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Abstract

The paper proposes a logic framework for modeling the
interaction among deductive databases and computing
consistent answers to logic queries in a P2P environ-
ment. As usual, data are exchanged among peers by
using logical rules, called mapping rules. The novelty
of our approach is that only data not violating integrity
constraints are exchanged. The (declarative) semantics
of a P2P system is defined in terms of weak models.
Under this semantics only facts not making the local
databases inconsistent are imported, and the preferred
weak models are those in which peers import maxi-
mal sets of facts not violating integrity constraints. An
equivalent and alternative characterization of preferred
weak model semantics, in terms of prioritized logic pro-
grams, is also introduced and the computational com-
plexity of P2P logic queries is investigated.

Introduction

The spread of Internet and the possibility for its users
for sharing knowledge from a large number of infor-
mative sources, have enabled the development of new
methods for data integration easily usable for process-
ing distributed and autonomous data. In traditional
data integration systems queries are posed through a
central mediated schema. Data is stored locally in each
source and the two main formalisms managing the map-
ping between the mediated schema and the local sources
are the global-as-view (GAV) and the local-as-view
(LAV) approach (Lenzerini 2002). The main drawbacks
of traditional integration systems are due to the lack
of flexibility: i) the centralized mediated schema, that
controls and manages the interaction among distributed
sources, must be defined looking at the global system;
ii) the insertion of a new source or the modification of
an existing one may cause a violation of the mappings
to the mediated schema. Recently, there have been sev-
eral proposals which consider the integration of infor-
mation and the computation of queries in an open ended
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network of distributed peers (Bernstein et al. 2002;
Calvanese et al. 2004; Franconi et al. 2003) as well
as the problem of schema mediation and query opti-
mization in P2P environments (Halevy et al. 2003,
Madhavan & Halevy 2003; Tatarinov & Halevy. 2004;
Gribble et al. 2001). Generally, peers can both pro-
vide or consume data and the only information a peer
participating in a P2P system has is about neighbors,
i.e. information about the peers that are reachable and
can provide data of interest. More specifically, each
peer joining a P2P system exhibits a set of mapping
rules, i.e. a set of semantic correspondences to a set of
peers which are already part of the system (neighbors).
Thus, in a P2P system the entry of a new source, peer,
is extremely simple as it just requires the definition of
the mapping rules. By using mapping rules as soon
as it enters the system a peer can participate and ac-
cess all data available in its neighborhood, and through
its neighborhood it becomes accessible to all the other
peers in the system.

As stated before, the problem of integrating and query-
ing databases in P2P environments has been investi-
gated in (Calvanese et al. 2004; Franconi et al. 2003).
In both works peers are modeled as autonomous agents
which can export only data belonging to their knowl-
edge, i.e. data which are true in all possible scenarios
(models).

In (Calvanese et al. 2004) a new semantics for a
P2P system, based on epistemic logic, is proposed. The
paper also shows that the semantics is more suitable
than traditional semantics based on FOL (First Order
Logic) and proposes a sound, complete and terminating
procedure that returns the certain answers to a query
submitted to a peer.

In (Franconi et al. 2003) a characterization of P2P
database systems and a model-theoretic semantics deal-
ing with inconsistent peers is proposed. The basic idea
is that if a peer does not have models all (ground)
queries submitted to the peer are true (i.e. are true
with respect to all models). Thus, if some databases



are inconsistent it does not mean that the entire sys-
tem is inconsistent.

An interesting approach for answering queries in a
Peer to Peer data exchange system has been recently
proposed in (Bertossi & Bravo 2004). Given a peer P
in a P2P system a solution for P is a database instance
that respects the exchange constraints and trust rela-
tionship P has with its ‘immediate neighbors’ and stays
as close as possible to the available data in the system.

In (Halevy et al. 2003) the problem of schema medi-
ation in a Peer Data Management System (PDMS) is
investigated. A flexible formalism, PPL, for mediating
peer schemas, which uses the GAV and LAV formal-
ism to specify mappings, is proposed. The semantics
of query answering for a PDMS is defined by extending
the notion of certain answer.

In (Tatarinov & Halevy. 2004) several techniques for
optimizing the reformulation of queries in a PDMS are
presented. In particular the paper presents techniques
for pruning semantic paths of mappings in the refor-
mulation process and for minimizing the reformulated
queries.

The design of optimization methods for query pro-
cessing over a network of semantically related data is
investigated in (Madhavan & Halevy 2003).

Motivation. The motivation of this work stems from
the observation that previously proposed approaches re-
sult not to be sound with respect to query answering
when some peer is inconsistent.

Py

-—q(X),q(Y),X=Y
q(X) == r(X)

Figure 1: A P2P system

Example 1 Consider the P2P system depicted in Fi-
gure 1 consisting of three peers P1, Py and P3 where

e P53 contains two atoms: r(a) and r(b),

e Py imports data from Ps using the (mapping) rule
q(X) < r(X)!. Moreover imported atoms must sat-
isfy the constraint «— ¢(X),q(Y), X # Y stating that
the relation ¢ may contain at most one tuple, and

e P imports data from Py, using the (mapping) rule
p(X) « ¢(X). P; also contains the rules s « p(X)
stating that s is true if the relation p contains at least
one tuple, and ¢t « p(X),p(Y), X # Y, stating that ¢

!Please, note the special syntax we use for mapping rules.
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is true if the relation p contains at least two distinct
tuples.

The intuition is that, with r(a) and r(b) being true in
P, either g(a) or ¢(b) could be imported in Ps (but not
both, otherwise the integrity constraint is violated) and,
consequently, only one tuple is imported in the relation
p of the peer P;. Note that whatever is the derivation
in Py, s is derived in Py while t is not derived. There-
fore, the atoms s and t are, respectively, true and false
in Py. It is worth noting that the approaches above
mentioned do not capture such a semantics. Indeed,
the epistemic semantics proposed in (Calvanese et al.
2004) states that both the atoms ¢(a) and ¢(b) are im-
ported in the peer P2 which becomes inconsistent. In
this case the semantics assumes that the whole P2P sys-
tem is inconsistent and every atom is true as it belongs
to all minimal models. Consequently, ¢ and s are true.
The semantics proposed in (Franconi et al. 2003) as-
sumes that only P is inconsistent as it has no model.
Thus, as the atoms ¢(a) and q(b) are true in Ps (they
belong to all models of P2), then the atoms p(a) and
p(b) can be derived in Py and finally ¢ and s are true. O

The idea we propose in this paper consists in import-
ing in each peer maximal sets of atoms not violating
integrity constraints. A similar approach, using epis-
temic logic, has been recently proposed in (Calvanese
et al. 2005).

Contributions. The paper presents a logic-based
framework for modeling the interaction among peers.
It is assumed that each peer consists of a database, a
set of standard logic rules, a set of mapping rules and a
set of integrity constraints. In such a context, a query
can be posed to any peer in the system and the answer
is provided by using locally stored data and all the in-
formation that can be consistently imported from its
neighbors. In synthesis, the main contributions are:

1. A formal declarative semantics for P2P systems,
called Preferred Weak Model semantics, which uses
the mapping rules between peers to import only max-
imal sets of atoms not violating integrity constraints.

2. An alternative equivalent semantics, called Preferred
Stable Model semantics, based on the rewriting of
mapping rules into standard logic rules with priori-
ties.

3. A generalization of the preferred weak model se-
mantics which allows to compute consistent queries
also in the presence of possible inconsistent source
databases.

4. Results on the complexity of answering queries.



Background

We assume there are finite sets of predicate symbols,
constants and variables. A term is either a constant or
a variable. An atom is of the form p(ty,...,t,) where
p is a predicate symbol and ti,...,%, are terms. A
literal is either an atom A or its negation not A. A
rule is of the form H « B, where H is an atom (head
of the rule) and B is a conjunction of literals (body of
the rule). A program P is a finite set of rules. P
is said to be positive if it is negation free. The def-
inition of a predicate p consists of all rules having p
in the head. A ground rule with empty body is a
fact. A rule with empty head is a constraint. It is
assumed that programs are safe, i.e. variables appear-
ing in the head or in negated body literals are range
restricted as they appear in some positive body literal.
The ground instantiation of a program P, denoted by
ground(P) is built by replacing variables with constants
in all possible ways. An interpretation is a set of ground
atoms. The truth value of ground atoms, literals and
rules with respect to an interpretation M is as follows:
valpyr(A) = A € M, valpy(not A) = not valpy(A),
valpr(Lyy ..oy Ly) = min{valy (L), . ..,valpy (Ly)}
and valpy(A —  Ly,...,L,) = waly(A) >
valpr(Ly, ..., Ly) , where A is an atom, Ly, ..., L, are
literals and true > false. An interpretation M is a
model for a program P, if all rules in ground(P) are
true w.r.t. M. A model M is said to be minimal if
there is no model N such that N C M. We denote the
set of minimal models of a program P with MM(P).
Given an interpretation M and a predicate symbol g,
M]g] denotes the set of g-tuples in M. The semantics
of a positive program P is given by its unique mini-
mal model which can be computed by applying the im-
mediate consequence operator T until the fixpoint is
reached (T%(@) ). The semantics of a program with
negation P is given by the set of its stable models,
denoted as SM(P). An interpretation M is a stable
model (or answer set) of P if M is the unique minimal
model of the positive program P, where PM is ob-
tained from ground(P) by (i) removing all rules r such
that there exists a negative literal not A in the body of
r and A is in M and (ii) removing all negative literals
from the remaining rules (Gelfond & Lifschitz 1988).
It is well known that stable models are minimal mod-
els (i.e. SM(P) C MM(P)) and that for negation free
programs, minimal and stable model semantics coincide

(ie. SM(P) = MM(P)).

Prioritized logic programs

Several recent works have investigated the introduc-
tion of various forms of priorities into logic languages
(Brewka & Eiter 1999; Brewka, Niemela, & Truszczyn-
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ski 2003; Delgrande, Schaub, & Tompits 2003; Sakama
& Inoue 2000). In this paper we refer to the extension
proposed in (Sakama & Inoue 2000). A (partial) pref-
erence relation = among atoms is defined as follows.
Given two atoms e; and ep, the statement es > e
is a priority stating that for each as instance of e
and for each a; instance of ej, as has higher priority
than a;. If e > e; and e; # e we write es > ej.
If e = ey the sets of ground instantiations of e; and
e2 have empty intersection. The relation > is transi-
tive and reflexive. A prioritized logic program (PLP)
is a pair (P, ®) where P is a program and ® is a set
of priorities. ®* denotes the set of priorities which can
be reflexively or transitively derived from ®. Given a
prioritized logic program (P, ®), the relation 3 is de-
fined over the stable models of P as follows. For any
stable models M7, My and Ms of P: (i) My J My;
(II)MQ Q M1 1fa) 3 €y € MQ*Ml, = e; € Ml*MQ
such that (ex > e1) € ®* and b) A ez € My — My such
that (63 - 62) € o*, (111) if My J My and My 3 My,
then M2 ; Mo.

If My 3 M, holds, then we say that M, is preferable to
My w.r.t. ®. Moreover, we write My 3 My if My 3 M,
and M; 4 Ms. An interpretation M is a preferred
stable model of (P, ®) if M is a stable model of P and
there is no stable model N such that N 3 M. The set
of preferred stable models of (P, ®) will be denoted by
PSM(P, D).

P2P systems: syntax and FOL
semantics

A (peer) predicate symbol is a pair ¢ : p where i is a
peer identifier and p is a predicate symbol. A (peer)
atom is of the form i: A where A is a standard atom.
A (peer) literal is of the form not A where A is a peer
atom. A (peer) rule is of the form A «— A;,... A,
where A is a peer atom and Aq,..., A, are peer atoms
or built-in atoms. A (peer) integrity constraint is of the
form «— Li,...,L,, where Lq,..., L, are peer literals
or built-in atoms. Whenever the peer is understood, the
peer identifier can be omitted. The definition of a pred-
icate i:p consists of all rules having as head predicate
symbol i:p. In the following, we assume that for each
peer P; there are three distinct sets of predicates called,
respectively, base, derived and mapping predicates. A
base predicates is defined by ground facts; a derived
predicate i : p is defined by standard rules, i.e. peer
rules using in the body only predicates defined in the
peer P;; a mapping predicate i:p is defined by mapping
rules, i.e peer rules using in the body only predicates
defined in other peers. Without loss of generality, we
assume that every mapping predicate is defined by only
one rule of the form i:p(X) « j:q(X) with j # i. The



definition of a mapping predicate ¢ : p consisting of n
rules of the form i:p(Xy) «+ By with 1 < k < n, can be
rewritten into 2n rules of the form i:py (X)) — By and
1:p(X) —i:pp(X) , with 1 <k <n.

Definition 1 A peer P; is a tuple (D;, LP;, MP;,ZC;)
where (i) D; is a (local) database consisting of a set of
facts; (ii) LP; is a set of standard rules; (iii) MP; is a
set of mapping rules and (iv) ZC; is a set of constraints
over predicates defined in D;, LP; and MP,;. A P2P
system PS is a set of peers {P1,...,P,}. a

Given a P2P system PS = {Pq,...,P,} where P; =
(D, LP;, MP;,ZC;), we denote as D, LP, MP and ZIC
respectively the global sets of ground facts, standard
rules, mapping rules and integrity constraints: D =
DiU---UD,, LP=LP1U---ULP,, MP = MP, U
- -UMP,, and ZC = IC1U- - -UZC,,. With a little abuse
of notation we shall also denote with PS both the tuple
(D, LP, MP,ZC) and the set DULPUMPUIC. Given
a peer P;, M Pred(P;), DPred(P;) and BPred(P;) de-
note, respectively, the sets of mapping, derived and base
predicates defined in P;. Analogously, M Pred(PS),
DPred(PS) and BPred(PS) define the sets of map-
ping, derived and base predicates in PS.

FOL semantics. The FOL semantics of a P2P sys-
tem PS = {Pq,..., P,} is given by the minimal model
semantics of PS = DULPUMPUIC. For a given P2P
system PS, MM (PS) denotes the set of minimal mod-
els of PS. As DULP UMP is a positive program, PS
may admit zero or one minimal model. In particular, if
MM(DULPUMP) = {M} then MM(PS) = {M} if
M = IC, otherwise MM (PS) = (). The problem with
such a semantics is that local inconsistencies make the
global system inconsistent.

Weak model semantics

This section introduces a new semantics, called weak
model semantics, based on a new interpretation of map-
ping rules, which will now be denoted with a different
syntax of the form H « B. Intuitively, H <= B means
that if the body conjunction B is true in the source
peer the atom H could be imported in the target peer,
that is H is true in the target peer only if it does not
imply (directly or indirectly) the violation of some con-
straints. The following example should make the mean-
ing of mapping rules crystal clear.

Example 2 Consider the P2P system depicted in Fi-
gure 2. P9 contains the fact ¢(b) whereas P; contains
the fact s(a), the mapping rule p(X) « ¢(X), the con-
straint «— r(X),r(Y),X #Y and the standard rules
r(X) « p(X) and r(X) <« s(X). In this case the fact
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(@)

p(X)=— q(X)
r(X) = s(X)
r(X) = p(x)

-—r(X),r(Y),X =Y

q(b)

Figure 2: A P2P system

p(b) cannot be imported in P as it indirectly violates
its integrity constraint.

Before formally presenting the weak model semantics
we introduce some notation. Given a mapping rule r =
A — B, with St(r) we denote the corresponding logic
rule A — B. Analogously, given a set of mapping rules
MP, St(MP) = {St(r) | r € MP} and given a P2P
system PS = DULPUMPUIC, St(PS)=DULPU
St(MP)UIC.

In the next two subsections we present two alternative
and equivalent characterizations of the weak model se-
mantics. The first semantics is based on a different
satisfaction of mapping rules, whereas the second one
is based on the rewriting of mapping rules into prior-
itized rules (Brewka, Niemela, & Truszczynski 2003;
Sakama & Inoue 2000). For the rest of this section
we assume that all peers are locally consistent, i.e. for
each peer P;, the database D; and the standard rules
in LP; are consistent w.r.t. ZC;, (D; U LP; &= IC;).
In such a case we say that the P2P system is consis-
tent and inconsistencies may be introduced when peers
import data from other peers. The generalization for
inconsistent peers will be considered in the next section.

Preferred weak models

Informally, the idea is that for a ground mapping rule
A «— B, the atom A could be inferred only if the
body B is true. Formally, given an interpretation M,
a ground standard rule D <« C and a ground mapping
rule A «— B, valpy (C «— D) = valpy(C) > valp (D)
whereas valy (A «— B) = valp (A) < valp(B).

Definition 2 Given a P2P system PS = DU LP U
MP UIC, an interpretation M is a weak model for PS
if (M} = MM(St(PSM)), where PSM is the program
obtained from ground(PS) by removing all mapping
rules whose head is false w.r.t. M. O

We shall denote with M[D] (resp. M[LP], M[MP])
the set of ground atoms of M which are defined in D
(resp. LP, MP).

Definition 3 Given two weak models M and N, we
say that M is preferable to N, and we write M J N,
if M[MP] O NIMP]. Moreover, if M I N and N 2



M we write M 3 N. A weak model M is said to
be preferred if there is no weak model N such that
N M. |

The set of weak models for a P2P PS system will be de-
noted by WM(PS), whereas the set of preferred weak
models will be denoted by PWM(PS).

Proposition 1 For any P2P system PS, 3 defines a
partial order on the set of weak models of PS. |
The next theorem shows that P2P systems always ad-
mit preferred weak models.

Theorem 1 For every consistent P2P system PS,
PWM(PS) # 0. o

P, P,

P(X)<— d(X) q(@

q(b)

- p(X),p(Y).X =Y

Figure 3: The system PS

Example 3 Consider the P2P system PS depicted
in Figure 3. P2 contains the facts ¢(a) and ¢(b),
whereas P; contains the mapping rule p(X) <« ¢(X)
and the constraint — p(X),p(Y),X #Y. The weak
models of the system are My = {q(a),q(b)}, M; =

{q(a)aQ(b)vp(a)} and M2 = {Q(a)7Q(b)ap(b)} whereas
the preferred weak models are M; and M.

We conclude this section showing how a classical
problem can be expressed using the preferred weak
model semantics.

Example 4 Three-colorability. We are given two peers
‘P1, containing a set of nodes, defined by a unary rela-
tion node, and a set of colors, defined by the unary
predicate color, and Ps, containing the mapping rule

colored(X,C) <« 1l:node(X),1:color(C)
and the integrity constraints

— colored(X,C1), colored(X,Cs), C1 # Cy
— edge(X,Y), colored(X,C), colored(Y,C)

stating, respectively, that a node cannot be colored with
two different colors and two connected nodes cannot be
colored with the same color. The mapping rule states
that the node = can be colored with the color ¢, only if
in doing this no constraint is violated, that is if the node
x is colored with a unique color and there is no adjacent
node colored with the same color. Each preferred weak
model computes a maximal subgraph which is three-
colorable. a
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Prioritized programs and preferred stable
models

We now present an alternative semantics based on
the rewriting of mapping rules into prioritized rules
(Brewka, Niemela, & Truszczynski 2003; Sakama & In-
oue 2000). For the sake of notation we consider exclu-
sive disjunctive rules of the form A @& A’ < B whose
meaning is that if B is true then exactly one of A or
A’ must be true. Note that the rule A ® A’ «— B is
just shorthand for A « B,not A’, A’ +— B,not A and
— A A

This illustrates the possibility of eliminating ‘exclu-
sive’ disjunctions from a logic program.

Definition 4 Given a P2P system PS = DU LP U

MP UZC and a mapping rule r=i: p(x) « B, then

e Rew(r) denotes the pair (i : p(z) ® i: p'(x) «— B,
i:p(z) = i:p'(x)), consisting of a disjunctive mapping
rule and a priority statement,

e Rew(MP) = ({Rew(r)[l]] r € MP}, {Rew(r)[2]|
r € MP}) and
e Rew(PS) = (D U LP U Rew(MP)[1] U IC,

Rew(MP)[2]). O

In the above definition the atom i:p(x) (resp. i:p'(x))
means that the fact p(z) is imported (resp. not im-
ported) in the peer P;. For a given mapping rule r,
Rew(r)[1] (resp. Rew(r)[2]) denotes the first (resp. sec-
ond) component of Rew(r).

Example 5 Consider again the system analyzed

in Example 3. The rewriting of the system is

Rew(PS) = ({q(a),q(b) , p(X) & p/(X) — q(X),
—p(X),p(Y), X # Y} {p(X) = p'(X}).

Rew(PS)[1] has three stable models:
Mo ={q(a),q(b),p'(a),p'(b)},
My = {q(a), q(b), p(a),p'(b)},

My ={q(a),q(b),p'(a),p(b)}.
The set of preferred stable models are {M;, My}, O

Example 6 The rewriting of the mapping rules of Ex-
ample 4 consists of the ’disjunctive’ rules

colored(X, red) @ colored' (X, red) — node(X)
colored(X, blue) @ colored' (X, blue) — node(X)
colored(X, yellow) @ colored (X, yellow) «— node(X)

plus the preferences:

colored(X,red) » colored (X, red)
colored(X, blue) = colored (X, blue)
colored(X, yellow) = colored' (X, yellow)

Given a P2P system PS and a preferred stable model
M for Rew(PS) we denote with St(M) the subset of
non-primed atoms of M and we say that St(M) is a
preferred stable model of PS. We denote the set of



preferred stable models of PS as PSM(PS). The fol-
lowing theorem shows the equivalence of preferred sta-
ble models and preferred weak models.

Theorem 2 For every P2P system PS,
PSM(PS) = PWM(PS). a

For the system of the previous example, PSM(PS) =

Ha(a),q(b), p(a)}, {a(a), q(b),p(b)}}.

Query answers and complexity

We consider now the computational complexity of cal-
culating preferred weak models and answers to queries.
As a P2P system may admit more than one preferred
weak model, the answer to a query is given by consider-
ing brave or cautious reasoning (also known as possible
and certain semantics).

Definition 5 Given a P2P system PS = {P1,...,Pn}
and a ground peer atom A, then A is true under

e brave reasoning if A € UZWEPWM(PS) M,

e cautious reasoning if A € nMePWM(PS) M. O

The following lemma states that for every P2P sys-
tem PS an atom is true in some of its preferred weak
models if and only if it is ¢rue in some of its weak mod-
els.

Lemma 1 Uy cpyymps) M = Uvewmps) N O
The upper bound results can be immediately fixed by
considering analogous results on stable model semantics
for prioritized logic programs. For disjunction-free (V —
free)? prioritized programs deciding whether an atom
is true in some preferred model is X8-complete, whereas
deciding whether an atom is true in every preferred
model is IT5-complete (Sakama & Inoue 2000).

Theorem 3 Let PS be a P2P system, then

1. Deciding whether an interpretation M is a preferred
weak model of PS is coN'P-complete.

2. Deciding whether an atom A is true in some preferred
weak model of PS is N'P-complete.

3. Deciding whether an atom A is true in every pre-
ferred weak model of PS is in 115 and coN'P-hard. O

Conclusion

In this paper we have introduced a logic programming
based framework for P2P deductive databases. The
new semantics, called preferred weak model semantics,
is based on a new interpretation of mapping rules. We

2The symbol V denotes inclusive disjunction and is dif-
ferent from @ as the latter denotes exclusive disjunction.
It should be recalled that inclusive disjunction allows more
than one atom to be true while exclusive disjunction allows
only one atom to be true.
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have presented a different characterization of the se-
mantics based on preferred stable models for priori-
tized logic programs. Moreover, we have also provided
some preliminary results on the complexity of answer-
ing queries in different contexts.
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