
The Information Flow Foundation for Fusing Inferences

Bo Hu
IAM Group, ECS

University of Southampton, UK
bh@ecs.soton.ac.uk

Abstract

A practical and efficient approach to hybrid reasoning is to
fuse different specialised systems that are designed particu-
larly for different types of problems. We provide formal treat-
ments to the fusion of inferences using information flow as
the theoretical framework. The fusion of DL- and Constraint-
based systems is used as an example to demonstrate the ap-
plicability.

Motivation and background
Taxonomies have been the fundamental structures in vari-
ous disciplines of natural sciences. Classifying taxonomies
has been adopted as one of the critical capabilities that are
sought after in the Semantic Web initiative to be of assis-
tance in organising the geometrically increasing knowledge
on the Internet (Berners-Lee, Hendler, & Lassila 2001). Re-
cently, substantial research has been devoted to the devel-
opment of more capable inferential systems. As a result,
Description Logic (DL) based taxonomic reasoning systems
have improved significantly. It is our contention that the ho-
mogeneous approach adopted by such systems is limited in
three ways: (i) the inevitable limitation of resources has em-
phasized a “trade-off”, i.e. the expressive power is restricted
to ensure computational tractability, completeness and de-
cidability; (ii) the specialist nature of their reasoning means
that they are only successful at carrying out particular tasks;
and (iii) due to the diversity of the real-world applications,
any new extensions to an inferential system are likely to in-
cur new limitations to be discovered.

Imagine a scenario that one has to build a decision sup-
port system with the underlying ontology containing not
only concepts such as parent, recursively defined as “human
beings who have human beings as children”, but also nu-
meric restrictions, e.g. a first class student has to score “B”
in all the courses that he/she enrolled in. With the current
progress of the DL-based reasoning, representing and clas-
sifying such heterogeneous knowledge are not difficult. Nu-
meric constraints can be introduced as the concrete datatype
in SHOQ(D) and reasoned with an extended tableau-based
algorithm (Horrocks & Sattler 2001). So far so good, the
problem seems solved as system developers have already

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

thought about the situations that a knowledge engineer might
come across and been well prepared for it. However, reality
is not always as perfect as we assume it would be. It might
be the case that a more complete specification is after for the
first class student which leads to a further restriction as

Example 1 A first class student is a student who passes all
the courses that he/she enrolled in and scores “A” in two
thirds of them.

Questions arise as no single existing DL-based system
is capable of tackling such numeric constraints when con-
structing the taxonomies. Even if there is one, we will soon
explore its limitation and face the same problem, especially
in the context of Semantic Web where hybrid knowledge
abounds.

This, to some extent, underpins the conclusion that be-
cause developing a general and omnipotent reasoning sys-
tem is practically difficult, ad hoc adaptations of exist-
ing systems to meet the inferential requirements are in-
evitable (Doyle & Patil 1991). However extending the un-
derlying algorithm of a reasoning system might be very dif-
ficult and impractical for knowledge engineers to achieve
at the application stage, as such a process might require
in-depth knowledge of the reasoning systems and extensive
programming skills. Hence, it is reasonable to believe that
if a knowledge model is too expressive to be analysed solely
within the framework of one type of reasoning paradigms,
alternative ones could be used jointly. It is equally rea-
sonable to envision a mechanism that shifts the integration
efforts from knowledge engineers to software agents (sys-
tems). Inference fusion (Hu, Arana, & Compatangelo 2003)
was proposed to address such issues.

In this paper, we try to establish the theoretical ground of
inference fusion on which the representation and reasoning
powers of DL-based systems and constraint-based systems
(referred to as constraint solvers, CS for short, hereafter) can
be dynamically joined based on the target problems. We do
so with the hope that such a formal treatment can be gener-
alised to other sorts of inferences and can open the door to
supervised automated fusion of inferences.

Inference fusion
Inference fusion was proposed as the framework to integrate
DL- and constraint-based inferences. It consists of a net-
work of communicating systems each with homogeneous

43

reasoning capabilities from within and contributing to a het-
erogeneous reasoning problem from without. As illustrated
in Figure 1, an interfacing engine (IE) evaluates reason-
ing requests submitted to a collection of reasoning systems
which are bundled together as an engine pool. Note that
in Figure 1 links among systems are ignored to emphasize
the dynamic nature of such connections. Upon receiving the
request, IE decides whether or not its local capabilities are
sufficient to deal with the knowledge model associated with
the request. In the former case, IE could decompose the
knowledge model into several homogeneous parts, schedul-
ing and issuing specific reasoning requests to the specialised
systems, e.g. Inf 1 to Inf5. The results of the inferences per-
formed by these other systems would be merged by IE, thus
providing an overall answer to the original request. This
process is referred to as inference fusion (Hu, Arana, &
Compatangelo 2003). It provides a means to bring respec-
tively homogeneous inferential systems together to form a
virtual reasoner with heterogeneous deductive power.

Engine Pool
IE

IE Interfacing
Engine

Infn
Inference
Systems

Inf1

Inf3

Inf4

Inf5

Inf2

Figure 1: A view of the engine pool

Inference fusion can be generalised to be applied in cases
where a joint capability is necessary while finding a single
system to perform the reasoning task is impractical due to
the availability and/or complexity.

Preliminary
In this section we will give a brief overview of languages
and technologies that are relevant in solving Example 1.

Description logics
DLs are a family of knowledge representation and
reasoning formalisms that have recently attracted sub-
stantial research interest, specially, after the DL-based
web ontology modelling languages (e.g. OWL DL,
http://www.w3.org/2004/OWL/) were considered to be of
crucial importance for the Semantic Web initiative (Berners-
Lee, Hendler, & Lassila 2001). DLs are based on the no-
tions of concepts (i.e. unary predicates) and properties (i.e.
binary predicates). Using different constructors, composite
concepts can be built up from atomic ones.

Let CN denote a concept name, C and D be arbitrary con-
cepts, R be a role name, n be a non-negative integer and �,
⊥ denote the top and the bottom. A concept definition in
DLs is either CN

.
� C (partial definition) or CN

.= C (full
definition). An interpretation I is a tuple (∆I , ·I) where
the nonempty set ∆I is the domain of I and the ·I func-
tion maps each concept to a subset of ∆I while each role
to a subset of ∆I × ∆I . The syntax and semantics of some
DL-based constructors are illustrated in Table 1.

Symbol Syntax Semantics (Interpretation)

� /⊥ ∆I / ∅
A AI ⊆ ∆I (A as atomic concept)

R RI ⊆ ∆I ×∆I

(U) C � D (C � D) CI ∪ DI (CI ∩ DI)

∀R . C { c | ∀d : 〈 c, d 〉 ∈ RI → d ∈ CI }
C ¬ C ∆I \ CI

E ∃R . C { c | ∃d : 〈 c, d 〉 ∈ RI ∧ d ∈ CI }
N (φnR) {c|�{d : 〈c, d〉 ∈ RI} φ n} (φ ∈ {≥,≤})

Table 1: some DL-based constructors

With the unambiguous semantics defined for each and
every concept constructor, DLs lend themselves to powerful
reasoning algorithms that automatically classify the domain
knowledge in hierarchical structures, memorised to provide
a cache for further reasoning.

Constraint satisfaction problems
A Constraint Satisfaction Problem (CSP) consists of a se-
quence of variables, a set of respective domains, and a set of
constraints.

Definition 1 (Constraint Satisfaction Problems) A Con-
straint Satisfaction Problem (CSP) is a triple (V, ω, C) where V

is a sequence of constrained variables, v1, . . . , vn, ω is a mapping
that associates vi ∈ V with a respective domain Di. Subsets of the
Cartesian product of D1, . . . , Dn are referred to as constraints
(denoted as C), i.e. Di × . . . × Dj (1 ≤ i ≤ j ≤ n) indicating
the compatible values of vi, . . . , vj .�

The domain of constrained variable vx (denoted as Dx)
is a set of values that can be assigned to vx; the assign-
ment of a variable is normally represented as a label that is a
variable-value pair assigning the value to the variable; and a
k-compound label simultaneously assigns k variables each a
value from the respective domains. Essentially, a constraint
on a set of k variables is a set of k compound labels. For
instance, 〈x 0〉, 〈y 0〉, 〈z 1〉 giving the compatible values of
x, y, and z. A solution to a CSP is an assignment indicating
the values that different variables can take simultaneously
without violating any constraints in C.

Solving a CSP can be considered as a repetitive process of
applying a sequence of algorithms. It starts with an initial,
unstable constraint store, which contains a sequence of vari-
ables with the respective domains and constraints defined on
a subset of the variables. A series of operators responsi-
ble for propagating constraints are applied to the constraint
store iteratively. So-called constraint propagation, also re-
ferred to as consistency algorithms, is a set of techniques
seeking to reduce a CSP into a problem that can be proved
to be insoluble or is easier to be solved. The constraint prop-
agation continues until the constraint store reaches a stable
status. In some cases, either a solution is found after prop-
agating the constraints and removing the inconsistent values
from Di or a backtrack-free search is obtained. Propaga-
tion techniques can also be used along with search algo-
rithms. Nowadays, general CSP solving, e.g. consistency
techniques, and specialised techniques have been integrated
into a constraint programming (CP) framework—the inter-
ested reader can refer to (Tsang 1993) for a thorough survey
of CSP techniques.

44

Fusing heterogeneous inferences
The fusion of heterogeneous inferences is, by no means, an
unexplored area, e.g. (Brachman, Fikes, & Levesque 1983),
ILOG Configurator 1, and the heterogeneous configuration
system (Christoph Ranze et al. 2002), etc. In this paper,
We formalise the notion of inference fusion (Section) us-
ing information flow and the Channel Theory, which pro-
vide the theoretical foundation for constructing virtual Hy-
brid Reasoning Systems (HRSs). Such a formalisation helps
to ensure that fusing of deductions from different inferen-
tial systems—in our example, a DL-based taxonomic rea-
soner with numeric constraints—are carried out in a seman-
tically consistent and adaptive manner. “Adaptive” is in the
sense that reasoning systems participating in an HRS can be
substituted by those with different expressive and deductive
power so that a different combination of systems is obtained
to meet the requirement of new reasoning requests. “Seman-
tically consistent” is in the sense that for all the systems con-
tributing to the fusion, no change to the underlying reason-
ing algorithms is necessary, i.e. the mapping is performed
at high abstract level. Essentially, this approach could be
generalised to automatically merge physically and logically
distributed inferential systems on demand.

Information flow
Information Flow is the mathematical model proposed by
Barwise and Seligman as a formalisation capturing the in-
formation flowing in any sorts of distributed systems rang-
ing from physically distributed control systems to abstract
ones (Barwise & Seligman 1997). It is based on the idea
that information exchange within a distributed system re-
sults from regularities that enable the information possessed
by one component of a distributed system to be understood
by another component. Such a notion is formalised in Chan-
nel Theory.

In Channel Theory, a channel connecting components that
participating in the information exchange by means of map-
pings among types and tokens. The interacting components
might have their own vocabulary, i.e. they might have differ-
ent types and tokens and thus different classification between
types and tokens; they might have different constraints regu-
lating the behaviour of the information that they are convey-
ing. Capturing all the above notions, is the so-called local
logic defined as follows:

Definition 2 (Local logic) A local logic is a four-tuple L =
(I, T, |=,�), where I is a set of tokens; T is a set of types;
|= is a binary relation, |=: I × F , called classification; and
� is a binary relation �: Γ × ∆, Γ ⊆ T and ∆ ⊆ T .�

The two binary relations give birth to two important parts
of a local logic, namely the classification and the theory.
The classification of a local logic is a three-tuple C =
(I, T, |=) determining the type of an instance in I , i.e. i |= t
(i ∈ I , t ∈ T) means i is of type t. The theory of a local
logic is a tuple T = (T,�) which must satisfy the following
conditions to be regular (Barwise & Seligman 1997):

1http://www.ilog.com/products/configurator/

Identity α � α for all α ∈ T ;

Weakening If Γ � ∆, then Γ, Γ′ � ∆, ∆′, for all
Γ, Γ′, ∆, ∆′ ⊆ T ; and

Global Cut If Γ, Σ0 � ∆, Σ1 for each partition 〈Σ0, Σ1〉 of
any Σ ⊆ T , then Γ � ∆, for all Γ, ∆ ⊆ T .

Note that commas on the left hand side of � are interpreted
conjunctively while on the right hand side disjunctively.

To facilitate the information exchange among separate
components of a distributed system, infomorphism (Barwise
& Seligman 1997) is defined between the local logics of
each component involved in the exchange.
Definition 3 (Infomorphism) An infomorphism between the
classifications of local logics L = (I, T, |=,�) and L′ =
(I ′, T ′, |=′,�′) is a contravariant pair of functions f =
〈f→, f←〉, where, f→ : T → T ′ and f← : I ← I ′, so that,
for all i′ ∈ I ′ and t ∈ T , f←(i′) |= t iff i′ |= f→(t)

An infomorphism can be expanded to the whole local logic if
f→ is also a theory interpretation, f→ : T → T

′. �

To some extent, the fusion of heterogeneous inferential
systems is equivalent to exchanging the information of in-
ferences among components of a distributed virtual HRS.
Hence, the infomorphism provides the theory foundation
and reasonable motivation to propose the morphism of in-
ferences.

Linking inferential systems
Obviously, fusing inferences is more than establishing a
common language within a community of inferential sys-
tems, which would be the task of ontology mapping or
schema matching. Though inference fusion requires the ex-
istence of such a language, the desiderata of fusion is to
make transparent the inferential process. In other words, in
a distributed environment, one system Inf could access the
knowledge possessed by another Inf’ through either trans-
lating the knowledge itself into an admissible format and
processing the translated knowledge with its own capacity,
or let Inf’ do its job and only retrieve the results. It is the
latter that we are after. Such an idea is formalised as flow of
inferences that is discussed in the following sections.

Before doing that, we have to think philosophically first.
“What is inference?” is a question on a par with “what is
the truth?” It is the ability to draw the lines between ob-
served data and unobserved parameters and/or underlying
laws. Analogously, an inferential system is a computer pro-
gram that can produce true sentences based on one or more
true sentences. Two different potential uses of the term “in-
ferential system” in the literature need to be clarified to avoid
any further confusion. We refer to the computer program
that implements reasoning algorithms but is not populated
with any knowledge models the “abstract inferential sys-
tem” while the program with certain knowledge models that
it can work with the “concrete inferential system”.
Definition 4 (Inferential system) An inferential system is a
three-tuple Inf = (M, C, σ), where

1. M is the underlying knowledge model that Inf works on;
2. C is a set of numeric or symbolic constants as classification la-

bels; and

45

3. σ : M × C is the algorithm that classifies a subset of M to
categories in C.

We refer to an inferential system defined as above a con-
crete inferential system, Inf c, while the tuple (C, σ) an ab-
stract inferential system, denoted as Inf a. Examples of Inf c
are knowledge base systems of which the knowledge base
management system (KBMS) is the abstract inferential sys-
tem together with other housekeeping functionalities. The
contents of the knowledge base are the underlying knowl-
edge model that a KBMS works on. For simplicity, Inf is
used instead of Inf c if no confusion is likely.

In practice, it might be impossible to represent the under-
lying knowledge model of every type of inferential systems
using a uniform approach. In our framework, we are only in-
terested in a particular type of knowledge models, i.e. those
can be characterised as a local logic and leave out other types
at this stage. We will refer to such knowledge models the
admissible knowledge models.
Definition 5 (Admissible Knowledge Model) An admissi-
ble knowledge model, Mad, of an inferential system Inf is a four-
tuple Mad = (X, F, |=,�) where

1. F is a set of well-formed formulae (types in Def 2);
2. X is a set of instances that can be classified against F (tokens in

Def 2);
3. |=: X × F classifying an instances with respect to F so that

x |= g (g ⊆ F and x ⊆ X) iff x satisfies g;
4. �: F × F , a reflexive, transitive and anti-symmetric relation (a

partial order) on the subsets of F, so that g � g′ (g, g′ ⊆ F)
iff wherever g holds with respect to certain interpretations, g′

holds in the same interpretations.�

For instance, in a concrete DL-based system, X is a fi-
nite set of individuals and C a finite set of concepts. |= can
be materialised as the instantiation relationship between in-
dividuals and the concepts that the individuals instantiate,
while � the subsumption relationship among concepts. Sim-
ilarly, in CSP, X is the Cartesian product of Di (i.e. the set
of all the possible assignments), F is the set of constraint
expressions describing what values can be assigned to con-
strained variables simultaneously, |= assigns each constraint
expression g ⊆ F an element x ∈ X so that the constrained
variables in g can take simultaneously without falsifying any
constraints in F , and g � g ′ holds when every assignment
satisfying g also satisfies g′

Analogue to the infomorphism regulating the information
flowing from one component of a distributed system to an-
other, we propose the concept of infermorphism that facili-
tates the transformation of inference results while preserves
their veridicality to the original systems.
Definition 6 (Infermorphism) Given two inferential sys-
tems based on admissible knowledge models Inf =
(Mad, C, σ) and Inf = (M ′

ad, C
′, σ′), an inference mor-

phism (infermorphism for short) is a contravariant pair
f∗ = 〈f→, f←〉 such that

1. f∗ : Mad � M ′
ad is a morphism of their underlying

knowledge models Mad and M ′
ad; and

2. f→ : C → C′ is an interpretation of the classification
labels C in C ′.�

Representing as local logic
In order to justify the fusion of inferences from different sys-
tems, one has to demonstrate that the knowledge model of a
concrete inferential system is indeed a local logic (denoted
as LM), the common abstraction facilitating mutual under-
standing among systems. This amounts to show that 1) the
theory of LM is regular and 2) the normal token of LM sat-
isfy all the constraints specified in the theory of LM.

These two conditions follow naturally from the definition
of admissible knowledge model (Def. 5) which determines
a local logic LMad whose theory is the closure of � under
Identity, Weakening and Global Cut. When considering
a particular case of the inference fusion, we only need to
demonstrate that the knowledge model of every system sub-
ject to the fusion is admissible and the different sets of clas-
sification labels are mutually interpretable.

Inference fusion

Knowledge Model

Morphism

Knowledge Model'

Morphism

Heterogeneous
Reasoning Problem

Inf2Inf1

Heterogeneous
Reasoning Problem

f g

 [] []

Inf []

Figure 2: Relating inferential systems with a binary channel

To enable a neat fusion of inferences, a virtual HRS is
constructed as the point of reference for all the respectively
homogeneous componential systems involved in the hetero-
geneous reasoning. As depicted in Figure 2, by expressing
an inferential system using local logic, the inference fusion
can be formally defined as below.

Definition 7 (Inference Fusion) Given Infi the inferential
systems (i ∈ I , an index set), Inf the channel connecting
Infi and Infj and fi the infermorphism functions from Infi
to Inf, the fusion of inference with respect to a heteroge-
neous problem is

Inf [Π] =
i∈I∑

fi(Infi[πi])

where Π is the heterogeneous problem that is divided into
respectively homogeneous sub-problems, πi.�

LM[Inf [Π]] is used to capture the local logic for the
virtual inferential system populated with Π whose tokens
are n-tuples 〈t1 . . . tn〉 such that ti is normal token of
LM[Inf i[πi]] and whose types are the union of the types of
LM[Inf i[πi]]. For instance, a first class student John would
have to satisfy all the DL-based restrictions defined on con-
cept student that makes him a normal token in the “DL-
sense”. Meanwhile, he also has to meet the numeric con-
straints that, at the same time, makes him a normal token in
the “CSP-sense”.

46

In many practical cases, what really concerns us is the
projection of one inferential system upon to another while
the latter plays a dominant role in fusing their inferences.
Be such a case, when we try to use DL-based inference to
find out whether first class student John is at the same time
a student—instantiating the DL concept student.

Definition 8 (Image of Inference) The image of Infi[πi] in
Infj [πj] induced by channel Inf is f−1

j (fi(Infi[πi])) that is

1. LM[Infj [πi]] = f−1
j (fi(LM[Infi[πi]])); and

2. Infj [Ci] = f−1
j (fi(Infi[Ci])).

and vise versa where i, j ∈ I .�

The declarative reading of Def. 8 is projecting Inf i onto
Inf j is equivalent to recapturing the local logic of Inf i in
Inf j and interpreting the classification labels of Inf i in Inf j .

Based on Def. 7 and Def. 8, a heterogeneous reasoning
problem Π such as the one described in Example 1 can be
processed as illustrated in Table 2.

1. Π is fragmented into homogeneous components π1, . . . , πn,
based on the known capabilities of participating reasoners.

2. Each of the homogeneous components, πi (i ≤ n), is processed
by a specialised inferential system, Infi, and the results are
made transparent to others.

3. Infermorphism is generated between Infj and Infk (j
= k, j ≤
n, k ≤ n) (e.g. Inf1 and Inf2 illustrated in Figure 2).

4. For any two systems connected by an infermorphism, the knowl-
edge model of the source system is recaptured in the target
via infermorphism channel while the classification labels of the
source are interpreted in the target.

5. The sum of all inferential systems presents the results of the
inference fusion process.

Table 2: Fusing Steps

Linkages
Infermorphism must be rooted in the mapping between types
and tokens of the knowledge models of different systems.
We proposed Linkages to materialise such mappings and use
f instead of f→ when no confusion is likely.

Definition 9 (Linkage) In an inference fusion problem
Inf [Π] =

∑i
fi(Infi[πi]), let α be a type in the theory

determined by LM[Inf [Π]] and αi be the type in the theory
determined by LM[Infi[πi]]. If αj = f−1

j (fk(αk)), the re-
lation fj(αj) = α = fk(αk) induced by α is called the
linkage between Infj and Infk (i, j, k ∈ I).�

Intuitively, linkages map the intrinsic data structures of
different systems. They, responsible for the inter-system
communications, are the carriers of the inbound and out-
bound flows of information for an inferential system. Link-
age must satisfy the following requirements:

• They should be such that no modification must be made
to the underlying algorithms of either inferential system,
i.e. linkages link the data structures semantically.

• They should have enough expressive power to reflect the
relevant inferential results from one system to the other
without causing knowledge loss or increasing the compu-
tational complexity in either system, i.e. linkages link the
native data structures only.

So, what is the first class student?
Let’s go back to Example 1. As proposed in (Hu, Arana,
& Compatangelo 2003), the idiosyncratic definition of first
class student can be represented using a DL-like language,
DL(D)/S. Reasoning with an ontology containing such
concepts amounts to defining the infermorphism between
DL- and constraint-based systems. The heterogeneous prob-
lem of such a particular case is Π = {πDL, πCSP}.

In the first class student case, we are seeking for tax-
onomies taking into account the non-DL inferences that are
induced through Inf as f−1

DL
(fCS(Inf CS[πCSP])). And the

taxonomies with respect to the whole problem (both DL-
based definitions and CSP restrictions) are obtained as:

InfDL[Π] = f−1
DL

(fCS(InfCS[πCSP])) + Inf DL[πDL]

where Inf DL stands for the DL-based systems, Inf CS the
constraint solvers. From the foundation work laid out in
previous sections, we can see that the core of the above
equation is the infermorphism from Inf CS to Inf DL which
is the morphism between local logics, i.e. from LCS =
LM[InfCS[πCSP]] to LDL = LM[InfDL[πDL]] and the inter-
pretation of classification labels of Inf CS in Inf DL.

Linking constraints and DL concepts
So far morphism is defined with respect to the entire knowl-
edge models. This, however, might result in unsoundness
as surjectiveness between tokens from LDL and LCS is not
guaranteed even though both LDL and LCS are sound (Bar-
wise & Seligman 1997). Consequently, inferences passed
along the path from Inf CS to Inf DL might not be reliable.
This is solved by considering only a subset of the tokens of
which the mapping can be performed in a meaningful way
and the surjectiveness is achieved by constructing images
for tokens that do not have correspondences.

A direct consequence of applying constraint propagation
is the reduction of the original CSP, variable domains pruned
and inconsistent values removed. If the original CSP is sat-
isfiable (i.e. no variable is associated with an empty do-
main), with the help of constraint solvers, it is possible to
obtain and leverage two kinds of sequent (ordering) to fa-
cilitate a sound infermorphism, which are based on two ob-
servations. Firstly, DL-based systems can specify subsump-
tion relationships among concepts via the “told” mechanism.
For instance, with RACER (Haarslev & Möller 2003), one
can specify concept A to be subsumed by concept B as:
(implies A B). Other DL-based systems either have simi-
lar operators or provide mechanisms to fulfil such function-
alities. Secondly, because constraints can be considered as
sets of k-compound labels giving the legal values that con-
strained variables can take simultaneously (Tsang 1993), an
inclusion ordering among different sets of k-compound la-
bels can be established and manipulated. Hence, by asso-
ciating DL-based (existing or purposely introduced) atomic

47

concepts with sets of k-compound labels from constraint
solvers, mappings between sequents can be established be-
tween DL- and constraint-based systems.

Step-by-step fusion of InfDL and InfCS

Step one: fragmenting heterogeneous problem We
fragment any DL(D)/S-concepts into DL-oriented compo-
nents πDL and CSP-oriented ones πCSP. Since an infermor-
phism f : Inf CS � InfDL is sought after, new atomic con-
cepts are introduced into πDL to ensure a surjective mapping
between LDL and LCS.

Step two: determining the local logics Within the con-
text of fusing DL- and constraint-based inferences, Def. 4
can be made more specific as:
DL-based system is a three-tuple where M is the set of
all axioms and assertions, i.e. TBox∪ABox, σ is mate-
rialised by the underlying tableau-based algorithm classi-
fying a set of axioms and/or assertions to a category in
C = {�,⊥,unknown}.
Constraint solver is a three-tuple where M is the union of
the set of constrained variables (vi∈I) with respective do-
main (Di∈I) and the set of all constraints defined over vi∈I ,
σ is the set of constraint propagation and searching algo-
rithms that determines whether a subset of M is satisfiable
or not, and C = {yes,no}.

It is evident that both DL systems and constraint solvers
are based on admissible knowledge models and determine
the corresponding local logics. For instance, after consis-
tence check, the classification of the knowledge model of a
DL-based system is (A, T , |=ins) where |=ins is the instanti-
ation relationship between individuals from ABox and con-
cepts from TBox. Clearly, such a classification determines
a local logic whose theory is equivalent to (T ,�) where �
stands for the subsumption relationship among concepts.

Similarly, after fully propagating all the constraints, the
knowledge model of a constraint solver can be regarded as a
classification (Dk, C, λ) where Dk is the Cartesian product
of Di specifying the set of possible combinations of values
of all constrained variables, C is the set of all constraints
and λ assigns δ ∈ Dk to variables in c ∈ C. Ideally, after
propagating all constraints, a full path consistency (Mohr &
Henderson 1986) can be achieved and thus every δ ∈ D k

satisfies C. It is evident that classification (Dk, C, λ) deter-
mines a local logic whose theory is (C,�) where � is an
operator of which if the set of constraints on the left hand
side holds those on the right hand side holds as well.

Step three: establishing linkages Linkages are estab-
lished between atomic concepts introduced to emulate nu-
meric constraints on one hand and sets of k-compound la-
bels on the other. Meanwhile, interpreting {yes,no} in
{�,⊥,unknown} is straightforward.

Step four and Step five: solving the problem πDL and
πCSP are reasoned about using DL-based systems and con-
straint solvers respectively. Inferences are moved via the
infermorphism channel that ensures a mutual understand-
ing between different systems. Results of Inf DL[Π] are pre-
sented as the solution to the heterogeneous problem.

Conclusions
We presented a formalisation of inferential systems, and
used such a formal representation to capture the fusion of
heterogeneous inferences. Concrete inferential systems con-
sist of underlying knowledge models, classification labels
and reasoning algorithms of which the sum of the latter two
is referred to as abstract inferential systems. Fusion of infer-
ence is achieved through morphism between the local logics
of inferential systems (logically equivalent to the underlying
knowledge models of inferential systems) and the interpre-
tation of those classification labels of the source systems in
the target ones.

The advantages of founding inference fusion upon the in-
formation flow framework can be seen from the potential of
an automated treatments for integrating distributed reason-
ing systems. Part of such automation has been explored with
respect to a particular instance of inference fusion—the in-
tegration of DL-based taxonomic reasoning and constraint
satisfaction problems—by way of an example. The integra-
tion of other inferential systems is under consideration.

Acknowledgements
This work is supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) under the AKT IRC
grant GR/N15764.

References
Barwise, J., and Seligman, J. 1997. Informaiton Flow: The
Logic of Distributed Systems. Cambridge University Press.
Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
Semantic Web. Scientific American 28–37.
Brachman, R.; Fikes, R.; and Levesque, H. 1983. Krypton:
A functional approach to knowledge representation. IEEE
Computer 16(10):67–73.
Christoph Ranze, K.; Scholz, T.; Wagner, T.; Günter, A.;
Herzog, O.; Hollmann, O.; Schlieder, C.; and Arlt, V.
2002. A structure based configuration tool: Drive solution
designer-DSD. In AAAI/IAAI-2002, 845–852.
Doyle, J., and Patil, R. S. 1991. Two theses of knowledge
representation: language restrictions, taxonomic classifica-
tion, and the utility of representation services. Artificial
Intelligence 48:261–297.
Haarslev, V., and Möller, R. 2003. RACER User’s Guide
and Reference Manual Version 1.7.7. University of Ham-
burg, Computer Science Department.
Horrocks, I., and Sattler, U. 2001. Ontology Reasoning
in the SHOQ(D) Description Logic. In Proceedings of
the 17th International Joint Conference on Artificial Intel-
ligence (IJCAI’01), 199–204. Morgan Kaufmann.
Hu, B.; Arana, I.; and Compatangelo, E. 2003. Facil-
itating dl-based hybrid reasoning with Inference Fusion.
Knowledge-Based Systems 16(5-6):253–260.
Mohr, R., and Henderson, T. C. 1986. Arc and path con-
sistency revisited. Artificial Intelligence 28:225–233.
Tsang, E. P. K. 1993. Foundations of Constraint Satisfac-
tion. Academic Press.

48

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1240 1240]
 /PageSize [612.000 792.000]
>> setpagedevice

