-
lar set of islands we examined, we postulate that 
the projection of the node immediately dominating 
the wh-element is prohibited from containing gaps. 

 
  (6) 

 
 
 

  (7)* 
 
 
 
 

Figure 2. LTAG derivation and graph drawing 
for *Who did Jane buy a house after got a raise? 

 

a b c d e

Who     did      Jane     buy    a-house    after     got    a-raise 

Jane

got 

a-house 

buy 

did after 

Who a-raise 

4



    (8a) (8w) α β (11a) (11d) (11e) 
 
 
 (8b) (8c) (8d) (8e) (8x) (8y) (8z) (11b) α β (11c) α  β   
 

  (9)  (10) 
    (12) 

 
 
 
 
 
 

5 MC-TAG-induced Dependency Graphs 

5.1 Gap-Degree Beyond 1 

As reviewed in section 3, the source of every gap 
in a TAG drawing comes from an interruption of 
the dependencies in an auxiliary tree.  Since the 
auxiliary tree only has one foot, it only has a slot 
for a single gap.  A MC-set, however, could be 
comprised of two auxiliary trees.  This means there 
are slots for two gaps, one associated with each 
foot.  Furthermore, a gap may arise as a result of 
any pronounced material between the two compo-
nents.  Thus, when we already have at least one 
foot, adding an additional foot increases the maxi-
mum gap degree by 2.  The maximum gap degree 
= 1 + 2(n – 1) = 2n – 1, where n is the max # of 
foot nodes in any elementary tree set. 

As an example, consider the composition of the 
trees in (8), Figure 3 (Kuhlmann, p.c.) The tree set 
in (8w) is comprised of two auxiliary trees.  One 
tree, (8wα), adjoins into (8a), and a gap is created 
by the material in (8a) that falls below the foot 
node of (8wα), namely b.  When (8wβ) is adjoined 
into (8α) at node V, a second gap is created below 
(8wβ) by d.  A third gap is created by the material 
between the two components.  (9) shows the de-
rived phrase structure, and (10), the corresponding 
graph drawing.  The projection of node w, {w, x, y, 
z} has three discontinuities, nodes b, c, and d. 

5.2 Non-Well-Nestedness 

Kuhlmann and Möhl (2006) show that even a tree-
local MC-TAG that allows only substitution can 
induce a non-well-nested graph drawing.  Figure 4 
replicates their example.  This derivation involves 
two MC-sets, (11b) and (11c).  The tree anchored 

by d, (11d), substitutes into the second component 
of the set anchored by b, (11b).  Similarly, the tree 
anchored by e, (11e), substitutes into the second 
component of the set anchored by c, (11c).  Both 
MC-sets compose into the tree anchored by a, 
yielding the derived phrase structure in (12). The 
corresponding graph drawing is exactly our earlier 
example of non-well-nestedness in (5). 

6 MC-TAG in Practice 

We now turn to cases in which linguists have used 
MC-TAGs to account for cases argued to have no 
satisfying solution in basic TAG.   Unlike the ex-
amples in 5.1 and 5.2, these particular MC-deriva-
tions correspond to dependency structures that are 
well-nested and have gap degree ≤ 1. Table 2 
summarizes these cases.  The last column indicates 
the type of MC-extension assumed by the analysis: 
tree-local MC-TAGs, tree-local MC-TAGs with 
flexible composition, the mirror operation to ad-
joining; if tree α adjoins into tree β, the combina-
tion can be alternatively viewed as tree β “flexibly” 
composing with tree α (Joshi et al. 2003, Kall-
meyer and Joshi 2003)8, and set-local MC-TAGs.  
Set-local MC-TAGs are generally more powerful 
than TAGs, but since these particular cases induce 
well-nested graph drawings of gap degree ≤ 1, we 
can conclude that set-local MC-TAG as used in 
                                                 
8 I.e. When composing A and B, we can take A as the function 
and B as the argument or vice versa. For CFGs, such flexibil-
ity has no added benefit. For categorical type grammars, this 
kind of flexibility is accomplished via type raising, which 
allows for some new types of constituents but does not give 
rise to any new word orders. For tree local MC-TAGs, such 
flexibility does allow more word orders (permutations) to be 
generated than are possible without flexible composition. 

 

W 

B 

V 

A 

C a 

D 

E 

E 

e 

C 

c 

D 

d 

B 

b 

X 

x 

Y 

y 

Z 

z 

X Y

V 

V w Z

W 

W 

 A 

a 

X Y 

V 

V w Z 

W 

W 

E 

e 

C 

c 

D 

d 

B 

b 

x y z 
a     w    b    z      c     x    d     y     e 

 

B W 

A

C a Y 

 W

X 

B 

b 

 Y 

Z 

C 

c 

X 

d 

Z 

e 

 A 

a Y 

Z 

W 

X 

C 

c 

B 

b 

d e 

Figure 4. Non-well-nested MC-
TAG induced graph drawing Figure 3. MC-TAG induced graph drawing of gap degree 3

5



Table 2. Canonical tree sets used in MC-TAG analyses of several phenomena 
 

these cases is weakly equivalent to TAG.  
From Table 2, we can draw two generalizations.  

First, in an MC-TAG analysis, a two-component 
set is typically used.  One of the trees is often a 
very small piece of structure that corresponds to 
the “base position,” surface position, or scope posi-
tion of a single element.  Second, the auxiliary tree 
components typically have elements with phono-
logical content only on one side of the foot. 

At this point, we make explicit an assumption 
that we believe aligns with Bodirsky et al. (2005).  
Since silent elements, such as traces, do not anchor 
an elementary tree, they do not correspond to a 
node in the dependency structure. 

 
6.1 Why the Gap-Degree Remains ≤ 1 

Recall that in example (8), each of the two compo-
nents in the example MC-TAG has a foot with 
phonological material on both sides, giving rise to 

two gaps, and a third gap is created via the material 
between the two components.  In contrast, in the 
MC-TAG sets shown in Table 2, the auxiliary trees 
have pronounced material only on one side of the 
foot node.  This eliminates the gap that would have 
arisen due to the interruption of material on the left 
side of the foot from the right side of the foot as a 
result of the pronounced material beneath the foot.  
The only way to obtain pronounced material on 
both sides of the foot node is to adjoin a compo-
nent into one of these auxiliary trees.  Interestingly, 
the set-local analyses (in which all components of 
a set must combine with components of a single set 
vs. tree-local MC-TAG) for clitic climbing and 
Japanese causatives do posit recursive components 
adjoining into other recursive components, but 
only while maintaining all pronounced material on 
one side of the foot. In the absence of a deriva-
tional step resulting in pronounced material on 

analysis 
source 

phenomenon first  
component 

second  
component 

MC-type 

Kroch 
and Joshi  
1986 

English extraposition 
A man arrived who knew Mary. 

Auxiliary Auxiliary Tree-
local 
 

Frank 
1992 

subj-aux inversion with raising verb constructions 
Does Gabriel seem to like gnocchi? 

Non-auxiliary Auxiliary Tree-
local 
 

Ryant 
and 
Scheffler 
2006 

anaphoric binding 
Johni likes himselfi. 

Auxiliary Non-auxiliary Tree-
local + 
flexible 
compo-
sition 

Joshi, 
Kall-
meyer, & 
Romero 
2003 

quantifier scope ambiguity 
An FBI agent is spying on every professor. 
(∀y [prof(y) →∃x [agent(x) ∧ spy (x, y)] ]) OR 
(∃x [agent(x) ∧∀y [prof(y)→ spy (x, y)] ]) 

Auxiliary Non-auxiliary Tree-
local + 
flexible 
compo-
sition 

Bleam 
1994 

clitic climbing in Romance 
Mari telo    quiere permitir ver. 
Mari you-it wants to permit to see 
“Mari wants to permit you to see it.” 

Auxiliary Non-auxiliary Set-
local 

Heycock 
1986 

Japanese causatives 
Watasi-wa Mitiko-ni Taroo-o ik –ase (–sase) –ta. 
I           TOP        DAT        ACC go  –CS   –CS   –PST 
“I made Mitiko make Taroo go.” 

Auxiliary Auxiliary Set-
local 

NP*

ei 

S'

NP

 

ei 

I 

seem 

V I'* 

VP 

I' 
 

doesi 

C

 NP*  

himself 

NP 

 

S* 

NP[+wh]   knew NP  

S'i 

S 

 

NP

e 

S* Vi

VP

S  

V * 

-ase 

Vi 

V 

I 

tei

I *

I  

V 

permitir 

VP 

VP 

ei 

 S*  

every 

DET N 

NP 

6



both sides of a foot, the only remaining possible 
gap is that which arises from pronounced material 
that appears between the two components. 

Note that the observation about the position of 
pronounced material applies only to auxiliary trees 
in sets with multiple components.  That is, auxil-
iary trees that comprise a singleton set may still 
have pronounced material on both sides of the foot. 

6.2 Why the Structures Remain Well-Nested 

Since Kuhlmann and Möhl (2006) show that even 
a MC-TAG that allows only non-auxiliary trees in 
MC-sets will expand the drawings to include non-
well-nested drawings, there is no way to pare back 
the MC-TAG via restrictions on the types of trees 
allowed in MC-sets so as to avoid interleaving. 

Recall that to satisfy the definition of interleav-
ing, it is necessary that the two MC-sets are not in 
any dominance relation in the derivation structure.  
In Kuhlmann and Möhl’s example, this is satisfied 
because the two MC-sets are sisters in the deriva-
tion; they combine into the same tree.  In the lin-
guistic analyses considered here, no more than one 
MC-set combines into the same tree.  For tree-local 
MC-TAG, it appears to be sufficient to bar more 
than one MC-set from combining into a single tree.   

7 MC-TAG and Scrambling 

In subordinate clauses in Standard German, the 
canonical order of verbs and their subject argu-
ments is a nested dependency order. However, 
other orderings are also possible.  For example, in 
the case of a clause-final cluster of three verbs, the 
canonical order is as given in (13), NP1NP2NP3 
V3V2V1, but all the other permutations of the NP 
arguments are also possible orderings. All six per-
mutations of the NPs can be derived via tree-local 
MC-TAG.  From the graph-model perspective 
adopted here, this is unsurprising: All the se-
quences are well-nested and have gap degree ≤ 1. 
 
(13)   NP1   NP2   NP3   V3                 V2       V1 
 . . . Hans Peter Marie schwimmen lassen sah 

. . . Hans Peter Marie swim            make  saw 
 “ . . . Hans saw Peter make Marie swim.” 
 

However, with an additional level of embed-
ding, i.e. four NPs and four verbs, the situation is 
different, both linguistically and formally.  Our 
focus is on making the formal predictions of a lin-

guistically informed system precise. We start with 
a tree-local MC-TAG that is restricted to linguisti-
cally motivated tree-sets and to semantically co-
herent derivations.  The former linguistic restric-
tion is illustrated in (14), the possible tree-sets an-
chored by a verb that takes a VP argument.  The 
latter linguistic restriction is that there is no seman-
tic feature clash at any stages of the derivation: the 
VP argument of Vi must be associated with Vi+1. 
 
(14) α 
 
 β 

 
Single and two-component sets for Vi 

 
As MC-TAG is enriched in various ways (by al-

lowing flexible composition, multiple adjoining at 
the same node, and/or components from the same 
MC-set to target the same node), all 24 orderings 
where the nouns permute while the verbs remain 
fixed can be derived. (We are aware that German 
also allows verbs to scramble.) Taking the depend-
ency structures of these sequences to consist of an 
edge from each verb Vi to its subject NP and to the 
head of its argument VP, Vi+1, we can compare the 
predictions of the graph drawing approach and the 
MC-TAG approach. It turns out that the permuta-
tions of gap degree ≤ 1 and those of gap-degree 2 
do not align in an obvious way with particular en-
richments. For example, NP4NP2NP3NP1V4V3V2V1 
(gap degree 2) is derivable via basic tree-local MC-
TAG, but NP3NP1NP4NP2V4V3V2V1 and 
NP3NP2NP4NP1V4V3V2V1 (also gap degree 2) ap-
pear to require both flexible composition and al-
lowing components from the same MC-set to tar-
get the same node. 

8 Conclusion and Future Work 

This paper reviews the connection established in 
previous work between TAG derivations and 
model-theoretic graph drawings, i.e. well-nested 
dependency structures of gap degree ≤ 1, and re-
ports several observations that build on this work.  
First, additional evidence of the linguistic rele-
vance of the gap degree measure is given. The gap 
degree measure can distinguish wh-movement that 
is assumed to be generally disallowed from wh-
movement that is permitted in natural language. 
Second, we observe that the graph drawings in-

 

NPi

NP VP(i+1)*

VP

VP

VP 

(e)i Vi

 

NPi 

NP VP(i+1)* 

VP* 

VP 

VP 

VP 

(e)i Vi

7



duced by MC-TAGs used in linguistic analyses 
continue to fall within the class of well-nested, gap 
degree ≤ 1 dependency structures. While 
Kuhlmann and Möhl (2006) show that MC-TAGs 
in which each set has a single lexical anchor in-
duce graph drawings that are outside this class, this 
extra complexity in the dependency structures does 
not appear to be utilized. Even for the crucial cases 
used to argue for MC-extensions, MC-TAG is used 
in a manner requiring less complexity than the 
formal system allows.  Examining these particular 
grammars lays the groundwork for identifying a 
natural class of MC-TAG grammars whose deriva-
tions correspond to well-nested graph drawings of 
gap degree ≤ 1. Specifically, the observations sug-
gest the class to be MC-TAGs in which 1) compo-
nent sets have up to two members, 2) auxiliary 
trees that are members of non-singleton MC-sets 
have pronounced material on only one side of the 
foot, whether the auxiliary member is derived or 
not, and 3) up to one MC-set may combine into 
each tree. Though these constraints appears stipu-
lative from a formal perspective, a preliminary 
look suggests that natural language will not require 
their violation. That is, we may find linguistic jus-
tification for these constraints.  Lastly, in ongoing 
work, we explore how allowing flexible composi-
tion and multiple adjoining enables MC-TAGs to 
derive a range of scrambling patterns. 

References 
Tonia Bleam. 2000. Clitic climbing and the power of 

Tree Adjoining Grammar. In A. Abeillé and O. Ram-
bow (eds.), Tree Adjoining Grammars: formalisms, 
linguistic analysis and processing. Stanford: CSLI 
Publications, 193-220. (written in 1994). 

Manuel Bodirsky, Marco Kuhlmann, and Mathias Möhl. 
2005. Well-nested drawings as models of syntactic 
structure.  In 10th Conference of Formal Grammar 
and 9th Meeting on Mathematics of Language (FG-
MoL), Edinburgh, UK. 

Robert Frank. 1992. Syntactic Locality and Tree Adjoin-
ing Grammar: grammatical, acquisition, and proc-
essing perspectives. PhD dissertation, University of 
Pennsylvania, Philadelphia, USA. 

Robert Frank. 2002. Phrase Structure Composition and 
Syntactic Dependencies. MIT Press. 

Jan Hajič, Barbora Vidova Hladka, Jarmila Panevová, 
Eva Hajičová, Petr Sgall, and Petr Pajas. 2001. Pra-
gue Dependency Treebank 1.0. LDC, 2001T10. 

Caroline Heycock. 1986. The structure of the Japanese 
causative. Technical Report MS-CIS-87-55, Univer-
sity of Pennsylvania. 

Aravind K. Joshi, Laura Kallmeyer, and Maribel Ro-
mero. 2003. Flexible composition in LTAG: quanti-
fier scope and inverse linking. In H. Bunt and R. 
Muskens (eds.), Computing Meaning 3. Dordrecht: 
Kluwer. 

Aravind K. Joshi and Y. Schabes. 1997. Tree-Adjoining 
Grammars. In G. Rozenberg and A. Salomaa (eds.): 
Handbook of Formal Languages. Berlin: Springer, 
69–123. 

Laura Kallmeyer and Aravind K. Joshi. 2003. Factoring 
predicate argument and scope semantics: underspeci-
fied semantics with LTAG. Research on Language 
and Computation 1(1-2), 3-58. 

Anthony Kroch and Aravind K. Joshi. 1990. Extraposi-
tion in a Tree Adjoining Grammar. In G. Huck and 
A. Ojeda, eds., Syntax and Semantics: Discontinuous 
Constituents, 107-149. 

Matthias Trautner Kromann. 2003. The Danish Depend-
ency Treebank and the DTAG treebank tool. In 2nd 
Workshop on Treebanks and Linguistic Theories 
(TLT), 217-220. 

Marco Kuhlmann and Mathias Möhl. 2006. Extended 
cross-serial dependencies in Tree Adjoining Gram-
mars. In Proceedings of the 8th International Work-
shop on Tree Adjoining Grammar and Related For-
malisms, Sydney, Australia, 121-126. 

Marco Kuhlmann and Mathias Möhl. 2007. Mildly con-
text-sensitive dependency languages. In 45th Annual 
Meeting of the Association for Computational Lin-
guistics (ACL), Prague, Czech Republic. 

Marco Kuhlmann and Joakim Nivre. 2006. Mildly non-
projective dependency structures. In 21st Interna-
tional Conference on Computational Linguistics and 
44th Annual Meeting of the Association for Computa-
tional Linguistics (COLING-ACL), Companion Vol-
ume, Sydney, Australia. 

Mathias Möhl. 2006. Drawings as Models of Syntactic 
Structure: Theory and Algorithms, Masters thesis, 
Saarland University, Saarbrücken, Germany. 

Neville Ryant and Tatjana Scheffler. 2006. Binding of 
anaphors in LTAG. In Proceedings of the 8th Interna-
tional Workshop on Tree Adjoining Grammar and 
Related Formalisms, Sydney, Australia, 65-72. 

David Weir. 1988. Characterizing mildly context-
sensitive grammar formalisms. PhD dissertation, 
University of Pennsylvania, Philadelphia, USA.

8



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 9–16,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Perceptron Training for a Wide-Coverage Lexicalized-Grammar Parser

Stephen Clark
Oxford University Computing Laboratory

Wolfson Building, Parks Road
Oxford, OX1 3QD, UK

stephen.clark@comlab.ox.ac.uk

James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

james@it.usyd.edu.au

Abstract

This paper investigates perceptron training
for a wide-coverageCCG parser and com-
pares the perceptron with a log-linear model.
TheCCGparser uses a phrase-structure pars-
ing model and dynamic programming in the
form of the Viterbi algorithm to find the
highest scoring derivation. The difficulty in
using the perceptron for a phrase-structure
parsing model is the need for an efficient de-
coder. We exploit the lexicalized nature of
CCG by using a finite-state supertagger to
do much of the parsing work, resulting in
a highly efficient decoder. The perceptron
performs as well as the log-linear model; it
trains in a few hours on a single machine;
and it requires only a few hundredMB of
RAM for practical training compared to 20
GB for the log-linear model. We also inves-
tigate the order in which the training exam-
ples are presented to the online perceptron
learner, and find that order does not signifi-
cantly affect the results.

1 Introduction

A recent development in data-driven parsing is the
use of discriminative training methods (Riezler et
al., 2002; Taskar et al., 2004; Collins and Roark,
2004; Turian and Melamed, 2006). One popular ap-
proach is to use a log-linear parsing model and max-
imise theconditional likelihood function (Johnson
et al., 1999; Riezler et al., 2002; Clark and Curran,
2004b; Malouf and van Noord, 2004; Miyao and

Tsujii, 2005). Maximising the likelihood involves
calculating feature expectations, which is computa-
tionally expensive. Dynamic programming (DP) in
the form of the inside-outside algorithm can be used
to calculate the expectations, if the features are suf-
ficiently local (Miyao and Tsujii, 2002); however,
the memory requirements can be prohibitive, es-
pecially for automatically extracted, wide-coverage
grammars. In Clark and Curran (2004b) we use clus-
ter computing resources to solve this problem.

Parsing research has also begun to adopt discrim-
inative methods from the Machine Learning litera-
ture, such as the perceptron (Freund and Schapire,
1999; Collins and Roark, 2004) and the large-
margin methods underlying Support Vector Ma-
chines (Taskar et al., 2004; McDonald, 2006).
Parser training involves decoding in an iterative pro-
cess, updating the model parameters so that the de-
coder performs better on the training data, accord-
ing to some training criterion. Hence, for efficient
training, these methods require an efficient decoder;
in fact, for methods like the perceptron, the update
procedure is so trivial that the training algorithm es-
sentially is decoding.

This paper describes a decoder for a lexicalized-
grammar parser which is efficient enough for prac-
tical discriminative training. We use a lexicalized
phrase-structure parser, theCCG parser of Clark and
Curran (2004b), together with aDP-based decoder.
The key idea is to exploit the properties of lexi-
calized grammars by using a finite-state supertag-
ger prior to parsing (Bangalore and Joshi, 1999;
Clark and Curran, 2004a). The decoder still uses
the CKY algorithm, so the worst case complexity of

9



the parsing is unchanged; however, by allowing the
supertagger to do much of the parsing work, the effi-
ciency of the decoder is greatly increased in practice.

We chose the perceptron for the training algo-
rithm because it has shown good performance on
other NLP tasks; in particular, Collins (2002) re-
ported good performance for a perceptron tagger
compared to a Maximum Entropy tagger. Like
Collins (2002), the decoder is the same for both the
perceptron and the log-linear parsing models; the
only change is the method for setting the weights.
The perceptron model performs as well as the log-
linear model, but is considerably easier to train.

Another contribution of this paper is to advance
wide-coverageCCG parsing. Previous discrimina-
tive models forCCG (Clark and Curran, 2004b) re-
quired cluster computing resources to train. In this
paper we reduce the memory requirements from 20
GB of RAM to only a few hundredMB, but with-
out greatly increasing the training time or reducing
parsing accuracy. This provides state-of-the-artCCG

parsing with a practical development environment.
More generally, this work provides a practical

environment for experimenting with discriminative
models for phrase-structure parsing; because the
training time for theCCG parser is relatively short
(a few hours), experiments such as comparing alter-
native feature sets can be performed. As an example,
we investigate the order in which the training exam-
ples are presented to the perceptron learner. Since
the perceptron training is an online algorithm — up-
dating the weights one training sentence at a time
— the order in which the data is processed affects
the resulting model. We consider random ordering;
presenting the shortest sentences first; and present-
ing the longest sentences first; and find that the order
does not significantly affect the final results.

We also use the random orderings to investigate
model averaging. We produced 10 different models,
by randomly permuting the data, and averaged the
weights. Again the averaging was found to have no
impact on the results, showing that the perceptron
learner — at least for this parsing task — is robust
to the order of the training examples.

The contributions of this paper are as follows.
First, we compare perceptron and log-linear parsing
models for a wide-coverage phrase-structure parser,
the first work we are aware of to do so. Second,

we provide a practical framework for developing
discriminative models forCCG, reducing the mem-
ory requirements from over 20GB to a few hundred
MB. And third, given the significantly shorter train-
ing time compared to other discriminative parsing
models (Taskar et al., 2004), we provide a practical
framework for investigating discriminative training
methods more generally.

2 The CCG Parser

Clark and Curran (2004b) describes theCCG parser.
The grammar used by the parser is extracted from
CCGbank, aCCG version of the Penn Treebank
(Hockenmaier, 2003). The grammar consists of 425
lexical categories, expressing subcategorisation in-
formation, plus a small number of combinatory rules
which combine the categories (Steedman, 2000). A
Maximum Entropy supertagger first assigns lexical
categories to the words in a sentence, which are
then combined by the parser using the combinatory
rules and theCKY algorithm. A log-linear model
scores the alternative parses. We use the normal-
form model, which assigns probabilities to single
derivations based on the normal-form derivations in
CCGbank. The features in the model are defined
over local parts of the derivation and include word-
word dependencies. A packed chart representation
allows efficient decoding, with the Viterbi algorithm
finding the most probable derivation.

The supertagger is a key part of the system. It
uses a log-linear model to define a distribution over
the lexical category set for each word and the previ-
ous two categories (Ratnaparkhi, 1996) and the for-
ward backward algorithm efficiently sums over all
histories to give a distibution for each word. These
distributions are then used to assign a set of lexical
categories to each word (Curran et al., 2006).

Supertagging was first defined forLTAG (Banga-
lore and Joshi, 1999), and was designed to increase
parsing speed for lexicalized grammars by allow-
ing a finite-state tagger to do some of the parsing
work. Since the elementary syntactic units in a lexi-
calized grammar — inLTAG ’s case elementary trees
and inCCG’s case lexical categories – contain a sig-
nificant amount of grammatical information, com-
bining them together is easier than the parsing typi-
cally performed by phrase-structure parsers. Hence

10



Bangalore and Joshi (1999) refer to supertagging as
almost parsing.

Supertagging has been especially successful for
CCG: Clark and Curran (2004a) demonstrates the
considerable increases in speed that can be obtained
through use of a supertagger. The supertagger in-
teracts with the parser in an adaptive fashion. Ini-
tially the supertagger assigns a small number of cat-
egories, on average, to each word in the sentence,
and the parser attempts to create a spanning analysis.
If this is not possible, the supertagger assigns more
categories, and this process continues until a span-
ning analysis is found. The number of categories as-
signed to each word is determined by a parameterβ
in the supertagger: all categories are assigned whose
forward-backward probabilities are withinβ of the
highest probability category (Curran et al., 2006).

Clark and Curran (2004a) also shows how the su-
pertagger can reduce the size of the packed charts to
allow discriminative log-linear training. However,
even with the use of a supertagger, the packed charts
for the complete CCGbank require over 20GB of
RAM. Reading the training instances into memory
one at a time and keeping a record of the relevant
feature counts would be too slow for practical de-
velopment, since the log-linear model requires hun-
dreds of iterations to converge. Hence the packed
charts need to be stored in memory. In Clark and
Curran (2004b) we use a cluster of 45 machines, to-
gether with a parallel implementation of theBFGS

training algorithm, to solve this problem.
The need for cluster computing resources presents

a barrier to the development of furtherCCG pars-
ing models. Hockenmaier and Steedman (2002) de-
scribe a generative model forCCG, which only re-
quires a non-iterative counting process for training,
but it is generally acknowledged that discrimina-
tive models provide greater flexibility and typically
higher performance. In this paper we propose the
perceptron algorithm as a solution. The perceptron
is an online learning algorithm, and so the param-
eters are updated one training instance at a time.
However, the key difference compared with the log-
linear training is that the perceptron converges in
many fewer iterations, and so it is practical to read
the training instances into memory one at a time.

The difficulty in using the perceptron for training
phrase-structure parsing models is the need for an

efficient decoder (since perceptron training essen-
tially is decoding). Here we exploit the lexicalized
nature ofCCGby using the supertagger to restrict the
size of the charts over which Viterbi decoding is per-
formed, resulting in an extremely effcient decoder.
In fact, the decoding is so fast that we can estimate a
state-of-the-art discriminative parsing model in only
a few hours on a single machine.

3 Perceptron Training

The parsing problem is to find a mapping from a set
of sentencesx ∈ X to a set of parsesy ∈ Y . We
assume that the mappingF is represented through a
feature vectorΦ(x, y) ∈ Rd and a parameter vector
α ∈ Rd in the following way (Collins, 2002):

F (x) = argmax
y∈GEN(x)

Φ(x, y) · α (1)

whereGEN(x) denotes the set of possible parses for
sentencex andΦ(x, y) · α =

∑
i αiΦi(x, y) is the

inner product. The learning task is to set the parame-
ter values (the feature weights) using the training set
as evidence, where the training set consists of ex-
amples(xi, yi) for 1 ≤ i ≤ N . The decoder is an
algorithm which finds theargmax in (1).

In this paper,Y is the set of possibleCCG deriva-
tions andGEN(x) enumerates the set of derivations
for sentencex. We use the same feature representa-
tionΦ(x, y) as in Clark and Curran (2004b), to allow
comparison with the log-linear model. The features
are defined in terms of local subtrees in the deriva-
tion, consisting of a parent category plus one or
two children. Some features are lexicalized, encod-
ing word-word dependencies. Features are integer-
valued, counting the number of times some configu-
ration occurs in a derivation.

GEN(x) is defined by theCCG grammar, plus the
supertagger, since the supertagger determines how
many lexical categories are assigned to each word
in x (through theβ parameter). Rather than try to
recreate the adaptive supertagging described in Sec-
tion 2 for training, we simply fix the the value ofβ so
thatGEN(x) is the set of derivations licenced by the
grammar for sentencex, given that value.β is now
a parameter of the training process which we deter-
mine experimentally using development data. Theβ
parameter can be thought of as determining the set
of incorrect derivations which the training algorithm

11



uses to “discriminate against”, with a smaller value
of β resulting in more derivations.

3.1 Feature Forests

The same decoder is used for both training and test-
ing: the Viterbi algorithm. However, the packed
representation ofGEN(x) in each case is different.
When running the parser, a lot of grammatical in-
formation is stored in order to produce linguistically
meaningful output. For training, all that is required
is a packed representation of the features on each
derivation inGEN(x) for each sentence in the train-
ing data. Thefeature forestsdescribed in Miyao and
Tsujii (2002) provide such a representation.

Clark and Curran (2004b) describe how a set of
CCG derivations can be represented as a feature for-
est. The feature forests are created by first building
packed charts for the training sentences, and then
extracting the feature information. Packed charts
group together equivalent chart entries. Entries are
equivalent when they interact in the same manner
with both the generation of subsequent parse struc-
ture and the numerical parse selection. In prac-
tice, this means that equivalent entries have the same
span, and form the same structures and generate the
same features in any further parsing of the sentence.
Back pointers to the daughters indicate how an indi-
vidual entry was created, so that any derivation can
be recovered from the chart.

A feature forest is essentially a packed chart with
only the feature information retained (see Miyao and
Tsujii (2002) and Clark and Curran (2004b) for the
details). Dynamic programming algorithms can be
used with the feature forests for efficient estimation.
For the log-linear parsing model in Clark and Cur-
ran (2004b), the inside-outside algorithm is used to
calculate feature expectations, which are then used
by the BFGS algorithm to optimise the likelihood
function. For the perceptron, the Viterbi algorithm
finds the features corresponding to the highest scor-
ing derivation, which are then used in a simple addi-
tive update process.

3.2 The Perceptron Algorithm

The training algorithm initializes the parameter vec-
tor as all zeros, and updates the vector by decoding
the examples. Each feature forest is decoded with
the current parameter vector. If the output is incor-

Inputs: training examples(xi, yi)
Initialisation : setα = 0
Algorithm :

for t = 1..T , i = 1..N
calculatezi = arg maxy∈GEN(xi) Φ(xi, y) · α
if zi 6= yi

α = α + Φ(xi, yi)− Φ(xi, zi)
Outputs: α

Figure 1: The perceptron training algorithm

rect, the parameter vector is updated by adding the
feature vector of the correct derivation and subtract-
ing the feature vector of the decoder output. Train-
ing typically involves multiple passes over the data.
Figure 1 gives the algorithm, whereN is the number
of training sentences andT is the number of itera-
tions over the data.

For all the experiments in this paper, we used the
averaged version of the perceptron. Collins (2002)
introduced the averaged perceptron, as a way of re-
ducing overfitting, and it has been shown to perform
better than the non-averaged version on a number of
tasks. The averaged parameters are defined as fol-
lows: γs =

∑
t=1...T,i=1...N αt,i

s /NT whereαt,i
s is

the value of thesth feature weight after thetth sen-
tence has been processed in theith iteration.

A naive implementation of the averaged percep-
tron updates the accumulated weight for each fea-
ture after each example. However, the number of
features whose values change for each example is a
small proportion of the total. Hence we use the al-
gorithm described in Daume III (2006) which avoids
unnecessary calculations by only updating the accu-
mulated weight for a featurefs whenαs changes.

4 Experiments

The feature forests were created as follows. First,
the value of theβ parameter for the supertagger was
fixed (for the first set of experiments at 0.004). The
supertagger was then run over the sentences in Sec-
tions 2-21 of CCGbank. We made sure that ev-
ery word was assigned the correct lexical category
among its set (we did not do this for testing). Then
the parser was run on the supertagged sentences, us-
ing the CKY algorithm and theCCG combinatory
rules. We applied the same normal-form restrictions
used in Clark and Curran (2004b): categories can

12



only combine if they have been seen to combine in
Sections 2-21 of CCGbank, and only if they do not
violate the Eisner (1996a) normal-form constraints.
This part of the process requires a few hundredMB

of RAM to run the parser, and takes a few hours for
Sections 2-21 of CCGbank. Any further training
times or memory requirements reported do not in-
clude the resources needed to create the forests.

The feature forests are extracted from the packed
chart representation used in the parser. We only use
a feature forest for training if it contains the correct
derivation (according to CCGbank). Some forests
do not have the correct derivation, even though we
ensure the correct lexical categories are present, be-
cause the grammar used by the parser is missing
some low-frequency rules in CCGbank. The to-
tal number of forests used for the experiments was
35,370 (89% of Sections 2-21) . Only features which
occur at least twice in the training data were used,
of which there are 477,848. The complete set of
forests used to obtain the final perceptron results in
Section 4.1 require 21GB of disk space.

The perceptron is an online algorithm, updating
the weights after each forest is processed. Each for-
est is read into memory one at a time, decoding is
performed, and the weight values are updated. Each
forest is discarded from memory after it has been
used. Constantly reading forests off disk is expen-
sive, but since the perceptron converges in so few
iterations the training times are reasonable.

In contrast, log-linear training takes hundreds of
iterations to converge, and so it would be impractical
to keep reading the forests off disk. Also, since log-
linear training uses a batch algorithm, it is more con-
venient to keep the forests in memory at all times.
In Clark and Curran (2004b) we use a cluster of 45
machines, together with a parallel implementation
of BFGS, to solve this problem, but need up to 20GB

of RAM.
The feature forest representation, and our imple-

mentation of it, is so compact that the perceptron
training requires only 20MB of RAM. Since the su-
pertagger has already removed much of the practical
parsing complexity, decoding one of the forests is
extremely quick, and much of the training time is
taken with continually reading the forests off disk.
However, the training time for the perceptron is still
only around 5 hours for 10 iterations.

model RAM iterations time (mins)

perceptron 20MB 10 312
log-linear 19GB 475 91

Table 1: Training requirements for the perceptron
and log-linear models

Table 1 compares the training for the perceptron
and log-linear models. The perceptron was run for
10 iterations and the log-linear training was run to
convergence. The training time for 10 iterations of
the perceptron is longer than the log-linear training,
although the results in Section 4.1 show that the per-
ceptron typically converges in around 4 iterations.
The striking result in the table is the significantly
smaller memory requirement for the perceptron.

4.1 Results

Table 2 gives the first set of results for the averaged
perceptron model. These were obtained using Sec-
tion 00 of CCGbank as development data. Gold-
standardPOS tags from CCGbank were used for all
the experiments. The parser provides an analysis for
99.37% of the sentences in Section 00. The F-scores
are based only on the sentences for which there is
an analysis. Following Clark and Curran (2004b),
accuracy is measured using F-score over the gold-
standard predicate-argument dependencies in CCG-
bank. The table shows that the accuracy increases
initially with the number of iterations, but converges
quickly after only 4 iterations. The accuracy after
only one iteration is also surprisingly high.

Table 3 compares the accuracy of the perceptron
and log-linear models on the development data. LP
is labelled precision, LR is labelled recall, andCAT

is the lexical category accuracy. The same feature
forests were used for training the perceptron and
log-linear models, and the same parser and decoding
algorithm were used for testing, so the results for the
two models are directly comparable. The only dif-
ference in each case was the weights file used.1

The table also gives the accuracy for the percep-
tron model (after 6 iterations) when a smaller value
of the supertaggerβ parameter is used during the

1Both of these models have parameters which have been
optimised on the development data, in the log-linear case the
Gaussian smoothing parameter and in the perceptron case the
number of training iterations.

13



iteration 1 2 3 4 5 6 7 8 9 10

F-score 85.87 86.28 86.33 86.49 86.46 86.51 86.47 86.52 86.53 86.54

Table 2: Accuracy on the development data for the averaged perceptron (β = 0.004)

model LP LR F CAT

log-linearβ=0.004 87.02 86.07 86.54 93.99
perceptronβ=0.004 87.11 85.98 86.54 94.03
perceptronβ=0.002 87.25 86.20 86.72 94.08

Table 3: Comparison of the perceptron and log-
linear models on the development data

forest creation (with the number of training itera-
tions again optimised on the development data). A
smallerβ value results in larger forests, giving more
incorrect derivations for the training algorithm to
“discriminate against”. Increasing the size of the
forests is no problem for the perceptron, since the
memory requirements are so modest, but this would
cause problems for the log-linear training which is
already highly memory intensive. The table shows
that increasing the number of incorrect derivations
gives a small improvement in performance for the
perceptron.

Table 4 gives the accuracies for the two models
on the test data, Section 23 of CCGbank. Here the
coverage of the parser is 99.63%, and again the ac-
curacies are computed only for the sentences with
an analysis. The figures for the averaged perceptron
were obtained using 6 iterations, withβ = 0.002.
The perceptron slightly outperforms the log-linear
model (although we have not carried out signifi-
cance tests). We justify the use of differentβ values
for the two models by arguing that the perceptron is
much more flexible in terms of the size of the train-
ing forests it can handle.

Note that the important result here is that the per-
ceptron model performsat least as well asthe log-
linear model. Since the perceptron is considerably
easier to train, this is a useful finding. Also, since
the log-linear parsing model is a Conditional Ran-
dom Field (CRF), the results suggest that the percep-
tron should be compared with aCRF for other tasks
for which theCRF is considered to give state-of-the-
art results.

model LP LR F CAT

log-linearβ=0.004 87.39 86.51 86.95 94.07
perceptronβ=0.002 87.50 86.62 87.06 94.08

Table 4: Comparison of the perceptron and log-
linear models on the test data

5 Order of Training Examples

As an example of the flexibility of our discrimina-
tive training framework, we investigated the order in
which the training examples are presented to the on-
line perceptron learner. These experiments were par-
ticularly easy to carry out in our framework, since
the 21GB file containing the complete set of training
forests can be sampled from directly. We stored the
position on disk of each of the forests, and selected
the forests one by one, according to some order.

The first set of experiments investigated ordering
the training examples by sentence length. Buttery
(2006) found that a psychologically motivated Cate-
gorial Grammar learning system learned faster when
the simplest linguistic examples were presented first.
Table 5 shows the results both when the shortest sen-
tences are presented first and when the longest sen-
tences are presented first. Training on the longest
sentences first provides the best performance, but is
no better than the standard ordering.

For the random ordering experiments, forests
were randomly sampled from the complete 21GB

training file on disk, without replacement. The
new forests file was then used for the averaged-
perceptron training, and this process was repeated
9 times.

The number of iterations for each training run was
optimised in terms of the accuracy of the resulting
model on the development data. There was little
variation among the models, with the best model
scoring 86.84% F-score on the development data
and the worst scoring 86.63%. Table 6 shows that
the performance of this best model on the test data
is only slightly better than the model trained using
the CCGbank ordering.

14



iteration 1 2 3 4 5 6

Standard order 86.14 86.30 86.53 86.61 86.69 86.72
Shortest first 85.98 86.41 86.57 86.56 86.54 86.53
Longest first 86.25 86.48 86.66 86.72 86.74 86.75

Table 5: F-score of the averaged perceptron on the development data for different data orderings (β = 0.002)

perceptron model LP LR F CAT

standard order 87.50 86.62 87.06 94.08
best random order 87.52 86.72 87.12 94.12
averaged 87.53 86.67 87.10 94.09

Table 6: Comparison of various perceptron models
on the test data

Finally, we used the 10 models (including the
model from the original training set) to investigate
model averaging. Corston-Oliver et al. (2006) mo-
tivate model averaging for the perceptron in terms
of Bayes Point Machines. The averaged percep-
tron weights resulting from each permutation of the
training data were simply averaged to produce a new
model. Table 6 shows that the averaged model again
performs only marginally better than the original
model, and not as well as the best-performing “ran-
dom” model, which is perhaps not surprising given
the small variation among the performances of the
component models.

In summary, the perceptron learner appears highly
robust to the order of the training examples, at least
for this parsing task.

6 Comparison with Other Work

Taskar et al. (2004) investigate discriminative train-
ing methods for a phrase-structure parser, and also
use dynamic programming for the decoder. The key
difference between our work and theirs is that they
are only able to train on sentences of 15 words or
less, because of the expense of the decoding.

There is work on discriminative models for de-
pendency parsing (McDonald, 2006); since there
are efficient decoding algorithms available (Eisner,
1996b), complete resources such as the Penn Tree-
bank can used for estimation, leading to accurate
parsers. There is also work on discriminative mod-
els for parse reranking (Collins and Koo, 2005). The
main drawback with this approach is that the correct

parse may get lost in the first phase.
The existing work most similar to ours is Collins

and Roark (2004). They use a beam-search decoder
as part of a phrase-structure parser to allow practical
estimation. The main difference is that we are able
to store the complete forests for training, and can
guarantee that the forest contains the correct deriva-
tion (assuming the grammar is able to generate it
given the correct lexical categories). The downside
of our approach is the restriction on the locality of
the features, to allow dynamic programming. One
possible direction for future work is to compare the
search-based approach of Collins and Roark with
our DP-based approach.

In the tagging domain, Collins (2002) compared
log-linear and perceptron training forHMM -style
tagging based on dynamic programming. Our work
could be seen as extending that of Collins since we
compare log-linear and perceptron training for aDP-
based wide-coverage parser.

7 Conclusion

Investigation of discriminative training methods is
one of the most promising avenues for breaking
the current bottleneck in parsing performance. The
drawback of these methods is the need for an effi-
cient decoder. In this paper we have demonstrated
how the lexicalized nature ofCCG can be used to
develop a very efficient decoder, which leads to a
practical development environment for discrimina-
tive training.

We have also provided the first comparison of a
perceptron and log-linear model for a wide-coverage
phrase-structure parser. An advantage of the percep-
tron over the log-linear model is that it is consider-
ably easier to train, requiring 1/1000th of the mem-
ory requirements and converging in only 4 iterations.

Given that the global log-linear model used here
(CRF) is thought to provide state-of-the-art perfor-
mance for manyNLP tasks, it is perhaps surprising

15



that the perceptron performs as well. The evalua-
tion in this paper was based solely on CCGbank, but
we have shown in Clark and Curran (2007) that the
CCG parser gives state-of-the-art performance, out-
performing theRASP parser (Briscoe et al., 2006)
by over 5% on DepBank. This suggests the need for
more comparisons ofCRFs and discriminative meth-
ods such as the perceptron for otherNLP tasks.

Acknowledgements

James Curran was funded under ARC Discovery
grants DP0453131 and DP0665973.

References
Srinivas Bangalore and Aravind Joshi. 1999. Supertagging:

An approach to almost parsing.Computational Linguistics,
25(2):237–265.

Ted Briscoe, John Carroll, and Rebecca Watson. 2006. The
second release of the RASP system. InProceedings of
the Interactive Demo Session of COLING/ACL-06, Sydney,
Austrailia.

Paula Buttery. 2006. Computational models for first language
acquisition. Technical Report UCAM-CL-TR-675, Univer-
sity of Cambridge Computer Laboratory.

Stephen Clark and James R. Curran. 2004a. The importance of
supertagging for wide-coverage CCG parsing. InProceed-
ings of COLING-04, pages 282–288, Geneva, Switzerland.

Stephen Clark and James R. Curran. 2004b. Parsing the WSJ
using CCG and log-linear models. InProceedings of the
42nd Meeting of the ACL, pages 104–111, Barcelona, Spain.

Stephen Clark and James R. Curran. 2007. Formalism-
independent parser evaluation with CCG and DepBank. In
Proceedings of the 45th Annual Meeting of the ACL, Prague,
Czech Republic.

Michael Collins and Terry Koo. 2005. Discriminative rerank-
ing for natural language parsing.Computational Linguistics,
31(1):25–69.

Michael Collins and Brian Roark. 2004. Incremental parsing
with the perceptron algorithm. InProceedings of the 42nd
Meeting of the ACL, pages 111–118, Barcelona, Spain.

Michael Collins. 2002. Discriminative training methods for
hidden markov models: Theory and experiments with per-
ceptron algorithms. InProceedings of the 40th Meeting of
the ACL, Philadelphia, PA.

S. Corston-Oliver, A. Aue, K. Duh, and E. Ringger. 2006. Mul-
tilingual dependency parsing using bayes point machines. In
Proceedings of HLT/NAACL-06, New York.

James R. Curran, Stephen Clark, and David Vadas. 2006.
Multi-tagging for lexicalized-grammar parsing. InProceed-
ings of COLING/ACL-06, pages 697–704, Sydney, Aus-
trailia.

Jason Eisner. 1996a. Efficient normal-form parsing for Com-
binatory Categorial Grammar. InProceedings of the 34th
Meeting of the ACL, pages 79–86, Santa Cruz, CA.

Jason Eisner. 1996b. Three new probabilistic models for de-
pendency parsing: An exploration. InProceedings of the
16th COLING Conference, pages 340–345, Copenhagen,
Denmark.

Yoav Freund and Robert E. Schapire. 1999. Large margin clas-
sification using the perceptron algorithm.Machine Learn-
ing, 37(3):277–296.

Julia Hockenmaier and Mark Steedman. 2002. Generative
models for statistical parsing with Combinatory Categorial
Grammar. InProceedings of the 40th Meeting of the ACL,
pages 335–342, Philadelphia, PA.

Julia Hockenmaier. 2003.Data and Models for Statistical
Parsing with Combinatory Categorial Grammar. Ph.D. the-
sis, University of Edinburgh.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi, and
Stefan Riezler. 1999. Estimators for stochastic ‘unification-
based’ grammars. InProceedings of the 37th Meeting of the
ACL, pages 535–541, University of Maryland, MD.

Robert Malouf and Gertjan van Noord. 2004. Wide coverage
parsing with stochastic attribute value grammars. InPro-
ceedings of the IJCNLP-04 Workshop: Beyond shallow anal-
yses - Formalisms and statistical modeling for deep analyses,
Hainan Island, China.

Ryan McDonald. 2006.Discriminative Training and Spanning
Tree Algorithms for Dependency Parsing. Ph.D. thesis, Uni-
versity of Pennsylvania.

Yusuke Miyao and Jun’ichi Tsujii. 2002. Maximum entropy
estimation for feature forests. InProceedings of the Human
Language Technology Conference, San Diego, CA.

Yusuke Miyao and Jun’ichi Tsujii. 2005. Probabilistic dis-
ambiguation models for wide-coverage HPSG parsing. In
Proceedings of the 43rd meeting of the ACL, pages 83–90,
University of Michigan, Ann Arbor.

Adwait Ratnaparkhi. 1996. A maximum entropy part-of-
speech tagger. InProceedings of the EMNLP Conference,
pages 133–142, Philadelphia, PA.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan, Richard
Crouch, John T. Maxwell III, and Mark Johnson. 2002.
Parsing the Wall Street Journal using a Lexical-Functional
Grammar and discriminative estimation techniques. InPro-
ceedings of the 40th Meeting of the ACL, pages 271–278,
Philadelphia, PA.

Mark Steedman. 2000.The Syntactic Process. The MIT Press,
Cambridge, MA.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning.
2004. Max-margin parsing. InProceedings of the EMNLP
conference, pages 1–8, Barcelona, Spain.

Joseph Turian and I. Dan Melamed. 2006. Advances in dis-
criminative parsing. InProceedings of COLING/ACL-06,
pages 873–880, Sydney, Australia.

16



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 17–24,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Filling Statistics with Linguistics –
Property Design for the Disambiguation of German LFG Parses

Martin Forst
Institute of Natural Language Processing

University of Stuttgart, Germany
forst@ims.uni-stuttgart.de

Abstract

We present a log-linear model for the disam-
biguation of the analyses produced by a Ger-
man broad-coverage LFG, focussing on the
properties (or features) this model is based
on. We compare this model to an initial
model based only on a part of the proper-
ties provided to the final model and observe
that the performance of a log-linear model
for parse selection depends heavily on the
types of properties that it is based on. In
our case, the error reduction achieved with
the log-linear model based on the extended
set of properties is 51.0% and thus com-
pares very favorably to the error reduction
of 34.5% achieved with the initial model.

1 Introduction

In the development of stochastic disambiguation
modules for ‘deep’ grammars, relatively much work
has gone into the definition of suitable probability
models and the corresponding learning algorithms.
Property design, on the contrary, has rather been un-
deremphasized, and the properties used in stochas-
tic disambiguation modules are most often presented
only superficially. This paper’s aim is to draw more
attention to property design by presenting linguisti-
cally motivated properties that are used for the dis-
ambiguation of the analyses produced by a German
broad-coverage LFG and by showing that property
design is of crucial importance for the quality of
stochastic models for parse selection.

We present, in Section 2, the system that the dis-
ambiguation module was developed for as well as

the initially used properties. In Section 3, we then
present a selection of the properties that were ex-
pressly designed for the resolution of frequent ambi-
guities in German LFG parses. Section 4 describes
experiments that we carried out with log-linear mod-
els based on the initial set of properties and on an
extended one. Section 5 concludes.

2 Background

2.1 The German ParGram LFG

The grammar for which the log-linear model for
parse selection described in this paper was devel-
oped is the German ParGram LFG (Dipper, 2003;
Rohrer and Forst, 2006). It has been developed with
and for the grammar development and processing
platform XLE (Crouch et al., 2006) and consists of
a symbolic LFG, which can be employed both for
parsing and generation, and a two-stage disambigua-
tion module, the log-linear model being the compo-
nent that carries out the final selection among the
parses that have been retained by an Optimality-
Theoretically inspired prefilter (Frank et al., 2001;
Forst et al., 2005).

The grammar has a coverage in terms of full
parses that exceeds 80% on newspaper corpora. For
sentences out of coverage, it employs the robust-
ness techniques (fragment parsing, ‘skimming’) im-
plemented in XLE and described in Riezler et al.
(2002), so that 100% of our corpus sentences receive
at least some sort of analysis. A dependency-based
evaluation of the analyses produced by the grammar
on the TiGer Dependency Bank (Forst et al., 2004)
results in an F-score between 80.42% on all gram-

17



matical relations and morphosyntactic features (or
72.59% on grammatical relations only) and 85.50%
(or 79.36%). The lower bound is based on an ar-
bitrary selection among the parses built up by the
symbolic grammar; the upper bound is determined
by the best possible selection.

2.2 Log-linear models for disambiguation

Since Johnson et al. (1999), log-linear models of
the following form have become standard as disam-
biguation devices for precision grammars:

Pλ(x|y) = e

∑m
j=1

λj ·fj(x,y)∑
x′∈X(y) e

∑m
j=1

λj ·fj(x′,y)

They are used for parse selection in the English Re-
source Grammar (Toutanova et al., 2002), the En-
glish ParGram LFG (Riezler et al., 2002), the En-
glish Enju HPSG (Miyao and Tsujii, 2002), the
HPSG-inspired Alpino parser for Dutch (Malouf
and van Noord, 2004; van Noord, 2006) and the
English CCG from Edinburgh (Clark and Curran,
2004).

While relatively much work has gone into the
question of how to estimate the property weights
λ1 . . . λm efficiently and accurately on the basis
of (annotated) corpus data, the question of how
to define suitable and informative property func-
tions f1 . . . fm has received relatively little attention.
However, we are convinced that property design is
the possibility of improving log-linear models for
parse selection now that the machine learning ma-
chinery is relatively well established.

2.3 Initially used properties for disambiguation

The first set of properties with which we conducted
experiments was built on the model of the property
set used for the disambiguation of English ParGram
LFG parses (Riezler et al., 2002; Riezler and Vasser-
man, 2004). These properties are defined with the
help of thirteen property templates, which are pa-
rameterized for c-structure categories, f-structure at-
tributes and/or their possible values. The templates
are hardwired in XLE, which allows for a very ef-
ficient extraction of properties based on them from
packed c-/f-structure representations. The downside
of the templates being hardwired, however, is that, at
least at first sight, the property developer is confined

to what the developers of the property templates an-
ticipated as potentially relevant for disambiguation
or, more precisely, for the disambiguation of English
LFG analyses.

The thirteen property templates can be subdi-
vided into c-structure-based property templates and
f-structure-based ones. The c-structure-based prop-
erty templates are:

• cs label <XP>: counts the number of XP
nodes in the c-structure of an analysis.

• cs num children <XP>: counts the num-
ber of children of all XP nodes in a c-structure.

• cs adjacent label <XP> <YP>:
counts the number of XP nodes that immedi-
ately dominate a Y P node.

• cs sub label <XP> <YP>: counts the
number of XP nodes that dominate a Y P node
(at arbitrary depth).

• cs embedded <XP> <n>: counts the
number of XP nodes that dominate n other
distinct XP nodes (at arbitrary depth).

• cs conj nonpar <n>: counts the number
of coordinated constituents that are not parallel
at the nth level of embedding.

• cs right branch: counts the number of
right children in the c-structure of an analysis.

The f-structure-based property templates are:

• fs attrs <Attr1 ... Attrn>:
counts the number of times that attributes
Attr1 . . . Attrn occur in the f-structure of an
analysis.

• fs attr val <Attr> <Val>: counts
the number of times that the atomic attribute
Attr has the value V al.

• fs adj attrs <Attr1> <Attr2>:
counts the number of times that the com-
plex attribute Attr1 immediately embeds the
attribute Attr2.

• fs subattr <Attr1> <Attr2> counts
the number of times that the complex attribute
Attr1 embeds the attribute Attr2 (at arbitrary
depth).

• lex subcat <Lemma> <SCF1 ...
SCFn>: counts the number of times that
the subcategorizing element Lemma occurs
with one of the subcategorization frames
SCF1 . . . SCFn.

18



• verb arg <Lemma> <GF>: counts the
number of times that the element Lemma sub-
categorizes for the argument GF .

Automatically instantiating these templates for all
c-structure categories, f-structure attributes and val-
ues used in the German ParGram LFG as well as for
all lexical elements present in its lexicon results in
460,424 properties.

3 Property design for the disambiguation
of German LFG parses

Despite the very large number of properties that can
be directly constructed on the basis of the thirteen
property templates provided by XLE, many com-
mon ambiguities in German LFG parses cannot be
captured by any of these.

3.1 Properties that record the relative linear
order of functions

Consider, e.g., the SUBJ-OBJ ambiguity in (1).

(1) [. . . ]
[. . . ]

peilt
aims

[S/O das
the

Management]
management

[O/S ein
a

“sichtbar
“visibly

verbessertes”
improved”

Ergebnis]
result

an.
at.

‘[. . . ] the management aims at a “visibly im-
proved” result.’ (TIGER Corpus s20834)

The c-structure is shared by the two readings
of the sentence, so that c-structure-based proper-
ties cannot contribute to the selection of the cor-
rect reading; the only f-structure-based proper-
ties that differ between the two analyses are of
the kinds fs adj attrs SUBJ ADJUNCT and
fs subattr OBJ ADJUNCT, which are only re-
motely, if at all, related to the observed SUBJ-OBJ

ambiguity. The crucial information from the in-
tended reading, namely that the SUBJ precedes the
OBJ, is not captured directly by any of the ini-
tial properties. We therefore introduce a new prop-
erty template that records the linear order of two
grammatical functions and instantiate it for all rel-
evant combinations. The new properties created
this way make it possible to capture the default
order of nominal arguments, which according to
Lenerz (1977) and Uszkoreit (1987) (among others),
is SUBJ, OBJ-TH, OBJ.

Similarly to the SUBJ-OBJ ambiguity just con-
sidered, the ADJUNCT-OBL ambiguity in (2) can-
not at all be resolved on the basis of c-structure-
based properties, and the f-structure-based proper-
ties whose values differ among the two readings
seem only remotely related to the observed ambi-
guity.

(2) [A/O Dagegen]
Against that/In contrast

sprach
spoke

sich
himself

[. . . ]
[. . . ]

Micha
Micha

Guttmann
Guttmann

[O/A für
for

getrennte
separate

Gedenkstätten]
memorials

aus.
out.

‘In contrast, [. . . ] Michael Guttmann argued
for separate memorials.’ (s2090)

However, the literature on constituent order in Ger-
man, e.g. Helbig and Buscha (2001), documents
the tendency of ADJUNCT PPs to precede OBL PPs,
which also holds in (2). We therefore introduced
properties that record the relative linear order of AD-
JUNCT PPs and OBL PPs.

3.2 Properties that consider the nature of a
constituent wrt. its function

Although linear order plays a major role in the func-
tional interpretation of case-ambiguous DPs in Ger-
man, it is only one among several ‘soft’ constraints
involved. The nature of such a DP may actually also
give hints to its grammatical function.

The tendency of SUBJs to be high on the defi-
niteness scale and the animacy scale as well as the
tendency of OBJs to be low on these scales has
mainly been observed in studies on differential ob-
ject/subject marking (see, e.g., Aissen (2003)). Nev-
ertheless, these tendencies also seem to hold in lan-
guages like German, which does not exhibit differ-
ential object/subject marking. In (3), the indefinite
inanimate DP is to be interpreted as the OBJ of the
sentence and the definite human DP, as its SUBJ al-
though the former precedes the latter.

(3) [O/S Nahezu
Nearly

stabile
stable

Preise]
prices

prognostizieren
forecast

[S/O die
the

bayerischen
Bavarian

Experten]
experts

[. . . ]
[. . . ].

‘The Bavarian experts forecast nearly stable
prices [. . . ].’ (s7357)

19



In order to allow these regularities to be
learned from corpus data, we defined addi-
tional property templates like isDef <GF> and
isHuman <GF>,1 which are instantiated for all rel-
evant grammatical functions.

3.3 Properties for the resolution of attachment
ambiguities concerning extraposed
constituents

A further common ambiguity in German con-
cerns the functional attachment of extraposed con-
stituents, such as relative clauses, dass clauses and
infinitival VPs. In (4), e.g., there is no hard con-
straint that would allow us to determine whether the
relative clause modifies Rolle or Autoversicherung.

(4) Eine
A

zentrale
central

Rolle
role

[. . . ]
[. . . ]

kommt
comes

der
the

Autoversicherung
car insurance

zu,
to,

die
which

ein
a

Fünftel
fifth

[. . . ]
[. . . ]

vereinnahmt.
receives.

‘There is a central role for the car insurance,
which receives a fifth [. . . ].’ (s27539)

In order to allow for an improved resolution of
this kind of attachment ambiguity, we introduced
properties that extract the surface distance of an ex-
traposed constituent to its functional head as well as
properties that record how the functional uncertainty
paths involved in these attachments were instanti-
ated. This way, we hope to extract the information
necessary to model the tendencies observed, e.g., in
Uszkoreit et al. (1998).

3.4 Lexicalized properties capturing
dependencies

Inspired by Malouf and van Noord (2004),
we finally also introduced lexicalized proper-
ties capturing dependencies. These are built
on the following property templates: DEP12
<PoS1> <Dep> <PoS2> <Lemma2>, DEP21
<PoS1> <Lemma1> <Dep> <PoS2> and DEP22
<PoS1> <Lemma1> <Dep> <PoS2> <Lemma2>.
These are intended to capture information on the
subcategorization behavior of lexical elements and
on typical collocations.

1Humanness information is imported from GermaNet.

"Eine zentrale Rolle kommt der Autoversicherung zu, die ein Fünftel vereinnahmt."

'zu#kommen<[21:Rolle], [243:Versicherung]>'PRED

'Rolle'PRED

'zentral<[21:Rolle]>'PRED
[21:Rolle]SUBJ107

ADJUNCT

'vereinnahmen<[434:pro], [528:fünftel]>'PRED

'pro'PRED434SUBJ

'fünftel'PRED

'eine'PREDDETSPEC
528

OBJ

[434:pro]PRON-REL
[434:pro]TOPIC-REL633

ADJ-REL

'eine'PREDDETSPEC
21

SUBJ

'Versicherung'PRED

'Auto'PRED-12MOD

'die'PREDDETSPEC
243

OBJ-TH

[21:Rolle]TOPIC191

(a) evaluated as relatively improbable due to negative weight of
DISTANCE-TO-ANTECEDENT %X

"Eine zentrale Rolle kommt der Autoversicherung zu, die ein Fünftel vereinnahmt."

'zu#kommen<[21:Rolle], [243:Versicherung]>'PRED

'Rolle'PRED

'zentral<[21:Rolle]>'PRED
[21:Rolle]SUBJ107

ADJUNCT

'eine'PREDDETSPEC
21

SUBJ

'Versicherung'PRED

'Auto'PRED-12MOD

'vereinnahmen<[434:pro], [528:fünftel]>'PRED

'pro'PRED434SUBJ

'fünftel'PRED

'eine'PREDDETSPEC
528

OBJ

[434:pro]PRON-REL
[434:pro]TOPIC-REL633

ADJ-REL

'die'PREDDETSPEC
243

OBJ-TH

[21:Rolle]TOPIC191

(b) evaluated as more probable

Figure 1: Competing f-structures for (4)

In the case of (5), the property DEP21 common
Anwalt APP proper, which counts the num-
ber of occurrences of the common noun Anwalt
(‘lawyer’) that govern a proper name via the depen-
dency APP (close apposition), contributes to the cor-
rect selection among the analyses illustrated in Fig-
ure 2 by capturing the fact that Anwalt is a prototyp-
ical head of a close apposition.2

(5) [. . . ],
[. . . ]

das
which

den
the

Anwalt
lawyer

Klaus
Klaus

Bollig
Bollig

zum
to the

vorläufigen
interim

Verwalter
administrator

bestellte.
appointed.

‘[. . . ] which appointed lawyer Klaus Bollig as
interim administrator.’ (s37596)

2Since we have a list of title nouns available, we might also
introduce a more general property that would count the number
of occurrences of title nouns in general that govern a proper
name via the dependency APP. Note, however, that the nouns
that be heads of APPs comprise not only title nouns, but also
nouns like Abteilung ‘department’, Buch ‘book’, etc.

20



"das den Anwalt Klaus Bollig zum vorläufigen Verwalter bestellte"

'bestellen<[1:pro], [82:Anwalt], [228:Bollig]>'PRED

'pro'PRED1SUBJ

'Anwalt'PRED

'die'PREDDETSPEC
82

OBJ

'Bollig'PRED

'Klaus'PRED188NAME-MOD
228

OBJ-TH

'zu<[246:Verwalter]>'PRED

'Verwalter'PRED

'vorläufig<[246:Verwalter]>'PRED
[246:Verwalter]SUBJ334

ADJUNCT

'die'PREDDETSPEC
246

OBJ

246

ADJUNCT

[1:pro]PRON-REL
[1:pro]TOPIC-REL429

(a) evaluated as less probable

"das den Anwalt Klaus Bollig zum vorläufigen Verwalter bestellte"

'bestellen<[1:pro], [82:Anwalt]>'PRED

'pro'PRED1SUBJ

'Anwalt'PRED

'Bollig'PRED

'Klaus'PRED188NAME-MOD
228

APP

'die'PREDDETSPEC
82

OBJ

'zu<[246:Verwalter]>'PRED

'Verwalter'PRED

'vorläufig<[246:Verwalter]>'PRED
[246:Verwalter]SUBJ334

ADJUNCT

'die'PREDDETSPEC
246

OBJ

246

ADJUNCT

[1:pro]PRON-REL
[1:pro]TOPIC-REL429

(b) evaluated as relatively probable due to highly positive weight
of DEP21 common Anwalt APP proper

Figure 2: Competing f-structures for (5)

4 Experiments

4.1 Data

All the data we use are from the TIGER Corpus
(Brants et al., 2002), a treebank of German news-
paper texts comprising about 50,000 sentences. The
1,868 dependency annotations of the TiGer Depen-
dency Bank, which have been semi-automatically
derived from the corresponding treebank graphs, are
used for evaluation purposes; we split these into a
held-out set of 371 sentences (and corresponding de-
pendency annotations) and a test set of 1,497 sen-
tences. For training, we use packed, i.e. ambiguous,
c/f-structure representations where a proper subset
of the f-structures can be determined as compatible
with the TIGER graph annotations. Currently, these
are 8,881 pairs of labelled and unlabelled packed
c/f-structure reprentations.

From these 8,881 pairs of c/f-structure reprenta-
tions, we extract two sets of property forests, one
containing only the initially used properties, which
are based on the hardwired templates, and one con-
taining all properties, i.e. both the initially used and

the newly introduced ones.

4.2 Training

For training, we use the cometc software by Ste-
fan Riezler, which is part of XLE. Prior to train-
ing, however, we apply a frequency-based cutoff c
to the data that ensures that a property is discrimi-
native between the intended reading(s) and the un-
intended reading(s) in at least c sentences; c is set
to 4 on the basis of the evaluation results achieved
on our held-out set and following a policy of a ‘con-
servative’ cutoff whose only purpose is to prevent
that weights be learned for sparse properties. (For
a longer discussion of frequency-based cutoffs, see
Forst (2007).) For the actual estimation of prop-
erty weights, we then apply the combined method of
incremental property selection and l1 regularization
proposed in Riezler and Vasserman (2004), adjust-
ing the hyperparameters on our held-out set for each
of the two sets of properties. In order to compara-
tively evaluate the importance of property selection
and regularization, we also train models based on
each of the two sets of properties without applying
any kind of these techniques.

4.3 Evaluation

The overall results in terms of F-score and error re-
duction, defined as Fκ = Factual−Flower

Fupper−Flower
, that the

four resulting systems achieve on our test set of
1,497 TiGer DB structures are shown in Table 1. In
order to give the reader an idea of the size of the dif-
ferent models, we also indicate the number of prop-
erties that they are based on. All of the F-scores
were calculated by means of the evaluation software
by Crouch et al. (2002).

We observe that the models obtained using prop-
erty selection and regularization, in addition to be-
ing much more compact than their unregularized
counterparts, perform significantly better than these.
More importantly though, we can see that the most
important improvement, namely from an error re-
duction of 32.5% to one of 42.0% or from 34.8%
to 51.0% respectively, is achieved by adding more
informative properties to the model.

Table 2 then shows results broken down according
to individual dependencies that are achieved with,
on the one hand, the best-performing model based
on both the XLE template-based and the newly in-

21



# prop. F-sc. err. red.
XLE template-based properties,

unregularized MLE 14,263 82.07 32.5%
XLE templ.-based pr. that survive

a freq.-b. cutoff of 4, n-best
grafting with l1 regularization 3,400 82.19 34.8%

all properties,
unregularized MLE 57,934 82.55 42.0%

all properties that survive a
freq.-b. cutoff of 4, n-best
grafting with l1 regularization 4,340 83.01 51.0%

Table 1: Overall F-score and corresponding error re-
duction achieved by the four different systems on the
1,497 TiGer DB structures of our test set

troduced properties and, on the other hand, the best-
performing model based on XLE template-based
properties only. Furthermore, we indicate the re-
spective upper and lower bound F-scores, deter-
mined by the best possible parse selection and by
an arbitrary selection respectively.

We observe that the overall F-score is signifi-
cantly better with a selection based on the model that
includes the newly introduced properties than with a
selection based on the model that relies on the XLE
template-based properties only; overall error reduc-
tion increases from 34.5% to 51.0%. What is partic-
ularly interesting is the considerably better error re-
duction for the core grammatical functions sb (sub-
ject) and oa (accusative object). But also for rcs
(relative clauses) and mos (modifiers or adjuncts),
which are notoriously difficult for disambiguation
due to PP and ADVP attachment ambiguities, we
observe an improvement in F-score.

Our error reduction of 51.0% also compares fa-
vorably to the 36% error reduction on English LFG
parses reported in Riezler et al. (2002). However,
it is considerably lower than the error reduction of
78% reported for the Dutch Alpino parser (Malouf
and van Noord, 2004), but this may be due to the
fact that our lower bound is calculated on the basis
of analyses that have already passed a prefilter and
is thus relatively high.

5 Conclusions

Our results show that property design is of crucial
importance in the development of a disambiguation
module for a ‘deep’ parser. They also indicate that it
is a good idea to carry out property design in a lin-

guistically inspired fashion, i.e. by referring to the
theoretical literature that deals with soft constraints
that are active in the language for which the system
is developed. Property design thus requires a pro-
found knowledge of the language under considera-
tion (and the theoretical literature that deals with its
syntax), and since the disambiguation module oper-
ates on the output of the symbolic grammar, a good
knowledge of the grammar is necessary as well.

Weighting against each other the contributions of
different measures taken for improving log-linear
models for parse selection, we can conclude that
property design is at least as important as prop-
erty selection and/or regularization, since even a
completely unregularized model based on all prop-
erties performs significantly better than the best-
adjusted model among the ones that are based on
the template-based properties only. Moreover, prop-
erty design can be carried out in a targeted way,
i.e. properties can be designed in order to improve
the disambiguation of grammatical relations that, so
far, are disambiguated particularly poorly or that
are of special interest for the task that the system’s
output is used for. By demonstrating that prop-
erty design is the key to good log-linear models for
‘deep’ syntactic disambiguation, our work confirms
that “specifying the features of a SUBG [stochastic
unification-based grammar] is as much an empirical
matter as specifying the grammar itself” (Johnson et
al., 1999).

Acknowledgements

The work described in this paper has been carried
out in the DLFG project, which was funded by the
German Research Foundation (DFG).

Furthermore, I thank the audiences at several Par-
Gram meetings, at the Research Workshop of the
Israel Science Foundation on Large-scale Grammar
Development and Grammar Engineering at the Uni-
versity of Haifa and at the SFB 732 Opening Col-
loquium in Stuttgart for their important feedback on
earlier versions of this work.

References
Judith Aissen. 2003. Differential Object Marking:

Iconicity vs. Economy. Natural Language and Lin-
guistic Theory, 21:435–483.

22



upper stoch. select. stoch. select. lower
bound all properties templ.-based pr. bound

gramm. relation/morphosynt. feature F-sc. F-sc. err. red. F-sc. err. red. F-sc.
all 85.50 83.01 51.0 82.17 34.5 80.42

PREDs only 79.36 75.74 46.5 74.69 31.0 72.59
app (close apposition) 63 60 63 61 75 55

app cl (appositive clause) 53 53 100 52 86 46
cc (comparative complement) 28 19 -29 19 -29 21

cj (conjunct of coord.) 70 68 50 67 25 66
da (dative object) 67 63 67 62 58 55
det (determiner) 92 91 50 91 50 90

gl (genitive in spec. pos.) 89 88 75 88 75 85
gr (genitive attribute) 88 84 56 84 56 79

mo (modifier) 70 63 36 62 27 59
mod (non-head in compound) 94 89 29 89 29 87

name mod (non-head in compl. name) 82 80 33 81 67 79
number (number as determiner) 83 81 33 81 33 80

oa (accusative object) 78 75 77 69 31 65
obj (arg. of prep. or conj.) 90 88 50 87 25 86
oc fin (finite cl. obj.) 67 64 0 64 0 64
oc inf (infinite cl. obj.) 83 82 0 82 0 82
op (prepositional obj.) 57 54 40 54 40 52

op dir (directional argument) 30 23 13 23 13 22
op loc (local argument) 59 49 29 49 29 45
pd (predicative argument) 62 60 50 59 25 58

pred restr 92 87 62 84 38 79
quant (quantifying determiner) 70 68 33 68 33 67

rc (relative clause) 74 62 20 59 0 59
sb (subject) 76 73 63 71 38 68

sbp (logical subj. in pass. constr.) 68 63 62 61 46 55
case 87 85 75 83 50 79

comp form (complementizer form) 74 72 0 74 100 72
coord form (coordinating conj.) 86 86 100 86 100 85

degree 89 88 50 87 0 87
det type (determiner type) 95 95 – 95 – 95

fut (future) 86 86 – 86 – 86
gend (gender) 92 90 60 89 40 87

mood 90 90 – 90 – 90
num (number) 91 89 50 89 50 87

pass asp (passive aspect) 80 80 100 79 0 79
perf (perfect) 86 85 0 86 100 85
pers (person) 85 84 83 82 50 79

pron form (pronoun form) 73 73 – 73 – 73
pron type (pronoun type) 71 70 0 71 100 70

tense 92 91 0 91 0 91

Table 2: F-scores (in %) in the 1,497 TiGer DB examples of our test set

23



Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, and George Smith. 2002. The TIGER tree-
bank. In Proceedings of the Workshop on Treebanks
and Linguistic Theories, Sozopol, Bulgaria.

Stephen Clark and James R. Curran. 2004. Parsing the
WSJ using CCJ and Log-Linear Models. In Proceed-
ings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL ’04), Barcelona,
Spain.

Richard Crouch, Ronald M. Kaplan, Tracy H. King, and
Stefan Riezler. 2002. A comparison of evaluation
metrics for a broad-coverage parser. In Proceedings
of the LREC Workshop ‘Beyond PARSEVAL—Towards
improved evaluation mesures for parsing systems’,
pages 67–74, Las Palmas, Spain.

Dick Crouch, Mary Dalrymple, Ron Kaplan, Tracy King,
John Maxwell, and Paula Newman. 2006. XLE docu-
mentation. Technical report, Palo Alto Research Cen-
ter, Palo Alto, CA.

Stefanie Dipper. 2003. Implementing and Documenting
Large-scale Grammars – German LFG. Ph.D. thesis,
IMS, University of Stuttgart. Arbeitspapiere des Insti-
tuts für Maschinelle Sprachverarbeitung (AIMS), Vol-
ume 9, Number 1.

Martin Forst, Núria Bertomeu, Berthold Crysmann, Fred-
erik Fouvry, Silvia Hansen-Schirra, and Valia Kordoni.
2004. Towards a dependency-based gold standard
for German parsers – The TiGer Dependency Bank.
In Proceedings of the COLING Workshop on Lin-
guistically Interpreted Corpora (LINC ’04), Geneva,
Switzerland.

Martin Forst, Jonas Kuhn, and Christian Rohrer. 2005.
Corpus-based learning of OT constraint rankings for
large-scale LFG grammars. In Proceedings of the 10th
International LFG Conference (LFG’05), Bergen,
Norway. CSLI Publications.

Martin Forst. 2007. Disambiguation for a Linguistically
Precise German Parser. Ph.D. thesis, University of
Stuttgart.

Anette Frank, Tracy Holloway King, Jonas Kuhn, and
John T. Maxwell. 2001. Optimality Theory Style
Constraint Ranking in Large-Scale LFG Grammars. In
Peter Sells, editor, Formal and Empirical Issues in Op-
timality Theoretic Syntax, pages 367–397. CSLI Pub-
lications, Stanford, CA.

Gerhard Helbig and Joachim Buscha. 2001.
Deutsche Grammatik – Ein Handbuch für den
Ausländerunterricht. Langenscheidt, Berlin and
Munich, Germany.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi,
and Stefan Riezler. 1999. Estimators for stochastic

“unification-based” grammars. In Proceedings of the
37th Annual Meeting of the Association for Computa-
tional Linguistics 1999, College Park, MD.

Jürgen Lenerz. 1977. Zur Abfolge nominaler Satzglieder
im Deutschen. Number 5 in Studien zur deutschen
Grammatik. Narr, Tübingen, Germany.

Robert Malouf and Gertjan van Noord. 2004. Wide Cov-
erage Parsing with Stochastic Attribute Value Gram-
mars. In Proceedings of the IJCNLP-04 Workshop
“Beyond Shallow Analyses - Formalisms and statisti-
cal modeling for deep analyses”.

Yusuke Miyao and Jun’ichi Tsujii. 2002. Maximum en-
tropy estimation for feature forests. In Proceedings
of the Human Language Technology Conference, San
Diego, CA.

Stefan Riezler and Alexander Vasserman. 2004. Gradi-
ent feature testing and l1 regularization for maximum
entropy parsing. In Proceedings of the 2004 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP’04), Barcelona, Spain.

Stefan Riezler, Tracy Holloway King, Ronald M. Kaplan,
Richard Crouch, John T. Maxwell, and Mark John-
son. 2002. Parsing the Wall Street Journal using a
Lexical-Functional Grammar and Discriminative Esti-
mation Techniques. In Proceedings of the 40th Annual
Meeting of the Association for Computational Linguis-
tics 2002, Philadelphia, PA.

Christian Rohrer and Martin Forst. 2006. Improv-
ing coverage and parsing quality of a large-scale
LFG for German. In Proceedings of the Language
Resources and Evaluation Conference (LREC-2006),
Genoa, Italy.

Kristina Toutanova, Christopher D. Manning, Stuart M.
Shieber, Dan Flickinger, and Stephan Oepen. 2002.
Parse disambiguation for a rich HPSG grammar. In
First Workshop on Treebanks and Linguistic Theories
(TLT2002), pages 253–263.

Hans Uszkoreit, Thorsten Brants, Brigitte Krenn, Lars
Konieczny, Stephan Oepen, and Wojciech Skut. 1998.
Relative Clause Extraposition in German – Evidence
from Corpus Studies and Acceptability Ratings. In
Proceedings of AMLaP-98, Freiburg, Germany.

Hans Uszkoreit. 1987. Word Order and Constituent
Structure in German. CSLI Publications, Stanford,
CA.

Gertjan van Noord. 2006. At Last Parsing Is Now
Operational. In Piet Mertens, Cedrick Fairon, Anne
Dister, and Patrick Watrin, editors, TALN06. Verbum
Ex Machina. Actes de la 13e conférence sur le traite-
ment automatique des langues naturelles, pages 20–
42, Leuven, Belgium.

24



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 25–32,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Exploiting Semantic Information for HPSG Parse Selection

Sanae Fujita,♥ Francis Bond,♠ Stephan Oepen,♣ Takaaki Tanaka♥
♥ {sanae,takaaki}@cslab.kecl.ntt.co.jp, ♠ bond@ieee.org, ♣ oe@ifi.uio.no

♥ NTT Communication Science Laboratories, Nippon Telegraphand Telephone Corporation
♠ National Institute of Information and Communications Technology (Japan)

♣ University of Oslo, Department of Informatics (Norway)

Abstract

In this paper we present a framework for
experimentation on parse selection using
syntactic and semantic features. Results
are given for syntactic features, depen-
dency relations and the use of semantic
classes.

1 Introduction

In this paper we investigate the use of semantic in-
formation in parse selection.

Recently, significant improvements have been
made in combining symbolic and statistical ap-
proaches to various natural language processing
tasks. In parsing, for example, symbolic grammars
are combined with stochastic models (Oepen et al.,
2004; Malouf and van Noord, 2004). Much of the
gain in statistical parsing using lexicalized models
comes from the use of a small set of function words
(Klein and Manning, 2003). Features based on gen-
eral relations provide little improvement, presum-
ably because the data is too sparse: in the Penn
treebank standardly used to train and test statisti-
cal parsersstocksand skyrocketnever appear to-
gether. However, the superordinate conceptscapi-
tal (⊃ stocks) andmove upward(⊃ sky rocket) fre-
quently appear together, which suggests that using
word senses and their hypernyms as features may be
useful

However, to date, there have been few combina-
tions of sense information together with symbolic
grammars and statistical models. We hypothesize
that one of the reasons for the lack of success is
that there has been no resource annotated with both

syntactic and semantic information. In this paper,
we use a treebank with both syntactic information
(HPSG parses) and semantic information (sense tags
from a lexicon) (Bond et al., 2007). We use this to
train parse selection models using both syntactic and
semantic features. A model trained using syntactic
features combined with semantic information out-
performs a model using purely syntactic information
by a wide margin (69.4% sentence parse accuracy
vs. 63.8% on definition sentences).

2 The Hinoki Corpus

There are now some corpora being built with the
syntactic and semantic information necessary to in-
vestigate the use of semantic information in parse
selection. In English, the OntoNotes project (Hovy
et al., 2006) is combining sense tags with the Penn
treebank. We are using Japanese data from the Hi-
noki Corpus consisting of around 95,000 dictionary
definition and example sentences (Bond et al., 2007)
annotated with both syntactic parses and senses from
the same dictionary.

2.1 Syntactic Annotation

Syntactic annotation in Hinoki isgrammar based
corpus annotationdone by selecting the best parse
(or parses) from the full analyses derived by a broad-
coverage precision grammar. The grammar is an
HPSG implementation (JACY: Siegel and Bender,
2002), which provides a high level of detail, mark-
ing not only dependency and constituent structure
but also detailed semantic relations. As the gram-
mar is based on a monostratal theory of grammar
(HPSG: Pollard and Sag, 1994), annotation by man-
ual disambiguation determines syntactic and seman-
tic structure at the same time. Using a grammar

25



helps treebank consistency — all sentences anno-
tated are guaranteed to have well-formed parses.
The flip side to this is that any sentences which the
parser cannot parse remain unannotated, at least un-
less we were to fall back on full manual mark-up of
their analyses. The actual annotation process uses
the same tools as the Redwoods treebank of English
(Oepen et al., 2004).

A (simplified) example of an entry is given in Fig-
ure 1. Each entry contains the word itself, its part
of speech, and its lexical type(s) in the grammar.
Each sense then contains definition and example
sentences, links to other senses in the lexicon (such
as hypernym), and links to other resources, such
as the Goi-Taikei Japanese Lexicon (Ikehara et al.,
1997) and WordNet (Fellbaum, 1998). Each content
word of the definition and example sentences is an-
notated with sense tags from the same lexicon.

There were 4 parses for the definition sentence.
The correct parse, shown as a phrase structure tree,
is shown in Figure 2. The two sources of ambigu-
ity are the conjunction and the relative clause. The
parser also allows the conjunction to combine\�
denshaand0 hito. In Japanese, relative clauses
can have gapped and non-gapped readings. In the
gapped reading (selected here),0 hito is the subject
of þU unten“drive”. In the non-gapped reading
there is some underspecified relation between the
modifee and the verb phrase. This is similar to the
difference in the two readings ofthe day he knew
in English: “the day that he knew about” (gapped)
vs “the day on which he knew (something)” (non-
gapped). Such semantic ambiguity is resolved by
selecting the correct derivation tree that includes the
applied rules in building the tree (Fig 3).

The semantic representation is Minimal Recur-
sion Semantics (Copestake et al., 2005). We sim-
plify this into a dependency representation, further
abstracting away from quantification, as shown in
Figure 4. One of the advantages of the HPSG sign
is that it contains all this information, making it pos-
sible to extract the particular view needed. In or-
der to make linking to other resources, such as the
sense annotation, easier predicates are labeled with
pointers back to their position in the original sur-
face string. For example, the predicatedensha n 1

links to the surface characters between positions 0
and 3:\�.

UTTERANCE

NP

VP N

PP V

NP

PP

N CONJ N CASE-P V V\� ℄ �¥� k þU 2d 0
densha ya jidousha o unten suru hito
train or car ACC drive do personþU31 “chauffeur”: “a person who drives a train or car”

Figure 2: Syntactic View of the Definition ofþU31 untenshu“chauffeur”

e2:unknown<0:13>[ARG x5:_hito_n]
x7:densha_n_1<0:3>[]
x12:_jidousha_n<4:7>[]
x13:_ya_p_conj<0:4>[LIDX x7:_densha_n_1,

RIDX x12:_jidousha_n]
e23:_unten_s_2<8:10>[ARG1 x5:_hito_n]
e23:_unten_s_2<8:10>[ARG2 x13:_ya_p_conj]

Figure 4: Simplified Dependency View of the Defi-
nition ofþU31 untenshu“chauffeur”

2.2 Semantic Annotation

The lexical semantic annotation uses the sense in-
ventory from Lexeed (Kasahara et al., 2004). All
words in the fundamental vocabulary are tagged
with their sense. For example, the wordd&� ookii
“big” (of example sentence in Figure 1) is tagged as
sense 5 in the example sentence, with the meaning
“elder, older”.

The word senses are further linked to semantic
classes in a Japanese ontology. The ontology, Goi-
Taikei, consists of a hierarchy of 2,710 semantic
classes, defined for over 264,312 nouns, with a max-
imum depth of 12 (Ikehara et al., 1997). We show
the top 3 levels of the Goi-Taikei common noun on-
tology in Figure 5. The semantic classes are prin-
cipally defined for nouns (including verbal nouns),
although there is some information for verbs and ad-
jectives.

3 Parse Selection

Combining the broad-coverage JACY grammar and
the Hinoki corpus, we build a parse selection model
on top of the symbolic grammar. Given a set of can-

26





































INDEX þU3 untenshu

POS noun

SENSE1

























DEFINITION
[\�1℄�¥�1kþU12d04 a person who drives trains and cars

]

EXAMPLE

[d&(5C<8b\�1GþU31Dod6G%Ý3�2�
I dream of growing up and becoming a train driver

]

HYPERNYM 04 hito “person”

SEM. CLASS 〈292:driver〉 (⊂ 〈4:person〉)

WORDNET motorman1



























































Figure 1: Dictionary Entry forþU31 untenshu“chauffeur”

frag-np

rel-cl-sbj-gap

hd-complement noun-le

hd-complement v-light

hd-complement

hd-complement case-p-acc-le

noun-le conj-le noun-le vn-trans-le v-light-le\� ℄ �¥� k þU 2d 0
densha ya jidousha o unten suru hito
train or car ACC drive do personþU31 “chauffeur”: “a person who drives a train or car”

Figure 3: Derivation Tree of the Definition ofþU31 untenshu“chauffeur”
Phrasal nodes are labeled with identifiers of grammar rules,and (pre-terminal) lexical nodes with class names for typesof lexical

entries.

Lvl 0 Lvl 1 Lvl 2 Lvl 3
human

agent organization
facility

c
o
n
c
r
e
t
e

place region
natural place

object animate
inanimate

abstract
thing

mental state
noun action

human activity
event phenomenon

natural phen.

a
b
s
t
r
a
c
t

existence
system
relationship
property

relation state
shape
amount
location
time

Figure 5: Top 3 levels of the GoiTaikei Ontology

didate analyses (for some Japanese string) according

to JACY, the goal is to rank parse trees by their prob-
ability: training a stochastic parse selection model
on the available treebank, we estimate statistics of
various features of candidate analyses from the tree-
bank. The definition and selection of features, thus,
is a central parameter in the design of an effective
parse selection model.

3.1 Syntactic Features

The first model that we trained uses syntactic fea-
tures defined over HPSG derivation trees as summa-
rized in Table 1. For the closely related purpose of
parse selection over the English Redwoods treebank,
Toutanova et al. (2005) train a discriminative log-
linear model, using features defined overderivation
treeswith non-terminals representing theconstruc-
tion typesand lexical typesof the HPSG grammar.
The basic feature set of our parse selection model
for Japanese is defined in the same way (correspond-
ing to thePCFG-S model of Toutanova et al. (2005)):
each feature capturing a sub-tree from the deriva-

27



# sample features
1 〈0 rel-cl-sbj-gap hd-complement noun-le〉
1 〈1 frag-np rel-cl-sbj-gap hd-complement noun-le〉
1 〈2 △ frag-np rel-cl-sbj-gap hd-complement noun-le〉
2 〈0 rel-cl-sbj-gap hd-complement〉
2 〈0 rel-cl-sbj-gap noun-le〉
2 〈1 frag-np rel-cl-sbj-gap hd-complement〉
2 〈1 frag-np rel-cl-sbj-gap noun-le〉
3 〈1 conj-le ya〉
3 〈2 noun-le conj-le ya〉
3 〈3 � noun-le conj-le ya〉
4 〈1 conj-le〉
4 〈2 noun-le conj-le〉
4 〈3 � noun-le conj-le〉

Table 1: Example structural features extracted from
the derivation tree in Figure 3. The first column
numbers the feature template corresponding to each
example; in the examples, the first integer value
is a parameter to feature templates, i.e. the depth
of grandparenting (types #1 and#2) orn-gram size
(types #3 and #4). The special symbols△ and �

denote the root of the tree and left periphery of the
yield, respectively.

tion limited to depth one. Table 1 shows example
features extracted from our running example (Fig-
ure 3 above) in our MaxEnt models, where the fea-
ture template #1 corresponds to local derivation sub-
trees. We will refer to the parse selection model us-
ing only local structural features asSYN-1.

3.1.1 Dominance Features

To reduce the effects of data sparseness, feature
type #2 in Table 1 provides a back-off to deriva-
tion sub-trees, where the sequence of daughters is
reduced to just the head daughter. Conversely, to
facilitate sampling of larger contexts than just sub-
trees of depth one, feature template #1 allows op-
tional grandparenting, including the upwards chain
of dominating nodes in some features. In our ex-
periments, we found that grandparenting of up to
three dominating nodes gave the best balance of en-
larged contextvs.data sparseness. Enriching our ba-
sic modelSYN-1 with these features we will hence-
forth call SYN-GP.

3.1.2 N-Gram Features

In addition to these dominance-oriented features
taken from the derivation trees of each parse tree,
our models also include more surface-oriented fea-
tures, viz.n-grams of lexical types with or without

lexicalization. Feature type #3 in Table 1 defines
n-grams of variable size, where (in a loose anal-
ogy to part-of-speech tagging) sequences of lexical
types capture syntactic category assignments. Fea-
ture templates #3 and #4 only differ with regard to
lexicalization, as the former includes the surface to-
ken associated with the rightmost element of each
n-gram (loosely corresponding to the emission prob-
abilities in an HMM tagger). We used a maximum
n-gram size of two in the experiments reported here,
again due to its empirically determined best overall
performance.

3.2 Semantic Features

In order to define semantic parse selection features,
we use a reduction of the full semantic representa-
tion (MRS) into ‘variable-free’elementary depen-
dencies. The conversion centrally rests on a notion
of onedistinguishedvariable in each semantic rela-
tion. For most types of relations, the distinguished
variable corresponds to the main index (ARG0 in the
examples above), e.g. an event variable for verbal re-
lations and a referential index for nominals. Assum-
ing further that, by and large, there is a unique re-
lation for each semantic variable for which it serves
as the main index (thus assuming, for example, that
adjectives and adverbs have event variables of their
own, which can be motivated in predicative usages
at least), an MRS can be broken down into a set of
basic dependency tuples of the form shown in Fig-
ure 4 (Oepen and Lønning, 2006).

All predicates are indexed to the position of the
word or words that introduced them in the input sen-
tence (<start:end>). This allows us to link them
to the sense annotations in the corpus.

3.2.1 Basic Semantic Dependencies

The basic semantic model,SEM-Dep, consists of
features based on a predicate and its arguments taken
from the elementary dependencies. For example,
consider the dependencies fordensha ya jidousha-
wo unten suru hito“a person who drives a train or
car” given in Figure 4. The predicateunten“drive”
has two arguments:ARG1 hito “person” andARG2
jidousha“car”.

From these, we produce several features (See Ta-
ble 2). One has all arguments and their labels (#20).
We also produce various back offs: #21 introduces

28



# sample features
20 〈0 unten s ARG1 hito n 1 ARG2 ya p conj〉
20 〈0 ya p conj LIDX densha n 1 RIDX jidousha n 1〉
21 〈1 unten s ARG1 hito n 1〉
21 〈1 unten s ARG2 jidousha n 1〉
21 〈1 ya p conj LIDX densha n 1〉
21 〈1 ya p conj RIDX jidousha n 1〉
22 〈2 unten s hito n 1 jidousha n 1〉
23 〈3 unten s hito n 1〉
23 〈3 unten s jidousha n 1〉
. . .

Table 2: Example semantic features (SEM-Dep) ex-
tracted from the dependency tree in Figure 4.

only one argument at a time, #22 provides unlabeled
relations, #23 provides one unlabeled relation at a
time and so on.

Each combination of a predicate and its related
argument(s) becomes a feature. These resemble the
basic semantic features used by Toutanova et al.
(2005). We further simplify these by collapsing
some non-informative predicates, e.g. theunknown

predicate used in fragments.

3.2.2 Word Sense and Semantic Class
Dependencies

We created two sets of features based only on the
word senses. ForSEM-WS we used the sense anno-
tation to replace each underspecified MRS predicate
by a predicate indicating the word sense. This used
the gold standard sense tags. ForSEM-Class, we used
the sense annotation to replace each predicate by its
Goi-Taikei semantic class.

In addition, to capture more useful relationships,
conjunctions were followed down into the left and
right daughters, and added as separate features. The
semantic classes for\�1densha“train” and� ¥�1jidousha “car” are both〈988:land vehicle〉,
while þU1 unten “drive” is 〈2003:motion〉 and04 hito “person”is〈4:human〉. The sample features
of SEM-Class are shown in Table 3.

These features provide more specific information,
in the case of the word sense, and semantic smooth-
ing in the case of the semantic classes, as words are
binned into only 2,700 classes.

3.2.3 Superordinate Semantic Classes

We further smooth these features by replacing the
semantic classes with their hypernyms at a given
level (SEM-L). We investigated levels 2 to 5. Pred-

# sample features
40 〈0 unten s ARG1 C4 ARG2 C988〉
40 〈1 C2003 ARG1 C4 ARG2 C988〉
40 〈1 C2003 ARG1 C4 ARG2 C988〉
40 〈0 ya p conj LIDX C988 RIDX C988〉
41 〈2 unten s ARG1 C4〉
41 〈2 unten s ARG2 C988〉
. . .

Table 3: Example semantic class features (SEM-

Class).

icates are binned into only 9 classes at level 2, 30
classes at level 3, 136 classes at level 4, and 392
classes at level 5.

For example, at level 3, the hypernym class
for 〈988:land vehicle〉 is 〈706:inanimate〉,
〈2003:motion〉 is 〈1236:human activity〉
and 〈4:human〉 is unchanged. So we used
〈706:inanimate〉 and 〈1236:human activity〉
to make features in the same way as Table 3.

An advantage of these underspecified semantic
classes is that they are more robust to errors in word
sense disambiguation — fine grained sense distinc-
tions can be ignored.

3.2.4 Valency Dictionary Compatability

The last kind of semantic information we use is
valency information, taken from the Japanese side
of the Goi-Taikei Japanese-English valency dictio-
nary as extended by Fujita and Bond (2004).This va-
lency dictionary has detailed information about the
argument properties of verbs and adjectives, includ-
ing subcategorization and selectional restrictions. A
simplified entry of the Japanese side forþU2dunten-suru“drive” is shown in Figure 6.

Each entry has a predicate and several case-slots.
Each case-slot has information such as grammatical
function, case-marker, case-role (N1, N2, . . . ) and
semantic restrictions. The semantic restrictions are
defined by the Goi-Taikei’s semantic classes.

On the Japanese side of Goi-Taikei’s valency
dictionary, there are 10,146 types of verbs giving
18,512 entries and 1,723 types of adjectives giving
2,618 entries.

The valency based features were constructed by
first finding the most appropriate pattern, and then
recording how well it matched.

To find the most appropriate pattern, we extracted
candidate dictionary entries whose lemma is the

29



PID:300513� N1 <4:people> "%" ga� N2 <986:vehicles> "k" o� þU2d unten-suru

Figure 6:þU2dunten-suru“N1 drive N2”.
PID is the verb’s Pattern ID

# sample features
31 〈0 High〉
31 〈1 300513 High〉
31 〈2 2〉
31 〈3 R:High〉
31 〈4 300513 R:High〉
32 〈1 unten s High〉
32 〈4 unten s R:High〉
33 〈5 N1 C High〉
33 〈7 C〉
. . .

Table 4: Example semantic features (SP)

same as the predicate in the sentence: for exam-
ple we look up all entries forþU2d unten-
suru “drive”. Then, for each candidate pattern, we
mapped its arguments to the target predicate’s ar-
guments via case-markers. If the target predicate
has no suitable argument, we mapped to comitative
phrase. Finally, for each candidate patterns, we cal-
culate a matching score1 and select the pattern which
has the best score.

Once we have the most appropriate pattern,
we then construct features that record how good
the match is (Table 4). These include: the to-
tal score, with or without the verb’s Pattern ID
(High/Med/Low/Zero: #31 0,1), the number of filled
arguments (#31 2), the fraction of filled arguments
vs all arguments (High/Med/Low/Zero: #31 3,4),
the score for each argument of the pattern (#32 5)
and the types of matches (#32 5,7).

These scores allow us to use information about
word usage in an exisiting dictionary.

4 Evaluation and Results

We trained and tested on a subset of the dictionary
definition and example sentences in the Hinoki cor-
pus. This consists of those sentences with ambigu-
ous parses which have been annotated so that the

1The scoring method follows Bond and Shirai (1997), and
depends on the goodness of the matches of the arguments.

number of parses has been reduced (Table 5). That
is, we excluded unambiguous sentences (with a sin-
gle parse), and those where the annotators judged
that no parse gave the correct semantics. This does
not necessarily mean that there is a single correct
parse, we allow the annotator to claim that two or
more parses are equally appropriate.

Corpus # Sents Length Parses/Sent
(Ave) (Ave)

Definitions Train 30,345 9.3 190.1
Test 2,790 10.1 177.0

Examples Train 27,081 10.9 74.1
Test 2,587 10.4 47.3

Table 5: Data of Sets for Evaluation

Dictionary definition sentences are a different
genre to other commonly used test sets (e.g news-
paper text in the Penn Treebank or travel dialogues
in Redwoods). However, they are valid examples
of naturally occurring texts and a native speaker can
read and understand them without special training.
The main differences with newspaper text is that
the definition sentences are shorter, contain more
fragments (especially NPs as single utterances) and
fewer quoting and proper names. The main differ-
ences with travel dialogues is the lack of questions.

4.1 A Maximum Entropy Ranker

Log-linear models provide a very flexible frame-
work that has been widely used for a range of tasks
in NLP, including parse selection and reranking for
machine translation. We use amaximum entropy
/ minimum divergence(MEMD) modeler to train
the parse selection model. Specifically, we use the
open-sourceToolkit for Advanced Discriminative
Modeling (TADM:2 Malouf, 2002) for training, us-
ing its limited-memory variable metricas the opti-
mization method and determining best-performing
convergence thresholds and prior sizes experimen-
tally. A comparison of this learner with the use
of support vector machines over similar data found
that the SVMs gave comparable results but were far
slower (Baldridge and Osborne, 2007). Because we
are investigating the effects of various different fea-
tures, we chose the faster learner.

2http://tadm.sourceforge.net

30



Method Definitions Examples
Accuracy Features Accuracy Features

(%) (×1000) (%) (×1000)
SYN-1 52.8 7 67.6 8
SYN-GP 62.7 266 76.0 196
SYN-ALL 63.8 316 76.2 245
SYN baseline 16.4 random 22.3 random
SEM-Dep 57.3 1,189 58.7 675
+SEM-WS 56.2 1,904 59.0 1,486
+SEM-Class 57.5 2,018 59.7 1,669
+SEM-L2 60.3 808 62.9 823
+SEM-L3 59.8 876 62.8 879
+SEM-L4 59.9 1,000 62.3 973
+SEM-L5 60.4 1,240 61.3 1,202
+SP 59.1 1,218 68.2 819
+SEM-ALL 62.7 3,384 69.1 2,693
SYN-SEM 69.5 2,476 79.2 2,126
SEM baseline 20.3 random 22.8 random

Table 6: Parse Selection Results

4.2 Results

The results for most of the models discussed in the
previous section are shown in Table 6. The accuracy
is exact match for the entire sentence: a model gets
a point only if its top ranked analysis is the same as
an analysis selected as correct in Hinoki. This is a
stricter metric than component based measures (e.g.,
labelled precision) which award partial credit for in-
correct parses. For the syntactic models, the base-
line (random choice) is 16.4% for the definitions and
22.3% for the examples. Definition sentences are
harder to parse than the example sentences. This
is mainly because they have fewer relative clauses
and coordinate NPs, both large sources of ambigu-
ity. For the semantic and combined models, multiple
sentences can have different parses but the same se-
mantics. In this case all sentences with the correct
semantics are scored as good. This raises the base-
lines to 20.3 and 22.8% respectively.

Even the simplest models (SYN-1 and SEM-Dep)
give a large improvement over the baseline. Adding
grandparenting to the syntactic model has a large
improvement (SYN-GP), but adding lexical n-grams
gave only a slight improvement over this (SYN-ALL).

The effect of smoothing by superordinate seman-
tic classes (SEM-Class), shows a modest improve-
ment. The syntactic model already contains a back-
off to lexical-types, we hypothesize that the seman-
tic classes behave in the same way. Surprisingly, as
we add more data, the very top level of the seman-
tic class hierarchy performs almost as well as the

+

+ + + + + + + + + +

bc

bc
bc bc

bc bc bc bc bc bc bc

ld

ld
ld ld

ld
ld ld ld ld ld ld

0 20 40 60 80 100
20
30
40
50
60
70

% of training data (30,345 sentences)

S
en

t.
A

cc
ur

ac
y

SYN-SEM

SEM-ALL

SYN-ALL

Figure 7: Learning Curves (Definitions)

more detailed levels. The features using the valency
dictionary (SP) also provide a considerable improve-
ment over the basic dependencies.

Combining all the semantic features (SEM-ALL)
provides a clear improvement, suggesting that the
information is heterogeneous. Finally, combing the
syntactic and semantic features gives the best results
by far (SYN-SEM: SYN-ALL + SEM-Dep + SEM-Class +
SEM-L2 + SP). The definitions sentences are harder
syntactically, and thus get more of a boost from the
semantics. The semantics still improve performance
for the example sentences.

The semantic class based sense features used here
are based on manual annotation, and thus show an
upper bound on the effects of these features. This
is not an absolute upper bound on the use of sense
information — it may be possible to improve further
through feature engineering. The learning curves
(Fig 7) have not yet flattened out. We can still im-
prove by increasing the size of the training data.

5 Discussion

Bikel (2000) combined sense information and parse
information using a subset of SemCor (with Word-
Net senses and Penn-II treebanks) to produce a com-
bined model. This model did not use semantic de-
pendency relations, but only syntactic dependen-
cies augmented with heads, which suggests that the
deeper structural semantics provided by the HPSG
parser is important. Xiong et al. (2005) achieved
only a very minor improvement over a plain syntac-
tic model, using features based on both the corre-
lation between predicates and their arguments, and
between predicates and the hypernyms of their argu-
ments (using HowNet). However, they do not inves-
tigate generalizing to different levels than a word’s
immediate hypernym.

31



Pioneering work by Toutanova et al. (2005) and
Baldridge and Osborne (2007) on parse selection for
an English HPSG treebank used simpler semantic
features without sense information, and got a far less
dramatic improvement when they combined syntac-
tic and semantic information.

The use of hand-crafted lexical resources such as
the Goi-Taikei ontology is sometimes criticized on
the grounds that such resources are hard to produce
and scarce. While it is true that valency lexicons
and sense hierarchies are hard to produce, they are
of such value that they have already been created for
all of the languages we know of which have large
treebanks. In fact, there are more languages with
WordNets than large treebanks.

In future work we intend to confirm that we can
get improved results with raw sense disambiguation
results not just the gold standard annotations and test
the results on other sections of the Hinoki corpus.

6 Conclusions

We have shown that sense-based semantic features
combined with ontological information are effec-
tive for parse selection. Training and testing on
the definition subset of the Hinoki corpus, a com-
bined model gave a 5.6% improvement in parse se-
lection accuracy over a model using only syntactic
features (63.8%→ 69.4%). Similar results (76.2%
→ 79.2%) were found with example sentences.

References
Jason Baldridge and Miles Osborne. 2007. Active learning and

logarithmic opinion pools for HPSG parse selection.Natural
Language Engineering, 13(1):1–32.

Daniel M. Bikel. 2000. A statistical model for parsing and
word-sense disambiguation. InProceedings of the Joint SIG-
DAT Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora, pages 155–163. Hong
Kong.

Francis Bond, Sanae Fujita, and Takaaki Tanaka. 2007. The Hi-
noki syntactic and semantic treebank of Japanese.Language
Resources and Evaluation. (Special issue on Asian language
technology).

Francis Bond and Satoshi Shirai. 1997. Practical and efficient
organization of a large valency dictionary. InWorkshop on
Multilingual Information Processing — Natural Language
Processing Pacific Rim Symposium ’97: NLPRS-97. Phuket.

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A. Sag.
2005. Minimal Recursion Semantics. An introduction.Re-
search on Language and Computation, 3(4):281–332.

Christine Fellbaum, editor. 1998.WordNet: An Electronic Lex-
ical Database. MIT Press.

Sanae Fujita and Francis Bond. 2004. A method of creating
new bilingual valency entries using alternations. In Gilles
Sérasset, editor,COLING 2004 Multilingual Linguistic Re-
sources, pages 41–48. Geneva.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes: The
90% solution. InProceedings of the Human Language
Technology Conference of the NAACL, Companion Volume:
Short Papers, pages 57–60. Association for Computational
Linguistics, New York City, USA. URLhttp://www.
aclweb.org/anthology/N/N06/N06-2015.

Satoru Ikehara, Masahiro Miyazaki, Satoshi Shirai, Akio
Yokoo, Hiromi Nakaiwa, Kentaro Ogura, Yoshifumi
Ooyama, and Yoshihiko Hayashi. 1997.Goi-Taikei —
A Japanese Lexicon. Iwanami Shoten, Tokyo. 5 vol-
umes/CDROM.

Kaname Kasahara, Hiroshi Sato, Francis Bond, Takaaki
Tanaka, Sanae Fujita, Tomoko Kanasugi, and Shigeaki
Amano. 2004. Construction of a Japanese semantic lexicon:
Lexeed. InIPSG SIG: 2004-NLC-159, pages 75–82. Tokyo.
(in Japanese).

Dan Klein and Christopher D. Manning. 2003. Accurate un-
lexicalized parsing. In Erhard Hinrichs and Dan Roth, edi-
tors,Proceedings of the 41st Annual Meeting of the Associ-
ation for Computational Linguistics, pages 423–430. URL
http://www.aclweb.org/anthology/P03-1054.pdf.

Robert Malouf. 2002. A comparison of algorithms for maxi-
mum entropy parameter estimation. InCONLL-2002, pages
49–55. Taipei, Taiwan.

Robert Malouf and Gertjan van Noord. 2004. Wide cover-
age parsing with stochastic attribute value grammars. In
IJCNLP-04 Workshop: Beyond shallow analyses - For-
malisms and statistical modeling for deep analyses.JST
CREST. URLhttp://www-tsujii.is.s.u-tokyo.ac.
jp/bsa/papers/malouf.pdf.

Stephan Oepen, Dan Flickinger, Kristina Toutanova, and
Christoper D. Manning. 2004. LinGO redwoods: A rich and
dynamic treebank for HPSG.Research on Language and
Computation, 2(4):575–596.

Stephan Oepen and Jan Tore Lønning. 2006. Discriminant-
based MRS banking. InProceedings of the 5th International
Conference on Language Resources and Evaluation (LREC
2006). Genoa, Italy.

Carl Pollard and Ivan A. Sag. 1994.Head Driven Phrase Struc-
ture Grammar. University of Chicago Press, Chicago.

Melanie Siegel and Emily M. Bender. 2002. Efficient deep pro-
cessing of Japanese. InProceedings of the 3rd Workshop on
Asian Language Resources and International Standardiza-
tion at the 19th International Conference on Computational
Linguistics, pages 1–8. Taipei.

Kristina Toutanova, Christopher D. Manning, Dan Flickinger,
and Stephan Oepen. 2005. Stochastic HPSG parse disam-
biguation using the redwoods corpus.Research on Language
and Computation, 3(1):83–105.

Deyi Xiong, Qun Liu Shuanglong Li and, Shouxun Lin, and
Yueliang Qian. 2005. Parsing the Penn Chinese treebank
with semantic knowledge. In Robert Dale, Jian Su Kam-Fai
Wong and, and Oi Yee Kwong, editors,Natural Language
Processing — IJCNLP 005: Second International Joint Con-
ference Proceedings, pages 70–81. Springer-Verlag.

32



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 33–40,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Deep Grammars in a Tree Labeling Approach to
Syntax-based Statistical Machine Translation

Mark Hopkins
Department of Linguistics

University of Potsdam, Germany
hopkins@ling.uni-potsdam.de

Jonas Kuhn
Department of Linguistics

University of Potsdam, Germany
kuhn@ling.uni-potsdam.de

Abstract

In this paper, we propose a new syntax-
based machine translation (MT) approach
based on reducing the MT task to a tree-
labeling task, which is further decom-
posed into a sequence of simple decisions
for which discriminative classifiers can be
trained. The approach is very flexible and
we believe that it is particularly well-suited
for exploiting the linguistic knowledge en-
coded in deep grammars whenever possi-
ble, while at the same time taking advantage
of data-based techniques that have proven a
powerful basis for MT, as recent advances in
statistical MT show.

A full system using the Lexical-Functional
Grammar (LFG) parsing system XLE and
the grammars from the Parallel Grammar
development project (ParGram; (Butt et
al., 2002)) has been implemented, and we
present preliminary results on English-to-
German translation with a tree-labeling sys-
tem trained on a small subsection of the Eu-
roparl corpus.

1 Motivation

Machine translation (MT) is probably the oldest ap-
plication of what we call deep linguistic processing
techniques today. But from its inception, there have
been alternative considerations of approaching the
task with data-based statistical techniques (cf. War-
ren Weaver’s well-known memo from 1949). Only
with fairly recent advances in computer technology
have researchers been able to build effective statis-
tical MT prototypes, but in the last few years, the
statistical approach has received enormous research
interest and made significant progress.

The most successful statistical MT paradigm has
been, for a while now, the so-call phrase-based MT
approach (Och and Ney, 2003). In this paradigm,
sentences are translated from a source language to
a target language through the repeated substitution
of contiguous word sequences (“phrases”) from the
source language for word sequences in the target
language. Training of the phrase translation model
builds on top of a standard statistical word alignment
over the training corpus of parallel text (Brown et al.,
1993) for identifying corresponding word blocks,
assuming no further linguistic analysis of the source
or target language. In decoding, i.e. the application
of the acquired translation model to unseen source
sentences, these systems then typically rely on n-
gram language models and simple statistical reorder-
ing models to shuffle the phrases into an order that
is coherent in the target language.

An obvious advantage of statistical MT ap-
proaches is that they can adopt (often very id-
iomatic) translations of mid- to high-frequency con-
structions without requiring any language-pair spe-
cific engineering work. At the same time it is clear
that a linguistics-free approach is limited in what
it can ultimately achieve: only linguistically in-
formed systems can detect certain generalizations
from lower-frequency constructions in the data and
successfully apply them in a similar but different lin-
guistic context. Hence, the idea of “hybrid” MT, ex-
ploiting both linguistic and statistical information is
fairly old. Here we will not consider classical, rule-
based systems with some added data-based resource
acquisition (although they may be among the best
candidates for high-quality special-purpose transla-
tion – but adaption to new language pairs and sub-
languages is very costly for these systems). The
other form of hybridization – a statistical MT model
that is based on a deeper analysis of the syntactic

33



structure of a sentence – has also long been iden-
tified as a desirable objective in principle (consider
(Wu, 1997; Yamada and Knight, 2001)). However,
attempts to retrofit syntactic information into the
phrase-based paradigm have not met with enormous
success (Koehn et al., 2003; Och et al., 2003)1, and
purely phrase-based MT systems continue to outper-
form these syntax/phrase-based hybrids.

In this work, we try to make a fresh start with
syntax-based statistical MT, discarding the phrase-
based paradigm and designing a MT system from
the ground up, using syntax as our central guid-
ing star – besides the word alignment over a par-
allel corpus. Our approach is compatible with and
can benefit substantially from rich linguistic rep-
resentations obtained from deep grammars like the
ParGram LFGs. Nevertheless, contrary to classi-
cal interlingual or deep transfer-based systems, the
generative stochastic model that drives our system
is grounded only in the cross-language word align-
ment and a surface-based phrase structure tree for
the source language and will thus degrade grace-
fully on input with parsing issues – which we sus-
pect is an important feature for making the overall
system competitive with the highly general phrase-
based MT approach.

Preliminary evaluation of our nascent system in-
dicates that this new approach might well have the
potential to finally realize some of the promises of
syntax in statistical MT.

2 General Task

We want to build a system that can learn to translate
sentences from a source language to a destination
language. The general set-up is simple.

Firstly, we have a training corpus of paired sen-
tencesf and e, where target sentencee is a gold
standard translation of source sentencef . These
sentence pairs are annotated with auxiliary informa-
tion, which can include word alignments and syntac-
tic information. We refer to these annotated sentence
pairs ascomplete translation objects.

Secondly, we have an evaluation corpus of source
sentences. These sentences are annotated with a sub-
set of the auxiliary information used to annotate the

1(Chiang, 2005) also reports that with his hierarchical gen-
eralization of the phrase-based approach, the addition of parser
information doesn’t lead to any improvements.

Figure 1: Example translation object.

training corpus. We refer to these partially annotated
source sentences aspartial translation objects.

The task at hand: use the training corpus to learn
a procedure, through which we can successfully in-
duce a complete translation object from a partial
translation object. This is what we will define as
translation.

3 Specific Task Addressed by this Paper

Before going on to actually describe a translation
procedure (and how to induce it), we need to spec-
ify our prior assumptions about how the translation
objects will be annotated. For this paper, we want to
exploit the syntax information that we can gain from
an LFG-parser, hence we will assume the following
annotations:

(1) In the training and evaluation corpora, the
source sentences will be parsed with the XLE-
parser. The attribute-value information from LFG’s
f-structure is restructured so it is indexed by (c-
structure) tree nodes; thus a tree node can bear mul-
tiple labels for various pieces of morphological, syn-
tactic and semantic information.

(2) In the training corpus, the source and target
sentence of every translation object will be aligned
using GIZA++ (http://www.fjoch.com/).

In other words, our complete translation objects
will be aligned tree-string pairs (for instance, Fig-
ure 1), while our partial translation objects will be
trees (the tree portion of Figure 1). No other annota-
tions will be assumed for this paper.

34



Figure 2: GHKM tree equivalent of example translation object. The light gray nodes are rule nodes of the
GHKM tree.

4 Syntax MT as Tree Labeling

It is not immediately clear how one would learn a
process to map a parsed source sentence into an
aligned tree-string pair. To facilitate matters, we
will map complete translation objects to an alternate
representation. In (Galley et al., 2003), the authors
give a semantics to aligned tree-string pairs by asso-
ciating each with an annotated parse tree (hereafter
called aGHKM tree) representing a specific theory
about how the source sentence was translated into
the destination sentence.

In Figure 1, we show an example translation ob-
ject and in Figure 2, we show its associated GHKM
tree. The GHKM tree is simply the parse treef of
the translation object, annotated with rules (hereafter
referred to asGHKM rules). We will not describe in
depth the mapping process from translation object to
GHKM tree. Suffice it to say that the alignment in-
duces a set of intuitive translation rules. Essentially,
a rule like: “not 1→ ne 1 pas” (see Figure 2) means:
if we see the word “not” in English, followed by a
phrase already translated into French, then translate
the entire thing as the word “ne” + the translated
phrase + the word “pas.” A parse tree node gets la-
beled with one of these rules if, roughly speaking,
its span is still contiguous when projected (via the
alignment) into the target language.

The advantage of using the GHKM interpretation
of a complete translation object is that our transla-
tion task becomes simpler. Now, to induce a com-
plete translation object from a partial translation ob-
ject (parse tree), all we need to do is label the nodes
of the tree with appropriate rules. We have reduced

the vaguely defined task of translation to the con-
crete task of tree labeling.

5 The Generative Process

At the most basic level, we could design a naive gen-
erative process that takes a parse tree and then makes
a series of decisions, one for each node, about what
rule (if any) that node should be assigned. How-
ever it is a bit unreasonable to expect to learn such
a decision without breaking it down somewhat, as
there are an enormous number of rules that could po-
tentially be used to label any given parse tree node.
So let’s break this task down into simpler decisions.
Ideally, we would like to devise a generative process
consisting of decisions between a small number of
possibilities (ideally binary decisions).

We will begin by deciding, for each node, whether
or not it will be annotated with a rule. This is clearly
a binary decision. Once a generative process has
made this decision for each node, we get a conve-
nient byproduct. As seen in Figure 3, the LHS of
each rule is already determined. Hence after this se-
quence of binary decisions, half of our task is al-
ready completed.

The question remains: how do we determine the
RHS of these rules? Again, we could create a gen-
erative process that makes these decisions directly,
but choosing the RHS of a rule is still a rather wide-
open decision, so we will break it down further. For
each rule, we will begin by choosing thetemplateof
its RHS, which is a RHS in which all sequences of
variables are replaced with an empty slot into which
variables can later be placed. For instance, the tem-

35



Figure 3: Partial GHKM tree, after rule nodes have been identified (light gray). Notice that once we identify
the rule node, the rule left-hand sides are already determined.

plate of〈“ne”, x1, “pas”〉 is 〈“ne”,X, “pas”〉 and the
template of〈x3, “,” , x1, x2〉 is 〈X, “,” ,X〉, where X
represents the empty slots.

Once the template is chosen, it simply needs to be
filled with the variables from the LHS. To do so, we
process the LHS variables, one by one. By default,
they are placed to the right of the previously placed
variable (the first variable is placed in the first slot).
We repeatedly offer the option to push the variable
to the right until the option is declined or it is no
longer possible to push it further right. If the vari-
able was not pushed right at all, we repeatedly offer
the option to push the variable to the left until the
option is declined or it is no longer possible to push
it further left. Figure 4 shows this generative story
in action for the rule RHS〈x3, “,” , x1, x2〉.

These are all of the decisions we need to make
in order to label a parse tree with GHKM rules. A
trace of this generative process for the GHKM tree
of Figure 2 is shown in Figure 5. Notice that, aside
from the template decisions, all of the decisions are
binary (i.e. feasible to learn discriminatively). Even
the template decisions are not terribly large-domain,
if we maintain a separate feature-conditional dis-
tribution for each LHS template. For instance, if
the LHS template is〈“not” ,X〉, then RHS template
〈“ne”,X, “pas”〉 and a few other select candidates
should bear most of the probability mass.

5.1 Training

Having established this generative story, training is
straightforward. As a first step, we can convert each
complete translation object of our training corpus
to the trace of its generative story (as in Figure 5).

Decision to make Decision RHS so far
RHS template? X , X X , X
default placement of var 1 1 , X

push var 1 right? yes X , 1
default placement of var 2 X , 1 2

push var 2 left? no X , 1 2
default placement of var 3 X , 1 2 3

push var 3 left? yes X , 1 3 2
push var 3 left? yes X , 3 1 2
push var 3 left? yes 3 , 1 2

Figure 4: Trace of the generative story for the right-
hand side of a GHKM rule.

These decisions can be annotated with whatever fea-
ture information we might deem helpful. Then we
simply divide up these feature vectors by decision
type (for instance, rule node decisions, template de-
cisions, etc.) and train a separate discriminative clas-
sifier for each decision type from the feature vectors.
This method is quite flexible, in that it allows us to
use any generic off-the-shelf classification software
to train our system. We prefer learners that produce
distributions (rather than hard classifiers) as output,
but this is not required.

5.2 Exploiting deep linguistic information

The use of discriminative classifiers makes our ap-
proach very flexible in terms of the information that
can be exploited in the labeling (or translation) pro-
cess. Any information that can be encoded as fea-
tures relative to GHKM tree nodes can be used. For
the experiments reported in this paper, we parsed
the source language side of a parallel corpus (a
small subsection of the English-German Europarl
corpus; (Koehn, 2002)) with the XLE system, using

36



the ParGram LFG grammar and applying probabilis-
tic disambiguation (Riezler et al., 2002) to obtain
a single analysis (i.e., a c-structure [phrase struc-
ture tree] and an f-structure [an associated attribute-
value matrix with morphosyntactic feature informa-
tion and a shallow semantic interpretation]) for each
sentence. A fall-back mechanism integrated in the
parser/grammar ensures that even for sentences that
do not receive a full parse, substrings are deeply
parsed and can often be treated successfully.

We convert the c-structure/f-structure represen-
tation that is based on XLE’s sophisticated word-
internal analysis into a plain phrase structure tree
representation based on the original tokens in the
source language string. The morphosyntactic fea-
ture information from f-structure is copied as addi-
tional labeling information to the relevant GHKM
tree nodes, and the f-structural dependency relation
among linguistic units is translated into a relation
among corresponding GHKM tree nodes. The rela-
tional information is then used to systematically ex-
tend the learning feature set for the tree-node based
classifiers.

In future experiments, we also plan to exploit lin-
guistic knowledge about the target language by fac-
torizing the generation of target language words into
separate generation of lemmas and the various mor-
phosyntactic features. In decoding, a morphological
generator will be used to generate a string of surface
words.

5.3 Decoding

Because we have purposely refused to make any
Markov assumptions in our model, decoding cannot
be accomplished in polynomial time. Our hypothe-
sis is that it is better to find a suboptimal solution of
a high-quality model than the optimal solution of a
poorer model. We decode through a simple search
through the space of assignments to our generative
process.

This is, potentially, a very large and intractible
search space. However, if most assignment deci-
sions can be made with relative confidence (i.e. the
classifiers we have trained make fairly certain deci-
sions), then the great majority of search nodes have
values which are inferior to those of the best so-
lutions. The standard search technique ofdepth-
first branch-and-bound searchtakes advantage of

search spaces with this particular characteristic by
first finding greedy good-quality solutions and using
their values to optimally prune a significant portion
of the search space. Depth-first branch-and-bound
search has the following advantage: it finds a good
(suboptimal) solution in linear time and continually
improves on this solution until it finds the optimal.
Thus it can be run either as an optimal decoder or as
a heuristic decoder, since we can interrupt its execu-
tion at any time to get the best solution found so far.
Additionally, it takes only linear space to run.

6 Preliminary results

In this section, we present some preliminary results
for an English-to-German translation system based
on the ideas outlined in this paper.

Our data was a subset of the Europarl corpus
consisting of sentences of lengths ranging from 8
to 17 words. Our training corpus contained 50000
sentences and our test corpus contained 300 sen-
tences. We also had a small number of reserved
sentences for development. The English sentences
were parsed with XLE, using the English ParGram
LFG grammar, and the sentences were word-aligned
with GIZA++. We used the WEKA machine learn-
ing package (Witten and Frank, 2005) to train the
distributions (specifically, we used model trees).

For comparison, we also trained and evaluated
the phrase-based MT system Pharaoh (Koehn, 2005)
on this limited corpus, using Pharaoh’s default pa-
rameters. In a different set of MT-as-Tree-Labeling
experiments, we used a standard treebank parser
trained on the PennTreebank Wall Street Journal
section. Even with this parser, which produces less
detailed information than XLE, the results are com-
petitive when assessed with quantitative measures:
Pharaoh achieved a BLEU score of 11.17 on the test
set, whereas our system achieved a BLEU score of
11.52. What is notable here is not the scores them-
selves (low due to the size of the training corpus).
However our system managed to perform compara-
bly with Pharaoh in a very early stage of its devel-
opment, with rudimentary features and without the
benefit of an n-gram language model.

For the XLE-based system we cannot include
quantitative results for the same experimental setup
at the present time. As a preliminary qualitative

37



Decision to make Decision Active features
rule node (i)? YES NT=“S”; HEAD = “am”
rule node (ii)? YES NT=“NP”; HEAD = “I”
rule node (iv)? NO NT=“VP”; HEAD = “am”
rule node (v)? YES NT=“VP”; HEAD = “am”
rule node (vi)? NO NT=“MD”; HEAD = “am”

rule node (viii)? YES NT=“VP”; HEAD = “going”
rule node (ix)? NO NT=“RB”; HEAD = “not”
rule node (xi)? YES NT=“VB”; HEAD = “going”

rule node (xiii)? YES NT=“ADJP”; HEAD = “today”
RHS template? (i) X , X NT=“S”

push var 1 right? (i) YES VARNT=“NP”; PUSHPAST= “,”
push var 2 left? (i) NO VARNT=“VP”; PUSHPAST= “NP”
push var 3 left? (i) YES VARNT=“ADJP”; PUSHPAST= “VP”
push var 3 left? (i) YES VARNT=“ADJP”; PUSHPAST= “NP”
push var 3 left? (i) YES VARNT=“ADJP”; PUSHPAST= “,”
RHS template? (ii) je NT=“NP”; WD=“I”
RHS template? (v) X NT=“VP”

RHS template? (viii) ne X pas NT=“VP”; WD=“not”
RHS template? (xi) vais NT=“VB”; WD=“going”

RHS template? (xiii) aujourd’hui NT=“ADJP”; WD=“today”

Figure 5: Trace of a top-down generative story for the GHKM tree in Figure 2.

evaluation, let’s take a closer look at the sentences
produced by our system, to gain some insight as to
its current strengths and weaknesses.

Starting with the English sentence (1) (note that
all data is lowercase), our system produces (2).

(1) i agree with the spirit of those amendments .

(2) ich
I

stimme
vote

die
the.FEM

geist
spirit.MASC

dieser
these

änderungsanträge
change-proposals

zu
to

.

.

The GHKM tree is depicted in Figure 6. The key
feature of this translation is how the English phrase
“agree with” is translated as the German “stimme
... zu” construction. Such a feat is difficult to pro-
duce consistently with a purely phrase-based sys-
tem, as phrases of arbitrary length can be placed be-
tween the words “stimme” and “zu”, as we can see
happening in this particular example. By contrast,
Pharaoh opts for the following (somewhat less de-
sirable) translation:

(3) ich
I

stimme
vote

mit
with

dem
the.MASC

geist
spirit.MASC

dieser
these

änderungsanträge
change-proposals

.

.

A weakness in our system is also evident here.
The German noun “Geist” is masculine, thus our
system uses the wrong article (a problem that

Pharaoh, with its embedded n-gram language model,
does not encounter).

In general, it seems that our system is superior to
Pharaoh at figuring out the proper way to arrange the
words of the output sentence, and inferior to Pharaoh
at finding what the actual translation of those words
should be.

Consider the English sentence (4). Here we have
an example of a modal verb with an embedded in-
finitival VP. In German, infinite verbs should go at
the end of the sentence, and this is achieved by our
system (translating “shall” as “werden”, and “sub-
mit” as “vorlegen”), as is seen in (5).

(4) ) we shall submit a proposal along these lines before the
end of this year .

(5) wir
we

werden
will

eine
a.FEM

vorschlag
proposal.MASC

in
in

dieser
these

haushaltslinien
budget-lines

vor
before

die
the.FEM

ende
end.NEUT

dieser
this.FEM

jahres
year.NEUT

vorlegen
submit

.

.

Pharaoh does not manage this (translating “sub-
mit” as “unterbreiten” and placing it mid-sentence).

(6) werden
will

wir
we

unterbreiten
submit

eine
a

vorschlag
proposal

in
in

dieser
these

haushaltslinien
budget-lines

vor
before

ende
end

dieser
this.FEM

jahr
year.NEUT

.

.

It is worth noting that while our system gets the
word order of the output system right, it makes sev-

38



Figure 6: GHKM tree output for a test sentence.

eral agreement mistakes and (like Pharaoh) doesn’t
get the translation of “along these lines” right.

In Figure 7, we show sample translations by the
three systems under discussion for the first five sen-
tences in our evaluation set. For the LFG-based ap-
proach, we can at this point present only results for
a version trained on 10% of the sentence pairs. This
explains why more source words are left untrans-
lated. But note that despite the small training set,
the word ordering results are clearly superior for this
system: the syntax-driven rules place the untrans-
lated English words in the correct position in terms
of German syntax.

The translations with Pharaoh contain relatively
few agreement mistakes (note that it exploits a lan-
guage model of German trained on a much larger
corpus). The phrase-based approach does however
skip words and make positioning mistakes some of
which are so serious (like in the last sentence) that
they make the result hard to understand.

7 Discussion

In describing this pilot project, we have attempted
to give a “big picture” view of the essential ideas
behind our system. To avoid obscuring the presen-
tation, we have avoided many of the implementation
details, in particular our choice of features. There
are exactly four types of decisions that we need to
train: (1) whether a parse tree node should be a rule

node, (2) the RHS template of a rule, (3) whether a
rule variable should be pushed left, and (4) whether
a rule variable should be pushed right. For each
of these decisions, there are a number of possible
features that suggest themselves. For instance, re-
call that in German, embedded infinitival verbs get
placed at the end of the sentence or clause. So
when the system is considering whether to push a
rule’s noun phrase to the left, past an existing verb,
it would be useful for it to consider (as a feature)
whether that verb is the first or second verb of its
clause and what the morphological form of the verb
is.

Even in these early stages of development, the
MT-as-Tree-Labeling system shows promise in us-
ing syntactic information flexibly and effectively for
MT. Our preliminary comparison indicates that us-
ing deep syntactic analysis leads to improved trans-
lation behavior. We hope to develop the system
into a competitive alternative to phrase-based ap-
proaches.

References

P.F. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L. Mer-
cer. 1993. The mathematics of statistical machine trans-
lation: Parameter estimation.Computational Linguistics,
19(2):263–311.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Ma-
suichi, and Christian Rohrer. 2002. The parallel gram-

39



source we believe that this is a fundamental element .
professional translation wir denken , dass dies ein grundlegender aspekt ist .
PHARAOH (50k) wir halten dies für

:::

eine
::::::::::::

grundlegende element .
TL -WSJ(50k) wir glauben , dass

:::::

diesenist ein grundlegendes element .
TL -LFG (5k) wir meinen , dass dies

:::

eine
::::::::::::

grundlegende element ist .

source it is true that lisbon is a programme for ten years .
professional translation nun ist lissabon ein programm für zehn jahre .
PHARAOH (50k) es ist richtig , dass lissabonist

:::

eine programm für zehn
:::::

jahren .
TL -WSJ(50k) es ist richtig , dass lissabonist

:::

eine programm für zehn
:::::

jahren .
TL -LFG (5k) es isttrue , dasslisbon

:::

eine programm für zehn
:::::

jahren ist .

source i completely agree with each of these points .
professional translation ich bin mit jeder einzelnen dieser aussagen voll und ganz einverstanden .
PHARAOH (50k) ich ..... völlig einverstanden mit jedem dieser punkte .
TL -WSJ(50k) ich bin völlig mit

::::

jedes
:::::

diese fragen einer meinung .
TL -LFG (5k) ich agree completelymit

::::

jeder dieser punkte .

source however , i would like to add one point .
professional translation aber ich möchte gern einen punkt hinzufügen .
PHARAOH (50k) allerdings möchte ich noch eines sagen .
TL -WSJ(50k) ich möchte jedochan noch einen punkt hinzufügen .
TL -LFG (5k) allerdings möchte ich einen punktadd .
source this is undoubtedly a point which warrants attention .
professional translation ohne jeden zweifel ist dies ein punkt , der aufmerksamkeit verdient .
PHARAOH (50k) das ist sicherlich

:::

eine punkt .... rechtfertigtdas aufmerksamkeit .
TL -WSJ(50k) das ist ohne zweifel

::::

eine punkt ,
::

die warrantsbeachtung .
TL -LFG (5k) das istundoubtedly.... sache , dieattention warrants.

Figure 7: Sample translations by (1) thePHARAOH system, (2) our system with a treebank parser (TL-WSJ),
(3) our system with the XLE parser (TL-LFG). (1) and (2) were trained on 50,000 sentence pairs, (3) just
on (3) sentence pairs. Error coding:

::::::

wrong
:::::::::::::::

morphological
:::::

form, incorrectlypositionedword,untranslated
source word, missed word: ....,extraword.

mar project. InProceedings of COLING-2002 Workshop on
Grammar Engineering and Evaluation, pages 1–7.

David Chiang. 2005. A hierarchical phrase-based model for
statistical machine translation. InProceedings of ACL, pages
263–270.

Michel Galley, Mark Hopkins, Kevin Knight, and Daniel
Marcu. 2003. What’s in a translation rule? InProc. NAACL.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. 2003. Sta-
tistical phrase-based translation. InProceedings of the Hu-
man Language Technology Conference 2003 (HLT-NAACL
2003), Edmonton, Canada.

Philipp Koehn. 2002. Europarl: A multilingual corpus for eval-
uation of machine translation. Ms., University of Southern
California.

Philipp Koehn. 2005. Pharaoh: a beam search decoder for
phrase-based statistical machine translation models. InPro-
ceedings of the Sixth Conference of the Association for Ma-
chine Translation in the Americas, pages 115–124.

Franz Josef Och and Hermann Ney. 2003. A systematic com-
parison of various statistical alignment models.Computa-
tional Linguistics, 29(1):19–51.

F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada,
A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng, Viren

Jain, Z.Jin, and D. Radev. 2003. Syntax for statistical ma-
chine translation. Technical report, Center for Language and
Speech Processing, Johns Hopkins University, Baltimore.
Summer Workshop Final Report.

Stefan Riezler, Dick Crouch, Ron Kaplan, Tracy King, John
Maxwell, and Mark Johnson. 2002. Parsing the Wall Street
Journal using a Lexical-Functional Grammar and discrim-
inative estimation techniques. InProceedings of the 40th
Annual Meeting of the Association for Computational Lin-
guistics (ACL’02), Pennsylvania, Philadelphia.

Ian H. Witten and Eibe Frank. 2005.Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann.

Dekai Wu. 1997. Stochastic inversion transduction grammars
and bilingual parsing of parallel corpora.Computational
Linguistics, 23(3):377–403.

Kenji Yamada and Kevin Knight. 2001. A syntax-based statis-
tical translation model. InProceedings of the 39th Annual
Meeting of the Association for Computational Linguistics,
pages 523–530.

40



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 41–48,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Question Answering based on Semantic Roles

Michael Kaisser Bonnie Webber
University of Edinburgh

2 Buccleuch Place
Edinburgh EH8 9LW

Scotland
m.kaisser@sms.ed.ac.uk, bonnie@inf.ed.ac.uk

Abstract

This paper discusses how lexical resources
based on semantic roles (i.e. FrameNet,
PropBank, VerbNet) can be used for Ques-
tion Answering, especially Web Question
Answering. Two algorithms have been im-
plemented to this end, with quite different
characteristics. We discuss both approaches
when applied to each of the resources and a
combination of these and give an evaluation.
We argue that employing semantic roles can
indeed be highly beneficial for a QA system.

1 Introduction

A large part of the work done in NLP deals with
exploring how different tools and resources can be
used to improve performance on a task. The quality
and usefulness of the resource certainly is a major
factor for the success of the research, but equally so
is the creativity with which these tools or resources
are used. There usually is more than one way to
employ these, and the approach chosen largely de-
termines the outcome of the work.

This paper illustrates the above claims with re-
spect to three lexical resources – FrameNet (Baker
et al., 1998), PropBank (Palmer et al., 2005) and
VerbNet (Schuler, 2005) – that convey information
about lexical predicates and their arguments. We de-
scribe two new and complementary techniques for
using these resources and show the improvements to
be gained when they are used individually and then
together. We also point out problems that must be
overcome to achieve these results.

Compared with WordNet (Miller et al., 1993)–
which has been used widely in QA–FrameNet, Prop-
Bank and VerbNet are still relatively new, and there-
fore their usefulness for QA has still to be proven.
They offer the following features which can be used
to gain a better understanding of questions, sen-
tences containing answer candidates, and the rela-
tions between them:

• They all provide verb-argument structures for a
large number of lexical entries.

• FrameNet and PropBank contain semantically
annotated sentences that exemplify the under-
lying frame.

• FrameNet contains not only verbs but also lex-
ical entries for other part-of-speeches.

• FrameNet provides inter-frame relations that
can be used for more complex paraphrasing to
link the question and answer sentences.

In this paper we describe two methods that use
these resources to annotate both questions and sen-
tences containing answer candidates with seman-
tic roles. If these annotations can successfully be
matched, an answer candidate can be extracted. We
are able, for example, to give a complete frame-
semantic analysis of the following sentences and to
recognize that they all contain an answer to the ques-
tion “When was Alaska purchased?”:

The United States purchased Alaska in 1867.

Alaska was bought from Russia in 1867.

In 1867, Russia sold Alaska to the United States.

The acquisition of Alaska by the United States
in 1867 is known as “Seward’s Folly.

41



The first algorithm we present uses the three
lexical resources to generate potential answer-
containing templates. While the templates contain
holes – in particular, for the answer – the parts that
are known can be used to create exact quoted search
queries. Sentences can then be extracted from the
output of the search engine and annotated with re-
spect to the resource being used. From this, an an-
swer candidate (if present) can be extracted. The
second algorithm analyzes the dependency structure
of the annotated example sentences in FrameNet and
PropBank. It then poses rather abstract queries to the
web, but can in its candidate sentence analysis stage
deal with a wider range of syntactic possibilities. As
we will see, the two algorithms are nicely comple-
mentary.

2 Method 1: Question Answering by
Natural Language Generation

The first method implemented uses the data avail-
able in the resources to generate potential answer
sentences to the question. While at least one com-
ponent of such a sentence (the answer) is yet un-
known, the remainder of the sentence can be used to
query a web search engine. The results can then be
analyzed, and if they match the originally-proposed
answer sentence structure, an answer candidate can
be extracted.

The first step is to annotate the question with its
semantic roles. For this task we use a classical se-
mantic role labeler combined with a rule-based ap-
proach. Keep in mind that our task is to annotate
questions, not declarative sentences. This is impor-
tant for several reasons:

1. The role labeler we use is trained on FrameNet
and PropBank data, i.e. mostly on declarative
sentences, whose syntax often differs consider-
ably from the sytax of questions. Aa a result,
the training and test set differ substantially in
nature.

2. Questions tend to be shorter and simpler syn-
tactically than declarative sentences–especially
those occurring in news corpora.

3. Questions contain one semantic role that has to
be annotated but which is not or is only implic-
itly (through the question word) mentioned –
the answer.

Because of these reasons and especially because
many questions tend to be gramatically simple, we
found that a few simple rules can help the question
annotation process dramatically. We rely on Mini-
Par (Lin, 1998) to find the question’s head verb, e.g.
“purchase” for “Who purchased YouTube?” (In the
following we will often refer to this question to il-
lustrate our approach.) We then look up all entries
in one of the resources, and for FrameNet and Prop-
Bank we simplify the annotated sentences until we
achieve a set of abstract frame structures, similar to
those in VerbNet. By doing this we intentionally re-
move certain levels of information that were present
in the original data, i.e. tense, voice, mood and nega-
tion. (In a later step we will reintroduce some of it.)
Here is what we find in FrameNet for “purchase”:

Buyer[Subj,NP] VERB Goods[Obj,NP]
Buyer[Subj,NP] VERB Goods[Obj,NP]

Seller[Dep,PP-from]
Buyer[Subj,NP] VERB Goods[Obj,NP]

Money[Dep,PP-for]
Buyer[Subj,NP] VERB Goods[Obj,NP]

Recipient[Dep,PP-for]
...

A syntactic analysis of the question (also obtained
from MiniPar) shows that “Who” is the (deep) sub-
ject and “YouTube”, the (deep) object. The first of
the above frames fits this analysis best, because it
lists only the two roles with the desired grammatical
functions. By mapping the question analysis to this
frame, we can assign the rolesGoodsto “YouTube”
and Buyer to “Who”. From this we can conclude
that the question asks for theBuyerrole.

An additional point suitable to illustrate why a
few simple rules can achieve in many cases more
that a statistical classifier, areWhen- and Where-
questions. Here, the hint that leads to the correct de-
tection of the answer role lies in the question word,
which is of course not present in the answer sen-
tence. Furthermore, the answer role in an answer
sentence will usually be realized as a PP with a to-
tally different dependency path than the one of ques-
tion’s question word. In contrast, a rule that states
that whenever a temporal or location question is de-
tected the answer role becomes, in FrameNet terms,
Placeor Time, respectively, is very helpful here.

Once the role assignment is complete, we use
all abstract frames which contain the roles found in
the question to generate potential answer templates.

42



This is also the point where we reintroduce tense and
voice information:1 If the question was asked in the
a past tense, we will now create from each abstract
frame, all surface realizations in all past tenses, both
in active and passive voice. If we had used the an-
notated data directly without the detour over the ab-
stract frames, we would have difficulty sorting out
negated sentences, those in undesired moods and
those in unsuitable tenses. In contrast our approach
guarantees that all possible tenses in both voices are
generated, and no meaning-altering information like
mood and negation is present. For the example given
above we would createinter alia the following an-
swer templates:

ANSWER[NP] purchased YouTube
YouTube was purchased by ANSWER[NP]
ANSWER[NP] had purchased YouTube
...

The part (or parts) of the templates that are
known are quoted and sent to a search en-
gine. For the second example, this would be
"YouTube was purchased by". From the snippets
returned by the search engine, we extract candi-
date sentences and match them against the abstract
frame structure from which the queries were origi-
nally created. In this way, we annotate the candidate
sentences and are now able to identify the filler of
the answer role. For example, the above query re-
turns “On October 9, 2006, YouTube was purchased
by Google for an incredible US$1.65 billion”, from
which we can extract “Google”, because it is the NP
filling the buyer role.

So far, we have mostly discussed questions whose
answer role is an argument of the head verb. How-
ever, for questions like “When was YouTube pur-
chased?” this assumption does not hold. Here, the
question asks for an adjunct. This is an important
difference for at least three reasons:

1. FrameNet and VerbNet do not or only sparsely
annotate peripheral adjuncts. (PropBank how-
ever does.)

2. In English, the position of adjuncts varies much
more than those of arguments.

3. In English, different kinds of adjuncts can oc-
cupy the same position in a sentence, although
naturally not at the same time.

1While we strip off mood and negation during the creation
of the abstract frames, we have not yet reintroduced them.

The following examples illustrate point 2:

YouTube was purchased by Google on October 9.

On October 9, YouTube was purchased by Google.

YouTube was purchased on October 9 by Google.

All variations are possible, although they may dif-
fer in frequency. PPs conveying other peripheral ad-
juncts ( e.g. “for $1.65 billion”) could replace all the
above temporals PPs, or they could be added at other
positions.

The special behavior of these types of questions
has not only to be accounted for when annotating
the question with semantic roles, but also and when
creating and processing potential answer sentences.
We use an abstract frame structure like the following
to create the queries:

Buyer[Subj,NP,unknown]
VERB Goods[Obj,NP,"YouTube"]

While this lacks a role for the answer, we
can still use it to create, for example, the query
"has purchased YouTube". When sentences re-
turned from the search engine are then matched
against the abstract structure, we can extract all PPs
directly before the Buyer role, between the Buyer
role and the verb and directly behind the Goods role.
Then we can check all these PPs on their semantic
types and keep only those that match the answer type
of the question (if any).

3 Making use of FrameNet Frames and
Inter-Frame Relations

The method presented so far can be used with all
three resources. But FrameNet goes a step further
than just listing verb-argument structures: It orga-
nizes all of its lexical entries in frames2, with rela-
tions between frames that can be used for a wider
paraphrasing and inference. This section will ex-
plain how we make use of these relations.

The purchase.ventry is organized in a frame
called Commercebuy which also contains the
entries for buy.v and purchase((act)).n. Both
these entries are annotated with the same frame
elements aspurchase.v. This makes it possible to
formulate alternative answer templates, for exam-
ple: YouTube was bought by ANSWER[NP] and

2Note the different meaning offramein FrameNet and Prop-
Bank/VerbNet respectively.

43



ANSWER[NP-Genitive] purchase of YouTube.
The latter example illustrates that we can also
generate target paraphrases with heads which are
not verbs. Handling these is usually easier than
sentences based on verbs, because no tense/voice
information has to be introduced.

Furthermore, frames themselves can stand in
different relations. The frameCommercegoods-
transfer, for example, relates both to the already
mentioned Commercebuy frame and to Com-
mercesell in an is perspectivizedin relation. The
latter contains the lexical entriesretail.v, retailer.n,
sale.n, sell.v, vend.v and vendor.n. Again, the
frame elements used are the same as forpur-
chase.v. Thus we can now create answer templates
like YouTube was sold to ANSWER[NP]. Other
templates created from this frame seem odd, e.g.
YouTube has been retailed to ANSWER[NP].
because the verb “to retail” usually takes mass-
products as its object argument and not a company.
But FrameNet does not make such fine-grained
distinctions. Interestingly, we did not come across
a single example in our experiments where such
a phenomenon caused an overall wrong answer.
Sentences like the one above will most likely not be
found on the web (just because they are in a narrow
semantic sense not well-formed). Yet even if we
would get a hit, it probably would be a legitimate to
count the odd sentence “YouTube had been retailed
to Google” as evidence for the fact that Google
bought YouTube.

4 Method 2: Combining Semantic Roles
and Dependency Paths

The second method we have implemented com-
pares the dependency structure of example sentences
found in PropBank and FrameNet with the depen-
dency structure of candidate sentences. (VerbNet
does not list example sentences for lexical entries,
so could not be used here.)

In a pre-processing step, all example sentences in
PropBank and FrameNet are analyzed and the de-
pendency paths from the head to each of the frame
elements are stored. For example, in the sentence
“The Soviet Union has purchased roughly eight mil-
lion tons of grain this month” (found in PropBank),
“purchased” is recognized as the head, “The So-

viet Union” asARG0, “roughly eight million tons of
grain” asARG1, and “this month” as an adjunct of
typeTMP. The stored paths to each are as follows:

headPath =↓ i

role =ARG0, paths ={↓s, ↓subj}
role =ARG1, paths ={↓obj}
role =TMP, paths ={↓mod}

This says that the head is at the root, ARG0 is at both
surface subject (s) and deep subject (subj) position3,
ARG1 is the deep object (obj), and TMP is a direct
adjunct (mod) of the head.

Questions are annotated as described in Section 2.
Sentences that potentially contain answer candidates
are then retrieved by posing a rather abstract query
consisting of key words from the question. Once
we have obtained a set of candidate-containing sen-
tences, we ask the following questions of their de-
pendency structures compared with those of the ex-
ample sentences from PropBank4:

1a Does the candidate-containing sentence share
the same head verb as the example sentence?

1b Do the candidate sentence and the example sen-
tence share the same path to the head?

2a In the candidate sentence, do we find one or
more of the example’s paths to the answer role?

2b In the candidate sentence, do we find all of the
example’s paths to the answer role?

3a Can some of the paths for the other roles be
found in the candidate sentence?

3b Can all of the paths for the other roles be found
in the candidate sentence?

4a Do the surface strings of the other roles par-
tially match those of the question?

4b Do the surface strings of the other roles com-
pletely match those of the question?

Tests 1a and 2a of the above are required criteria:
If the candidate sentence does not share the same
head verb or if we can find no path to the answer
role, we exclude it from further processing.

3MiniPar allows more than one path between nodes due, for
example, to traces. The given example is MiniPar’s way of in-
dicating that this is a sentence in active voice.

4Note that our proceeding is not too different from what a
classical role labeler would do: Both approaches are primarily
based on comparing dependency paths. However, a standard
role labeler would not take tests 3a, 3b, 4a and 4b into account.

44



Each sentence that passes steps 1a and 2a is
assigned a weight of 1. For each of the remaining
tests that succeeds, we multiply that weight by
2. Hence a candidate sentence that passes all the
tests is assigned a weight 64 times higher than a
candidate that only passes tests 1a and 2a. We take
this as reasonable, as the evidence for having found
a correct answer is indeed very weak if only tests 1a
and 2a succeeded and very high if all tests succeed.
Whenever condition 2a holds, we can extract an
answer candidate from the sentence: It is the phrase
that the answer role-path points to. All extracted
answers are stored together with their weights, if
we retrieve the same answer more than once, we
simple add the new weight to the old ones. After
all candidate sentences have been compared with
all pre-extracted structures, the ones that do not
show the correct semantic type are removed. This
is especially important for answers that are realized
as adjuncts, see Section 2. We choose the answer
candidate with the highest score as the final answer.

We now illustrate this method with respect to our
question “Who purchased YouTube?” The roles as-
signment process produces this result: “YouTube”
is ARG1and the answer isARG0. From the web
we retrieveinter alia the following sentence: “Their
aim is to compete with YouTube, which Google re-
cently purchased for more than $1 billion.” The de-
pendency analysis of the relevant phrases is:

headPath =↓i↓i↓pred↓i↓mod↓pcom-n↓rel↓i
phrase = “Google”, paths ={↓s, ↓subj}
phrase = “which”, paths ={↓obj}
phrase = “YouTube”, paths ={↑i↑rel}
phrase = “for more than $1 billion”, paths ={↓mod}

If we annotate this sentence by using the analy-
sis from the above example sentence (“The Soviet
Union has purchased ...”) we get the following (par-
tially correct) role assignment: “Google” isARG0,
“which” is ARG1, “for more than $1 billion” isTMP.

The following table shows the results of the 8 tests
described above:

1a OK
1b –

2a OK
2b OK

3a OK
3b OK

4a –
4b –

Test 1a and 2a succeeded, so this sentence is as-
signed an initial weight of 1. However, only three
other tests succeed as well, so its final weight is

8. This rather low weight for a positive candi-
date sentence is due to the fact that we compared
it against a dependency structure which it only par-
tially matched. However, it might very well be the
case that another of the annotated sentences shows a
perfect fit. In such a case this comparison would
result in a weight of 64. If these were the only
two sentences that produce a weight of 1 or greater,
the final weight for this answer candidate would be
8 + 64 = 72.

5 Evaluation

We choose to evaluate our experiments with the
TREC 2002 QA test set because test sets from 2004
and beyond contain question series that pose prob-
lems that are separate from the research described
in this paper. While we participated in TREC 2004,
2005 and 2006, with an anaphora-resolution com-
ponent that performed quite well, we feel that if
one wants to evaluate a particular method, adding an
additional module, unrelated to the actual problem,
can distort the results. Additionally, because we are
searching for answers on the web rather than in the
AQUAINT corpus, we do not distinguish between
supported and unsupported judgments.

Of the 500 questions in the TREC 2002 test set,
236 havebe as their head verb. As the work de-
scribed here essentially concernsverb semantics,
such questions fall outside its scope. Evaluation
has thus been carried out on only the remaining 264
questions.

For the first method (cf. Section 2), we evaluated
system accuracy separately for each of the three re-
sources, and then together, obtaining the following
values:

FrameNet PropBank VerbNet combined
0.181 0.227 0.223 0.261

For the combined run we looked up the verb
in all three resources simultaneously and all en-
tries from every resource were used. As can
be seen, PropBank and VerbNet perform equally
well, while FrameNet’s performance is significantly
lower. These differences are due to coverage issues:
FrameNet is still in development, and further ver-
sions with a higher coverage will be released. How-
ever, a closer look shows that coverage is a problem
for all of the resources. The following table shows
the percentage of the head verbs that were looked

45



up during the above experiments based on the 2002
question set, that could not be found (not found). It
also lists the percentage of lexical entries that con-
tain no annotated sentences (s = 0), five or fewer
(s <= 5), ten or fewer (s <= 10), or more than
50 (s > 50). Furthermore, the table lists the aver-
age number of lexical entries found per head verb
(avg senses) and the average number of annotated
sentences found per lexical entry (avg sent). 5

FrameNet PropBank
not found 11% 8%

s = 0 41% 7%
s <= 5 48% 35%
s <= 10 57% 45%
s > 50 8% 23%

avg senses 2.8 4.4
avg sent. 16.4 115.0

The problem with lexical entires only containing
a small number of annotated sentences is that these
sentences often do not exemplify common argument
structures, but rather seldom ones. As a solution to
this coverage problem, we experimented with a cau-
tious technique for expanding coverage. Any head
verb, we assumed displays the following three pat-
terns:

intransitive: [ARG0] VERB
transitive: [ARG0] VERB [ARG1]
ditransitive: [ARG0] VERB [ARG1] [ARG2]

During processing, we then determined whether
the question used the head verb in a standard in-
transitive, transitive or ditransitive way. If it did,
and that pattern for the head verb was not contained
in the resources, we temporarily added this abstract
frame to the list of abstract frames the system used.
This method rarely adds erroneous data, because the
question shows that such a verb argument structure
exists for the verb in question. By applying this tech-
nique, the combined performance increased from
0.261 to 0.284.

In Section 2 we reported on experiments that
make use of FrameNet’s inter-frame relations. The
next table lists the results we get when (a) using only
the question head verb for the reformulations, (b) us-
ing the other entries in the same frame as well, (c)
using all entries in all frames to which the starting

5As VerbNet contains no annotated sentences, it is not listed.
Note also, that these figures are not based on the resources in
total, but on the head verbs we looked up for our evaluation.

frame is related via theInheritance, Perspectiveon
and Using relations (by using only those frames
which show the same frame elements).

(a) only question head verb 0.181
(b) all entries in frame 0.204

all entries in related frames
(c) (with same frame elements) 0.215

Our second method described in Section 4, can
only be used with FrameNet and PropBank, because
VerbNet does not give annotated example sentences.
Here are the results:

FrameNet PropBank
0.030 0.159

Analysis shows that PropBank dramatically out-
performs FrameNet for three reasons:

1. PropBank’s lexicon contains more entries.

2. PropBank provides many more example sen-
tences for each entry.

3. FrameNet does not annotate peripheral ad-
juncts, and so does not apply to When- or
Where-questions.

The methods we have described above are com-
plementary. When they are combined so that when
method 1 returns an answer it is always chosen
as the final one, and only if method 1 did not
return an answer were the results from method
2 used, we obtain a combined accuracy of 0.306
when only using PropBank. When using method 1
with all three resources and our cautious coverage-
extension strategy, with all additional reformulations
that FrameNet can produce and method 2, using
PropBank and FrameNet, we achieve an accuracy of
0.367.

We also evaluated how much increase the de-
scribed approaches based on semantic roles bring to
our existing QA system. This system is completly
web-based and employs two answer finding strate-
gies. The first is based on syntactic reformulation
rules, which are similar to what we described in sec-
tion 2. However, in contrast to the work described
in this paper, these rules are manually created. The
second strategy uses key words from the question as
queries, and looks for frequently occuring n-grams
in the snippets returned by the search engine. The
system received the fourth best result for factoids in
TREC 2004 (Kaisser and Becker, 2004) (where both

46



just mentioned approaches are described in more de-
tail) and TREC 2006 (Kaisser et al., 2006), so it in
itself is a state-of-the-art, high performing QA sys-
tem. We observe an increase in performance by 21%
over the mentioned baseline system. (Without the
components based on semantic roles 130 out of 264
questions are answered correct, with these compo-
nents 157.)

6 Related Work

So far, there has been little work at the intersection
of QA and semantic roles. Fliedner (2004) describes
the functionality of a planned system based on the
German version of FrameNet, SALSA, but no so far
no paper describing the completed system has been
published.

Novischi and Moldovan (2006) use a technique
that builds on a combination of lexical chains and
verb argument structures extracted from VerbNet to
re-rank answer candidates. The authors’ aim is to
recognize changing syntactic roles in cases where
an answer sentence shows a head verb different from
the question (similar to work described here in Sec-
tion 2). However, since VerbNet is based onthe-
maticrather thansemanticroles, there are problems
in using it for this purpose, illustrated by the follow-
ing VerbNet pattern forbuyandsell:

[Agent] buy [Theme] from [Source]
[Agent] sell [Recipient] [Theme]

Starting with the sentence “Peter bought a guitar
from Johnny”, and mapping the above roles forbuy
to those forsell, the resulting paraphrase in terms
of sell would be “Peter sold UNKNOWN a guitar”.
That is, there is nothing blocking the Agent role of
buybeing mapped to the Agent role ofsell, nor any-
thing linking the Source role ofbuy to any role in
sell. There is also a coverage problem: The authors
report that their approach only applies to 15 of 230
TREC 2004 questions. They report a performance
gain of 2.4% (MMR for the top 50 answers), but it
does not become clear whether that is for these 15
questions or for the complete question set.

The way in which we use the web in our first
method is somewhat similar to (Dumais et al., 2002).
However, our system allows control of verb argu-
ment structures, tense and voice and thus we can
create a much larger set of reformulations.

Regarding our second method, two papers de-
scribe related ideas: Firstly, in (Bouma et al., 2005)
the authors describe a Dutch QA system which
makes extensive use of dependency relations. In a
pre-processing step they parsed and stored the full
text collection for the Dutch CLEF QA-task. When
their system is asked a question, they match the de-
pendency structure of the question against the de-
pendency structures of potential answer candidates.
Additionally, a set of 13 equivalence rules allows
transformations of the kind “the coach of Norway,
Egil Olsen”⇔ “Egil Olsen, the coach of Norway”.

Secondly, Shen and Klakow (2006) use depen-
dency relation paths to rank answer candidates. In
their work, a candidate sentence supports an answer
if relations between certain phrases in the candidate
sentence are similar to the corresponding ones in the
question.

Our work complements that described in both
these papers, based as it is on a large collection of
semantically annotated example sentences: We only
require a candidate sentence to match one of the an-
notated example sentences. This allows us to deal
with a much wider range of syntactic possibilities, as
the resources we use do not only document verb ar-
gument structures, but also the many ways they can
be syntactically realized.

7 Discussion

Both methods presented in this paper employ se-
mantic roles but with different aims in mind: The
first method focuses on creating obvious answer-
containing sentences. Because in these sentences,
the head and the semantic roles are usually adjacent,
it is possible to create exact search queries that will
lead to answer candidates of a high quality. Our
second method can deal with a wider range of syn-
tactic variations but here the link to the answer sen-
tences’ surface structure is not obvious, thus no ex-
act queries can be posed.

The overall accuracy we achieved suggests that
employing semantic roles for question answering is
indeed useful. Our results compare nicely to re-
cent TREC evaluation results. This is an especially
strong point, because virtually all high performing
TREC systems combine miscellaneous strategies,
which are already know to perform well. Because

47



the research question driving this work was to deter-
mine how semantic roles can benefit QA, we deliber-
ately designed our system toonly build on semantic
roles. We did not chose to extend an already exist-
ing system, using other methods with a few features
based on semantic roles.

Our results are convincing qualitatively as well as
quantitavely: Detecting paraphrases and drawing in-
ferences is a key challenge in question answering,
which our methods achieve in various ways:

• They both recognize different verb-argument
structures of the same verb.

• Method 1 controls for tense and voice: Our sys-
tem will not take a future perfect sentence for
an answer to a present perfect question.

• For method 1, no answer candidates altered by
mood or negation are accepted.

• Method 1 can create and recognize answer sen-
tences, whose head is synonymous or related in
meaning to the answers head. In such transfor-
mations, we are also aware of potential changes
in the argument structure.

• The annotated sentences in the resources en-
ables method 2 to deal with a wide range of
syntactic phenomena.

8 Conclusion

This paper explores whether lexical resources like
FrameNet, PropBank and VerbNet are beneficial for
QA and describes two different methods in which
they can be used. One method uses the data in these
resources to generate potential answer-containing
sentences that are searched for on the web by using
exact, quoted search queries. The second method
uses only a keyword-based search, but it can anno-
tate a larger set of candidate sentences. Both meth-
ods perform well solemnly and they nicely comple-
ment each other. Our methods based on semantic
roles alone achieves an accuracy of 0.39. Further-
more adding the described features to our already
existing system boosted accuracy by 21%.

Acknowledgments

This work was supported by Microsoft Research
through the European PhD Scholarship Programme.

References

Colin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet Project. InProceed-
ings of COLING-ACL.

Gosse Bouma, Jori Mur, Gertjan van Noord, Lonneke
van der Plas, and Jörg Tiedemann. 2005. Question
Answering for Dutch using Dependency Relations. In
Proceedings of the CLEF 2005 Workshop.

Susan Dumais, Michele Bankom, Eric Brill, Jimmy Lin,
and Andrew Ng. 2002. Web Question Answering: Is
More Always Better?Proceedings of UAI 2003.

Gerhard Fliedner. 2004. Towards Using FrameNet for
Question Answering. InProceedings of the LREC
2004 Workshop on Building Lexical Resources from
Semantically Annotated Corpora.

Michael Kaisser and Tilman Becker. 2004. Question An-
swering by Searching Large Corpora with Linguistic
Methods. InThe Proceedings of the 2004 Edition of
the Text REtrieval Conference, TREC 2004.

Michael Kaisser, Silke Scheible, and Bonnie Webber.
2006. Experiments at the University of Edinburgh for
the TREC 2006 QA track. InThe Proceedings of the
2006 Edition of the Text REtrieval Conference, TREC
2006.

Dekang Lin. 1998. Dependency-based Evaluation of
MINIPAR. In Workshop on the Evaluation of Parsing
Systems.

George A. Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine Miller. 1993. In-
troduction to WordNet: An On-Line Lexical Database.

Adrian Novischi and Dan Moldovan. 2006. Question
Answering with Lexical Chains Propagating Verb Ar-
guments. InProceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the ACL.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles.Computational Linguistics,
31(1):71–106.

Karin Kipper Schuler. 2005. VerbNet: A Broad-
Coverage, Comprehensive Verb Lexicon. Ph.D. thesis,
University of Pennsylvania.

Dan Shen and Dietrich Klakow. 2006. Exploring Corre-
lation of Dependency Relation Paths for Answer Ex-
traction. InProceedings of the 21st International Con-
ference on Computational Linguistics and 44th Annual
Meeting of the ACL.

48



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 49–56,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Deep Linguistic Processing for Spoken Dialogue Systems

James Allen
Department of Computer Science

University of Rochester
james@cs.rochester.edu

Myroslava Dzikovska
ICCS-HCRC

University of Edinburgh
mdzikovs@inf.ed.ac.uk

Mehdi Manshadi
Department of Computer Science

University of Rochester
mehdih@cs.rochester.edu

Mary Swift
Department of Computer Science

University of Rochester
swift@cs.rochester.edu

Abstract

We describe a framework for deep linguis-
tic processing for natural language under-
standing in task-oriented spoken dialogue
systems. The goal is to create domain-
general processing techniques that can be
shared across all domains and dialogue
tasks, combined with domain-specific op-
timization based on an ontology mapping
from the generic LF to the application  on-
tology. This framework has been tested in
six domains that involve tasks such as in-
teractive planning, coordination operations,
tutoring, and learning.

1 Introduction

Deep linguistic processing is essential for spoken
dialogue systems designed to collaborate with us-
ers to perform collaborative tasks. We describe the
TRIPS natural language understanding system,
which is designed for this purpose. As we develop
the system, we are constantly balancing two com-
peting needs: (1) deep semantic accuracy: the need
to produce the semantically and pragmatically deep
interpretations for a specific application; and (2)
portability: the need to reuse our grammar, lexicon
and discourse interpretation processes across do-
mains.

We work to accomplish portability by using a
multi-level representation. The central components
are all based on domain general representations,
including a linguistically based detailed semantic
representation (the Logical Form, or LF), illocu-
tionary acts, and a collaborative problem-solving
model. Each application then involves using a do-
main-specific ontology and reasoning components.

The generic LF is linked to the domain-specific
representations by a set of ontology mapping rules
that must be defined for each domain. Once the
ontology mapping is defined, we then can auto-
matically specialize the generic grammar to use the
stronger semantic restrictions that arise from the
specific domain. In this paper we mainly focus on
the generic components for deep processing. The
work on ontology mapping and rapid grammar ad-
aptation is described elsewhere (Dzikovska et al.
2003; forthcoming).

2 Parsing for deep linguistic processing

The parser uses a broad coverage, domain-
independent lexicon and grammar to produce the
LF. The LF is a flat, unscoped representation that
includes surface speech act analysis, dependency
information, word senses (semantic types) with
semantic roles derived from the domain-
independent language ontology, tense, aspect, mo-
dality, and implicit pronouns. The LF supports
fragment and ellipsis interpretation, discussed in
Section 5.2

2.1 Semantic Lexicon

The content of our semantic representation comes
from a domain-independent ontology linked to a
domain-independent lexicon.  Our syntax relies on
a frame-based design in the LF ontology, a com-
mon representation in semantic lexicons (Baker et
al., 1998, Kipper et al., 2000). The LF type hierar-
chy is influenced by argument structure, but pro-
vides a more detailed level of semantic analysis
than found in most broad coverage parsers as it
distinguishes senses even if the senses take the
same argument structure, and may collapse lexical
entries with different argument structures to the
same sense. As a very simple example, the generic
lexicon includes the senses for the verb take shown

49



in Figure 1. Our generic senses have been inspired
by FrameNet (Baker et al., 1998).

In addition, types are augmented with semantic
features derived from EuroWordNet (Vossen et al.,
1997) and extended. These are used to provide se-
lectional restrictions, similar to VerbNet (Kipper et
al., 2000). The constraints are intentionally weak,
excluding utterances unsuitable in most contexts
(the idea slept) but not attempting to eliminate
borderline combinations.

The generic selectional restrictions are effective
in improving overall parsing accuracy, while re-
maining valid across multiple domains. An
evaluation with an earlier version of the grammar
showed that if generic selectional restrictions were
removed, full sentence semantic accuracy de-
creased from 77.8% to 62.6% in an emergency
rescue domain, and from 67.9 to 52.5% in a medi-
cal domain (using the same versions of grammar
and lexicon) (Dzikovska, 2004).

The current version of our generic lexicon con-
tains approximately 6400 entries (excluding mor-
phological variants), and the current language on-
tology has 950 concepts. The lexicon can be sup-
plemented by searching large-scale lexical re-
sources such as WordNet (Fellbaum, 1998) and
Comlex (Grisham et al., 1994). If an unknown
word is encountered, an underspecified entry is
generated on the fly. The entry incorporates as
much information from the resource as possible,
such as part of speech and syntactic frame. It is
assigned an underspecified semantic classification
based on correspondences between our language
ontology and WordNet synsets.

2.2 Grammar

The grammar is context-free, augmented with fea-
ture structures and feature unification, motivated
from X-bar theory, drawing on principles from
GPSG (e.g., head and foot features) and HPSG. A
detailed description of an early non-lexicalized
version of the formalism is in (Allen, 1995). Like
HPSG, our grammar is strongly lexicalized, with
the lexical features defining arguments and com-
plement structures for head words. Unlike HPSG,

however, the features are not typed and rather than
multiple inheritance, the parser supports a set of
orthogonal single inheritance hierarchies to capture
different syntactic and semantic properties. Struc-
tural variants such as passives, dative shifts, ger-
unds, and so on are captured in the context-free
rule base. The grammar has broad coverage of
spoken English, supporting a wide range of con-
versational constructs. It also directly encodes
conventional conversational acts, including stan-
dard surface speech acts such as inform, request
and question, as well as acknowledgments, accep-
tances, rejections, apologies, greetings, corrections,
and other speech acts common in conversation.

To support having both a broad domain-general
grammar and the ability to produce deep domain-
specific semantic representations, the semantic
knowledge is captured in three distinct layers (Fig-
ure 2), which are compiled together before parsing
to create efficient domain-specific interpretation.
The first level is primarily encoded in the gram-
mar, and defines an interpretation of the utterance
in terms of generic grammatical relations. The sec-
ond is encoded in the lexicon and defines an inter-
pretation in terms of a generic language-based on-
tology and generic roles. The third is encoded by a
set of ontology-mapping rules that are defined for
each domain, and defines an interpretation in terms
of the target application ontology. While these lev-
els are defined separately, the parser can produce
all three levels simultaneously, and exploit do-
main-specific semantic restrictions to simultane-
ously improve semantic accuracy and parsing effi-
ciency. In this paper we focus on the middle level,
the generic LF.

CONSUME Take an aspirin
MOVE Take it to the store
ACQUIRE Take a picture
SELECT I’ll take that one
COMPATIBLE
WITH

The projector takes 100 volts

TAKE-TIME It took three hours
 Figure 1: Some generic senses of take in lexicon

50



The rules in the grammar are weighted, and
weights are combined, similar to how probabilities
are computed in a PCFG. The weights, however,
are not strictly probabilities (e.g., it is possible to
have weights greater than 1); rather, they encode
structural preferences. The parser operates in a
best-first manner and as long as weights never ex-
ceed 1.0, is guaranteed to find the highest weighted
parse first. If weights are allowed to exceed 1.0,
then the parser becomes more “depth-first” and it
is possible to “garden-path” and find globally sub-
optimal solutions first, although eventually all in-
terpretations can still be found.

The grammar used in all our applications uses
these hand-tuned rule weights, which have proven
to work relatively well across domains. We do not
use a statistical parser based on a trained corpus
because in most dialogue-system projects, suffi-
cient amounts of training data are not available and
would be too time consuming to collect. In the one
domain in which we have a reasonable amount of
training data (about 9300 utterances), we experi-
mented with a PCFG using trained probabilities
with the Collins algorithm, but were not able to
improve on the hand-tuned preferences in overall
performance (Elsner et al., 2005).

Figure 3 summarizes some of the most impor-
tant preferences encoded in our rule weights. Be-
cause we are dealing with speech, which is often
ungrammatical and fragmented, the grammar in-
cludes “robust” rules (e.g., allowing dropped de-
terminers) that would not be found in a grammar of
written English.

3 The Logical Form Language
The logical form language captures a domain-
independent semantic representation of the utter-
ance. As shown later in this paper, it can be seen as

a variant of MRS (Copestake et al., 2006) but is
expressed in a frame-like notation rather than
predicate calculus. In addition, it has a relatively
simple method of computing possible quantifier
scoping, drawing from the approaches by (Hobbs
& Shieber, 1987) and (Alshawi, 1990).

A logical form is set of terms that can be viewed
as a rooted graph with each term being a node
identified by a unique ID (the variable). There are
three types of terms. The first corresponds to gen-
eralized quantifiers, and is on the form (<quant>
<id> <type> <modifiers>*). As a simple example,
the NP Every dog would be captured by the term
(Every d1 DOG). The second type of term is the
propositional term, which is represented in a neo-
Davidsonian representation (e.g., Parsons, 1990)
using reified events and properties. It has the form
(F <id> <type> <arguments>*). The propositional
terms produced from Every dog hates a cat would
be (F h1 HATE :Experiencer d1 :Theme c1).  The
third type of term is the speech act, which has the
same form as propositional terms except for the
initial indicator SA identifying it as a performed
speech act. The speech act for Every dog hates a
cat would be (SA sa1 INFORM :content h1). Put-
ting this all together, we get the following (con-
densed) LF representation from the parser for
Every large dog hates a cat (shown in graphical

Figure 2: The Levels of Representation computed by the Parser

Prefer
• Interpretations without gaps to those with gaps
• Subcategorized interpretations over adjuncts
• Right attachment of PPs and adverbials
• Fully specified constituents over those with

dropped or “implicit” arguments
• Adjectival modification over noun-noun modifi-

cation
• Standard rules over “robust” rules
Figure 3: Some Key Preferences used in Parsing

51



form in Figure 4).

(SA x1 TELL :content x2)
(F x2 HATE :experience x3 :theme x5)
(Every x3 DOG :mods  (x4))
(F x4 LARGE :of x3)
(A x5 CAT)

4 Comparison of LF and MRS
Minimal Recursion Semantics (MRS) (Copestake
et al. 2006) is a semantic formalism which has
been widely adopted in the last several years. This
has motivated some research on how this formal-
ism compares to some traditional semantic for-
malisms. For example, Fuchss et al. (2004) for-
mally show that the translation from MRS to
Dominance Constraints is feasible. We have also
found that MRS is very similar to LF in its de-
scriptive power. In fact, we can convert every LF
to an equivalent MRS structure with a simple algo-
rithm.

First, consider the sentence Every dog hates a
cat. Figure 5 shows the LF and MRS representa-
tions for this sentence.

Figure 5: The LF (left) and MRS (right) representations
for the sentence “Every dog hates a cat.”

The first step toward converting LF to MRS is to
express LF terms as n-ary relationships. For exam-
ple we express the LF term (F v1 Hate
:Experiencer x :Theme y) as Hate(x, y). For quanti-
fier terms, we break the LF term into two relations:
one for the quantifier itself and one for the restric-

tion. For example (Every x Dog) is converted to
Every(x) and Dog(x).

There is a small change in the conversion proce-
dure when the sentence contains some modifiers.
Consider the modifier large in the sentence Every
large dog hates a cat. In the LF, we bring the
modifier in the term which defines the semantic
head, using a :MODS slot. In the MRS, however,
modifiers are separate EPs labeled with same han-
dle as the head’s. To cover this, for each LF term T
which has a (:MODS vk) slot,  and the LF term T1
which defines the variable vk, we assign the same
handle to both T and T1. For example for the terms
(F x Dog :MODS v2) and (F v2 Large :OF x), we
assign the same handle to both Dog(x) and
Large(x). Similar approach applies when the modi-
fier itself is a scopal term, such as in the sentence
Every cat in a room sleeps. Figure 7 shows LF and
MRS representations for this sentence. Figure 8,
summarizes all these steps as an algorithm which
takes a LF representation as the input and gener-
ates its equivalent MRS.

There is a small change in the conversion proce-
dure when the sentence contains some modifiers.
Consider the modifier large in the sentence Every
large dog hates a cat. In the LF, we bring the
modifier in the term which defines the semantic
head, using a :MODS slot. In the MRS, however,
modifiers are separate EPs labeled with same han-
dle as the head’s. To cover this, for each LF term T
which has a (:MODS vk) slot,  and the LF term T1
which defines the variable vk, we assign the same
handle to both T and T1. For example for the terms
(F x Dog :MODS v2) and (F v2 Large :OF x), we
assign the same handle to both Dog(x) and
Large(x). Similar approach applies when the modi-
fier itself is a scopal term, such as in the sentence
Every cat in a room sleeps. Figure 7 shows LF and
MRS representations for this sentence. Figure 8,
summarizes all these steps as an algorithm which
takes a LF representation as the input and gener-
ates its equivalent MRS.

The next step is to bring handles into the repre-

Figure 4: The LF in graphical form

Figure 6: The steps of converting the LF for
“Every cat hates a cat” to its MRS representation

52



sentation. First, we assign a different handle to
each term. Then, for each quantifier term such as
Every(x), we add two handles as the arguments of
the relation: one for the restriction and one for the
body as in h2: Every(x, h6, h7). Finally, we add the
handle constraints to the MRS. We have two types
of handle constraint. The first type comes from the
restriction of each quantifier. We add a qeq rela-
tionship between the restriction handle argument of
the quantifier term and the handle of the actual re-
striction term. The second type of constraint is the
qeq relationship which defines the top handle of
the MRS. The speech act term in every LF refers to
a formula term as content (:content slot), which is
actually the heart of the LF. We build a qeq rela-
tionship between h0 (the top handle) and the han-
dle of this formula term. Figure 6 shows the effect
of applying these steps to the above example.

Figure 7: The LF and MRS representations for the sen-
tence “Every cat in a room sleeps.”
Another interesting issue about these two formal-
isms is that the effect of applying the simple scop-
ing algorithms referred in section 3 to generate all
possible interpretations of a LF is the same as ap-
plying MRS axioms and handle constraints to gen-
erate all scope-resolved MRSs. For instance, the
example in (Copestake et al. 2006), Every nephew
of some famous politician saw a pony has the same

5 interpretations using either approach.
As the last point here, we need to mention that

the algorithm in Figure 8 does not consider fixed-
scopal terms such as scopal adverbials or negation.
However, we believe that the framework itself is
able to support these types of scopal term and with
a small modification, the scoping algorithm will
work well in assigning different possible interpre-
tations. We leave the full discussion about these
details as well as the detailed proof of the other
claims we made here to another paper.

5 Generic Discourse Interpretation
With a generic semantic representation, we can
then define generic discourse processing capabili-
ties that can be used in any application. All of
these methods have a corresponding capability at
the domain-specific level for an application, but we
will not discuss this further here. We also do not
discuss the support for language generation which
uses the same discourse context.

There are three core discourse interpretation ca-
pabilities that the system provides: reference reso-
lution, ellipsis processing, and speech act interpre-
tation. All our different dialog systems use the
same discourse processing, whether the task in-
volves collaborative problem solving, learning
from instruction or automated tutoring.

5.1 Reference Resolution

Our domain-independent representation supports
reference resolution in two ways. First, the quanti-
fiers and dependency structure extracted from the
sentence allow for implementing reference resolu-
tion algorithms based on extracted syntactic fea-
tures. The system uses different strategies for re-

Figure 8: The LF-MRS conversion algorithm

53



solving each type of referring expression along the
lines described in (Byron, 2002).

Second, domain-independent semantic informa-
tion helps greatly in resolving pronouns and defi-
nite descriptions. The general capability provided
for resolving referring expressions is to search
through the discourse history for the most recent
entity that matches the semantic requirements,
where recency within an utterance may be reor-
dered to reflect focusing heuristics (Tetreault,
2001). For definite descriptions, the semantic in-
formation required is explicit in the lexicon. For
pronouns, the parser can often compute semantic
features from verb argument restrictions.  For in-
stance, the pronoun it carries little semantic infor-
mation by itself, but in the utterance Eat it we
know we are looking for an edible object. This
simple technique performs well in practice.

Because of the knowledge in the lexicon for role
nouns such as author, we can also handle simple
bridging reference. Consider the discourse frag-
ment That book came from the library. The author
…. The semantic representation of the author in-
cludes its implicit argument, e.g., (The x1
AUTHOR :of b1). Furthermore, the term b1 has
the semantic feature INFO-CONTENT, which in-
cludes objects that “contain” information such as
books, articles, songs, etc.., which allows the pro-
noun to correctly resolve via bridging to the book
in the previous utterance.

5.2 Ellipsis

The parser produces a representation of fragmen-
tary utterances similar to (Schlangen and Las-
carides, 2003). The main difference is that instead
of using a single underspecified unknown_rel
predicate to resolve in discourse context, we use a
speech act term as the underspecified relation, dif-
ferentiating between a number of common rela-
tions such as acknowledgments, politeness expres-
sions, noun phrases and underspecified predicates
(PP, ADJP and VP fragments). The representations
of the underspecified predicates also include an
IMPRO in place of the unspecified argument.

We currently handle only a few key cases of el-
lipsis. The first is question/answer pairs. By re-
taining the logical form of the question in the dis-
course history, it is relatively easy to reconstruct
the full content of short answers (e.g., in Who ate
the pizza? John? the answer maps to the represen-
tation that John ate the pizza).  In addition, we

handle common follow-up questions  (e.g., Did
John buy a book? How about a magazine?) by per-
forming a semantic closeness matching of the
fragment into the previous utterance and substitut-
ing the most similar terms. The resulting term can
then be used to update the context. This process is
similar to the resolution process in (Schlangen and
Lascarides, 2003), though the syntactic parallelism
constraint is not checked. It could also be easily
extended to cover other fragment types, as the
grammar provides all the necessary information.

5.3 Speech Act Interpretation

The presence of domain-independent semantic
classes allows us to encode a large set of these
common conversational pattern independently of
the application task and domain. These include
rules to handle short answers to questions, ac-
knowledgements and common politeness expres-
sions, as well as common inferences such as inter-
preting I need to do X as please do X.

Given our focus on problem solving domains,
we are generally interested in identifying more
than just the illocutionary force of an utterance.
For instance, in a domain for planning how to
evacuate people off an island, the  utterance Can
we remove the people by helicopter? is not only
ambiguous between being a true Y-N question or a
suggestion of a course of action, but at the problem
solving level it might intended to (1) introduce a
new goal, (2)  elaborate or extend the solution to
the current problem, or (3) suggest a modification
to an existing solution (e.g., moving them by
truck). One can only choose between these read-
ings using domain specific reasoning about the
current task. The point here is that the interpreta-
tion rules are still generic across all domains and
expressed using the generic LF, yet the interpreta-
tions produced are evaluated using domain-specific
reasoning. This interleaving of generic interpreta-
tion and domain-specific reasoning is enabled by
our ontology mappings.

Similarly, in tutoring domains students often
phrase their answers as check questions. In an an-
swer to the question Which components are in a
closed path, the student may say Is the bulb in 3 in
a closed path? The domain-independent represen-
tation is used to identify the surface form of this
utterance as a yes-no question. The dialogue man-
ager then formulates two hypotheses: that this is a
hedged answer, or a real question. If a domain-

54



specific tutoring component confirms the former
hypothesis, the dialogue manager will proceed
with verifying answer correctness and carrying on
remediation as necessary. Otherwise (such as for Is
the bulb in 5 connected to a battery in the same
context), the utterance is a question that can be
answered by querying the domain reasoner.

5.4 A Note on Generic Capabilities

A key point is that these generic discourse inter-
pretation capabilities are enabled because of the
detailed generic semantic interpretation produced
by the parser. If the parser produced a more shal-
low representation, then the discourse interpreta-
tion techniques would be significantly degraded.
On the other hand, if we developed a new repre-
sentation for each domain, then we would have to
rebuild all the discourse processing for the domain.

6 Evaluation
Our evaluation is aimed at assessing two main
features of the grammar and lexicon: portability
and accuracy. We use two main evaluation criteria:
full sentence accuracy, that takes into account both
syntactic and semantic accuracy of the system, and
sense tagging accuracy, to demonstrate that the
word senses included in the system can be distin-
guished with a combination of syntactic and do-
main-independent semantic information.

As a measure of the breadth of grammatical
coverage of our system, we have evaluated our
coverage on the CSLI LKB (Linguistic Knowledge
Building) test suite (Copestake, 1999). The test
suite contains approximately 1350 sentences, of
which about 400 are ungrammatical. We use a full-
sentence accuracy measure to evaluate our cover-
age, since this is the most meaningful measure in
terms of what we require as parser output in our
applications. For a sentence representation to be
counted as correct by this measure, both the syn-
tactic structure and the semantic representation
must be correct, which includes the correct as-
signment of word senses, dependency relations
among terms, and speech act type. Our current
coverage for the diverse grammatical phenomena
in the corpus is 64% full-sentence accuracy.

We also report the number of spanning parses
found, because in our system there are cases in
which the syntactic parse is correct, but an incor-
rect word sense may have been assigned, since we
disambiguate senses using not only syntactic

structure but also semantic features as selectional
restrictions on arguments. For example, in The
manager interviewed Browne after working, the
parser assigns working the sense LF::FUNCTION,
used with non-agentive subjects, instead of the cor-
rect sense for agentive subjects, LF::WORKING.
For the grammatical utterances in the test suite, our
parser found spanning parses for 80%.

While the ungrammatical sentences in the set are
an important tool for constraining grammar output,
our grammar is designed to find a reasonable inter-
pretation for natural speech, which often is less
than perfect. For example, we have low preference
grammar rules that allow dropped subjects, miss-
ing determiners, and wrong subject verb agree-
ment. In addition, utterances are often fragmentary,
so even those without spanning parses may be con-
sidered correct. Our grammar allows all major con-
stituents (NP, VP, ADJP, ADVP) as valid utter-
ances. As a result, our system produces spanning
parses for 46% of the “ungrammatical” utterances.
We have not yet done a detailed error analysis.

As a measure of system portability to new do-
mains, we have evaluated our system coverage on
the ATIS (Airline Travel Information System)
speech corpus, which we have never used before.
For this evaluation, the proper names (cities, air-
ports, airline companies) in the ATIS corpus were
added to our lexicon, but no other development
work was performed. We parsed 116 randomly
selected test sentences and hand-checked the re-
sults using our full-sentence accuracy measure.
Our baseline coverage of these utterances is 53%
full-sentence semantic accuracy. Of the 55 utter-
ances that were not completely correct, we found
spanning parses for 36% (20). Reasons that span-
ning parses were marked as wrong include incor-
rect word senses (e.g., for stop in I would like it to
have a stop in Phoenix) or PP-attachment. Reasons
that no spanning parse was found include missing
senses for existing words (e.g., serve as in Does
that flight serve dinner).

7 Discussion
We presented a deep parser and semantic inter-
preter for use in dialogue systems. An important
question to ask is how it compares to other existing
formalisms. At present there is no easy way to
make such comparison. One possible criterion is
grammatical coverage. Looking at the grammar
coverage/accuracy on the TSNLP suite that was

55



used to evaluate the LINGO ERG grammar, our
grammar demonstrates 80% coverage (number of
spanning parses). The reported figure for LINGO
ERG coverage of CSLI is 77% (Oepen, 1999), but
this number has undoubtedly improved in the  9-
year development period. For example, the current
reported coverage figures on spoken dialogue cor-
pora are  close to 90% (Oepen et al., 2002).

However, the grammar coverage alone is not a
satisfactory measure for a deep NLP system for use
in practical applications, because the logical forms
and therefore the capabilities of deep NLP systems
differ significantly. A major distinguishing feature
of our system is that the logical form it outputs
uses semantically motivated word senses. LINGO
ERG, in contrast, contains only syntactically moti-
vated word senses. For example, the words end and
finish are not related in any obvious way. This re-
flects a difference in underlying philosophy.
LINGO ERG aims for linguistic precision, and as
can be seen from our experiments, requiring the
parser to select correct domain-independent word
senses lowers accuracy.

Our system, however, is built with the goal of
easy portability within the context of dialogue
systems. The availability of word senses simplifies
the design of domain-independent interpretation
components, such as reference resolution and
speech act interpretation components that use do-
main-independent syntactic and semantic informa-
tion to encode conventional interpretation rules.

If the LINGO ERG grammar were to be put in a
dialogue system that requires domain interpretation
and reasoning, an additional lexical interpretation
module would have to be developed to perform
word sense disambiguation as well as interpreta-
tion, something that has not yet been done.

Acknowledgments
We thank 3 reviewers for helpful comments. This
work was supported by NSF IIS-0328811, DARPA
NBCHD30010 via subcontract to SRI #03-000223
and ONR N00014051004-3 and –8.

References
H. Alshawi. 1990. Resolving Quasi Logical Forms.

Computational Linguistics 16(3):133-144.
W. Baker, C. Fillmore and J. B. Lowe. 1998. The Ber-

keley FrameNet Project. COLING-ACL'98, Montréal.
D. Byron. 2002. Resolving Pronominal Reference to

Abstract Entities. ACL-02, Philadelphia.

A. Copestake. 1999. The (New) LKB System. CSLI.
A. Copestake, D. Flickinger, C. Pollard and I. Sag.

2006. Minimal Recursion Semantics: An Introduc-
tion. Research on Language and Computation,
3(4):281-332.

M. Dzikovska. 2004. A Practical Semantic Representa-
tion for Natural Language Parsing. Ph.D. Thesis,
University of Rochester.

M. Dzikovska, J. Allen and M. Swift. Forthcoming.
Linking Semantic and Knowledge Representations in
a Multi-domain Dialogue System. Journal of Logic
and Computation.

M. Dzikovska, J. Allen and M. Swift. 2003. Integrating
Linguistic and Domain Knowledge for Spoken Dia-
logue Systems in Multiple Domains. Workshop on
Knowledge and Reasoning in Practical Dialogue
Systems, IJCAI-2003, Acapulco.

M. Elsner, M. Swift, J. Allen and D. Gildea. 2005. On-
line Statistics for a Unification-based Dialogue
Parser. IWPT05, Vancouver.

C. Fellbaum. 1998. WordNet: An Electronic Lexical
Database. MIT Press.

R. Fuchss, A. Koller, J. Niehren, S. Thater. 2004.
Minimal Recursion Semantics as Dominance Con-
straints. ACL-04, Barcelona.

R. Grisham, C. Macleod and A. Meyers. 1994. Comlex
Syntax: Building a Computational Lexicon. COLING
94, Kyoto.

J. Hobbs and S. Shieber. 1987. An Algorithm for Gen-
erating Quantifier Scopings. Computational Linguis-
tics 13(1-2):47-63.

K. Kipper, H. T. Dang and M. Palmer. 2000.  Class-
based Construction of a Verb Lexicon. AAAI-2000.

S. Oepen, D. Flickinger, K. Toutanova and C. Manning.
2002. Lingo Redwoods: A Rich and Dynamic Tree-
bank for HPSG. First Workshop on Treebanks and
Linguistic Theories (TLT2002).

S. Oepen (1999). [incr tsdb()] User Manual.
www.delph-in.net/itsdb/publications/manual.ps.gz.

T. Parsons. 1990. Events in the Semantics of English. A
Study in Subatomic Semantics. MIT Press.

D. Schlangen and A. Lascarides 2003. The Interpreta-
tion of Non-Sentential Utterances in Dialogue. SIG-
DIAL-03, Sapporo.

J. Tetreault. 2001. A Corpus-Based Evaluation of Cen-
tering and Pronoun Resolution. Computational Lin-
guistics. 27(4):507-520.

Vossen, P. (1997) EuroWordNet: A Multilingual Data-
base for Information Retrieval. In Proc. of the Delos
workshop on Cross-language Information Retrieval.

56



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 57–64,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Self- or Pre-Tuning?
Deep linguistic processing of language variants

António Branco
Universidade de Lisboa

Antonio.Branco@di.fc.ul.pt

Francisco Costa
Universidade de Lisboa
fcosta@di.fc.ul.pt

Abstract

This paper proposes a design strategy
for deep language processing grammars
to appropriately handle language vari-
ants. It allows a grammar to be re-
stricted as to what language variant it is
tuned to, but also to detect the variant
a given input pertains to. This is eval-
uated and compared to results obtained
with an alternative strategy by which the
relevant variant is detected with current
language identification methods in a pre-
processing step.

1 Introduction

This paper addresses the issue of handling dif-
ferent variants of a given language by a deep
language processing grammar for that language.

In the benefit of generalization and grammar
writing economy, it is desirable that a grammar
can handle language variants – that share most
grammatical structures and lexicon – in order to
avoid endless multiplication of individual gram-
mars, motivated by inessential differences.

From the viewpoint of analysis, however, in-
creased variant coverage typically opens the way
to increased spurious overgeneration. Conse-
quently, the ability for the grammar to be tuned
to the relevant dialect of the input is impor-
tant to control overgeneration arising from its
flexibility.

Control on what is generated is also desirable.
In general one wants to be able to parse as much
variants as possible, but at the same time be se-
lective in generation, by consistently generating
only in a given selected variant.

Closely related to the setting issue (addressed
in the next Section 2) is the tuning issue: if a
system can be restricted to a particular variety,
what is the best way to detect the variety of the
input? We discuss two approaches to this issue.

One of them consists in using pre-processing
components that can detect the language variety
at stake. This pre-tuning approach explores the
hypothesis that methods developed for language
identification can be used also to detect language
variants (Section 5).

The other approach is to have the computa-
tional grammar prepared for self-tuning to the
language variant of the input in the course of
processing that input (Section 4).

We evaluate the two approaches and compare
them (last Section 6).

2 Variant-sensitive Grammar

In this Section, we discuss the design options for
a deep linguistic processing grammar allowing
for its appropriate tuning to different language
variants. For the sake of concreteness of the dis-
cussion, we assume the HPSG framework (Pol-
lard and Sag, 1994) and a grammar that handles
two close variants of the same language, Euro-
pean and Brazilian Portuguese. These assump-
tions are merely instrumental, and the results
obtained can be easily extended to other lan-
guages and variants, and to other grammatical
frameworks for deep linguistic processing.

A stretch of text from a language L can dis-
play grammatical features common to all vari-
ants of L, or contain a construction that per-
tains to some or only one of its variants. Hence,
undesirable overgeneration due to the grammar
readiness to cope with all language variants can

57



ep-variant

variant

single-variant bp-variant

european-portuguese portuguese brazilian-portuguese

Figure 1: Type hierarchy under variant.

be put in check by restricting the grammar
to produce variant-“consistent” analyses. More
precisely, if the input string contains an element
that can only be found in variety v1 and that in-
put string yields ambiguity in a different stretch
but only in varieties vk other than v1 , this ambi-
guity will not give rise to multiple analyses if the
grammar can be designed so that it can be con-
strained to accept strings with marked elements
of at most one variety, v1 .

The approach we propose seeks to implement
this mode of operation in analysis, with the im-
portant effect of permitting also to control the
variant under which generation should be per-
formed. It relies on the use of a feature VARIANT
to model variation. This feature is appropriate
for all signs and declared to be of type variant.
Given the working language variants assumed
here, its values are presented in Figure 1.

This attribute is constrained to take the ap-
propriate value in lexical items and construc-
tions specific to one of the two varieties. For
example, a hypothetical lexical entry for the lex-
ical item autocarro (bus, exclusive to European
Portuguese) would include the constraint that
the attribute VARIANT has the value ep-variant
and the corresponding Brazilian Portuguese en-
try for ônibus would constrain the same feature
to bear the value bp-variant. The only two types
that are used to mark signs are ep-variant and
bp-variant. The remaining types presented in
Figure 1 are used to constrain grammar behav-
ior, as explained below.

Lexical items are not the only elements that
can have marked values in the VARIANT fea-
ture. Lexical and syntax rules can have them,
too. Such constraints model constructions that
markedly pertain to one of the dialects.

Feature VARIANT is structure-shared among
all signs comprised in a full parse tree. This
is achieved by having all lexical or syntactic
rules unifying their VARIANT feature with the

VARIANT feature of their daughters.
If two signs (e.g. from lexical items and syn-

tax rules) in the same parse tree have different
values for feature VARIANT (one has ep-variant
and the other bp-variant), they will unify to por-
tuguese, as can be seen from Figure 1. This type
means that lexical items or constructions spe-
cific to two different varieties are used together.
Furthermore, since this feature is shared among
all signs, it will be visible everywhere, for in-
stance in the root node.

It is possible to constrain feature VARIANT in
the root condition of the grammar so that the
grammar works in a variant-”consistent” fash-
ion: this feature just has to be constrained to
be of type single-variant (in root nodes) and
the grammar will accept either European Por-
tuguese or Brazilian Portuguese. Furthermore,
in the non natural condition where the input
string bears marked properties of both vari-
ants, that string will receive no analysis: feature
VARIANT will have the value portuguese in this
case, and there is no unifier for portuguese and
single-variant.

If this feature is constrained to be of type
european-portuguese in the root node, the gram-
mar will not accept any sentence with fea-
tures of Brazilian Portuguese, since they will be
marked to have a VARIANT of type bp-variant,
which is incompatible with european-portuguese.
It is also possible to have the grammar re-
ject European Portuguese (using type brazilian-
portuguese) or to ignore variation completely by
not constraining this feature in the start symbol.

With this grammar design it is thus possi-
ble to control beforehand the mode of operation
for the grammar, either for it to handle only
one variant or several. But it is also possible
to use the grammar to detect to which variety
input happens to belong. This self-tuning of
the grammar to the relevant variant is done by
parsing that input and placing no constraint on
feature VARIANT of root nodes, and then read-
ing the value of attribute VARIANT from the re-
sulting feature structure: values ep-variant and
bp-variant result from parsing text with proper-
ties specific to European Portuguese or Brazilian
Portuguese respectively; value variant indicates
that no marked elements were detected and the
text can be from both variants. Also here where
the language variant of the input is detected by
the grammar, the desired variant-”consistent”

58



behavior of the grammar is enforced.
If the input can be known to be specifically

European or Brazilian Portuguese before it is
parsed, the constraints on feature VARIANT can
be set accordingly to improve efficiency: When
parsing text known to be European Portuguese,
there is no need to explore analyses that are
markedly Brazilian Portuguese, for instance.

It is thus important to discuss what meth-
ods for language variant detection can be put
in place that support a possible pre-processing
step aimed at pre-tuning the grammar for the
relevant variant of the input. It is also impor-
tant to gain insight on the quality of the per-
formance of this method and on how the perfor-
mance of this pre-tuning setup compares with
the self-tuning approach. This is addressed in
the next Sections.

3 Experimental setup

Before reporting on the results obtained with the
experiments on the performance of the two ap-
proaches (self- and pre-tuning), it is important
to introduce the experimental conditions under
which such exercises were conducted.

3.1 Data
To experiment with any of these two approaches
to variant-tuning, two corpora of newspaper text
were used, CETEMPublico (204M tokens) and
CETENFolha (32M tokens). The first contains
text from the European newspaper O Público,
and the latter from the South American Folha
de São Paulo. These corpora are only minimally
annotated (paragraph and sentence boundaries,
inter alia), but are very large.

Some preprocessing was carried out: XML-
like tags, like the <s> and </s> tags marking
sentence boundaries, were removed and each in-
dividual sentence was put in a single line.

Some heuristics were also employed to remove
loose lines (parts of lists, etc.) so that only lines
ending in ., ! and ?, and containing more than 5
tokens (whitespace delimited) were considered.
Other character sequences that were judged ir-
relevant and potential misguiders for the pur-
pose at hand were normalized: URLs were re-
placed by the sequence URL, e-mail addresses
by MAIL, hours and dates by HORA and DATA,
etc. Names at the beginning of lines indicating
speaker (in an interview, for instance) were re-
moved, since they are frequent and the grammar

that will be used is not intended to parse name
plus sentence strings.

The remaining lines were ordered by length in
terms of words and the smallest 200K lines from
each of the two corpora were selected. Small
lines were preferred as they are more likely to
receive an analysis by the grammar.

Given the methods we will be employing for
pre-tuning reportedly perform well even with
small training sets (Section 5), only a modest
portion of text from these corpora was needed.

In the benefit of comparability of the two
approaches for grammar tuning, it is impor-
tant that all the lines in the working data are
parsable by the grammar. Otherwise, even if
in the pre-tuning approach the pre-processor
gets the classification right for non parsable sen-
tences, this will be of no use since the grammar
will not produce any result out of that. 90K lines
of text were thus randomly selected from each
corpus and checked as to whether they could be
parsed by the grammar. 25K of parsable lines of
the American corpus and 21K of parsable lines
of the European corpus were obtained (46K lines
out of 180K, representing 26% rate of parsabil-
ity for the grammar used – more details on this
grammar in the next Section).

It is worth noting that the use of two corpora,
one from an European newspaper and the other
from an American newspaper, without further
annotation, does not allow their appropriate use
in the present set of experiments. The reason
is that if a sentence is found in the European
corpus, one can have almost absolute certainty
that it is possible in European Portuguese, but
one does not know if it is Brazilian Portuguese,
too. The same is true of any sentences in the
American corpus — it can also be a sentence
of European Portuguese in case it only contains
words and structures common to both variants.

In order to prepare the data, a native speaker
of European Portuguese was asked to manually
decide from sentences found in the American
corpus whether they are markedly Brazilian Por-
tuguese. Conversely, a Brazilian informant de-
tected markedly European Portuguese sentences
from the European corpus.

From these parsed lines we drew around 1800
random lines of text from each corpus, and had
them annotated. The lines coming from the
American corpus were annotated for whether
they are markedly Brazilian Portuguese, and

59



vice-versa for the other corpus. Thus a three-
way classification is obtained: any sentence
was classified as being markedly Brazilian Por-
tuguese, European Portuguese or common to
both variants.

The large majority of the sentences were
judged to be possible in both European and
Brazilian Portuguese. 16% of the sentences in
the European corpus were considered not be-
longing to Brazilian Portuguese, and 21% of the
sentences in the American corpus were judged as
not being European Portuguese.1 Overall, 81%
of the text was common to both varieties.

10KB of text from each one of the three classes
were obtained. 140 lines, approximately 5KB,
were reserved for training and another 140 for
test. In total, the 30 K corpus included 116, 170,
493 and 41 sentence tokens for, respectively, 8,
7, 6 and 5 word length sentence types.

3.2 Variation

These training corpora were submitted to man-
ual inspection in order to identify and quantify
the sources of variant specificity. This is impor-
tant to help interpret the experimental results
and to gain insight on the current coverage of
the grammar used in the experiment.

This analysis was performed over the 140 lines
selected as markedly Brazilian Portuguese, and
assumed that the sources of variant specificity
should have broadly the same distribution in
the other 140K lines markedly European Por-
tuguese.

1. Mere orthographic differences (24%) e.g.
ação vs. acção (action)

2. Phonetic variants reflected in orthography
(9.3%) e.g. irônico vs. irónico (ironic)

1A hypothetical explanation for this asymmetry (16%
vs. 21%) is that one of the most pervasive differences
between European and Brazilian Portuguese, clitic place-
ment, is attenuated in writing: Brazilian text often dis-
plays word order between clitic and verb similar to Euro-
pean Portuguese, and different from oral Brazilian Por-
tuguese. Therefore, European text displaying European
clitic order tends not be seen as markedly European. In
fact, we looked at the European sentences with clitic
placement characteristic of European Portuguese that
were judged possible in Brazilian Portuguese. If they
were included in the markedly European sentences, 23%
of the European text would be unacceptable Brazilian
Portuguese, a number closer to the 21% sentences judged
to be exclusively Brazilian Portuguese in the American
corpus.

3. Lexical differences (26.9% of differences)

(a) Different form, same meaning (22.5%)
e.g. time vs. equipa (team)

(b) Same form, different meaning (4.4%)
e.g. policial (policeman/criminal novel

4. Syntactic differences (39.7%)

(a) Possessives w/out articles (12.2%)
(b) In subcategorization frames (9.8%)
(c) Clitic placement (6.4%)
(d) Singular bare NPs (5.4%)
(e) In subcat and word sense (1.9%)
(f) Universal todo + article (0.9%)
(g) Contractions of Prep+article (0.9%)
(h) Questions w/out SV inversion (0.9%)
(i) Postverbal negation (0.5%)
(j) other (0.5%)

About 1/3 of the differences found would dis-
appear if a unified orthography was adopted.
Differences that are reflected in spelling can be
modeled via multiple lexical entries, with con-
straints on feature VARIANT reflecting the vari-
ety in which the item with that spelling is used.

Interestingly, 40% of the differences are syn-
tactic in nature. These cases are expected to
be more difficult to detect with stochastic ap-
proaches than with a grammar.

4 Self-tuning

4.1 Grammar and baseline

The experiments on the self-tuning approach
were carried out with a computational grammar
for Portuguese developed with the LKB plat-
form (Copestake, 2002) that uses MRS for se-
mantic representation (Copestake et al., 2001)
(Branco and Costa, 2005). At the time of the
experiments reported here, this grammar was
of modest size. In terms of linguistic phenom-
ena, it covered basic declarative sentential struc-
tures and basic phrase structure of all cate-
gories, with a fully detailed account of the struc-
ture of NPs. It contained 42 syntax rules, 37
lexical rules (mostly inflectional) and a total
of 2988 types, with 417 types for lexical en-
tries. There were 2630 hand-built lexical entries,
mostly nouns, with 1000 entries. It was coupled
with a POS tagger for Portuguese, with 97% ac-
curacy (Branco and Silva, 2004).

60



In terms of the sources of variant specificity
identified above, this grammar was specifically
designed to handle the co-occurrence of prenom-
inal possessives and determiners and most of the
syntactic constructions related to clitic-verb or-
der. As revealed by the study of the training
corpus, these constructions are responsible for
almost 20% of marked sentences.

The lexicon contained lexical items markedly
European Portuguese and markedly Brazilian
Portuguese. These were taken from the Por-
tuguese Wiktionary, where this information is
available. Leaving aside the very infrequent
items, around 740 marked lexical items were
coded. Items that are variant specific found in
the training corpora (80 more) were also entered
in the lexicon.

These items, markedly belonging to one vari-
ant, were declined into their inflected forms and
the resulting set Lexbsl was used in the following
baseline for dialect tuning: for a sentence s and
N ep, resp. N bp, the number of tokens of items
in Lexbsl markedly European, resp. Brazilian
Portuguese, occurring in s, s is tagged as Euro-
pean Portuguese if N ep > N bp, or vice-versa, or
else, ”common” Portuguese if N ep = N bp = 0.

Known Predicted class
class EP BP Common Recall

EP 45 0 95 0.32
BP 3 45 92 0.32

Common 4 4 132 0.94
Precision 0.87 0.98 0.41

Table 1: Baseline: Confusion matrix.

For this baseline, the figure of 0.53 of overall
accuracy was obtained, detailed in Table 1.2

4.2 Results with self-tuning

The results obtained for the self-tuning mode
of operation are presented in Table 2.3 When
the grammar produced multiple analyses for a

2Naturally, extending the operation of this baseline
method beyond the terms of comparability with gram-
mars that handle each sentence at a time, namely by
increasingly extending the number of sentences in the
stretch of text being classified, will virtually lead it to
reach optimal accuracy.

3These figures concern the test corpus, with the three
conditions represented by 1/3 of the sentences, which are
all parsable. Hence, actual recall over a naturally occur-
ring text is expected to be lower. Using the estimate that
only 26% of input receives a parse, that figure for recall
would lie somewhere around 0.15 (= 0.57 x 0.26).

given sentence, that sentence was classified as
markedly European, resp. Brazilian, Portuguese
if all the parses produced VARIANT with type ep-
variant, resp. bp-variant. In all other cases, the
sentence would be classified as common to both
variants.

Known Predicted class
class EP BP Common Recall

EP 53 1 86 0.38
BP 6 61 73 0.44

Common 14 1 125 0.89
Precision 0.73 0.97 0.44

Table 2: Self-tuning: Confusion matrix.

Every sentence in the test data was classified,
and the figure of 0.57 was obtained for over-
all accuracy. The analysis of errors shows that
the sentence belonging to Brazilian Portuguese
or to ”common” Portuguese wrongly classified
as European Portuguese contain clitics follow-
ing the European Portuguese syntax, and some
misspellings conforming to the European Por-
tuguese orthography.

5 Pre-tuning

5.1 Language Detection Methods
Methods have been developed to detect the lan-
guage a given text is written in. They have
also been used to discriminate varieties of the
same language, although less often. (Lins and
Gonçalves, 2004) look up words in dictionaries
to discriminate among languages, and (Oakes,
2003) runs stochastic tests on token frequencies,
like the chi-square test, in order to differentiate
between European and American English.

Many methods are based on frequency of byte
n-grams in text because they can simultaneously
detect language and character encoding (Li and
Momoi, 2001), and can reliably classify short
portions of text. They have been applied in web
browsers (to identify character encodings) and
information retrieval systems.

We are going to focus on methods based on
character n-grams. Because all information used
for classification is taken from characters, and
they can be found in text in much larger quanti-
ties than words or phrases, problems of scarcity
of data are attenuated. Besides, training data
can also be easily found in large amounts be-
cause corpora do not need to be annotated (it is

61



only necessary to know the language they belong
to). More importantly, methods based on char-
acter n-grams can reliably classify small portions
of text. The literature on automatic language
identification mentions training corpora as small
as 2K producing classifiers that perform with al-
most perfect accuracy for test strings as little as
500 Bytes (Dunning, 1994) and considering sev-
eral languages. With more training data (20K-
50K of text), similar quality can be achieved for
smaller test strings (Prager, 1999).

Many n-gram based methods have been ex-
plored besides the one we opted for.4 Many
can achieve perfect or nearly perfect classifica-
tion with small training corpora on small texts.
In previous work (Branco and Costa, 2007),
we did a comparative study on two classifiers
that use approaches very well understood in
language processing and information retrieval,
namely Vector Space and Bayesian models. We
retain here the latter as this one scored compar-
atively better for the current purposes.

In order to know which language Li ∈ L gen-
erated string s, Bayesian methods can be used
to calculate the probabilities P (s|Li ) of string s
appearing in language Li for all Li ∈ L, the con-
sidered language set, and decide for the language
with the highest score (Dunning, 1994). That is,
in order to compute P (Li |s), we only compute
P (s|Li). The Bayes rule allows us to cast the
problem in terms of P (s|Li)P (Li )

P (s) , but as is stan-
dard practice, the denominator is dropped since
we are only interested here in getting the highest
probability, not its exact value. The prior P (Li )
is also ignored, corresponding to the simplify-
ing assumption that all languages are equally
probable for the operation of the classifier. The
way P (s|Li) is calculated is also the standard
way to do it, namely assuming independence
and just multiplying the probabilities of charac-
ter ci given the preceding n-1 characters (using
n-grams), for all characters in the input (esti-
mated from n-gram counts in the training set).

For our experiments, we implemented the al-
gorithm described in (Dunning, 1994). Other
common strategies were also used, like prepend-
ing n−1 special characters to the input string to
harmonize calculations, summing logs of proba-
bilities instead of multiplying them to avoid un-

4See (Sibun and Reynar, 1996) and (Hughes et al.,
2006) for surveys.

derflow errors, and using Laplace smoothing to
reserve probability mass to events not seen in
training.

5.2 Calibrating the implementation

5.2.1 Detection of languages

First of all, we want to check that the lan-
guage identification methods we are using, and
have implemented, are in fact reliable to identify
different languages. Hence, we run the classifier
on three languages showing strikingly different
characters and character sequences. This is a
deliberately easy test to get insight into the ap-
propriate setting of the two parameters at stake
here, size of of the n-gram in the training phase,
and size of the input in the running phase.

For this test, we used the Universal Declara-
tion of Human Rights texts.The languages used
were Finnish, Portuguese and Welsh.5

Several tests were conducted, splitting the
test data in chunks 1, 5, 10 and 20 lines long.
The classifier obtained perfect accuracy on all
test conditions (all chunk sizes), for all values of
n between 1 and 7 (inclusively). For n = 8 and
n = 9 there were errors only when classifying 1
line long items.

The average line length for the test corpora
was 138 characters for Finnish, 141 for Por-
tuguese and 121 for Welsh (133 overall). In the
corpora we will be using in the following experi-
ments, average line length is much lower (around
40 characters per line). To become closer to
our experimental conditions, we also evaluated
this classifiers with the same test corpora, but
truncated each line beyond the first 50 charac-
ters, yielding test corpora with an average line
length around 38 characters (since some were
smaller than that). The results are similar. The
Bayesian classifier performed with less than per-
fect accuracy also with n = 7 when classifying 1
line at a time.

Our classifier was thus performing well at dis-
criminating languages with short values of n,
and can classify short bits of text, even with
incomplete words.

5The Preamble and Articles 1–19 were used for train-
ing (8.1K of Finnish, 6.9K of Portuguese, and 6.1K of
Welsh), and Articles 20–30 for testing (4.6K of Finnish,
4.7K of Portuguese, and 4.0K of Welsh).

62



5.2.2 Detection of originating corpus
In order to study its suitability to discrimi-

nate also the two Portuguese variants, we ex-
perimented our implementation of the Bayesian
classifiers on 200K lines of text from each of the
two corpora. We randomly chose 20K lines for
testing and the remaining 180K for training. A
classification is considered correct if the classi-
fier can guess the newspaper the text was taken
from.

The average line length of the test sentences is
43 characters. Several input lengths were tried
out by dividing the test data into various sets
with varying size. Table 3 summarizes the re-
sults obtained.

Length of Test Item
1 line 5 lines 10 lines 20 lines

n = 2 0.84 0.99 1 1
n = 3 0.96 0.99 1 1
n = 4 0.96 1 1 1
n = 5 0.94 1 1 1
n = 6 0.92 0.99 1 1
n = 7 0.89 0.98 0.99 1

Table 3: Originating corpora: Accuracy

The accuracy of the classifier is surprisingly
high given that the sentences that cannot be at-
tributed to a single variety are estimated to be
around 81%.

5.2.3 Scaling down the training data
A final check was made with the classifier

to gain further insight on the comparability of
the results obtained under the two tuning ap-
proaches. It was trained on the data prepared
for the actual experiment, made of the 10K
with lines that have the shortest length and are
parsable, but using only the markedly European
and Brazilian Portuguese data (leaving aside the
sentences judged to be common to both). This
way the two setups can be compared, since in
the test of the Subsection just above much more
data was available for training.

Results are in Table 4. As expected, with
a much smaller amount of training data there
is an overall drop in the accuracy, with a no-
ticed bias at classifying items as European Por-
tuguese. The performance of the classifier de-
grades with larger values of n. Nevertheless, the
classifier is still very good with bigrams, with an

Length of Test Item
1 line 5 lines 10 lines 20 lines

n = 2 0.86 0.98 0.96 1
n = 3 0.82 0.73 0.64 0.5
n = 4 0.68 0.55 0.5 0.5

Table 4: Two-way classification: Accuracy

almost optimal performance, only slightly worse
than the one observed in the previous Subsec-
tion, when it was trained with more data.

From these preliminary tests, we learned that
we could expect a quasi optimal performance of
the classifier we implemented to act as a prepro-
cessor in the pre-tuning approach, when n = 2
and it is run under conditions very close to the
ones it will encounter in the actual experiment
aimed at comparing the two tuning approaches.

5.3 Results with pre-tuning

In the final experiment, the classifier should
discriminate between three classes, deciding
whether the input is either specifically Euro-
pean or Brazilian Portuguese, or else whether
it belongs to both variants. It was trained over
the 15K tokens/420 lines of training data, and
tested over the held out test data of identical
size.

Length of Test Item
1 line 5 lines 10 lines 20 lines

n = 2 0.59 0.67 0.76 0.76
n = 3 0.55 0.52 0.45 0.33
n = 4 0.48 0.39 0.33 0.33

Table 5: Three-way classification: Accuracy

The results are in Table 5. As expected, the
classifier based in bigrams has the best perfor-
mance for every size of the input, which im-
proves from 0.59 to 0.76 as the size of the input
gets from 1 line to 20 lines.

6 Discussion and conclusions

From the results above for pre-tuning, it is the
value 0.59, obtained for 1 line of input, that can
be put on a par with the value of 0.57 obtained
for self-tuning — both of them to be appreciated
against the baseline of 0.53.

Interestingly, the performance of both ap-
proaches are quite similar, and quite encour-
aging given the limitations under which the
present pilot exercise was executed. But this is

63



also the reason why they should be considered
with the appropriate grano salis.

Note that there is much room for improve-
ment in both approaches. From the several
sources of variant specificity, the grammar used
was prepared to cope only with grammatical
constructs that are responsible for at most 20%
of them. Also the lexicon, that included a little
more than 800 variant-distinctive items, can be
largely improved.

As to the classifier used for pre-tuning, it im-
plements methods that may achieve optimal ac-
curacy with training data sets of modest size but
that need to be nevertheless larger than the very
scarce 15K tokens used this time. Using backoff
and interpolation will help to improve as well.

Some features potentially distinguish, how-
ever, the pre-tuning based on Bayesian classifier
from the self-tuning by the grammar.

Language detection methods are easy to scale
up with respect to the number of variants used.
In contrast, the size of the type hierarchy under
variant is exponential on the number of language
variants if all combinations of variants are taken
into account, as it seems reasonable to do.

N-grams based methods are efficient and can
be very accurate. On the other hand, like any
stochastic method, they are sensitive to training
data and tend to be much more affected than the
grammar in self-tuning by a change of text do-
main. Also in dialogue settings with turns from
different language variants, hence with small
lengths of texts available to classify and suc-
cessive alternation between language variants,
n-grams are likely to show less advantage than
self-tuning by fully fledged grammars.

These are issues over which more acute insight
will be gained in future work, which will seek
to improve the contributions put forward in the
present paper.

Summing up, a major contribution of the
present paper is a design strategy for type-
feature grammars that allows them to be appro-
priately set to the specific language variant of a
given input. Concomitantly, this design allows
the grammars either to be pre-tuned or to self-
tune to that dialect – which, to the best of our
knowledge, consists in a new kind of approach to
handling language variation in deep processing.

In addition, we undertook a pilot experiment
which can be taken as setting the basis for a
methodology to comparatively assess the perfor-

mance of these different tuning approaches and
their future improvements.

References

António Branco and Francisco Costa. 2005. LX-
GRAM – deep linguistic processing of Portuguese
with HSPG. Technical report, Dept. of Informat-
ics, University of Lisbon.

António Branco and Francisco Costa. 2007. Han-
dling language variation in deep processing. In
Proc. CLIN2007.

António Branco and João Silva. 2004. Evaluat-
ing solutions for the rapid development of state-
of-the-art POS taggers for Portuguese. In Proc.
LREC2004.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan Sag. 2001. Minimal Recursion Semantics:
An introduction. Language and Computation, 3.

Ann Copestake. 2002. Implementing typed feature
structure grammars. CSLI.

Ted Dunning. 1994. Statistical identification of lan-
guage. Technical Report MCCS-94-273, Comput-
ing Research Lab, New Mexico State Univ.

Baden Hughes, Timothy Baldwin, Steven Bird,
Jeremy Nicholson, and Andrew MacKinlay. 2006.
Reconsidering language identification for written
language resources. In Proc. LREC2006.

Shanjian Li and Katsuhiko Momoi. 2001. A com-
posite approach to language/encoding detection.
In Proc. 19th International Unicode Conference.

Rafael Lins and Paulo Gonçalves. 2004. Automatic
language identification of written texts. In Proc.
2004 ACM Symposium on Applied Computing.

Michael P. Oakes. 2003. Text categorization: Auto-
matic discrimination between US and UK English
using the chi-square test and high ratio pairs. Re-
search in Language, 1.

Carl Pollard and Ivan Sag. 1994. Head-driven phrase
structure grammar. CSLI.

John M. Prager. 1999. Linguini: Language iden-
tification for multilingual documents. Journal of
Management Information Systems, 16(3).

Penelope Sibun and Jeffrey C. Reynar. 1996. Lan-
guage identification: Examining the issues. In 5th
Symposium on Document Analysis and IR.

64



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 65–72,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Pruning the Search Space of a Hand-Crafted Parsing System with a
Probabilistic Parser

Aoife Cahill
Dublin City University

acahill@computing.dcu.ie

Tracy Holloway King
PARC

thking@parc.com

John T. Maxwell III
PARC

maxwell@parc.com

Abstract

The demand for deep linguistic analysis
for huge volumes of data means that it is
increasingly important that the time taken
to parse such data is minimized. In the
XLE parsing model which is a hand-crafted,
unification-based parsing system, most of
the time is spent on unification, searching
for valid f-structures (dependency attribute-
value matrices) within the space of the many
valid c-structures (phrase structure trees).
We carried out an experiment to determine
whether pruning the search space at an ear-
lier stage of the parsing process results in
an improvement in the overall time taken to
parse, while maintaining the quality of the
f-structures produced. We retrained a state-
of-the-art probabilistic parser and used it to
pre-bracket input to the XLE, constraining
the valid c-structure space for each sentence.
We evaluated against the PARC 700 Depen-
dency Bank and show that it is possible to
decrease the time taken to parse by∼18%
while maintaining accuracy.

1 Introduction

When deep linguistic analysis of massive data is re-
quired (e.g. processing Wikipedia), it is crucial that
the parsing time be minimized. The XLE English
parsing system is a large-scale, hand-crafted, deep,
unification-based system that processes raw text
and produces both constituent-structures (phrase
structure trees) and feature-structures (dependency

attribute-value matrices). A typical breakdown of
parsing time of XLE components is Morphology
(1.6%), Chart (5.8%) and Unifier (92.6%).

The unification process is the bottleneck in the
XLE parsing system. The grammar generates many
valid c-structure trees for a particular sentence: the
Unifier then processes all of these trees (as packed
structures), and a log-linear disambiguation module
can choose the most probable f-structure from the
resulting valid f-structures. For example, the sen-
tence “Growth is slower.” has 84 valid c-structure
trees according to the current English grammar;1

however once the Unifier has processed all of these
trees (in a packed form), only one c-structure and
f-structure pair is valid (see Figure 1). In this in-
stance, the log-linear disambiguation does not need
to choose the most probable result.

The research question we pose is whether the
search space can be pruned earlier before unifi-
cation takes place. Bangalore and Joshi (1999),
Clark and Curran (2004) and Matsuzaki et al. (2007)
show that by using a super tagger before (CCG and
HPSG) parsing, the space required for discrimini-
tive training is drastically reduced. Supertagging
is not widely used within the LFG framework, al-
though there has been some work on using hypertags
(Kinyon, 2000). Ninomiya et al. (2006) propose a
method for faster HPSG parsing while maintaining
accuracy by only using the probabilities of lexical
entry selections (i.e. the supertags) in their discrim-
initive model. In the work presented here, we con-

1For example,is can be a copula, a progressive auxiliary or
a passive auxiliary, whileslowercan either be an adjective or an
adverb.

65



centrate on reducing the number of c-structure trees
that the Unifier has to process, ideally to one tree.
The hope was that this would speed up the parsing
process, but how would it affect the quality of the f-
structures? This is similar to the approach taken by
Cahill et al. (2005) who do not use a hand-crafted
complete unification system (rather an automatically
acquired probabilistic approximation). They parse
raw text into LFG f-structures by first parsing with a
probabilistic CFG parser to choose the most proba-
ble c-structure. This is then passed to an automatic
f-structure annotation algorithm which deterministi-
cally generates one f-structure for that tree.

The most compact way of doing this would be to
integrate a statistical component to the parser that
could rank the c-structure trees and only pass the
most likely forward to the unification process. How-
ever, this would require a large rewrite of the sys-
tem. So, we first wanted to investigate a “cheaper”
alternative to determine the viability of the pruning
strategy; this is the experiment reported in this pa-
per. This is implemented by stipulating constituent
boundaries in the input string, so that any c-structure
that is incompatible with these constraints is invalid
and will not be processed by the Unifier. This was
done to some extent in Riezler et al. (2002) to au-
tomatically generate training data for the log-linear
disambiguation component of XLE. Previous work
obtained the constituent constraints (i.e. brackets)
from the gold-standard trees in the Penn-II Tree-
bank. However, to parse novel text, gold-standard
trees are unavailable.

We used a state-of-the-art probabilistic parser to
provide the bracketing constraints to XLE. These
parsers are accurate (achieving accuracy of over
90% on Section 23 WSJ text), fast, and robust.
The idea is that pre-parsing of the input text by a
fast and accurate parser can prune the c-structure
search space, reducing the amount of work done by
the Unifier, speed up parsing and maintain the high
quality of the f-structures produced.

The structure of this paper is as follows: Section
2 introduces the XLE parsing system. Section 3 de-
scribes a baseline experiment and based on the re-
sults suggests retraining the Bikel parser to improve
results (Section 4). Section 5 describes experiments
on the development set, from which we evaluate the
most successful system against the PARC 700 test

CS 1: ROOT

Sadj[fin]

S[fin]

NP

NPadj

NPzero

N

^ growth

VPall[fin]

VPcop[fin]

Vcop[fin]

is

AP[pred]

A

slower

PERIOD

.

"Growth is slower."

'be<[68:slow]>[23:growth]'PRED

'growth'PRED23SUBJ

'slow<[23:growth]>'PRED
[23:growth]SUBJ

'more'PRED-1ADJUNCT
68

XCOMP

47

Figure 1: C- and F-Structure for “Growth is slower.”

set (Section 6). Finally, Section 7 concludes.

2 Background

In this section we introduce Lexical Functional
Grammar, the grammar formalism underlying the
XLE, and briefly describe the XLE parsing system.

2.1 Lexical Functional Grammar

Lexical Functional Grammar (LFG) (Kaplan and
Bresnan, 1982) is a constraint-based theory of gram-
mar. It (minimally) posits two levels of repre-
sentation, c(onstituent)-structure and f(unctional)-
structure. C-structure is represented by context-
free phrase-structure trees, and captures surface
grammatical configurations such as word order.
The nodes in the trees are annotated with func-
tional equations (attribute-value structure con-
straints) which are resolved to produce an f-
structure. F-structures are recursive attribute-value
matrices, representing abstract syntactic functions.
F-structures approximate basic predicate-argument-
adjunct structures or dependency relations. Fig-
ure 1 shows the c- and f-structure for the sentence
“Growth is slower.”.

66



Parser Output:(S1 (S (NP (NN Growth)) (VP (AUX is) (ADJP (JJR slower))) (. .) ))
Labeled:\[S1 \[S Growth \[VP is \[ADJP slower \] \]. \] \]

Unlabeled:\[ \[ Growth \[ is \[ slower \] \]. \] \]

Figure 2: Example of retained brackets from parser output toconstrain the XLE parser

2.2 The XLE Parsing System

The XLE parsing system is a deep-grammar-based
parsing system. The experiments reported in this
paper use the English LFG grammar constructed
as part of the ParGram project (Butt et al., 2002).
This system incorporates sophisticated ambiguity-
management technology so that all possible syn-
tactic analyses of a sentence are computed in
an efficient, packed representation (Maxwell and
Kaplan, 1993). In accordance with LFG the-
ory, the output includes not only standard context-
free phrase-structure trees (c-structures) but also
attribute-value matrices (f-structures) that explic-
itly encode predicate-argument relations and other
meaningful properties. The f-structures can be de-
terministically mapped to dependency triples with-
out any loss of information, using the built-in or-
dered rewrite system (Crouch et al., 2002). XLE se-
lects the most probable analysis from the potentially
large candidate set by means of a stochastic disam-
biguation component based on a log-linear proba-
bility model (Riezler et al., 2002) that works on the
packed representations. The underlying parsing sys-
tem also has built-in robustness mechanisms that al-
low it to parse strings that are outside the scope of
the grammar as a list of fewest well-formed “frag-
ments”. Furthermore, performance parameters that
bound parsing and disambiguation can be tuned for
efficient but accurate operation. These parameters
include at which point to timeout and return an error,
the amount of stack memory to allocate, the num-
ber of new edges to add to the chart and at which
point to start skimming (a process that guarantees
XLE will finish processing a sentence in polynomial
time by only carrying out a bounded amount of work
on each remaining constituent after a time threshold
has passed). For the experiments reported here, we
did not fine-tune these parameters due to time con-
straints; so default values were arbitrarily set and the
same values used for all parsing experiments.

3 Baseline experiments

We carried out a baseline experiment with two
state-of-the-art parsers to establish what effect pre-
bracketing the input to the XLE system has on the
quality and number of the solutions produced. We
used the Bikel () multi-threaded, head-driven chart-
parsing engine developed at the University of Penn-
sylvania. The second parser is that described in
Charniak and Johnson (2005). This parser uses a
discriminative reranker that selects the most proba-
ble parse from the 50-best parses returned by a gen-
erative parser based on Charniak (2000).

We evaluated against the PARC 700 Dependency
Bank (King et al., 2003) which provides gold-
standard analyses for 700 sentences chosen at ran-
dom from Section 23 of the Penn-II Treebank. The
Dependency Bank was bootstrapped by parsing the
700 sentences with the XLE English grammar, and
then manually correcting the output. The data is di-
vided into two sets, a 140-sentence development set
and a test set of 560 sentences (Kaplan et al., 2004).

We took the raw strings from the 140-sentence
development set and parsed them with each of the
state-of-the-art probabilistic parsers. As an upper
bound for the baseline experiment, we use the brack-
ets in the original Penn-II treebank trees for the 140
development set.

We then used the brackets from each parser out-
put (or original treebank trees) to constrain the XLE
parser. If the input to the XLE parser is bracketed,
the parser will only generate c-structures that respect
these brackets (i.e., only c-structures with brackets
that are compatible with the input brackets are con-
sidered during the unification stage). Figure 2 gives
an example of retained brackets from the parser out-
put. We do not retain brackets aroundPRN (paren-
thetical phrase) orNP nodes as their structure often
differed too much from XLE analyses of the same
phrases. We passed pre-bracketed strings to the XLE
and evaluated the output f-structures in terms of de-
pendency triples against the 140-sentence subset of

67



Non-Fragment Fragment
Penn-XLE Penn-XLE Penn-XLE Penn-XLE

(lab.) (unlab.) (lab.) (unlab.)
Total XLE parses (/140) 0 89 140 140
F-Score of subset 0 84.11 53.92 74.87
Overall F-Score 0 58.91 53.92 74.87

Table 1: Upper-bound results for original Penn-II trees

Non-Fragment Fragment
XLE Bikel-XLE Bikel-XLE XLE Bikel-XLE Bikel-XLE

(lab.) (unlab.) (lab.) (unlab.)
Total XLE Parses (/140) 119 0 84 135 140 140
F-Score of Subset 81.57 0 84.23 78.72 54.37 73.71
Overall F-Score 72.01 0 55.06 76.13 54.37 *73.71

XLE CJ-XLE CJ-XLE XLE CJ-XLE CJ-XLE
(lab.) (unlab.) (lab.) (unlab.)

Total XLE Parses (/140) 119 0 86 135 139 139
F-Score of Subset 81.57 0 86.57 78.72 53.96 75.64
Overall F-Score 72.01 0 58.04 76.13 53.48 *74.98

Table 2: Bikel (2002) and Charniak and Johnson (2005) out-of-the-box baseline results

the PARC 700 Dependency Bank.
The results of the baseline experiments are given

in Tables 1 and 2. Table 1 gives the upper bound
results if we use the gold standard Penn treebank
to bracket the input to XLE. Table 2 compares the
XLE (fragment and non-fragment) grammar to the
system where the input is pre-parsed by each parser.
XLE fragment grammars provide a back-off when
parsing fails: the grammar is relaxed and the parser
builds a fragment parse of the well-formed chunks.
We compare the parsers in terms of total number
of parses (out of 140) and the f-score of the sub-
set of sentences successfully parsed. We also com-
bine these scores to give an overall f-score, where
the system scores 0 for each sentence it could not
parse. When testing for statistical significance be-
tween systems, we compare the overall f-score val-
ues. Figures marked with an asterisk are not statisti-
cally significantly different at the 95% level.2

The results show that using unlabeled brackets
achieves reasonable f-scores with the non-fragment
grammar. Using the labeled bracketing from the out-
put of both parsers causes XLE to always fail when
parsing. This is because the labels in the output of
parsers trained on the Penn-II treebank differ con-
siderably from the labels on c-structure trees pro-

2We use the approximate randomization test (Noreen, 1989)
to test for significance.

duced by XLE. Interestingly, the f-scores for both
the CJ-XLE and Bikel-XLE systems are very sim-
ilar to the upper bounds. The gold standard upper
bound is not as high as expected because the Penn
trees used to produce the gold bracketed input are
not always compatible with the XLE-style trees. As
a simple example, the tree in Figure 1 differs from
the parse tree for the same sentence in the Penn
Treebank (Figure 3). The most obvious difference
is the labels on the nodes. However, even in this
small example, there are structural differences, e.g.
the position of the period. In general, the larger the
tree, the greater the difference in both labeling and
structure between the Penn trees and the XLE-style
trees. Therefore, the next step was to retrain a parser
to produce trees with structures the same as XLE-
style trees and with XLE English grammar labels on
the nodes. For this experiment we use the Bikel ()
parser, as it is more suited to being retrained on a
new treebank annotation scheme.

4 Retraining the Bikel parser

We retrained the Bikel parser so that it produces
trees like those outputted by the XLE parsing sys-
tem (e.g. Figure 1). To do this, we first created a
training corpus, and then modified the parser to deal
with this new data.

Since there is no manually-created treebank of

68



S

NP

NN

Growth

VP

VBZ

is

ADJP-PRD

JJR

slower

·

·

Figure 3: Penn Treebank tree for “Growth is slower.”

XLE-style trees, we created one automatically from
sections 02-21 of the Penn-II Treebank. We took the
raw strings from those sections and marked upNP

and SBAR constituents using the brackets from the
gold standard Penn treebank. TheNP constituents
are labeled, and theSBAR unlabeled (i.e. theSBAR

constituents are forced to exist in the XLE parse, but
the label on them is not constrained to beSBAR).
We also tagged verbs, adjectives and nouns, based
on the gold standard POS tags.

We parsed the 39,832 marked-up sentences in the
standard training corpus and used the XLE disam-
biguation module to choose the most probable c-
and f-structure pair for each sentence. Ideally we
would have had an expert choose these. We au-
tomatically extracted the c-structure trees produced
by the XLE and performed some automatic post-
processing.3 This resulted in an automatically cre-
ated training corpus of 27,873 XLE-style trees. The
11,959 missing trees were mainly due to the XLE
parses not being compatible with the bracketed in-
put, but sometimes due to time and memory con-
straints.

Using the automatically-created training corpus
of XLE-style trees, we retrained the Bikel parser on
this data. This required adding a new language mod-
ule (“XLE-English”) to the Bikel parser, and regen-
erating head-finding rules for the XLE-style trees.

5 Experiments

Once we had a retrained version of the Bikel parser
that parses novel text into XLE-style trees, we car-
ried out a number of experiments on our develop-
ment set in order to establish the optimum settings

3The postprocessing included removing morphological in-
formation and the brackets from the original markup.

All Sentences
XLE Bikel-XLE

Non-fragment grammar
Labeled brackets

Total Parsing Time 964 336
Total XLE Parses (/140) 119 77
F-Score of Subset 81.57 86.11
Overall F-Score 72.01 52.84

Non-fragment grammar
Unlabeled brackets

Total Parsing Time 964 380
Total XLE Parses (/140) 119 89
F-Score of Subset 81.57 85.62
Overall F-Score 72.01 59.34

Fragment grammar
Labeled brackets

Total Parsing Time 1143 390
Total XLE Parses (/140) 135 140
F-Score of Subset 78.72 71.86
Overall F-Score 76.13 71.86

Fragment grammar
Unlabeled brackets

Total Parsing Time 1143 423
Total XLE Parses (/140) 135 140
F-Score of Subset 78.72 74.51
Overall F-Score 76.13 *74.51

Table 3: Bikel-XLE Initial Experiments

for the evaluation against the PARC 700 test set.

5.1 Pre-bracketing

We automatically pre-processed the raw strings from
the 140-sentence development set. This made sys-
tematic changes to the tokens so that the retrained
Bikel parser can parse them. The changes included
removing quotes, convertinga and an to a, con-
vertingn’t to not, etc. We parsed the pre-processed
strings with the new Bikel parser.

We carried out four initial experiments, experi-
menting with both labeled and unlabeled brackets
and XLE fragment and non-fragment grammars. Ta-
ble 3 gives the results for these experiments. We
compare the parsers in terms of time, total number
of parses (out of 140), the f-score of the subset of
sentences successfully parsed and the overall f-score
if the system achieves a score of 0 for all sentences
it does not parse. The time taken for the Bikel-XLE
system includes the time taken for the Bikel parser
to parse the sentences, as well as the time taken for
XLE to process the bracketed input.

Table 3 shows that using the non-fragment gram-
mar, the Bikel-XLE system performs better on the

69



subset of sentences parsed than XLE system alone,
though the results are not statistically significantly
better overall, since the coverage is much lower. The
number of bracketed sentences that can be parsed
by XLE increases if the brackets are unlabeled.
The table also shows that the XLE system performs
much better than Bikel-XLE when using the frag-
ment grammars. Although the Bikel-XLE system is
quite a bit faster, there is a drop in f-score; however
this is not statistically significant when the brackets
are unlabeled.

5.2 Pre-tagging

We performed some error analysis on the output of
the Bikel-XLE system and noticed that a consider-
able number of errors were due to mis-tagging. So,
we pre-tagged the input to the Bikel parser using the
MXPOST tagger (Ratnaparkhi, 1996). The results
for the non-fragment grammars are presented in Ta-
ble 4. Pre-tagging with MXPOST, however, does
not result in a statistically significantly higher re-
sult than parsing untagged input, although more sen-
tences can be parsed by both systems. Pre-tagging
also adds an extra time overhead cost.

No pretags MXPOST tags
XLE Bikel-XLE Bikel-XLE

Unlabeled
Total Parsing Time 964 380 493
# XLE Parses (/140) 119 89 92
F-Score of Subset 81.57 85.62 84.98
Overall F-Score 72.01 59.34 *61.11

Labeled
Total Parsing Time 964 336 407
# XLE Parses (/140) 119 77 80
F-Score of Subset 81.57 86.11 85.87
Overall F-Score 72.01 52.84 *54.91

Table 4: MXPOST pre-tagged, Non-fragment gram-
mar

5.3 Pruning

The Bikel parser can be customized to allow differ-
ent levels of pruning. The above experiments were
carried out using the default level. We carried out
experiments with three levels of pruning.4 The re-

4The default level of pruning starts at 3.5, has a maximum of
4 and relaxes constraints when parsing fails. Level 1 pruning is
the same as the default except the constraints are never relaxed.
Level 2 pruning has a start value of 3.5 and a maximum value
of 3.5. Level 3 pruning has a start and maximum value of 3.

sults are given in Table 5 for the experiment with
labeled brackets and the non-fragment XLE gram-
mar. More pruning generally results in fewer and
lower-quality parses. The biggest gain is with prun-
ing level 1, where the number and quality of brack-
eted sentences that can be parsed with XLE remains
the same as with the default level. This is because
Bikel with pruning level 1 does not relax the con-
straints when parsing fails and does not waste time
parsing sentences that cannot be parsed in bracketed
form by XLE.

Default L1 L2 L3
Total Parsing Time 336 137 137 106
# XLE Parses (/140) 77 77 76 75
F-Score of Subset 86.11 86.11 86.04 85.87
Overall F-Score 52.84 *52.84 *52.43 *52.36

Table 5: Pruning with Non-fragment grammar, La-
beled brackets, Levels default-3

5.4 Hybrid systems

Although pre-parsing with Bikel results in faster
XLE parsing time and high-quality f-structures
(when examining only the quality of the sentences
that can be parsed by the Bikel-XLE system), the
coverage of this system remains poor, therefore the
overall f-score remains poor. One solution is to build
a hybrid two-pass system. During the first pass all
sentences are pre-parsed by Bikel and the bracketed
output is parsed by the XLE non-fragment gram-
mar. In the second pass, the sentences that were
not parsed during the first pass are parsed with the
XLE fragment grammar. We carried out a number
of experiments with hybrid systems and the results
are given in Table 6.

The results show that again labeled brackets re-
sult in a statistically significant increase in f-score,
although the time taken is almost the same as the
XLE fragment grammar alone. Coverage increases
by 1 sentence. Using unlabeled brackets results in
3 additional sentences receiving parses, and parsing
time is improved by∼12%; however the increase in
f-score is not statistically significant.

Table 7 gives the results for hybrid systems with
pruning using labeled brackets. The more pruning
that the Bikel parser does, the faster the system,
but the quality of the f-structures begins to deteri-

70



XLE Bikel-XLE hybrid Bikel-XLE hybrid
(frag) (labeled) (unlabeled)

Total Parsing Time 1143 1121 1001
Total XLE Parses (/140) 135 136 138
F-Score of Subset 78.72 79.85 79.51
Overall F-Score 76.13 77.61 *78.28

Table 6: Hybrid systems compared to the XLE fragment grammaralone

XLE Bikel-XLE hybrid Bikel-XLE hybrid Bikel-XLE hybrid
(frag) (level 1) (level 2) (level 3)

Total Parsing Time 1143 918 920 885
Total XLE Parses (/140) 135 136 136 136
F-Score of Subset 78.72 79.85 79.79 79.76
Overall F-Score 76.13 77.61 77.55 77.53

Table 7: Hybrid systems with pruning compared to the XLE fragment grammar alone

orate. The best system is the Bikel-XLE hybrid sys-
tem with labeled brackets and pruning level 1. This
system achieves a statistically significant increase in
f-score over the XLE fragment grammar alone, de-
creases the time taken to parse by almost 20% and
increases coverage by 1 sentence. Therefore, we
chose this system to perform our final evaluation
against the PARC 700 Dependency Bank.

6 Evaluation against the PARC 700

We evaluated the system that performs best on the
development set against the 560-sentence test set of
the PARC 700 Dependency Bank. The results are
given in Table 8. The hybrid system achieves an
18% decrease in parsing time, a slight improvement
in coverage of 0.9%, and a 1.12% improvement in
overall f-structure quality.

XLE Bikel-XLE hybrid
(frag) (labeled, prune 1)

Total Parsing Time 4967 4077
Total XLE Parses (/560) 537 542
F-Score of Subset 80.13 80.63
Overall F-Score 77.04 78.16

Table 8: PARC 700 evaluation of the Hybrid system
compared to the XLE fragment grammar alone

7 Conclusions

We successfully used a state-of-the-art probabilistic
parser in combination with a hand-crafted system to
improve parsing time while maintaining the quality
of the output produced. Our hybrid system consists

of two phases. During phase one, pre-processed, to-
kenized text is parsed with a retrained Bikel parser.
We use the labeled brackets in the output to constrain
the c-structures generated by the XLE parsing sys-
tem. In the second phase, we use the XLE fragment
grammar to parse any remaining sentences that have
not received a parse in the first phase.

Given the slight increase in overall f-score per-
formance, the speed up in parsing time (∼18%) can
justify more complicated processing architecture for
some applications.5 The main disadvantage of the
current system is that the input to the Bikel parser
needs to be tokenized, whereas XLE processes raw
text. One solution to this is to use a state-of-the-art
probabilistic parser that accepts untokenized input
(such as Charniak and Johnson, 2005) and retrain it
as described in Section 4.

Kaplan et al. (2004) compared time and accuracy
of a version of the Collins parser tuned to maximize
speed and accuracy to an earlier version of the XLE
parser. Although the XLE parser was more accu-
rate, the parsing time was a factor of 1.49 slower
(time converting Collins trees to dependencies was
not counted in the parse time; time to produce f-
structures from c-structures was counted in the XLE
parse time). The hybrid system here narrows the
speed gap while maintaining greater accuracy.

The original hope behind using the brackets to
constrain the XLE c-structure generation was that

5For example, in massive data applications, if the parsing
task takes 30 days, reducing this by 18% saves more than 5
days.

71



the brackets would force the XLE to choose only
one tree. However, the brackets were sometimes
ambiguous, and sometimes more than one valid tree
was found. In the final evaluation against the PARC
700 test set, the average number of optimal solutions
was 4.05; so the log-linear disambiguation mod-
ule still had to chose the most probable f-structure.
However, this is considerably less to choose from
than the average of 341 optimal solutions produced
by the XLE fragment grammar for the same sen-
tences when unbracketed.

Based on the results of this experiment we have
integrated a statistical component into the XLE
parser itself. With this architecture the packed c-
structure trees are pruned before unification with-
out needing to preprocess the input text. The XLE
c-structure pruning results in a∼30% reduction in
parse time on the Wikipedia with little loss in preci-
sion. We hope to report on this in the near future.

Acknowledgments

The research in this paper was partly funded by Sci-
ence Foundation Ireland grant 04/BR/CS0370.

References
Srinivas Bangalore and Aravind K. Joshi. 1999. Su-

pertagging: An approach to alsmost parsing.Com-
putational Linguistics, 25(2):237–265.

Dan Bikel. Design of a Multi-lingual, Parallel-processing
Statistical Parsing Engine. InProceedings of HLT,
YEAR = 2002, pages = 24–27, address = San Diego,
CA,.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hi-
roshi Masuichi, and Christian Rohrer. 2002. The Par-
allel Grammar Project. InProceedings of Workshop
on Grammar Engineering and Evaluation, pages 1–7,
Taiwan.

Aoife Cahill, Martin Forst, Michael Burke, Mairead Mc-
Carthy, Ruth O’Donovan, Christian Rohrer, Josef van
Genabith, and Andy Way. 2005. Treebank-based
acquisition of multilingual unification grammar re-
sources.Journal of Research on Language and Com-
putation, pages 247–279.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-Fine n-Best Parsing and MaxEnt Discriminative
Reranking. InProceedings of ACL, pages 173–180,
Ann Arbor, Michigan.

Eugene Charniak. 2000. A maximum entropy inspired
parser. InProceedings of NAACL, pages 132–139,
Seattle, WA.

Stephen Clark and James R. Curran. 2004. The Impor-
tance of Supertagging for Wide-Coverage CCG Pars-
ing . In Proceedings of COLING, pages 282–288,
Geneva, Switzerland, Aug 23–Aug 27. COLING.

Richard Crouch, Ron Kaplan, Tracy Holloway King, and
Stefan Riezler. 2002. A comparison of evaluation
metrics for a broad coverage parser. InProceedings of
the LREC Workshop: Beyond PARSEVAL, pages 67–
74, Las Palmas, Canary Islands, Spain.

Ron Kaplan and Joan Bresnan. 1982. Lexical Functional
Grammar, a Formal System for Grammatical Repre-
sentation. In Joan Bresnan, editor,The Mental Repre-
sentation of Grammatical Relations, pages 173–281.
MIT Press, Cambridge, MA.

Ron Kaplan, Stefan Riezler, Tracy Holloway King,
John T. Maxwell, Alexander Vasserman, and Richard
Crouch. 2004. Speed and Accuracy in Shallow and
Deep Stochastic Parsing. InProceedings of HLT-
NAACL, pages 97–104, Boston, MA.

Tracy Holloway King, Richard Crouch, Stefan Riezler,
Mary Dalrymple, and Ron Kaplan. 2003. The PARC
700 dependency bank. InProceedings of LINC, pages
1–8, Budapest, Hungary.

Alexandra Kinyon. 2000. Hypertags. InProceedings of
COLING, pages 446–452, Saarbrücken.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2007. Efficient HPSG Parsing with Supertagging and
CFG-filtering. InProceedings of IJCAI, pages 1671–
1676, India.

John T. Maxwell and Ronald M. Kaplan. 1993. The
interface between phrasal and functional constraints.
Computational Linguistics, 19(4):571–590.

Takashi Ninomiya, Takuya Matsuzaki, Yoshimasa Tsu-
ruoka, Yusuke Miyao, and Jun’ichi Tsujii. 2006.
Extremely Lexicalized Models for Accurate and Fast
HPSG Parsing. InProceedings of EMNLP, pages
155–163, Australia.

Eric W. Noreen. 1989. Computer Intensive Methods
for Testing Hypotheses: An Introduction. Wiley, New
York.

Adwait Ratnaparkhi. 1996. A Maximum Entropy Part-
Of-Speech Tagger. InProceedings of EMNLP, pages
133–142, Philadelphia, PA.

Stefan Riezler, Tracy King, Ronald Kaplan, Richard
Crouch, John T. Maxwell, and Mark Johnson. 2002.
Parsing the Wall Street Journal using a Lexical-
Functional Grammar and Discriminative Estimation
Techniques. InProceedings of ACL, pages 271–278,
Philadelphia, PA.

72



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 73–80,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Semantic composition with (Robust) Minimal Recursion Semantics

Ann Copestake
Computer Laboratory, University of Cambridge

JJ Thomson Avenue, Cambridge, UK
aac@cl.cam.ac.uk

Abstract

We discuss semantic composition in Mini-
mal Recursion Semantics (MRS) and Robust
Minimal Recursion Semantics (RMRS). We
demonstrate that a previously defined for-
mal algebra applies to grammar engineering
across a much greater range of frameworks
than was originally envisaged. We show
how this algebra can be adapted to compo-
sition in grammar frameworks where a lex-
icon is not assumed, and how this underlies
a practical implementation of semantic con-
struction for theRASPsystem.

1 Introduction

Minimal Recursion Semantics (MRS: Copestake et
al. (2005)) is a flat semantic representation which
factors semantics into elementary predications (EPs)
and allows for underspecification of scope. It has
been widely used, especially for HPSG. Robust
Minimal Recursion Semantics (RMRS: Copestake
(2003)) is a variant ofMRS which takes this fac-
torisation further to allow underspecification of re-
lational information as well. WhileMRS has gen-
erally been used with hand-built HPSG grammars,
RMRS is also suitable for use with shallower ap-
proaches to analysis, including part-of-speech tag-
ging, noun phrase chunking and stochastic parsers
which operate without detailed lexicons.MRSs can
be converted intoRMRSs: RMRS output from shal-
lower systems is less fully specified than the out-
put from deeper systems, but in principle fully com-
patible. In our work, the semantics produced by a
deep grammar is taken as normative when devel-
oping semantic representations from shallower pro-
cessing. For English, the target semantic represen-
tations are those produced by the English Resource
Grammar (ERG, Flickinger (2000)). TheMRS/RMRS

approach has been adopted as a common framework
for the DELPH-IN initiative (Deep Linguistic Pro-
cessing with HPSG:http://www.delph-in.net).

An algebra forMRS was defined by Copestake et
al. (2001) (henceforth CLF) and forms the starting
point for the work reported here.

The aim of CLF was to formalise the notion of se-
mantic composition within grammars expressed in a
typed feature structure (TFS) logic. Here, we ex-
tend that work to non-lexicalist approaches and also
describe how the formal principles of composition
used inMRS can be adapted to produce a formalism
for RMRS composition. Thus we demonstrate that
the algebra applies to grammar engineering across
a much wider range of frameworks than was origi-
nally envisaged. Besides its theoretical interest, this
result has practical benefits when combining multi-
ple processing systems in that it allows compatible
semantic representations at a phrasal level as well as
at a sentence level.

The next section (§2) describes the most impor-
tant features ofMRS, RMRS and the earlier work on
the algebra. We then outline how the algebra can
be used for implementing deep non-TFS approaches
(§3) and explain how it works withRMRS (§4). This
is followed by discussion of the extension to gram-
mars without a detailed lexicon (§5). To briefly illus-
trate the practical applications, section (§6) outlines
howRMRSsemantics is constructed fromRASP(Ro-
bust accurate domain-independent statistical pars-
ing: Briscoe and Carroll (2002)).

2 MRS, RMRS and the algebra

Details ofMRS, RMRS and the algebra are given in
the cited papers, but we will briefly introduce them
here for convenience. Fig. 1 illustrates anMRS from
a deep grammar (based on theERG output, but sim-
plified for expository purposes), an equivalentRMRS

and a very underspecifiedRMRS, derived from a
POS tagger.

MRS achieves a flat representation via the use of
labels onEPs, thus factoring out scopal relation-
ships. Scope constraints (HCONS) are shown as qeq
relationships (=q equality modulo quantifiers: the

73



MRS representation:
l0: the q(x0, h01, h02), l1: fat j(x1), l2: cat n(x2), l3: sit v 1(e3, x3), l4: on p(e4, e41, x4),
l5: a q(x5, h51, h52), l6: mat n 1(x6),
h01 =q l1, h51 =q l6
x0 = x1 = x2 = x3, e3 = e41, x4 = x5 = x6, l1 = l2, l3 = l4

RMRS equivalent to theMRS above:
l0: a0: the q(x0), l0: a0: RSTR(h01), l0: a0: BODY(h02), l1: a1: fat j(x1), l2: a2: cat n(x2),
l3: a3: sit v 1(e3), l3: a3: ARG1(x31), l4: a4: on p(e4, e41, x4), l4: a4: ARG1(e41), l4: a4: ARG2(x4),
l5: a5: a q(x5), l5: a5: RSTR(h51), l5: a5: BODY(h52), l6: a6: mat n 1(x6),
h01 =q l1, h51 =q l6
x0 = x1 = x2 = x3, e3 = e41, x4 = x5 = x6, l1 = l2, l3 = l4

Highly underspecifiedRMRS output:
l0: a0: the q(x0), l1: a1: fat j(x1), l2: a2: cat n(x2), l3: a3: sit v(e3), l4: a4: on p(e4),
l5: a5: a q(x5), l6: a6: mat n(x6)

Figure 1:MRS andRMRS for the fat cat sat on a mat

details are not important to understand this paper).
In MRS, implicit conjunction is indicated by equality
between labels. For instance, the labels onl1: fat(x)
andl2: cat1(x) are equated. In this figure, we show
MRS using explicit equalities (eqs:=) rather than
coindexation of variables since this corresponds to
the formalism used in the algebra.

RMRS uses the same approach to scope but
adopts a variant of a neo-Davidsonian representa-
tion, where arguments (ARGs) are represented as
distinct elements. In the very underspecifiedRMRS

at the bottom of Fig.1, no relational information is
known so there are no ARGs. Separating out ARGs
from the EPs and allowing them to be omitted per-
mits a straightforward notion of a specificity hierar-
chy in terms of information content. ARGs may also
be underspecified: e.g., ARGn indicates that there
is some argument relationship, but it is unknown
whether it is an ARG1, ARG2 or ARG3. In the
version ofRMRS described in this paper, the ARGs
are related to the mainEPs via an ‘anchor’ element.
An EP and its associated ARGs share a unique an-
chor. This version ofRMRS uses exactly the same
mechanism for conjunction as doesMRS: the anchor
elements are required so that ARGs can still be asso-
ciated with a singleEPeven if the label of theEPhas
been equated with anotherEP. This is a change from
Copestake (2003): the reasons for this proposal are
discussed in§4, below. The conjunction informa-
tion is not available from a POS tagger alone and so
is not present in the secondRMRS in Fig.1.

The naming convention adopted for the relations
(e.g., sit v) allows them to be constructed without
access to a lexicon. ‘v’ etc are indications of the
coarse-grained sense distinctions which can be in-
ferred from part-of-speech information. Deep gram-
mars can produce finer-grained sense distinctions,
indicated by ‘1’ etc, and there is an implicit hier-
archy such thatsit v 1 is taken as being more spe-
cific than sit v. However, in what follows, we will
use simple relation names for readability.MRS and
RMRS both assume an inventory of features on vari-
ables which are used to represent tense etc, but these
will not be discussed in this paper.

2.1 The MRS algebra

In the algebra introduced by CLF, semantic struc-
tures (SEMENTS) for phrases consist of five parts:

1. Hooks: can be thought of as pointers into the
relations list. In a full grammar, hooks consist
of three parts: a label (l), an index (i) and an
external argument (omitted here for simplicity).

2. Slots: structures corresponding to syntac-
tic/semantic unsaturation — they specify how
the semantics is combined. A slot in one sign is
instantiated by being equated with the hook of
another sign. (CLF use the term ‘hole’ instead
of ‘slot’.) For the TFS grammars considered
in CLF, the slot corresponds to the part of the
TFS accessed via a valence feature. The inven-
tory of slot labels given by CLF isSUBJ, SPR,
SPEC, COMP1, COMP2, COMP3 andMOD.

74



3. rels: The bag ofEPs.

4. hcons: qeq constraints (=q).

5. eqs: the variable equivalences which are the re-
sults of equating slots and hooks.

SEMENTs are:[l, i]{slots}[eps][hcons]{eqs}.
Some rules contribute their own semantics (con-

struction semantics: e.g., compound nouns). How-
ever, theMRS approach requires that this can al-
ways be treated as equivalent to having an additional
daughter in the rule. Thus construction semantics
need not be considered separately in the formal al-
gebra, although it does result in some syntactically
binary rules being semantically ternary (and so on).

The principles of composition are:

1. A (syntactically specified) slot in one structure
(the daughter which corresponds to theseman-
tic head) is filled by the hook of the other struc-
ture (by adding equalities).

2. The hook of the phrase is the semantic head’s
hook.

3. The eps of the phrase is equal to appending the
eps of the daughters.

4. The eqs of the phrase is equal to appending the
eqs of the daughters plus any eqs contributed
by the filling of the slot.

5. The slots of the phrase are the unfilled slots of
the daughters (although see below).

6. The hcons of the phrase is equal to appending
the hcons of the daughters.

Formally, the algebra is defined in terms of a se-
ries of binary operations, such asopspec, which
each correspond to the instantiation of a particular
labelled slot.

Fig. 2 illustrates this. The hook ofcat instanti-
ates theSPECslot of a, which is the semantic head
(though not the syntactic head in theERG). This
leads to the equalities between the variables in the
result. Since theSPECslot has been filled, it is not
carried up to the phrase. Thus, abstractly at least,
the semantics of the HPSG specifier-head rule cor-
responds toopspec.1

1As usual inMRS, in order to allow scope underspecifica-
tion, the label l4 of the quantifier’s hook is not coindexed with
anyEP.

The MRS algebra was designed to abstract away
from the details of the syntax and of the syntax-
semantics interface, so that it can be applied to
grammars with differing feature geometry. The as-
sumption in CLF is simply that the syntax selects
the appropriateop and its arguments for each ap-
plication. i.e., semantic operations are associated
with HPSG constructions so that there is a mapping
from the daughters of the construction to the argu-
ments of the operation. The algebra does not attempt
to completely replicate all aspects of semantic con-
struction: e.g., the way that the features (represent-
ing tense and so on) are instantiated on variables is
not modelled. However, it does constrain semantic
construction compared with the possibilities for TFS
semantic compositional in general. For instance, as
discussed by CLF, it enforces a strong monotonic-
ity constraint. The algebra also contributes to limit-
ing the possibilities for specification of scope. These
properties can be exploited by algorithms that oper-
ate onMRS: e.g., generation, scope resolution.

2.2 The MRS algebra and the syntax-semantics
interface

CLF did not discuss the syntax-semantics interface
in detail, but we do so here for two reasons. Firstly,
it is a preliminary for discussing the use of the al-
gebra in frameworks other than HPSG in the fol-
lowing sections. Secondly, as CLF discuss, the con-
straints that the algebra imposes cannot be fully im-
plemented in a TFS. Thus, for grammar engineering
in TFS frameworks, an additional automatic checker
is needed to determine whether a grammar meets the
algebra’s constraints. This requires specification of
the syntax-semantics interface so that the checker
can extract the slots from the TFSs and determine
the slot operation(s) corresponding to a rule.

Unfortunately, CLF are imprecise about the alge-
bra in several respects. One problem is that they
gloss over the issue of slot propagation in real gram-
mars. CLF state that for an operationopx, the slot
corresponding toopx on the semantic head is instan-
tiated and all other slots appear on the result. For
instance, the definition ofopspecstates that for all
labelsl 6= spec: slotl(opspec(a1, a2)) = slotl(a1)∪
slotl(a2). However, this is inadequate for real gram-
mars, if a simple correspondence between the slot
names and the valence paths in the feature structure

75



hook slots rels eqs hcons
cat : [l1, x1] {} [l1 : cat(x1)] {} []
a : [l4, x2] {[l3, x2]spec} [l2 : a(x2, h2, h3)] {} [h2 =q l3]
a cat: [l4, x2] {} [l2 : a(x2, h2, h3), l1 : cat(x1)] {l3 = l1, x2 = x1} [h2 =q l3]

Figure 2: Example of theMRS algebra

is assumed. For instance, the passive rule involves
coindexing aCOMP in the original lexical sign with
theSUBJof the passive (informally, the complement
‘becomes’ the subject).

There are two ways round this problem. The first
is to keep the algebra unchanged, but to assume that,
for instance, the subject-head grammar rule corre-
sponds toopsubj in the algebra for non-passivized
cases and toopcomp1for passives of simple tran-
sitives and so on. Though possible formally, this is
not in accord with the spirit of the approach since
selection of the appropriate algebra operation in the
syntax-semantics interface would require non-local
information. Practically, it also precludes the im-
plementation of an algebra checker, since keeping
track of the slot uses would be both complex and
grammar-specific. The alternative is to extend the
algebra to allow for slot renaming. For instance,
opcomp1-subjcan be defined so that theCOMP1 slot
on the daughter is aSUBJslot on the mother.

1. For all labelsl 6= comp1, l 6= subj:
slotl(opcomp1-subj(a)) = slotl(a)

2. slotsubj(opcomp1-subj(a)) = slotcomp1(a)

This means extending the inventory of operations,
but the choice of operation is then locally deter-
minable from the rule (e.g., the passive rule would
specifyopcomp1-subjto be its operation).

Another issue arises in grammars which allow for
optional complements. For instance, one approach
to a verb likeeat is to give it a single lexical en-
try which corresponds to both transitive and intran-
sitive uses. The complement is marked as optional
and the corresponding variable in the semantics is
assumed to be discourse bound if there is no syn-
tactic complement in the phrase. Optional comple-
ments can be discharged by a construction. This ap-
proach is (arguably) appropriate foreat because the
intransitive use involves an implicit patient (e.g.,I
already ate meansI already ate something), in con-

trast to a verb likekick. CLF do not discuss op-
tionality but it can be formalised in the algebra in
terms of a construction-specified sement which has
a hook containing the discourse referent and is oth-
erwise empty. For instance, an optional complement
construction corresponds toopcomp1(a1, a2) where
a1 is the head (and the only daughter appearing in
the TFS for the construction) anda2 is stipulated by
the rule to be[l, d]{}[][]{}, whered is the discourse-
bound referent.

3 The algebra in non-lexicalist grammars

CLF motivate theMRSalgebra in terms of formalisa-
tion of the semantics of constraint-based grammars,
such as HPSG, but, as we outline here, it is equally
applicable to non-lexicalist frameworks. With a suit-
able definition of the syntax-semantics interface, the
algebra can be used with non-TFS-based grammars.
Fig. 3 sketches an example ofMRS semantics for a
CFG. A syntax-semantic interface component of the
rule (shown in the second line of the figure) specifies
the ops and their daughters: theIOBJ slot of the verb
is instantiated with the first NP’s hook and theOBJ

slot of the result is instantiated with the hook of the
second NP. The idea is extremely similar to the use
of the algebra with TFS but note that with the ad-
dition of this syntax-semantic interface, the algebra
can be used directly to implement semantic compo-
sition for a CFG.

This still relies on the assumption that all slots
are known for every lexical item: semantically the
grammar is lexicalist even though it is not syntacti-
cally. In fact this is analogous to semantic compo-
sition in GPSG (Gazdar et al., 1985) in that conven-
tional lambda calculus also assumes that the seman-
tic properties are known at the lexical level.

4 RMRS composition with deep grammars

The use of the CLF algebra inRMRS composition
with deep lexicalist grammars is reasonably straight-

76



VP -> Vditrans NP1 NP2
opobj(opiobj(Vditrans, NP1), NP2)

MRSs for application of the rule togive a cat a rat.
hook slots rels eqs

give : [l1, e1] {[l1, x12]subj , [l1 : give(e1, x12, x13, x14)] {}
[l1, x13]obj , [l1, x14]iobj}

a cat: [l4, x2] {} [l2 : a(x2, h2, h3), l1 : cat(x1)] {l3 = l1, x2 = x1}
a rat: [l7, x5] {} [l5 : a(x5, h5, h6), l4 : rat(x4)] {l6 = l4, x5 = x4}
iobj : [l1, e1] {[l1, x12]subj , [l1, x13]obj} [l1 : give(e1, x12, x13, x14), {l3 = l1, x2 = x1,

l2 : a(x2, h2, h3), l1 : cat(x1)] l1 = l4, x14 = x2}
obj : [l1, e1] {[l1, x12]subj} [l1 : give(e1, x12, x13, x14), {l3 = l1, x2 = x1,

l2 : a(x2, h2, h3), l1 : cat(x1), l1 = l4, x14 = x2,

l5 : a(x5, h5, h6), l4 : rat(x4)] l1 = l7, x13 = x5}

Figure 3:MRS algebra with a CFG (hcons omitted for clarity)

forward.2 The differences betweenMRS andRMRS

are that RMRS uses anchors and factors out the
ARGs. Thus forRMRS, we need to redefine the no-
tion of a semantic entity from theMRS algebra to
add anchors. AnRMRS EPthus contains:

1. a handle, which is the label of theEP

2. an anchor (a)

3. a relation

4. up to one argument of the relation

Hooks also include anchors:{[l, a, i]} is a hook.
Instead of the rels list only containingEPs, such
as l1:chase(e,x,y), it contains a mixture ofEPs
and ARGs, with associated anchors, such as
l1:a1:chase(e), l1:a1:ARG1(x), l1:a1:ARG2(y). But
formally ARGs areEPs according to the definition
above, so this requires no amendment of the alge-
bra. Fig. 4 shows theRMRS version of Fig. 2.

As mentioned above, earlier forms ofRMRS used
an explicit representation for conjunction: the in-
group, or in-g. Reasons to avoid explicit binary
conjunction were discussed with respect toMRS by
Copestake et al. (2005) and readers are referred to
that paper for an explanation: essentially the prob-
lem is that the syntactic assumptions influence the
semantic representation. e.g., the order of combi-
nation of intersective modifiers affects the semantic

2Current DELPH-IN grammars generally constructMRSs
which may be converted intoRMRSs. However,RMRS has
potential advantages, for instance in allowing more extensive
lexical underspecification than is possible withMRS: e.g.,
(Haugereid, 2004).

representation, though it has no effect on denotation.
The binary in-g suffers from this problem.

One alternative would be to use an n-ary conjunc-
tion symbol. However such representations cannot
be constructed compositionally if modification is bi-
nary branching as there is no way of incrementally
adding the conjuncts. Another option we considered
was the use of, possibly redundant, conjunction re-
lations associated with each element which could be
combined to produce a flat conjunction. This leads
to a spurious in-g in the case where there is no mod-
ifier. This looks ugly, but more importantly, does
not allow for incremental specialisation, although
the demonstration of this would take us too far from
the main point of this paper.

We therefore assume a modified version ofRMRS

which drops in-g symbols but uses anchors instead.
This means thatRMRS andMRS TFS grammars can
be essentially identical apart from lexical types. Fur-
thermore, it turns out that, for composition without
a lexicon, an anchor is needed in the hook regardless
of the treatment of conjunction (see below).

5 RMRS composition without a lexicon

We now discuss the algebra for grammars which
do not have access to subcategorization information
and thus are neither syntactically nor semantically
lexicalist. We concentrate in particular on composi-
tion for the grammar used in theRASPsystem.RASP

consists of a tokenizer, POS tagger, lemmatizer, tag
sequence grammar and statistical disambiguator. Of
the robust analysers we have looked at,RASP pro-

77



hook slots rels eqs hcons
cat : [l1, a1, x1] {} [l1 : a1 : cat(x1)] {} []
a : [l4, a2, x2] {[l3, a2, x2]spec} [l2 : a2 : a(x2), {} [h2 =q l3]

l2 : a2 : rstr(h2), l2 : a2 : body(h2)]
a cat: [l4, a4, x2] {} [l1 : a1 : cat(x1), l2 : a2 : a(x2), {l3 = l1, [h2 =q l3]

l2 : a2 : rstr(h2), l2 : a2 : body(h2) x2 = x1]

Figure 4: Example of theRMRS algebra.

vides the biggest challenge for theRMRS approach
because it provides quite detailed syntactic analy-
ses which are somewhat dissimilar to theERG: it
is an intermediate rather than a shallow processor.
The RMRS approach can only be fully successful to
the extent that it abstracts away from the differences
in syntactic analyses assumed by different systems,
so intermediate processors are more difficult to deal
with than shallow ones.

Instead of normal lexical entries,RASP uses the
POS tags for the words in the input. For the exam-
ple in Fig. 1, the output of the POS tagging phase is:
the AT fat JJ catNN1 sit+edVVD on II a AT1
mat NN1

The semantics associated with the individual words
in the sentence can be derived from a ‘lexicon’ of
POS tags, which defines theEPs. Schematically:
AT lexrel q(x) NN1 lexrel n(x)
AT1 lexrel q(x) VVD lexrel v(epast)
JJ lexrelj(x) II lexrel p(e)

Here, ‘lexrel’ is a special symbol, which is to
be replaced by the individual lemma (with a
leading underscore) — e.g., lexrelv(epast) yields
l1:a1: sit v(e). Producing the semantics from the
tagger output and this lexicon is a simple matter of
substitution. AllEPs are labelled with unique labels
and all variables are different unless repeated in the
same lexical entry.

If the analysis were to stop at POS tagging, the
semantic composition rules would apply trivially.
There are no slots, the hooks are irrelevant and there
are no equalities. The composition principle of ac-
cumulation of elementary predications holds, so the
semantics of the result involves an accumulation of
the rels (see the example at the bottom of Fig. 1).

When using the fullRASP parser, although we
cannot expect to obtain all the details available from
deep grammars, we can derive some relational struc-
ture. For instance, given a sentence such asthe

cat chased the rat, it should be possible to derive
the ARG1 and ARG2 forchase by associating the
ARG1 with the application of theS/np_vp RASP

rule (i.e.,S->NP VP) and the ARG2 with the appli-
cation of theV1/v_np rule. But since there can be
no slot information in the lexical structures (at least
not for open-class words), it is necessary to modify
the lexicalist approach to semantics taken so far.

We assume that both the ARGs and the slots are
specified at a phrasal level rather than lexically. As
mentioned in§2.1, theMRS algebra allows for rules
to contribute semantics as though they were normal
phrases. The central idea in the application of the
algebra toRASP is to make use of construction se-
mantics in all rules. Fig. 5 illustrates this with the
V1/v_np rule (the NP has been simplified for clar-
ity) assuming the same sort of syntax-semantics in-
terface specification as shown earlier for the CFG.
This is semantically ternary because of the rule se-
mantics. The rule has anARG2 slot plus a slotR
which is instantiated by the verb’s hook. In effect,
the rule adds a slot to the verb.

It is necessary for the anchor of the argument-
taking structure to be visible at all points where ar-
guments may be attached. For instance, in the ex-
ample above, the anchor of the verbchase has to
be accessible when the ARG1 relation is introduced.
Although generally the anchor will correspond to the
anchor of the semantic head daughter, this is not the
case if there is a scopal modifier (considera cat did
not chase a rat: the ARG1 must be attached tochase
rather than tonot). This is illustrated bynot sleep
in Fig. 6. Becausenot is associated with a unique
tag in RASP, it can be assigned a slot and an ARG1
directly. The anchor of the result is equated with
the label ofsleep and thus the subject ARG1 can be
appropriately attached. So the hook would have to
include an anchor even if explicit conjunction were
used instead of equating labels.

78



VP -> V NP
oparg2(opr(rule, V), NP)

chase: [l1, a1, e1] {} [l1 : a1 : chase(e1)] {}
rule : [l2, a2, e2] {[l2, a2, e2]r, [l2 : a2 : ARG2(x2)] {}

[l4, a4, x2]arg2}
(rule V)/r : [l2, a2, e2] {[l4, x2]arg2} [l2 : a1 : ARG2(x2), l1 : a1 : chase(e1)] {l1 = l2, e2 = e1}
it : [l3, a3, x3] {} [l3 : a3 : pron(x3)] {}
chase it: [l2, a2, e2] {} [l2 : a2 : ARG2(x2), l1 : a1 : chase(e1), {l1 = l2, e2 = e1,

l3 : a3 : pron(x3)] l4 = l3, x2 = x3}

Figure 5:RASP-RMRS algebra (hcons omitted)

not : [l1, a2, e2] {[l2, a3, e2]mod} [l1 : a1 : not(e2), l1 : a1 : ARG1(h4)] {} [h4 =q l2]
sleep: [l2, a2, e2] {} [l2 : a2 : sleep(e2)] {} []
not sleep: [l1, a2, e2] {} [l1 : a1 : not(e2), l1 : a1 : ARG1(h4), {} [h4 =q l3]

l2 : a2 : sleep(e2)]

Figure 6:RASP-RMRS illustrating the use of the anchor

6 Experiments with RASP-RMRS

In this section, we outline the practical implementa-
tion of the algebra forRASP-RMRS. The RASP tag
sequence grammar is formally equivalent to a CFG:
it uses phrase structure rules augmented with fea-
tures. As discussed, the algebra requires that ops
are specified for each rule application, and the eas-
iest way of achieving this is to associate semantic
composition rules with each rule name. Composi-
tion operates on the tree output fromRASP, e.g.,:

(|T/txt-sc1/----|
(|S/np_vp|
(|NP/det_n1| |Every:1_AT1|
(|N1/n| |cat:2_NN1|))
(|V1/v| |bark+ed:3_VVD|)))

Composition operates bottom-up: the semantic
structures derived from the tags are combined ac-
cording to the semantics associated with the rule.
The implementation corresponds very directly to the
algebra, although the transitive closure of the equali-
ties is computed on the final structure, since nothing
requires that it be available earlier.

The notation used to specify semantics associated
with the rules incorporates some simplifications to
avoid having to explicitly specify the slot and ops.
The specification of equalities between variables and
components of the individual daughters’ hooks is a
convenient shorthand for the full algebra.

rule V1/v_np
daughters V NP
semhead V
hook [l,a,e] rels {l:a:ARG2(x)}
eqs {x=NP.index,l=V.label,

a=V.anchor}

If no semantic rule is specified corresponding to
a rule used in a tree, the rels are simply appended.
Semantic composition is thus robust to omissions in
the semantic component of the grammar. In fact, se-
mantic rules can be constructed semi-automatically,
rather than fully manually, although we do not have
space to discuss this in detail here.

There are cases of incompatibility betweenRASP-
RMRS andERG-RMRS. For example, theERG treats
it as expletive init rains: the lexical entry forrain
specifies an expletive subject (i.e., a semantically
empty it). RASP makes no such distinction, since
it lacks the lexical information and thus the sentence
has extraneous relations for the pronoun and an in-
correct ARG1 forrain. This is an inevitable conse-
quence of the lack of lexical information inRASP.
However, from the perspective of the evaluation of
the revised algebra, the issue is whether there are any
cases where compositional construction ofRASP-
RMRSs which matchERG-RMRSs is impossible due
to the restrictions imposed by the algebra. No such
cases have been found.

79



7 Related work

Bos et al. (2004) and Bos (2005) derive semantic in-
terpretations from a wide-coverage categorial gram-
mar. There are several differences between this and
RASP-RMRS, but the most important arise from the
differences betweenCCGandRASP. TheCCGparser
relies on having detailed subcategorization infor-
mation (automatically derived from theCCG Bank
which was semi-automatically constructed from the
Penn Treebank), and thus semantic construction can
assume that the arity of the predicate is lexically
available. However, becauseCCG is purely lexical-
ist, phenomena that we expect to have construction
semantics (e.g., compound nouns, larger numbers)
have to be dealt with in a post-parsing phase rather
than compositionally.

Spreyer and Frank (2005) demonstrateRMRScon-
struction from TIGER dependencies, but do not at-
tempt to match a deep parser output.

8 Conclusion

We have demonstrated that theMRS algebra, orig-
inally intended as a formalisation of some aspects
of semantic composition in constraint-based gram-
mars, can be extended toRMRS and other types of
grammar framework and can be used as the basis of
a full implementation of composition. The algebra
can thus be used much more widely than originally
envisaged and could be exploited by a wide range of
parsers. Useful properties concerning monotonicity
and scope (see Fuchss et al. (2004)) are thus guaran-
teed for a range of grammars. Phrasal-level com-
patibility of RMRS (to the extent that this is syn-
tactically possible) is also an important result. The
main practical outcome of this work so far has been
a semantic component for theRASP system which
produces representations compatible with that of the
ERG without compromisingRASP speed or robust-
ness. RASP-RMRSs have already been used in sys-
tems for question answering, information extraction,
email response, creative authoring and ontology ex-
traction (e.g., Uszkoreit et al. (2004), Watson et al.
(2003), Herbelot and Copestake (2006)).

Acknowledgements

This work was funded by EPSRC (EP/C010035/1).
I am very grateful to the anonymous reviewers for

their insightful comments, which sadly I have had
to ignore due to the constraints of time and space. I
hope to address them in a later paper.

References
Johan Bos, Stephen Clark, Mark Steedman, James R.

Curran and Julia Hockenmaier 2004. Wide-Coverage
Semantic Representations from aCCG Parser. COL-
ING ’04, Geneva.

Johan Bos. 2005. Towards Wide-Coverage Semantic In-
terpretation. Sixth International Workshop on Compu-
tational Semantics IWCS-6. 42–53.

Ted Briscoe and John Carroll. 2002. Robust accurate
statistical annotation of general text. LREC-2002, Las
Palmas, Gran Canaria.

Ann Copestake, Alex Lascarides, and Dan Flickinger.
2001. An Algebra for Semantic Construction in
Constraint-based Grammars. ACL-01, Toulouse.

Ann Copestake. 2003. Report on the design ofRMRS.
DeepThought project deliverable.

Ann Copestake, Dan Flickinger, Ivan Sag, and Carl Pol-
lard. 2005. Minimal Recursion Semantics: An in-
troduction. Research in Language and Computation
3(2–3), 281–332.

Dan Flickinger 2000. On building a more efficient
grammar by exploiting types. Natural Language
Engineering,6:1,15–28.

Ruth Fuchss, Alexander Koller, Joachim Niehren, and
Stefan Thater 2004. Minimal Recursion Semantics as
Dominance Constraints: Translation, Evaluation, and
Analysis. Proceedings of the 42nd ACL, Barcelona.

Gerald Gazdar, Ewan Klein, Geoffrey Pullum and Ivan
Sag 1985. Generalized Phrase Structure Grammar.
Basil Blackwell, Oxford

Petter Haugereid 2004. Linking in Constructions.
HPSG2004, Leuven.

Aurelie Herbelot and Ann Copestake 2006. Acquir-
ing Ontological Relationships from Wikipedia Us-
ing RMRS. ISWC 2006 Workshop on Web Content
Mining with Human Language Technologies, Athens,
Georgia.

Kathrin Spreyer and Anette Frank. 2005 Projecting
RMRS from TIGER Dependencies. HPSG 2005, Lis-
bon. 354–363.

Hans Uszkoreit, Ulrich Callmeier, Andreas Eisele, Ul-
rich Schfer, Melanie Siegel, Jakob Uszkoreit. 2004.
Hybrid Robust Deep and Shallow Semantic Process-
ing for Creativity Support in Document Production.
KONVENS 2004, Vienna, Austria, 209–216.

Rebecca Watson, Judita Preiss and EJ Briscoe. 2003.
The Contribution of Domain-independent Robust
Pronominal Anaphora Resolution to Open-Domain
Question-Answering. Int. Symposium on Reference
Resolution and its Application to Question-Answering
and Summarisation, Venice.

80



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 81–88,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

A Task-based Comparison of Information Extraction Pattern Models

Mark A. Greenwood and Mark Stevenson
Department of Computer Science

University of Sheffield
Sheffield, S1 4DP, UK

{m.greenwood, marks}@dcs.shef.ac.uk

Abstract

Several recent approaches to Information
Extraction (IE) have used dependency trees
as the basis for an extraction pattern repre-
sentation. These approaches have used a va-
riety of pattern models (schemes which de-
fine the parts of the dependency tree which
can be used to form extraction patterns).
Previous comparisons of these pattern mod-
els are limited by the fact that they have used
indirect tasks to evaluate each model. This
limitation is addressed here in an experiment
which compares four pattern models using
an unsupervised learning algorithm and a
standard IE scenario. It is found that there
is a wide variation between the models’ per-
formance and suggests that one model is the
most useful for IE.

1 Introduction

A common approach to Information Extraction (IE)
is to (manually or automatically) create a set of pat-
terns which match against text to identify informa-
tion of interest. Muslea (1999) reviewed the ap-
proaches which were used at the time and found
that the most common techniques relied on lexico-
syntactic patterns being applied to text which has
undergone relatively shallow linguistic processing.
For example, the extraction rules used by Soderland
(1999) and Riloff (1996) match text in which syn-
tactic chunks have been identified. More recently
researchers have begun to employ deeper syntactic
analysis, such as dependency parsing (Yangarber et

al., 2000; Stevenson and Greenwood, 2005; Sudo et
al., 2001; Sudo et al., 2003; Yangarber, 2003). In
these approaches extraction patterns are essentially
parts of the dependency tree. To perform extraction
they are compared against the dependency analysis
of a sentence to determine whether it contains the
pattern.

Each of these approaches relies on apattern
modelto define which parts of the dependency tree
can be used to form the extraction patterns. A vari-
ety of pattern models have been proposed. For ex-
ample the patterns used by Yangarber et al. (2000)
are the subject-verb-object tuples from the depen-
dency tree (the remainder of the dependency parse is
discarded) while Sudo et al. (2003) allow any sub-
tree within the dependency parse to act as an ex-
traction pattern. Stevenson and Greenwood (2006)
showed that the choice of pattern model has impor-
tant implications for IE algorithms including signifi-
cant differences between the various models in terms
of their ability to identify information of interest in
text.

However, there has been little comparison be-
tween the various pattern models. Those which have
been carried out have been limited by the fact that
they used indirect tasks to evaluate the various mod-
els and did not compare them in an IE scenario.
We address this limitation here by presenting a di-
rect comparison of four previously described pattern
models using an unsupervised learning method ap-
plied to a commonly used IE scenario.

The remainder of the paper is organised as fol-
lows. The next section presents four pattern models
which have been previously introduced in the litera-

81



ture. Section 3 describes two previous studies which
compared these models and their limitations. Sec-
tion 4 describes an experiment which compares the
four models on an IE task, the results of which are
described in Section 5. Finally, Section 6 discusses
the conclusions which may be drawn from this work.

2 IE Pattern Models

In dependency analysis (Mel’čuk, 1987) the syntax
of a sentence is represented by a set of directed bi-
nary links between a word (the head) and one of its
modifiers. These links may be labelled to indicate
the relation between the head and modifier (e.g. sub-
ject, object). An example dependency analysis for
the sentence“Acme hired Smith as their new CEO,
replacing Bloggs.”is shown Figure 1.

Figure 1: An example dependency tree.

The remainder of this section outlines four mod-
els for representing extraction patterns which can be
derived from dependency trees.

Predicate-Argument Model (SVO): A simple
approach, used by Yangarber et al. (2000), Yangar-
ber (2003) and Stevenson and Greenwood (2005),
is to use subject-verb-object tuples from the depen-
dency parse as extraction patterns. These consist of
a verb and its subject and/or direct object. Figure
2 shows the two SVO patterns1 which are produced
for the dependency tree shown in Figure 1.

This model can identify information which is ex-
pressed using simple predicate-argument construc-
tions such as the relation betweenAcmeandSmith

1The formalism used for representing dependency patterns
is similar to the one introduced by Sudo et al. (2003). Each
node in the tree is represented in the formata[b/c] (e.g.
subj[N/Acme]) wherec is the lexical item (Acme), b its
grammatical tag (N) anda the dependency relation between this
node and its parent (subj). The relationship between nodes is
represented asX(A+B+C) which indicates that nodesA, B and
C are direct descendents of nodeX.

in the dependency tree shown in Figure 1. How-
ever, the SVO model cannot represent information
described using other linguistic constructions such
as nominalisations or prepositional phrases. For ex-
ample the SVO model would not be able to recog-
nise that Smith’s new job title is CEO since these
patterns ignore the part of the dependency tree con-
taining that information.

Chains: A pattern is defined as a path between a
verb node and any other node in the dependency tree
passing through zero or more intermediate nodes
(Sudo et al., 2001). Figure 2 shows examples of the
chains which can be extracted from the tree in Figure
1.

Chains provide a mechanism for encoding infor-
mation beyond the direct arguments of predicates
and includes areas of the dependency tree ignored by
the SVO model. For example, they can represent in-
formation expressed as a nominalisation or within a
prepositional phrase, e.g. “The resignation of Smith
from the board of Acme ...” However, a potential
shortcoming of this model is that it cannot represent
the link between arguments of a verb. Patterns in the
chain model format are unable to represent even the
simplest of sentences containing a transitive verb,
e.g.“Smith left Acme”.

Linked Chains: The linked chains model
(Greenwood et al., 2005) represents extraction pat-
terns as a pair of chains which share the same verb
but no direct descendants. Example linked chains
are shown in Figure 2. This pattern representa-
tion encodes most of the information in the sen-
tence with the advantage of being able to link to-
gether event participants which neither of the SVO
or chain model can, for example the relation be-
tween“Smith” and“Bloggs” in Figure 1.

Subtrees: The final model to be considered is the
subtree model (Sudo et al., 2003). In this model any
subtree of a dependency tree can be used as an ex-
traction pattern, where a subtree is any set of nodes
in the tree which are connected to one another. Sin-
gle nodes are not considered to be subtrees. The
subtree model is a richer representation than those
discussed so far and can represent any part of a de-
pendency tree. Each of the previous models form a
proper subset of the subtrees. By choosing an appro-
priate subtree it is possible to link together any pair
of nodes in a tree and consequently this model can

82



SVO
[V/hire](subj[N/Acme]+obj[N/Smith])
[V/replace](obj[N/Bloggs])

Chains
[V/hire](subj[N/Acme])
[V/hire](obj[N/Smith])
[V/hire](obj[N/Smith](as[N/CEO]))
[V/hire](obj[N/Smith](as[N/CEO](gen[N/their])))

Linked Chains
[V/hire](subj[N/Acme]+obj[N/Smith])
[V/hire](subj[N/Acme]+obj[N/Smith](as[N/CEO]))
[V/hire](obj[N/Smith]+vpsc mod[V/replace](obj[N/Bloggs]))

Subtrees
[V/hire](subj[N/Acme]+obj[N/Smith]+vpsc mod[V/replace])
[V/hire](subj[N/Acme]+vpsc mod[V/replace](obj[N/Bloggs]))
[N/Smith](as[N/CEO](gen[N/their]+mod[A/new]))

Figure 2: Example patterns for four models

represent the relation between any set of items in the
sentence.

3 Previous Comparisons

There have been few direct comparisons of the var-
ious pattern models. Sudo et al. (2003) compared
three models (SVO, chains and subtrees) on two
IE scenarios using a entity extraction task. Mod-
els were evaluated in terms of their ability to iden-
tify entities taking part in events and distinguish
them from those which did not. They found the
SVO model performed poorly in comparison with
the other two models and that the performance of
the subtree model was generally the same as, or
better than, the chain model. However, they did
not attempt to determine whether the models could
identify the relations between these entities, simply
whether they could identify the entities participating
in relevant events.

Stevenson and Greenwood (2006) compared the
four pattern models described in Section 2 in terms
of their complexity and ability to represent rela-
tions found in text. The complexity of each model
was analysed in terms of the number of patterns
which would be generated from a given depen-
dency parse. This is important since several of
the algorithms which have been proposed to make
use of dependency-based IE patterns use iterative
learning (e.g. (Yangarber et al., 2000; Yangarber,
2003; Stevenson and Greenwood, 2005)) and are un-

likely to cope with very large sets of candidate pat-
terns. The number of patterns generated therefore
has an effect on how practical computations using
that model may be. It was found that the number
of patterns generated for the SVO model is a lin-
ear function of the size of the dependency tree. The
number of chains and linked chains is a polynomial
function while the number of subtrees is exponen-
tial.

Stevenson and Greenwood (2006) also analysed
the representational power of each model by measur-
ing how many of the relations found in a standard IE
corpus they are expressive enough to represent. (The
documents used were taken from newswire texts and
biomedical journal articles.) They found that the
SVO and chain model could only represent a small
proportion of the relations in the corpora. The sub-
tree model could represent more of the relations than
any other model but that there was no statistical dif-
ference between those relations and the ones cov-
ered by the linked chain model. They concluded
that the linked chain model was optional since it is
expressive enough to represent the information of
interest without introducing a potentially unwieldy
number of patterns.

There is some agreement between these two stud-
ies, for example that the SVO model performs
poorly in comparison with other models. However,
Stevenson and Greenwood (2006) also found that
the coverage of the chain model was significantly
worse than the subtree model, although Sudo et al.

83



(2003) found that in some cases their performance
could not be distinguished. In addition to these dis-
agreements, these studies are also limited by the fact
that they are indirect; they do not evaluate the vari-
ous pattern models on an IE task.

4 Experiments

We compared each of the patterns models described
in Section 2 using an unsupervised IE experiment
similar to one described by Sudo et al. (2003).

Let D be a corpus of documents andR a set of
documents which are relevant to a particular extrac-
tion task. In this context “relevant” means that the
document contains the information we are interested
in identifying. D andR are such thatD = R ∪ R̄

andR∩R̄ = ∅. As assumption behind this approach
is that useful patterns will be far more likely to occur
in R thanD overall.

4.1 Ranking Patterns

Patterns for each model are ranked using a technique
inspired by the tf-idf scoring commonly used in In-
formation Retrieval (Manning and Schütze, 1999).
The score for each pattern,p, is given by:

score(p) = tfp ×

(

N

dfp

)β

(1)

where tfp is the number of times patternp ap-
pears in relevant documents,N is the total number
of documents in the corpus anddfp the number of
documents in the collection containing the pattern
p.

Equation 1 combines two factors: theterm fre-
quency(in relevant documents) andinverse docu-
ment frequency(across the corpus). Patterns which
occur frequently in relevant documents without be-
ing too prevalent in the corpus are preferred. Sudo
et al. (2003) found that it was important to find the
appropriate balance between these two factors. They
introduced theβ parameter as a way of controlling
the relative contribution of theinverse document fre-
quency. β is tuned for each extraction task and pat-
tern model combination.

Although simple, this approach has the advantage
that it can be applied to each of the four pattern mod-
els to provide a direct comparison.

4.2 Extraction Scenario

The ranking process was applied to the IE scenario
used for the sixth Message Understanding confer-
ence (MUC-6). The aim of this task was to iden-
tify management succession events from a corpus
of newswire texts. Relevant information describes
an executive entering or leaving a position within a
company, for example“Last month Smith resigned
as CEO of Rooter Ltd.”. This sentence described as
event involving three items: a person (Smith), po-
sition (CEO) and company (Rooter Ltd). We made
use of a version of the MUC-6 corpus described by
Soderland (1999) which consists of 598 documents.

For these experiments relevant documents were
identified using annotations in the corpus. However,
this is not necessary since Sudo et al. (2003) showed
that adequate knowledge about document relevance
could be obtained automatically using an IR system.

4.3 Pattern Generation

The texts used for these experiments were parsed
using the Stanford dependency parser (Klein and
Manning, 2002). The dependency trees were pro-
cessed to replace the names of entities belonging
to specific semantic classes with a general token.
Three of these classes were used for the manage-
ment succession domain (PERSON, ORGANISA-
TION andPOST). For example, in the dependency
analysis of“Smith will became CEO next year”,
“Smith” is replaced byPERSON and “CEO” by
POST. This process allows more general patterns to
be extracted from the dependency trees. For exam-
ple, [V/become](subj[N/PERSON]+obj[N/POST]).
In the MUC-6 corpus items belonging to the relevant
semantic classes are already identified.

Patterns for each of the four models were ex-
tracted from the processed dependency trees. For
the SVO, chain and linked chain models this was
achieved using depth-first search. However, the
enumeration of all subtrees is less straightforward
and has been shown to be a#P -complete prob-
lem (Goldberg and Jerrum, 2000). We made use of
the rightmost extensionalgorithm (Abe et al., 2002;
Zaki, 2002) which is an efficient way of enumerating
all subtrees. This approach constructs subtrees iter-
atively by combining together subtrees which have
already been observed. The algorithm starts with a

84



set of trees, each of which consists of a single node.
At each stage the known trees are extended by the
addition of a single node. In order to avoid dupli-
cation the extension is restricted to allowing nodes
only to be added to the nodes on the rightmost path
of the tree. Applying the process recursively creates
a search space in which all subtrees are enumerated
with minimal duplication.

The rightmost extension algorithm is most suited
to finding subtrees which occur multiple times and,
even using this efficient approach, we were unable
to generate subtrees which occurred fewer than four
times in the MUC-6 texts in a reasonable time. Sim-
ilar restrictions have been encountered within other
approaches which have relied on the generation of
a comprehensive set of subtrees from a parse for-
est. For example, Kudo et al. (2005) used subtrees
for parse ranking but could only generate subtrees
which appear at least ten times in a 40,000 sentence
corpus. They comment that the size of their data set
meant that it would have been difficult to complete
the experiments with less restrictive parameters. In
addition, Sudo et al. (2003) only generated subtrees
which appeared in at least three documents. Kudo
et al. (2005) and Sudo et al. (2003) both used the
rightmost extension algorithm to generate subtrees.

To provide a direct comparison of the pattern
models we also produced versions of the sets of pat-
terns extracted for the SVO, chain and linked chain
models in which patterns which occurred fewer than
four times were removed. Table 1 shows the num-
ber of patterns generated for each of the four mod-
els when the patterns are both filtered and unfil-
tered. (Although the set of unfiltered subtree pat-
terns were not generated it is possible to determine
the number of patterns which would be generated
using a process described by Stevenson and Green-
wood (2006).)

Model Filtered Unfiltered
SVO 9,189 23,128

Chains 16,563 142,019
Linked chains 23,452 493,463

Subtrees 369,453 1.69×1012

Table 1: Number of patterns generated by each
model

It can be seen that the various pattern models gen-
erate vastly different numbers of patterns and that
the number of subtrees is significantly greater than
the other three models. Previous analysis (see Sec-
tion 3) suggested that the number of subtrees which
would be generated from a corpus could be difficult
to process computationally and this is supported by
our findings here.

4.4 Parameter Tuning

The value ofβ in equation 1 was set using a sep-
arate corpus from which the patterns were gener-
ated, a methodology suggested by Sudo et al. (2003).
To generate this additional text we used the Reuters
Corpus (Rose et al., 2002) which consists of a year’s
worth of newswire output. Each document in the
Reuters corpus has been manually annotated with
topic codes indicating its general subject area(s).
One of these topic codes (C411) refers to man-
agement succession events and was used to identify
documents which are relevant to the MUC6 IE sce-
nario. A corpus consisting of 348 documents anno-
tated with codeC411 and 250 documents without
that code, representing irrelevant documents, were
taken from the Reuters corpus to create a corpus
with the same distribution of relevant and irrelevant
documents as found in the MUC-6 corpus. Unlike
the MUC-6 corpus, items belonging to the required
semantic classes are not annotated in the Reuters
Corpus. They were identified automatically using
a named entity identifier.

The patterns generated from the MUC-6 texts
were ranked using formula 1 with a variety of val-
ues ofβ. These sets of ranked patterns were then
used to carry out a document filtering task on the
Reuters corpus - the aim of which is to differentiate
documents based on whether or not they contain a
relation of interest. The various values forβ were
compared by computing the area under the curve. It
was found that the optimal value forβ was 2 for all
pattern models and this setting was used for the ex-
periments.

4.5 Evaluation

Evaluation was carried out by comparing the ranked
lists of patterns against the dependency trees for the
MUC-6 texts. When a pattern is found to match
against a tree the items which match any seman-

85



tic classes in the pattern are extracted. These items
are considered to be related and compared against
the gold standard data in the corpus to determine
whether they are in fact related.

The precision of a set of patterns is computed as
the proportion of the relations which were identified
that are listed in the gold standard data. The recall is
the proportion of relations in the gold standard data
which are identified by the set of patterns.

The ranked set of patterns are evaluated incremen-
tally with the precision and recall of the first (highest
ranked) pattern computed. The next pattern is then
added to the relations extracted by both are evalu-
ated. This process continues until all patterns are
exhausted.

5 Results

Figure 3 shows the results when the four filtered pat-
tern models, ranked using equation 1, are compared.

A first observation is that the chain model
performs poorly in comparison to the other
three models. The highest precision achieved by
this model is 19.9% and recall never increases
beyond 9%. In comparison the SVO model in-
cludes patterns with extremely high precision but
the maximum recall achieved by this model is
low. Analysis showed that the first three SVO
patterns had very high precision. These were
[V/succeed](subj[N/PERSON]+obj[N/PERSON]),
[V/be](subj[N/PERSON]+obj[N/POST]) and
[V/become](subj[N/PERSON]+obj[N/POST]),
which have precision of 90.1%, 80.8% and 78.9%
respectively. If these high precision patterns are
removed the maximum precision of the SVO model
is around 32%, which is comparable with the linked
chain and subtree models. This suggests that, while
the SVO model includes very useful extraction
patterns, the format is restrictive and is unable to
represent much of the information in this corpus.

The remaining two pattern models, linked chains
and subtrees, have very similar performance and
each achieves higher recall than the SVO model, al-
beit with lower precision. The maximum recall ob-
tained by the linked chain model is slightly lower
than the subtree model but it does maintain higher
precision at higher recall levels.

The maximum recall achieved by all four models

is very low in this evaluation and part of the reason
for this is the fact that the patterns have been filtered
to allow direct comparison with the subtree model.
Figure 4 shows the results when the unfiltered SVO,
chain and linked chain patterns are used. (Perfor-
mance of the filtered subtrees are also included in
this graph for comparison.)

This result shows that the addition of extra pat-
terns for each model improves recall without effect-
ing the maximum precision achieved. The chain
model also performs badly in this experiment. Pre-
cision of the SVO model is still high (again this is
due to the same three highly accurate patterns) how-
ever the maximum recall achieved by this model is
not particularly increased by the addition of the un-
filtered patterns. The linked chain model benefits
most from the unfiltered patterns. The extra patterns
lead to a maximum recall which is more than dou-
ble any of the other models without overly degrad-
ing precision. The fact that the linked chain model
is able to achieve such a high recall shows that it is
able to represent the relations found in the MUC-6
text, unlike the SVO and chain models. It is likely
that the subtrees model would also produce a set of
patterns with high recall but the number of poten-
tial patterns which are allowable within this model
makes this impractical.

6 Discussion and Conclusions

Some of the results reported for each model in these
experiments are low. Precision levels are generally
below 40% (with the exception of the SVO model
which achieves high precision using a small number
of patterns). One reason for this that the the patterns
were ranked using a simple unsupervised learning
algorithm which allowed direct comparison of four
different pattern models. This approach only made
use of information about the distribution of patterns
in the corpus and it is likely that results could be im-
proved for a particular pattern model by employing
more sophisticated approaches which make use of
additional information, for example the structure of
the patterns.

The results presented here provide insight into the
usefulness of the various pattern models by evaluat-
ing them on an actual IE task. It is found that SVO
patterns are capable of high precision but that the

86



0.0 0.1 0.2 0.3 0.4

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

Subject-Verb-Object
Chains
Linked Chains
Subtrees

Figure 3: Comparisons of filtered pattern models.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

Subject-Verb-Object
Chains
Linked Chains
Subtrees

Figure 4: Comparison of unfiltered models.

87



restricted set of possible patterns leads to low re-
call. The chain model was found to perform badly
with low recall and precision regardless of whether
the patterns were filtered. Performance of the linked
chain and subtree models were similar when the pat-
terns were filtered but unfiltered linked chains were
capable of achieving far higher recall than the fil-
tered subtrees.

These experiments suggest that the linked chain
model is a useful one for IE since it is simple enough
for an unfiltered set of patterns to be extracted and
able to represent a wider range of information than
the SVO and chain models.

References

Kenji Abe, Shinji Kawasoe, Tatsuya Asai, Hiroki
Arimura, and Setsuo Arikawa. 2002. Optimised Sub-
structure Discovery for Semi-Structured Data. InPro-
ceedings of the 6th European Conference on Princi-
ples and Practice of Knowledge in Databases (PKDD-
2002), pages 1–14.

Leslie Ann Goldberg and Mark Jerrum. 2000. Counting
Unlabelled Subtrees of a Tree is#P -Complete.Lon-
don Mathmatical Society Journal of Computation and
Mathematics, 3:117–124.

Mark A. Greenwood, Mark Stevenson, Yikun Guo, Henk
Harkema, and Angus Roberts. 2005. Automati-
cally Acquiring a Linguistically Motivated Genic In-
teraction Extraction System. InProceedings of the
4th Learning Language in Logic Workshop (LLL05),
Bonn, Germany.

Dan Klein and Christopher D. Manning. 2002. Fast
Exact Inference with a Factored Model for Natural
Language Parsing. InAdvances in Neural Informa-
tion Processing Systems 15 (NIPS 2002), Vancouver,
Canada.

Taku Kudo, Jun Suzuki, and Hideki Isozaki. 2005.
Boosting-based Parse Reranking with Subtree Fea-
tures. InProceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics, pages
189–196, Ann Arbour, MI.

Chritopher Manning and Hinrich Schütze. 1999.Foun-
dations of Statistical Natural Language Processing.
MIT Press, Cambridge, MA.

Igor Mel’čuk. 1987. Dependency Syntax: Theory and
Practice. SUNY Press, New York.

Ion Muslea. 1999. Extraction Patterns for Information
Extraction: A Survey. InProceedings of the AAAI-99

workshop on Machine Learning for Information Ex-
traction, Orlando, FL.

Ellen Riloff. 1996. Automatically Generating Extraction
Patterns from Untagged Text. InThirteenth National
Conference on Artificial Intelligence (AAAI-96), pages
1044–1049, Portland, OR.

Tony Rose, Mark Stevenson, and Miles Whitehead.
2002. The Reuters Corpus Volume 1 - from Yes-
terday’s News to Tomorrow’s Language Resources.
In Proceedings of the Third International Conference
on Language Resources and Evaluation (LREC-02),
pages 827–832, La Palmas de Gran Canaria.

Stephen Soderland. 1999. Learning Information Extrac-
tion Rules for Semi-structured and Free Text.Machine
Learning, 31(1-3):233–272.

Mark Stevenson and Mark A. Greenwood. 2005. A Se-
mantic Approach to IE Pattern Induction. InProceed-
ings of the 43rd Annual Meeting of the Association for
Computational Linguistics, pages 379–386, Ann Ar-
bor, MI.

Mark Stevenson and Mark A. Greenwood. 2006. Com-
paring Information Extraction Pattern Models. InPro-
ceedings of the Information Extraction Beyond The
Document Workshop (COLING/ACL 2006), pages 12–
19, Sydney, Australia.

Kiyoshi Sudo, Satoshi Sekine, and Ralph Grishman.
2001. Automatic Pattern Acquisition for Japanese
Information Extraction. InProceedings of the Hu-
man Language Technology Conference (HLT2001),
San Diego, CA.

Kiyoshi Sudo, Satoshi Sekine, and Ralph Grishman.
2003. An Improved Extraction Pattern Representa-
tion Model for Automatic IE Pattern Acquisition. In
Proceedings of the 41st Annual Meeting of the Associ-
ation for Computational Linguistics (ACL-03), pages
224–231, Sapporo, Japan.

Roman Yangarber, Ralph Grishman, Pasi Tapanainen,
and Silja Huttunen. 2000. Unsupervised Discov-
ery of Scenario-level Patterns for Information Extrac-
tion. In Proceedings of the Applied Natural Language
Processing Conference (ANLP 2000), pages 282–289,
Seattle, WA.

Roman Yangarber. 2003. Counter-training in the Dis-
covery of Semantic Patterns. InProceedings of the
41st Annual Meeting of the Association for Computa-
tional Linguistics (ACL-03), pages 343–350, Sapporo,
Japan.

Mohammed Zaki. 2002. Effectively Mining Frequent
Trees in a Forest. In8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, pages 71–80, Edmonton, Canada.

88



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 89–96,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Creating a Systemic Functional Grammar Corpus from the Penn Treebank

Matthew Honnibal and James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{mhonn, james }@it.usyd.edu.au

Abstract

The lack of a large annotated systemic func-
tional grammar (SFG) corpus has posed a
significant challenge for the development of
the theory. AutomatingSFG annotation is
challenging because the theory uses a mini-
mal constituency model, allocating as much
of the work as possible to a set of hierarchi-
cally organised features.

In this paper we show that despite the un-
orthodox organisation ofSFG, adapting ex-
isting resources remains the most practical
way to create an annotated corpus. We
present and analyse SFGBank, an automated
conversion of the Penn Treebank into sys-
temic functional grammar. The corpus is
comparable to those available for other lin-
guistic theories, offering many opportunities
for new research.

1 Introduction

Systemic functional grammar (Halliday and
Matthiessen, 2004) aims to describe the set of
meaningful choices a speaker makes when putting a
thought into words. Each of these choices is seen as
a resource for shaping the meaning in a particular
way, and the selection will have a distinct grammat-
ical outcome as well as a semantic implication. The
choices are presented hierarchically, so that early
selections restrict other choices. For instance, if a
speaker chooses imperative mood for a clause, they
cannot choose a tense. Each selection is linked to a
syntactic expression rule. When imperative mood
is selected, the subject of the clause is suppressed;

when interrogative mood is selected, the order of
the subject and first auxiliary are reversed.

Systemic grammars are very different from gram-
mars influenced by the formalist tradition. Systemic
analysis locates a constituent within a typology, and
yields a set of features that describe its salient prop-
erties. These features have proven useful for re-
search in applied linguistics, on topics such as stylis-
tics, discourse analysis and translation. As a gener-
ative theory, systemic grammars are less effective.
There have been a few attempts, such as those dis-
cussed by O’Donnell and Bateman (2005), but as yet
a wide coverage systemic grammar that can be used
for tractable parsing has not been developed.

The lack of a corpus and parser has limited re-
search on systemic grammars, as corpus studies have
been restricted to small samples of manually coded
examples, or imprecise queries of unannotated data.
The corpus we present, obtained by converting the
Penn Treebank, addresses this issue. It also suggests
a way to automatically code novel text, by convert-
ing the output of a parser for a different formalism.
This would also allow the use ofSFG features for
NLP applications to be explored, and support current
research usingSFG for applied linguistics.

The conversion process relies on a set of manually
coded rules. The first step of the process is to col-
lectSFGclauses and their constituents from parses in
the Penn Treebank. Each clause constituent is then
assigned up to three function labels, for the three si-
multaneous semantic and pragmatic structures Hal-
liday (1970) describes. Finally, the system features
are calculated, using rules referring to the function
labels assigned in the previous step. This paper ex-
tends the work described in Honnibal (2004).

89



2 Related Work

Converting the Penn Treebank is the standard ap-
proach to creating a corpus annotated according to a
specific linguistic theory. This has been the method
used to createLTAG (Frank, 2001), LFG (Frank
et al., 2003) andCCG (Hockenmaier and Steedman,
2005) corpora, among others. We employ a similar
methodology, converting the corpus using manually
specified rules.

Since theSFGannotation is semantically oriented,
the work also bears some resemblance to Prop-
bank (Palmer et al., 2005). However, Propbank is
concerned with manually adding information to the
Penn Treebank, rather than automatically reinter-
preting the same information through the lens of a
different linguistic theory.

We chose not to base our conversion on the Prop-
bank annotation, as it does not currently cover the
Brown or Switchboard sections of the Treebank.
The wider variety of genres provided by these sec-
tions makes the corpus much more useful forSFG,
since the theory devotes significant attention to prag-
matic phenomena and stylistic variation.

3 Systemic Functional Grammar

Generating a constituent using a systemic func-
tional grammar involves traversing a decision-tree-
like structure referred to as asystem network. The
nodes of this tree are referred to assystems, and the
options from the systems are referred to asfeatures.
At each system, the feature selected may add con-
straints on the type, number or order of the internal
structure of the constituent. When the entire net-
work has been traversed, the constraints are unified,
and the required constituents generated.

In order to annotate a sentence according to a sys-
temic functional grammar, we must specify the set
of features encountered as the system network is tra-
versed, and apply function labels to each constituent.
The function labeling is required because the con-
straints are always specified according to the child
constituents’ function, rather than their form.

Constituents may have more than one function
label, asSFG describes threemetafunctions, fol-
lowing Halliday’s (1969) argument that a clause is
structured simultaneously as a communicative act, a
piece of information, and a representation of reality.

Interpersonalfunction labels are assigned to clause
constituents in determining the clause’s communica-
tive status. The most important interpersonal func-
tions areSubjectandFinite, since the relative posi-
tion of the constituents bearing these labels largely
determines whether the clause will be a question,
statement or command.

The textual structure of the clause includes the
functionsThemeand Rheme, following Halliday’s
(1970) theory of information structure.

Finally, theexperientialfunction of a constituent
is its semantic role, described in terms of a small
set of labels that are only minimally sensitive to the
semantics of the predicate.

4 Annotation Implemented

We base our annotation on the clause network in
the Nigel grammar (Mann and Matthiessen, 1983),
as it is freely available and discussed at length in
Matthiessen (1995). It is difficult to include annota-
tion from the group and phrase networks, because of
the flat bracketing of constituents in the Penn Tree-
bank. The converted corpus has full coverage over
all sections of the Penn Treebank 3 corpus.

We implement features from 41 systems from the
clause network, out of a possible 62. The most
prominent missing features relate to process type.
The process type system classifies clauses as one of
four broad semantic types: material, mental, verbal
or relational, with subsequent systems making finer
grained distinctions. This is mostly determined by
the argument structure of the verb, but also depends
on its lexical semantics. Process type assignment
therefore suffers from word sense ambiguity, so we
are unable to select from this system or others which
depend on its result. Figure 1 gives an example of
a clause with interpersonal, textual and experiential
function labels applied to its constituents.

5 Creating the Corpus

SFGspecifies the structure of a clause from ‘above’,
by setting constraints that are imposed by the set of
features selected from the system network. These
constraints describe the structure in terms of inter-
personal, textual and experiential function labels.
These functions then determine the boundaries of
the clause, by specifying its constituents.

90



Constituent Interpersonal Textual Ideational
and – Txt. Theme –

last year Adjunct Top. Theme Circumstance
prices Subject Rheme Participant
were Finite Rheme –

quickly Adjunct Rheme Circumstance
plummeting Predicator Rheme Process

Table 1:SFG function labels assigned to clause constituents.

preprocess(parse)
clauses = []
for word in parse.words():

if isPredicate(word):
constituents = getConstituents(word)

clauses.append(constituents)

Figure 2: Conversion algorithm.

The Penn Treebank provides rich syntactic trees,
specifying the structure of the sentence. We there-
fore proceed from ‘below’, using the Penn Treebank
to find clauses and their constituents, then applying
function labels to them, and using the function labels
as the basis for rules to traverse the system network.

5.1 Finding Constituents

In this stage, we search the Treebank parse for
SFG clauses, and collect their constituents. Clauses
are identified by searching for predicates that head
them, and constituents are collecting by traversing
upwards from the predicate, collecting the nodes’
siblings until we hit an S node.

There are a few common constructions which
present problems for one or both of these pro-
cedures. These exceptions are handled by pre-
processing the Treebank tree, changing its structure
to be compatible with the predicate and constituent
extraction algorithms. Figure 2 describes the con-
version process more formally.

5.1.1 Finding predicates

A predicate is the main verb in the clause. In the
Treebank annotation, the predicate will be the word
attached to the lowest node in a VP chain, because
auxiliaries attach higher up. Figure 3 describes the
function to decide whether a word is a predicate. Es-
sentially, we want words that are the last word at-
tached to a VP, that do not have a VP sibling.

Figure 1 marks the predicates and constituents in
a Treebank parse. The predicates are underlined, and
the constituents numbered to match the predicate.

if verb.parent.label == ’VP’:
for sibling in verb.parent.children:

if sibling.isWord():
if sibling.offset > verb.offset:

return False
if sibling.label == ’VP’:

return False
return True

Figure 3: Determining whether a word is a predicate.

node = predicate
constituents = [predicate]
while node.label not in clauseLabels:

for sibling in node.parent.children:
if sibling != node:

constituents.append(sibling)
for sibling in node.parent.children:

if sibling != node
and sibling.label in conjOrWHLabels:

constituents.append(sibling)

Figure 4: Finding constituents.

5.1.2 Getting Constituents

Once we have a predicate, we can traverse the tree
around it to collect the constituents in the clause it
heads. We do this by collecting its siblings and mov-
ing up the tree, collecting the ‘uncle’ nodes, until we
hit the top of the clause. Figure 4 describes the pro-
cess more formally. The final loop collects conjunc-
tions and WH constituents that attach alongside the
clause node, such as the ‘which’ in Figure 1.

5.1.3 Pre-processing Ellipsis and Gapping

Ellipsis and gapping involve two or more pred-
icates sharing some constituents. When the shar-
ing can be denoted using the tree structure, by plac-
ing the shared items above the point where the VPs
fork, we refer to the construction as ellipsis. Figure
5 shows a sentence with a subject and an auxiliary
shared between two predicates. 3.4% of predicates
share at least one constituent with another clause via
ellipsis. We pre-process ellipsis constructions by in-
serting an S node above each VP after the first, and
adding traces for the shared constituents.

91



Shhhhhhhhhhhh

((((((((((((
NP1

XXXXX
�����

NP
b

bb
"

""
The plant

SBAR
PPPP

����
WHNP2

which

S

VP
PPPP

����
is 2 VP

aaa
!!!

owned2 PP2
HHH

���
by Vose Co

VP
XXXXX

�����
was1 VP

PPPP
����

employed1 S-PRP1

VP
aaa

!!!
to 3 VP

b
b

"
"

make3 NP3

them

Figure 1: A parse tree with predicates underlined and constituents numbered.

In gapping constructions, the shared constituent
is the predicate itself, and what differs between the
two clauses are the arguments. The Treebank uses
special trace rules to describe which arguments must
be copied across to the gapped clause. We create
traces to the shared constituents and add them to
each gapped clause, so that the trace of the verb will
be picked up as a predicate later on. Gapping is a
very rare phenomenon – only 0.02% clauses have
gapped predicates.

5.1.4 Pre-processing Semi-auxiliaries

In Figure 6 the verb ‘continue’ will match our
rules for predicate extraction, described in Section
5.1. SFG analyses this and other ‘semi-auxiliaries’
(Quirk et al., 1991) as a serial verb construction,
rather than a matrix clause and a complement clause.
Since we want to treat the finite verb as though it
were an auxiliary, we pre-process these cases by
simply deleting the S node, and attaching its chil-
dren directly to the semi-auxiliary’s VP.

Defining the semi-auxiliary constructions is not
so simple, however. Quirk et al. note that some
of these verbs are more like auxiliaries than others,
and organise them into a rough gradient according
to their formal properties. The problem is that there
is not clear agreement in theSFG literature about
where the line should be drawn. Matthiessen (1995)
describes all non-finite sentential complements as
serial-verb constructions. Martin et al. (1997) argue
that verbs such as ‘want’ impose selectional restric-

S
PPPP

����
NP

Prices

VP
HHH

���
continue S

VP
ll,,

to rise

Figure 6: Treebank representation of a sentence with
a semi-auxiliary.

tions on the subject, and therefore should be treated
as full verbs with a clause complement. Other com-
promises are possible as well.

Using Matthiessen’s definition, we collect 5.3%
fewer predicates than if we treated all semi-
auxiliaries as main verbs. If the complement clause
has a different subject from the parent clause, when
the two are merged the new verb will seem to have
extra arguments. 58% of these mergings introduce
an extra argument in this way. For example,

Investors want the market to boom

will be analysed as thoughboomhas two argu-
ments,investorsandmarket. We prevent this from
occurring by adding an extra condition for merg-
ing clauses, stating that the subject of the embedded
clause should be a trace co-indexed with the subject
of the parent clause.

92



S
XXXXXX

������
NP

Asbestos

VPhhhhhhh
(((((((

was VPhhhhhhhh@@
((((((((

VP
aaaa

!!!!
used PP

PPPP
����

in the early 1950s

and VP
HHH

���
replaced PP

ZZ��
in 1956

Figure 5: Treebank representation of ellipsis. Predicates are underlined, shared items are in bold.

5.2 Constituent functions

As discussed above, we attach up to three function
labels to each clause constituent, one for eachmeta-
function. The rules to do this rely on the order of
constituents and the function dash-tags in the Penn
Treebank. Some experiential function rules also re-
fer to interpersonal labels, and some textual function
rules refer to experiential labels.

5.2.1 Interpersonal Function Labels

The possible interpersonal function labels we as-
sign areSubject, Complement, Adjunct, Finite, and
Predicator. The Finite and Predicator are the first
tensed verb, and the predicate respectively. If there
are no auxiliary verbs, Halliday and Matthiessen
(2004) describes the predicate as functioning both
as Finite and Predicator. Since this is the only case
in which a constituent would receive multiple labels
from a single metafunction, we instead assign the
single labelFinite/Predicator.

For NPs, Subjects, Complements and Adjuncts
are distinguished using the Penn Treebank’s dash-
tag function labels. SFG always assigns preposi-
tional phrases the label Adjunct. All NP constituents
that are not marked with an adverbial function tag in
the Treebank are labeledComplement. Conjunctions
are not assigned interpersonal functions.

5.2.2 Experiential Function Labels

The experiential function labels we assign are
Participant, Processand Circumstance. This is a
simplification of the function labels described by
Halliday and Matthiessen (2004), as Participants are
usually subdivided into what other linguistic theo-
ries refer to as semantic roles.SFG has its own se-

mantic role description, which relies onprocess type
features. For instance, Participants in averbalpro-
cess like ‘say’ have the role optionsSayer, Target,
ReceiverandVerbiage.

Distinguishing process types requires a word
sense disambiguated corpus and a word sense sen-
sitive process type lexicon. While there is a signifi-
cant intersection between the Penn Treebank and the
Semcor word sense disambiguated corpus, there is
currently no suitable process type lexicon. Conse-
quently, Participants have not been subtyped. The
Process is simply the verb phrase, while the Subject
and Complements are Participants.

5.2.3 Textual Function labels

The textual metafunction describes the informa-
tion structure of the clause. Halliday’s textual func-
tion labels areTextual Theme, Interpersonal Theme,
Topical ThemeandRheme. Theme and Rheme are
often referred to as Topic and Comment in other the-
ories of information structure (Vallduvi, 1993). The-
ories also disagree about exactly where to draw the
boundary between the two.

In Halliday’s theory, the Rheme begins after
the first full constituent with an experiential func-
tion label, and extends to the end of the clause.
The first constituent with an experiential function
is labeled Topical Theme. Constituents before it
are labeled either Interpersonal Theme or Textual
Theme. Auxiliaries and vocatives are labeled In-
terpersonal Theme, while conjunctions are labeled
Textual Theme.

93



System Null % Feature 1 Feature 2
clause class 0% major (86%) minor (13%)

agency 13% effective (52%) middle (34%)
conjunction 13% non-conjuncted (64%) conjuncted (21%)
finiteness 13% finite (67%) non-finite (19%)
polarity 13% positive (81%) negative (4%)

rank 13% ranking (66%) shifted (19%)
secondary/beta clause 13% false (58%) true (28%)

status 13% bound (45%) free (41%)
deicticity 32% temporal (60%) modal (7%)
person 32% non-interactant (54%) interactant (13%)

theme selection 32% unmarked (58%) marked (9%)
voice 47% active (45%) passive (6%)

embed type 80% nominal qualifier (15%) other qualifier (3%)
theme role 90% as adjunct (7%) as process (1%)

passive agency 93% non-agentive (5%) agentive (1%)

Table 2: Selected systems and how often their features are selected.

5.3 System Selections

As discussed above, the system features are organ-
ised into hierarchies, with every feature assuming a
null value unless its system’s entry condition is met.
We therefore approach the system network much
like a decision tree, using rules to control how the
network is traversed.

The rules used to traverse the network cannot be
explained here in full, as there are 41 such decision
functions currently implemented. Table 2 lists a few
of the systems we implement, along with how of-
ten their features are selected. Because the system
network is organised hierarchically, a selection will
not always be made from a given system, since the
‘entry condition’ may not be met. For instance, the
feature agency=effective is an entry condition for the
voice system, so if a clause is middle, no voice will
be selected. The Null % column describes how of-
ten the entry condition of the clause is not met. Sys-
tems further down the heirarchy will obviously be
relevant less often, as will systems which describe a
finer grained distinction for an already rare feature.

The following sections describe the system net-
work in terms of four general regions. The systems
within each region largely sub-categorise each other,
or relate to the same grammatical phenomenon.

5.4 Mood systems

Assuming the clause is independent, the major mood
options are declarative, interrogative and imperative.
Deciding between these is quite simple: in interrog-
ative clauses, the Subject occurs after the first auxil-
iary. Imperative clauses have no Subject.

There are a few more granular systems for in-
terrogative clauses, recording whether the question
is polar or WH. If the clause is WH interrogative,
there are two further features recording whether the
requested constituent functions as Subject, Adjunct
or Complement. The values of these features are
quite simple to calculate, by finding the WH element
among the constituents and retrieving its interper-
sonal function.

If the clause is not imperative, there are systems
recording the person (first, second or third) of the
subject, and whether the first auxiliary is modal,
present tense, past tense, or future tense.SFG de-
scribes three tenses in English, regarding ‘will’ and
‘shall’ auxiliaries as future tense markers, rather
than modals.

If the clause is imperative, there is a further sys-
tem recording whether the clause is the ‘jussive’ im-
perative with ‘let’s’, an ‘oblative’ imperative with
‘let me’, or a second person imperative. If the im-
perative is second person, a further feature records
whether the ‘you’ is explicit or implied.

There are also features recording the ‘polarity’ of
the clause: whether it is positive or negative, and, if
negative, whether the negative marker is full-formed
or cliticised as -n’t.

5.5 Voice systems

In the Nigel grammar, the first voice distinction
drawn is not between active and passive, but be-
tween transitive and intransitive clauses. Intransitive
clauses cannot be passivised, as there is no Comple-
ment to shift to Subject. It therefore makes sense to

94



carve these off first. If the clause is transitive, an-
other system records whether it is active or passive.
The rules to draw this distinction simply look at the
verb phrase, checking whether the last auxiliary is a
form of the verb ‘be’ and the lexical verb has a past
participle part-of-speech tag. Finally, a further sys-
tem records whether passive clauses have an agent
introduced by ‘by’.

5.6 Theme systems

Theme systems record what occurs at the start of the
clause. Typically in English, the first major con-
stituent will be the logical subject, and hence also
the Topical Theme. A system records whether this is
or is not the case. If the clause is finite and the log-
ical subject is not the Topical Theme, the clause is
said to have a ‘marked’ theme. Verb phrase Topical
Themes are considered unmarked if the clause is im-
perative. A further system records whether the Top-
ical Theme is the logical object (as in passivisation),
or whether it is a fronted Adjunct. Passive clauses
may have a fronted Adjunct, so does not necessar-
ily have a logical object as Topical Theme. There
are two further systems recording whether the clause
has a Textual Theme and/or an Interpersonal Theme.

5.7 Taxis systems

Taxis systems record dependency relationships be-
tween clauses. There are two types of information:
whether the attachment is made through coordina-
tion or subordination, and the semantic type of the
attachment. Broadly, semantic type is between ‘ex-
pansion’ and ‘projection’, projection being reported
(or quoted) speech or thought. A further system
records the subtype of expansion clauses, which is
quite a subtle distinction. Unfortunately Halliday
chose thoroughly unhelpful terminology for this dis-
tinction: his subtypes of expansion are elaboration,
enhancement and extension. Enhancing clauses are
essentially adverbial, and are almost always subor-
dinate. Extending clauses, by contrast, are approxi-
mately the ‘and’ relationship, and are almost always
coordinate. Elaborating clauses qualify or further
define the information in the clause they are attached
to. Elaborating clauses can be either subordinate
or coordinate. Subordinate elaborating clauses are
non-defining relative clauses, while coordinate elab-
orating clauses are usually introduced by a conjunc-

tive adjunct, like ‘particularly’.

6 Accuracy

In order to evaluate the accuracy of the conversion
process, we manually evaluated the constituency
structure of a randomly selected sample of 200
clauses. The conversion heuristics were developed
on section 00 of the Wall Street Journal and section 2
of Switchboard, while the evaluation sentences were
sampled from the rest of the Penn Treebank.

We limited evaluation to the constituency conver-
sion process, in order to examine more clauses. The
function labels are calculated from the constituency
conversion, while the system features are calculated
from the function labels and other system features.
Since the system network is like a decision tree,
whether a feature is null-valued depends on prior
feature decisions. These dependencies in the anno-
tation mean that evaluating all of it involves some re-
dundancy. We therefore evaluated the constituency
structure, since it did not depend on any of the other
annotation, and the conversion heuristics involved in
calculating it were more complicated than those for
the function labels and system features.

In the 200 clause sample, we found three clauses
with faulty constituency structures. One of these
was the result of a part-of-speech tag error in the
Treebank. The other two errors were conjunctions
that were incorrectly replicated in ellipsis clauses.

7 Conclusion

The Penn Treebank was designed as a largely the-
ory neutral corpus. In deciding on an annotation
scheme, it emphasised the need to have its annota-
tors work quickly and consistent, rather than fidelity
to any particular linguistic theory (Marcus et al.,
1994).

The fact that it has been successfully converted to
so many other annotation schemes suggests that its
annotation is indeed consistent and fine grained. It
is therefore unsurprising that it is possible to con-
vert it to SFG as well. Despite historically different
concerns,SFG still fundamentally agrees with other
theories about which constructions are syntactically
distinct — it simply has an unorthodox strategy for
representing that variation, delegating more work to

95



feature structures and less work to the syntactic rep-
resentation.

Now that a sizableSFG corpus has been created,
it can be put to use for linguistic andNLP research.
Linguistically, we suggest that it would be interest-
ing to use the corpus to explore some of the as-
sertions in the literature that have until now been
untestable. For instance, Halliday and Matthiessen
(2004) suggests that the motivation for passivisation
is largely structural — what comes first in a clause is
an important choice in English. This implies that the
combination of passive voice and a fronted adjunct
should be unlikely. There should be many such sim-
ple queries that can shed interesting light on abstract
claims in the literature.

Large annotated corpora are currently very impor-
tant for parsing research, making this work a vital
first step towards exploring whetherSFGannotation
can be automated. The fact that Treebank parses can
be converted intoSFGannotation suggests it can be,
although most parsers do not replicate the dash-tags
attached to Treebank labels, which are necessary to
distinguishSFGcategories in our conversion system.

Even without automating annotation, the corpus
offers some potential for investigating how useful
SFG features are forNLP tasks. The Penn Treebank
includes texts from a variety of genres, including
newspaper text, literature and spoken dialogue. The
Switchboard section of the corpus also comes with
various demographic properties about the speakers,
and is over a million words. We therefore suggest
that gold standardSFG features could be used in
some simple document classification experiments,
such as predicting the gender or education level of
speakers in the Switchboard corpus.

8 Acknowledgments

We would like to thanks the anonymous review-
ers for their helpful comments. James Curran was
funded under ARC Discovery grants DP0453131
and DP0665973.

References
Anette Frank. 2001. Treebank conversion: Converting the NE-

GRA treebank to an LTAG grammar. InProceedings of the
EUROLAN Workshop on Multi-layer Corpus-based Analy-
sis. Iasi, Romania.

Anette Frank, Louisa Sadler, Josef van Genabith, and Andy
Way. 2003.From Treebank Resources To LFG F-Structures

- Automatic F-Structure Annotation of Treebank Trees and
CFGs extracted from Treebanks. Kluwer, Dordrecht.

Michael A. K. Halliday. 1969. Options and functions in the
English clause.Brno Studies in English, 8:82–88. Reprinted
in Halliday and Martin (eds.)(1981) Readings in Systemic
Linguistics, Batsford, London.

Michael A. K. Halliday. 1970. Language structure and language
function. In John Lyons, editor,New Horizons in Linguistics.
Penguin, Harmondsworth.

Michael A. K. Halliday and Christian M. I. M. Matthiessen.
2004. An Introduction to Functional Grammar. Edward
Arnold, London, third edition.

Julia Hockenmaier and Mark Steedman. 2005. Ccgbank man-
ual. Technical Report MS-CIS-05-09, University of Penn-
sylvania.

Matthew Honnibal. 2004. Converting the Penn Treebank to
Systemic Sunctional Grammar. InProceedings of the Aus-
tralasian Language Technology Workshop (ALTW04).

William C. Mann and Christian M. I. M. Matthiessen. 1983. An
overview of the Nigel text generation grammar. Technical
Report RR-83-113, USC/Information Sciences Institute.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated corpus of
English: The Penn Treebank.Computational Linguistics,
19(2):313–330.

James R. Martin, Christian M. I. M. Matthiessen, and Clare
Painter. 1997.Working with Functional Grammar. Arnold,
London.

Christian Matthiessen. 1995.Lexicogrammatical Cartography.
International Language Sciences Publishers, Tokyo, Taipei
and Dallas.

Michael O’Donnell and John A. Bateman. 2005. SFL in com-
putational contexts: a contemporary history. In J. Webster,
R. Hasan, and C. M. I. M. Matthiessen, editors,Continu-
ing Discourse on Language: A functional perspective, pages
343–382. Equinox, London.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005. The
proposition bank: An annotated corpus of semantic roles.
Computational Linguistics, 31(1):71–106.

Randolph Quirk, Sidney Greenbaum, Geoffrey Leech, and Jan
Svartvik. 1991. A Grammar of Contemporary English.
Longman, London.

Enric Vallduvi. 1993. Information packing: A survey. Technical
Report HCRC/RP-44, Universiy of Edinburgh.

96



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 97–104,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Verb Valency Semantic Representation for Deep Linguistic Processing 

 Aleš Horák
1
, Karel Pala

1
, Marie Duží

2
, Pavel Materna

1  

 1: Faculty of Informatics, Masaryk University 
Botanicka 68a 
602 00 Brno 

Czech Republic 

{hales,pala}@fi.muni.cz 

2: VSB-Technical University of Ostrava 
17.listopadu 15 

708 33 Ostrava-Poruba 
Czech Republic 

marie.duzi@vsb.cz 

 

 
 

Abstract 

In the paper, we describe methods for 
exploitation of a new lexical database of 
valency frames (VerbaLex) in relation to 
Transparent Intensional Logic (TIL). We 
present a detailed description of the 
Complex Valency Frames (CVF) as they 
appear in VerbaLex including basic 
ontology of the VerbaLex semantic roles. 

TIL is a typed logical system developed for 
natural language semantic representation 
using TIL logical forms known as 
constructions. TIL is well suited to handle 
the difficult language phenomena such as 
temporal relations, intensionality and 
propositional attitudes. Here we make use 
of the long-term development of the 
Normal Translation Algorithm aimed at 
automatic translation of natural language 
sentences into TIL constructions. 

We examine the relations between CVFs 
and TIL constructions of predicate-
argument structures and discuss the 
procedure of automatic acquisition of the 
verbal object constructions. The 
exploitation of CVFs in the syntactic 
parsing is also briefly mentioned. 

1 Introduction 

In the paper we propose a method to integrate the 
logical analysis of sentences with the linguistic 
approach to semantics, exploiting the complex 
valency frames (CVFs) in the VerbaLex verb 

valency lexicon, see (Hlaváčková, Horák, Kadlec 
2006). To this end we first present a brief survey of 
the logic we are going to use, namely Transparent 
Intensional Logic (TIL), which was originated by 
P. Tichý (Tichý 1988). Theoretical aspects of TIL 
were further developed in particular by P. Materna 
(Materna 1998) and also by co-authors of this 
paper (see, Materna, Duží 2005, Horák 2002). A 
question may be asked why we do not exploit first 
order predicate logic (PL1) where some of the 
presented problems have already been explored 
and PL1 has been used to represent logical forms. 
It is a well established fact that PL1 is not able to 
handle systematically the phenomena like 
propositional verbs (which, of course, appear in 
our valency frames), grammatical tenses and 
modalities (modal verbs and modal particles in 
natural language). On the other hand, since TIL 
works with types these problems either do not arise 
or they can be solved in an intuitive way (see Ti-
chý 1988). 
In the second linguistic section we present CVFs 
by means of which the semantics of verbs in 
natural language such as Czech or English can be 
described.  
In Section 3 we show how CVFs describe the 
surface valencies of verbs (i.e. their respective 
morphological cases in Czech) as well as the 
semantics of their predicate-argument structure. 
Concerning the latter we make use of the deep 
semantic roles expressed by two-level labels based 
partly on the Top Ontology (EuroWordNet) and 
partly on the selected literals from Princeton 
WordNet. 
Since so far these two ways of description, namely 
the logical and linguistic one, have been treated 
separately, the task we set is to propose a method 

97



of their interrelation and coordination. Needless to 
say that both ways of description of verb semantics 
are useful.  
Hence we are going to show how to combine a 
logical description using mostly terms like types, 
individuals, classes, relations, propositions, or, in 
general, constructions of these entities, with the  
linguistic framework capturing the idiosyncratic 
semantic features of the verbs such as 
SUBS(liquid:1) or AG(person:1|animal:1).  
In Section 4 we adduce an example of the analysis 
of selected English and Czech verbs for which the 
above mentioned integration has been proposed.  
   

2 Basics of Transparent Intensional 

Logic 

In this Section we provide an introductory 
explanation of the main notions of Transparent 
Intensional Logic (TIL). For exact definitions and 
details see, e.g., Tichý (1988), Tichý (2004), 
Materna (1998), Materna (2004) and Materna, 
Duží (2005). TIL  approach to knowledge 
representation can be characterised as the ‘top-
down approach’. TIL ‘generalises to the hardest 
case’ and obtains the ‘less hard cases’ by lifting 
various restrictions that apply only higher up. This 
way of proceeding is opposite to how semantic 
theories tend to be built up. The standard approach 
(e.g. predicate logic) consists in beginning with 
atomic sentences, then proceeding to molecular 
sentences formed by means of truth-functional 
connectives or by quantifiers, and from there to 
sentences containing modal operators and, finally, 
attitudinal operators. 
Thus, to use a simple case for illustration, once a 
vocabulary and rules of formation have been laid 
down, semantics gets off the ground by analysing 
an atomic sentence as follows: 
 (1) “Charles is happy”: Fa 

And further upwards: 
 (2) “Charles is happy, and Thelma is 
grumpy”: Fa ∧ Gb 

 (3) “Somebody is happy”: ∃x (Fx) 
 (4) “Possibly, Charles is happy”: � (Fa) 
 (5) “Thelma believes that Charles is happy”: 
Bb (Fa). 
In non-hyperintensional (i.e., non-procedural) 
theories of formal semantics, attitudinal operators 
are swallowed by the modal ones. But when they 

are not, we have three levels of granularity: the 
coarse level of truth-values, the fine-grained level 
of truth-conditions (propositions, truth-values-in-
intension), and the very fine-grained level of 
hyper-propositions, i.e., constructions of 
propositions. TIL operates with these three levels 
of granularity. We start out by analysing sentences 
from the uppermost end, furnishing them with a 
hyperintensional1 semantics, and working our way 
downwards, furnishing even the lowest-end 
sentences (and other empirical expressions) with a 
hyperintensional semantics. That is, the sense of a 
sentence such as “Charles is happy” is a hyper-
proposition, namely the construction of the 

denoted proposition (i.e., the instruction how to 
evaluate the truth-conditions of the sentence in any 
state of affairs). 
When assigning a construction to an expression as 
its meaning, we specify a procedural know-how, 
which must not be confused with the respective 
performancy know-how. Distinguishing 
performatory know-how from procedural know-
how, the latter could be characterised “that a 
knower x knows how A is done in the sense that x 
can spell out instructions for doing A.” For 
instance, to know what Goldbach Conjecture 
means is to understand the instruction to find 
whether ‘all positive even integers ≥ 4 can be 
expressed as the sum of two primes’. It does not 
include either actually finding out (whether it is 
true or not by following a procedure or by luck) or 
possessing the skill to do so.2  
Furthermore, the sentence “Charles is happy” is an 
‘intensional context’, in the sense that its logical 
analysis must involve reference to empirical 
parameters, in this case both possible worlds and 
instants of time. Charles is only contingently 
happy; i.e., he is only happy at some worlds and 
only sometimes. The other reason is because the 
analysans must be capable of figuring as an 
argument for functions whose domain are 
propositions rather than truth-values. Construing 
‘Fa’ as a name of a truth-value works only in the 
case of (1), (2) and (3). It won’t work in (5), since 
truth-values are not the sort of thing that can be 
                                                           
1  The term ‘hyperintensional’ has been introduced by 

Max Cresswell in Cresswell (1975). See also 
Cresswell (1985). 

2  For details on TIL handling knowledge see Duží, 
Jespersen, Müller (2005). 

98



believed. Nor will it work in (4), since truth-values 
are not the sort of thing that can be possible. 
Constructions are procedures, or instructions, 
specifying how to arrive at less-structured entities. 
Being procedures, constructions are structured 
from the algorithmic point of view, unlike set-
theoretical objects. The TIL ‘language of 
constructions’ is a modified hyper-intensional 
version of the typed λ-calculus, where Montague-
like λ-terms denote, not the functions constructed, 
but the constructions themselves. Constructions 
qua procedures operate on input objects (of any 
type, even on constructions of any order) and yield 
as output (or, in well defined cases fail to yield) 
objects of any type; in this way constructions 
construct partial functions, and functions, rather 
than relations, are basic objects of our ontology.  
By claiming that constructions are algorithmically 
structured, we mean the following: a construction 
C ― being an instruction ― consists of particular 
steps, i.e., sub-instructions (or, constituents) that 
have to be executed in order to execute C. The 
concrete/abstract objects an instruction operates on 
are not its constituents, they are just mentioned. 
Hence objects have to be supplied by another 
(albeit trivial) construction. The constructions 
themselves may also be only mentioned: therefore 
one should not conflate using constructions as 
constituents of composed constructions and 
mentioning constructions that enter as input into 
composed constructions, so we have to strictly 
distinguish between using and mentioning 

constructions. Just briefly: Mentioning is, in 
principle, achieved by using atomic constructions. 
A construction is atomic if it is a procedure that 
does not contain any other construction as a used 
subconstruction (a constituent). There are two 
atomic constructions that supply objects (of any 
type) on which complex constructions operate: 
variables and trivializations.  
Variables are constructions that construct an object 
dependently on valuation: they v-construct, where 
v is the parameter of valuations. When X is an 
object (including constructions) of any type, the 
Trivialization of X, denoted 0X, constructs X 
without the mediation of any other construction. 0X 
is the atomic concept of X: it is the primitive, non-
perspectival mode of presentation of X. 
There are three compound constructions, which 
consist of other constructions: Composition, 
Closure and Double Execution. Composition [X Y1 

… Ym] is the procedure of applying a function f v-
constructed by X to an argument A v-constructed 
by Y1,…,Ym, i.e., the instruction to apply f to A to 
obtain the value (if any) of f at A. Closure 
[λλλλx1…xm Y] is the procedure of constructing a 
function by abstracting over variables, i.e., the 
instruction to do so. Finally, higher-order 
construction X can be used twice over as a 
constituent of a composed construction. This is 
achieved by the fifth construction called Double 

Execution 
2
X.  

TIL constructions, as well as the entities they 
construct, all receive a type. On the ground level of 
the type-hierarchy, there are entities unstructured 
from the algorithmic point of view belonging to a 
type of order 1. Given a so-called epistemic (or 

‘objectual’) base of atomic types  (οοοο-truth values, 
ιιιι-individuals, ττττ-time moments / real numbers, ωωωω-
possible worlds), mereological complexity is 
increased by the induction rule for forming partial 
functions: where α, β1,…,βn are types of order 1, 
the set of partial mappings from β1 ×…× βn to α, 
denoted (αβ1…βn), is a type of order 1 as well. 
Constructions that construct entities of order 1 are 
constructions of order 1. They belong to a type of 
order 2, denoted by *1. Inductively we define type 
of order n, *n.  
TIL is specific in a precise solution for intensions 
as non-empirical objects of the real world. 
Intensions are qualified as functions of a type 
((ατ)ω), i.e., functions from possible worlds to 
chronologies of the type α (in symbols: ατω), 
where a chronology is a function of type (ατ). 
Some important kinds of intensions are:  
Propositions, type οτω (shortened as π). They are 
denoted by empirical (declarative) sentences. 
Properties of members of a type α, or simply α-
properties, type (οα)τω.

3 General terms (some 
substantives, intransitive verbs) denote properties, 
mostly of individuals. 
Relations-in-intension, type (οβ1…βm)τω. For 
example transitive empirical verbs, also attitudinal 
verbs denote these relations. Omitting τω we get the 
type (οβ1…βm) of relations-in-extension (to be met 
mainly in mathematics). 
                                                           
3  Collections, sets, classes of ‘α-objects’ are members 

of type (οα); TIL handles classes (subsets of a type) 
as characteristic functions. Similarly relations (-in-
extension) are of type(s) (οβ1…βm). 

99



α-roles or offices, type ατω, where α ≠ (οβ). 
Frequently ιτω (an individual office). Often denoted 
by concatenation of a superlative and a noun (“the 
highest mountain”). Individual roles correspond to 
what Church calls an “individual concept”. 
 

3 The Complex Valency Frames 

Valency frames have been built in several projects 
(VALLEX for Czech PDT (Žabokrtský 2005) or 
VerbNet (Kipper et al 2006)). Motivation for the 
VerbaLex project came from comparing Czech 
WordNet verb frames with VALLEX. The main 
goal of VerbaLex is an automatic processing of 
verb phrases exploiting explicit links to Princeton 
WordNet. The complex valency frames we are 
working with can be characterized as data 
structures (tree graphs) describing predicate-
argument structure of a verb which contains the 
verb itself and the arguments determined by the 
verb meaning (their number usually varies from 1-
5). The argument structure also displays the 
semantic preferences on the arguments. On the 
syntactic (surface) level the arguments are most 
frequently expressed as noun or pronominal groups 
in one of the seven cases (in Czech) and also as 
prepositional cases or adverbials.  
An example of a complex valency frame for the 
verb zabít (kill) looks like: 
usmrtit:1/zabít:1/dostat:11 (kill:1) 
-frame: AG<person:1|animal:1>who_nom

obl   
 VERBobl   
 PAT<person:1|animal:1>whom_acc

obl   
 INS<instrument:1>with_what_ins

opt    
-example: vrah zabil svou oběť nožem (A murderer 
has killed the victim with a knife). 
-synonym: 
-use: prim 
More examples of CVFs for some selected verbs 
can be found below in Section 4. 
The semantics of the arguments is typically labeled 
as belonging to a given semantic role (or deep 
case), which represents a general role plus 
subcategorization features (or selectional 
restrictions). Thus valency frames in Verbalex 
include information about:  

1. the syntactic (surface) information about 
the syntactic valencies of a verb, i.e. what 
morphological cases (direct and 
prepositional ones in highly inflected 

languages such as Czech) are associated 
with (required by) a particular verb, and 
also adverbials, 

2. semantic roles (deep cases) that represent 
the integration of the general labels with 
subcategorization features (or selectional 
restrictions) required by the meaning of the 
verb.   

The inventory of the semantic roles is partly 
inspired by the Top Ontology and Base Concepts 
as they have been defined within EuroWordNet 
project. Thus we work with the general or ‘large’ 
roles like AG, ART(IFACT), SUBS(TANCE), 
PART, CAUSE, OBJ(ECT) (natural object), 
INFO(RMATION), FOOD, GARMENT, 
VEHICLE and others. They are combined with the 
literals from Princeton WordNet 2.0 where literals 
represent subcategorization features allowing us to 
climb down the hypero/hyponymical trees to the 
individual lexical units. For example, we have 
AG(person:1|animal:1) or SUBS(liquid:1) that can 
be used within the individual CVFs. 
The verb entries are linked to the Czech and 
Princeton WordNet 2.0, i.e. they are organized 
around the respective lemma in synsets with 
numbered senses.  
The Czech lexical resource being now developed is 
then a list of Czech CVFs – this work is going on 
within the Verbalex project at FI MU (Hlaváčková, 
Horák, 2005). Verbalex now contains approx. 
11000 verb literals organized in synsets. The 
current goal is to enlarge the lexicon to 15 000 
verbs. 
The inventory of the semantic roles we work with 
clearly represents a sort of ontology which tries to 
cover word stock of Czech verbs and can be used 
as a base for a semantic classification and 
subclassification of the verbs. The ontologies 
represent theoretical constructs designed from the 
„top“ and as such they are not directly based on the 
empirical evidence, i.e. corpus data. Thus there is a 
need to confront the ontologies and the inventories 
of the semantic roles that can be derived from them 
with the corpus data and see how well they can 
correspond to them. For this purpose we are 
experimenting with the corpus data obtained from 
the Word Sketch Engine (Kilgarriff, Rychlý,  
Smrž, Tugwell 2006). 
 

100



4 Logical Analysis Using CVFs 

In this section we describe the translation of 
VerbaLex CVFs into a verb phrase, which is a core 
of a sentence logical analysis.  
TIL comes with a dissociation of significant verbs 
into two groups according to the classification of 
their meaning: 

1. by attributive verbs we ascribe qualities or 
properties to objects. Attributive verbs are 
typically expressed by the respective form 
of the verb ‘to be’ combined with an 
expression denoting a property; examples: 
‘to be red’ or ‘to be mellow’ or with a 
general substantive like ‘to be a traitor’, ‘to 
be a tree’. 

2. episodic verbs, on the other hand, specify 
actions performed by a subject. 

An episodic verb does not describe its subject's 
state in any moment of time, it rather describes an 
episode of doing something at the certain time 
moment (and necessarily some time before that 
moment plus the expectation that it will last also in 
the next few moments, at least). TIL provides a 
complex handling of episodic verbs including the 
verb tense, aspect (perfective/imperfective) or 
active/passive state. All these features are 
concentrated around the so called verbal object, the 
construction of which (i.e., the meaning of a 
particular verb phrase) is the application of (the 
construction of) the verb to (the constructions of) 
the verb's arguments. 
Since the analysis of attributive verbs is usually 
quite simple, we will concentrate in the following 
text on the examples of selected episodic verbs 
from VerbaLex and their logical analysis using the 
complex valency frames. 
The TIL type of episodic verbal objects is 
(ο(οπ)(οπ))ω, where π is the type of propositions 
(οτω). See (Horák 2002, pp. 64-73) and (Tichý 
1980) for detailed explanation. Our analysis is 
driven by a linguistic (syntactic) context that 
signals the semantic fact that there is always a 

function involved here, so that we have to ascribe 
types to its arguments and value. 
 

4.1 Examples of Logical Analysis 

We have chosen cca 10 verbs with their verb 
frames from VerbaLex and we will use them as 

examples of the algorithm for determining the verb 
type in the TIL logical analysis procedure. 

 
dát (give) 
dát:2 / dávat:2 / darovat:1 / věnovat:1 (give:8, 
gift:2, present:7) 
-frame: DON<organization:1>what_nom

obl VERBobl  
OBJ<object:1>what_acc

obl  
BEN<person:1>to_whom_dat

obl 

-example: firma věnovala zaměstnancům nová auta 
(a company gave new cars to the employees) 
-use: prim 
The verb arguments in this frame are: who, to 

whom, what (all obligatory) with (at least) two 
options: a) to whom  is an individual, b) to whom is 
a class of individuals. The respective verb types 
are ad a): ((ο(οπ)(οπ))ωιιι),  
ad b): ((ο(οπ)(οπ))ωι(οι)ι).  
For example to whom = to the employees of a 
given institution. To be an employee of the 
institution XY is a property, say Z / (οι)τω. So “The 
company gave to the employees of XY…“, not 
taking into account grammatical tenses and 
omitting trivializations we get λwλt [Givewt XY 
Zwt etc.] (XY has the type ι here, being a collective 
rather than a class.) 
With this example, we can show that CVFs are 
used not only for determining the verbal object 
type, but also for stating additional prerequisities 
(necessary conditions) for the sentence 
constituents. The full analysis using the verb frame 
above thus contains, except the verb phrase part, 
the conditions saying that “X gives Y to Z ∧ 
organization(X)  ∧ object(Y) ∧ person(Z)”. The 
predicates organization, object and person here 
represent the properties denoted by the 
corresponding terms in the wordnet hypero-
hyponymical hierarchy. 
 
dát:15 / dávat:15 / nabídnout:3 / nabízet:3 
(give:37) 
-frame: AG<person:1>who_nom

obl VERBobl   
ABS<abstraction:1>what_acc

obl

 REC<person:1>to_whom_dat
obl 

-example: dal jí své slovo (he gave her his word) 
-example: nabídl jí své srdce (he offered her his 
heart) 
-use: fig 

 
Here we have an idiom (“to give word”), which 
corresponds to an (episodic) relation between two 

101



individuals. Thus the type of the verb is 
((ο(οπ)(οπ))ωιι), the second ι corresponds to to 
whom. 
 

 
bránit (prevent) 
bránit:1 / zabránit:2 / zabraňovat:2 / zamezit:2 / 
zamezovat:2 (prevent:2, keep:4) 
-frame: AG<person:1>who_nom

obl  VERBobl 
PAT<person:1>to_whom_dat

obl   ACT<act:1>inf
obl  

-example: zabránila mu uhodit syna (she prevented 
him from hitting the son) 
-use: prim 
 
bránit:1 / zabránit:2 / zabraňovat:2 / zamezit:2 / 
zamezovat:2 (prevent:2, keep:4) 
-frame: AG<institution:1>what_nom

obl VERBobl   
PAT<person:1>to_whom_dat

obl

 ACT<act:2>in_what_loc
opt 

-example: policie mu zabránila v cestě do zahraničí 
(police prevented him from going abroad) 
-use: prim 

 
Here, arguments of the verb correspond to the 
phrases who, to whom, in (from). The third 
argument has the type of an activity given, of 
course, by an episodic verb hit the son, travel 
abroad (the substantive form travelling abroad can 
be construed as that activity). The type of the verb 
is ((ο(οπ)(οπ))ωιι((ο(οπ)(οπ))ω)). 
 
říct (say) 
říct:1 / říkat:1 / říci:1 / říkat:1 / pravit:1 (say:6) 
-frame: AG<person:1>who_nom

obl   VERBobl   
COM<speech act:1>what_acc,that,dsp

obl   
ADR<person:1>to_whom_dat

opt 

-example: říct kolegovi dobrý den (say hello to a 
colleague) 
-example: řekl, že to platí (he said that it holds) 
-example: pravil: "Dobrý den" (he said: “Good 
day”) 
-use: prim 
 
The case questions for the corresponding 
arguments of the verb říct are a) who, what1, 
b) who, what2, c) who, to whom, what1, and d) who, 

to whom, what2. Examples of instantiated 
sentences can be a) Charles says „Hello“, 
b) Charles says that he is ill, c) Charles says to his 

colleague “Hello”, or d) Charles says to his 

colleague that he is ill.  

The quotation context (ad a), c)) is normally 
impossible to type. Unless we want to go into some 
deep analyses we can ascribe to any quoted 
expression the type of individual. The relation to 
and unquoted subordinate clause is analysed as a 
general construction of type ∗n.  The resulting 
types of verbs are then  
a) ((ο(οπ)(οπ))ωιι),  
b) ((ο(οπ)(οπ))ωι∗n),  
c) ((ο(οπ)(οπ))ωιιι),  
d) ((ο(οπ)(οπ))ωιι∗n). 
 
brečet1 (cry) because of something, for 

something 
brečet:1 / plakat:1 (cry:2, weep:1) 
-frame: AG<person:1>who_nom

obl   VERBobl   
CAUSE<cause:4>due+to+what_dat,over+what_ins,for+what_acc

obl    
-example: brečela kvůli zničeným šatům (she cried 
for spoiled clothes) 
-example: plakal nad svou chudobou (he cried over 
his poverty) 
-example: plakal pro své hříchy (he cried for his 
sins) 
-use: prim 

 
brečet2 (cry) for somebody 
brečet:1 / plakat:1 (cry:2, weep:1) 
-frame: AG<person:1>who_nom

obl VERBobl  
ENT<person:1>for+whom_acc

obl  
-example: plakala pro milého (she cried for her 
boy) 
-use: prim 
 
If I cry because of, for etc., then the role of causing 
is played by this because of. Crying is an episodic 
verb, whereas because of etc. is a relation between 
propositions, often between events. We have 
therefore because of / (οππ)τω, where the first 
π(=οτω) belongs to the proposition denoted, e.g., by 
clothes have been spoiled or that the respective 
individual is poor, sinful etc., and the second π to 
the proposition that the respective individual cries.  
In case of to cry for somebody the respective type 
is again a “relation” ((ο(οπ)(οπ))ωιι), although this 
for hides some cause, which is, however, not 
mentioned.  
With this verb, we will describe the analysis of 
verb entailment handling in TIL. If we analyse a 
general case of the above mentioned meanings of 
cry (cry1-because of something, cry2-for 

102



somebody) simply to cry, (He cries all the time). 
This verb’s type is a verbal object without 
arguments, (ο(οπ)(οπ))ω. In addition to this the 
following rule holds: If X cries because of… or X 

cries for…, then X cries. In this way the semantic 
dependence between the three cases of crying is 
given; otherwise we would not be able to detect 
this connection, e.g. between brečet1 and brečet2. 
 

absolvovat (undergo) 
absolvovat:2 / prožít:1 / prožívat:1 (experience:1, 
undergo:2, see:21, go through:1) 
-frame: AG<person:1>who_nom

obl VERBobl  
EVEN<experience:3>what_acc

obl  
LOC<location:1>in_what_loc

opt  
-example: absolvoval vyšetření na psychiatrické 
klinice (he went through investigation in a 
psychiatric clinic) 
-use: prim 

In general it is an episodic relation to an event 
(type π)4, so the type is ((ο(οπ)(οπ))ωιπ). In some 
cases we may also use a relation to an episode 
(specific class of events, type (οπ)), then the type 
is ((ο(οπ)(οπ))ωι(οπ)), and investigation in a clinic 
has to be defined as a sequence of events. 

 
akceptovat (accept) 
akceptovat:3 / přijmout:6 / přijímat:6 (accept:4) 
-frame: AG<person:1|social group:1>who_nom

obl 
VERBobl  
STATE<state:4>|EVEN<event:1>|INFO<info:1>wh

at_acc
obl 

-example: akceptujeme jeho povahu (we accept his 
character) 
-example: lidé přijali nový zákon s nadšením 
(people accepted new law with enthusiasm) 
-use: prim 

We can accept nearly anything. Here we meet the 
problem of type-theoretical polymorphism, which 
is handled here as a type scheme ((ο(οπ)(οπ))ωια), 
for an arbitrary type α. A quintessence of such a 
polymorphism: think on (about) ― one can think 
of an object of any kind. 
 
učit (teach) 
naučit:1 / učit:2 / vyučovat:1 (teach:1, learn:5, 
instruct:1) 
                                                           
4 see (Horák 2002, p. 65) and (Tichý 1980). 

-frame: AG<person:1>who_nom
obl VERBobl  

PAT<person:1>whom_acc
opt   

KNOW<subject:3>what_acc,to_what_dat
obl 

-example: naučil dítě abecedu (he educated a 
children in the alphabet)  
-example: učí studenty matematiku (he teaches 
mathematics for students) 
-example: vyučuje dějepisu (he/she teaches 
history) 
-use: prim 

If understood as in “What does (s)he live off? (S)he 

teaches.” it is the case of cry3 (see above). To 
teach understood as in “He teaches history, 

maths”, etc., the analysis depends on which type is 
given to the school subjects, disciplines. One 
possibility is to analyse them as properties of a set 
of propositions, (ο(οπ))τω. Then to teach receives 
the type ((ο(οπ)(οπ))ωι(ο(οπ))τω). If “teaches 
alphabet” is the case then we have to decide what 
we mean by alphabet. Here the point is to teach 
(learn) to associate symbols and sounds 
(phonemes?), so the respective type of alphabet is 
(αβ), where α is the type of symbols, β the type of 
sounds. In the analysis of “to educate somebody in 

something” the verb takes an individual as its 
additional argument: ((ο(οπ)(οπ))ωιια), where α is 
the type of the discipline. 

In all the examples, we have displayed the 
relations between the two-level semantic roles used 
in the VerbaLex verb frames and the resulting 
logical analysis types of the verbal object as the 
main part of the clause’s logical construction. The 
algorithmisation of this procedure uses a list of all 
roles used in the lexicon (there are about 200 roles 
used) with the corresponding (ambiguous) logical 
types of the constituents. In this way we can form a 
basic skeleton of the automatic translation of text 
to logical constructions. 

5 Conclusions 

The paper presented a first outline of comparison 
and integration of the two approaches, namely 
logical and linguistic, to the semantics of verbs in a 
natural language (English and Czech). We are 
aware that this work is still in a great progress and 
the results so presented rather fragmentary. Still, 
we are convinced that the research project we aim 
at is a relevant contribution to the semantics of 
natural language. 

103



We have shown that pursuing such a research is 
reasonable and comes up with a new viewpoint to 
the meaning of verbs. In this way we extend our 
knowledge in the important way. Actually, we are 
dealing with two deep levels of the meaning 
description and a question may be asked which one 
is deeper and better. Our answer is, do not contrast 
the two levels, and make use of both of them. In 
this way we believe to integrate them into one 
compact whole and perhaps obtain a unique data 
structure. The results of the presented research can 
be immediately applied in the area of knowledge 
representation and in the long-term Normal 
Translation System project that is being prepared. 
We have not tackled the other deep descriptions, 
such as the method that exploits the 
tectogramatical level as it is presently applied in 
PDT (Hajič 2004). This, obviously, is a topic of 
another paper.  
 

Acknowledgments 

This work has been supported by the Academy of 
Sciences of the Czech Republic, project No. 
T100300414, by the Ministry of Education                
of CR within the Center of basic research LC536, 
by the program ‘Information Society’ of Czech 
Academy of Sciences, project No. 1ET101940420 
"Logic and Artificial Intelligence for multi-agent 
systems", and by the Czech Science Foundation 
under the project 201/05/2781. 

References 

 

Cresswell, M.J. (1975): ‘Hyperintensional Logic’. 
Studia Logica 34, pp.25-38. 

Cresswell, M.J. (1985): Structured meanings. MIT 
Press, Cambridge, Mass. 

Duží, M., Jespersen, B., Müller, J. (2005): Epistemic 
Closure and Inferable Knowledge. The Logica 

Yearbook 2004, ed. L. Běhounek, M. Bílková, 
Filosofia Prague, pp. 125-140. 

Fellbaum, C., editor. 1998. WordNet: An Electronic 

Lexical Database. The MIT Press, Cambridge, 
Massachusetts, London, England. 

Hajič, Jan (2004): Complex Corpus Annotation: The 

Prague Dependency Treebank, Jazykovedny Ustav 
L.Stura, Bratislava, Slovakia, 2004. 

Hlaváčková, Dana - Horák, Aleš - Kadlec, Vladimír 
(2006). Exploitation of the VerbaLex Verb Valency 
Lexicon in the Syntactic Analysis of Czech. Lecture 
Notes in Artificial Intelligence, Proceedings of Text, 
Speech and Dialogue 2006, Berlin, Heidelberg : 
Springer, 2006. 

Horák, Aleš (2002). The Normal Translation Algorithm 

in  Transparent Intensional Logic for Czech, Ph.D. 
Dissertation, Masaryk University, Brno, 2002. 

Kilgarriff, Adam - Rychlý, Pavel - Smrž, Pavel - 
Tugwell, David (2006). The Sketch Engine. In 
Proceedings of the Eleventh EURALEX 
International Congress. Lorient, France : Universite 
de Bretagne-Sud, pp. 105-116, 2004. 

Karin Kipper, Anna Korhonen, Neville Ryant, and 
Martha Palmer (2006): Extensive Classifications of 
English verbs. Proceedings of the 12th EURALEX 

International Congress. Turin, Italy. September, 
2006. 

Materna, P. (1998): Concepts and Objects. Acta 
Philosophica Fennica, Vol. 63, Helsinki.  

Materna, P. (2004): Conceptual Systems. Logos Verlag, 
Berlin. 

Materna, P., Duží, M. (2005): Parmenides Principle. 
Philosophia, vol. 32 (1-4), pp. 155-180. 

Tichý, P. (1988): The Foundations of Frege’s Logic, 
Berlin, New York: DeGruyter. 

Tichý, P. (1980): The Semantics of Episodic Verbs, 
Theoretical Linguistics 7, pp. 263-296, 1980. 

Tichý, P. (2004): Collected Papers in Logic and 

Philosophy, V. Svoboda, B. Jespersen, C. Cheyne 
(eds.), Prague: Filosofia, Czech Academy of 
Sciences, and Dunedin: University of Otago Press 

Žabokrtský, Z. (2005): Valency Lexicon of Czech Verbs. 
Ph.D. Thesis, Faculty of Mathematics and Physics, 
Charles University in Prague, 2005. 

104



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 105–111,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

The Spanish Resource Grammar: pre-processing strategy and lexical acquisi-
tion 

Montserrat Marimon, Núria Bel, Sergio Espeja, Natalia Seghezzi 
IULA - Universitat Pompeu Fabra 

Pl. de la Mercè, 10-12 
 08002-Barcelona 

{montserrat.marimon,nuria.bel,sergio.espeja,natalia.seghezzi}@upf.edu

 
 

Abstract 

This paper describes work on the develop-
ment of an open-source HPSG grammar for 
Spanish implemented within the LKB sys-
tem. Following a brief description of the 
main features of the grammar, we present 
our approach for pre-processing and on-
going research on automatic lexical acqui-
sition.1   

1 Introduction 

In this paper we describe the development of the 
Spanish Resource Grammar (SRG), an open-
source 2  medium-coverage grammar for Spanish. 
The grammar is grounded in the theoretical 
framework of HPSG (Head-driven Phrase Struc-
ture Grammar; Pollard and Sag, 1994) and uses 
Minimal Recursion Semantics (MRS) for the se-
mantic representation (Copestake et al, 2006). The 
SRG is implemented within the Linguistic Knowl-
edge Building (LKB) system (Copestake, 2002), 
based on the basic components of the grammar 
Matrix, an open–source starter-kit for the devel-
opment of HPSG grammars developed as part of 
the LinGO consortium’s multilingual grammar 
engineering (Bender et al., 2002).  

The SRG is part of the DELPH-IN open-source 
repository of linguistic resources and tools for 
writing (the LKB system), testing (The [incr 
tsbd()]; Oepen and Carroll, 2000) and efficiently 
                                                 

                                                

1 This research was supported by the Spanish Ministerio de 
Educación y Ciencia: Project AAILE (HUM2004-05111-C02-
01), Ramon y Cajal, Juan de la Cierva programmes and PTA-
CTE/1370/2003 with Fondo Social Europeo. 
2 The Spanish Resource Grammar may be downloaded from: 
http://www.upf.edu/pdi/iula/montserrat.marimon/. 

processing HPSG grammars (the PET system; 
Callmeier, 2000). Further linguistic resources that 
are available in the DELPH-IN repository include 
broad-coverage grammars for English, German and 
Japanese as well as  smaller grammars for French, 
Korean, Modern Greek, Norwegian and 
Portuguese .3   

The SRG has a full coverage of closed word 
classes and it contains about 50,000 lexical entries 
for open classes (roughtly: 6,600 verbs, 28,000 
nouns, 11,200 adjectives and 4,000 adverbs).  
These lexical entries are organized into a type 
hierachy of about 400 leaf types (defined by a type 
hierarchy of  around 5,500 types). The grammar 
also has 40 lexical rules to perform valence 
changing operations on lexical items and 84 
structure rules to combine words and phrases into 
larger constituents and to compositionally build up 
the semantic representation.  

We have been developing the SRG since 
January 2005. The range of linguistic phenomena 
that the grammar handles includes almost all types 
of subcategorization structures, valence 
alternations,  subordinate clauses, raising and 
control, determination,  null-subjects and 
impersonal constructions, compound tenses, 
modification,  passive constructions, comparatives 
and superlatives, cliticization, relative and 
interrogative clauses and sentential adjuncts, 
among others. 

Together with the linguistic resources (grammar 
and lexicon) we provide a set of controlled hand-
constructed test suites. The construction of the test 
suites plays a major role in the development of the 
SRG, since test suites provide a fine-grained diag-

 
3 See . http://www.delph-in.net/
 

105



nosis of grammar performance and they allow us to 
compare the SRG with other DELPH-IN gram-
mars. In building the test suites we aimed at (a) 
testing specific phenomena in isolation or in con-
trolled interaction, (b) providing test cases which 
show systematic and exhaustive variations over 
each phenomenon, including infrequent phenom-
ena and variations, (c) avoiding irrelevant variation 
(i.e. different instances of the same lexical type), (d) 
avoiding ambiguity, and (e) including negative or 
ungrammatical data. We have about 500 test cases 
which are distributed by linguistic phenomena (we 
have 17 files). Each test case includes a short lin-
guistic annotation describing the phenomenon and 
the number of expected results when more than 
one analysis cannot be avoided (e.g. testing op-
tionality). 

Test suites are not the only source of data we 
have used for testing the SRG. Hand-constructed 
sentences were complemented by real corpus cases 
from: (a) the Spanish questions from the Question 
Answering track at CLEF (CLEF-2003, CLEF-
2004, CLEF-2005 and CLEF-2006), and (b) the 
general sub-corpus of the Corpus Tècnic de 
l’IULA (IULA’s Technical Corpus; Cabré and 
Bach, 2004); this sub-corpus includes newspaper 
articles and it has been set up for contrastive 
studies. CLEF cases include short queries showing 
little interaction of phenomena and an average of 
9.2 words; newspaper articles show a high level of 
syntactic complexity and interaction of phenomena, 
sentences are a bit longer, ranging up to 35 words. 
We are currently shifting to much more varied 
corpus data of the Corpus Tècnic de l’IULA, which 
includes specialized corpus of written text in the 
areas of computer science, environment, law, 
medicine and economics, collected from several 
sources, such as legal texts, textbooks, research 
reports, user manuals, … In these texts sentence 
length may range up to 70 words.  

The rest of the paper describes the pre-
processing strategy we have adopted and on our 
on-going research on lexical acquisition. 

2 Pre-processing in the SRG 

Following previous experiments within the 
Advanced Linguistic Engineering Platform (ALEP) 
platform (Marimon, 2002), we have integrated a 
shallow processing tool, the FreeLing tool, as a 
pre-processing module of the grammar.  

The FreeLing tool is an open-source4 language 
analysis tool suite (Atserias et al., 2006) perfoming 
the following functionalities (though 
disambiguation, named entity classification and the 
last three functionalities have not been integrated):  
 

• Text tokenization (including MWU and 
contraction splitting). 

• Sentence splitting. 

• Morpho-syntactic analysis and 
disambiguation. 

n. 

                                                

• Named entity detection and classification. 

• Date/number/currency/ratios/physical 
magnitude (speed, weight, temperature, 
density, etc.) recognitio

• Chart-based shallow parsing. 

• WordNet-based sense annotation.  

• Dependency parsing.  

FreeLing also includes a guesser to deal with 
words which are not found in the lexicon by 
computing the probability of each possible PoS tag 
given the longest observed termination string for 
that word. Smoothing using probabilities of shorter 
termination strings is also performed. Details can 
be found in Brants (2000) and Samuelson (1993).  

Our system integrates the FreeLing tool by 
means of the LKB Simple PreProcessor Protocol 
(SPPP; http://wiki.delph-in.net/moin/LkbSppp), 
which assumes that a preprocessor runs as an 
external process to the LKB system, and uses the 
LKB inflectional rule component to convert the 
PoS tags delivered by the FreeLing tool into partial 
descriptions of feature structures. 

2.1 The integration of PoS tags 

The integration of the morpho-syntactic analysis in 
the LKB system using the SPPP protocol means 
defining inflectional rules that propagate the mor-
pho-syntactic information associated to full-forms, 
in the form of PoS tags, to the morpho-syntactic 
features of the lexical items. (1) shows the rule 
propagating the tag AQMS (adjective qualitative 
masculine singular) delivered by FreeLing. Note 

 
4 The FreeLing tool may be downloaded from 
http://www.garraf.epsevg.upc.es/freeling/. 

106



that we use the tag as the rule identifier (i.e. the 
name of the inflectional rule in the LKB).  
(1) aqms :=  

 %suffix () 
 [SYNSEM.LOCAL[CAT adj, 
               AGR.PNG[PN 3sg, 
                     GEN masc]]] 
 

In Spanish, when the verb is in non-finite form, 
such as infinitive or gerund, or it is in the impera-
tive, clitics5 take the form of enclitics. That is, they 
are attached to the verb forming a unique word, 
e.g. hacerlo (hacer+lo; to do it), gustarle (gus-
tar+le; to like to him). FreeLing does not split 
verbs and pronouns, but uses complex tags that 
append the tags of each word. Thus, the form ha-
cerlo gets the tag VMN+PP3MSA (verb main in-
finitive + personal pronoun 3rd masculine singular 
accusative). In order to deal with these complex 
tags, the SRG includes a series of rules that build 
up the same type of linguistic structure as that one 
built up with the structure rules attaching affixes to 
the left of verbal heads. Since the application of 
these rules is based on the tag delivered by FreeL-
ing, they are included in the set of inflectional rules 
and they are applied after the set of rules dealing 
with complement cliticization.   

 Apart from avoiding the implementation of in-
flectional rules for such a highly inflected lan-
guage, the integration of the morpho-syntactic 
analysis tags will allow us to implement default 
lexical entries (i.e. lexical entry templates that are 
activated when the system cannot find a particular 
lexical entry to apply) on the basis of the category 
encoded to the lexical tag delivered by FreeLing, 
for virtually unlimited lexical coverage. 6

2.2 The integration of multiword expressions 

All multiword expressions in FreeLing are stored 
in a file. The format of the file is one multiword 
per line, having three fields each: form, lemma and 
PoS.7 (2) shows two examples of multiword fixed 

                                                 

                                                

5 Actually, Spanish weak pronouns are considered pronominal 
affixes rather than pronominal clitics. 
6 The use of underspecified default lexical entries in a 
highly lexicalized grammar, however, may increase 
ambiguity and overgeneration (Marimon and Bel, 
2004). 
7 FreeLing only handles continuous multiword expres-
sions. 

expressions; i.e. the ones that are fully lexicalized 
and never show morpho-syntactic variation, a 
través de (through) and a buenas horas (finally). 

 
(2) a_través_de a_través_de SPS00 
   a_buenas_horas a_buenas_horas RG 

 
The multiword form field may admit lemmas in 

angle brackets, meaning that any form with that 
lemma will be a valid component for the multi-
word. Tags are specified directly or as a reference 
to the tag of some of the multiword components. 
(3) builds a multiword with both singular and plu-
ral forms  (apartado(s) de correos (P.O Box)). The 
tag of the multiform is that of its first form ($1) 
which starts with NC and takes the values for 
number depending on whether the form is singular 
or plural.  

 
(3) <apartado>_de_correos apar-
tado_de _correos \$1:NC 
 

Both fixed expressions and semi-fixed expres-
sions are integrated by means of the inflectional 
rules that we have described in the previous sub-
section and they are treated in the grammar as 
word complex with a single part of speech.  

2.3 The integration of messy details and 
named entities 

FreeLing identifies, classifies and, when appropri-
ate, normalizes special text constructions that may 
be considered peripheral to the lexicon, such as 
dates, numbers, currencies, ratios, physical magni-
tudes, etc.  FreeLing also identifies and classifies 
named entities (i.e. proper names); however, we do 
not activate the classification functionality, since 
high performance of that functionality is only 
achieved with PoS disambiguated contexts.   

To integrate these messy details and named enti-
ties into the grammar, we require special inflec-
tional rules and lexical entry templates for each 
text construction tag delivered by FreeLing. Some 
of these tags are: W for dates, Z for numbers, Zm 
for currencies, ... In order to define one single en-
try for each text construct, we identify the tag and 
the STEM feature. (4) shows the lexical entry for 
dates.8

 
8 Each lexical entry in the SRG consists of a unique identifier, 
a lexical type, an orthography and a semantic relation. 

107



 
(4)  
date := date_le & 
[STEM <”w”>, 
SYNSEM.LKEY.KEYREL.PRED time_n_rel] 

 
The integration of these messy details allows us 

to release the analysis process from certain tasks 
that may be reliably dealt with by shallow external 
components.  

3 Automatic Lexical Acquisition 

We have investigated Machine Learning (ML) 
methods applied to the acquisition of the informa-
tion contained in the lexicon of the SRG. 

ML applied to lexical acquisition is a very active 
area of work linked to deep linguistic analysis due 
to the central role that lexical information has in 
lexicalized grammars and the costs of hand-
crafting them. Korhonen (2002), Carroll and Fang 
(2004), Baldwin (2005), Blunsom and Baldwin 
(2006), and Zhang and Kordoni (2006) are just a 
few examples of reported research work on deep 
lexical acquisition. 

The most successful systems of lexical acquisi-
tion are based on the linguistic idea that the con-
texts where words occur are associated to particu-
lar lexical types. Although the methods are differ-
ent, most of the systems work upon the syntactic 
information on words as collected from a corpus, 
and they develop different techniques to decide 
whether this information is relevant for type as-
signment or it is noise, especially when there are 
just a few examples. In the LKB grammatical 
framework, lexical types are defined as a combina-
tion of grammatical features. For our research, we 
have looked at these morpho-syntactically moti-
vated features that can help in discriminating the 
different types that we will ultimately use to clas-
sify words. Thus, words are assigned a number of 
grammatical features, the ones that define the lexi-
cal types. 

Table 1 and Table 2 show the syntactic features 
that we use to characterize 6 types of adjectives 
and 7 types of nouns in Spanish, respectively.9 As 
can be observed, adjectives are cross-classified 
according to their syntactic position within the NP, 
i.e. (preN(ominal)) vs  postN(ominal), the possibil-
ity of co-occurring in predicative constructions 
                                                 
9 The SRG has 35 types for nouns and 44 types for adjectives. 

(pred) and being modified by degree adverbs (G), 
and their subcategorization frame (pcomp); 
whereas lexical types for nouns are basically de-
fined on the basis of the mass/countable distinction 
and valence information. Thus, an adjective like 
bonito (nice), belonging to the type a_qual_intr, 
may be found both in pre-nominal and post-
nominal position or in predicative constructions, it 
may also be modified by degree adverbs, this type 
of adjectives, however, does not take comple-
ments. Nouns belonging to the type n_intr_count, 
like muchacha (girl), are countable intransitive 
nouns. 

 
TYPE/SF preN postN pred G pcomp 

a_adv_int yes no no no no 
a_adv_event yes yes no no no 
a_rel_nonpred no yes no no no 
a_rel_pred no yes yes no no 
a_qual_intr yes yes yes yes no 
a_qual_trans yes yes yes yes yes 

Table 1. Some adjectival types of the SRG 
 

TYPE/SF mass count intr trans pcomp 
n_intr_mass yes no yes no no 
n_intr_count no yes yes no no 
n_intr_cnt-
mss 

yes yes yes no no 

n_trans_mass yes no no yes no 
n_trans_count no yes no yes no 
n_ppde_pcom
p_count 

no yes no yes yes 

n_ppde_pcom
p_mss 

yes no no yes yes 

Table 2. Some nominal types of the SRG 
 
We have investigated two methods to automati-

cally acquire such linguistic information for Span-
ish nouns and adjectives: a Bayesian model and a 
decision tree. The aim of working with these two 
methods was to compare their performance taking 
into account that while the decision tree gets the 
information from previously annotated data, the 
Bayesian method learns it from the linguistic ty-
pology as defined by the grammar. These methods 
are described in the following subsections.  

3.1 A Bayesian model for lexical acquisition 

We have used a Bayesian model of inductive learn-
ing for assigning grammatical features to words 
occurring in a corpus. Given a hypothesis space 
(the linguistic features of words according to its 
lexical type) and one or more occurrences of the 

108



word to classify, the learner evaluates all hypothe-
ses for word features and values by computing 
their posterior probabilities, proportional to the 
product of prior probabilities and likelihood.  

In order to obtain the likelihood, grammatical 
features are related to the expected contexts where 
their instances might appear. The linguistic typol-
ogy provides likelihood information that is the 
learner’s expectation about which contexts are 
likely to be observed given a particular hypothesis 
of a word type. This likelihood is used as a substi-
tute of the computations made by observing di-
rectly the data, which is what a supervised machine 
learning method does. As said, our aim was to 
compare these two strategies.   

The decision on a particular word is determined 
by averaging the predictions of all hypothesis 
weighted by their posterior probabilities. More 
technically, for each syntactic feature {sf1, sf2, ..., 
sfn} of the set SF (Syntactic Features) represented 
in the lexical typology, we define the goal of our 
system to be the assignment of a value, {no, yes}, 
that maximizes the result of a function f: σ→ SF, 
where σ is the collection of its occurrences (σ = 
{v1, v2, ..., vz}), each being a n-dimensional vector. 
The decision on value assignment is achieved by 
considering every occurrence as a cumulative evi-
dence in favour or against of having each syntactic 
feature. Thus, our function Z’(SF, σ), shown in (5), 
will assess how much relevant information is got 
from all the vectors. A further function, shown in 
(8), will decide on the maximal value in order to 
assign sfi,x. 

(5)  ∑=
z

j jvxisfPxisfZ )|,(),,(' σ

 
To assess P(sfi,x|vj), we use (6), which is the ap-

plication of Bayes Rule for solving the estimation 
of the probability of a vector conditioned to a par-
ticular feature and value.  

(6) 
∑

=

k kisfPkisfjvP

xisfPxisfjvP
jvxisfP

),(),|(

),(),|(
)|,(  

 
For solving (6), the prior P(sfi,x) is computed on 

the basis of a lexical typology too, assuming that 
what is more frequent in the typology will corre-
spondingly be more frequent in the data. For com-
puting the likelihood P(vj|sfi,x), as each vector is 
made of m components, that is, the linguistic cues 
vz = {lc1, lc2, ..., lcm}, we proceed as in (7) on the 

basis of P(lcl|sfi,x); i.e. the likelihood of finding the 
word in a particular context given a particular syn-
tactic feature. 

(7)  ∏
=

=
m

l xisfllcPxisfjvP
1

),|(),|(

 
Finally Z, as in (8), is the function that assigns 

the syntactic features to σ .10

 

(8)  
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

→
=

>
=

→
=

>
=

=
no

yesxi
sfZ

noxi
sfZ

yes
noxi

sfZ
yesxi

sfZ

Z
)|

,
(')|

,
('

)|
,

(')|
,

('

σσ

σσ

 
For computing the likelihood, we count on the 

conditional probabilities of the correlations be-
tween features as defined in the typology. We use 
these correlations to infer the expectation of ob-
serving the linguistic cues associated to particular 
syntactic features, and to make it to be conditional 
to a particular feature and value. However, linguis-
tic cues and syntactic features are in two different 
dimensions; syntactic features are properties of 
lexical items, while linguistic cues show the char-
acteristics of actual occurrences. As we assume 
that each syntactic feature must have at least one 
corresponding linguistic cue, we must tune the 
probability to acknowledge the factors that affect 
linguistic cues. For such a tuning, we have consid-
ered the following two issues: (i) to include in the 
assessments the known uncertainty of the linguistic 
cues that can be present in the occurrence or not; 
and (ii) to create a dummy variable to deal with the 
fact that, while syntactic features in the typology 
are independent from one another, evidences in 
text are not so. 

We have also observed that the information that 
can be gathered by looking at all word occurrences 
as a complex unit have a conclusive value. Take 
for instance the case of prepositions. The observa-
tion of a given prepositions in different occur-
rences of the same word is a conclusive evidence 
for considering it a bound preposition.  In order to 
take this into account, we have devised a function 
that acts as a dynamic weighting module. The 
function app_lc(sfi, σ) returns the number of con-
texts where the cue is found. In the case that in a 

                                                 
10 In the theoretical case of having the same probability 
for yes and for no, Z is undefined.  

109



particular signature there is no context with such a 
lc, it returns ‘1’. Thus, app_lc is used to reinforce 
this conclusive evidence in (5), which is now (9). 
 
(9) 

 

),(_*)|,(),,(' σσ isflcapp
z

j jvyesxisfPyesxisfZ ⎟
⎠
⎞⎜

⎝
⎛ ∑ ===

 ∑ ===
z

j jvnoxisfPnoxisfZ )|,(),,(' σ  

 

3.2 A Decision tree 

Linguistic motivated features have also been 
evaluated using a C4.5 Decision Tree (DT) classi-
fier (Quinlan, 1993) in the Weka implementation 
(Witten and Frank, 2005). These features corre-
spond to the expected contexts for the different 
nominal and adjectival lexical types. 

We have trained the DT with all the vectors of 
the word occurrences that we had in the different 
gold-standards, using their encoding for the super-
vised experiment in a 10-fold cross-validation test-
ing (Bel et al. 2007).  

3.3 Evaluation and Results 

For the evaluation, we have applied both methods 
to the lexical acquisition of nouns and adjectives.  

We have worked with a PoS tagged corpus of 
1,091,314 words. Datasets of 496 adjectives and 
289 nouns were selected among the ones that had 
occurrences in the corpus. Some manual selection 
had to be done in order to have all possible types 
represented but still it roughly corresponds to the 
distribution of features in the existing lexicon. 

We evaluated by comparing with Gold-
standard files; i.e. the manually encoded lexicon of 
the SRG. The usual accuracy measures as type 
precision (percentage of feature values correctly 
assigned to all values assigned) and type recall 
(percentage of correct feature values found in the 
dictionary) have been used. F1 is the usual score 
combining precision and recall.  

Table 3 shows the results in terms of F1 score 
for the different methods and PoS for feature as-
signment. From these data, we concluded that the 
probabilistic information inferred from the lexical 
typology defined in our grammar is a good source 
of knowledge for lexical acquisition.  

 

 
PoS noun adj 
Z 0.88 0.87 
DT 0.89 0.9 

Table 3. F1 for different methods and PoS. 
 

Table 4 shows more details of the results compar-
ing between DT and Z for Spanish adjectives. 

 
 SF = no SF = yes 
 Z DT Z DT 
prep_a 0.98 0.97 0.72 0.44 
prep_en 0.98 0.99 0.27 0 
prep_con 0.99 0.99 0.60 0 
prep_para 0.98 0.99 0.51 0.53 
prep_de 0.88 0.97 0.34 0.42 
postN 0 0 0.99 0.99 
preN 0.75 0.83 0.44 0.80 
Pred 0.50 0.41 0.59 0.82 
G 0.85 0.80 0.75 0.72 
Sent 0.97 0.97 0.55 0.44 
Table 4. F1 for Spanish adjectival features. 

 
Finally, Table 5 shows the results for 50 Spanish 

nouns with only one occurrence in the corpus. 
These results show that grammatical features can 
be used for lexical acquisition of low frequency 
lexical items, providing a good hypothesis for en-
suring grammar robustness and adding no over-
generation to parsing results.  

 
 DT Z 
 prec. rec. F prec. rec. F 
MASS 0.50 0.16 0.25 0.66 0.25 0.36 

COUNT 0.97 1.00 0.98 1.00 0.96 0.98 

TRANS 0.75 0.46 0.57 0.68 0.73 0.71 

INTRANS 0.85 0.95 0.89 0.89 0.76 0.82 

PCOMP 0 0 0 0.14 0.20 0.16 
Table 5. Results of 50 unseen nouns with a sin-

gle occurrence. 

4 Future Work 

We have presented work on the development of an 
HPSG grammar for Spanish; in particular, we have 
described our approach for pre-processing and on-
going research on automatic lexical acquisition. 
Besides extending the coverage of the SRG and 
continuing research on lexical acquisition, the spe-
cific aims of our future work on the SRG are: 

• Treebank development. 

110



• To extend the shallow/deep architecture 
and integrate the structures generated by 
partial parsing, to provide robust techniques 
for infrequent structural constructions. The 
coverage of these linguistic structures by 
means of structure rules would increase both 
processing time and ambiguity.  

• To use ML methods for disambiguation; 
i.e. for ranking possible parsings according 
to relevant linguistic features, thus enabling 
the setting of a threshold to select the n-best 
analyses. 

• The development of error mining tech-
niques (van Noord, 2004) to identify errone-
ous and incomplete information in the lin-
guistic resources which cause the grammar 
to fail.  

References 
J. Atserias, B. Casas, E. Comelles, M. González, L. Pa-

dró and M. Padró. 2006. FreeLing 1.3: Syntactic and 
semantic services in an open-source NLP library. 5th 
International Conference on Language Resources 
and Evaluation. Genoa, Italy. 

T. Baldwin. 2005. Bootstrapping Deep Lexical Re-
sources: Resources for Courses, ACL-SIGLEX 2005. 
Workshop on Deep Lexical Acquisition. Ann Arbor, 
Michigan.  

N. Bel, S. Espeja, M. Marimon. 2007. Automatic Ac-
quisition of Grammatical Types for Nouns. Human 
Language Technologies: The Annual Conference of 
the North American Chapter of the Association for 
Computational Linguistics. Rochester, NY, USA, 

E.M. Bender, D. Flickinger and S. Oepen. 2002. The 
grammar Matrix. An open-source starter-kit for the 
rapid development of cress-linguistically consistent 
broad-coverage precision grammar. Workshop on 
Grammar Engineering and Evaluation, 19th Interna-
tional Conference on Computational Linguistics. 
Taipei, Taiwan.  

P. Blunsom and T. Baldwin. 2006. Multilingual Deep 
Lexical Acquisition for HPSGs via Supertagging. 
Conference on Empirical Methods in Natural Lan-
guage Processing. Sydney, Australia. 

T. Brants. 2000. TnT: A statistical part-of-speech tag-
ger. 6th Conference on Applied Natural Language 
Processing. Seattle, USA. 

T. Cabré and C. Bach, 2004. El corpus tècnic de 
l’IULA: corpus textual especializado plurilingüe. 
Panacea, V. 16, pages 173-176. 

U. Callmeier. 2000. Pet – a platform for experimenta-
tion with efficient HPSG processing. Journal of 
Natural Language Engineering 6(1): Special Issue 
on Efficient Processing with HPSG: Methods, Sys-
tem, Evaluation, pages 99-108. 

A. Copestake, D. Flickinger, C. Pollard and I.A. Sag. 
2006. Minimal Recursion Semantics: An Introduc-
tion. Research on Language and Computation 
3.4:281-332. 

A. Copestake. 2002. Implementing Typed Features 
Structure Grammars. CSLI Publications.  

A. Korhonen. 2002. ‘Subcategorization acquisition’. As 
Technical Report UCAM-CL-TR-530, University of 
Cambridge, UK. 

M. Marimon. 2002. Integrating Shallow Linguistic 
Processing into a Unification-based Spanish Gram-
mar. 9th International Conference on Computational 
Linguistics. Taipei, Taiwan.  

M. Marimon and N. Bel. 2004. Lexical Entry Templates 
for Robust Deep Parsing. 4th International Confer-
ence on Language Resources and Evaluation. Lis-
bon, Portugal. 

S. Oepen and J. Carroll. 2000. Performance Profiling for 
Parser Engineering. Journal of Natural Language 
Engineering 6(1): Special Issue on Efficient Process-
ing with HPSG: Methods, System, Evaluation, pages 
81-97. 

C.J. Pollard and I.A. Sag. 1994. Head-driven Phrase 
Structure Grammar. The University of Chicago 
Press, Chicago.  

R.J. Quinlan 1993. C4.5: Programs for Machine Learn-
ing. Series in Machine Learning. Morgan Kaufman, 
San Mateo, CA. 

C. Samuelson. 1993. Morphological tagging based en-
tirely on Bayesian inference. 9th Nordic Conference 
on Computational Linguistics. Stockholm, Sweden.  

I.H. Witten and E. Frank. 2005. Data Mining: Practical 
machine learning tools and techniques. Morgan 
Kaufmann, San Francisco. 

G. van Noord. 2004. Error mining for wide-coverage 
grammar engineering. 42th Annual Meeting of the 
ACL. Barcelona, Spain. 

Y. Zhang and V. Kordoni. 2006. Automated deep lexi-
cal acquisition for robust open text processing. 5th 
International Conference on Language Resources 
and Evaluation. Genoa, Italy. 

111



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 112–119,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Extracting a verb lexicon for deep parsing from FrameNet

Mark McConville and Myroslava O. Dzikovska
School of Informatics

University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW, Scotland

{Mark.McConville,M.Dzikovska}@ed.ac.uk

Abstract

We examine the feasibility of harvesting
a wide-coverage lexicon of English verbs
from the FrameNet semantically annotated
corpus, intended for use in a practical natural
language understanding (NLU) system. We
identify a range of constructions for which
current annotation practice leads to prob-
lems in deriving appropriate lexical entries,
for example imperatives, passives and con-
trol, and discuss potential solutions.

1 Introduction

Although the lexicon is the primary source of infor-
mation in lexicalised formalisms such as HPSG or
CCG, constructing one manually is a highly labour-
intensive task. Syntactic lexiconshavebeen derived
from other resources — the LinGO ERG lexicon
(Copestake and Flickinger, 2000) contains entries
extracted from ComLex (Grishman et al., 1994),
and Hockenmaier and Steedman (2002) acquire a
CCG lexicon from the Penn Treebank. However,
one thing these resources lack is information on how
the syntactic subcategorisation frames correspond to
meaning.

The output representation of many “deep” wide
coverage parsers is therefore limited with respect to
argument structure — sense distinctions are strictly
determined by syntactic generalisations, and are
not always consistent. For example, in the logi-
cal form produced by the LinGO ERG grammar,
the verbend can have one of two senses depend-
ing on its subcategorisation frame:end v 1 rel

or end v cause rel, corresponding tothe cel-
ebrations endedand the storm ended the celebra-
tions respectively. Yet a very similar verb,stop, has
a single sense,stop v 1 rel, for both the cele-
brations stoppedandthe storm stopped the celebra-
tions. There is no direct connection between these
different verbs in the ERG lexicon, even though
they are intuitively related and are listed as belong-
ing to the same or related word classes in semantic
lexicons/ontologies such as VerbNet (Kipper et al.,
2000) and FrameNet (Baker et al., 1998).

If the output of a deep parser is to be used with
a knowledge representation and reasoning compo-
nent, for example in a dialogue system, then we need
a more consistent set of word senses, linked by spec-
ified semantic relations. In this paper, we investi-
gate how straightforward it is to harvest a compu-
tational lexicon containing this kind of information
from FrameNet, a semantically annotated corpus of
English. In addition, we consider how the FrameNet
annotation system could be made more transparent
for lexical harvesting.

Section 2 introduces the FrameNet corpus, and
section 3 discusses the lexical information required
by frame-based NLU systems, with particular em-
phasis on linking syntactic and semantic structure.
Section 4 presents the algorithm which converts the
FrameNet corpus into a frame-based lexicon, and
evaluates the kinds of entries harvested in this way.
We then discuss a number of sets of entries which
are inappropriate for inclusion in a frame-based lex-
icon: (a) ‘subjectless’ entries; (b) entries derived
from passive verbs; (c) entries subcategorising for
modifiers; and (d) entries involving ‘control’ verbs.

112



2 FrameNet

FrameNet1 is a corpus of English sentences an-
notated with both syntactic and semantic informa-
tion. Underlying the corpus is an ontology of
795 ‘frames’ (or semantictypes), each of which
is associated with a set of ‘frame elements’ (or
semanticroles). To take a simple example, the
Apply heat frame describes a situation involving
frame elements such as aCOOK, someFOOD, and
aHEATING INSTRUMENT. Each frame is, in addi-
tion, associated with a set of ‘lexical units’ which
are understood asevoking it. For example, the
Apply heat frame is evoked by such verbs as
bake, blanch, boil, broil, brown, simmer, steam, etc.

The FrameNet corpus proper consists of 139,439
sentences (mainly drawn from the British National
Corpus), each of which has been hand-annotated
with respect to a particular target word in the sen-
tence. Take the following example:Matilde fried
the catfish in a heavy iron skillet. The process of an-
notating this sentence runs as follows: (a) identify a
target word for the annotation, for example the main
verb fried; (b) identify the semantic frame which is
evoked by the target word in this particular sentence
– in this case the relevant frame isApply heat;
(c) identify the sentential constituents which realise
each frame element associated with the frame, i.e.:

[COOK Matilde] [Apply heat fried] [FOOD the
catfish] [HEATING INSTR in a heavy iron skillet]

Finally, some basic syntactic information about the
target word and the constituents realising the vari-
ous frame elements is also added: (a) the part-of-
speech of the target word (e.g.V, N, A, PREP); (b)
the syntacticcategoryof each constituent realising a
frame element (e.g.NP, PP, VPto, Sfin); and (c)
the syntacticrole, with respect to the target word,
of each constituent realising a frame element (e.g.
Ext, Obj, Dep). Thus, each sentence in the corpus
can be seen to be annotated on at least three inde-
pendent ‘layers’, as exemplified in Figure 1.

3 Frame-based NLU

The core of any frame-based NLU system is a parser
which produces domain-independent semantic rep-

1The version of FrameNet discussed in this paper is
FrameNet II release 1.3 from 22 August 2006.

resentations like the following, for the sentenceJohn
billed the champagne to my account:











commerce-pay
AGENT John
THEME champagne

SOURCE

[

account
OWNER me

]











Deep parsers/grammars such as the ERG, OpenCCG
(White, 2006) and TRIPS (Dzikovska, 2004) pro-
duce more sophisticated representations with scop-
ing and referential information, but still contain a
frame-based representation as their core. The lex-
ical entries necessary for constructing such repre-
sentations specify information about orthography,
part-of-speech, semantic type and subcategorisation
properties, including a mapping between a syntactic
subcategorisation frame and the semantic frame.

An example of a TRIPS lexical entry is presented
in Figure 2, representing the entry for the verbbill
as used in the sentence discussed above. Note that
for each subcategorised argument the syntactic role,
syntactic category, and semantic role are specified.
Much the same kind of information is included in
ERG and OpenCCG lexical entries.

When constructing a computational lexicon, there
are a number of issues to take into account, sev-
eral of which are pertinent to the following discus-
sion. Firstly, computational lexicons typically list
only the ‘canonical’ subcategorisation frames, cor-
responding to a declarative sentence whose main
verb is in the active voice, as in Figure 1. Other vari-
ations, such as passive forms, imperatives and dative
alternations are generated automatically, for exam-
ple by lexical rules. Secondly, parsers that build se-
mantic representations typically make a distinction
between ‘complements’ and ‘modifiers’. Comple-
ments are those dependents whose meaning is com-
pletely determined by the verb, for example the PP
on him in the sentenceMary relied on him, and are
thus listed in lexical entries. Modifiers, on the other
hand, are generally not specified in verb entries —
although they may be associated with the underlying
verb frame, their meaning is determined indepen-
dently, usually by the preposition, such as the time
adverbialnext weekin I will see him next week.

Finally, for deep parsers, knowledge about which
argument of a matrix verb ‘controls’ the implicit

113



Matilde fried the catfish in a heavy iron skillet
target Apply heat

frame element COOK FOOD HEATING INSTR
syntactic category NP V NP PP

syntactic role Ext Obj Dep

Figure 1: A FrameNet annotated sentence





























ORTH 〈bill〉
SYNCAT v

SEMTYPE





commerce-pay
ASPECT bounded
TIME-SPAN atomic





ARGS

〈





SYNROLE subj
SYNCAT np
SEMROLE agent



,





SYNROLE obj
SYNCAT np
SEMROLE theme



,









SYNROLE comp

SYNCAT

[

pp
PTYPE to

]

SEMROLE source









〉





























Figure 2: A TRIPS lexical entry

subject of an embedded complement verb phrase is
necessary in order to to build the correct semantic
form. In a unification parser such as TRIPS, control
is usually represented by a relation of token-identity
(i.e. feature structure reentrancy) between the sub-
ject or object of a control verb and the subject of a
verbal complement.

4 Harvesting a computational lexicon from
FrameNet

In order to harvest a computational lexicon from the
FrameNet corpus, we took each of the 60,309 an-
notated sentences whose target word is a verb and
derived a lexical entry directly from the annotated
information. For example, from the sentence in Fig-
ure 1, the lexical entry in Figure 3 is derived.2

In order to remove duplicate entries, we made two
assumptions: (a) the value of theARGS feature is a
setof arguments, rather than, say, a list or multiset;
and (b) two arguments are identical just in case they
specify the same syntactic role and semantic role.
These assumptions prevent a range of inappropriate
entries from being created, for example entries de-

2Our original plan was to use the automatically generated
‘lexical entry’ files included with the most recent FrameNetre-
lease as a basis for deep parsing. However, these entries contain
so many inappropriate subcategorisation frames, of the types
discussed in this paper, that we decided to start from scratch
with the corpus annotations.

rived from sentences involving a ‘split’ argument,
both parts of which are annotated independently in
FrameNet, e.g. [Ext Serious concern] arose [Ext
about his motives]. A second group of inappropri-
ate entries which are thus avoided are those deriving
from relative clause constructions, where the rela-
tive pronoun and its antecedent are also annotated
separately:

[Ext Perp The two boys] [Ext Perp who] ab-
ducted [Obj Victim James Bulger] are likely to
have been his murderers

Finally, assuming that the arguments constitute a set
means that entries derived from sentences involving
both canonical3 and non-canonical word order are
treated as equivalent. The kinds of construction im-
plicated here include ‘quotative inversion’ (e.g.”Or
Electric Ladyland,” added Bob), and leftwards ex-
traction of objects and dependents, for example:

Are there[Obj any places] [Ext you] want topraise
[Dep for their special facilities]?

In this paper we are mainly interested in extract-
ing the possible syntax-semantics mappings from
FrameNet, rather than the precise details of their rel-
ative ordering. Since dependents in the harvested

3The canonical word order in English involves a pre-verbal
subject, with all other dependents following the verb.

114

















ORTH 〈fry〉
SYNCAT V
SEMTYPE Apply heat

ARGS

〈





SYNROLE Ext
SYNCAT NP
SEMROLE Cook









SYNROLE Obj
SYNCAT NP
SEMROLE Food



,





SYNROLE Dep
SYNCAT PP
SEMROLE Heating Instr





〉















Figure 3: The lexical entry derived from Figure 1

lexicon are fully specified for semantic role, syn-
tactic categoryand syntactic role, post-verbal con-
stituent ordering can-be regulated extra-lexically by
means of precedence rules. For example, for the
TRIPS and LFG formalisms, there is a straightfor-
ward correspondence between their native syntactic
role specifications and the FrameNet syntactic roles.

After duplicate entries were removed from the re-
sulting lexicon, we were left with 26,022 distinct
entries. The harvested lexicon incorporated 2,002
distinct orthographic forms, 358 distinct frames,
and 2,661 distinct orthography-frame pairs, giving
a functionality ratio (average number of lexical en-
tries per orthography-type pair) of 9.8.

Next, we evaluated a random sample of the de-
rived lexical entries by hand. The aim here was to
identify general classes of the harvested verb entries
which are not appropriate for inclusion in a frame-
based verb lexicon, and which would need to be
identified and fixed in some way. The main groups
identified were: (a) entries with noExt argument
(section 4.1); (b) entries derived from verbs in the
passive voice (section 4.2); (c) entries which subcat-
egorise for modifiers (section 4.3); and (d) entries
for control verbs (section 4.4).

4.1 Subjectless entries

The harvested lexicon contains 2,201 entries (i.e.
9% of the total) which were derived from sentences
which donot contain an argument labelled with the
Ext syntactic role, in contravention of the gener-
ally accepted constraint on English verbs that they
always have a subject.

Three main groups of sentences are implicated
here: (a) those featuringimperativeuses of the tar-
get verb, e.g.Alwaysmoisturise exposed skin with
an effective emollient like E45; (b) those featuring
othernon-finiteforms of the target verb whose un-

derstood subject is not controlled by (or even coref-
erential with) some other constituent in the sentence,
e.g.Beingaccused of not having a sense of humour
is a terrible insult; and (c) those involving a non-
referential subjectit, for exampleIt is raining heav-
ily or It is to beregretted that the owner should have
cut down the trees. In FrameNet annotations, non-
referential subjects are not identified on the syntactic
role annotation layer, and this makes it more difficult
to harvest appropriate lexical entries for these verbs
from the corpus.

These entries are easy to locate in the harvested
lexicon, but more difficult to repair. Typically one
would want to discard the entries generated from
(a) and (b) as they will be derived automatically in
the grammar, but keep the entries generated from (c)
while adding a non-referentialit as a subject.

Although the FrameNet policy is to annotate the
(a) and (b) sentences as having a ‘non-overt’ real-
isation of the relevant frame element, this is con-
fined to the frame element annotation layer itself,
with the syntactic role and syntactic category lay-
ers containingnoclues whatsoever about understood
subjects. One rather roundabout way of differentiat-
ing between these cases would involve attempting to
identify the syntactic category and semantic role of
the missingExt argument by looking at other en-
tries with the same orthography and semantic type.
However, this whole problem could be avoided if
understood and expletive subjects were identified on
thesyntacticlayers in FrameNet annotations.

4.2 ‘Passive’ entries

Many entries in the harvested lexicon were derived
from sentences where the target verb is used in the
passive voice, for example:

[Ext NP VictimThe men] had allegedly beenab-
ducted [Dep PP Perp by Mrs Mandela’s body-

115



guards] [Dep PP Time in 1988]

As discussed above, computational lexicons do not
usually list the kinds of lexical entry derived directly
from such sentences. Thus, it is necessary to identify
and correct or remove them.

In FrameNet annotated sentences, the voice of tar-
get verbs is not marked explicitly.4 We applied the
following simple diagnostic to identify ‘passive’ en-
tries: (a) there is anExt argument realising frame
elemente; and (b) there is some other entry with the
same orthographic form and semantic frame, which
has anObj argument realising frame elemente.

Initially we applied this diagnostic to the entries
in the harvested lexicon together with a part-of-
speech tag filter. The current FrameNet release in-
cludes standard POS-tag information for each word
in each annotated sentence. We considered only
those lexical entries derived from sentences whose
target verb is tagged as a ‘past-participle’ form (i.e.
VVN). This technique identified 4,160 entries in the
harvested lexicon (i.e. 16% of the total) as being
‘passive’. A random sample of 10% of these was
examined andno false positives were found.

The diagnostic test was then repeated on the re-
maining lexical entries, this timewithout the POS-
tag filter. This was deemed necessary in order to
pick up false negatives caused by the POS-tagger
having assigned the wrong tag to a passive target
verb (generally the past tense form tagVVD). This
test identified a further 1007 entries as ‘passive’ (4%
of the total entries). As well as mis-tagged instances
of normal passives, this test picked up a further three
classes of entry derived from target verbs appearing
in passive-related constructions. The first of these
involves cases where the target verb is in the com-
plement of a ‘raising adjective’ (e.g.tough, difficult,
easy, impossible), for example:

[Ext NP Goal Both planning and control] are dif-
ficult to achieve [Dep PP Circs in this form of
production]

The current FrameNet annotation guidelines (Rup-
penhofer et al., 2006) state that the extracted object
in these casesshouldbe tagged asObj. However,
in practice, the majority of these instances appear to
have been tagged asExt.

4Whilst there are dedicated subcorpora containingonly pas-
sive targets, it is not the case thatall passive targets are in these.

The second group of passive-related entries in-
volve verbs in theneed -ingconstruction5, e.g.:

[Ext NP Content Many private problems] need
airing [Dep PP Medium in the family]

The third group involved sentences where the target
verb is used in the ‘middle’ construction:

[Ext Experiencer You] frighten [Dep
Manner easily]

Again, linguistically-motivated grammars generally
treat these three constructions in the rule component
rather than the lexicon. Thus, the lexical entries de-
rived from these sentences need to be located and
repaired, perhaps by comparison with other entries.

Of the 1007 lexical entries identified by the sec-
ond, weaker form of the passive test, 224 (i.e. 22%)
turn out to be false positives. The vast majority
of these involve verbs implicated in the causative-
inchoative alternation (e.g.John’s back archedvs.
John arched his back). The official FrameNet pol-
icy is to distinguish between frames encoding a
change-of-state and those encoding the causation
of such a change, for exampleAmalgamation
versusCause to amalgamate, Motion versus
Cause motion etc. In each case, the two frames
are linked by theCausative of frame relation.
Most of the false positives are the result of a fail-
ure to consistently apply this principle in annotation
practice, for example where no causative counterpart
has been defined for a particular inchoative frame,
or where an inchoative target has been assigned to a
causative frame, or a causative target to an inchoa-
tive frame. For example, 94 of the false positives
are accounted for simply by the lack of a causative
counterpart for theBody movement frame, mean-
ing that both inchoative and causative uses of verbs
like arch, flutter andwiggle have all been assigned
to the same frame.

For reasons of data sparsity, it is expected that the
approach to identifying passive uses of target verbs
discussed here will result in false negatives, since it
relies on there being at least one corresponding ac-
tive use in the corpus. We checked a random sample
of 400 of the remaining entries in the harvested lex-
icon and found nine false negatives, suggesting that

5Alternativelymerit -ing, bear -ingetc.

116



the test successfully identifies 91% of those lexical
entries derived from passive uses of target verbs.

4.3 Modifiers

General linguistic theory makes a distinction be-
tween two kinds of non-subject dependent of a verb,
depending on the notional ‘closeness’ of the seman-
tic relation — complements vs. modifiers. Take for
example the following sentence:

[Ext Performer She]’s [Dep Time currently]
starring [Dep Performance in The Cemetery
Club] [Dep Place at the Wyvern Theatre]

Of the three constituents annotated here asDep,
only one is an complement (thePerformance);
the Time and Place dependents are modifiers.
Frame-based NLU systems do not generally list
modifiers in the argument structure of a verb’s lexi-
cal entry. Thus, we need to find a means of identify-
ing those dependents in the harvested lexicon which
are actually modifiers.

The FrameNet ontology provides some informa-
tion to help differentiate complements and modi-
fiers. A frame element can be marked asCore,
signifying that it “instantiates a conceptually nec-
essary component of a frame, while making the
frame unique and different from other frames”. The
annotation guidelines state that the distinction be-
tweenCore and non-Core frame elements cov-
ers “the semantic spirit” of the distinction between
complements and modifiers. Thus, for example,
obligatory dependents are alwaysCore, as are:
(a) those which, when omitted, receive a definite
interpretation (e.g. theGoal in John arrived);
and (b) those whose semantics cannot be predicted
from their form. In thePerformers and roles
frame used in the example above, thePerformer
andPerformance frame elements are marked as
Core, whilstTime andPlace are not.

However, it is not clear that the notion of on-
tological ‘coreness’ used in FrameNet corresponds
well with the intuitive distinction between syntactic
complements and modifiers. This is exemplified by
the existence of numerous constituents in the corpus
which have been marked as direct objects, despite
invoking non-Core frame elements, for example:

[Agent I ] ripped [Subregion the top]
[Patient from my packet of cigarettes]

The relevant frame here isDamaging, where the
Subregion frame element is marked as non-
Core, based on examples likeJohn ripped his
trousers [below the knee]. Thus in this case, the
decision to retain all senses of the verbrip within
the same frame has led to a situation where seman-
tic and syntactic coreness have become dislocated.
Thus, although theCore vs. non-Core property on
frame elementsdoesyield a certain amount of in-
formation about which arguments are complements
and which are modifiers, greater care needs to be
taken when assigning different subcategorisation al-
ternants to the same frame. For example, it would
have been more convenient to have assigned the verb
rip in the above example to theRemoving frame,
where the direct object would then be assigned the
Core frame elementTheme.

In the example discussed above, FrameNet does
provide syntactic role information (Obj) allowing
us to infer that a non-Core role is a complement
rather than a modifier. Where the syntactic role is
simply marked asDep however, it is not possible
to make the decision without recourse to other lexi-
cal resources (e.g. ComLex). Since different parsers
may utilise different criteria for distinguishing com-
plements from modifiers, it might be better to post-
pone this task to the syntactic alignment module.

4.4 Control verbs

Unification-based parsers generally handle the dis-
tinction between subject (John promised Mary to
go) and object (John persuaded Mary to go) con-
trol verbs in the lexicon, using coindexation of the
subject/object of the control verb and the understood
subject of the embedded verb. The parser can use
this lexical information to assign the correct refer-
ent to the understood subject in a sentence likeJohn
asked Mary to go:













command
AGENT John

THEME Mary 1

EFFECT

[

motion
THEME 1

]













Control verbs are annotated in FrameNet in the fol-
lowing manner:

Perhaps [Ext NP Speaker we] can persuade
[Obj NP Addressee Tammuz] [Dep VPto

117



Content to entertain him]

The lexical entries for transitive control verbs that
we can harvest directly from these annotations thus
fail to identify whether it is the subject or the direct
object which controls the understood subject of the
embedded verb.

We attempted to automatically distinguish subject
from object control in FrameNet by looking for the
annotated sentences that contain independently an-
notated argument structures for both the control verb
and embedded verb. For example, let’s assume the
following annotation also exists in the corpus:

Perhaps we can persuade[Ext NP Agent Tam-
muz] to entertain [Obj NP Experiencer him]

We can then use the fact that it is theobjectof the
control verb which is coextensive with theExt of
the embedded verb to successfully identifypersuade
as an object-control verb.

The problem with this approach is data sparsity.
The harvested lexicon contains 135 distinct verbs
which subcategorise for both a direct object and
a controlled VP complement. In a random sam-
ple of ten of thesenoneof the annotated sentences
had been annotated independently from the perspec-
tive of the governed verb. As the proportion of the
FrameNet corpus which involves annotation of run-
ning text, rather than cherry-picked example sen-
tences, increases, we would expect this to improve.6

5 Implementation and discussion

The revised version of the harvested lexicon con-
tains 9,019 entries for 2,626 orthography-frame
pairs, yielding a functionality ratio of 3.4.

This lexicon still requires a certain amount of
cleaning up. For example, the verbaccompanyis
assigned to a number of distinct lexical entries de-
pending on the semantic role associated with the PP
complement (i.e.Goal, Path or Source). Cases
like this, where the role name is determined by the
particular choice of preposition, could be handled
outside the lexicon. Alternatively, it may be possible
to use the ‘core set’ feature of the FrameNet ontol-
ogy (which groups together roles that are judged to

6An alternative approach would be to consult an external
lexical resource, e.g. the LinGO ERG lexicon, which has good
coverage of control verbs.

be equivalent in some sense) to locate this kind of re-
dundancy. Other problems involve sentences where
a possessive determiner has been annotated as the
subject of a verb, e.g.It was [his] intention toaid
Larsen, resulting in numerous spurious entries.

The harvested lexical entries are encoded ac-
cording to a framework-independent XML schema,
which we developed with the aim of deriving lexi-
cons for use with a diverse range of parsers. At the
moment, several additional steps are required to con-
vert the entries we extracted into a format suitable
for a particular parser.

Firstly, the syntactic categories used by FrameNet
and the target lexicon have to be reconciled. While
basic constituent types such as noun and adjective
phrases do not change between the theories, small
differences may still exist. For example, the TRIPS
parser classifies allwh-clauses such aswhat he did
in I saw what he didandWhat he did was goodas
noun phrases, the LinGO ERG grammar interprets
them as either noun phrases or clauses depending on
the context, and FrameNet annotation classifies all
of them as clauses. The alignment, however, should
be relative straightforward as there is, in general,
good agreement on the basic syntactic categories.7

Secondly, the information relevant to constituent
ordering may need to be derived, as discussed in
Section 4. Finally, the more abstract features such as
control have to be converted into feature structures
appropriate for the unification parsers. Our schema
incorporates the possibility for embedded category
structure, as in the treatment of control verbs in CCG
and HPSG where the verbal complement is an ‘un-
saturated’ category. We plan to use our schema
as a platform for deriving richer lexical represen-
tations from the ‘flatter’ entries harvested directly
from FrameNet.

As part of our future work, we expect to create
generic algorithms that help automate these steps. In
particular, we plan to include a domain-independent
set of constituent categories and syntactic role la-
bels, and add algorithms that convert between a lin-
ear ordering and a set of functional labels, for exam-
ple (Crabbé et al., 2006). We also plan to develop
algorithms to import information from other seman-

7http://www.cl.cam.ac.uk/users/alk23/classes/Classes2.txt
contains a list of mappings between three different deep parsers
and ComLex subcategorisation frames

118



tic lexicons such as VerbNet into the same schema.
Currently, we have implemented an algorithm for

converting the harvested entries into the TRIPS lex-
icon format, resulting in a 6133 entry verb lexicon
involving 2654 distinct orthography-type pairs. This
lexicon has been successfully used with the TRIPS
parser, but additional work remains to be done be-
fore the conversion process is complete. For exam-
ple, we need a more sophisticated approach to re-
solving the complement-modifier distinction, along
with a means of integrating the FrameNet semantic
types with the TRIPS ontology so the parser can use
selectional restrictions to disambiguate.

The discussion in this paper has been mainly fo-
cused on extracting entries for a deep lexicons us-
ing frame-based NLU, but similar issues have been
faced also by the developers of shallow semantic
parsers from semantically annotated corpora. For
example, Gildea and Jurafsky (2002) found that
identifying passives was important in training a se-
mantic role classifier from FrameNet, using a parser
trained on the Penn Treebank along with a set of
templates to distinguish passive constructions from
active ones. Similarly, Chen and Rambow (2003)
argue that the kind of deep linguistic features we
harvest from FrameNet is beneficial for the success-
ful assignment of PropBank roles to constituents, in
this case using TAGs generated from PropBank to
generate the relevant features. From this perspec-
tive, our harvested lexicon can be seen as providing a
‘cleaned-up’, filtered version of FrameNet for train-
ing semantic interpreters. It may also be utilised to
provide information for a separate lexical interpreta-
tion and disambiguation module to be built on top of
a syntactic parser.

6 Conclusion

We have developed both a procedure and a
framework-independent representation schema for
harvesting lexical information for deep NLP systems
from the FrameNet semantically annotated corpus.
In examining the feasibility of this approach to in-
creasing lexical coverage, we have identified a num-
ber of constructions for which current FrameNet an-
notation practice leads to problems in deriving ap-
propriate lexical entries, for example imperatives,
passives and control.

7 Acknowledgements

The work reported here was supported by grants
N000140510043 and N000140510048 from the Of-
fice of Naval Research.

References

C. F. Baker, C. Fillmore, and J. B. Lowe. 1998.
The Berkeley FrameNet Project. InProceedings of
COLING-ACL’98, Montreal, pages 86–90.

J. Chen and O. Rambow. 2003. Use of deep linguistic
features for the recognition and labeling of semantic
arguments. InProceedings of EMNLP’03, Sapporo,
Japan.

A. Copestake and D. Flickinger. 2000. An open-
source grammar development environment and broad-
coverage English grammar using HPSG. InProceed-
ings of LREC’00, Athens, Greece, pages 591–600.

B. Crabbé, M. O. Dzikovska, W. de Beaumont, and
M. Swift. 2006. Increasing the coverage of a domain
independent dialogue lexicon with VerbNet. InPro-
ceedings of ScaNaLU’06, New York City.

M. O. Dzikovska. 2004.A Practical Semantic Repre-
sentation for Natural Language Parsing. Ph.D. thesis,
University of Rochester, Rochester NY.

D. Gildea and D. Jurafsky. 2002. Automatic label-
ing of semantic roles. Computational Linguistics,
28(3):245–288.

R. Grishman, C. MacLeod, and A. Meyers. 1994. Com-
lex syntax: Building a computational lexicon. InPro-
ceedings of COLING’94, Kyoto, Japan, pages 268–
272.

J. Hockenmaier and M. Steedman. 2002. Acquiring
Compact Lexicalized Grammars from a Cleaner Tree-
bank. InProceedings of LREC’02, Las Palmas, Spain.

K. Kipper, H. T. Dang, and M. Palmer. 2000. Class-
based construction of a verb lexicon. InProceedings
of AAAI’00, Austin TX.

J. Ruppenhofer, M. Ellsworth, M. R. L. Petruck, C. R.
Johnson, and J. Scheffczyk, 2006.FrameNet II: Ex-
tended Theory and Practice. The Berkeley FrameNet
Project, August.

M. White. 2006. Efficient realization of coordinate struc-
tures in Combinatory Categorial Grammar.Research
on Language and Computation, 4(1):39–75.

119



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 120–127,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Fips, a “Deep” Linguistic Multilingual Parser

Eric Wehrli
LATL-Dept. of Linguistics

University of Geneva
Eric.Wehrli@lettres.unige.ch

Abstract

The development of robust “deep” linguis-
tic parsers is known to be a difficult task.
Few such systems can claim to satisfy the
needs of large-scale NLP applications in
terms of robustness, efficiency, granular-
ity or precision. Adapting such systems
to more than one language makes the task
even more challenging.

This paper describes some of the proper-
ties of Fips, a multilingual parsing sys-
tem that has been for a number of years
(and still is) under development at LATL.
Based on Chomsky’s generative grammar
for its grammatical aspects, and on object-
oriented (OO) sofware engineering tech-
niques for its implementation, Fips is de-
signed to efficiently parse the four Swiss
“national” languages (German, French,
Italian and English) to which we also
added Spanish and (more recently) Greek.

1 Introduction

This papers describes the Fips project, which
aims at developing a robust, multilingual “deep”
linguistic parsing system efficient enough for a
wide-range of NLP applications. The system
is currently available for six languages (English,
French, German, Italian, Spanish and Greek), and
has been extensively used for terminology extrac-
tion (Seretan & Wehrli, 2006), as well as for ter-
minology assistance and translation (Wehrli, 2004,
2006).

This paper is organized as follows. The next
section gives an overview of the Fips parser, de-
scribing some of its linguistic properties and its
main processes. In section 3, we present the

object-oriented design adopted for the project.
Section 4 discusses some cases of cross-linguistic
syntactic variation. Finally, section 5 provides
some details about the results and presents an eval-
uation of the parser for the six languages.

2 The Fips parser

Fips is a robust “deep” linguistic parser which as-
signs to an input sentence an enriched S-structure
type of representation, along with a predicate-
argument representation. Fips can also be used
as a tagger, outputing for each word of a given
sentence a POS-tag and optionally the grammat-
ical function (associated to the first word of a con-
stituent), the base form (citation form) of the word,
and whether a word is part of an expression or a
collocation.

As an illustation, figure 1 shows the enriched
structure representation and figure 2 the POS-tags
returned by Fips for sentence (1). Notation is ex-
plained below.

(1) The record she broke was very old.

[
TP

[
DP

the [
NP

recordi [
CP

[
DP

e]i [
TP

[
DP

she ] broke[
DP

e]i ] ] ] ] was [
FP

[
AP

[
Adv

very

] old ] ] ]

Figure 1: Enriched S-Structure representation for
sentence (1)

The linguistic assumptions used in this project
correspond roughly to a free-adaptation of Chom-
sky’s generative linguistics, borrowing concepts
from the Minimalist model (Chomsky, 1995,
2004), from theSimpler Syntaxmodel (Culicover
& Jackendoff, 2005), as well as fromLexical
Functional Grammar(Bresnan, 1982, 2001).

120



word tag expression
the DET-SIN
record NOM-SIN break-record
she PRO-PER-SIN-FEM
broke VER-PAS-3-SIN break-record
was VER-PAS-3-SIN
very ADV
old ADJ

Figure 2: POS-tag output for sentence (1)

Roughly, the grammar is lexicalist, exploiting a
rich lexicon which specifies, among others,

• the selectional properties of functional ele-
ments such as prepositions, auxiliaries, deter-
miners, etc. For instance, the English auxil-
iary haveselects a [+past participle] verbal
projection. Similarly, in German,werdense-
lects an infinitival verbal complement;

• arguments selected by predicative heads
(nouns, verbs, adjectives);

• other syntactic or semantic features which
might be relevant for syntactic processing
such as [+pronominal] feature associated to
certain verbs in French, Italian, German, etc.,
types and subtypes of adverbs, control prop-
erties of verbs selecting infinitival comple-
ments, and so on.

As shown in figure 1 above, the fundamental
structures built by Fips all follow the same pat-
tern, that is : LeftSubconstituents Head RightSub-
constituents, which can be abbreviated asL X R ,
where L stands for the (possibly empty) list of
left subconstituents,X for the (possibly empty)
head of the phrase andR for the (possibly empty)
list of right subconstituents. The possible val-
ues forX are the usual lexical categoriesAdverb,
Adjective, Noun, Determiner,Verb, Preposition,
Complementizer,Inter jection. To this list we add
the functional categoryTense, which is the head
of a sentence (TP), as well asFunctional, used to
represent predicative objects headed either by an
adjective, an adverb, a noun or a preposition.

Compared to current mainstream Chomskyan
representations, Fips constituent structures are rel-
atively flat and make a rather parsimonious use of
functional projections. They do, however, contain
empty categories, either to represent empty sub-
jects, for instance in infinitival complements, rep-

resented as sentences with a (usually lexically un-
realized) subject. Empty categories are also used
to represent “traces” of extraposed constituents, as
in wh-constructions, where a chain of coindexed
constituents is computed, headed by the extra-
posed element and footed by its “trace”, an empty
constituent in argument or adjunct position. An
example of such chain is given in figure 1, where
the nounrecord is first coindexed with the (lex-
ically unrealized) relative pronoun in the speci-
fier position of the CP constituent, which is itself
related to the empty constituent[

DP
e]i in the

canonical direct object position of the verb form
broke.

Although quite complex, the computation of
such chains brings many benefits in terms of qual-
ity and accuracy of the analysis. One clear exam-
ple is provided by the identification of collocation,
as exemplified in example (1) with the collocation
break-record. In that sentence, the two terms of
the collocation do not occur in the expected order
and do not even occur in the same clause, since
record is the subject of the main clause, while
broke is in the relative clause. However, as the
structure give in fig. 1 shows, the presence of the
“trace” of record in the direct object position of
the verb formbrokemakes the identification of the
collocation rather simple, and fig. 2 confirms that
Fips has indeed recognized the collocation.

The grammar itself consists of both rules and
processes. Rules specify the attachment of con-
stituents, thus determining, at least for the main
part, the constituent structure associated to a sen-
tence. The grammatical processes, which roughly
correspond to some of the earlier transformation
rules of Generative Grammar, are primarily re-
sponsible for tasks such as:

• filling up the argument table associated with
predicative elements (mostly verbs);

• chain formation, ie. establishing a link be-
tween an extraposed element, such as awh-
element and an empty category in an argu-
ment or adjunct canonical position;

• modifications of the argument structure of
predicates (adding, deleting, modifying argu-
ments), as is necessary to account for passive
or Romance causative constructions;

• coordination or enumeration structures.

121



In all such cases, the claim is that a procedural
account is simpler than a rule-based description,
leading furthermore to a more efficient implemen-
tation.

3 Object-oriented design

The computational model adopted for the Fips
project relies on object-oriented (OO) concepts
(see, for instance, Mössenböck, 1995). An ab-
stract model is assumed both for objects and
for their associated procedures (usually called
“methods” in OO-jargon) – roughly correspond-
ing to the “universal” linguistic level – from which
language-specific objects and procedures are de-
rived. In other words, linguistic objects are defined
as abstract data types, whose implementation can
vary from language to language. Such variation
is handled by the type extension feature provided
by OO-models when the variation concerns data
structures or by the procedure redefinition feature
when variation concerns a process.

Fips relies on three main objects:

• lexical units (LexicalItem), which correspond
to the “words” of a language, as they appear
in the lexical database;

• syntactic projections (Projection), which are
the syntactic constituents;

• items (Item), which correspond to an analysis
(partial or complete) – since the parser uses a
parallel strategy, many items are maintained
throughout the parsing process.

The main procedures (methods) associated to
those objects areProject, Merge and Move, cor-
responding to the operation of projection, combi-
nation and movement, respectively. The following
subsections will briefly discuss them in turn.

3.1 Project

The projection mechanism creates a syntactic
constituent (an object of typeProjection in our
model), either on the basis of a lexical object, or on
the basis of another syntactic constituent. For in-
stance, any lexical item, as computed and retrieved
from the lexical database by the lexical analysis is
projected into a syntactic constituent, with the lex-
ical item as its head. Thus, givenlex, a lexical
item, lex.Project(p)creates a syntactic projection
p headed bylex, as in example (2):

(2)a. chat−→ [
NP

chat ]

b. eine−→ [
DP

eine ]

c. with−→ [
PP

with ]

A more powerful variant of the projection
mechanism, called metaprojection, can create
richer syntactic constituents based either on spe-
cific lexical items or on other syntactic projec-
tions. For instance, we consider pronouns to be
nominal-type lexical elements which project to a
DP level. Similarly, verbs are taken as sentence
heads, and will therefore give rise to richer syn-
tactic constituents, as illustrated in the following
examples:

(3)a. pronouns

[
DP

[
NP

toi ] ]

b. mangeras (“will-eat”)
[
TP

mangerasi [
VP

ei ] ]

c. reads
[
TP

[
VP

reads ] ]

d. regnet (“rains”)
[
CP

regneti [
TP

[
VP

ei ] ] ]

Notice that the position of the tensed verb is dif-
ferent in the the structures given in (3b,c,d). We
assume that tensed verbs in French (and more gen-
erally in Romance) “move” to the head of TP, as
shown in (3b), while such movement does not oc-
cur in English (3c). An even more drastic example
of metaprojection occurs in German, where we as-
sume that a whole clause structure is projected on
the basis of a tensed verb (in matrix clause), as il-
lustrated in (3d).

3.2 Merge

Merge is the fundamental combination mechanism
in our parsing model. Each time the parser reads
a word, it is first transformed into a syntactic
constituent, a projection, as we have just seen.
The projection, in turn, must now be combined
(merged) with (partial or complete) constituents
in its immediate left context. Two scenarios are
considered, corresponding to left attachment and
to right attachment. Left attachment occurs when
the projection in the left context of the new pro-
jection can be attached as a left subconstituent of
the new projection. Right attachment corresponds
to the situation where the new projection can be
attached as a right subconstituent of the projection
in its left context. In fact, to be more accurate, the

122



incoming projection can attach as a subconstituent
not just of the projection in its left context, but to
any active node of it, as illustrated in Figure 3 be-
low:

Merge must be validated either by lexical prop-
erties such as selectional features or by general
properties (adverbs, adjuncts, parentheticals can
relatively freely modify projections).

TP
���
���
���

���
���
���

...

...

the

Left context: Active node stack :

Constituent to be attached :

boy

eaten

has

a

big

ice−cream

NP

AP

DP

VPDP

NP

���
���
���

���
���
���

Figure 3: Active node stack

3.3 Move

Although the general architecture of surface struc-
tures results from the combination of projection
and merge operations, an additional mechanism
is necessary to satisfy well-formedness conditions
such as thematic assignment. As mentioned ear-
lier, such a mechanism reveals quite useful for the
collocation identification process (cf. fig. 2). This
mechanism handles extraposed elements and link
them to empty constituents in canonical positions,
thereby creating a chain between the base (canoni-
cal) position and the surface (extraposed) position
of the movedconstituent. To take another simple
example, let us consider the interrogative sentence
given in (4a) and the (slightly simplified) associ-
ated structure in (4b):

(4)a. who did you invite ?

b. [
CP

[
DP

who]i didj [
TP

[
DP

you ] ej [
VP

invite [
DP

e]i ] ] ]

The chain mechanism functions as follows: as
the parser encounters awh-word in an extraposed
position, it stores it in a stack associated with its
governing category (typically the CP projection
which dominates it). As the parse proceeds, the
stack is transferred along the right edge of the

structure, provided it does violate island condi-
tions (cf. Ross, 1967). Whenever a predicative el-
ement is added to the structure, an attempt is made
to complete the chain, ie. to interpret the projec-
tion on top of the stack with respect to the predi-
cate. If successful, an empty category coindexed
with the extraposed projection is inserted into the
structure and the projection is removed from the
stack. At the end of the parse, items containing
unresolved chains are heavily penalized.

3.4 A parsing example

To illustrate the parsing procedure and the inter-
action of the 3 mechanisms described above, con-
sider the following simple sentence in French.

(5)a. Paul mange une pomme.
’Paul eats an apple’

b. [
TP

[
DP

[
NP

Paul ] ] mangei [
VP

e i [
DP

une

[
NP

pomme ] ] ] ]

Step 1 the parser reads “Paul” and metaprojects a
DP structure [

DP
[
NP

Paul ] ].

Step 2 the parser reads “manges” and metapro-
jects a TP-VP structure [

TP
mangei [

VP
ei ]

]. A merge operation is possible with the pre-
ceding DP structure, which yields [

TP
[
DP

[
NP

Paul ] ] mangei [
VP

ei ] ].

Step 3 the parser reads the determiner “une” and
creates a DP structure [

DP
une ]. A merge op-

eration is possible with the left-adjacent TP
constituent, with DP attached as right con-
stituent of the internal VP node [

TP
[
DP

[
NP

Paul ] ] mangei [
VP

ei [
DP

une ] ] ].

Step 4 the parser reads the noun “pomme”, cre-
ates an NP structure [

NP
pomme ], and attach

it (merge operation) as a right constituent of
the DP structure in the TP structure, which
yields the complete structure (5b).

3.5 The grammar

Merge operations are constrained by various
mostly language-specific conditions which can be
described by means of rules. Those rules are
stated in a pseudo formalism which attempts to be
both intuitive for linguists and relatively straight-
forward to code. The conditions associated to the
rules take the form of boolean functions, as de-
scribed in the examples (6) for left attachments

123



and in the examples (7) for right attachments,
wherea andb refer, respectively, to the first and
to the second constituent of a merge operation.

(6)a. AP + NP
a.HasFeat(prenominal)
a.AgreeWith(b,{gender, number})

b. DP + NP
a.HasSelectionFeat( nCompl)
a.AgreeWith(b,{gender, number, case})

Rule 6a specifies that an adjective projection
structure (an AP constituent) can (left-)merge with
a noun projection structure (anNPconstituent) un-
der the two conditions (i) that the first constituent
(the adjective) bears the featureprenominal
and (ii) that both constituents agree in number and
gender. This rule, which is part of our French
grammar, will allow forpetit animal(“small ani-
mal”), but notpréhistorique animal(“prehistorical
animal”), since the adjectivepréhistoriquedoes
not bear the feature[+prenominal], nor pe-
tit animaux(“small animals”), sincepetit is singu-
lar while animauxis plural and hence both do not
agree in number.

Rule (6b) is taken from our German grammar. It
states that a common noun can be (right-)attached
to a determiner phrase, under the conditions (i)
that the head of the DP bears the selectional fea-
ture [+Ncomplement] (ie. the determiner se-
lects a noun), and (ii) the determiner and the noun
agree in gender, number and case.

3.6 Procedural grammar

One of the original features of the Fips parser is its
procedural approach to several grammatical prop-
erties. In addition to the chain mechanism de-
scribed in the previous section, the procedural ap-
proach also concerns the treatment of passive and
other restructuring constructions, as well as coor-
dination. The next two paragraphs briefly sketch
our treatment of passive and coordination con-
structions.

3.6.1 passives

Along with many linguists or various persua-
sions, we assume that the fundamental property
of passives is the elimination (or demotion) of the
subject argument of a predicate. Based on that
assumption, our treatment is essentially a case of
argument-structure modification: demotion of the
subject argument to an optional “by-phrase” ar-
gument, promotion of the direct object argument

to the subject argument slot. In our implemen-
tation, the treatment of passives takes the form
of a grammar rule specifying the attachment of a
[+past participle] verbal projection as complement
of the passive auxiliary. This attachment triggers
the restructuring process described above1.

3.6.2 coordination

Coordinate structures constitute a well-known
problem for both theoretical and computational
linguistics. For the latter, coordination is prob-
lematic because it is a major source of non-
determinism. Given the fact that such structures
are extremely common in both speech and writ-
ing, it is therefore mandatory for NLP systems to
handle them efficiently. Our treatment of coordi-
nation is based on the following assumptions:

• Coordination can affect any pair of like con-
stituents;

• coordinate structures do not strictly obey the
X schema. They have the following structure:
[
XP

[
ConjP

XP Conj XP ] ], where X takes

its value in the set of lexical categories aug-
mented by T and F (see section 2 above), and
CONJ is a coordination conjunction (eg.and,
or, but, etc.).

The coordination procedure is triggered by the
presence of a conjunction. All the nodes on the
right edge of the constituent in its immediate left
context are considered potential candidates for the
coordination structure. A metaprojection creates
a coordinate projection, in which the node on the
right edge is the left subconstituent of the conjunc-
tion. The set of such projections is quickly filtered
out by further incoming material.

To illustrate our treatment of coordinate struc-
tures, in particular the type of structure we assume
(slightly simplified in the (8) sentences) as well as
the potential ambiguity of coordination, consider
the following simple English examples.

(7)a. the old men and women

b. [
DP

[
ConjP

[
DP

the [
NP

[
AP

old ] men ] ]

and ] [
DP

[
NP

women ] ] ]

c. [
DP

the [
NP

[
AP

old ] [
ConjP

[
NP

men ] and

[
NP

women ] ] ] ]

1The same restructuring process applies to particial struc-
tures, as in John left the room,followed by his dog.

124



d. [
DP

the [
NP

[
ConjP

[
NP

[
A

old ] men ] ]

and ] [
NP

women ] ]

(8)a. John believes Bill and Mary will be to blame.

b. John believes [
TP

[
DP

Bill and Mary ] will

be to blame ]

c. [
TP

John believes Bill ] and [
TP

Mary will

be to blame ]

4 Examples of cross-linguistic variation

In the Fips system, language variation occurs not
only at the level of the grammar, as expected, but
also at the level of the associated procedures. Con-
sider for example, the case of the argument check-
ing procedure. Whereas a preverbal DP can be in-
terpreted as the subject of a verb if it agrees with
it (number, person) in languages such as French
or English (as well as other so-called “configu-
rational languages”), the same criteria would not
hold for case-marked languages, such as German
or Modern Greek. In those languages, subjects
can essentially occur anywhere in the sentence but
must be marked[+nominative] and of course
agree with the verb (number, person)2. Relatively
similar at an abstract level, the argument check-
ing procedure must be “tuned” for each individual
language.

Our second example of cross-linguistic varia-
tion concerns clitic pronouns. The relevant data
structures (objects) and interpretation procedures
(methods) to handle clitics are defined at an ab-
stract level. Specific languages (ie. Spanish, Ital-
ian, French, Greek, etc.) inherit those objects
and methods, which they can further specialize ac-
cording to language-specific properties and con-
straints. The general mechanism to handle clitics
comprises two distinct steps: attachment and in-
terpretation3. As a clitic is read (as an independent
word or as an orthographically attached affix), it is
attached to the head of the verb form which fol-
lows it (proclitic) or which precedes it (enclitic).
Since this verbal head is not necessarily the one
with respect to which the clitic pronoun can be in-
terpreted (it might be an auxiliary, for instance),

2We assume that German (and Modern Greek) are so-
called scrambling languages with an unmarked basic word
order (cf. Haider and Rosengren, 1998, Hinterhölzl, 2006).

3From now on, the discussion will only focus on Romance
clitics.

a temporary data structure is used to store clitics
until the parser has identified the main predicate
of the sentence4. Only then can the interpretation
process start. All the clitics in the temporary data
structure must be interpreted either as argument or
as adjunct of the verb5. The examples below il-
lustrate our analysis of clitics, applied to Italian
(9), French (10) and Spanish (11). The Italian and
French examples display proclitics (pre-verbal cl-
itics), while the Spanish example is a case of encl-
itics (post-verbal clitics). Notice also that in Ital-
ian and Spanish we have clitic clusters (two clitics
concatenated in one orthographical word), and in
the Spanish example, the cluster is itself concate-
nated to the verb. In all three examples, the clitic
pronouns have be properly analyzed, ie. inter-
preted as arguments of the verb. This is expressed
in the resulting structures by the chains connect-
ing a pronoun and an empty category in postverbal
position. As in thewh-chains discussed earlier, all
the elements are coindexed.

(9)a. Glielo ho dato. (“I have given it to him”)

b. [
TP

[
DP

e ] glii-loj ho [
VP

dato [
PP

ei ] [
DP

ej ] ] ]
(10)a. Paul le lui a donné. (“Paul has given it to

him”)

b. [
TP

[
DP

Paul ] lei luij a [
VP

donné [
DP

ei ]

[
PP

ej ] ] ]
(11)a. Dámmelo. (“Give it to me”)

b. [
TP

[
DP

e ] dai-mej-lok [
VP

ei [
PP

ej ] [
DP

ek ] ] ]

Although very similar in their fundamental be-
havior, clitics across Romance languages are nev-
ertheless too different to be handled by exactly
the same mechanism. Furthermore, even if such
mechanism could be implemented, chances are
that it would prove insufficient or inadequate in
some ways to handle an additional Romance lan-
guage such as Romanian or Portuguese. Our ap-
proach, based on a general abstract mechanism,
which can be specialized to suit the specific prop-
erties of each language seems therefore more ap-
propriate.

4This temporary structure is also used to check the well-
formedness of clitic sequences.

5For the sake of simplicity, we will leave aside a few more
complex cases, such as French clitic “en” corresponding to
complements of the direct object of the main verb (Paul en
connaı̂t la raison“Paul knows the reason of it”) or so-called
“long-distance” clitics in Italian or Spanish restructuration
constructions.

125



5 Results and evaluation

To date, the Fips multilingual parser has been de-
veloped for 6 languages (English, French, Ger-
man, Italian, Spanish and Greek). Other lan-
guages have been very partially treated, such as
Romanian, Russian, Polish and Romansch Sursil-
van.

A significant effort has been made at the lexical
level, qualitatively and quantitatively. The table in
figure 4 below shows the curren approximate size
of each lexicon.

language lexemes words collocations
anglais 54’000 90’000 5’000
français 37’000 227’000 12’500
allemand 39’000 410’000 2’000
italien 31’000 220’000 2’500
espagnol 22’500 260’000 320
grec 12’000 90’000 225

Figure 4: Number of entries in the lexical database

At the grammar level, the coverage of the Eng-
lish and French grammar is quite satisfactory, Ital-
ian, Spanish and especially German still need im-
provements, while the Greek grammar is very par-
tial.

Fips attempts to produce complete analyzes
for input sentences. Since the parsing strategy
is (pseudo-)parallel, many analyzes are produced
and ranked according to preferences such as local
vs. non-local attachments, argument vs. adjunct
interpretation, presence vs. absence of a collo-
cation, etc. When a complete analysis fails, the
parser outputs a sequence of partial analyzes cov-
ering the whole sentence.

A comparative evaluation has been conducted
to show how the various implementations of Fips
compare with respect to a near identical cor-
pus, the European Parliament corpus (cf. Koehn,
2005). We parsed approximately 1 million words
in each of the six languages. The table given in
figure 5 show the results:

The first line in table 5 show the size of each file
in terms of symbols (word, punctuation, format-
ting symbol, etc.), approximately 1 million sym-
bols for each file. The second line gives the num-
ber of unknown words, not counting words start-
ing with an uppercase letter which are assumed
to be proper nouns (given the fact that in Ger-
man common nouns are capitalized, we did not
leave aside capitalized unknown words for that

language). The third line indicates the number
of sentences approximately 40’000 for each file,
slightly more for the German file. We can see
that the average length of a sentence is roughly
20 to 25 symbols (slightly more for French). The
fourth line shows the percentage of sentences for
which Fips returned a complete analysis. The best
score is obtained with English (71.95%), closely
followed by French (70.01%). Greek is clearly
behind with only about 31%, largely due to the
fact that its grammar as well as its lexicon have
received much less attention so far. We can ob-
serve a quite clear (and unsurprising) correlation
between rich lexical coverage (English, French)
and high number of complete analyzes.

Finally the last line shows the speed of the
parser in terms of number of words per second.
The mean speed of Fips is between 130 and 180
word/second. FipsGreek is somewhat faster, pre-
sumably because its grammar is less developed
than the grammar of the other languages at this
point. It came up as a surprise to see that FipsEn-
glish was clearly slower. The reason has probably
to do with the high number of lexical ambiguities
of the type N/V (e.g. lead, study, balance, need)
which are likely to significantly increase the num-
ber of parallel (partial) analyzes.

6 Concluding remarks

Although the research described in this paper is
by no means completed, it has already achieved
several important goals. First of all, it has shown
that “deep linguistic parsing” should not neces-
sarily be equated with “inefficient parsing”. Al-
though clearly slower than shallow parsers, Fips is
fast enough for such demanding tasks as transla-
tion or terminology extraction.

At the software level, the adopted design makes
it possible to “plug” an additional language with-
out any change or any recompilation of the sys-
tem. It is sufficient to add the language-specific
modules and lexical databases to have a fully func-
tional parser for that language. Arguably the
model has so far not been tested with languages
belonging to widely distinct language types. In
fact, it has only been applied to (a small set) of Eu-
ropean languages. Future work will address that
issue, and we are planning to extend our work to-
wards Asian and Semitic languages.

126



language German English Spanish French Greek Italian

number of symbols 1082117 1046431 1041466 1144345 1045778 998871
unknown words 13569 879 6825 853 26529 3099
number of sentences 45880 40348 40576 38653 39812 37726
% of complete analyzes 48.04% 71.95% 56.87% 70.01% 30.99% 58.74%
speed(word/second) 138 82 127 133 243 182

Figure 5: Comparative evaluation of the parsers

Acknowledgement

Thanks to Luka Nerima, Christopher Laenzlinger,
Gabriele Musillo and Antonio Leoni de León for
various suggestions and comments on earlier ver-
sions of this paper. The research described here
has been supported in part by a grant from the
Swiss national science foundation (no 101412-
103999).

7 References

Bresnan, J. (éd.), 1982.The Mental Representa-
tion of Grammatical Relations, Cambridge,
Mass., MIT Press.

Bresnan, J., 2001.Lexical Functional Syntax, Ox-
ford, Blackwell.

Chomsky, N. 1995. The Minimalist Program,
Cambridge, Mass., MIT Press.

Chomsky, N. 2004. “Beyond Explanatory Ade-
quacy”, in A. Belletti (ed.)The Cartography
of Syntactic Structures, Oxford, Oxford Uni-
versity Press.

Culicover, P. et R. Jackendoff, 2005.Simpler Syn-
tax, Oxford, Oxford University Press.

Haider, H. and I. Rosengren 1998. “Scrambling”
Sprache und Pragmatik49, Lund University.

Hinterhölzl, R. 2006. Scrambling, Remnant
Movement and Restructuring in West Ger-
manic, Oxford, Oxford University Press.

Koehn, Ph., 2005. “Europarl: A Parallel Cor-
pus for Statistical Machine Translation, MT
Summit.

Mössenböck, H. 1995.Object-Oriented Program-
ming in Oberon-2, New York, Springer.

Ross, .R. 1967.Constraints on Variables in Syn-
tax, Ph.D. dissertation, MIT.

Seretan, V. et E. Wehrli, 2006. “Accurate colloca-
tion extraction using a multilingual parser” in
Proceedings of the 21st International Confer-
ence on Computational Linguistics and 44th
Annual Meeting of the Association for Com-
putational Linguistics (COLING/ACL 2006),
Sydney, 952-960.

Wehrli, E. 2004. “Traduction, traduction de mots,
traduction de phrases”, in B. Bel et I. Marlien
(eds.),Proceedings of TALN XI, Fes, 483-
491.

Wehrli, E. 2006. “TwicPen : Hand-held Scan-
ner and Translation Software for non-Native
Readers”, inProceedings of the 21st Interna-
tional Conference on Computational Linguis-
tics and 44th Annual Meeting of the Asso-
ciation for Computational Linguistics (COL-
ING/ACL 2006), Sydney.

127



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 128–135,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Partial Parse Selection for Robust Deep Processing

Yi Zhang† and Valia Kordoni† and Erin Fitzgerald‡

† Dept of Computational Linguistics, Saarland University and DFKI GmbH, Germany
‡ Center for Language & Speech Processing,

Dept of Electrical & Computer Engineering, Johns Hopkins University, USA
{yzhang,kordoni}@coli.uni-sb.de

erin@clsp.jhu.edu

Abstract

This paper presents an approach to partial
parse selection for robust deep processing.
The work is based on a bottom-up chart
parser for HPSG parsing. Following the def-
inition of partial parses in (Kasper et al.,
1999), different partial parse selection meth-
ods are presented and evaluated on the basis
of multiple metrics, from both the syntactic
and semantic viewpoints. The application
of the partial parsing in spontaneous speech
texts processing shows promising compe-
tence of the method.

1 Introduction

Linguistically deep processing is of high theoret-
ical and application interest because of its ability
to deliver fine-grained accurate analyses of natu-
ral language sentences. Unlike shallow methods
which usually return analyses for any input, deep
processing methods with precision grammars nor-
mally make a clear grammaticality judgment on in-
puts, therefore avoiding the generation of erroneous
analyses for less well-formed inputs. This is a desir-
able feature, for it allows for a more accurate mod-
eling of language itself.

However, this feature largely limits the robustness
of deep processing, for when a sentence is judged
to be ungrammatical, normally no analysis is gen-
erated. When faced with the noisy inputs in real
applications (e.g., input errors introduced by speech
recognizers or other pre-processors, mildly ungram-
matical sentences with fragmental utterances, self-
editing chunks or filler words in spoken texts, and
so forth), lack of robustness means poor coverage,
and makes deep processing less competitive as com-
pared to shallow methods.

Take the English Resource Grammar
(ERG; Flickinger (2000)), a large-scale accu-
rate HPSG for English, for example. (Baldwin et

al., 2004) reported coverage of 57% of the strings
with full lexical span from the British National
Corpus (BNC). Although recent extensions to the
grammar and lexicon have improved the coverage
significantly, full coverage over unseen texts by the
grammar is still not anywhere in sight.

Other domains are even more likely to not fit
into ERG’s universe, such as transcripts of sponta-
neously produced speech where speaker errors and
disfluencies are common. Using a recent version of
the ERG, we are not able to parse 22.6% of a ran-
dom sample of 500 utterances of conversational tele-
phone speech data. 76.1% of the unparsed data was
independently found to contain speaker errors and
disfluencies, and the remaining data either contained
filled pauses or other structures unaccounted for in
the grammar. Correctly recognizing and interpreting
the substrings in the utterance which have coherent
deep syntax is useful both for semantic analysis and
as building blocks for attempts to reconstruct the dis-
fluent spontaneously produced utterances into well-
formed sentences.

For these reasons, it is preferable to exploit the
intermediate syntactic and semantic analysis even if
the full analysis is not available. Various efforts have
been made on the partiality of language processing.
In bottom-up chart parsing, the passive parser edges
licensed by the grammar can be taken as partial anal-
yses. However, as pointed out in (Kasper et al.,
1999), not all passive edges are good candidates, as
not all of them provide useful syntactic/semantic in-
formation. Moreover, the huge amount of passive
edges suggests the need for a technique of select-
ing an optimal subset of them. During recent devel-
opment in statistical parse disambiguation, the use
of log-linear models has been pretty much standard-
ized. However, it remains to be explored whether the
techniques can be adapted for partial parse selection.

In this paper, we adopt the same definition for
partial parse as in (Kasper et al., 1999) and de-
fine the task of partial parse selection. Several dif-

128



ferent partial parse selection models are presented
and implemented for an efficient HPSG parser –
PET (Callmeier, 2001).

One of the main difficulties in the research of par-
tial analyses is the lack of good evaluation measure-
ments. Pure syntactic comparisons for parser eval-
uation are not good as they are very much specific
to the annotation guidelines. Also, the deep gram-
mars we are working with are not automatically ex-
tracted from annotated corpora. Therefore, unless
there are partial treebanks built specifically for the
deep grammars, there is simply no ‘gold’ standard
for non-golden partial analyses.

Instead, in this paper, we evaluate the partial anal-
yses results on the basis of multiple metrics, from
both the syntactic and semantic point of views. Em-
pirical evaluation has been done with the ERG on a
small set of texts from the Wall Street Journal Sec-
tion 22 of the Penn Treebank (Marcus et al., 1993).
A pilot study of applying partial parsing in sponta-
neous speech text processing is also carried out.

The remainder of the paper is organized as fol-
low. Section 2 provides background knowledge
about partial analysis. Section 3 presents various
partial parse selection models. Section 4 describes
the evaluation setup and results. Section 5 concludes
the paper.

2 Partial Parsing

2.1 HPSG Parsing

Our work on partial parsing is done with the
DELPH-IN HPSG grammars. Many of these gram-
mars can be used for both parsing and generation.
In this paper, we only focus on the parsing task. For
efficient parsing, we use PET.1 The parsing module
in PET is essentially a bottom-up chart parser. The
parsing process is guided by the parsing tasks on an
agenda. A parsing task represents the combination
of a passive chart edge and an active chart edge or
a rule. When the combination succeeds, new tasks
are generated and put on to the agenda. The parser
terminates either when the task agenda is empty or
when a specific number of full analyses has been
found (only in the no-packing best-first mode).

HPSG grammars use typed feature structures (TF-
Ses) as their background formalism. The TFSes rep-
resent various linguistic objects with a set of fea-

1LKB (Copestake, 2002) has a similar chart-based parser,
being less efficient mainly due to its implementation in Lisp
rather than C/C++.

tures (attribute value pairs) and a type inheritance
system. Therefore, each passive edge on the parsing
chart corresponds to a TFS. A relatively small set of
highly generalized rules are used to check the com-
patibility among smaller TFSes and build up larger
ones.

2.2 Partial Parses

Based on the bottom-up chart parsing, we use the
term Partial Parse to describe a set of intermediate
passive parsing edges whose spans (beginning and
end positions) are non-overlapping between each
other, and together they cover the entire input se-
quence (i.e., no skipped input tokens).

In a graph view, the intermediate results of a chart
parser can be described as a directed graph, where
all positions between input tokens/words are ver-
tices, and all the passive edges derived during pars-
ing are the directed graph arcs. Obviously such a
graph is acyclic and therefore topologically sorted.
A partial parse is then a path from the source vertex
(the beginning position of the input) to the terminal
vertex (the end position of the input).

Suppose in chart parsing, we derived the interme-
diate results as in Figure 1. There are in total4 pos-
sible partial parses:{a, b, c, d}, {a, b, f}, {a, e, d}
and{a, g}.

1w 2w 3w 4w
0 1 2 3 4

ba c d
e

g

f

Figure 1: Graph representation of intermediate chart
parsing results

Note that each passive edge is a sub-structure li-
censed by the grammar. A derivation tree or TFS can
be reconstructed for it if required. This definition of
partial parse is effectively the same to the view of
partial analyses in (Kasper et al., 1999).

2.3 Local Ambiguity Packing

There is one more complication concerning the par-
tial parses when the local ambiguity packing is used
in the parser.

Due to the inherent ambiguity of natural lan-
guage, the same sequence of input may be ana-
lyzed as the same linguistic object in different ways.
Such intermediate analyses must be recorded dur-
ing the processing and recovered in later stages.

129



Without any efficient processing technique, parsing
becomes computationally intractable with the com-
binatory explosion of such local ambiguities. In
PET, the subsumption-based ambiguity packing al-
gorithm proposed in (Oepen and Carroll, 2000) is
used. This separates the parsing into two phases:
forest creation phase and read-out/unpacking phase.

In relation to the work on partial parsing in this
paper, the local ambiguity packing poses an effi-
ciency and accuracy challenge, as not all the inter-
mediate parsing results are directly available as pas-
sive edges on the chart. Without unpacking the am-
biguity readings, interesting partial analyses might
be lost.2 But exhaustively unpacking all the readings
will pay back the efficiency gain by ambiguity pack-
ing, and eventually lead to computational intractable
results.

To efficiently recover the ambiguous readings
from packed representations, the selective unpack-
ing algorithm has been recently implemented as an
extension to the algorithm described in (Carroll and
Oepen, 2005). It is able to recover the top-n best
readings of a given passive parser edge based on the
score assigned by a maximum entropy parse rank-
ing model. This neat feature largely facilitates the
efficient searching for best partial parses described
in later sections.

3 Partial Parse Selection

A partial parse is a set of partial analyses licensed
by the grammar which cover the entire input without
overlapping. As shown in the previous section, there
are usually more than one possible partial parses
for a given input. For deep linguistic processing, a
high level of local ambiguity means there are even
more partial parses due to the combinatory explo-
sion. However, not all the possible partial parses are
equally good. Some partial parses partition the in-
put into fragments that do not correspond to linguis-
tic constituents. Even if the bracketing is correct,
the different edges with the same span represent sig-
nificantly different linguistic objects, and their sub-
structures can be completely different, as well. All
these indicate the need for methods that can appro-
priately select the best partial parses from all the
possible ones.

In this section, we review some of the previous

2More informative analyses are subsumed by less informa-
tive ones. In subsumption-based packing, such analyses are
packed and are not directly accessible.

approaches to partial parse selection, as well as new
partial parse ranking models.

3.1 Longest Edge

One of the simplest and most commonly used cri-
terion in selecting the best partial parse is to prefer
the partial parses which contain an edge that covers
the largest fragment of the input. For example, un-
der such a criterion, the best partial parse in Figure 1
will be {a, g}, since edgeg has the largest span. The
logic behind this criterion is that such largest frag-
ments should preserve the most interesting linguistic
analysis of the input. As an added incentive, finding
the longest edge does not involve much search.

The limitations of such an approach are obvious.
There is no guarantee that the longest edge will be
significantly better than shorter edges, or that it will
even correspond to a valid constituent. Moreover,
when there are multiple edges with the same length
(which is often the case in parsing), the criterion
does not suffice for the choice of the best partial
parse.

3.2 Shortest Path

(Kasper et al., 1999) proposed an alternative solu-
tion to the problem. If the preference of each edge
as a part of the partial parse can be quantitatively de-
cided as a weight of the edge (with smaller weights
assigned to better candidates), then the problem of
finding the best partial parse is to find the shortest
path from the start vertex to the end vertex. Since
the graph is completely connected (by the lexical
edges spanning all the input tokens) and topolog-
ically sorted, such a path always exists. The dis-
covery of such a path can be done in linear time
(O(|V | + |E|)) with the DAG-shortest-path algo-
rithm (Cormen et al., 1990). Though not explic-
itly pointed out by (Kasper et al., 1999), such an
algorithm allows the weights of the edges to be of
any real value (no assumption of positive weights)
as long as the graph is a Directed Acyclic Graph
(DAG).

(Kasper et al., 1999) did point out that the weights
of the edges can be assigned by an estimation func-
tion. For example, the implementation of the al-
gorithm in PET preferred phrasal edges over lexi-
cal edges. Other types of edges are not allowed in
the partial parse. Suppose that we assign weight1
to phrasal edges,2 to lexical edges, andinf to all
other edges. Then for the graph in 2, the best par-
tial parses are{e, g} and{f, g}, both of which have

130



the path length of2. It should be noted that such an
approach does not always favor the paths with the
longest edges (i.e., path{h, d} is not preferred in
the given example).

1w 2w 3w 4w
0 1 2 3 4

b c

e g

h

d

f

a :2 :2 :2:2

:1 :1

:1
i 8:1 :

Figure 2: Shortest path partial parses with heuristi-
cally assigned edge weights

However, (Kasper et al., 1999) did not pro-
vide any sophisticated estimation functions based
on the shortest path approach. Using the heuristic
weight described above, usually thousands of differ-
ent paths are found with the same weight. (Kasper
et al., 1999) rely on another scoring function in or-
der to re-rank the partial parses. Although different
requirements for the scoring function are discussed,
no further details have been defined.

It should be noted that different variations of the
shortest path approach are widely in use in many ro-
bust deep parsing systems. For instance, (Riezler et
al., 2002) uses thefewest chunk method to choose
the best fragment analyses for sentences without
full analysis. The well-formed chunks are preferred
over token chunks. With this partial parse selection
method, the grammar achieves 100% coverage on
unseen data. A similar approach is also used in (van
Noord et al., 1999).

3.3 Alternative Estimation Functions

Generally speaking, the weights of the edges in the
shortest path approach represent the quality of the
local analyses and their likelihood of appearing in
the analysis of the entire input.

This is an interesting parallel to the parse selec-
tion models for the full analyses, where a goodness
score is usually assigned to the full analysis. For
example, the parse disambiguation model described
in (Toutanova et al., 2002) uses a maximum entropy
approach to model the conditional probability of a
parse for a given input sequenceP (t|w). A similar
approach has also been reported in (Johnson et al.,
1999; Riezler et al., 2002; Malouf and van Noord,
2004).

For a given partial parseΦ = {t1, . . . , tk}, Ω =

{w1, . . . , wk} is a segmentation of the input se-
quence so that each local analysisti ∈ Φ corre-
sponds to a substringwi ∈ Ω of the input sequence
w. Therefore, the probability of the partial parseΦ
given an input sequencew is:

P (Φ|w) = P (Ω|w) · P (Φ|Ω) (1)

With the bold assumption thatP (ti|wi) are mutually
independent for differenti, we can derive:

P (Φ|w) ≈ P (Ω|w) ·
k∏

i=1

P (ti|wi) (2)

Therefore, the log-probability will be

log P (Φ|w) ≈ log P (Ω|w) +
k∑

i=1

log P (ti|wi) (3)

Equation 3 indicates that the log-probability of a
partial parse for a given input is the sum of the log-
probability of local analyses for the sub-strings, with
an additional component− log P (Ω|w) represent-
ing the conditional log-probability of the segmen-
tation. If we use− log P (ti|wi) as the weight for
each local analysis, then the DAG shortest path al-
gorithm will quickly find the partial parse that max-
imizeslog P (Φ|w) − log P (Ω|w).

The probabilityP (ti|wi) can be modeled in a sim-
ilar way to the maximum entropy based full parse
selection models:

P (ti|wi) =
exp

∑n
j=1

λjfj(ti, wi)∑
t′∈T exp

∑n
j=1

λjfj(t′, wi)
(4)

where T is the set of all possible structures that
can be assigned towi, f1 . . . fn are the features and
λ1 . . . λn are the parameters. The parameters can
be efficiently estimated from a treebank, as shown
by (Malouf, 2002). The only difference from the
full parse selection model is that here intermediate
results are used to generate events for training the
model (i.e. the intermediate nodes are used as posi-
tive events if it occurs on one of the active tree, or as
negative events if not). Since there is a huge number
of intermediate results availalbe, we only randomly
select a part of them as training data. This is es-
sentially similar to the approach in (Osborne, 2000),
where there is an infeasibly large number of training
events, only part of which is used in the estimation
step. The exact features used in the log-linear model
can significantly influence the disambiguation accu-
racy. In this experiment we used the same features

131



as those used in the PCFG-S model in (Toutanova et
al., 2002) (i.e., depth-1 derivation trees).

The estimation ofP (Ω|w) is more difficult. In
a sense it is similar to a segmentation or chunking
model, where the task is to segment the input into
fragments. However, it is difficult to collect train-
ing data to directly train such a model for the deep
grammar we have. Here we take a simple rough es-
timation:

P̂ (Ω|w) =
|Y (Ω)|

|Z(w)|
(5)

whereY (Ω) is the set of all partial parses that have
the segmentationΩ; Z(w) is the set of all partial
parses for the inputw.

Unfortunately, the shortest path algorithm is not
able to directly find the maximizedP (Φ|w). Fully
searching all the paths is not practical, since there
are usually tens of thousands of passive edges. In
order to achieve a balance between accuracy and ef-
ficiency, two different approximation approaches are
taken.

One way is to assume that the component
log P (Ω|w) in Equation 3 has less significant ef-
fect on the quality of the partial parse. If this is
valid, then we can simply use− log P (ti|wi) as edge
weights, and use the shortest path algorithm to ob-
tain the bestΦ. This will be referred to asmodel
I.

An alternative way is to first retrieve several
“good” Ω with relatively highP (Ω|w), and then se-
lect the best edgesti that maximizeP (ti|wi) for
eachwi in Ω. We call this approach themodel II.

How well these strategies work will be evaluated
in Section 4. Other strategies or more sophisticated
searching algorithms (e.g., genetic algorithm) can
also be used, but we will leave that to future re-
search.

3.4 Partial Semantic Construction

For each local analysis on the partial parse derived in
the above steps, a semantic fragment can be derived.
The HPSG grammars we use take a compositional
approach to semantic construction. Minimal Re-
cursion Semantics (MRS; Copestake et al. (2006))
is used for semantic representation. MRS can be
easily converted to (Robust) MRS (RMRS; Copes-
take (2006)), which allows further underspecifica-
tion, and can be used for integration of deep and/or
shallow processing tools.

For robust deep processing, the ability to gener-
ate partial semantics is very important. Moreover, it
also provides us with a way to evaluate the partial
parses which is more or less independent from the
syntactic analysis.

4 Evaluation

The evaluation of partial parses is not as easy as the
evaluation of full parses. For full parsers, there are
generally two ways of evaluation. For parsers that
are trained on a treebank using an automatically ex-
tracted grammar, an unseen set of manually anno-
tated data is used as the test set. The parser out-
put on the test set is compared to the gold standard
annotation, either with the widely usedPARSEVAL
measurement, or with more annotation-neutral de-
pendency relations. For parsers based on manually
compiled grammars, more human judgment is in-
volved in the evaluation. With the evolution of the
grammar, the treebank as the output from the gram-
mar changes over time (Oepen et al., 2002). The
grammar writer inspects the parses generated by the
grammar and either “accepts” or “rejects” the anal-
ysis.

In partial parsing for manually compiled gram-
mars, the criterion for acceptable analyses is less
evident. Most current treebanking tools are not de-
signed for annotating partial analyses. Large-scale
manually annotated treebanks do have the annota-
tion for sentences that deep grammars are not able
to fully analyze. And the annotation difference in
other language resources makes the comparison less
straightforward. More complication is involved with
the platform and resources used in our experiment.
Since the DELPH-IN grammars (ERG, JaCY, GG)
use MRS for semantics representation, there is no
reliable way of evaluating the output with traditional
metrics, i.e., dependency relations.

In this paper, we use both manual and automatic
evaluation methods on the partial parsing results.
Different processing resources are used to help the
evaluation from the syntactic, as well as the seman-
tic point of view.

4.1 Syntactic Evaluation

In order to evaluate the quality of the syntactic struc-
tures of the partial parses, we implemented the par-
tial parse models described in the previous section
in the PET parser. The Nov-06 version of the ERG
is used for the experiment. As test set, we used a

132



subset of sentences from the Wall Street Journal Sec-
tion 22 from the Penn Treebank. The subset contains
143 sentences which do not receive any full analysis
licensed by the grammar, and do not contain lexi-
cal gaps (input tokens for which the grammar can-
not create any lexical edge). The average sentence
length is 24 words.

Due to the inconsistency of the tokenisation,
bracketing and branching between the Penn Tree-
bank annotation and the handling in ERG, we manu-
ally checked the partial parse derivation trees. Each
output is marked as one of the three cases:GBL if
both the bracketing and the labeling of the partial
parse derivation trees are good (with no more than
two brackets crossing or four false labelings);GB if
the bracketings of the derivation trees are good (with
no more than two brackets crossing), but the label-
ing is bad (with more than four false labelings); orE
if otherwise.

The manual evaluation results are listed in Ta-
ble 1. The test set is processed with two models
presented in Section 3.3 (M-I for model I, M-II
for model II). For comparison, we also evaluate for
the approach using the shortest path with heuristic
weights (denoted bySP). In case there are more than
one path found with the same weight, only the first
one is recorded and evaluated.

GBL GB E
# % # % # %

SP 55 38.5% 64 44.8% 24 16.8%
M-I 61 42.7% 46 32.2% 36 25.2%
M-II 74 51.7% 50 35.0% 19 13.3%

Table 1: Syntactic Evaluation Results

The results show that the naı̈ve shortest path ap-
proach based on the heuristic weights works pretty
well at predicting the bracketing (with 83.3% of the
partial parses having less than two brackets cross-
ing). But, when the labeling is also evaluated it is
worse thanmodel I, and even more significantly out-
performed bymodel II.

4.2 Semantic Evaluation

Evaluation of the syntactic structure only reflects the
partial parse quality from some aspects. In order
to get a more thorough comparison between differ-
ent selection models, we look at the semantic output
generated from the partial parses.

The same set of 143 sentences from the Wall
Street Journal Section 22 of the Penn Treebank is

used. The RMRS semantic representations are gen-
erated from the partial parses with different selection
models. To compare with, we used RASP 2 (Briscoe
et al., 2006), a domain-independent robust parsing
system for English. According to (Briscoe and Car-
roll, 2006), the parser achieves fairly good accuracy
around 80%. The reasons why we choose RASP
for the evaluation are: i) RASP has reasonable cov-
erage and accuracy; ii) its output can be converted
into RMRS representation with the LKB system.
Since there is no large scale (R)MRS treebank with
sentences not covered by the DELPH-IN precision
grammars, we hope to use the RASP’s RMRS out-
put as a standalone annotation to help the evaluation
of the different partial parse selection models.

To compare the RMRS from the RASP and the
partial parse selection models, we used the simi-
larity measurement proposed in (Dridan and Bond,
2006). The comparison outputs a distance value be-
tween two different RMRSes. We normalized the
distance value to be between0 and1. For each se-
lection model, the average RMRS distance from the
RASP output is listed in Table 2.

RMRS Dist.(φ)
SP 0.674
M-I 0.330
M-II 0.296

Table 2: RMRS distance to RASP outputs
Again, we see that the outputs ofmodel II

achieve the highest similarity when compared with
the RASP output. With some manual validation,
we do confirm that the different similarity does im-
ply a significant difference in the quality of the out-
put RMRS. The shortest path with heuristic weights
yielded very poor semantic similarity. The main rea-
son is that not every edge with the same span gen-
erates the same semantics. Therefore, although the
SP receives reasonable bracketing accuracy, it has
less idea of the goodness of different edges with the
same span. By incorporatingP (ti|wi) in the scoring
model, the model I and II can produce RMRSes with
much higher quality.

4.3 Evaluating partial parses on spontaneous
speech text

The above evaluation shows in a comparative way
that model II outperforms other selection models
from both syntactic and semantic points of view. In
order to show its competence in real applications,

133



we applied the best performingmodel II on sponta-
neous speech transcripts, which have a high level of
informality and irregularity not available in newspa-
per texts such as the Wall Street Journal.

To evaluate the accuracy and potential interpre-
tational value of partial parsing on spontaneous
speech transcripts, we considered a 100-sentence
random sample of the Fisher Conversational Tele-
phone Speech 2004 development subcorpus (Cieri
et al., 2004), used in the fall 2004 NIST Rich Tran-
scription task.

Of these 100 sentences, six utterances received
neither full nor partial parses due to lexical gaps cre-
ated by words not found in the grammar’s lexicon.3

75 utterances produced full HPSG parses. For the
remaining 19 utterances, the one best partial parse is
found for each usingmodel II.

According to manual evaluation of the output, se-
mantically and syntactically cohesive partial analy-
ses were successfully assigned to 9 of the 19 par-
tially parsed utterances. 3 of the 19 received incom-
plete semantics. The remaining 7 were judged to
be poor due to false segmentation, the syntax and
semantics within those parsed fragments, or both.
In one instance, the interpretation was plausible but
viewed as far less likely by the evaluator than the
preferable interpretation (“. . . [i think you know it it ’s]
[court]”4). It is likely thatn-best partial parsing could
help us in most cases. This would only require a
straightforward extension of the current partial pars-
ing models.

Current partial parsing models do not use any con-
fidence thresholds. Therefore, any input will receive
some full or partial analysis (ignoring the case of
unknown words), together with semantics. Seman-
tic completeness is not checked in partial parsing. In
future research, we may consider finding a sophisti-
cated solution of assigning confidence scores to the
output RMRS fragments.

Overall though, we believe that the current 50%
acceptability of segmentation is reasonable perfor-
mance considering the types of noise in the speech
transcript input.

As a further step to show the competence of par-
tial parsing, we briefly investigated its application
in capturing disfluent regions in speech texts. The
state of the art approach in identifying disfluent re-

3Lexical prediction was not used here to avoid obfuscating
the quality of partial parsing by introducing lexical type predic-
tion errors.

4The repetition error of “it” is interpreted as a topicalization.

gions and potentially capturing meaningful text is a
shallow parsing method described in (Johnson and
Charniak, 2004), which searches the text string for
approximately repeated constituents. We ran their
system on our random sample of the Fisher data, and
compared its results to the partial parse output of the
nine well-segmented partial parses analyses (every
utterance of which contained some speaker-induced
disfluency) to see how well partial parsing could po-
tentially fare as an approach for identifying disfluent
regions of speech text.

Often the (Johnson and Charniak, 2004) method
identified disfluent regions overlapped with identi-
fied fragments found in the partial parse, the removal
of which would yield a fluent sentence. As we hope
to learn confidence measures to determine which
fragments are contentless or repetitive in the fu-
ture, we identified those partial parses where whole
fragments could be deleted to obtain a fluent and
meaning-preserving sentence.

In three cases, simple repeated phrases caught by
(Johnson and Charniak, 2004) were also caught in
some form by the partial parse partitioning. In an-
other case, the speaker interrupts one thought to say
another, and both approaches identify in a single
fragment the final fluent statement. Finally, of the
nine well-segmented utterances, two partial parses
potentially catch deeper speaker errors that cannot
be caught by (Johnson and Charniak, 2004).

5 Conclusion and Future Work

In this paper, we have presented work on partial
parse selection. Different selection models have
been presented and evaluated from syntactic and
semantic viewpoints. In the application of spon-
taneous speech text processing, the method shows
promising competence, as well as a few problems
for further study.

One thing we did not do is a systematic compar-
ison on the efficiency of different partial parse se-
lection models. Although it is clear that less search-
ing is involved with the shortest path approach and
model I comparing tomodel II, a scientific bench-
marking of such difference will be helpful for the
choice between efficiency and accuracy. Also, a
more sophisticated estimation ofP (Ω|w) can poten-
tially help the accuracy of the selection models.

Another alternative way of evaluation would be
to generate an ungrammatical corpus by randomly
introducing grammar errors. The performance of the

134



partial parse selection models can be measured by
evaluating how much of the parsing results can be
recovered from original sentences.

In the study with spontaneous speech text pro-
cessing, we see a need for confidence measurement
for partial analyses. We also see that the conditional
probability P (ti|wi) does not serve as a good mea-
surement, for it largely depends on the structures
that can be licensed towi by the grammar. This
should be explored in future studies, as well.

References

Timothy Baldwin, Emily M. Bender, Dan Flickinger, Ara Kim,
and Stephan Oepen. 2004. Road-testing the English Re-
source Grammar over the British National Corpus. InPro-
ceedings of the Fourth International Conference on Lan-
guage Resources and Evaluation (LREC 2004), Lisbon.

Ted Briscoe and John Carroll. 2006. Evaluating the accuracy
of an unlexicalized statistical parser on the PARC DepBank.
In Proceedings of the COLING/ACL 2006 Main Conference
Poster Sessions, pages 41–48, Sydney, Australia.

Ted Briscoe, John Carroll, and Rebecca Watson. 2006. The
second release of the RASP system. InProceedings of the
COLING/ACL 2006 Interactive Presentation Sessions, pages
77–80, Sydney, Australia.

Ulrich Callmeier. 2001. Efficient parsing with large-scaleuni-
fication grammars. Master’s thesis, Universität des Saarlan-
des, Saarbrücken, Germany.

John Carroll and Stephan Oepen. 2005. High efficiency realiza-
tion for a wide-coverage unification grammar. InProceed-
ings of the Second International Joint Conference on Natu-
ral Language Processing (IJCNLP05), pages 165–176, Jeju
Island, Korea.

Christopher Cieri, Stephanie Strassel, Mohamed Maamouri,
Shudong Huang, James Fiumara, David Graff, Kevin
Walker, and Mark L iberman. 2004. Linguistic resource
creation and distribution for EARS. InProceedings of the
Rich Transcription Fall Workshop (RT-04F).

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A. Sag.
2006. Minimal Recursion Semantics: an Introduction.Re-
search on Language and Computation, 3(4):281–332.

Ann Copestake. 2002.Implementing Typed Feature Structure
Grammars. CSLI, Stanford, CA.

Ann Copestake. 2006. Robust Minimal Recursion Se-
mantics. Working Paper, Unpublished Draft 2004/2006,
http://www.cl.cam.ac.uk/ aac10/papers.html.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. 1990.Introduction to Algorithms. MIT Press, MA.

Rebecca Dridan and Francis Bond. 2006. Sentence compari-
son using Robust Minimal Recursion Semantics and an on-
tology. In Proceedings of the ACL Workshop on Linguistic
Distances, pages 35–42, Sydney, Australia.

Dan Flickinger. 2000. On building a more efficient grammar by
exploiting types. Natural Language Engineering, 6(1):15–
28.

Mark Johnson and Eugene Charniak. 2004. A tag-based noisy-
channel model of speech repairs. InProceedings of the 42nd
Meeting of the Association for Computational Linguistics
(ACL’04), Main Volume, pages 33–39, Barcelona, Spain.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi, and
Stefan Riezler. 1999. Estimators for stochastic unifcation-
based grammars. InProceedings of the 37th Annual Meeting
of the ACL, pages 535–541, Maryland.

Walter Kasper, Bernd Kiefer, Hans-Ulrich Krieger, C.J. Rupp,
and Karsten Worm. 1999. Charting the depths of robust
speech processing. InProceedings of the 37th Meeting of the
Association for Computational Linguistics (ACL’99), Main
Volume, pages 405–412, Maryland, USA, June.

Robert Malouf and Gertjan van Noord. 2004. Wide cover-
age parsing with stochastic attribute value grammars. In
IJCNLP-04 Workshop: Beyond shallow analyses - For-
malisms and statistical modeling for deep analyses.

Robert Malouf. 2002. A comparison of algorithms for max-
imum entropy parameter estimation. InProceedings of the
Sixth Conferencde on Natural Language Learning (CoNLL-
2002), pages 49–55.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of English. The Penn Treebank.Computational Linguistics,
19:313–330.

Stephan Oepen and John Carroll. 2000. Ambiguity packing in
constraint-based parsing — practical results. InProceedings
of the 1st Conference of the North American Chapter of the
ACL, pages 162–169, Seattle, WA.

Stephan Oepen, Kristina Toutanova, Stuart Shieber, Christopher
Manning, Dan Flickinger, and Thorsten Brants. 2002. The
LinGO Redwoods treebank: Motivation and preliminary ap-
plications. InProceedings of COLING 2002: The 17th Inter-
national Conference on Computational Linguistics: Project
Notes, Taipei.

Miles Osborne. 2000. Estimation of Stochastic Attribute-Value
Grammars using an Informative Sample. InThe 18th In-
ternational Conference on Computational Linguistics (COL-
ING 2000), volume 1, pages 586–592, Saarbrücken.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan, Richard
Crouch, John T. III Maxwell, and Mark Johnson. 2002.
Parsing the Wall Street Journal using a Lexical-Functional
Grammar and Discriminative Estimation Techniques. In
Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pages 271–278, Philadelphia.

Kristina Toutanova, Christoper D. Manning, Stuart M. Shieber,
Dan Flickinger, and Stephan Oepen. 2002. Parse rank-
ing for a rich HPSG grammar. InProceedings of the First
Workshop on Treebanks and Linguistic Theories (TLT2002),
pages 253–263, Sozopol, Bulgaria.

Gertjan van Noord, Gosse Bouma, Rob Koeling, and Mark-Jan
Nederhof. 1999. Robust grammatical analysis for spoken
dialogue systems.Natural language engineering, 5(1):45–
93.

135



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 136–143,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Validation and Regression Testing for a Cross-linguisic Grammar Resource

Emily M. Bender, Laurie Poulson, Scott Drellishak, Chris Evans
University of Washington
Department of Linguistics

Seattle WA 98195-4340 USA
{ebender,lpoulson,sfd,chrisev@u.washington.edu}

Abstract

We present a validation methodology for
a cross-linguistic grammar resource which
produces output in the form of small gram-
mars based on elicited typological descrip-
tions. Evaluating the resource entails sam-
pling from a very large space of language
types, the type and range of which preclude
the use of standard test suites development
techniques. We produce a database from
which gold standard test suites for these
grammars can be generated on demand, in-
cluding well-formed strings paired with all
of their valid semantic representations as
well as a sample of ill-formed strings. These
string-semantics pairs are selected from a
set of candidates by a system of regular-
expression based filters. The filters amount
to an alternative grammar building system,
whose generative capacity is limited com-
pared to the actual grammars. We perform
error analysis of the discrepancies between
the test suites and grammars for a range of
language types, and update both systems ap-
propriately. The resulting resource serves as
a point of comparison for regression testing
in future development.

1 Introduction

The development and maintenance of test suites is
integral to the process of writing deep linguistic
grammars (Oepen and Flickinger, 1998; Butt and
King, 2003). Such test suites typically contain hand-
constructed examples illustrating the grammatical

phenomena treated by the grammar as well as rep-
resentative examples taken from texts from the tar-
get domain. In combination with test suite manage-
ment software such as [incr tsdb()] (Oepen, 2002),
they are used for validation and regression testing of
precision (deep linguistic) grammars as well as the
exploration of potential changes to the grammar.

In this paper, we consider what happens when the
precision grammar resource being developed isn’t a
grammar of a particular language, but rather a cross-
linguistic grammar resource. In particular, we con-
sider the LinGO Grammar Matrix (Bender et al.,
2002; Bender and Flickinger, 2005). There are sev-
eral (related) obstacles to making effective use of
test suites in this scenario: (1) The Matrix core
grammar isn’t itself a grammar, and therefore can’t
parse any strings. (2) There is no single language
modeled by the cross-linguistic resource from which
to draw test strings. (3) The space of possible gram-
mars (alternatively, language types) modeled by the
resource is enormous, well beyond the scope of what
can be thoroughly explored.

We present a methodology for the validation and
regression testing of the Grammar Matrix that ad-
dresses these obstacles, developing the ideas origi-
nally proposed in (Poulson, 2006). In its broad out-
lines, our methodology looks like this:

• Define an abstract vocabulary to be used for test
suite purposes.

• Define an initial small set of string-semantics
pairs.

• Construct a large set of variations on the string-
semantics pairs.

136



• Define a set of filters that can delineate the le-
gitimate string-semantics pairs for a particular
language type

The filters in effect constitute a parallel grammar
definition system, albeit one that creates ‘grammars’
of very limited generative capacity. As such, the out-
put of the filters cannot be taken as ground truth.
Rather, it serves as a point of comparison that al-
lows us to find discrepancies between the filters and
the Grammar Matrix which in turn can lead us to
errors in the Grammar Matrix.

2 Background

The Grammar Matrix is an open-source starter kit
designed to jump-start the development of broad-
coverage precision grammars, capable of both pars-
ing and generation and suitable for use in a vari-
ety of NLP applications. The Grammar Matrix is
written within the HPSG framework (Pollard and
Sag, 1994), using Minimal Recursion Semantics
(Copestake et al., 2005) for the semantic represen-
tations. The particular formalism we use is TDL
(type description language) as interpreted by the
LKB (Copestake, 2002) grammar development en-
vironment. Initial work on the Matrix (Bender et
al., 2002; Flickinger and Bender, 2003) focused on
the development of a cross-linguistic core grammar.
The core grammar provides a solid foundation for
sustained development of linguistically-motivated
yet computationally tractable grammars (e.g., (Hel-
lan and Haugereid, 2003; Kordoni and Neu, 2005)).

However, the core grammar alone cannot parse
and generate sentences: it needs to be specialized
with language-specific information such as the or-
der of daughters in its rules (e.g., head-subject or
subject-head), and it needs a lexicon. Although
word order and many other phenomena vary across
languages, there are still recurring patterns. To al-
low reuse of grammar code across languages and to
increase the size of the jump-start provided by the
Matrix, in more recent work (Bender and Flickinger,
2005; Drellishak and Bender, 2005), we have been
developing ‘libraries’ implementing realizations of
various linguistic phenomena. Through a web in-
terface, grammar developers can configure an initial
starter grammar by filling out a typological question-
naire about their language, which in turn calls a CGI

script to ‘compile’ a grammar (including language-
specific rule types, lexical entry types, rule entries,
and lexical entries) by making appropriate selections
from the libraries. These little grammars describe
very small fragments of the languages they model,
but they are not toys. Their purpose is to be good
starting points for further development.

The initial set of libraries includes: basic word or-
der of major constituents in matrix clauses (SOV et
al), optionality/obligatoriness of determiners, noun-
determiner order, NP v. PP arguments of intransitive
and transitive verbs, strategies for expressing senten-
tial negation and yes-no questions, and strategies for
constituent coordination. Even with this small set of
phenomena covered (and limiting ourselves for test-
ing purposes to maximally two coordination strate-
gies per language), we have already defined a space
of hundreds of thousands of possible grammars.1

3 The Non-modularity of Linguistic
Phenomena

In this section we discuss our findings so far about
the non-modularity of linguistic phenomena, and ar-
gue that this makes the testing of a broad sample of
grammars even more pressing.

The Grammar Matrix customization system reads
in the user’s language specification and then outputs
language-specific definitions of types (rule types,
lexical entry types and ancillary structures) that in-
herit from types defined in the crosslinguistic core
of the Matrix but add constraints appropriate for the
language at hand. Usability considerations put two
important constraints on this system: (1) The ques-
tions must be ones that are sensible to linguists, who
tend to consider phenomena one at a time. (2) The
output grammar code must be both readable and
maintainable. To achieve readable grammar code
in the output TDL, among other things, we follow
the guideline that any given constraint is stated only
once. If multiple types require the same constraint,
they should all inherit from some supertype bearing
that constraint. In addition, all constraints pertaining
to a particular type are stated in one place.

In light of the these usability considerations, we

1If all of the choices in the customization system were in-
dependent, we would have more than 2 x 1027 grammars. In
actuality, constraints on possible combinations of choices limit
this space considerably.

137



comp-head-phrase := basic-head-1st-comp-phrase & head-final.
subj-head-phrase := basic-head-subj-phrase & head-final &

[ HEAD-DTR.SYNSEM.LOCAL.CAT.VAL.COMPS < > ].

Figure 1: Specialized phrase structure rule types for SOV language

have found that it is not possible to treat the li-
braries as black-box modules with respect to each
other. The libraries are interdependent, and the por-
tions of the script that interpret one part of the input
questionnaire frequently need to make reference to
information elicited by other parts of the question-
naire. For example, the customization system imple-
ments major constituent word order by specializing
the head-complement and head-subject rule types
provided in the core grammar. In an SOV language,
these would both be cross-classified with the type
head-final, and the head-subject rule would further
be constrained to take only complement-saturated
phrases as its head daughter. The TDL encoding of
these constraints is shown in Figure 1.

Following standard practice in HPSG, we use the
head-complement phrase not only for ordinary VPs,
but also for PPs, CPs, and auxiliary-headed VPs,
etc. Consider Polish, a free word order language that
nonetheless has prepositions. To allow complements
on either side of the head, we instantiate both head-
comp and comp-head rules, inheriting from head-
initial and head-final respectively. Yet the preposi-
tions must be barred from the head-final version lest
the grammar license postpositional phrases by mis-
take. We do this by constraining the HEAD value of
the comp-head phrase. Similarly, question particles
(such as est-ce que in French or ma in Mandarin)
are treated as complementizers: heads that select for
an S complement. Since these, too, may differ in
their word order properties from verbs (and preposi-
tions), we need information about the question par-
ticles (elicited with the rest of the information about
yes-no questions) before we have complete informa-
tion about the head-complement rule. Furthermore,
it is not simply a question of adding constraints to
existing types. Consider the case of an SOV lan-
guage with prepositions and sentence-initial ques-
tion particles. This language would need a head-
initial head-comp rule that can take only preposi-
tions and complementizers as its head. To express
the disjunction, we must use the supertype to prep

and comp. This, in turn, means that we can’t decide
what constraint to put on the head value of the head-
comp rule until we’ve considered questions as well
as the basic word order facts.

We expect to study the issue of (non-)modularity
as we add additional libraries to the resource and to
investigate whether the grammar code can be refac-
tored in such a way as to make the libraries into true
modules. We suspect it might be possible to reduce
the degree of interdependence, but not to achieve
completely independent libraries, because syntactic
phenomena are inherently interdependent. Agree-
ment in NP coordination provides an example. In
English and many other languages, coordinated NPs
are always plural and the person of the coordinated
NP is the minimal person value of the coordinands.

(1) a. A cat and a dog are/*is chasing a mouse.
b. Kim and I should handle this ourselves.
c. You and Kim should handle this yourselves.

Gender systems often display a similar hierarchy of
values, as with French coordinated NPs, where the
whole NP is feminine iff all coordinands are femi-
nine and masculine otherwise. Thus it appears that
it is not possible to define all of the necessary con-
straints on the coordination rules without having ac-
cess to information about the agreement system.

Even if we were able to make our analyses of
different linguistic phenomena completely modular,
however, we would still need to test their interaction
in the analysis of particular sentences. Any sentence
that illustrates sentential negation, a matrix yes-no
question, or coordination also necessarily illustrates
at least some aspects of word order, the presence
v. absence of determiners and case-marking adpo-
sitions, and the subcategorization of the verb that
heads the sentence. Furthermore, broad-coverage
grammars need to allow negation, questions, coor-
dination etc. all to appear in the same sentence.

Given this non-modularity, we would ideally like
to be able to validate (and do regression testing on)
the full set of grammars generable by the customiza-

138



Form Description Options
det determiner
n1, n2 nouns det is optional, obligatory, impossible
iv, tv intransitive, transitive verb subj, obj are NP or PP
p-nom, p-acc case-marking adpositions preposition or postposition
neg negative element adverb, prefix, suffix
co1, co2 coordination marks word, prefix, suffix
qpart question particle

Table 1: Standardized lexicon

tion system. To approximate such thoroughness, we
instead sample from the grammar space.

4 Methodology

This section describes in some detail our methodol-
ogy for creating test suites on the basis of language-
type descriptions. A language type is a collection
of feature-value pairs representing a possible set
of answers to the Matrix customization question-
naire. We refer to these as language types rather
than languages, because the grammars produced by
the customization system are underspecified with re-
spect to actual languages, i.e., one and the same
starter grammar might be extended into multiple
models corresponding to multiple actual human lan-
guages. Accordingly, when we talk about the pre-
dicted (well)formedness, or (un)grammaticality, of a
candidate string, we are referring to its predicted sta-
tus with respect to a language type definition, not its
grammaticality in any particular (human) language.

4.1 Implementation: Python and MySQL

The test suite generation system includes a MySQL
database, a collection of Python scripts that interact
with the database, and some stored SQL queries. As
the set of items we are manipulating is quite large
(and will grow as new items are added to test ad-
ditional libraries), using a database is essential for
rapid retrieval of relevant items. Furthermore, the
database facilitates the separation of procedural and
declarative knowledge in the definition of the filters.

4.2 Abstract vocabulary for abstract strings

A grammar needs not just syntactic constructions
and lexical types, but also an actual lexicon. Since
we are working at the level of language types, we
are free to define this lexicon in whatever way is
most convenient. Much of the idiosyncrasy in lan-

guage resides in the lexicon, both in the form of mor-
phemes and in the particular grammatical and collo-
cational constraints associated with them. Of these
three, only the grammatical constraints are manip-
ulated in any interesting way within the Grammar
Matrix customization system. Therefore, for the test
suite, we define all of the language types to draw the
forms of their lexical items from a shared, standard-
ized vocabulary. Table 1 illustrates the vocabulary
along with the options that are currently available
for varying the grammatical constraints on the lex-
ical entries. Using the same word forms for each
grammar contributes substantially to building a sin-
gle resource that can be adapted for the testing of
each language type.

4.3 Constructing master item set

We use string to refer to a sequence of words to
be input to a grammar and result as the (expected)
semantic representation. An item is a particular
pair of string and result. Among strings, we have
seed strings provided by the Matrix developers to
seed the test suite, and constructed strings derived
from those seed strings. The constructor function
is the algorithm for deriving new strings from the
seed strings. Seed strings are arranged into seman-
tic equivalence classes, from which one representa-
tive is designated the harvester string. We parse the
harvester string with some appropriate grammar (de-
rived from the Matrix customization system) to ex-
tract the semantic representation (result) to be paired
with each member of the equivalence class.

The seed strings, when looked at as bags of words,
should cover all possible realizations of the phe-
nomenon treated by the library. For example, the
negation library allows both inflectional and adver-
bial negation, as well as negation expressed through
both inflection and an adverb together. To illustrate

139



negation of transitive sentences (allowing for lan-
guages with and without determiners2), we require
the seed strings in (2):

(2) Semtag: neg1 Semtag: neg2
n1 n2 neg tv det n1 det n2 neg tv
n1 n2 neg-tv det n1 det n2 neg-tv
n1 n2 tv-neg det n1 det n2 tv-neg
n1 n2 neg neg-tv det n1 det n2 neg neg-tv
n1 n2 neg tv-neg det n1 det n2 neg tv-neg

Sentential negation has the same semantic reflex
across all of its realizations, but the presence v. ab-
sence of overt determiners does have a semantic ef-
fect. Accordingly, the seed strings shown in (2) can
be grouped into two semantic equivalence classes,
shown as the first and second columns in the table,
and associated with the semantic tags ‘neg1’ and
‘neg2’, respectively. The two strings in the first row
could be designated as the harvester strings, associ-
ated with a grammar for an SOV language with op-
tional determiners preceding the noun and sentential
negation expressed as a pre-head modifier of V.

We use the LKB in conjunction with [incr tsdb()]
to parse the harvester strings from all of the equiva-
lence classes with the appropriate grammars. Then
the seed strings and the parsing results from the har-
vester strings, as well as their semantic tags, are
stored and linked in our relational database. We use
the constructor function to create new strings from
these seed strings. This produces the master item set
that provides the basis for the test suites.

Currently, we have only one constructor function
(‘permute’) which takes in a seed string and returns
all unique permutations of the morphemes in that
seed string.3 This constructor function is effective
in producing test items that cover the range of word
order variations currently permitted by the Grammar
Matrix customization system. Currently, most of the
other kinds of variation countenanced (e.g., adver-
bial v. inflectional negation or presence v. absence
of determiners) is handled through the initial seed
string construction. As the range of phenomena han-
dled by the customization system expands, we will
develop more sophisticated constructor functions to

2We require additional seed strings to account for languages
with and without case-marking adpositions

3‘permute’ strips off any affixes, permutes the stems, and
then attaches the affixes to the stems in all possible ways.

handle, for example, the addition of all possible case
suffixes to each noun in the sentence.

4.4 Filters

The master item set provides us with an inventory
from which we can find positive (grammatical) ex-
amples for any language type generated by the sys-
tem as well as interesting negative examples for any
language type. To do so, we filter the master item
set, in two steps.

4.4.1 Universal Filters

The first step is the application of ‘universal’ fil-
ters, which mark any item known to be ungrammat-
ical across all language types currently produced by
the system. For example, the word order library does
not currently provide an analysis of radically non-
configurational languages with discontinuous NPs
(e.g., Warlpiri (Hale, 1981)). Accordingly, (3) will
be ungrammatical across all language types:

(3) det det n1 n2 tv

The universal filter definitions (provided by the
developers) each comprise one or more regular ex-
pressions, a filter type that specifies how the regular
expressions are to be applied, and a list of seman-
tic tags specifying which equivalence classes they
apply to. For example, the filter that would catch
example (3) above is defined as in (4):

(4) Filter Type: reject-unless-match
Regexp: (det (n1|n2).*det (n1|n2))|

(det (n1|n2).*(n1|n2) det)|
((n1|n2) det.*det (n1|n2))|
((n1|n2) det.*(n1|n2) det)

Sem-class: [semantic classes for all transitive
sentences with two determiners.]

We apply each filter to every item in the database.
For each filter whose semantic-class value includes
the semantic class of the item at hand, we store the
result (pass or fail) of the filter on that item. We can
then query the database to produce a list of all of the
potentially well-formed items.

4.4.2 Specific Filters

The next step is to run the filters that find the
grammatical examples for a particular language
type. In order to facilitate sampling of the entire
language space, we define these filters to be sensi-
tive not to complete language type definitions, but

140



rather to particular features (or small sets of fea-
tures) of a language type. Thus in addition to the
filter type, regular expression, and semantic class
fields, the language-specific filters also encode par-
tial descriptions of the language types to which they
apply, in the form of feature-value declarations. For
example, the filter in (5) plays a role in selecting
the correct form of negated sentences for language
types with both inflectional and adverbial negation
in complementary distribution (like English n’t and
sentential not). The first regular expression checks
for neg surrounded by white space (i.e., the negative
adverb) and the second for the negative affixes.

(5) Filter Type: reject-if-both-match
Regexp1: (\s|ˆ)neg(\s|$)
Regexp2: -neg|neg-
Sem-class: [sem. classes for all neg. sent.]
Lg-feat: and(infl neg:on,adv neg:on,

multineg:comp)

This filter uses a conjunctive language feature spec-
ification (three feature-value pairs that must apply),
but disjunctions are also possible. These specifica-
tions are converted to disjunctive normal form be-
fore further processing.

As with the universal filters, the results of the spe-
cific filters are stored in the database. We process
each item that passed all of the universal filters with
each specific filter. Whenever a filter’s semantic-
class value matches the semantic-class of the item
at hand, we store the value assigned by the filter
(pass or fail). We also store the feature-value pairs
required by each filter, so that we can look up the
relevant filters for a language-type definition.

4.4.3 Recursive Linguistic Phenomena

Making the filters relative to particular semantic
classes allows us to use information about the lexi-
cal items in the sentences in the definition of the fil-
ters. This makes it easier to write regular-expression
based filters that can work across many different
complete language types. Complications arise, how-
ever, in examples illustrating recursive phenomena
To handle such phenomena with our finite-state sys-
tem, we do multiple passes with the filters. All items
with coordination are first processed with the co-
ordination filters, and then rewritten to replace any
well-formed coordinations with single constituents.
These rewritten strings are then processed with the

rest of the filters, and we store the results as the re-
sults for those filters on the original strings.

4.5 Language types

The final kind of information we store in the
database is definitions of language types. Even
though our system allows us to create test suites for
new language types on demand, we still store the
language-type definitions of language types we have
tested, for future regression testing purposes. When
a language type is read in, the list of feature-value
pairs defining it is compared to the list of feature-
groups declared by the filters. For each group of
feature-value pairs present in the language-type def-
inition, we find all of the filters that use that group.
We then query the database for all items that pass
the filters relevant to the language type. This list
of items represents all those in the master item set
predicted to be well-formed for this language type.
From the complement of this set, we also take a ran-
dom selection of items to test for overgeneration.

4.6 Validation of grammars

Once we have created the test suite for a partic-
ular language type, the developer runs the Matrix
customization system to get a starter grammar for
the same language type. The test suite is loaded
into [incr tsdb()] and processed with the grammar.
[incr tsdb()] allows the developer to compare the
grammar’s output with the test suite at varying lev-
els of detail: Do all and only the items predicted to
be well-formed parse? Do they get the same number
of readings as predicted? Do they get the semantic
representations predicted? A discrepancy at any of
these levels points to an error in either the Grammar
Matrix or the test suite generation system. The de-
veloper can query the database to find which filters
passed or failed a particular example as well as to
discover the provenance of the example and which
phenomena it is meant to test.

This methodology provides the ability to gener-
ate test suites for any arbitrary language type on de-
mand. Although this appears to eliminate the need to
store the test suites we do, in fact, store information
about previous test suites. This allows us to track the
evolution of the Grammar Matrix in relation to those
particular language types over time.

141



4.7 Investment and Return

The input required from the developer in order to test
any new library is as follows: (1) Seed strings illus-
trating the range of expressions handled by the new
library, organized into equivalence classes. (2) Des-
ignated harvester strings for each equivalence class
and a grammar or grammars that can parse them to
get the target semantic representation. (3) Universal
filters specific to the phenomenon and seed strings.
(4) Specific filters picking out the right items for
each language type. (5) Analysis of discrepancies
between the test suite and the generated grammars.
This is a substantial investment on the part of the de-
veloper but we believe the investment is worth it for
the return of being able to validate a library addition
and test for any loss of coverage going forward.

Arnold et al. (1994) note that writing grammars
to generate test suites is impractical if the test suite
generating grammars aren’t substantially simpler to
write than the ‘actual’ grammars being tested. Even
though this system requires some effort to maintain,
we believe the methodology remains practical for
two reasons. First, the input required from the de-
veloper enumerated above is closely related to the
knowledge discovered in the course of building the
libraries in the first place. Second, the fact that the
filters are sensitive to only particular features of lan-
guage types means that a relatively small number of
filters can create test suites for a very large number
of language types.

5 Related Work

Kinyon and Rambow (2003) present an approach to
generating test suites on the basis of descriptions
of languages. The language descriptions are Meta-
Grammar (MG) hierarchies. Their approach appears
to be more flexible than the one presented here in
some ways, and more constrained in others. It does
not need any input strings, but rather produces test
items from the language description. In addition,
it annotates the output in multiple ways, including
phrase structure, dependency structure, and LFG F-
structure. On the other hand, there is no apparent
provision for creating negative (ungrammatical) test
data and it is does not appear possible to compose
new MG descriptions on the fly. Furthermore, the
focus of the MG test suite work appears to be the

generation of test suites for other grammar develop-
ment projects, but the MGs themselves are crosslin-
guistic resources in need of validation and testing.
An interesting area for future work would be the
comparison between the test suites generated by the
system described here and the MG test suites.

The key to the test-suite development process pro-
posed here is to leverage the work already being
done by the Matrix developers into a largely auto-
mated process for creating test-suite items. The in-
formation required from the developers is essentially
a structured and systematic version of the knowledge
that is required for the creation of libraries in the first
place. This basic approach, is also the basis for the
approach taken in (Bröker, 2000); the specific forms
of knowledge leveraged, and the test-suite develop-
ment strategies used, however, are quite different.

6 Future Work

The addition of the next library to the Grammar Ma-
trix will provide us with an opportunity to try to
quantify the effect of this methodology. With the
Grammar Matrix and the filters stabilized, the vali-
dation of a new library can be carefully tracked. We
can try to quantify the number of errors obtained and
the source of the errors, e.g., library or filters.

In addition to this kind of quantification and error
analysis as a means of validating this methodology,
we also intend to undertake a comparison of the test
suites created from our database to hand built cre-
ated for Matrix-derived grammars by students in the
multilingual grammar engineering course at the Uni-
versity of Washington.4 Students in this class each
develop grammars for a different language, and cre-
ate test suites of positive and negative examples as
part of their development process. We plan to use
the lexical types in the grammars to define a map-
ping from the surface lexical items used in the test
suites to our abstract vocabulary. We can then com-
pare the hand built and autogenerated test suites in
order to gauge the thoroughness of the system pre-
sented here.

7 Conclusion

The methodology outlined in this paper addresses
the three obstacles noted in the introduction: Al-

4http://courses.washington.edu/ling567

142



though the Grammar Matrix core itself isn’t a gram-
mar (1), we test it by deriving grammars from it.
Since we are testing the derived grammars, we are
simultaneously testing both the Matrix core gram-
mar, the libraries, and the customization script. Al-
though there is no single language being modeled
from which to draw strings (2), we can nonethe-
less find a relevant set of strings and associate
these strings with annotations of expected well-
formedness. The lexical formatives of the strings
are drawn from a standardized set of abstract forms.
The well-formedness predictions are made on the
basis of the system of filters. The system of filters
doesn’t represent ground truth, but rather a second
pathway to the judgments in addition to the direct
use of the Matrix-derived starter grammars. These
pathways are independent enough that the one can
serve as an error check on the other. The space of
possible language types remains too large for thor-
ough testing (3). However, since our system allows
for the efficient derivation of a test suite for any arbi-
trary language type, it is inexpensive to sample that
language-type space in many different ways.

Acknowledgments

This work has been supported by NSF grant BCS-
0644097.

References

Doug Arnold, Martin Rondell, and Frederik Fouvry.
1994. Design and implementation of test suite tools.
Technical Report LRE 62-089 D-WP5, University of
Essex, UK.

Emily M. Bender and Dan Flickinger. 2005. Rapid pro-
totyping of scalable grammars: Towards modularity in
extensions to a language-independent core. In Proc.
IJCNLP-05 (Posters/Demos).

Emily M. Bender, Dan Flickinger, and Stephan Oepen.
2002. The grammar matrix: An open-source starter-
kit for the rapid development of cross-linguistically
consistent broad-coverage precision grammars. In
Proc. the Workshop on Grammar Engineering and
Evaluation COLING 2002, pages 8–14.

Norbert Bröker. 2000. The use of instrumentation in
grammar engineering. In Proc. COLING 2000, pages
118–124.

Miriam Butt and Tracy Holloway King. 2003. Gram-
mar writing, testing, and evaluation. In Handbook for
Language Engineers, pages 129–179. CSLI.

Ann Copestake, Dan Flickinger, Carl Pollard, and Ivan A.
Sag. 2005. Minimal recursion semantics: An intro-
duction. Research on Language & Computation, 3(2–
3):281–332.

Ann Copestake. 2002. Implementing Typed Feature
Structure Grammars. CSLI.

Scott Drellishak and Emily M. Bender. 2005. A coordi-
nation module for a crosslinguistic grammar resource.
In Stefan Müller, editor, The Proc. HPSG 2005, pages
108–128. CSLI.

Dan Flickinger and Emily M. Bender. 2003. Compo-
sitional semantics in a multilingual grammar resource.
In Proc. the Workshop on Ideas and Strategies for Mul-
tilingual Grammar Development, ESSLLI 2003, pages
33–42.

Kenneth Hale. 1981. On the position of Warlpiri in the
typology of the base. Distributed by Indiana Univer-
sity Linguistics Club, Bloomington.

Lars Hellan and Petter Haugereid. 2003. NorSource: An
exercise in Matrix grammar-building design. In Proc.
the Workshop on Ideas and Strategies for Multilingual
Grammar Development, ESSLLI 2003, pages 41–48.

Alexandra Kinyon and Owen Rambow. 2003. The meta-
grammar: A cross-framework and cross-language test-
suite generation tool. In Proc. 4th International Work-
shop on Linguistically Interpreted Corpora.

Valia Kordoni and Julia Neu. 2005. Deep analysis
of Modern Greek. In Keh-Yih Su, Jun’ichi Tsujii,
and Jong-Hyeok Lee, editors, Lecture Notes in Com-
puter Science, volume 3248, pages 674–683. Springer-
Verlag.

Stephan Oepen and Daniel P. Flickinger. 1998. Towards
systematic grammar profiling. Test suite technology
ten years after. Journal of Computer Speech and Lan-
guage, 12 (4) (Special Issue on Evaluation):411 – 436.

Stephan Oepen. 2002. Competence and Performance
Profiling for Constraint-based Grammars: A New
Methodology, Toolkit, and Applications. Ph.D. thesis,
Universität des Saarlandes.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven Phrase
Structure Grammar. The University of Chicago Press.

Laurie Poulson. 2006. Evaluating a cross-linguistic
grammar model: Methodology and gold-standard re-
source development. Master’s thesis, University of
Washington.

143



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 144–151,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

Local ambiguity packing and discontinuity in German

Berthold Crysmann
DFKI GmbH & Saarland University

Stuhlsatzenhausweg 3
D-66123 Saarbr̈ucken

crysmann@dfki.de

Abstract

We report on recent advances in HPSG pars-
ing of German with local ambiguity pack-
ing (Oepen and Carroll, 2000), achieving a
speed-up factor of 2 on a balanced test-suite.
In contrast to earlier studies carried out for
English using the same packing algorithm,
we show that restricting semantic features
only is insufficient for achieving acceptable
runtime performance with a German HPSG
grammar. In a series of experiments relating
to the three different types of discontinuities
in German (head movement, extraction, ex-
traposition), we examine the effects of re-
strictor choice, ultimately showing that ex-
traction and head movement require partial
restriction of the respective features encod-
ing the dependency, whereas full restriction
gives best results for extraposition.

1 Introduction

It is a well-known fact that chart parsing with-
out techniques for local ambiguity packing (Earley,
1970) faces a combinatorial explosion of the search
space, owing to the (structural) ambiguity immi-
nent to natural language. Thus, identical edges with
different internal derivation history can be packed
into a single representative for further processing,
thereby effectively solving the complexity issue. In
context-free grammars augmented with a unifica-
tion formalism, packing based on the CF symbol
equality has been complemented by subsumption- or
disjunction-based packing of the associated feature
structures (Moore and Alshawi, 1992; Maxwell and

Kaplan, 1995). For parsing with constraint-based
grammars, such as HPSG, which do not possess an
explicit context-free backbone, (Oepen and Carroll,
2000) have proposed an efficient packing algorithm
based on feature structure subsumption only.

In contrast to the symbols in context-free gram-
mars, feature structures in unification-based gram-
mars often include information encoding (part of)
the derivation history, most notably semantics. In or-
der to achieve successful packing rates, feature re-
striction (Shieber, 1985) is used to remove this in-
formation during creation of the packed parse forest.
During the unpacking phase, which operates only
on successful parse trees, these features are unified
back in again.

For their experiments with efficient subsumption-
based packing, (Oepen and Carroll, 2000) experi-
mented with different settings of the packing restric-
tor for the English Resource Grammar ERG (Copes-
take and Flickinger, 2000): they found that good
packing rates, and overall good performance dur-
ing forest creation and unpacking were achieved, for
the ERG, with partial restriction of the semantics,
e.g. keeping index features unrestricted, since they
have an impact on external combinatorial potential,
but restricting most of the internal MRS represen-
tation, including the list of elementary predications
and scope constraints. Restriction of syntactically
potent features, has thus been found both unneces-
sary and less efficient.

First experiments in ambiguity packing with a
German HPSG grammar (GG; http://gg.dfki.de) re-
vealed that restriction of semantics only does not
give rise to any acceptible results in terms of runtime
performance. It became clear quite quickly that the

144



bulk of failing subsumptions impeding creation of a
sufficiently compact forest were related to two syn-
tactic features, SLASH and DSL. In German, these
features contain references to non-empty valence
lists, which eventually wind up encoding derivation
history. Using a more aggressive restrictor to elim-
inate these features during forest creation did not
show the desired performance either: owing to mas-
sive overgeneration, the resulting forest was either
not compact enough, or most of the efficiency gains
were wasted on unpacking failures in the second
phase.

In this paper we report on recent advances with
local ambiguity packing for German, showing how
partial restriction can achieve good packing rates at
negligible unpacking cost, yielding an overall speed-
up by a factor of 2, as compared to parsing without
ambiguity packing. Running a series of experiments
with different restrictor setting for three different
features involved with non-local dependencies we
examine in detail how the choice of restrictor affects
the observable performance. The paper is organised
as follows: section 2 will give an overview of the rel-
evant syntactic constructions of German, and their
implementation in GG. Section 3 gives a description
of the experimental setup (3.1), followed by a dis-
cussion of the main results (3.2), detailing how dif-
ferent settings for feature restriction affect parsing
performance.

2 Discontinuity in German

Head movement German, in contrast to English is
a verb-final language with a verb-second effect, that
is, non-finite verbs are standardly placed sentence-
finally. In clauses other than complementizer-
introduced subclauses and relative clauses, the finite
verb surfaces in a clause-initial position (either first
or second). Any major constituent may occupy the
topic position preceding the finite verb, including
subject, complements or modifiers.

Owing to the V2 effect, the parts of a verb cluster
are discontinuous. Since both the finite verb and the
non-finite verb cluster impose constraints on con-
stituents in the Mittelfeld, standard approaches to
German syntax in HPSG assume, since (Kiss and
Wesche, 1991), that the initial verb is related to
the final verb cluster by means of head movement:
clause-finally, a trace is inserted that combines the

Montag

N

NP-A-V-MOD

lasse

V

ich

NP-NOM-SG

ihn

NP-ACC-SG

dem

D

Mann

N

NP-DAT

helfen

V

EPS

EPS/NP-A-V-MOD

EPS/NP-A-V-MOD

EPS/NP-A-V-MOD

EPS/NP-A-V-MOD

S/NP-A-V-MOD

S

Figure 1: DSL:Monday let he him the man help

argument structure of the final cluster with the sub-
categorisation requirements percolated down from
the finite verb using a special feature DSL (=“dou-
ble SLASH”). Arguments in the Mittelfeld are satu-
rated as complements of the clause-final trace. The
grammar used here assumes head movement for dis-
continuous predicates (Crysmann, 2003), following
in this respect the earlier implementation by (Müller
and Kasper, 2000). In order to relate the initial verb
to the verb cluster and its arguments in the Mit-
telfeld, like the subject and direct object in figure 2,
the DSL (or V1) feature must percolate subcategori-
sation requirements for subject and object, as well as
for the verb cluster. At the gap site, the valence in-
formation percolated via DSL is inserted into the ac-
tual valence lists of the verb trace. Since the require-
ments are matched against actual arguments found
in the Mittelfeld, the valence lists contained in DSL
get instantiated to whatever argument it satisfies,
thereby creating a partial representation of deriva-
tion history. While theoretically, this is just the right
behaviour, it has clear repercussions for parsing with
ambiguity packing.

Partial VP fronting Another aspect, in which the
syntax of German differs from that of English is
in the area of extraction: while in English only
constituents with a saturated COMPS list can un-
dergo wh-movement, this is not the case in Ger-
man: as shown in figure 2, the verbschenken
‘give/donate’ has been fronted, leaving its two com-
plements behind.

In HPSG, partial VP fronting is analysed by
a combination of two mechanisms (Müller, 1999;
Nerbonne, 1994): first, standard argument com-
position in the verb cluster, following (Hinrichs
and Nakazawa, 1990), combined with a standard
SLASH-based treatment of long-distance extraction.

Again, since argument composition is performed

145



schenken

V

V

hat

V

er

NP-NOM-SG

ihm

NP-DAT

das

D

Buch

N

NP-ACC-SG

wollen

V

V/V

V/V

EPS/V

EPS/V

EPS/V

EPS/V

S/V

S

Figure 2: SLASH:give has he him the book wanted

by strcuture-sharing, i.e. reentrancy between the va-
lence list of the governing predicate and the unsatu-
rated valence list of the governed predicate, extrac-
tion of the governed predicate by means of SLASH
percolation carries this reentrancy over into SLASH.
From a general linguistic point of view, this is highly
desirable, because valence requirements of the ex-
tracted verb must be matched against the arguments
that satisfy them in the Mittelfeld. The only draw-
back is, that we are confronted, again, with a syntac-
tic feature containing, among other things, records
of derivation history.

3 Evaluation

3.1 Test setup

In order to systematically investigate the effect of re-
striction of syntactically potent features on the pars-
ing efficiency with local ambiguity packing, we cre-
ated a test field consisting of 8 different parameter
settings (out of 27 logically possible settings): 1 run
without packing, 1 run with optimal settings for the
three features under consideration, and 2 runs with
suboptimal settings for each of the three features.

All test runs were performed on a balanced test
suite extracted from the Verbmobil corpus, using
100 items per input length, from sentence length 1
to 22, thus totalling 2200 test items. Although the
Verbmobil corpus does contain test sentences of up
to 70 words long, their number drops quite quickly
from sentence length 23 on.

The parser used in the experiments is the cur-
rent SVN version of Pet (Callmeier, 2000), run-
ning the March 24 version of GG (http://gg.dfki.de;
(Müller and Kasper, 2000; Crysmann, 2003; Crys-
mann, 2005)). Tests were run on an Intel Core Duo
machine using a single T2600 CPU at 2.16GHz with
2 GB main memory.

To ensure that we can study parser performance
on input of increasing length, we used a rather gener-
ous upper limit of 150,000 passive edges. Taking as
a guideline the average space consumption per edge
of the non-packing parser, we calculated that pars-
ing could still be done comfortably in main memory,
i.e., without using swap space.

All measurements were performed using the [incr
tsdb()] profiling platform (Oepen and Flickinger,
1998). Parsing times reported are total CPU times
(in seconds), includingexhaustiveunpacking of the
parse forest, whenever applicable.

3.2 Results

The main result of our study is that local ambiguity
packing in constraint-based parsing of German can
lead to performance improvements, once feature re-
striction is extended from purely semantic features
to syntactically potent features used to model dis-
continuity, such as SLASH, DSL, and ANC (see be-
low). We also found that positive performance ef-
fects could only be achieved, if SLASH and DSL
features were partially restricted in such a way as to
only eliminate all records of derivation history (in
terms of instatiated subcategorisation lists), while
retaining most of the other constraints represented
in these features.

Compared to a non-packing baseline parser with
feature structure unfilling, we observed an overall
speed-up by a factor of 2 with local ambiguity pack-
ing on a balanced test suite. As shown by figure
3.2, local ambiguity packing with optimal restrictor
settings is effective in taming the combinatorial ex-
plosition of the search observed by the non-packing
parser.

Analogous to the reduction in search space, per-
formance savings grow continuously with increas-
ing input length: from sentence length 14 onwards
(factor 0.84) relative processing time decreases con-
tinually up to a factor of 0.27 at sentence length
22. With an average CPU time of 0.69s at sentence
length 22, performance is by far better than real-
time behaviour. Note further, that the non-packing
parser benefits here from a ceiling effect: with 25 out
of 2200 test items (1%), the available resources of
150,000 passive chart edges were exhausted before
the search space was fully explored. With ambiguity
packing under an appropriate restrictor, by contrast,
the search space was fully explored.

146



1 3 5 7 9 11 13 15 17 19 21

String Length

0
20000
40000
60000
80000

100000
120000
140000

No packing

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••
•
••••••••••••••••••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••

•

•
•
••••
•
•••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•
••••••••••••
•
••••••••••••••••••••••••••••••••••
•••••••••
••••••••••••
•
••••
•••••••••••••••••

•

•••••••••••••••••••••••••••
•
••••••••••••••••••••••••••••••••••
•
•••••
•
•
•
•••••••••••••••••
•
••••••••••••
•
•••••••••••••••••••••••••••••••••
•
•••
•
•
•
••••••••
•
•••••••
•
••••

•
•••••

•

•••••••

•

•••••••••••••••

•

••

•

••••
•
••
•
••
•
••••••••••••••••••
•
••
•••••••••
••
••
•
•••

•

•••••••••••••••
••••••••••••

•

•••••
•
•••••••••••••••••••
•
••

•

••••••••
•
•••••••••

•

••••••••••••
•••••••••••
•••
••• •••

•
•
•••
•••
•
••••••

•

•••••••

•

•••••
•
•••

•

•••••
•
•••••
•

••••••
•
••••••••••••

•

•
•
••

•

•
••••••
••
•••••
•••••••••••
•
•

•
•••••
••••
•
•

•

•••••••••••••••

•

•
•

•

••

•

•••
•

•

•••

•
•

•
•••••••
•
••••••••••••

•

•••••••

•

•••
•
•
•
••••••

•

•
••

•

•

•

••••• •••••••••••
•
••••

•

••••••••
•
••

••

•••

•

••

•

•
•
••••
•
••
•

•••
••••••

••
••

•

••••

••

•

•••••

•

••••••
•
•••

•

••

•

•••••••••

•

•

•
•
•••

•

•••

•

••••••••••

•

••••••••

•

••••••

•••
•
••••••

•

•••••••
••

•

•
•
••
•••••

•

•

•

•
••

•

•••
•
•••••
•

•

••••

•

•••••

•

•

•

•••
•

•

••
•••
•••

•

•
••

•

•

•
•
•
•
•
••••
•

•
•
•••••••••
•••
•
••••
•

••
•
•
•
•••

•

•
•
••••

•

•

•
•

•

•

•

•••

•

••••
••

•

••

•

•
••••
•

•

•

•

•••
•

••

•

•

•

• •••
•
•

•

••
•
•••
•

•

••

•

•
•
•

•
•••••

•

•••
•

••

••••
•
•••

•

•

•

•

••••

•

•
•••••••

•

••••••

•

••

•

•
•
••

•

•••

•

•••
•
•

•
•
••
•

•
•

•

•

•

•

•

••
•
•

•

• — passive edges

1 3 5 7 9 11 13 15 17 19 21

String Length

0
20000
40000
60000
80000

100000
120000
140000

Packing w/ partial SLASH/DSL; no ANC

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••• •••••••••••••••••••••••••••••••••
••••••••••••••••••••••••••••••••••••••••••••••••••••••

•

•••••••••••• ••••••••
•
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•••••••••••••••••••••••••••••••••
•
••••••••••••
•
••••••••••••••••••••••••••••••••••••••••••••••••••••
•
•••
•
••••••••••••••••
••••••••••••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•

•••••••••
•
••••••••••••••••

• — passive edges

Figure 3: Comparison of chart size relative to input length

1 3 5 7 9 11 13 15 17 19 21

String Length

0
2
4
6
8

10
12
14
16
18
20
22

No packing (unfilling)

(generated by [incr tsdb()] at 25-mar-2007 (17:44 h))���������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ������������������������������������������������
�
�����������������������������������������������������������������������������������

�

������������������������������������������������������������������� ��������������������������������������������������������
�
������������
������������������������������� �����������������������������������������������
�
���������������������������������������������������� ����������������
�
��������������������������������
�
�������������������������������������
�
����������
�� �����������
������

�

�������

�

���������������
�
��

�

����
�
�����
�
������������������������������
��
������
�

����� ����������������������
�
�����
�
����������������������
�
������������������

�

�����������������������
���������
�
��������������

�

�������
�
���������

�

�����������
�
������
�������������

�

����

�

���������
����������������� �����������
�
�

�

���������������

�

�
�
�
��
�
����

�

���
��

��������
�������������

�

�������

�

������������

�

���

�

�
�
���������������������

�

�����������
��
���

�

��

�

�
�
����
���
�
���������
��
��

�

����

�
�

�

�����
�
����������

�

��
�
���������

�

�

� ����
�
���

�

����������

�

��������

�

������
����������

�

���������

�

���������
�
�

�

�
��

�

���
�
�����
�
�

����

�

�����

�

�

�

���
�

�

�
�
������
�
���

�

�
���������
�
�����������
��������
�
��
�
�����

�

�
�
����

�

�

�
�

�

�

�

���

�

����
��
�

��

�

�����
�

�

�

�

���
�
��
�
�
�
����
��

�

�������

�

��

�

���
�
�����

�

����

��

����
�
���
�
�
�

�

����

�

�
�������

�

������

�

��

�

����

�

���

�

�����

�
���
�
�

�

��

�

�

�

��
��
�

� — Total CPU time (s)

1 3 5 7 9 11 13 15 17 19 21

String Length

0
2
4
6
8

10
12
14
16
18
20
22

Packing w/ partial SLASH/DSL; no ANC

���������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ����������������������������������
������������������������������������������������������������������ ���������������������������������������������������������������������������������������������������� ������������������������������������������������

�
��������������������������������������������������� �������������������
�
�������������������

�

������������������������������������������������������������ ���������������������������������������������������������������������
�
������������������������������ �������������
�
�����������
������
�
����������
�
���������������������������������������������������������������������������������������������������������������������

���������������������������������������� �����������
���������������������������������
�
�����������������������������
�
������������������������� ��������������������������������������������������������������������������������������������
�������� ��������������������������
�
������������������������������������������������������������������������� ������������������������������
�
������������������������������������
�
�������
�
�����

�

������
��
���������������������
�
����
����������������������������������

�

�����
�
��������
�
�

�

�����
�
�������������

�
������������
�
�������
�
����������

�

�����
�
�������������������
����������������������

�

�
��
�
���
�
�
����������
������������
�

�

������������

�

����������������������
�����������
�������������
����
������

�

������������������
�
��
�
������� ����������������

�

���������
�
�����������������
�
��������������������
�
�����
��

�

���
������
�
����
���������
�
��

� — Total CPU time (s)

Figure 4: Comparison of processing time relative to input length

Restricting DSL The first syntactically potent
feature investigated in these experiments is the fea-
ture DSL (or V1), which serves to relate, by means
of simulated head movement, the finite verb in
clause-second position to the clause-final verb clus-
ter. Essentially, this feature is used to pass down
the valence information from the initial verb to the
clause-final verb trace, where this valence informa-
tion is combined with that of the cluster. In the
grammar under consideration, verb movement is re-
stricted to discontinuous verb clusters (Crysmann,
2003), i.e., to situations where there is either an overt
verb cluster, or a stranded verb particle in the right
sentence bracket.

Since actual or putative arguments of the verb
trace must be checked against the actual valence in-

formation of the V2 verb, derivation history must be
carried along as part of the DSL feature.

Obviously, any feature that (partially) encodes
derivation history is a potential threat to efficient
ambiguity packing. We therefore experimented with
three different settings regarding restriction of this
feature: full restriction, no restriction, and a par-
tial restriction, where only constraints pertaining to
HEAD information of the final cluster were retained,
such as category, or form (most crucial for stranded
particles).

Results are summarised in table 1. Besides the
feature studied here, the restrictor includes the se-

1Here, and in the following two tables≡ stands for packing
under equivalence,= for proactive packing,< for retroactive
packing, and⊥ for freezing.

147



Edges Time (s) Unpack (s) Subsumption≡ = < ⊥ Factor (time) Subs. cost Pack rate
Unfill 6424 0.56 0 0 0 0 0 0 1 N/A 0

Partial DSL 1494 0.28 0.01 36404.15 307.28 193.33 36.67 335.840.5 67.76 0.36
Full DSL 1832 1.96 0.01 363840.47 186.19 111.31 42.96 251.32 3.5 1068.68 0.19
No DSL 1917 0.61 0.01 106392.57 568.34 484.68 80.8 926.79 1.09 93.83 0.59

Table 1: Performance of packed parsing with different restriction of DSL1

mantic features like RELS and HCONS, as in
(Oepen and Carroll, 2000), as well as optimal set-
tings for SLASH and ANC.

Leaving DSL unrestricted features the lowest
number of packings, amongst the three settings,
both in absolute terms, and in relative packings per
edge (0.19). As a consequence, average chart size is
bigger than with either partially or fully restricted
DSL. Another negative behaviour of packed pars-
ing with an unrestricted DSL is the incommensu-
rate number of subsumption tests carried out: at a
ratio of 1068.68 subsumption tests per packing, this
accounts chiefly for the inefficiency, in particular,
when compared to the much more moderate rates
of 67.76 and 93.83 achieved with partially restricted
and fully restricted DSL. Thus, even though over-
all chart size is reduced when compared to parsing
without ambiguity packing, these savings in space
are not sufficient enough to pay off the overhead in-
curred by testing for subsumption. As a net effect,
overall parsing time is 3.5 times longer compared to
the non-packing baseline.2

Fully restricting DSL by contrast yields a very
good packing rate (0.59) at moderate costs in terms
of subsumption test per packing (93.83). However,
with the grammar not being restrictive enough dur-
ing forest creation, overall chart size is bigger (1832
passive edges) than with partially restricted DSL
(1494). Best results are obtained with partially re-
stricted DSL, where derivation history in terms of
actual or putative arguments of the verb trace is re-
moved, but reference to HEAD information of the
final cluster is maintained, thereby ensuring that the
initial verb only combines with appropriate verb
clusters. This not only leads to the most compact
chart, but also features the lowest number of sub-
sumption tests, both absolute and relative. In sum,

2Edges in packed parsing are actually more costly than in
parsing without ambiguity packing. Since efficient subsumption
checking and feature structure unfilling are mutually exclusive,
edges in general consume much more space when parsing with
ambiguity packing, increasing the cost of copying in unification.

partial restriction of DSL was the only setting that
actually beat the baseline defined by parsing with-
out ambiguity packing.

Restricting SLASH The second experiment we
carried out relates to the feature SLASH, used for
long-distance dependencies. Owing to the V2 ef-
fect in German, constituents in the clause-initial pre-
verbal position are typically placed there by means
of extraction, including unmarked subjects. This dif-
fers quite clearly from English, where standard SVO
order does not involve any movement at all. Another
striking difference between the two languages is that
German, but not English permits fronting of par-
tial VPs: in complex predicates, as witnessed with
modals and control verbs, as well as in auxiliary-
participle combinations, the downstairs predicate
can be fronted, leaving part (or even all) of its com-
plements to be realised in the Mittelfeld. Since Ger-
man is a non-configurational language, pretty much
any combination of fronted vs. stranded comple-
ments can be found, in any order. In GG, partial
VP fronting is effected by special extraction rules,
which removes the valency of pertaing to the fronted
verb from the subcategorisation list of the embed-
ding predicate, and inserts it into SLASH. Simulta-
neously, the remaining complements of the embed-
ding verb are composed with the locally underspec-
ified subcategorisation list of the extracted verbal
complement. In order to match the subcategorisation
requirement of the extracted verb with those of its
complements that are realised in the Mittelfeld, the
subcategorisation list must be percolated via SLASH
as well. Since elements on the subcategorisation list
in SLASH are reentrant with elements on the com-
posed subcategorisation list of the embedding pred-
icate, the former gets specified to the complements
that saturate the requirements in the Mittelfeld. As a
result, we observe a massive encoding of derivation
history in SLASH.

Besides the rules for partial VP fronting, the
grammar recognises 3 more extraction rules, one for

148



subject, one for non-subject complements, and one
for adjuncts. Out of these three, only adjunct ex-
traction rules encode reference to their extraction
context in SLASH: since modifiers select the heads
they adjoin to via a feature MOD, which is reentrant
with the SYNSEM of that head, they inevitably carry
along a good deal of that head’s derivation history.

We tested three different configurations of the re-
strictor: one with unrestricted SLASH, one where
the entire SLASH feature was removed during for-
est creation, and a partially restricted variant. This
partially restricted variant preserves the full SLASH
representation for ordinary subject and complement
extraction, but uses an impoverished representation
for adjunct extraction and partial VP fronting. Tech-
nically, this was achieved by using two SLASH fea-
tures in parallel: an auxiliary, impoverishedSLASH
to be used during forest creation, and the full
SLASH feature during unpacking. For adjunct ex-
traction and partial VP fronting,SLASH contains
type restrictions on the head value of the fronted el-
ement, together with restrictions on the saturation of
valence lists, if applicable.3 For subject and comple-
ment extraction SLASH contains the same infor-
mation as SLASH. In sum, partial restriction tries
to maximise restrictiveness in those case, where no
reference to the extraction context is encoded in
SLASH, while at the same time it minimises encod-
ing of derivation history in the other cases, by re-
placing token identity with somewhat weaker type
constraints.

The results of this second experiment are sum-
marised in table 2. Again, we have used optimal set-
tings for DSL and ANC, as established by indepen-
dent experiments.

Parallel to our observations regarding the restric-
tion of DSL, we observe that performance is worst
for packed pasring with a completely unrestricted
SLASH feature: not only is the packing rate quite
low (0.25 packings per edge), but also the costs
for packing in terms of the number of subsumption
checks carried out is highest amongst all the experi-
ments reported on in this paper, peaking at 1355.85
subsumption tests per successful packing. The im-
pact on chart size is slightly worse than what we ob-
served with an unrestricted DSL feature. In sum, the

3E.g., modifiers must have saturated valence lists, whereas
fronted partial VP constituents may have open valencies relating
to complements in the Mittelfeld.

suboptimal packing together with the excessive sub-
sumption costs account for the fact that this setting
performs more than 8 times as badly as the baseline.

Although packed parsing with fully restricted
SLASH performs much better than having SLASH
entirely unrestricted, it still falls short of the base-
line by a factor of 1.36. This is due to several rea-
sons: first, although the packing rate is good (0.59),
the chart is the biggest observed with packed pars-
ing in all the experiments carried out, being more
than 2 times as big as the parse chart with optimal
restrictor settings. This is mainly due to the fact that
the grammar is far to unconstrained during forest
creation, allowing too many inconsistent analyses to
enter the chart. This is also corroborated by the fact
that this is the only test run where we experienced a
noticeable increase in unpacking time. Another ob-
servation, for which we cannot offer any explanation
at present, pertains to the increased cost associated
with retroactive packing: the amount of frezing that
has to be done for edges masked by retroactive pack-
ing is far higher than any other value found in these
experiments.

In a separate test run, we used simultaneous full
restriction for DSL and SLASH, in order to verify
whether our assumtion that the choice of one re-
strictor is independent from the others. By and large,
our hypothesis was confirmed: having both DSL and
SLASH fully restricted performed more than 2.5
times worse than full restrcition of SLASH whith
partial restriction of DSL.

Still in parallel to our findings regarding DSL,
partial restriction of SLASH performs best, con-
firming that the compromise between restrictiveness
and eleimination of derivation history is effective
to achieve a runtime behaviour that clearly outper-
forms the baseline. The packing rate achieved with
partial restriction of semantics, DSL and SLASH
(0.36) is actually very close to the packing rates re-
ported in (Oepen and Carroll, 2000) for the ERG,
which figures around 0.33 for input longer than 10
words. Also, the compactness of the chart with in-
put of increasing length (cf. figure 3.2), and the low
number (2) of performance outliers (cf. figure 3.2)
suggest that we are indeed close to optimal feature
restriction.

Decisions on which features to preserve within
SLASH under partial restriction were mainly de-

149



Edges Time (s) Unpack (s) Subsumption≡ = < ⊥ Factor (time) Subs. cost Pack rate
Unfill 6424 0.56 0 0 0 0 0 0 1 N/A 0

Partial SLASH 1494 0.28 0.01 36404.15 307.28 193.33 36.67 335.840.5 67.76 0.36
Full SLASH 2187 4.72 0.01 728385.4 314.66 149.21 73.35 826.1 8.43 1355.85 0.25
No SLASH 3435 0.76 0.16 97965.05 883.79 994.87 145.44 2583.51 1.36 48.4 0.59

Table 2: Performance of packed parsing with different restriction of SLASH

rived in a test-debug cycle. We therefore plan to
investigate different configurations of partially re-
stricted SLASH in future work.

Restricting ANC The last experiment we carried
out relates to the ANC (=ANCHOR) feature used
to percolate semantic attachment anchors for rela-
tive clause extraposition in the style of (Kiss, 2005;
Crysmann, 2005). Using ANC, index and handle of
each and every NP are collected and passed up the
tree, to be bound by an extraposed relative clause
attached to the same subclause.

Again, we tested three different settings: full re-
striction of all 3 anchor feature (SELF, ACTIVE, IN-
ERT), no restriction, and partial retsriction, where
the elements on the lists were restricted to *top*,
thereby recording only the number of percolated an-
chors, but not their nature in terms of index fea-
tures. ANC features encode derivation history in two
ways: first, structurally higher anchors (NPs) are
represented at the front of the list, whereas more
deeply embedded anchors are found further down
the list. Second, to control for spurious attachments,
only anchors inherited from a left daughter are ac-
cessible for binding (ACTIVE), the others remain on
the INERT list. Both the order of indices on the lists,
list length and the distribution of anchors over AC-
TIVE and INERT lists partially encode constituent-
internal structure.

Results of this experiment are summarised in ta-
ble 3.

Similar to our two previous experiments, en-
tirely unrestricted ANC behaves worst, but nowhere
nearly as bad as having SLASH or DSL unrestricted.
In fact, relative packing rates achieved by all three
restrictor settings are by and large the same in
this experiment. The main difference between un-
restricted ANC concerns the overall compactness of
the forest and the number of subsumption test per-
formed.

Partial restriction already performs better than un-
restricted ANC: since partially restricted ANC does

not record the nature of the anchors, at least one way
in which derivation history is recorded is effectively
masked.

Contrary to our previous experiments, however,
partial restriction does not outperform full restric-
tion. Although this finding comes somewhat at a
surprise, there is nevertheless a straightforward ex-
planation for the difference in behaviour: while full
restriction necessarily improves chart compactness,
the adverse effects of full restriction do not come
to bear as often as in the case of fully restricted
SLASH or DSL, since attachment of extraposed rel-
ative clauses presupposes the existence of an al-
ready constructed chart edge for the relative clause.
In contrast to extraction and head movement, which
can be found in practically every sentence-size test
item, distribution of relative clauses is comparatively
low. Furthermore, constituents serving as fillers for
SLASH or DSL dependencies can actually be quite
small in size and different in shape, which increases
the potential for overgeneration with fully restricted
movement features. Relative clauses, on the other
hand, are always clause-sized, and their properties
depend on the information percolated in ANC only
to a very little degree (namely number and gender
agreement of the relative pronoun).

4 Conclusion

In this paper, we have explored the effects in the
choice of restrictor for HPSG parsing of German
with local ambiguity packing. Based on initial ob-
servation that a semantics-only restrictor gives sub-
optimal runtime performance in packed parsing, we
found that three features representing discontinuities
were mainly responsible for inefficiency with lo-
cal ambiguity packing, namely SLASH for extrac-
tion, DSL for head movement, and ANC for relative
clause extraposition, all of which may encode part
of the derivation history.

We have shown that partial restriction of SLASH
and DSL features, together with full restriction
of ANC yields satisfactory parsing performance

150



Edges Time (s) Unpack (s) Subsumption≡ = < ⊥ Factor (time) Subs. cost Pack rate
Unfill 6424 0.56 0 0 0 0 0 0 1 N/A 0

Partial ANC 1586 0.37 0.01 55392.34 319.35 232.28 51.34 608.51 0.66 91.87 0.38
Full ANC 1704 0.58 0.01 104699.81 346.35 257.92 64.66 758.27 1.04 156.52 0.39
No ANC 1494 0.28 0.01 36404.15 307.28 193.33 36.67 335.840.5 67.76 0.36

Table 3: Performance of packed parsing with different restriction of ANC

with ambiguity packing, outperforming the a non-
packing baseline parser with feature structure unfill-
ing by a factor of 2. Even more importantly, combi-
natorial explosion at increasing input length is effec-
tively tamed, such that performance gains improve
with longer input sentences.

Acknowledgement

The research reported on in this paper has been car-
ried out as part of the DFKI project Checkpoint,
funded by the Federal State of Berlin and the EFRE
programme of the European Union. I am also grate-
fully indepted to Bernd Kiefer for his support of the
runtime parser and his expert advice. Many thanks
also to Ulrich Callmeier, Dan Flickinger, Stefan
Müller, Geert-Jan van Noord, and Stephan Oepen,
for their comments and suggestions.

References

Ulrich Callmeier. 2000. PET — a platform for experi-
mentation with efficient HPSG processing techniques.
Journal of Natural Language Engineering, 6(1):99–
108.

Ann Copestake and Dan Flickinger. 2000. An open-
source grammar development environment and broad-
coverage English grammar using HPSG. InProceed-
ings of the Second conference on Language Resources
and Evaluation (LREC-2000), Athens.

Berthold Crysmann. 2003. On the efficient implemen-
tation of German verb placement in HPSG. InPro-
ceedings of RANLP 2003, pages 112–116, Borovets,
Bulgaria.

Berthold Crysmann. 2005. Relative clause extraposition
in German: An efficient and portable implementation.
Research on Language and Computation, 3(1):61–82.

J. Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102.

E. Hinrichs and T. Nakazawa. 1990. Subcategorization
and VP structure in German. In Hughes, Shaun, and
Salmons, editors,Proceedings of the Third Symposium
on Germanic Linguistics, Amsterdam. Benjamins.

Tibor Kiss and Birgit Wesche. 1991. Verb order
and head movement. In Otthein Herzog and Claus-
Rolf Rollinger, editors,Text Understanding in LILOG,
number 546 in Lecture Notes in Artificial Intelligence,
pages 216–240. Springer-Verlag, Berlin.

Tibor Kiss. 2005. Semantic constraints on relative clause
extraposition.Natural Language and Linguistic The-
ory, 23:281–334.

John T. Maxwell and Ronald M. Kaplan. 1995. A
method for disjunctive constraint satisfaction. In Mary
Dalrymple, Ronald M. Kaplan, John T. Maxwell, III,
and Annie Zaenen, editors,Formal Issues in Lexical-
Functional Grammar, pages 381–401, Stanford Uni-
versity. CSLI.

R. C Moore and H. Alshawi. 1992. Syntactic and seman-
tic processing. In H. Alshawi, editor,The Core Lan-
guage Engine, pages 129–148. The MIT Press, Cam-
bridge, MA.

Stefan M̈uller and Walter Kasper. 2000. HPSG analy-
sis of German. In Wolfgang Wahlster, editor,Verb-
mobil: Foundations of Speech-to-Speech Translation,
pages 238–253. Springer, Berlin.

Stefan M̈uller. 1999. Deutsche Syntax — deklarativ.
Linguistische Arbeiten. Niemeyer, Tübingen.

John Nerbonne. 1994. Partial verb phrases and spu-
rious ambiguities. In John Nerbonne, Klaus Netter,
and Carl Pollard, editors,German in Head-Driven
Phrase Structure Grammar, number 46 in Lecture
Notes, pages 109–150. CSLI Publications, Stanford
University.

Stephan Oepen and John Carroll. 2000. Ambiguity pack-
ing in constraint-based parsing - practical results. In
Proceedings of the 1st Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics, pages 162–169, Seattle, WA.

Stephan Oepen and Dan Flickinger. 1998. Towards sys-
tematic grammar profiling. test suite technology ten
years after. Journal of Computer Speech and Lan-
guage, 12:411–436.

Stuart Shieber. 1985. Using restriction to extend pars-
ing algorithms for complex feature-based formalisms.
In Proceedings of 23rd meeting of the Association of
Computational Linguistics, pages 145–152, Chicago,
IL.

151



Proceedings of the 5th Workshop on Important Unresolved Matters, pages 152–159,
Ann Arbor, June 2005. c©2005 Association for Computational Linguistics

The Corpus and the Lexicon: Standardising Deep Lexical Acquisition
Evaluation

Yi Zhang† and Timothy Baldwin‡ and Valia Kordoni†

† Dept of Computational Linguistics, Saarland University and DFKI GmbH, Germany
‡ Dept of Computer Science and Software Engineering, University of Melbourne, Australia

{yzhang,kordoni}@coli.uni-sb.de
tim@csse.unimelb.edu.au

Abstract

This paper is concerned with the standard-
isation of evaluation metrics for lexical ac-
quisition over precision grammars, which
are attuned to actual parser performance.
Specifically, we investigate the impact that
lexicons at varying levels of lexical item
precision and recall have on the perfor-
mance of pre-existing broad-coverage pre-
cision grammars in parsing, i.e., on their
coverage and accuracy. The grammars used
for the experiments reported here are the
LinGO English Resource Grammar (ERG;
Flickinger (2000)) and JACY (Siegel and
Bender, 2002), precision grammars of En-
glish and Japanese, respectively. Our re-
sults show convincingly that traditional F-
score-based evaluation of lexical acquisition
does not correlate with actual parsing per-
formance. What we argue for, therefore, is a
recall-heavy interpretation of F-score in de-
signing and optimising automated lexical ac-
quisition algorithms.

1 Introduction

Deep processing is the process of applying rich lin-
guistic resources within NLP tasks, to arrive at a
detailed (=deep) syntactic and semantic analysis of
the data. It is conventionally driven by deep gram-
mars, which encode linguistically-motivated predic-
tions of language behaviour, are usually capable of
both parsing and generation, and generate a high-
level semantic abstraction of the input data. While
enjoying a resurgence of interest due to advances
in parsing algorithms and stochastic parse prun-
ing/ranking, deep grammars remain an underutilised
resource predominantly because of their lack of cov-
erage/robustness in parsing tasks. As noted in previ-
ous work (Baldwin et al., 2004), a significant cause

of diminished coverage is the lack of lexical cover-
age.

Various attempts have been made to ameliorate
the deficiencies of hand-crafted lexicons. More
recently, there has been an explosion of interest
in deep lexical acquisition (DLA; (Baldwin, 2005;
Zhang and Kordoni, 2006; van de Cruys, 2006))
for broad-coverage deep grammars, either by ex-
ploiting the linguistic information encoded in the
grammar itself (in vivo), or by using secondary lan-
guage resources (in vitro). Such approaches provide
(semi-)automatic ways of extending the lexicon with
minimal (or no) human interference.

One stumbling block in DLA research has been
the lack of standardisation in evaluation, with
commonly-used evaluation metrics including:

• Type precision: the proportion of correctly hy-
pothesised lexical entries

• Type recall: the proportion of gold-standard
lexical entries that are correctly hypothesised

• Type F-measure: the harmonic mean of the
type precision and type recall

• Token Accuracy: the accuracy of the lexical en-
tries evaluated against their token occurrences
in gold-standard corpus data

It is often the case that the different measures lead
to significantly different assessments of the quality
of DLA, even for a given DLA approach. Addi-
tionally, it is far from clear how the numbers gen-
erated by these evaluation metrics correlate with ac-
tual parsing performance when the output of a given
DLA method is used. This makes standardised com-
parison among the various different approaches to
DLA very difficult, if not impossible. It is far from
clear which evaluation metrics are more indicative of
the true “goodness” of the lexicon. The aim of this
research, therefore, is to analyse how the different
evaluation metrics correlate with actual parsing per-
formance using a given lexicon, and to work towards

152



a standardised evaluation framework for future DLA
research to ground itself in.

In this paper, we explore the utility of different
evaluation metrics at predicting parse performance
through a series of experiments over two broad cov-
erage grammars: the English Resource Grammar
(ERG; Flickinger (2000)) and JACY (Siegel and
Bender, 2002). We simulate the results of DLA
by generating lexicons at different levels of preci-
sion and recall, and test the impact of such lexicons
on grammar coverage and accuracy related to gold-
standard treebank data. The final outcome of this
analysis is a proposed evaluation framework for fu-
ture DLA research.

The remainder of the paper is organised as fol-
lows: Section 2 reviews previous work on DLA for
the robust parsing task; Section 3 describes the ex-
perimental setup; Section 4 presents the experiment
results; Section 5 analyses the experiment results;
Section 6 concludes the paper.

2 Lexical Acquisition in Deep Parsing

Hand-crafted large-scale grammars are error-prone.
An error can be roughly classified asundergenerat-
ing (if it prevents a grammatical sentence from be-
ing generated/parsed) orovergenerating(if it allows
an ungrammatical sentence to be generated/parsed).
Hence, errors in deep grammar lexicons can be clas-
sified into two categories: i) a lexical entry is miss-
ing for a specific lexeme; and ii) an erroneous lexical
entry enters the lexicon. The former error type will
cause the grammar to fail to parse/generate certain
sentences (i.e. undergenerate), leading to a loss in
coverage. The latter error type will allow the gram-
mar to parse/generate inappropriate sentences (i.e.
overgenerate), potentially leading to a loss in ac-
curacy. In the first instance, we will be unable to
parse sentences involving a given lexical item if it is
missing from our lexicon, i.e. coverage will be af-
fected assuming the lexical item of interest occurs
in a given corpus. In the second instance, the im-
pact is indeterminate, as certain lexical items may
violate constraints in the grammar and never be li-
cenced, whereas others may be licenced more lib-
erally, generating competing (incorrect) parses for a
given input and reducing parse accuracy. It is these
two competing concerns that we seek to quantify in
this research.

Traditionally, errors in the grammar are detected
manually by the grammar developers. This is usu-

ally done by running the grammar over a carefully
designed test suite and inspecting the outputs. This
procedure becomes less reliable as the grammar gets
larger. Also we can never expect to attain complete
lexical coverage, due to language evolution and the
effects of domain/genre. A static, manually com-
piled lexicon, therefore, becomes inevitably insuffi-
cient when faced with open domain text.

In recent years, some approaches have been de-
veloped to (semi-)automatically detect and/or repair
the lexical errors in linguistic grammars. Such ap-
proaches can be broadly categorised as either sym-
bolic or statistical.

Erbach (1990), Barg and Walther (1998) and
Fouvry (2003) followed a unification-based sym-
bolic approach to unknown word processing for
constraint-based grammars. The basic idea is to
use underspecified lexical entries, namely entries
with fewer constraints, to parse whole sentences,
and generate the “real” lexical entries afterwards by
collecting information from the full parses. How-
ever, lexical entries generated in this way may be ei-
ther too general or too specific. Underspecified lex-
ical entries with fewer constraints allow more gram-
mar rules to be applied while parsing, and fully-
underspecified lexical entries are computationally
intractable. The whole procedure gets even more
complicated when two unknown words occur next
to each other, potentially allowing almost any con-
stituent to be constructed. The evaluation of these
proposals has tended to be small-scale and some-
what brittle. No concrete results have been pre-
sented relating to the improvement in grammar per-
formance, either for parsing or for generation.

Baldwin (2005) took a statistical approach to au-
tomated lexical acquisition for deep grammars. Fo-
cused on generalising the method of deriving DLA
models on various secondary language resources,
Baldwin used a large set of binary classifiers to pre-
dict whether a given unknown word is of a particular
lexical type. This data-driven approach is grammar
independent and can be scaled up for large gram-
mars. Evaluation was via type precision, type recall,
type F-measure and token accuracy, resulting in dif-
ferent interpretations of the data depending on the
evaluation metric used.

Zhang and Kordoni (2006) tackled the robustness
problem of deep processing from two aspects. They
employed error mining techniques in order to semi-
automatically detect errors in deep grammars. They
then proposed a maximum entropy model based lex-

153



ical type predictor, to generate new lexical entries
on the fly. Evaluation focused on the accuracy of
the lexical type predictor over unknown words, not
the overall goodness of the resulting lexicon. Simi-
larly to Baldwin (2005), the methods are applicable
to other constraint-based lexicalist grammars, but no
direct measurement of the impact on grammar per-
formance was attempted.

van de Cruys (2006) took a similar approach over
the Dutch Alpino grammar (cf. Bouma et al. (2001)).
Specifically, he proposed a method for lexical ac-
quisition as an extension to automatic parser error
detection, based on large amounts of raw text (cf.
van Noord (2004)). The method was evaluated us-
ing type precision, type recall and type F-measure.
Once again, however, these numbers fail to give us
any insight into the impact of lexical acquisition on
parser performance.

Ideally, we hope the result of DLA to be both ac-
curate and complete. However, in reality, there will
always be a trade-off between coverage and parser
accuracy. Exactly how these two concerns should be
balanced up depends largely on what task the gram-
mar is applied to (i.e. parsing or generation). In this
paper, we focus exclusively on the parsing task.1

3 Experimental Setup

In this research, we wish to evaluate the impact
of different lexicons on grammar performance. By
grammar performance, we principally mean cov-
erage and accuracy. However, it should be noted
that the efficiency of the grammar—e.g. the aver-
age number of edges in the parse chart, the average
time to parse a sentence and/or the average number
of analyses per sentence—is also an important per-
formance measurement which we expect the quality
of the lexicon to impinge on. Here, however, we
expect to be able to call on external processing opti-
misations2 to dampen any loss in efficiency, in a way
which we cannot with coverage and accuracy.

3.1 Resources

In order to get as representative a set of results as
possible, we choose to run the experiment over two

1In generation, we tend to have a semantic representation
as input, which is linked to pre-existing lexical entries. Hence,
lexical acquisition has no direct impact on generation.

2For example, (van Noord, 2006) shows that a HMM POS
tagger trained on the parser outputs can greatly reduce the lexi-
cal ambiguity and enhance the parser efficiency, without an ob-
servable decrease in parsing accuracy.

large-scale HPSGs (Pollard and Sag, 1994), based
on two distinct languages.

The LinGO English Resource Grammar(ERG;
Flickinger (2000)) is a broad-coverage, linguis-
tically precise HPSG-based grammar of English,
which represents the culmination of more than 10
person years of (largely) manual effort. We use the
jan-06version of the grammar, which contains about
23K lexical entries and more than 800 leaf lexical
types.

JACY (Siegel and Bender, 2002) is a broad-
coverage linguistically precise HPSG-based gram-
mar of Japanese. In our experiment, we use the
November 2005 version of the grammar, which con-
tains about 48K lexical entries and more than 300
leaf lexical types.

It should be noted in HPSGs, the grammar is
made up of two basic components: the grammar
rules/type hierarchy, and the lexicon (which inter-
faces with the type hierarchy via leaf lexical types).
This is different to strictly lexicalised formalisms
like LTAG and CCG, where essentially all linguistic
description resides in individual lexical entries in the
lexicon. The manually compiled grammars in our
experiment are also intrinsically different to gram-
mars automatically induced from treebanks (e.g. that
used in the Charniak parser (Charniak, 2000) or the
various CCG parsers (Hockenmaier, 2006)). These
differences sharply differentiate our work from pre-
vious research on the interaction between lexical ac-
quisition and parse performance.

Furthermore, to test the grammar precision and
accuracy, we use two treebanks: Redwoods (Oepen
et al., 2002) for English and Hinoki (Bond et al.,
2004) for Japanese. These treebanks are so-called
dynamic treebanks, meaning that they can be (semi-
)automatically updated when the grammar is up-
dated. This feature is especially useful when we
want to evaluate the grammar performance with dif-
ferent lexicon configurations. With conventional
treebanks, our experiment is difficult (if not impos-
sible) to perform as the static trees in the treebank
cannot be easily synchronised to the evolution of the
grammar, meaning that we cannot regenerate gold-
standard parse trees relative to a given lexicon (es-
pecially when for reduced recall where there is no
guarantee we will be able to produce all of the parses
in the 100% recall gold-standard). As a result, it is
extremely difficult to faithfully update the statistical
models.

The Redwoods treebank we use is the6th growth,

154



which is synchronised with thejan-06version of the
ERG. It contains about 41K test items in total.

The Hinoki treebank we use is updated for the
November 2005 version of the JACY grammar. The
“Rei” sections we use in our experiment contains
45K test items in total.

3.2 Lexicon Generation

To simulate the DLA results at various levels of pre-
cision and recall, a random lexicon generator is used.
In order to generate a new lexicon with specific pre-
cision and recall, the generator randomly retains a
portion of the gold-standard lexicon, and generates a
pre-determined number of erroneous lexical entries.

More specifically, for each grammar we first ex-
tract a subset of the lexical entries from the lexicon,
each of which has at least one occurrence in the tree-
bank. This subset of lexical entries is considered to
be the gold-standard lexicon (7,156 entries for the
ERG, 27,308 entries for JACY).

Given the gold-standard lexiconL, the target pre-
cision P and recallR, a new lexiconL′ is created,
which is composed of two disjoint subsets: the re-
tained part of the gold-standard lexiconG, and the
erroneous entriesE. According to the definitions of
precision and recall:

P =
|G|

|L′|
(1) R =

|G|

|L|
(2)

and the fact that:

|L′| = |G| + |E| (3)

we get:

|G| = |L| · R (4)

|E| = |L| · R · (
1

P
− 1) (5)

To retain a specific number of entries from the
gold-standard lexicon, we randomly select|G| en-
tries based on the combined probabilistic distribu-
tion of the corresponding lexeme and lexical types.3

We obtain the probabilistic distribution of lexemes
from large corpora (BNC for English and Mainichi
Shimbun [1991-2000] for Japanese), and the distri-
bution of lexical types from the corresponding tree-
banks. For each lexical entrye(l, t) in the gold-
standard lexicon with lexemel and lexical typet,

3For simplicity, we assume mutual independence of the lex-
emes and lexical types.

the combined probability is:

p(e(l, t)) =
CL(l) · CT (t)

∑
e′(l′,t′)∈L CL(l′) · CT (t′)

(6)

The erroneous entries are generated in the same
way among all possible combinations of lexemes
and lexical types. The difference is that only open
category types and less frequent lexemes are used
for generating new entries (e.g. we wouldn’t expect
to learn a new lexical item for the lexemetheor the
lexical typed - the le in English). In our ex-
periment, we consider lexical types with more than
a predefined number of lexical entries (20 for the
ERG, 50 for JACY) in the gold-standard lexicon to
be open-class lexical types; the upper-bound thresh-
old on token frequency is set to 1000 for English and
537 for Japanese, i.e. lexemes which occur more fre-
quently than this are excluded from lexical acquisi-
tion under the assumption that the grammar develop-
ers will have attained full coverage of lexical items
for them.

For each grammar, we then generate 9 differ-
ent lexicons at varying precision and recall levels,
namely 60%, 80%, and 100%.

3.3 Parser Coverage

Coverage is an important grammar performance
measurement, and indicates the proportion of inputs
for which a correct parse was obtained (adjudged
relative to the gold-standard parse data in the tree-
banks). In our experiment, we adopt a weak defini-
tion of coverage as “obtaining at least one spanning
tree”. The reason for this is that we want to obtain
an estimate for novel data (for which we do not have
gold-standard parse data) of the relative number of
strings for which we can expect to be able to produce
at least one spanning parse. This weak definition of
coverage actually provides an upper bound estimate
of coverage in the strict sense, and saves the effort to
manually evaluate the correctness of the parses. Past
evaluations (e.g. Baldwin et al. (2004)) have shown
that the grammars we are dealing with are relatively
precise. Based on this, we claim that our results for
parse coverage provide a reasonable estimate indica-
tion of parse coverage in the strict sense of the word.

In principle, coverage will only decrease when
the lexicon recall goes down, as adding erroneous
entries should not invalidate the existing analy-
ses. However, in practice, the introduction of er-
roneous entries increases lexical ambiguity dramati-

155



0.6 0.8 1.0P\ R
C E A C E A C E A

0.6 4294 2862 7156 5725 3817 9542 7156 4771 11927
0.8 4294 1073 5367 5725 1431 7156 7156 1789 8945
1.0 4294 0 4294 5725 0 5725 7156 0 7156

Table 1: Different lexicon configurations for the ERG with the number of correct (C), erroneous (E) and
combined (A) entries at each level of precision (P) and recall (R)

0.6 0.8 1.0P\ R
C E A C E A C E A

0.6 16385 10923 27308 21846 14564 36410 27308 18205 45513
0.8 16385 4096 20481 21846 5462 27308 27308 6827 34135
1.0 16385 0 16385 21846 0 21846 27308 0 27308

Table 2: Different lexicon configurations for JACY with the number of correct (C), erroneous (E) and
combined (A) entries at each level of precision (P) and recall (R)

cally, readily causing the parser to run out of mem-
ory. Moreover, some grammars use recursive unary
rules which are triggered by specific lexical types.
Here again, erroneous lexical entries can lead to “fail
to parse” errors.

Given this, we run the coverage tests for the two
grammars over the corresponding treebanks: Red-
woods and Hinoki. The maximum number of pas-
sive edges is set to 10K for the parser. We used
[incr tsdb()] (Oepen, 2001) to handle the dif-
ferent lexicon configurations and data sets, andPET
(Callmeier, 2000) for parsing.

3.4 Parser Accuracy

Another important measurement of grammar perfor-
mance is accuracy. Deep grammars often generate
hundreds of analyses for an input, suggesting the
need for some means of selecting the most probable
analysis from among them. This is done with the
parse disambiguation model proposed in Toutanova
et al. (2002), with accuracy indicating the proportion
of inputs for which we are able to accurately select
the correct parse.

The disambiguation model is essentially a maxi-
mum entropy (ME) based ranking model. Given an
input sentences with possible analysest1 . . . tk, the
conditional probability for analysisti is given by:

P (ti|s) =
exp

∑m
j=1 fj(ti)λj

∑k
i′=1 exp

∑m
j=1 fj(ti′)λj

(7)

where f1 . . . fm are the features andλ1 . . . λm

are the corresponding parameters. When ranking
parses,

∑m
j=1 fj(ti)λj is the indicator of “good-

ness”. Drawing on the discriminative nature of the

ME models, various feature types can be incor-
porated into the model. In combination with the
dynamic treebanks where the analyses are (semi-
)automatically disambiguated, the models can be
easily re-trained when the grammar is modified.

For each lexicon configuration, after the cover-
age test, we do an automatic treebank update. Dur-
ing the automatic treebank update, only those new
parse trees which are comparable to the active trees
in the gold-standard treebank are marked as cor-
rect readings. All other trees are marked as in-
active and deemed as overgeneration of the gram-
mar. The ME-based parse disambiguation models
are trained/evaluated using these updated treebanks
with 5-fold cross validation. Since we are only in-
terested in the difference between different lexicon
configurations, we use the simplePCFG-Smodel
from (Toutanova et al., 2002), which incorporates
PCFG-style features from the derivation tree of the
parse. The accuracy of the disambiguation model
is calculated by top analysis exact matching (i.e. a
ranking is only considered correct if the top ranked
analysis matches the gold standard prefered reading
in the treebank).

All the Hinoki Rei noun sections (about 25K
items) were used in the accuracy evaluation for
JACY. However, due to technical limitations, only
the jh sections (about 6K items) of the Redwoods
Treebank were used for training/testing the disam-
biguation models for the ERG.

4 Experiment Results

The experiment consumes a considerable amount of
computational resources. For each lexicon config-

156



P\ R 0.6 0.8 1.0
0.6 44.56% 66.88% 75.51%
0.8 42.18% 65.82% 75.86%
1.0 40.45% 66.19% 76.15%

Table 3: Parser coverage of JACY with different lex-
icons

P\ R 0.6 0.8 1.0
0.6 27.86% 39.17% 79.66%
0.8 27.06% 37.42% 79.57%
1.0 26.34% 37.18% 79.33%

Table 4: Parser coverage of the ERG with different
lexicons

uration of a given grammar, we need to i) process
(parse) all the items in the treebank, ii) compare the
resulting trees with the gold-standard trees and up-
date the treebank, and iii) retrain the disambiguation
models over 5 folds of cross validation. Given the
two grammars with 9 configurations each, the en-
tire experiment takes over 1 CPU month and about
120GB of disk space.

The coverage results are shown in Table 3 and
Table 4 for JACY and the ERG, respectively.4 As
expected, we see a significant increase in grammar
coverage when the lexicon recall goes up. This in-
crease is more significant for the ERG than JACY,
mainly because the JACY lexicon is about twice as
large as the ERG lexicon; thus, the most frequent
entries are still in the lexicons even with low recall.

When the lexicon recall is fixed, the grammar cov-
erage does not change significantly at different lev-
els of lexicon precision. Recall that we are not eval-
uating the correctness of such parses at this stage.

It is clear that the increase in lexicon recall boosts
the grammar coverage, as we would expect. The
precision of the lexicon does not have a large in-
fluence on coverage. This result confirms that with
DLA (where we hope to enhance lexical coverage
relative to a given corpus/domain), the coverage of
the grammar can be enhanced significantly.

The accuracy results are obtained with 5-fold
cross validation, as shown in Table 5 and Table 6

4Note that even with the lexicons at 100% precision and re-
call level, there is no guarantee of 100% coverage. As the con-
tents of the Redwoods and Hinoki treebanks were determined
independently of the respective grammars, rather than the gram-
mars being induced from the treebanks e.g., they both still con-
tain significant numbers of strings for which the grammar can-
not produce a correct analysis.

P-R #ptree Avg. σ

060-060 13269 62.65% 0.89%
060-080 19800 60.57% 0.83%
060-100 22361 59.61% 0.63%
080-060 14701 63.27% 0.62%
080-080 23184 60.97% 0.48%
080-100 27111 60.04% 0.56%
100-060 15696 63.91% 0.64%
100-080 26859 61.47% 0.68%
100-100 31870 60.48% 0.71%

Table 5: Accuracy of disambiguation models for
JACY with different lexicons

P-R #ptree Avg. σ

060-060 737 71.11% 3.55%
060-080 1093 63.94% 2.75%
060-100 3416 60.92% 1.23%
080-060 742 70.07% 1.50%
080-080 1282 61.81% 3.60%
080-100 3842 59.05% 1.30%
100-060 778 69.76% 4.62%
100-080 1440 60.59% 2.64%
100-100 4689 57.03% 1.36%

Table 6: Accuracy of disambiguation models for the
ERG with different lexicons

for JACY and the ERG, respectively. When the lex-
icon recall goes up, we observe a small but steady
decrease in the accuracy of the disambiguation mod-
els, for both JACY and ERG. This is generally a side
effect of change in coverage: as the grammar cover-
age goes up, the parse trees become more diverse,
and are hence harder to discriminate.

When the recall is fixed and the precision of the
lexicon goes up, we observe a very small accuracy
gain for JACY (around 0.5% for each 20% increase
in precision). This shows that the grammar accu-
racy gain is limited as the precision of the lexicon
increases, i.e. that the disambiguation model is re-
markably robust to the effects of noise.

It should be noted that for the ERG we failed to
observe any accuracy gain at all with a more pre-
cise lexicon. This is partly due to the limited size
of the updated treebanks. For the lexicon config-
uration060 − 060, we obtained only 737 preferred
readings/trees to train/test the disambiguation model
over. The 5-fold cross validation results vary within
a margin of 10%, which means that the models are
still not converging. However, the result does con-
firm that there is no significant gain in grammar ac-
curacy with a higher precision lexicon.

Finally, we combine the coverage and accuracy
scores into a single F-measure (β = 1) value. The
results are shown in Figure 1. Again we see that

157



the difference in lexicon recall has a more signif-
icant impact on the overall grammar performance
than precision.

0.4

0.5

0.6

0.7

F
-s

co
re

 (
Ja

C
Y

)

R=0.6
R=0.8
R=1.0

P=0.6
P=0.8
P=1.0

0.4

0.5

0.6

0.7

0.6 0.8 1.0

F
-s

co
re

 (
E

R
G

)

Lex. Precision

R=0.6
R=0.8
R=1.0

0.6 0.8 1.0

Lex. Recall

P=0.6
P=0.8
P=1.0

Figure 1: Grammar performance (F-score) with dif-
ferent lexicons

5 Discussion

5.1 Is F-measure a good metric for DLA
evaluation?

As mentioned in Section 2, a number of relevant ear-
lier works have evaluated DLA results via the un-
weighted F-score (relative to type precision and re-
call). This implicitly assumes that the precision and
recall of the lexicon are equally important. How-
ever, this is clearly not the case as we can see in the
results of the grammar performance. For example,
the lexicon configurations060− 100 and100− 060
of JACY (i.e. 60% precision, 100% recall vs. 100%
precision, 60% recall, respectively) have the same
unweighted F-scores, but their corresponding over-
all grammar performance (parser F-score) differs by
up to 17%.

5.2 Does precision matter?

The most interesting finding in our experiment is
that the precision of the deep lexicon does not ap-
pear to have a significant impact on grammar accu-
racy. This is contrary to the earlier predominant be-
lief that deep lexicons should be as accurate as pos-
sible. This belief is derived mainly from observa-
tion of grammars with relatively small lexicons. In
such small lexicons, the closed-class lexical entries
and frequent entries (which comprise the “core” of

the lexicon) make up a large proportion of lexical
entries. Hence, any loss in precision means a signif-
icant degradation of the “core” lexicon, which leads
to performance loss of the grammar. For example,
we find that the inclusion of one or two erroneous
entries for frequent closed-class lexical type words
(such asthe, or of in English, for instance) may eas-
ily “break” the parser.

However, in state-of-the-art broad-coverage deep
grammars such as JACY and ERG, the lexicons are
much larger. They usually have more or less similar
“cores” to the smaller lexicons, but with many more
open-class lexical entries and less frequent entries,
which compose the “peripheral” parts of the lexi-
cons. In our experiment, we found that more than
95% of the lexical entries belong to the top 5% of
the open-class lexical types. The bigger the lexicon
is, the larger the proportion of lexical entries that be-
long to the “peripheral” lexicon.

In our experiment, we only change the “periph-
eral” lexicon by creating/removing lexical entries
for less frequent lexemes and open-class lexical
types, leaving the “core” lexicon intact. Therefore, a
more accurate interpretation of the experimental re-
sults is that the precision of theopen typeand less
frequentlexical entries does not have a large impact
on the grammar performance, but their recall has a
crucial effect on grammar coverage.

The consequence of this finding is that the bal-
ance between precision and recall in the deep lexi-
con should be decided by their impact on the task to
which the grammar is applied. In research on auto-
mated DLA, the motivation is to enhance the robust-
ness/coverage of the grammars. This work shows
that grammar performance is very robust over the
inevitable errors introduced by the DLA, and that
more emphasis should be placed on recall.

Again, caution should be exercised here. We
do not mean that by blindly adding lexical entries
without worrying about their correctness, the per-
formance of the grammar will be monotonically en-
hanced – there will almost certainly be a point at
which noise in the lexicon swamps the parse chart
and/or leads to unacceptable levels of spurious am-
biguity. Also, the balance between precision and re-
call of the lexicon will depend on various expecta-
tions of the grammarians/lexicographers, i.e. the lin-
guistic precision and generality, which is beyond the
scope of this paper.

As a final word of warning, the absolute gram-
mar performance change that a given level of lexi-

158



con type precision and recall brings about will obvi-
ously depend on the grammar. In looking across two
grammars from two very different languages, we are
confident of the robustness of our results (at least for
grammars of the same ilk) and the conclusions that
we have drawn from them. For any novel grammar
and/or formalism, however, the performance change
should ideally be quantified through a set of exper-
iments with different lexicon configurations, based
on the procedure outlined here. Based on this, it
should be possible to find the optimal balance be-
tween the different lexicon evaluation metrics.

6 Conclusion

In this paper, we have investigated the relationship
between evaluation metrics for deep lexical acquisi-
tion and grammar performance in parsing tasks. The
results show that traditional DLA evaluation based
on F-measure is not reflective of grammar perfor-
mance. The precision of the lexicon appears to have
minimal impact on grammar accuracy, and therefore
recall should be emphasised more greatly in the de-
sign of deep lexical acquisition techniques.

References
Timothy Baldwin, Emily Bender, Dan Flickinger, Ara Kim, and

Stephan Oepen. 2004. Road-testing the English Resource
Grammar over the British National Corpus. InProc. of the
fourth international conference on language resources and
evaluation (LREC 2004), pages 2047–2050, Lisbon, Portu-
gal.

Timothy Baldwin. 2005. Bootstrapping deep lexical resources:
Resources for courses. InProc. of the ACL-SIGLEX 2005
workshop on deep lexical acquisition, pages 67–76, Ann Ar-
bor, USA.

Petra Barg and Markus Walther. 1998. Processing unknown
words in HPSG. InProc. of the 36th Conference of the
ACL and the 17th International Conference on Computa-
tional Linguistics, pages 91–95, Montreal, Canada.

Francis Bond, Sanae Fujita, Chikara Hashimoto, Kaname
Kasahara, Shigeko Nariyama, Eric Nichols, Akira Ohtani,
Takaaki Tanaka, and Shigeaki Amano. 2004. The Hinoki
treebank: a treebank for text understanding. InProc. of the
first international joint conference on natural language pro-
cessing (IJCNLP04), pages 554–562, Hainan, China.

Gosse Bouma, Gertjan van Noord, and Robert Malouf. 2001.
Alpino: wide-coverage computational analysis of Dutch. In
Computational linguistics in the Netherlands 2000, pages
45–59, Tilburg, the Netherlands.

Ulrich Callmeier. 2000. PET – a platform for experimentation
with efficient HPSG processing techniques.Natural Lan-
guage Engineering, 6(1):99–107.

Eugene Charniak. 2000. A maximum entropy-based parser.
In Proc. of the 1st Annual Meeting of the North Ameri-
can Chapter of Association for Computational Linguistics
(NAACL2000), Seattle, USA.

Gregor Erbach. 1990. Syntactic processing of unknown words.
IWBS Report 131, IBM, Stuttgart, Germany.

Dan Flickinger. 2000. On building a more efficient grammar by
exploiting types. Natural Language Engineering, 6(1):15–
28.

Frederik Fouvry. 2003. Lexicon acquisition with a large-
coverage unification-based grammar. InProc. of the 10th
Conference of the European Chapter of the Association for
Computational Linguistics (EACL 2003), pages 87–90, Bu-
dapest, Hungary.

Julia Hockenmaier. 2006. Creating a CCGbank and a wide-
coverage CCG lexicon for German. InProc. of the 21st
International Conference on Computational Linguistics and
44th Annual Meeting of the Association for Computational
Linguistics, pages 505–512, Sydney, Australia.

Stephan Oepen, Kristina Toutanova, Stuart Shieber, Christopher
Manning, Dan Flickinger, and Thorsten Brants. 2002. The
LinGO Redwoods treebank: Motivation and preliminary ap-
plications. InProc. of the 17th international conference on
computational linguistics (COLING 2002), Taipei, Taiwan.

Stephan Oepen. 2001. [incr tsdb()] — competence and perfor-
mance laboratory. User manual. Technical report, Compu-
tational Linguistics, Saarland University, Saarbrücken, Ger-
many.

Carl Pollard and Ivan Sag. 1994.Head-Driven Phrase Struc-
ture Grammar. University of Chicago Press, Chicago, USA.

Melanie Siegel and Emily Bender. 2002. Efficient deep pro-
cessing of Japanese. InProc. of the 3rd Workshop on
Asian Language Resources and International Standardiza-
tion, Taipei, Taiwan.

Kristina Toutanova, Christoper Manning, Stuart Shieber, Dan
Flickinger, and Stephan Oepen. 2002. Parse ranking for
a rich HPSG grammar. InProc. of the First Workshop on
Treebanks and Linguistic Theories (TLT2002), pages 253–
263, Sozopol, Bulgaria.

Tim van de Cruys. 2006. Automatically extending the lexicon
for parsing. InProc. of the eleventh ESSLLI student session,
pages 180–191, Malaga, Spain.

Gertjan van Noord. 2004. Error mining for wide-coverage
grammar engineering. InProc. of the 42nd Meeting of the
Association for Computational Linguistics (ACL’04), Main
Volume, pages 446–453, Barcelona, Spain.

Gertjan van Noord. 2006. At Last Parsing Is Now Operational.
In Actes de la 13e conference sur le traitement automatique
des langues naturelles (TALN06), pages 20–42, Leuven, Bel-
gium.

Fei Xia, Chung-Hye Han, Martha Palmer, and Aravind Joshi.
2001. Automatically extracting and comparing lexicalized
grammars for different languages. InProc. of the 17th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
2001), pages 1321–1330, Seattle, USA.

Yi Zhang and Valia Kordoni. 2006. Automated deep lexical
acquisition for robust open texts processing. InProc. of
the fifth international conference on language resources and
evaluation (LREC 2006), pages 275–280, Genoa, Italy.

159





Author Index

Allen, James, 49
António, Branco, 57

Baldwin, Timothy, 152
Bel, Nria, 105
Bender, Emily M., 136
Bond, Francis, 25

Cahill, Aoife, 65
Chen-Main, Joan, 1
Clark, Stephen, 9
Copestake, Ann, 73
Crysmann, Berthold, 144
Curran, James, 9
Curran, James R., 89

Drellishak, Scott, 136
Dužı́, Marie, 97
Dzikovska, Myroslava, 49
Dzikovska, Myroslava O., 112

Espeja, Sergio, 105
Evans, Chris, 136

Fitzgerald, Erin, 128
Forst, Martin, 17
Francisco, Costa, 57
Fujita, Sanae, 25

Greenwood, Mark, 81

Holloway King, Tracy, 65
Honnibal, Matthew, 89
Hopkins, Mark, 33
Horák, Aleš, 97

Joshi, Aravind, 1

Kaisser, Michael, 41
Kordoni, Valia, 128, 152
Kuhn, Jonas, 33

Manshadi, Mehdi, 49
Marimon, Montserrat, 105
Materna, Pavel, 97
Maxwell III, John T., 65
McConville, Mark, 112

Oepen, Stephan, 25

Pala, Karel, 97
Poulson, Laurie, 136

Seghezzi, Natalia, 105
Stevenson, Mark, 81
Swift, Mary, 49

Tanaka, Takaaki, 25

Webber, Bonnie, 41
Wehrli, Eric, 120

Zhang, Yi, 128, 152

161



 A C L   2 0 0 7

PRAGUE


	Program
	Multi-Component Tree Adjoining Grammars, Dependency Graph Models, and Linguistic Analyses
	Perceptron Training for a Wide-Coverage Lexicalized-Grammar Parser
	Filling Statistics with Linguistics -- Property Design for the Disambiguation of German LFG Parses
	Exploiting Semantic Information for HPSG Parse Selection
	Deep Grammars in a Tree Labeling Approach to Syntax-based Statistical Machine Translation
	Question Answering based on Semantic Roles
	Deep Linguistic Processing for Spoken Dialogue Systems
	Self- or Pre-Tuning? Deep Linguistic Processing of Language Variants
	Pruning the Search Space of a Hand-Crafted Parsing System with a Probabilistic Parser
	Semantic Composition with (Robust) Minimal Recursion Semantics
	A Task-based Comparison of Information Extraction Pattern Models
	Creating a Systemic Functional Grammar Corpus from the Penn Treebank
	Verb Valency Semantic Representation for Deep Linguistic Processing
	The Spanish Resource Grammar: Pre-processing Strategy and Lexical Acquisition
	Extracting a Verb Lexicon for Deep Parsing from FrameNet
	Fips, A ``Deep'' Linguistic Multilingual Parser
	Partial Parse Selection for Robust Deep Processing
	Validation and Regression Testing for a Cross-linguistic Grammar Resource
	Local Ambiguity Packing and Discontinuity in German
	The Corpus and the Lexicon: Standardising Deep Lexical Acquisition Evaluation

