
Mining the Web to Determine Similarity Between
Words, Objects, and Communities∗

Mehran Sahami
Google Inc.

1600 Amphitheatre Parkway
Mountain View, CA 94043

sahami@google.com

Abstract

The World Wide Web provides a wealth of data that can
be harnessed to help improve information retrieval and
increase understanding of the relationships between dif-
ferent entities. In many cases, we are often interested
in determining how similar two entities may be to each
other, where the entities may be pieces of text, descrip-
tions of some object, or even the preferences of a group
of people. In this work, we examine several instances
of this problem, and show how they can be addressed
by harnessing data mining techniques applied to large
web-based data sets. Specifically, we examine the prob-
lems of: (1) determining the similarity of short texts–
even those that may not share any terms in common, (2)
learning similarity functions for semi-structured data to
address tasks such as record linkage between objects,
and (3) measuring the similarity between on-line com-
munities of users as part of a recommendation system.
While we present rather different techniques for each
problem, we show how measuring similarity between
entities in all these domains has a direct application to
the overarching goal of improving information access
for users of web-based systems.

Introduction
Information finding is generally considered the dominant ac-
tivity on the World Wide Web. In order to help users find
information that is relevant to them, it is often necessary to
understand the degree to which various entities on the web
are similar or related to each other. For example, in the case
of queries to a web search engine, it is often useful to de-
termine how similar one query may be to another in order
to potentially suggest related queries to a user or automat-
ically “broaden” the user’s query with related terms during
retrieval to find more relevant documents. In other contexts,
such as E-commerce, users may be looking to find the same
item sold at different vendors on the web in order to do com-
parison shopping. Thus, having a means of automatically
determining whether two descriptions of products sold by

∗This paper includes joint work that was done previously in col-
laboration with Sugato Basu, Mikhail Bilenko, Orkut Buyukkok-
ten, Timothy Heilman, and Ellen Spertus. References to the origi-
nal works are incorporated in the relevant sections of this paper.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

different vendors are in fact referring to the same true item
becomes a critical element in helping the user to compare the
right information. And in social networking applications,
where users are seeking to find others with similar interests,
there is a need to determine how similar different communi-
ties of users are to each other in order to make recommenda-
tions to users as to what other communities they may find of
interest. In all three cases mentioned above, having an ap-
propriate measure of similarity between the relevant domain
entities is of paramount concern. Fortunately, the web also
provides a rich source of data that may be utilized to address
the problem of constructing appropriate similarity measures.

Here we provide an overview of previous research work
aimed at the goal of constructing similarity measures for
the domains described above. We begin by describing a
robust method for measuring the “semantic” similarity be-
tween short texts (such as search engine queries) even when
the texts being compared may not share any terms in com-
mon (Sahami & Heilman 2006). We describe how web
search engines are directly harnessed to construct this simi-
larity function.

We then examine the use of machine learning to produce
similarity functions between semi-structured data elements
(representing objects). We show how by learning such func-
tions we can address the task of adaptive record linkage, so
that sufficiently similar items may be linked as referring to
the same true underlying object. We also describe an in-
stantiation of this problem in the context of finding similar
items for comparison shopping on the web (Bilenko, Basu,
& Sahami 2005).

Finally, we describe a large-scale empirical comparison of
several similarity measures used as part of a recommenda-
tion system in an on-line social network. Specifically, we
consider the problem of how to recommend communities
(user-created discussion groups) to members of the Orkut
social network (www.orkut.com) by determining similarity
between a user’s current community memberships and other
communities that the user is not yet a member of (Spertus,
Sahami, & Buyukkokten 2005).

Measuring Similarity of Short Text Snippets
In analyzing text, there are many situations in which we
wish to determine how similar two short text snippets are.
For example, there may be different ways to describe some

14



concept or individual, such as “United Nations Secretary-
General” and “Kofi Annan”, and we would like to deter-
mine that there is a high degree of semantic similarity be-
tween these two text snippets. Similarly, the snippets “AI”
and “Artificial Intelligence” are very similar with regard to
their meaning, even though they may not share any actual
terms in common.

Directly applying traditional document similarity mea-
sures, such as the widely used cosine coefficient (Salton,
Wong, & Yang 1975; Salton & McGill 1983), to such short
text snippets often produces inadequate results, however. In-
deed, in both the examples given previously, applying the
cosine would yield a similarity of 0 since each given text
pair contains no common terms. Even in cases where two
snippets may share terms, they may be using the term in dif-
ferent contexts. Consider the snippets “graphical models”
and “graphical interface”. The first uses graphical in refer-
ence to graph structures whereas the second uses the term
to refer to graphic displays. Thus, while the cosine score
between these two snippets would be 0.5 due to the shared
lexical term “graphical”, at a semantic level the use of this
shared term is not truly an indication of similarity between
the snippets.

To address this problem, we would like to have a method
for measuring the similarity between such short text snippets
that captures more of the semantic context of the snippets
rather than simply measuring their term-wise similarity. To
help us achieve this goal, we can leverage the large volume
of documents on the web to determine greater context for a
short text snippet. By examining documents that contain the
text snippet terms we can discover other contextual terms
that help to provide a greater context for the original snippet
and potentially resolve ambiguity in the use of terms with
multiple meanings.

Our approach to this problem is relatively simple, but sur-
prisingly quite powerful. We simply treat each snippet as
a query to a web search engine in order to find a number
of documents that contain the terms in the original snippets.
We then use these returned documents to create a context
vector for the original snippet, where such a context vector
contains many words that tend to occur in context with the
original snippet (i.e., query) terms. Such context vectors can
now be much more robustly compared with a measure such
as the cosine to determine the similarity between the original
text snippets.

Formalizing the Approach
Presently, we formalize our kernel function for semantic
similarity. Let x represent a short text snippet1. We com-
pute the query expansion of x, denoted QE(x), as follows:
1. Issue x as a query to a search engine S.
2. Let R(x) be the set of (at most) n retrieved

documents d1,d2, . . . ,dn
3. Compute the TFIDF term vector vi for each

document di ∈ R(x)
4. Truncate each vector vi to its m highest weighted terms

1We note that while the focus of our work here is short text snip-
pets, there is no technical reason why x must have limited length.

5. Let C(q) be the centroid of the L2 normalized
vectors vi:

C(q) = 1
n ∑n

i=1
vi

‖vi‖2
6. Let QE(x) be the L2 normalized centroid of C(q):

QE(x) = C(q)
‖C(q)‖2

Note that we consider a TFIDF vector weighting
scheme (Salton & Buckley 1988), where the weight wi, j as-
sociated with with term ti in document d j is defined to be
wi, j = t fi, j × log( N

d fi
), where t fi, j is the frequency of ti in d j,

N is the total number of documents in the corpus, and d fi is
the total number of documents that contain ti. Clearly, other
weighting schemes are possible, but we choose TFIDF here
since it is commonly used in the IR community and we have
found it to empirically give good results in building repre-
sentative query expansions.

Given that we have a means for computing the query ex-
pansion for a short text, it is a simple matter to define the
semantic kernel function K as the inner product of the query
expansions for two text snippets. More formally, given two
short text snippets x and y, we define the semantic similarity
kernel between them as:

K(x,y) = QE(x) ·QE(y).
We note that K(x,y) is a valid kernel function, since it

is defined as an inner product with a bounded norm (given
that each query expansion vector has norm 1.0), thus making
this similarity function applicable in any kernel-based ma-
chine learning algorithm (Cristianini & Shawe-Taylor 2000)
where (short) text data is being processed.

Empirical Results
We have tested this similarity measure in a broad range of
anecdotal tests and found very good results. We give a few
such examples below:

K(“UN Secretary-General”, “Kofi Annan”) = 0.825
K(“Google CEO”, “Eric Schmidt”) = 0.845
K(“Google Founder”, “Larry Page”) = 0.770
K(“space exploration”, “NASA”) = 0.691
K(“Google Founder”, “Bill Gates”) = 0.096
K(“Web Page”, “Larry Page”) = 0.123

Here we see that our kernel function is successful at deter-
mining the similarity between pairs of texts, capturing more
of their semantic relationship. Also, the function is effective
at giving low scores to pairs which semantically differ, such
as “Web Page” and “Larry Page”.

We have also applied this similarity measure as a key
component of a query suggestion system for a web search
engine and again seen positive empirical results. We refer
the interested reader to the original paper on this approach
(Sahami & Heilman 2006) for more information.

Learning Similarity Functions
for Record Linkage

Turning our attention to another important problem in mea-
suring similarities, we consider the record linkage task.

15



Record linkage is the problem of identifying when two (or
more) references to an object are describing the same true
entity. For example, an instance of record linkage would be
identifying if two paper citations (which may be in different
styles and formats) refer to the same actual paper. Address-
ing this problem is important in a number of domains where
multiple users, organizations, or authors may describe the
same item using varied textual descriptions.

Historically, one of the most examined instances of record
linkage is determining if two database records for a person
are referring to the same individual, which is an important
data cleaning step in applications from direct marketing to
survey response (e.g., the US Census). More recently, record
linkage has found a number of uses in the context of several
web applications, e.g., the above-mentioned task of iden-
tifying paper citations that refer to the same publication is
an important problem in on-line systems for scholarly paper
searches, such as CiteSeer and Google Scholar.

Record linkage is also a key component of on-line com-
parison shopping systems. When many different web sites
sell the same product, they provide different textual descrip-
tions of the product (which we refer to as “offers”). Thus,
a comparison shopping engine is faced with the task of de-
termining which offers are referring to the same true under-
lying product. Solving this product normalization problem
allows the comparison shopping engine to display multiple
offers for the same product to a user who is trying to deter-
mine from which vendor to purchase the product.

In such a context, the number of vendors and sheer num-
ber of products (with potentially very different characteris-
tics) make it very difficult to manually craft a single sim-
ilarity function that can adequately determine if two arbi-
trary offers are for the same product. Moreover, for different
categories of products, different similarity functions may be
needed that capture the potentially diverse notions of equiv-
alence for each category. Hence, an approach that allows
learning similarity functions between offers from training
data becomes necessary.

Furthermore, in many record linkage tasks including
product normalization, records to be linked contain multiple
fields (e.g., product name, manufacturer, price, etc.). Such
records may either come in pre-structured form (e.g., XML
or relational database records), or the fields may have been
extracted from an underlying textual description (Dooren-
bos, Etzioni, & Weld 1997). While it may be difficult for a
domain expert to specify a complete similarity function be-
tween two records, they are often quite capable of defining
similarity functions between individual record fields. For
example, it is relatively simple to define the similarity be-
tween two prices as a function related to the inverse of
the difference of the prices, or the difference between two
textual product descriptions as the (well-known) cosine be-
tween their vector-space representations. Thus, an appropri-
ate learnable similarity function for comparing records must
be able to leverage multiple basis similarity functions that
capture individual field similarities.

Fortunately, in the comparison shopping domain a small
proportion of the incoming product offers include the Uni-
versal Product Code (UPC) attribute which uniquely identi-

fies products. This provides a source of supervision, there-
fore a classification approach to the linkage problem in such
settings becomes feasible.

Formalizing the Approach
Our proposed approach to product normalization is a modu-
lar framework that consists of several components: an initial
set of basis functions to compute similarity between fields
of records to be linked, a learning algorithm for training the
parameters of a composite similarity function, and, finally, a
clustering-based linkage step.

In formulating our approach, we begin with a set of k ba-
sis functions f1(R1,R2), ..., fk(R1,R2), defined as similarity
functions between fields of records R1 and R2. We then learn
a linear combination of these basis functions with k corre-
sponding weights αi and an additional threshold parameter
α0 to create a composite similarity function, f ∗:

f ∗(R1,R2) = α0 +
k

∑
i=1

αi fi(R1,R2)

Once trained, f ∗ can be used to produce a similarity ma-
trix S over all pairs of records. In turn, S can be used with
any similarity-based clustering algorithm to identify clus-
ters, each of which contains a set of records which presum-
ably should be linked. Then, we can interpret each cluster as
a set of records referring to the same true underlying item.

Identifying co-referent records requires classifying every
candidate pair of records as belonging to the class of co-
referent pairs M or non-equivalent pairs U. Given some do-
main ∆R from which each record is sampled, and k similarity
functions fi : ∆R ×∆R → R that operate on pairs of records,
we can produce a pair-space vector xi ∈R

k+1 for every pair
of records (Ri1 ,Ri2): xi = [1, f1(Ri1 ,Ri2), ..., fk(Ri1 ,Ri2)]

T .
The vector includes the k values obtained from basis sim-
ilarity functions concatenated with a default attribute that
always has value 1, which corresponds to the threshold pa-
rameter α0.

Any binary classifier that produces confidence scores can
be employed to estimate the overall similarity of a record
pair (Ri1 ,Ri2) by classifying the corresponding feature vec-
tor xi and treating classification confidence as similarity.
The classifier is typically trained using a corpus of la-
beled data in the form of pairs of records that are known
to be either co-referent ((Ri1 ,Ri2) ∈ M ) or non-equivalent
((Ri1 ,Ri2) ∈ U). To efficiently train such a classifier (and
also to allow for incremental updates as more data be-
comes available), we employ the averaged perceptron algo-
rithm (Collins 2002), a space-efficient variation of the voted
perceptron algorithm proposed and analyzed by Freund and
Schapire (Freund & Schapire 1999).

After we have trained a composite similarity function f ∗
to correctly predict whether a pair of records is co-referent
using labeled data, we can now use it to determine linkages
within a set of m unlabeled records. To this end, we use f ∗
to compute an m×m similarity matrix S = {si, j} between
all pairs of records considered for linkage, where each si, j =
f ∗(Ri,R j),1 ≤ i, j ≤ m. Armed with this similarity matrix,
we face the subsequent problem of identifying groups of co-
referent records via clustering.

16



Empirical Results
In our work, we compare the linkage performance of
three variants of the Hierarchical Agglomerative Clustering
(HAC) algorithm: single-link, group-average and complete-
link (Jain, Murty, & Flynn 1999) on a variety of product of-
fer datasets from the Froogle comparison shopping website
(froogle.google.com). For brevity, here we present an
evaluation of our approach on a single representative dataset
of 4823 product offers for digital cameras.

The dataset was created by collecting product offers
that contain a UPC (Universal Product Code) field, which
uniquely identifies commercial products. While less than
10% of all data includes the UPC values, they provide the
“golden standard” labels for evaluating linkage accuracy. In
our experiments, the UPCs were only used for evaluation
purposes, while in an actual fielded product normalization
system they can be used as a highly useful attribute for com-
puting overall similarity (although, as discussed below, our
results indicate that UPC values alone should not be used as
the sole linkage criterion due to the presence of noise).

To evaluate our system, precision and recall defined over
pairs of co-referent records were computed after each merge
step in the clustering process. Precision is the fraction of
identified co-referent pairs that are correct, while recall is
the fraction of co-referent pairs that were identified. While
traditional use of precision-recall curves involves interpo-
lating several precision points at standard recall levels to
the highest value seen for any lower recall, we have found
that such interpolation may grossly misrepresent the dynam-
ics of the clustering process. Therefore, we report non-
interpolated (observed) precision values, averaged over 10
trials of 2 folds each.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

P
re

ci
si

on

Recall

Complete Link
Group Average

Single Link

Figure 1: Precision-recall curve for Digital Camera data.

Our empirical results, seen in Figure 1, show that the
group-average and complete-link variants of HAC tend to
produce much better linkage results than the often used
single-link method. Moreover, additional experiments
(which have been omitted for brevity) show that great
variability exists between the similarity functions that are
learned for different product categories. Also, by examining
the errors reported by our approach we have found the rather
surprising result that (human) errors exist in the labeling of
product offers from vendors, as highly similar product of-
fers (which were in fact for the same actual product) were

mistakenly given different UPCs by vendors. Our approach
to learning the similarity between offers allows us to more
readily identify these errors for data cleaning. For more de-
tails on this approach, as well as a more comprehensive em-
pirical evaluation, we refer the reader to the original paper
on this work (Bilenko, Basu, & Sahami 2005).

Comparing Similarity Functions for Making
Recommendations in On-line Communities

In addition to web search and comparison shopping, we
have also examined the use of similarity measures in on-
line social networks. Social networking sites such as Orkut
(www.orkut.com), Friendster (www.friendster.com), and
others have quickly gained in popularity as a means for
letting users with common interests find and communicate
with each other. Unfortunately, such social networks, and
their corresponding communities (discussion groups), have
grown so quickly that new users of the system find it diffi-
cult to find the communities that are truly relevant to them.
For example, the Orkut social network alone already con-
tains over 1.5 million communities. A new user would find
it very difficult to navigate this space of communities manu-
ally, and thus automated methods to recommend potentially
relevant communities to users become necessary.

While there are many forms of recommender sys-
tems (Deshpande & Karypis 2004), we choose a method
akin to collaborative filtering (Sarwar et al. 2001), where
similarity between communities is measured as a function of
the communities’ overlap in membership (i.e., the number of
common members in two communities). How this similarity
function is defined has a direct bearing on the quality of the
recommendations made to users.

Formalizing the Approach
To define similarity, we start with the notion of a “base”
community B, and seek to find its potentially “related” com-
munities Ri. In other words, we seek to measure the (possi-
bly asymmetric) similarity of B to some other community R.
Treating a community as simply the set of users in that com-
munity, we can use standard set operations (or probabilities
defined over sets) to define our similarity measures.

Given a community S, we can define the probability of
drawing a user s from the social network that happens to be
a member of S as P(s ∈ S) = |S|

N , where N is the total number
of users in the social network2. Note that we simply assume
a uniform distribution with regard to drawing users from the
social network.

We consider six standard measures of similarity by which
to compare communities. These measures are defined in Ta-
ble 1. If we represent communities as vectors of length N,
where the ith element is 1 if user i is a member of the com-
munity and 0 otherwise, we can then consider geometric no-
tions of similarity between these vectors, such as the L1 and
L2 normed vector overlap. These measures are presented us-
ing equivalent set theoretic notation in Table 1. We also con-

2For notational convenience, we refer to probabilities such as
P(s ∈ S) as simply P(s) in the rest of the paper.

17



sider information theoretic measures, such as variations of
Pointwise Mutual Information and Log Odds ratios (Cover
& Thomas 1991). Finally we consider a measure based on
Inverse Document Frequency (IDF) popular in the informa-
tion retrieval literature (Salton, Wong, & Yang 1975).

We designed an experiment to determine the relative value
of the recommendations produced by each similarity mea-
sure by interleaving the recommendations from different
pairs of similarity measures and tracking user clicks. Specif-
ically, we measured the efficacy of different similarity mea-
sures using pair-wise binomial sign tests on click-through
data rather than using traditional supervised learning mea-
sures such as precision/recall or accuracy since there is no
“true” labeled data for this task (i.e., we do not know what
are the correct communities that should be recommended to
a user). Rather, we focused on the task of determining which
of the similarity measures performs best on a relative perfor-
mance scale with regard to acceptance by users.

When a user viewed a community page, we selected an
ordered pair of similarity measures to compare. Let S and
T be the ordered lists of recommendations for the two mea-
sures, where S = (s1,s2, . . . ,s|S|) and T = (t1, t2, . . . , t|T |) and
|S| = |T |. The recommendations generated using each mea-
sure are combined by Joachims’ “Combined Ranking” al-
gorithm (Joachims 2002), which interleaves the top related
communities suggested by the two similarity measures (re-
solving duplicates suggested by both measures), and pro-
vides a method for credit assignment to each similarity mea-
sure based on which of its results are actually clicked.

Whenever a user visited a community, two measures were
chosen and their recommendations interleaved, as discussed
above. This was done in a deterministic manner so that
a given user always saw the same recommendations for a
given community. To minimize feedback effects, we did not
regenerate recommendations after the experiment began.

A user who views a base community is either a member
(denoted by “m”) or non-member (denoted by “n”). In either
case, recommendations are shown. When a user clicks on a
recommendation, there are three possibilities: (1) the user is
already a member of the recommended community (“m”),
(2) the user joins the recommended community (“j”), or (3)
the user visits but does not join the recommended commu-
nity (“n”). The combination of base and related community
memberships can be combined in six different ways. For ex-
ample “m→j” denotes a click where a member of the base
community clicks on a recommendation to another commu-
nity to which she does not belong and joins that commu-
nity. Traditionally, analyses of recommender systems focus
on “m→j”, or identifying other items a user will like given
that they have a stated interest in some initial item. In a
similar vein, we judged each similarity measure based on its
“m→j” performance.

Empirical Results
We analyzed all accesses from July 1, 2004 to July 18, 2004
of users who joined Orkut during that period. The system
served 4,106,050 community pages with recommendations,
which provides a lower bound on the number of page views.
(Unfortunately, we could not determine the total number of

page views due to browser caching.) There were 901,466
clicks on recommendations, 48% by members of the base
community, 52% by non-members.

We compared each measure pairwise against every other
measure by analyzing clicks of their merged recommenda-
tions. If the click was on a recommendation ranked higher
by measure L2 than measure L1, for example, we considered
it a “win” for L2 and a loss for L1. If both measures ranked
it equally, the result was considered to be a tie. We say that a
measure dominates another if, in their pairwise comparison,
the former has more “wins”. In our initial analysis, we found
that this definition applied to the click data yielded a total
order (to our surprise) among the six measures as follows
(listed from best to worst performer): L2, MI1, MI2, IDF ,
L1, LogOdds. Indeed, the L2 measure outperformed all other
measures with statistical significance (p < 0.01) using a bi-
nomial sign test (Lehmann 1986). The detailed click results
comparing the L2 measure to the other five measures are pre-
sented in Table 2, which shows the outcomes of all clicks,
with conversions by members (“m→j”) and non-members
of the base community (“n→j”) broken out separately.

As part of the overall performance of the recommenda-
tion system, we also defined conversion rate as the percent-
age of non-members who clicked through to a community
who then joined it. The conversion rate was three times as
high (54%) when the member belonged to the base com-
munity (from which the recommendation came) than not
(17%). While this relative difference is not surprising, the
large absolute magnitude of the conversion rate (i.e., the per-
centage of people who clicked on a recommendation and
ended up joining the recommended community) shows the
efficacy of recommendations as a means for providing users
with relevant information in a social network setting. More
details on this research, as well as the results of several ad-
ditional experiments, are available in the original paper on
this work (Spertus, Sahami, & Buyukkokten 2005).

Conclusions
In this paper we have presented several web-based applica-
tions where measuring the similarity between different en-
tities is an important element for success. We have seen
that the large quantity of available on-line information can
be harnessed to help determine similarities between entities
as disparate as words (short texts), objects (such as products
offers), and communities (on-line discussion groups). By
leveraging this data in conjunction with the development of
novel machine learning technologies, we can make signifi-
cant improvements in a variety of domains, including help-
ing web users find more relevant information while search-
ing the web, engaging in on-line comparison shopping, or
participating in a social network. In future work, we seek to
find additional applications for the similarity measures de-
fined here and apply the methodology developed for learn-
ing similarity functions in other contexts.

References
Bilenko, M.; Basu, S.; and Sahami, M. 2005. Adaptive
product normalization: Using online learning for record

18



Measure Name Definition

L1 Norm L1(B,R) = |B∩R|
|B|·|R|

L2 Norm L2(B,R) = |B∩R|√
|B|·|R|

Pointwise Mutual Information MI1(B,R) =

(positive correlations only) P(b,r) · log P(b,r)
P(b)·P(r)

Pointwise Mutual Information MI2(B,R) =

(positive and negative correlations) P(b,r) · log P(b,r)
P(b)·P(r) +P(b,r) · log P(b,r)

P(b)·P(r)

IDF IDF(B,R) = |B∩R|
|B| · log N

|R|

Log Odds LogOdds(B,R) = log P(r|b)
P(r|b)

Table 1: Definition of the six measures used to determine similarity between communities in the Orkut social network.

Measures m → j n → j all clicks
Win Equal Loss Win Equal Loss Win Equal Loss

L2 MI1 6899 2977 4993 2600 1073 1853 30664 12277 20332
L2 MI2 6940 2743 5008 2636 1078 1872 31134 11260 19832
L2 IDF 6929 2697 5064 2610 1064 1865 30710 11271 20107
L2 L1 7039 2539 4834 2547 941 1983 28506 13081 23998
L2 LogOdds 8186 1638 4442 2852 564 1655 34954 6664 18631

Table 2: The relative performance of L2 versus the other five measures in pairwise combination on clicks leading to joins,
divided by base community membership status, and on all clicks.

linkage in comparison shopping. In Proc. of the 5th IEEE
Int’l Conference on Data Mining, 58–65.
Collins, M. 2002. Discriminative training methods for hid-
den Markov models: Theory and experiments with percep-
tron algorithms. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing and Very
Large Corpora(EMNLP-2002), 1–8.
Cover, T. M., and Thomas, J. A. 1991. Elements of Infor-
mation Theory. New York, NY: Wiley.
Cristianini, N., and Shawe-Taylor, J. 2000. An Introduc-
tion to Support Vector Machines and Other Kernel-based
Learning Methods. Cambridge University Press.
Deshpande, M., and Karypis, G. 2004. Item-based top-N
recommendation algorithms. ACM Transactions on Infor-
mation Systems 22(1):143–177.
Doorenbos, R. B.; Etzioni, O.; and Weld, D. S. 1997. A
scalable comparison-shopping agent for the World-Wide
Web. In Proceedings of the First International Conference
on Autonomous Agents (Agents-97), 39–48.
Freund, Y., and Schapire, R. E. 1999. Large margin classi-
fication using the perceptron algorithm. Machine Learning
37:277–296.
Jain, A. K.; Murty, M. N.; and Flynn, P. J. 1999. Data
clustering: A review. ACM Computing Surveys 31(3):264–
323.

Joachims, T. 2002. Evaluating retrieval performance us-
ing clickthrough data. In Proc. of the SIGIR Workshop on
Mathematical/Formal Methods in Information Retrieval.
Lehmann, E. L. 1986. Testing Statistical Hypotheses (2nd
Edition). Springer-Verlag.
Sahami, M., and Heilman, T. 2006. A web-based kernel
function for measuring the similarity of short text snippets.
In Proc. of the 15th Int’l World Wide Web Conference.
Salton, G., and Buckley, C. 1988. Term weighting ap-
proaches in automatic text retrieval. Information Process-
ing and Management 24(5):513–523.
Salton, G., and McGill, M. J. 1983. Introduction to Modern
Information Retrieval. McGraw-Hill Book Company.
Salton, G.; Wong, A.; and Yang, C. S. 1975. A vector
space model for automatic indexing. Communications of
the ACM 18:613–620.
Sarwar, B. M.; Karypis, G.; Konstan, J. A.; and Riedl, J.
2001. Item-based collaborative filtering recommendation
algorithms. In Proc. of the 10th Int’l World Wide Web Con-
ference, 285–295.
Spertus, E.; Sahami, M.; and Buyukkokten, O. 2005. Eval-
uating similarity measures: a large-scale study in the orkut
social network. In Proc. of the 11th ACM SIGKDD Int’l
Conference on Knowledge Discovery and Data Mining,
678–684.

19


