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Abstract

In this paper we present a framework for
experimentation on parse selection using
syntactic and semantic features. Results
are given for syntactic features, depen-
dency relations and the use of semantic
classes.

1 Introduction

In this paper we investigate the use of semantic in-
formation in parse selection.

Recently, significant improvements have been
made in combining symbolic and statistical ap-
proaches to various natural language processing
tasks. In parsing, for example, symbolic grammars
are combined with stochastic models (Oepen et al.,
2004; Malouf and van Noord, 2004). Much of the
gain in statistical parsing using lexicalized models
comes from the use of a small set of function words
(Klein and Manning, 2003). Features based on gen-
eral relations provide little improvement, presum-
ably because the data is too sparse: in the Penn
treebank standardly used to train and test statisti-
cal parsersstocksand skyrocketnever appear to-
gether. However, the superordinate conceptscapi-
tal (⊃ stocks) andmove upward(⊃ sky rocket) fre-
quently appear together, which suggests that using
word senses and their hypernyms as features may be
useful

However, to date, there have been few combina-
tions of sense information together with symbolic
grammars and statistical models. We hypothesize
that one of the reasons for the lack of success is
that there has been no resource annotated with both

syntactic and semantic information. In this paper,
we use a treebank with both syntactic information
(HPSG parses) and semantic information (sense tags
from a lexicon) (Bond et al., 2007). We use this to
train parse selection models using both syntactic and
semantic features. A model trained using syntactic
features combined with semantic information out-
performs a model using purely syntactic information
by a wide margin (69.4% sentence parse accuracy
vs. 63.8% on definition sentences).

2 The Hinoki Corpus

There are now some corpora being built with the
syntactic and semantic information necessary to in-
vestigate the use of semantic information in parse
selection. In English, the OntoNotes project (Hovy
et al., 2006) is combining sense tags with the Penn
treebank. We are using Japanese data from the Hi-
noki Corpus consisting of around 95,000 dictionary
definition and example sentences (Bond et al., 2007)
annotated with both syntactic parses and senses from
the same dictionary.

2.1 Syntactic Annotation

Syntactic annotation in Hinoki isgrammar based
corpus annotationdone by selecting the best parse
(or parses) from the full analyses derived by a broad-
coverage precision grammar. The grammar is an
HPSG implementation (JACY: Siegel and Bender,
2002), which provides a high level of detail, mark-
ing not only dependency and constituent structure
but also detailed semantic relations. As the gram-
mar is based on a monostratal theory of grammar
(HPSG: Pollard and Sag, 1994), annotation by man-
ual disambiguation determines syntactic and seman-
tic structure at the same time. Using a grammar
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helps treebank consistency — all sentences anno-
tated are guaranteed to have well-formed parses.
The flip side to this is that any sentences which the
parser cannot parse remain unannotated, at least un-
less we were to fall back on full manual mark-up of
their analyses. The actual annotation process uses
the same tools as the Redwoods treebank of English
(Oepen et al., 2004).

A (simplified) example of an entry is given in Fig-
ure 1. Each entry contains the word itself, its part
of speech, and its lexical type(s) in the grammar.
Each sense then contains definition and example
sentences, links to other senses in the lexicon (such
as hypernym), and links to other resources, such
as the Goi-Taikei Japanese Lexicon (Ikehara et al.,
1997) and WordNet (Fellbaum, 1998). Each content
word of the definition and example sentences is an-
notated with sense tags from the same lexicon.

There were 4 parses for the definition sentence.
The correct parse, shown as a phrase structure tree,
is shown in Figure 2. The two sources of ambigu-
ity are the conjunction and the relative clause. The
parser also allows the conjunction to combine\�
denshaand0 hito. In Japanese, relative clauses
can have gapped and non-gapped readings. In the
gapped reading (selected here),0 hito is the subject
of þU unten“drive”. In the non-gapped reading
there is some underspecified relation between the
modifee and the verb phrase. This is similar to the
difference in the two readings ofthe day he knew
in English: “the day that he knew about” (gapped)
vs “the day on which he knew (something)” (non-
gapped). Such semantic ambiguity is resolved by
selecting the correct derivation tree that includes the
applied rules in building the tree (Fig 3).

The semantic representation is Minimal Recur-
sion Semantics (Copestake et al., 2005). We sim-
plify this into a dependency representation, further
abstracting away from quantification, as shown in
Figure 4. One of the advantages of the HPSG sign
is that it contains all this information, making it pos-
sible to extract the particular view needed. In or-
der to make linking to other resources, such as the
sense annotation, easier predicates are labeled with
pointers back to their position in the original sur-
face string. For example, the predicatedensha n 1

links to the surface characters between positions 0
and 3:\�.

UTTERANCE

NP

VP N

PP V

NP

PP

N CONJ N CASE-P V V\� ℄ �¥� k þU 2d 0
densha ya jidousha o unten suru hito
train or car ACC drive do personþU31 “chauffeur”: “a person who drives a train or car”

Figure 2: Syntactic View of the Definition ofþU31 untenshu“chauffeur”

e2:unknown<0:13>[ARG x5:_hito_n]
x7:densha_n_1<0:3>[]
x12:_jidousha_n<4:7>[]
x13:_ya_p_conj<0:4>[LIDX x7:_densha_n_1,

RIDX x12:_jidousha_n]
e23:_unten_s_2<8:10>[ARG1 x5:_hito_n]
e23:_unten_s_2<8:10>[ARG2 x13:_ya_p_conj]

Figure 4: Simplified Dependency View of the Defi-
nition ofþU31 untenshu“chauffeur”

2.2 Semantic Annotation

The lexical semantic annotation uses the sense in-
ventory from Lexeed (Kasahara et al., 2004). All
words in the fundamental vocabulary are tagged
with their sense. For example, the wordd&� ookii
“big” (of example sentence in Figure 1) is tagged as
sense 5 in the example sentence, with the meaning
“elder, older”.

The word senses are further linked to semantic
classes in a Japanese ontology. The ontology, Goi-
Taikei, consists of a hierarchy of 2,710 semantic
classes, defined for over 264,312 nouns, with a max-
imum depth of 12 (Ikehara et al., 1997). We show
the top 3 levels of the Goi-Taikei common noun on-
tology in Figure 5. The semantic classes are prin-
cipally defined for nouns (including verbal nouns),
although there is some information for verbs and ad-
jectives.

3 Parse Selection

Combining the broad-coverage JACY grammar and
the Hinoki corpus, we build a parse selection model
on top of the symbolic grammar. Given a set of can-
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DEFINITION
[\�1℄�¥�1kþU12d04 a person who drives trains and cars

]

EXAMPLE

[d&(5C<8b\�1GþU31Dod6G%Ý3�2�
I dream of growing up and becoming a train driver

]

HYPERNYM 04 hito “person”

SEM. CLASS 〈292:driver〉 (⊂ 〈4:person〉)

WORDNET motorman1



























































Figure 1: Dictionary Entry forþU31 untenshu“chauffeur”

frag-np

rel-cl-sbj-gap

hd-complement noun-le

hd-complement v-light

hd-complement

hd-complement case-p-acc-le

noun-le conj-le noun-le vn-trans-le v-light-le\� ℄ �¥� k þU 2d 0
densha ya jidousha o unten suru hito
train or car ACC drive do personþU31 “chauffeur”: “a person who drives a train or car”

Figure 3: Derivation Tree of the Definition ofþU31 untenshu“chauffeur”
Phrasal nodes are labeled with identifiers of grammar rules,and (pre-terminal) lexical nodes with class names for typesof lexical

entries.
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Figure 5: Top 3 levels of the GoiTaikei Ontology

didate analyses (for some Japanese string) according

to JACY, the goal is to rank parse trees by their prob-
ability: training a stochastic parse selection model
on the available treebank, we estimate statistics of
various features of candidate analyses from the tree-
bank. The definition and selection of features, thus,
is a central parameter in the design of an effective
parse selection model.

3.1 Syntactic Features

The first model that we trained uses syntactic fea-
tures defined over HPSG derivation trees as summa-
rized in Table 1. For the closely related purpose of
parse selection over the English Redwoods treebank,
Toutanova et al. (2005) train a discriminative log-
linear model, using features defined overderivation
treeswith non-terminals representing theconstruc-
tion typesand lexical typesof the HPSG grammar.
The basic feature set of our parse selection model
for Japanese is defined in the same way (correspond-
ing to thePCFG-S model of Toutanova et al. (2005)):
each feature capturing a sub-tree from the deriva-
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# sample features
1 〈0 rel-cl-sbj-gap hd-complement noun-le〉
1 〈1 frag-np rel-cl-sbj-gap hd-complement noun-le〉
1 〈2 △ frag-np rel-cl-sbj-gap hd-complement noun-le〉
2 〈0 rel-cl-sbj-gap hd-complement〉
2 〈0 rel-cl-sbj-gap noun-le〉
2 〈1 frag-np rel-cl-sbj-gap hd-complement〉
2 〈1 frag-np rel-cl-sbj-gap noun-le〉
3 〈1 conj-le ya〉
3 〈2 noun-le conj-le ya〉
3 〈3 � noun-le conj-le ya〉
4 〈1 conj-le〉
4 〈2 noun-le conj-le〉
4 〈3 � noun-le conj-le〉

Table 1: Example structural features extracted from
the derivation tree in Figure 3. The first column
numbers the feature template corresponding to each
example; in the examples, the first integer value
is a parameter to feature templates, i.e. the depth
of grandparenting (types #1 and#2) orn-gram size
(types #3 and #4). The special symbols△ and �

denote the root of the tree and left periphery of the
yield, respectively.

tion limited to depth one. Table 1 shows example
features extracted from our running example (Fig-
ure 3 above) in our MaxEnt models, where the fea-
ture template #1 corresponds to local derivation sub-
trees. We will refer to the parse selection model us-
ing only local structural features asSYN-1.

3.1.1 Dominance Features

To reduce the effects of data sparseness, feature
type #2 in Table 1 provides a back-off to deriva-
tion sub-trees, where the sequence of daughters is
reduced to just the head daughter. Conversely, to
facilitate sampling of larger contexts than just sub-
trees of depth one, feature template #1 allows op-
tional grandparenting, including the upwards chain
of dominating nodes in some features. In our ex-
periments, we found that grandparenting of up to
three dominating nodes gave the best balance of en-
larged contextvs.data sparseness. Enriching our ba-
sic modelSYN-1 with these features we will hence-
forth call SYN-GP.

3.1.2 N-Gram Features

In addition to these dominance-oriented features
taken from the derivation trees of each parse tree,
our models also include more surface-oriented fea-
tures, viz.n-grams of lexical types with or without

lexicalization. Feature type #3 in Table 1 defines
n-grams of variable size, where (in a loose anal-
ogy to part-of-speech tagging) sequences of lexical
types capture syntactic category assignments. Fea-
ture templates #3 and #4 only differ with regard to
lexicalization, as the former includes the surface to-
ken associated with the rightmost element of each
n-gram (loosely corresponding to the emission prob-
abilities in an HMM tagger). We used a maximum
n-gram size of two in the experiments reported here,
again due to its empirically determined best overall
performance.

3.2 Semantic Features

In order to define semantic parse selection features,
we use a reduction of the full semantic representa-
tion (MRS) into ‘variable-free’elementary depen-
dencies. The conversion centrally rests on a notion
of onedistinguishedvariable in each semantic rela-
tion. For most types of relations, the distinguished
variable corresponds to the main index (ARG0 in the
examples above), e.g. an event variable for verbal re-
lations and a referential index for nominals. Assum-
ing further that, by and large, there is a unique re-
lation for each semantic variable for which it serves
as the main index (thus assuming, for example, that
adjectives and adverbs have event variables of their
own, which can be motivated in predicative usages
at least), an MRS can be broken down into a set of
basic dependency tuples of the form shown in Fig-
ure 4 (Oepen and Lønning, 2006).

All predicates are indexed to the position of the
word or words that introduced them in the input sen-
tence (<start:end>). This allows us to link them
to the sense annotations in the corpus.

3.2.1 Basic Semantic Dependencies

The basic semantic model,SEM-Dep, consists of
features based on a predicate and its arguments taken
from the elementary dependencies. For example,
consider the dependencies fordensha ya jidousha-
wo unten suru hito“a person who drives a train or
car” given in Figure 4. The predicateunten“drive”
has two arguments:ARG1 hito “person” andARG2
jidousha“car”.

From these, we produce several features (See Ta-
ble 2). One has all arguments and their labels (#20).
We also produce various back offs: #21 introduces

28



# sample features
20 〈0 unten s ARG1 hito n 1 ARG2 ya p conj〉
20 〈0 ya p conj LIDX densha n 1 RIDX jidousha n 1〉
21 〈1 unten s ARG1 hito n 1〉
21 〈1 unten s ARG2 jidousha n 1〉
21 〈1 ya p conj LIDX densha n 1〉
21 〈1 ya p conj RIDX jidousha n 1〉
22 〈2 unten s hito n 1 jidousha n 1〉
23 〈3 unten s hito n 1〉
23 〈3 unten s jidousha n 1〉
. . .

Table 2: Example semantic features (SEM-Dep) ex-
tracted from the dependency tree in Figure 4.

only one argument at a time, #22 provides unlabeled
relations, #23 provides one unlabeled relation at a
time and so on.

Each combination of a predicate and its related
argument(s) becomes a feature. These resemble the
basic semantic features used by Toutanova et al.
(2005). We further simplify these by collapsing
some non-informative predicates, e.g. theunknown

predicate used in fragments.

3.2.2 Word Sense and Semantic Class
Dependencies

We created two sets of features based only on the
word senses. ForSEM-WS we used the sense anno-
tation to replace each underspecified MRS predicate
by a predicate indicating the word sense. This used
the gold standard sense tags. ForSEM-Class, we used
the sense annotation to replace each predicate by its
Goi-Taikei semantic class.

In addition, to capture more useful relationships,
conjunctions were followed down into the left and
right daughters, and added as separate features. The
semantic classes for\�1densha“train” and� ¥�1jidousha “car” are both〈988:land vehicle〉,
while þU1 unten “drive” is 〈2003:motion〉 and04 hito “person”is〈4:human〉. The sample features
of SEM-Class are shown in Table 3.

These features provide more specific information,
in the case of the word sense, and semantic smooth-
ing in the case of the semantic classes, as words are
binned into only 2,700 classes.

3.2.3 Superordinate Semantic Classes

We further smooth these features by replacing the
semantic classes with their hypernyms at a given
level (SEM-L). We investigated levels 2 to 5. Pred-

# sample features
40 〈0 unten s ARG1 C4 ARG2 C988〉
40 〈1 C2003 ARG1 C4 ARG2 C988〉
40 〈1 C2003 ARG1 C4 ARG2 C988〉
40 〈0 ya p conj LIDX C988 RIDX C988〉
41 〈2 unten s ARG1 C4〉
41 〈2 unten s ARG2 C988〉
. . .

Table 3: Example semantic class features (SEM-

Class).

icates are binned into only 9 classes at level 2, 30
classes at level 3, 136 classes at level 4, and 392
classes at level 5.

For example, at level 3, the hypernym class
for 〈988:land vehicle〉 is 〈706:inanimate〉,
〈2003:motion〉 is 〈1236:human activity〉
and 〈4:human〉 is unchanged. So we used
〈706:inanimate〉 and 〈1236:human activity〉
to make features in the same way as Table 3.

An advantage of these underspecified semantic
classes is that they are more robust to errors in word
sense disambiguation — fine grained sense distinc-
tions can be ignored.

3.2.4 Valency Dictionary Compatability

The last kind of semantic information we use is
valency information, taken from the Japanese side
of the Goi-Taikei Japanese-English valency dictio-
nary as extended by Fujita and Bond (2004).This va-
lency dictionary has detailed information about the
argument properties of verbs and adjectives, includ-
ing subcategorization and selectional restrictions. A
simplified entry of the Japanese side forþU2dunten-suru“drive” is shown in Figure 6.

Each entry has a predicate and several case-slots.
Each case-slot has information such as grammatical
function, case-marker, case-role (N1, N2, . . . ) and
semantic restrictions. The semantic restrictions are
defined by the Goi-Taikei’s semantic classes.

On the Japanese side of Goi-Taikei’s valency
dictionary, there are 10,146 types of verbs giving
18,512 entries and 1,723 types of adjectives giving
2,618 entries.

The valency based features were constructed by
first finding the most appropriate pattern, and then
recording how well it matched.

To find the most appropriate pattern, we extracted
candidate dictionary entries whose lemma is the
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PID:300513� N1 <4:people> "%" ga� N2 <986:vehicles> "k" o� þU2d unten-suru

Figure 6:þU2dunten-suru“N1 drive N2”.
PID is the verb’s Pattern ID

# sample features
31 〈0 High〉
31 〈1 300513 High〉
31 〈2 2〉
31 〈3 R:High〉
31 〈4 300513 R:High〉
32 〈1 unten s High〉
32 〈4 unten s R:High〉
33 〈5 N1 C High〉
33 〈7 C〉
. . .

Table 4: Example semantic features (SP)

same as the predicate in the sentence: for exam-
ple we look up all entries forþU2d unten-
suru “drive”. Then, for each candidate pattern, we
mapped its arguments to the target predicate’s ar-
guments via case-markers. If the target predicate
has no suitable argument, we mapped to comitative
phrase. Finally, for each candidate patterns, we cal-
culate a matching score1 and select the pattern which
has the best score.

Once we have the most appropriate pattern,
we then construct features that record how good
the match is (Table 4). These include: the to-
tal score, with or without the verb’s Pattern ID
(High/Med/Low/Zero: #31 0,1), the number of filled
arguments (#31 2), the fraction of filled arguments
vs all arguments (High/Med/Low/Zero: #31 3,4),
the score for each argument of the pattern (#32 5)
and the types of matches (#32 5,7).

These scores allow us to use information about
word usage in an exisiting dictionary.

4 Evaluation and Results

We trained and tested on a subset of the dictionary
definition and example sentences in the Hinoki cor-
pus. This consists of those sentences with ambigu-
ous parses which have been annotated so that the

1The scoring method follows Bond and Shirai (1997), and
depends on the goodness of the matches of the arguments.

number of parses has been reduced (Table 5). That
is, we excluded unambiguous sentences (with a sin-
gle parse), and those where the annotators judged
that no parse gave the correct semantics. This does
not necessarily mean that there is a single correct
parse, we allow the annotator to claim that two or
more parses are equally appropriate.

Corpus # Sents Length Parses/Sent
(Ave) (Ave)

Definitions Train 30,345 9.3 190.1
Test 2,790 10.1 177.0

Examples Train 27,081 10.9 74.1
Test 2,587 10.4 47.3

Table 5: Data of Sets for Evaluation

Dictionary definition sentences are a different
genre to other commonly used test sets (e.g news-
paper text in the Penn Treebank or travel dialogues
in Redwoods). However, they are valid examples
of naturally occurring texts and a native speaker can
read and understand them without special training.
The main differences with newspaper text is that
the definition sentences are shorter, contain more
fragments (especially NPs as single utterances) and
fewer quoting and proper names. The main differ-
ences with travel dialogues is the lack of questions.

4.1 A Maximum Entropy Ranker

Log-linear models provide a very flexible frame-
work that has been widely used for a range of tasks
in NLP, including parse selection and reranking for
machine translation. We use amaximum entropy
/ minimum divergence(MEMD) modeler to train
the parse selection model. Specifically, we use the
open-sourceToolkit for Advanced Discriminative
Modeling (TADM:2 Malouf, 2002) for training, us-
ing its limited-memory variable metricas the opti-
mization method and determining best-performing
convergence thresholds and prior sizes experimen-
tally. A comparison of this learner with the use
of support vector machines over similar data found
that the SVMs gave comparable results but were far
slower (Baldridge and Osborne, 2007). Because we
are investigating the effects of various different fea-
tures, we chose the faster learner.

2http://tadm.sourceforge.net
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Method Definitions Examples
Accuracy Features Accuracy Features

(%) (×1000) (%) (×1000)
SYN-1 52.8 7 67.6 8
SYN-GP 62.7 266 76.0 196
SYN-ALL 63.8 316 76.2 245
SYN baseline 16.4 random 22.3 random
SEM-Dep 57.3 1,189 58.7 675
+SEM-WS 56.2 1,904 59.0 1,486
+SEM-Class 57.5 2,018 59.7 1,669
+SEM-L2 60.3 808 62.9 823
+SEM-L3 59.8 876 62.8 879
+SEM-L4 59.9 1,000 62.3 973
+SEM-L5 60.4 1,240 61.3 1,202
+SP 59.1 1,218 68.2 819
+SEM-ALL 62.7 3,384 69.1 2,693
SYN-SEM 69.5 2,476 79.2 2,126
SEM baseline 20.3 random 22.8 random

Table 6: Parse Selection Results

4.2 Results

The results for most of the models discussed in the
previous section are shown in Table 6. The accuracy
is exact match for the entire sentence: a model gets
a point only if its top ranked analysis is the same as
an analysis selected as correct in Hinoki. This is a
stricter metric than component based measures (e.g.,
labelled precision) which award partial credit for in-
correct parses. For the syntactic models, the base-
line (random choice) is 16.4% for the definitions and
22.3% for the examples. Definition sentences are
harder to parse than the example sentences. This
is mainly because they have fewer relative clauses
and coordinate NPs, both large sources of ambigu-
ity. For the semantic and combined models, multiple
sentences can have different parses but the same se-
mantics. In this case all sentences with the correct
semantics are scored as good. This raises the base-
lines to 20.3 and 22.8% respectively.

Even the simplest models (SYN-1 and SEM-Dep)
give a large improvement over the baseline. Adding
grandparenting to the syntactic model has a large
improvement (SYN-GP), but adding lexical n-grams
gave only a slight improvement over this (SYN-ALL).

The effect of smoothing by superordinate seman-
tic classes (SEM-Class), shows a modest improve-
ment. The syntactic model already contains a back-
off to lexical-types, we hypothesize that the seman-
tic classes behave in the same way. Surprisingly, as
we add more data, the very top level of the seman-
tic class hierarchy performs almost as well as the
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Figure 7: Learning Curves (Definitions)

more detailed levels. The features using the valency
dictionary (SP) also provide a considerable improve-
ment over the basic dependencies.

Combining all the semantic features (SEM-ALL)
provides a clear improvement, suggesting that the
information is heterogeneous. Finally, combing the
syntactic and semantic features gives the best results
by far (SYN-SEM: SYN-ALL + SEM-Dep + SEM-Class +
SEM-L2 + SP). The definitions sentences are harder
syntactically, and thus get more of a boost from the
semantics. The semantics still improve performance
for the example sentences.

The semantic class based sense features used here
are based on manual annotation, and thus show an
upper bound on the effects of these features. This
is not an absolute upper bound on the use of sense
information — it may be possible to improve further
through feature engineering. The learning curves
(Fig 7) have not yet flattened out. We can still im-
prove by increasing the size of the training data.

5 Discussion

Bikel (2000) combined sense information and parse
information using a subset of SemCor (with Word-
Net senses and Penn-II treebanks) to produce a com-
bined model. This model did not use semantic de-
pendency relations, but only syntactic dependen-
cies augmented with heads, which suggests that the
deeper structural semantics provided by the HPSG
parser is important. Xiong et al. (2005) achieved
only a very minor improvement over a plain syntac-
tic model, using features based on both the corre-
lation between predicates and their arguments, and
between predicates and the hypernyms of their argu-
ments (using HowNet). However, they do not inves-
tigate generalizing to different levels than a word’s
immediate hypernym.
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Pioneering work by Toutanova et al. (2005) and
Baldridge and Osborne (2007) on parse selection for
an English HPSG treebank used simpler semantic
features without sense information, and got a far less
dramatic improvement when they combined syntac-
tic and semantic information.

The use of hand-crafted lexical resources such as
the Goi-Taikei ontology is sometimes criticized on
the grounds that such resources are hard to produce
and scarce. While it is true that valency lexicons
and sense hierarchies are hard to produce, they are
of such value that they have already been created for
all of the languages we know of which have large
treebanks. In fact, there are more languages with
WordNets than large treebanks.

In future work we intend to confirm that we can
get improved results with raw sense disambiguation
results not just the gold standard annotations and test
the results on other sections of the Hinoki corpus.

6 Conclusions

We have shown that sense-based semantic features
combined with ontological information are effec-
tive for parse selection. Training and testing on
the definition subset of the Hinoki corpus, a com-
bined model gave a 5.6% improvement in parse se-
lection accuracy over a model using only syntactic
features (63.8%→ 69.4%). Similar results (76.2%
→ 79.2%) were found with example sentences.
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