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Abstract sibly with a subscript) to represent one discrete variable (or

a singleton set). The juxtaposition of two or more letters (ei-

In this paper, we investigate the semantic meaning of ther uppercase or lowercase) represents the union of the sets

the messages passed in the Hugin architecture for prob-

abilistic inference. By utilizing this information, one denoted by the letters. We ugeX) to denote goint prob-
can avoid passing up to half of the messages that could ability distribution (JPD) over a seX of variables, and we
have had to be passed in the Hugin architecture. call p(Y') whereY C X amarginaldistribution (ofp(X)).

We usep(X|Y) to denote theconditional probability dis-
. tribution(CPD) of X givenY, and X is theheadandY is
1'_ Introduction i the tail of this CPD. A marginap(X) can also be consid-
The global propagation(GP) (Huang & Darwiche 1996)  ered as a CPD with its tail empty (i.e2(X|0)). We use
method used in the Hugin architecture (Lepar & Shenoy 1(x v, Z) to denote thaty and Z are conditional inde-
1998) is arguably one of the best methods for probabilis- pendent (CI) givert” (Pearl 1988). Apotentialover a set
tic inference in Bayesian networks. Passing messages be-x of variables, denotedy or éx(X), is a non-negative
tween cliques in a junction tree is the basic operation in the fynction.
GP method. It is traditionally considered that the messages Traditionally, aBayesian networkBN) defined over a set
passed are simply potentials without any specific semantic 1/ — a1, ..., a,} of variables is alirected acyclic graph
meaning. No research has been reported on studying the al-(DAG) augmented with a set of CPDs. More precisely, each
gebraic properties of the messages. . variableq; in V is represented as a node in the DAG and
In this paper, by studying the factorizations of a joint s associated with a CPP(a;|m,, ), wherer,, denotes the

probability distribution defined by a Bayesian netwddsc parents of; in the DAG. The product of these CPDs defines
fore andafter the GP method is performed, we investigate 5 jpp as:

the messages passed algebraically, and we make the fol-
lowing two contributions. (a) We reveal that the messages p(V) = ][ plailma.), 1)
passed are not mere potentials, but in fact separator mar- ai€V

ginals or factors in their factorizations. (b) We demonstrqte and we call this factorization (in terms of CPDsBayesian
that the revealed semantics of the messages can be utilizedfactorization. It is important to note that each variable

to avoid passing up to half of the messages that could have ¢, ¢ V appearsexactly onceas the head of one CPD in
had to be passed by the GP method. the Bayesian factorization.

The paper is organized as follows. We present back-  Alternatively and equivalently, a BN can also be defined
ground knowledge in Section 2. In Section 3, we study dif- in terms of the CPD factorization of a JPD.
fgrent factonzathns of the joint probabﬂfcy distribution dg— Definition 1 Let V = {ai, ..., a,}. Consider the CPD
fined by a Bayesian network. By comparing these factoriza- At .
. . g actorization below:
tions, the semantics of messages passed in the GP methocI
is gradually revealed. In Section 4, we use an example to p(V) = 11 plailA;), 2
show that utilizing the semantics of the messages revealed is ai€V, a;@A;, A;CV
potentially more efficient than the GP method in the Hugin
architecture. We discuss future work and conclude the paper
in Section 5.

If (1) eacha; € V appears exactly once as the head of one

CPD in the above factorization, and (2) the graph obtained

by depicting a directed edge frobrto a; for eachb € A; is

aDAG,i=1, ..., n,,then the DAG drawn and the CPDs
2. Background p(a;]4;) in Eq. (2) define a BN. In fact, the factorization in

We use a upper case letter (possibly with a subscript) to rep- Eq. (2) is a Bayesian factorization of the defined BN.

resent a set of discrete variables and a lower case letter (pos- An ordering ofall the variables in a DAG is calledtapo-

Copyright © 2006, American Association for Artificial Intelli-  logical orderingif for each variable; in the DAG, the vari-
gence (www.aaai.org). All rights reserved. ables inm,, precedes; in the ordering. We generalize the
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notion to a subset of variables in a DAG. Llétrepresent the
set of all variables in a DAG, a subsEtC V of variables is
said to be in a topological ordering with respect to the DAG,
if for each variable:; € X, the variables in the intersection
of a;'s ancestors an& precedey; in the ordering. We say
that a Bayesian factorization follows a topological ordering
if for each CPDp(a;|m,,), variables inr,, precede variable
a; in the ordering. Note that the DAG of a BN may have
many different topological orderings, and its Bayesian fac- 0 0 i
torization follows all these orderings. We can say that all

these topological orderings lead to the same Bayesian fac- Figure 2: (i) The Junction tree constructed from the DAG in

torization (Pearl 1988). Fig. 1. (ii) Passing messages in the Collect-Evidence stage,
and (iii) passing message in the Distribute-Evidence stage,
k@ pe® whency = def is chosen as the root.
weme " weive or more cliques, then we arbitrarily assigfu;|r,,) to one
of the cliques. If no CPD is assigned to a cliguig then
§.pu1e9 ¢.. = 1. In our example, the following clique potentials
h“( mg will be obtained before the GP is applied:
¢C1 (GC) = p(a’> ~p(c|a), ¢C4 (def) =1
Figure 1: The DAG of the Asia travel BN. ey (bde) = p(b) - p(dle) - pleld), de; (fh) = p(h|f)
(bcz(Cdf) = p(f|0d)7 ¢ca(efg) :p(g‘fe)
Example 1 Consider the Asia travel BN defined oviér= ©)
{a, ..., h} from (Lauritzen & Spiegelhalter 1988). Its  |nthe meantime, a separator potential is also formed for each
DAG and the CPDs as_somate_zd with each node are depicted separator with initial valug, thatis,¢,, = 1,i =1, ..., 5.
in Fig. 1. The JPDy(V') is obtained asp(V') = p(a) - p(b) - It is known that the following equation holds before the GP
p(cla) - p(d|b) - p(e[b) - p(fled) - p(glef) - p(h|f). The or- method is performed on the junction tree:
dering< a, b, ¢, d, e, f, g, h > is atopological ordering.
The ordering< b, d, h > is a topological ordering for the p(V) = e bes* Pes * Pey * Pes * Deg- (4)
subset{b, d, h} with respect to the DAG. Note the separator potentials, (-) are identity potential

A BN is normally transformed into a junction tree for proba-  (¢s, = 1) before the GP method is applied.

bilistic inference. Among various algorithms developed, the ~ The basic operation in the GP method is a local computa-

GP method (Lauritzen & Spiegelhalter 1988; Shafer 1991; tion calledmessage pass. Consider two adjacent cliqyes

Jensen, Lauritzen, & Olesen 1990; Lepar & Shenoy 1998) andc; with the separatos;;, thatc; passes a messag@c;

is well received and implemented, for instance, in the (orc; absorbsthe message from}) means a two-step com-

renowned Hugin architecture. The GP method realizes the putation: (1) updating the separator cliqug; by setting

inference task not directly on the DAG of a BN, buton a &s,, = (X_.,_s,, ®e.)/¢s,,; (2) updating the clique poten-

secondary structure callgahction tree. The junctiontreeis  tial ¢., by settinge.;, = ¢, - ¢s,;. The potentiab,, is the

constructed from the DAG through moralization and trian-  so-called “message” passed framto c;. Obviously, ¢,

gulation. The GP method in essence is a coordinated seriesin general is just a non-negative function.

of local manipulations calleshessage passes the junction The GP method is a coordinated sequence of message

tree. Readers are referred to (Huang & Darwiche 1996) for passes. Consider a junction tree withcliques. It be-

detailed exposition. The following highlights pertinent facts gins by picking any clique in the junction tree as the root,

of the GP method that are relevant to the discussions in this and then performs a sequence of message passes divided

paper using an example. into two stages, namely, th€ollect-Evidencestage, and
Consider the Asia travel BN in Example 1. The DAG in theDistribute-Evidencestage. During th€ollect-Evidence

Fig. 1 is moralized and triangulated so that a junction tree pass, each clique in the junction tree passes a message to its

such as the one in Fig. 2 (i) is constructed. This junction tree neighbors towards the root, beginning with the clique far-

consists of 6 cliques depicted as round rectangles, denotedthest from the root. During thBistribute-Evidencepass,

c1 =ac,co =bde,cg =cdf,cy =def,c5 = fh,cg =efg, each clique in the junction tree passes a message to its neigh-

and 5 separators depicted as smaller rectangles attached tdoor away from the root’s direction, beginning with the root

the edge connecting two incidental cliques, dencted= itself. TheCollect-Evidencetage causes — 1 messages to

c, 8o =de,s3=df,s4=f,s5 =ef. be passed. Similarly, thBistribute-Evidencestage causes
Every CPDp(a;|m,,) in Fig. 1 is assigned to a cliqug anothern — 1 messages to be passed. Altogether, there are

if {a;} Um,, C c; to form the clique potentiap.; before exact2(n — 1) messages to be passed (Huang & Darwiche

the GP method is applied. {fa;} U 7., is a subset of two 1996; Jensen 1996). The sequence of message passes is
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shown in Fig. 2 (ii) and (iii) when the clique, = def was potential receives result

chosen as the root. b, nothing p(a) - p(cla) = plac)

After passing al(n—1) messages, the potentials and Doy nothing p(b) - p(d[b) - p(e|b) = p(bde)
¢, will have been turned into marginaiéc;) andp(s;) re- bes p(c), p(d) p(fled) - p(e) - p(d) = p(cdf)
spectively, and the following equation holds (Huang & Dar- ¢, p(de), p(f|d) p(de) - p(f|d) = p(def)
wiche 1996). Pes p(f) p(hlf) - p(f) = p(fh)

beo p(ef) p(glef) - plef) = p(efq)

pe1) - plea) - ples) - plea) - p(es) - ples) (5)
p(s1) - p(s2) - p(s3) - p(sa) - p(ss)
Although the mechanism of the GP method is well under- Table 1: Allocating separator marginals, the underlined

stood, what indeed the semantic meaning of the messagesterms are either the separator marginals or from the factor-
¢s, IS remains mysterious. ization of a separator marginal.

p(V) =

i 3..Demyst|fy the Messages the clique potentialp.,(efg) = p(glef), we can multi-
3.1 A Motivating Example ply it with the separator marginal(ef) which results in
Comparing Eq. (4) with Eqg. (5) leads us to the demystifica- ¢.,(efg) = p(glef) - plef) = p(efg). So far, we have
tion of the messages. In the following, we will consider how successfully obtained marginals for cliquas c2, cs, and
one can transform Eq. (4) to Eq. (&lgebraically. ¢g and we have consumed the separator margi(gls and
Recall that the clique potentials in Eq. (4) are in fact com- p(ef) during this process. We still need to make the remain-
posed of the original CPDs from the BN shown in Fig. 1. If ing clique potential®., (cdf) = p(f|cd) and¢.,(def) = 1
we substitute the actual contents for the clique potentials in marginals by consuming the remaining separator marginals,

Eq. (4), we obtain the following: i.e., p(c), p(de) andp(df). In order to makep.,(cdf) =
p(f|ed) marginal, we need to multiply it with(cd), how-
Oer Pea ever, we only have the separator margingls), p(de) and
V) = a) - plela)]- In(d) - p(dle) - plelb)] - p(df) at our disposal. It is easy to verify that we cannot
2(V) e lcp( | )ic ot )4)33( ) I;( ) mingle p(de) with ¢., (cdf) = p(f|cd) to obtain marginal

p(cdf). Therefore,p(de) has to be allocated to the clique

—— AN N — .

[p(fled)]- [1] - [p(h|)]-[p(glfe)]  (6) POItef;]tlachc(i?)ef) SUCZ_tha'fﬁml(gef) :k'l '@P(C(is)-f;Ne now

. . . _ only havep(df) at our disposal for making.., (def) a mar-
Comparing Eq. (6) with Eq. (5), one may immediately gina| Note thap(df) = p(d) - p(f|d), and this factoriza-

notice that Eq. (6) does not have any denominators as Eq. (5) ion of the separator marginal helps make(de f) = p(de)
0_'093- By multiplying .and d|y|d|nng:1p(sj) atthe same 5 marginal by multiplyings(f|d) with ¢., (def) to obtain
time to Eq. (6), one will obtaih bey(def) = p(de) - p(f|d). It is perhaps worth pointing
out that the CII(f, d, e) holds in the original DAG in

p(V) = e+ de-df - f-ef]: Fig. 1. Thereforeg,,(def) = p(def). We are now left
e R R R R with the separator marginalc) andp(d) (from the factor-
[a,cla]-[b,d|e,e|b] - [fled]- [1] -[h|f]-[g]fe€] ) ization of the separator margina{df)) and the clique po-

cde-df-f-ef ’ tential ¢, (cdf), andp(c) and p(d) have to be multiplied

Comparing Eq. (7) with Eq. (5), one may find that they With ¢c;(cdf) to yield ¢c, (cdf) = p(fled) - p(c) - p(d).
both have exactly the same denominators except the numer-Again, since ClI(d, §, c) holds in the original DAG in
ators. In Eq. (7), we now have some extra dangling mar- Fig. 1,¢c, (cdf) = p(cdf). We have thus so far successfully
ginals, namelyp(s,), that are acquired when we multiply and algebraically used all separate marginals to transform
IT2_, p(s;) to Eq. (6), and we hope that by mingling these each clique potential, into a marginap/(c;). Table 1 sum-
extra marginals appropriately with the existing CPDs in the Marizes the allocation scheme for the multiplied separator
numerators in Eq. (7), we can reach Eq. (5). marginals.

With the ultimate goal of transforming the product in each .
square bracket (namely, the clique potential) in Eq. (7) into 3.2 Observations ] ]
a clique marginal on its respective clique in mind, we ex- One may perhaps consider the success of the example in Sect
amine how each separator marginal multiplied can be allo- 3.1 as a sheer luck. In the following, we will show that this
cated to appropriate clique potentials in Eq. (3). It is obvi- is not a coincidence. _ _ .
ous that:¢., (ac) = p(a) - p(cla) = p(ac) ande., (bde) = According to the GP method in the Hugin architecture,
p(b) - p(d|b) - p(e|b) = p(bde). In other words, no separa-  €Very cliquec; in the junction tree was initially associated
tor marginal should be mingled with these two potentials to With a clique potentiaky.,. During the course of propa-
make them marginals. For the clique potential (fh) = gation, the clique receives messages from all its neighbors,
p(h|f), we can multiply it with the separator marginglf) and the clique potentigl., multiplies with all these received

which results ing.. (fh) = p(hl|f) - = ). For messages. The result of the multiplicationpis;). In other
Pes (f1) = p(AIS) - Pf) = p(FR) words, the GP method transforms the clique potengjal

'Due to limited space, we write for p(a), b|d for p(b|d), etc. into a clique marginap(c;). This algorithmic phenomena
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Step 1.

Step 2.

of the GP method can be explained algebraically. Con-
sider Eq. (7), in which the numerators are the original clique
potentials together with the multiplied separator marginals.
Every clique potential has to mingle with some appropriate
separator marginal(s) or its factorization if necessary to be
transformed into a marginal. The messages received by all
the cliques in the GP method as a whole, whaddporithmi-
cally transform each clique potential into a clique marginal,

have the same effect as the separator marginals we multi-

plied in Eq. (7), whichalgebraicallytransform each clique
potential into a clique marginal. This analysis leads to the
following proposition.

Proposition 1 The product of the messages received by
every clique in the GP method equals to the product of all
separator marginals.

Recall the motivating example in Sect 3.1, in which we
successfully mingle the separator marginals with the clique
potential. This perfect arrangement of separator marginals
is not a coincidence, in fact, it can always be achieved as we
explain below.

Assigning either a separator marginal or its factorization
to a clique potential, as shown in Sect 3.1, must satisfy one
necessary condition, namely, condition (1) of Definition 1,
in order for the product of the clique potential with the allo-
cated separator marginal or its factorization to be a marginal.
That's to say, for each.,, we need a CPD with; as head
for eacha; € ¢;. If a variable, say:;, appearsn times in
m cliques in the junction tree, then each of theseliques
will need a CPD witha; as head. However, the original BN
only provides one CPD with; as head, and we are short of
m — 1 CPDs (witha; as head). Fortunately, cliques con-
taininga; implies the junction tree must have exaatly— 1
separators containing the variable (Huang & Darwiche
1996), therefore then — 1 needed CPDs witl; as head
will be supplied by then — 1 separator marginals (or their
factorizations). This analysis leads to a simple procedure to
allocate separator marginals.

Procedure: Allocate Separator Marginals (ASM)

Suppose the CPia;|7,,) is assigned to a clique, to
form ¢, . If the variablea; appears in a separatef;
betweenc;, andc;, then draw a small arrow originating
from qa; in the separatok;; and pointing to the clique
c;. If variable a; also appears in other separators in the
junction tree, draw a small arrow @i in those separators
and point to the neighboring clique away from cligtiés
direction. Repeat this for each CRI; |7, ) of the given
BN.

Examine each separatpin the junction tree, if the vari-
ables ins; all pointing to one neighboring clique, then the
separator marginal(s;) will be allocated to that neigh-
boring clique , otherwisep(s;) has to be factorized so
that the factors in the factorization can be assigned to ap-
propriate clique indicated by the arrows in the separator.

The procedure ASM can be illustrated using Fig. 3. If

neighboring clique, for example, the separator marginal
p(c), p(de), p(f), andp(ef) in the figure. If the variables

in the separator are pointing to different neighboring cliques,
that means the separator marginal has to be factorized before
the factors in the factorization can be allocated according to
the arrow. For example, the separator margiridf) has to

be factorized so that the factp(d) is allocated tap., (cdf)
andp(f|d) is allocated tap., (def). (The factorization of a
separator marginal will be further discussed shortly.)

p(a), p(cla) p(b), p(dib), p(elb
a bde

p(c p(de)

Cc
p(flcd) ﬁ p %
Ledr) o (de )
p(f)y % (e
fh efg

p(hif) p(glef)

o

Figure 3: Allocating separate marginals by ASM.

Proposition 2 For each separator in a junction tree, one
can always assign either the separator marginal or some
factors in its factorization to an appropriate cliqug as
dictated by the procedure ASM, such that for each variable
a; € ¢;, there is a CPD assigned/allocated to the clighe

in whicha; is the head.

Although an appropriate allocation of the separator mar-
ginals can always be guaranteed to satisfy condition (1) of
Definition 1, one still needs to show that such an allocation
will not produce a directed cycle when verifying condition
(2) of Definition 1. It is important to note that a directed
cycle can be created in a directed graph if and only if one
draws a directed edge from the descendant of a hode to the
node itself.

Consider a clique; in a junction tree and its neighbor-
ing cligues. Between; and each of its neighboring clique,
say cliquec;, is a separatos;; whose separator marginal
p(si;) or some factors in its factorization can possible be al-
located to the clique potentidl.,. As the example in Sect
3.1 shows, sometimes, the separator margbpahs a whole
will be allocated tap..,; sometimes, some factors in the fac-
torization of p(s;;) will be allocated tog.,. Suppose the
separator marginal(s;;) is allocated tap,,. If one follows
the rule of condition (2) in Definition 1 to draw directed
edges based on the original CPDs assigned.toand the
newly allocated separator margingk;; ), no directed cycle
will be created, because the original CPDs assignegi.to
are from the given BN, which will not cause any cycle, and
the variables irs;; will be ancestors of all other variables
in the clique, which will not create any cycle as well. Sup-
pose the separator margindls;;) has to be factorized first

all variables in the same separator are pointing to the same as a product of CPDs, and only some of the CPDs in the
neighboring clique, that means the separator marginal as afactorization will be allocated to; (and the rest will be allo-

whole (without being factorized) will be allocated to the
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the factorization allocated tg will cause a directed cycle.

ASM to the junction tree. There are three possible outcomes

For example, in the example in Sect 3.1, we decomposed regarding the separator marginai(s; ).

the separator marginaldf) asp(df) = p(d) - p(f|d). In
fact, we could have decomposed itiddf) = p(f) - p(d|f)
and assigned the factpfd|f) to ¢, which would result in

¢es (cdf) = p(e) - p(f|d) - p(fled). Itis easy to verify that
¢.,, after incorporating the allocated CRI)| f), satisfies

(a) Ifp(si;) asawhole is allocated to;, thenm,;_,; = p(s;;)

andm;—; = 1.

(b) If p(s;;) as awhole is allocated to;, thenm,_,; = 1 and

mi—j = p(8ij)-

the condition (1) but not (2) of Definition 1, which means (€) If p(si;) has to be factorized (following a topological or-

that ¢, (cdf) = p(c) - p(f|d) - p(fled) # p(cdf) and itis

not a Bayesian factorization. It is important to note that the
factorizationp(df) = p(f)-p(d|f) does not follow the topo-
logical ordering of the variablesand f (d should preced¢

in the ordering) with respect to the original DAG, in which
f is a descendant af. Drawing a directed edge frorhto

d, as dictated by the CPD(d|f), would mean a directed
edge from the descendantd&fnamely, the variabl¢ to the
variabled itself, and this is exactly the cause of creating a
directed cycle. However, if we factoriz€df) as we did in
Sect 3.1, there will be no problem. This is because when we
factorizep(df) asp(df) = p(d) - p(f|d), we were following

the topological ordering of the variablésnd f with respect

to the original DAG such that the heads of the CPDs in the
factorization are not ancestors of their respective tails in the
original DAG. This analysis leads to the following proposi-
tion, which is a continuation of the previous proposition.

Proposition 3 If the procedure ASM indicates that a sepa-
rator marginal p(s;) has to be factorized before it can be
allocated to its neighboring cliques, thells;) must be fac-
torized based on a topological ordering of the variables in
s; with respect to the original DAG.

3.3 Demystify the Messages
In Proposition 1, we have established a rough connection

between the messages passed in the GP method and the se

arator marginals. We point out that the product of all the

messages is equal to the product of all separator marginals.

Propositions 2 and 3 further explored this rough connec-
tion. Jointly, Propositions 2 and 3 suggest that all the sep-
arator marginals or their factorizations can be appropriately
allocated to clique potentials, so that each clique potential,
multiplying with the allocated, results also in the desired

cligue marginal. That is to say, the messages received by

each clique algorithmically in the GP method are equal to
the allocated separator marginal or its factors received by
each clique potential algebraically. In the following, we will
present the main contribution of this paper. We will show
exactly what a message really is in the GP method.

Let ¢; andc; be two cliques in a junction tree ang; be
the separator betweenandc;. Regardless of which clique

in the junction tree is chosen as the root, there are two mes-

sages that will be passed betwegmndc;. Without loss of
generality, suppose a message denated; is passed from

¢; to ¢; in the Collect-Evidence stage, and another message

denotedn;.; is passed in the Distribute-Evidence stage.

Theorem 1 2 Consider the result of applying the procedure

2Due to limited space, the proof of the theorem will appear in
an extended version of this paper.
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dering of variables ins;;), thenm;_,; = the product of
factors allocated te; andm;.; = the product of factors
allocated toc;.

We use an example to illustrate the theorem.

Example 2 Consider the junction tree in Fig. 2 (i). If clique
¢4 = def is chosen as the root for the GP method, ther-

cdf will send a message t@, during the Collect-Evidence
stage and, will send a message tg during the Distribute-
Evidence stage. Before; can send the message &9,
cliquesc; = ac andcs = fh have to pass messagescto
The message fromy to c3 is ¢. = (>, p(a) - p(cla))/1 =
p(¢), which coincides with (a) in the above theorem. The
message fromes to ¢z is ¢y = (3, p(h|f))/1 = 1,
which coincides with (b) in the above theorem . The clique
cs, after absorbing these two messages, becogmes=
p(fled)-p(e) -1 = p(fled) - p(c). The message sent from

0 ¢4 is dap = (3, p(fled) - ple)/1 = 32, BLD - p(c) =
>, el ple) = 30, B = p(fd)/p(d) = p(f|d),

which coincides with (c) in the above theorem.

4. Passing Much Less Messages for Inference

The revelation of the messages in the GP method suggests
a new approach to compute the clique marginals. The idea
comes from the example in Sect 3.1 and Table 1, in which

Rt demonstrated that one only needs to multiply the origi-

nally assigned CPDs of a clique with the allocated separator
marginal(s) or the factors in its (their) factorization(s) sug-
gested by the procedure ASM, in order to obtain the clique
marginal. Although the originally assigned CPDs, namely,
those in Eq. (3), are always available from the given BN,
the allocated separator marginal(s) or its(their) factors are
not. However, should they become available, calculating the
marginal for a cligue then becomes the simple task of multi-
plication as shown in Table 1.

Consider Fig. 3, it is noted that for every clique in the
junction tree, either it needs to send the separator marginal or
the factors in its factorization to its neighboring cliques once
the clique marginal is known (for example clique = ac
needs to sengd(c) to cliquecs = cdf if p(ac) is known) ,
or it needs to receive the allocated separator marginal or the
factors in its factorization from its neighboring cliques (for
example cliqgue; = cdf needs to receive(c) andp(f|d)
from cliquesc; andcy = def, respectively), in order to
transform the clique potential into the clique marginal.

It is further noted that some clique potentials are clique
marginals automatically without needing to receive anything
from its neighboring separators. For example, the clique po-
tentials forc; = ac andes = bde in Eq. (3) are already mar-
ginals, as shown in the first two rows in Table 1. Op¢ec)



andp(bde) are available, they can now send the needed sep-
arator marginal®(c) andp(de) to the clique potentialss
andc,, respectively. At this point, clique potentialsandc,

further need the factors in the factorization of the separator

marginalp(df) from each other. Clique; needs the factor
p(d) to transformyp,, into p(c3), and cliquezy, need(f|d)

to transforme,., into p(cs). If p(cq) is known, thenp(d)

can be supplied tos; if p(cs) is known, therp(f|d) can be

supplied toc,. Unfortunately, bottp(cs) andp(c4) are un-

known at this point. This seems to be a deadlock situation.

Ideally, if cliqguecz can somehow receive the needed factor

p(d) not from the unknowrp(c4) but from the knowng,.,

and cliquec4, can somehow receive the needed fagi(gf|d)

Total Messages

Network Hugin Our % of

nodes cliques Method Method| Savings
Asia 8 6 10 6 40%
Carts 12 6 10 5 50%
Alarm 37 27 52 33 37%
Printerts 29 11 20 10 50%
Mildew 35 29 56 47 16%
4sp 58 40 78 58 26%
6hj 58 41 80 57 29%
r_choice 59 42 82 57 30%
Barley 48 36 70 59 16%
Munin2 1003 868 | 1734 1190 31%
Munin3 1044 904 | 1806 1220 32%
Munin4d 1041 876 | 1750 1163 34%

not from the unknowm(cs) but from the knowng,,, then

p(c3) andp(cy) can both be computed® Oncep(cs) and

p(ca) are available, they can then send the separator mar- Table 2: Comparison of message counts on various networks

ginalsp(f) andp(ef) to cliguescs andcg respectively. Re-
ceiving the needed separator margingdlg) andp(ef), ¢,
and¢., becomen(cs) andp(cg) as shown in the 5th and 6th
rows in Table 1.

passed compared with the GP method. Since passing mes-
sages is the basic operation in the propagation algorithm for

From the above analysis, obviously, each clique poten- computing clique marginals, our experimental results seem
tial becomes cliqgue marginal once the clique receives all its to suggest that a more efficient method for inference can
needed from its neighboring separators. If we consider the possibly be designed based on the semantic meaning of the
allocated marginal or the factors in its factorization received messages revealed in this paper.

by a clique from its neighboring clique as a message, then it
is easy to verify that there is no need to pa&s — 1) mes-
sages as in the GP method (recall thatenotes the number

of cliques in a junction tree and= 6 in the example in Sect
3.1). Infact, applying the GP method on the example in Sect
3.1 requires passin@ — 1) x 2=10 messages; our analysis
above shows that only 6 messages are really needed. The
other four messages passed by the GP method are identity
function 1 according to Theorem 1, which has no effect on
the receiving cliques. The revealed semantic meaning of the
messages helps save a significant amount of computation re-
quired by the GP method.

We have conducted a preliminary experiment on a num-
ber of publicly available BNs. The experimental data is in
Table 2. It can be seen that by utilizing the semantic mean-
ing of the messages, we can save up@® of messages
that would have had to be passed by the GP method. This
suggests that propagation based on allocating separator mar-
ginals could be more efficient than the GP method.

5. Conclusion

In this paper, we have studied the messages passed in the
GP method algebraically. It was revealed that the messages
are actually separator marginals or factors in their factor-
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