
Demystify the Messages in the Hugin Architecture for Probabilistic Inference and
Its Application

Dan Wu
School of Computer Science

University of Windsor
Windsor Ontario
Canada N9B 3P4

Karen Jin
School of Computer Science

University of Windsor
Windsor, Ontario
Canada N9B 3P4

Abstract

In this paper, we investigate the semantic meaning of
the messages passed in the Hugin architecture for prob-
abilistic inference. By utilizing this information, one
can avoid passing up to half of the messages that could
have had to be passed in the Hugin architecture.

1. Introduction
The global propagation(GP) (Huang & Darwiche 1996)
method used in the Hugin architecture (Lepar & Shenoy
1998) is arguably one of the best methods for probabilis-
tic inference in Bayesian networks. Passing messages be-
tween cliques in a junction tree is the basic operation in the
GP method. It is traditionally considered that the messages
passed are simply potentials without any specific semantic
meaning. No research has been reported on studying the al-
gebraic properties of the messages.

In this paper, by studying the factorizations of a joint
probability distribution defined by a Bayesian networkbe-
fore andafter the GP method is performed, we investigate
the messages passed algebraically, and we make the fol-
lowing two contributions. (a) We reveal that the messages
passed are not mere potentials, but in fact separator mar-
ginals or factors in their factorizations. (b) We demonstrate
that the revealed semantics of the messages can be utilized
to avoid passing up to half of the messages that could have
had to be passed by the GP method.

The paper is organized as follows. We present back-
ground knowledge in Section 2. In Section 3, we study dif-
ferent factorizations of the joint probability distribution de-
fined by a Bayesian network. By comparing these factoriza-
tions, the semantics of messages passed in the GP method
is gradually revealed. In Section 4, we use an example to
show that utilizing the semantics of the messages revealed is
potentially more efficient than the GP method in the Hugin
architecture. We discuss future work and conclude the paper
in Section 5.

2. Background
We use a upper case letter (possibly with a subscript) to rep-
resent a set of discrete variables and a lower case letter (pos-
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sibly with a subscript) to represent one discrete variable (or
a singleton set). The juxtaposition of two or more letters (ei-
ther uppercase or lowercase) represents the union of the sets
denoted by the letters. We usep(X) to denote ajoint prob-
ability distribution (JPD) over a setX of variables, and we
call p(Y ) whereY ⊆ X a marginaldistribution (ofp(X)).
We usep(X|Y ) to denote theconditional probability dis-
tribution(CPD) ofX givenY , andX is theheadandY is
the tail of this CPD. A marginalp(X) can also be consid-
ered as a CPD with its tail empty (i.e.,p(X|∅)). We use
I(X, Y, Z) to denote thatX andZ are conditional inde-
pendent (CI) givenY (Pearl 1988). Apotentialover a set
X of variables, denotedφX or φX(X), is a non-negative
function.

Traditionally, aBayesian network(BN) defined over a set
V = {a1, . . . , an} of variables is adirected acyclic graph
(DAG) augmented with a set of CPDs. More precisely, each
variableai in V is represented as a node in the DAG and
is associated with a CPDp(ai|πai

), whereπai
denotes the

parents ofai in the DAG. The product of these CPDs defines
a JPD as:

p(V ) =
∏

ai∈V

p(ai|πai
), (1)

and we call this factorization (in terms of CPDs) aBayesian
factorization. It is important to note that each variable
ai ∈ V appearsexactly onceas the head of one CPD in
the Bayesian factorization.

Alternatively and equivalently, a BN can also be defined
in terms of the CPD factorization of a JPD.

Definition 1 Let V = {a1, . . . , an}. Consider the CPD
factorization below:

p(V ) =
∏

ai∈V, ai 6∈Ai, Ai⊆V

p(ai|Ai), (2)

If (1) eachai ∈ V appears exactly once as the head of one
CPD in the above factorization, and (2) the graph obtained
by depicting a directed edge fromb to ai for eachb ∈ Ai is
a DAG, i = 1, . . . , n, , then the DAG drawn and the CPDs
p(ai|Ai) in Eq. (2) define a BN. In fact, the factorization in
Eq. (2) is a Bayesian factorization of the defined BN.

An ordering ofall the variables in a DAG is called atopo-
logical orderingif for each variableai in the DAG, the vari-
ables inπai

precedeai in the ordering. We generalize the
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notion to a subset of variables in a DAG. LetV represent the
set of all variables in a DAG, a subsetX ⊆ V of variables is
said to be in a topological ordering with respect to the DAG,
if for each variableai ∈ X, the variables in the intersection
of ai’s ancestors andX precedeai in the ordering. We say
that a Bayesian factorization follows a topological ordering
if for each CPDp(ai|πai

), variables inπai
precede variable

ai in the ordering. Note that the DAG of a BN may have
many different topological orderings, and its Bayesian fac-
torization follows all these orderings. We can say that all
these topological orderings lead to the same Bayesian fac-
torization (Pearl 1988).
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Figure 1: The DAG of the Asia travel BN.

Example 1 Consider the Asia travel BN defined overV =
{a, . . . , h} from (Lauritzen & Spiegelhalter 1988). Its
DAG and the CPDs associated with each node are depicted
in Fig. 1. The JPDp(V ) is obtained as:p(V ) = p(a) · p(b) ·
p(c|a) · p(d|b) · p(e|b) · p(f |cd) · p(g|ef) · p(h|f). The or-
dering< a, b, c, d, e, f, g, h > is a topological ordering.
The ordering< b, d, h > is a topological ordering for the
subset{b, d, h} with respect to the DAG.

A BN is normally transformed into a junction tree for proba-
bilistic inference. Among various algorithms developed, the
GP method (Lauritzen & Spiegelhalter 1988; Shafer 1991;
Jensen, Lauritzen, & Olesen 1990; Lepar & Shenoy 1998)
is well received and implemented, for instance, in the
renowned Hugin architecture. The GP method realizes the
inference task not directly on the DAG of a BN, but on a
secondary structure calledjunction tree. The junction tree is
constructed from the DAG through moralization and trian-
gulation. The GP method in essence is a coordinated series
of local manipulations calledmessage passeson the junction
tree. Readers are referred to (Huang & Darwiche 1996) for
detailed exposition. The following highlights pertinent facts
of the GP method that are relevant to the discussions in this
paper using an example.

Consider the Asia travel BN in Example 1. The DAG in
Fig. 1 is moralized and triangulated so that a junction tree
such as the one in Fig. 2 (i) is constructed. This junction tree
consists of 6 cliques depicted as round rectangles, denoted
c1 = ac, c2 = bde, c3 = cdf , c4 = def , c5 = fh, c6 = efg,
and 5 separators depicted as smaller rectangles attached to
the edge connecting two incidental cliques, denoteds1 =
c, s2 = de, s3 = df , s4 = f , s5 = ef .

Every CPDp(ai|πai
) in Fig. 1 is assigned to a cliquecj

if {ai} ∪ πai
⊆ cj to form the clique potentialφcj

before
the GP method is applied. If{ai} ∪ πai

is a subset of two
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Figure 2: (i) The Junction tree constructed from the DAG in
Fig. 1. (ii) Passing messages in the Collect-Evidence stage,
and (iii) passing message in the Distribute-Evidence stage,
whenc4 = def is chosen as the root.

or more cliques, then we arbitrarily assignp(ai|πai
) to one

of the cliques. If no CPD is assigned to a cliquecj , then
φcj

= 1. In our example, the following clique potentials
will be obtained before the GP is applied:

φc1
(ac) = p(a) · p(c|a), φc4

(def) = 1

φc2
(bde) = p(b) · p(d|e) · p(e|b), φc5

(fh) = p(h|f)

φc3
(cdf) = p(f |cd), φc6

(efg) = p(g|fe)

(3)

In the meantime, a separator potential is also formed for each
separator with initial value1, that is,φsi

= 1, i = 1, . . . , 5.
It is known that the following equation holds before the GP
method is performed on the junction tree:

p(V ) = φc1
· φc2

· φc3
· φc4

· φc5
· φc6

. (4)

Note the separator potentialsφsi
(·) are identity potential

(φsi
= 1) before the GP method is applied.

The basic operation in the GP method is a local computa-
tion calledmessage pass. Consider two adjacent cliquesci

andcj with the separatorsij , thatci passes a messageto cj

(or cj absorbsthe message fromci) means a two-step com-
putation: (1) updating the separator cliqueφsij

by setting
φsij

= (
∑

ci−sij
φci

)/φsij
; (2) updating the clique poten-

tial φcj
by settingφcj

= φcj
· φsij

. The potentialφsij
is the

so-called “message” passed fromci to cj . Obviously,φsij

in general is just a non-negative function.
The GP method is a coordinated sequence of message

passes. Consider a junction tree withn cliques. It be-
gins by picking any clique in the junction tree as the root,
and then performs a sequence of message passes divided
into two stages, namely, theCollect-Evidencestage, and
theDistribute-Evidencestage. During theCollect-Evidence
pass, each clique in the junction tree passes a message to its
neighbors towards the root, beginning with the clique far-
thest from the root. During theDistribute-Evidencepass,
each clique in the junction tree passes a message to its neigh-
bor away from the root’s direction, beginning with the root
itself. TheCollect-Evidencestage causesn− 1 messages to
be passed. Similarly, theDistribute-Evidencestage causes
anothern − 1 messages to be passed. Altogether, there are
exact2(n − 1) messages to be passed (Huang & Darwiche
1996; Jensen 1996). The sequence of message passes is
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shown in Fig. 2 (ii) and (iii) when the cliquec4 = def was
chosen as the root.

After passing all2(n−1) messages, the potentialsφci
and

φsj
will have been turned into marginalsp(ci) andp(sj) re-

spectively, and the following equation holds (Huang & Dar-
wiche 1996).

p(V ) =
p(c1) · p(c2) · p(c3) · p(c4) · p(c5) · p(c6)

p(s1) · p(s2) · p(s3) · p(s4) · p(s5)
. (5)

Although the mechanism of the GP method is well under-
stood, what indeed the semantic meaning of the messages
φsi

is remains mysterious.

3. Demystify the Messages
3.1 A Motivating Example
Comparing Eq. (4) with Eq. (5) leads us to the demystifica-
tion of the messages. In the following, we will consider how
one can transform Eq. (4) to Eq. (5)algebraically.

Recall that the clique potentials in Eq. (4) are in fact com-
posed of the original CPDs from the BN shown in Fig. 1. If
we substitute the actual contents for the clique potentials in
Eq. (4), we obtain the following:

p(V ) =

φc1
︷ ︸︸ ︷

[p(a) · p(c|a)] ·

φc2
︷ ︸︸ ︷

[p(b) · p(d|e) · p(e|b)] ·
φc3

︷ ︸︸ ︷

[p(f |cd)] ·

φc4
︷︸︸︷

[1] ·

φc5
︷ ︸︸ ︷

[p(h|f)] ·

φc6
︷ ︸︸ ︷

[p(g|fe)] (6)

Comparing Eq. (6) with Eq. (5), one may immediately
notice that Eq. (6) does not have any denominators as Eq. (5)
does. By multiplying and dividingΠ5

j=1p(sj) at the same
time to Eq. (6), one will obtain1:

p(V ) = [c · de · df · f · ef ] ·
c1

︷ ︸︸ ︷

[a, c|a] ·

c2
︷ ︸︸ ︷

[b, d|e, e|b] ·

c3
︷ ︸︸ ︷

[f |cd] ·

c4
︷︸︸︷

[1] ·

c5
︷︸︸︷

[h|f ] ·

c6
︷ ︸︸ ︷

[g|fe]
c·de·df ·f ·ef

.(7)

Comparing Eq. (7) with Eq. (5), one may find that they
both have exactly the same denominators except the numer-
ators. In Eq. (7), we now have some extra dangling mar-
ginals, namelyp(sj), that are acquired when we multiply
Π5

j=1p(sj) to Eq. (6), and we hope that by mingling these
extra marginals appropriately with the existing CPDs in the
numerators in Eq. (7), we can reach Eq. (5).

With the ultimate goal of transforming the product in each
square bracket (namely, the clique potential) in Eq. (7) into
a clique marginal on its respective clique in mind, we ex-
amine how each separator marginal multiplied can be allo-
cated to appropriate clique potentials in Eq. (3). It is obvi-
ous that:φc1

(ac) = p(a) · p(c|a) = p(ac) andφc2
(bde) =

p(b) · p(d|b) · p(e|b) = p(bde). In other words, no separa-
tor marginal should be mingled with these two potentials to
make them marginals. For the clique potentialφc5

(fh) =
p(h|f), we can multiply it with the separator marginalp(f)
which results inφc5

(fh) = p(h|f) · p(f) = p(fh). For

1Due to limited space, we writea for p(a), b|d for p(b|d), etc.

potential receives result
φc1

nothing p(a) · p(c|a) = p(ac)
φc2

nothing p(b) · p(d|b) · p(e|b) = p(bde)
φc3

p(c), p(d) p(f |cd) · p(c) · p(d) = p(cdf)
φc4

p(de), p(f |d) p(de) · p(f |d) = p(def)
φc5

p(f) p(h|f) · p(f) = p(fh)
φc6

p(ef) p(g|ef) · p(ef) = p(efg)

Table 1: Allocating separator marginals, the underlined
terms are either the separator marginals or from the factor-
ization of a separator marginal.

the clique potentialφc6
(efg) = p(g|ef), we can multi-

ply it with the separator marginalp(ef) which results in
φc6

(efg) = p(g|ef) · p(ef) = p(efg). So far, we have
successfully obtained marginals for cliquesc1, c2, c5, and
c6 and we have consumed the separator marginalsp(f) and
p(ef) during this process. We still need to make the remain-
ing clique potentialsφc3

(cdf) = p(f |cd) andφc4
(def) = 1

marginals by consuming the remaining separator marginals,
i.e., p(c), p(de) andp(df). In order to makeφc3

(cdf) =
p(f |cd) marginal, we need to multiply it withp(cd), how-
ever, we only have the separator marginalsp(c), p(de) and
p(df) at our disposal. It is easy to verify that we cannot
mingle p(de) with φc3

(cdf) = p(f |cd) to obtain marginal
p(cdf). Therefore,p(de) has to be allocated to the clique
potentialφc4

(def) such thatφc4
(def) = 1 · p(de). We now

only havep(df) at our disposal for makingφc4
(def) a mar-

ginal. Note thatp(df) = p(d) · p(f |d), and this factoriza-
tion of the separator marginal helps makeφc4

(def) = p(de)
a marginal by multiplyingp(f |d) with φc4

(def) to obtain
φc4

(def) = p(de) · p(f |d). It is perhaps worth pointing
out that the CII(f, d, e) holds in the original DAG in
Fig. 1. Therefore,φc4

(def) = p(def). We are now left
with the separator marginalp(c) andp(d) (from the factor-
ization of the separator marginalp(df)) and the clique po-
tential φc3

(cdf), andp(c) and p(d) have to be multiplied
with φc3

(cdf) to yield φc3
(cdf) = p(f |cd) · p(c) · p(d).

Again, since CII(d, ∅, c) holds in the original DAG in
Fig. 1,φc3

(cdf) = p(cdf). We have thus so far successfully
and algebraically used all separate marginals to transform
each clique potentialφci

into a marginalp(ci). Table 1 sum-
marizes the allocation scheme for the multiplied separator
marginals.

3.2 Observations
One may perhaps consider the success of the example in Sect
3.1 as a sheer luck. In the following, we will show that this
is not a coincidence.

According to the GP method in the Hugin architecture,
every cliqueci in the junction tree was initially associated
with a clique potentialφci

. During the course of propa-
gation, the clique receives messages from all its neighbors,
and the clique potentialφci

multiplies with all these received
messages. The result of the multiplication isp(ci). In other
words, the GP method transforms the clique potentialφci

into a clique marginalp(ci). This algorithmic phenomena
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of the GP method can be explained algebraically. Con-
sider Eq. (7), in which the numerators are the original clique
potentials together with the multiplied separator marginals.
Every clique potential has to mingle with some appropriate
separator marginal(s) or its factorization if necessary to be
transformed into a marginal. The messages received by all
the cliques in the GP method as a whole, whichalgorithmi-
cally transform each clique potential into a clique marginal,
have the same effect as the separator marginals we multi-
plied in Eq. (7), whichalgebraicallytransform each clique
potential into a clique marginal. This analysis leads to the
following proposition.

Proposition 1 The product of the messages received by
every clique in the GP method equals to the product of all
separator marginals.

Recall the motivating example in Sect 3.1, in which we
successfully mingle the separator marginals with the clique
potential. This perfect arrangement of separator marginals
is not a coincidence, in fact, it can always be achieved as we
explain below.

Assigning either a separator marginal or its factorization
to a clique potential, as shown in Sect 3.1, must satisfy one
necessary condition, namely, condition (1) of Definition 1,
in order for the product of the clique potential with the allo-
cated separator marginal or its factorization to be a marginal.
That’s to say, for eachφci

, we need a CPD withaj as head
for eachaj ∈ ci. If a variable, sayaj , appearsm times in
m cliques in the junction tree, then each of thesem cliques
will need a CPD withaj as head. However, the original BN
only provides one CPD withaj as head, and we are short of
m − 1 CPDs (withaj as head). Fortunately,m cliques con-
tainingaj implies the junction tree must have exactlym− 1
separators containing the variableaj (Huang & Darwiche
1996), therefore them − 1 needed CPDs withaj as head
will be supplied by them − 1 separator marginals (or their
factorizations). This analysis leads to a simple procedure to
allocate separator marginals.

Procedure: Allocate Separator Marginals (ASM)

Step 1. Suppose the CPDp(ai|πai
) is assigned to a cliqueck to

form φck
. If the variableai appears in a separatorskj

betweenck andcj , then draw a small arrow originating
from ai in the separatorskj and pointing to the clique
cj . If variableai also appears in other separators in the
junction tree, draw a small arrow onai in those separators
and point to the neighboring clique away from cliqueck ’s
direction. Repeat this for each CPDp(ai|πai

) of the given
BN.

Step 2. Examine each separatorsi in the junction tree, if the vari-
ables insi all pointing to one neighboring clique, then the
separator marginalp(si) will be allocated to that neigh-
boring clique , otherwise,p(si) has to be factorized so
that the factors in the factorization can be assigned to ap-
propriate clique indicated by the arrows in the separator.

The procedure ASM can be illustrated using Fig. 3. If
all variables in the same separator are pointing to the same
neighboring clique, that means the separator marginal as a
whole (without being factorized) will be allocated to the

neighboring clique, for example, the separator marginal
p(c), p(de), p(f), andp(ef) in the figure. If the variables
in the separator are pointing to different neighboring cliques,
that means the separator marginal has to be factorized before
the factors in the factorization can be allocated according to
the arrow. For example, the separator marginalp(df) has to
be factorized so that the factorp(d) is allocated toφc3

(cdf)
andp(f |d) is allocated toφc4

(def). (The factorization of a
separator marginal will be further discussed shortly.)

p(a), p(c|a) p(b), p(d|b), p(e|b)

 p(f|cd)

p(g|ef)p(h|f)

p(ef)p(f)

p(c) p(de)

p(d)   

p(f|d)

  c d e

e f

a  c

 f h 

 c d f

 b  d  e

 d e  f

 e f g

f

d,f

Figure 3: Allocating separate marginals by ASM.

Proposition 2 For each separator in a junction tree, one
can always assign either the separator marginal or some
factors in its factorization to an appropriate cliqueci as
dictated by the procedure ASM, such that for each variable
aj ∈ ci, there is a CPD assigned/allocated to the cliqueφci

in whichaj is the head.
Although an appropriate allocation of the separator mar-

ginals can always be guaranteed to satisfy condition (1) of
Definition 1, one still needs to show that such an allocation
will not produce a directed cycle when verifying condition
(2) of Definition 1. It is important to note that a directed
cycle can be created in a directed graph if and only if one
draws a directed edge from the descendant of a node to the
node itself.

Consider a cliqueci in a junction tree and its neighbor-
ing cliques. Betweenci and each of its neighboring clique,
say cliquecj , is a separatorsij whose separator marginal
p(sij) or some factors in its factorization can possible be al-
located to the clique potentialφci

. As the example in Sect
3.1 shows, sometimes, the separator marginalφci

as a whole
will be allocated toφci

; sometimes, some factors in the fac-
torization of p(sij) will be allocated toφci

. Suppose the
separator marginalp(sij) is allocated toφci

. If one follows
the rule of condition (2) in Definition 1 to draw directed
edges based on the original CPDs assigned toφci

and the
newly allocated separator marginalp(sij), no directed cycle
will be created, because the original CPDs assigned toφci

are from the given BN, which will not cause any cycle, and
the variables insij will be ancestors of all other variables
in the clique, which will not create any cycle as well. Sup-
pose the separator marginalp(sij) has to be factorized first
as a product of CPDs, and only some of the CPDs in the
factorization will be allocated toci (and the rest will be allo-
cated tocj). In this case, it is very possible that the CPDs in
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the factorization allocated toci will cause a directed cycle.
For example, in the example in Sect 3.1, we decomposed
the separator marginalp(df) asp(df) = p(d) · p(f |d). In
fact, we could have decomposed it asp(df) = p(f) · p(d|f)
and assigned the factorp(d|f) to c3, which would result in
φc3

(cdf) = p(c) · p(f |d) · p(f |cd). It is easy to verify that
φc3

, after incorporating the allocated CPDp(d|f), satisfies
the condition (1) but not (2) of Definition 1, which means
thatφc3

(cdf) = p(c) · p(f |d) · p(f |cd) 6= p(cdf) and it is
not a Bayesian factorization. It is important to note that the
factorizationp(df) = p(f) ·p(d|f) does not follow the topo-
logical ordering of the variablesd andf (d should precedef
in the ordering) with respect to the original DAG, in which
f is a descendant ofd. Drawing a directed edge fromf to
d, as dictated by the CPDp(d|f), would mean a directed
edge from the descendant ofd, namely, the variablef to the
variabled itself, and this is exactly the cause of creating a
directed cycle. However, if we factorizep(df) as we did in
Sect 3.1, there will be no problem. This is because when we
factorizep(df) asp(df) = p(d) · p(f |d), we were following
the topological ordering of the variablesd andf with respect
to the original DAG such that the heads of the CPDs in the
factorization are not ancestors of their respective tails in the
original DAG. This analysis leads to the following proposi-
tion, which is a continuation of the previous proposition.

Proposition 3 If the procedure ASM indicates that a sepa-
rator marginal p(si) has to be factorized before it can be
allocated to its neighboring cliques, thenp(si) must be fac-
torized based on a topological ordering of the variables in
si with respect to the original DAG.

3.3 Demystify the Messages
In Proposition 1, we have established a rough connection
between the messages passed in the GP method and the sep-
arator marginals. We point out that the product of all the
messages is equal to the product of all separator marginals.
Propositions 2 and 3 further explored this rough connec-
tion. Jointly, Propositions 2 and 3 suggest that all the sep-
arator marginals or their factorizations can be appropriately
allocated to clique potentials, so that each clique potential,
multiplying with the allocated, results also in the desired
clique marginal. That is to say, the messages received by
each clique algorithmically in the GP method are equal to
the allocated separator marginal or its factors received by
each clique potential algebraically. In the following, we will
present the main contribution of this paper. We will show
exactly what a message really is in the GP method.

Let ci andcj be two cliques in a junction tree andsij be
the separator betweenci andcj . Regardless of which clique
in the junction tree is chosen as the root, there are two mes-
sages that will be passed betweenci andcj . Without loss of
generality, suppose a message denotedmi→j is passed from
ci to cj in the Collect-Evidence stage, and another message
denotedmi←j is passed in the Distribute-Evidence stage.

Theorem 1 2 Consider the result of applying the procedure

2Due to limited space, the proof of the theorem will appear in
an extended version of this paper.

ASM to the junction tree. There are three possible outcomes
regarding the separator marginalp(sij).

(a) If p(sij) as a whole is allocated tocj , thenmi→j = p(sij)
andmi←j = 1.

(b) If p(sij) as a whole is allocated toci, thenmi→j = 1 and
mi←j = p(sij).

(c) If p(sij) has to be factorized (following a topological or-
dering of variables insij), thenmi→j = the product of
factors allocated tocj andmi←j = the product of factors
allocated toci.

We use an example to illustrate the theorem.

Example 2 Consider the junction tree in Fig. 2 (i). If clique
c4 = def is chosen as the root for the GP method, thenc3 =
cdf will send a message toc4 during the Collect-Evidence
stage andc4 will send a message toc3 during the Distribute-
Evidence stage. Beforec3 can send the message toc4,
cliquesc1 = ac andc5 = fh have to pass messages toc3.
The message fromc1 to c3 is φc = (

∑

a p(a) · p(c|a))/1 =
p(c), which coincides with (a) in the above theorem. The
message fromc5 to c3 is φf = (

∑

h p(h|f))/1 = 1,
which coincides with (b) in the above theorem . The clique
c3, after absorbing these two messages, becomesφc3

=
p(f |cd) ·p(c) ·1 = p(f |cd) ·p(c). The message sent fromc3

to c4 is φdf = (
∑

c p(f |cd) · p(c))/1 =
∑

c
p(fcd)
p(cd) · p(c) =

∑

c
p(fcd)

p(c)·p(d) · p(c) =
∑

c
p(fcd)
p(d) = p(fd)/p(d) = p(f |d),

which coincides with (c) in the above theorem.

4. Passing Much Less Messages for Inference
The revelation of the messages in the GP method suggests
a new approach to compute the clique marginals. The idea
comes from the example in Sect 3.1 and Table 1, in which
it demonstrated that one only needs to multiply the origi-
nally assigned CPDs of a clique with the allocated separator
marginal(s) or the factors in its (their) factorization(s) sug-
gested by the procedure ASM, in order to obtain the clique
marginal. Although the originally assigned CPDs, namely,
those in Eq. (3), are always available from the given BN,
the allocated separator marginal(s) or its(their) factors are
not. However, should they become available, calculating the
marginal for a clique then becomes the simple task of multi-
plication as shown in Table 1.

Consider Fig. 3, it is noted that for every clique in the
junction tree, either it needs to send the separator marginal or
the factors in its factorization to its neighboring cliques once
the clique marginal is known (for example cliquec1 = ac
needs to sendp(c) to cliquec3 = cdf if p(ac) is known) ,
or it needs to receive the allocated separator marginal or the
factors in its factorization from its neighboring cliques (for
example cliquec3 = cdf needs to receivep(c) andp(f |d)
from cliquesc1 and c4 = def , respectively), in order to
transform the clique potential into the clique marginal.

It is further noted that some clique potentials are clique
marginals automatically without needing to receive anything
from its neighboring separators. For example, the clique po-
tentials forc1 = ac andc2 = bde in Eq. (3) are already mar-
ginals, as shown in the first two rows in Table 1. Oncep(ac)
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andp(bde) are available, they can now send the needed sep-
arator marginalsp(c) andp(de) to the clique potentialsc3

andc4, respectively. At this point, clique potentialsc3 andc4

further need the factors in the factorization of the separator
marginalp(df) from each other. Cliquec3 needs the factor
p(d) to transformφc3

into p(c3), and cliquec4 needsp(f |d)
to transformφc4

into p(c4). If p(c4) is known, thenp(d)
can be supplied toc3; if p(c3) is known, thenp(f |d) can be
supplied toc4. Unfortunately, bothp(c3) andp(c4) are un-
known at this point. This seems to be a deadlock situation.
Ideally, if cliquec3 can somehow receive the needed factor
p(d) not from the unknownp(c4) but from the knownφc4

and cliquec4 can somehow receive the needed factorp(f |d)
not from the unknownp(c3) but from the knownφc3

, then
p(c3) andp(c4) can both be computed.3 Oncep(c3) and
p(c4) are available, they can then send the separator mar-
ginalsp(f) andp(ef) to cliquesc5 andc6 respectively. Re-
ceiving the needed separator marginalsp(f) andp(ef), φc5

andφc6
becomep(c5) andp(c6) as shown in the 5th and 6th

rows in Table 1.
From the above analysis, obviously, each clique poten-

tial becomes clique marginal once the clique receives all its
needed from its neighboring separators. If we consider the
allocated marginal or the factors in its factorization received
by a clique from its neighboring clique as a message, then it
is easy to verify that there is no need to pass2(n − 1) mes-
sages as in the GP method (recall thatn denotes the number
of cliques in a junction tree andn = 6 in the example in Sect
3.1). In fact, applying the GP method on the example in Sect
3.1 requires passing(6 − 1) × 2=10 messages; our analysis
above shows that only 6 messages are really needed. The
other four messages passed by the GP method are identity
function 1 according to Theorem 1, which has no effect on
the receiving cliques. The revealed semantic meaning of the
messages helps save a significant amount of computation re-
quired by the GP method.

We have conducted a preliminary experiment on a num-
ber of publicly available BNs. The experimental data is in
Table 2. It can be seen that by utilizing the semantic mean-
ing of the messages, we can save up to50% of messages
that would have had to be passed by the GP method. This
suggests that propagation based on allocating separator mar-
ginals could be more efficient than the GP method.

5. Conclusion
In this paper, we have studied the messages passed in the
GP method algebraically. It was revealed that the messages
are actually separator marginals or factors in their factor-
izations. Passing messages in the GP method can be equiva-
lently considered as the problem of allocating separator mar-
ginals. This different perspective of propagation gives rise
to a different idea of computing clique marginals. Our pre-
liminary experimental results are very encouraging. In all
the BNs tested, much less number of messages need to be

3We have developed such technique to obtain the needed factors
in the factorization of the separator marginal when the deadlock
situation occurs. Due to limited space, it will be reported in the
extended version of the paper.

Total Messages
Network Hugin Our % of

nodes cliques Method Method Savings
Asia 8 6 10 6 40%

Car ts 12 6 10 5 50%
Alarm 37 27 52 33 37%

Printer ts 29 11 20 10 50%
Mildew 35 29 56 47 16%

4sp 58 40 78 58 26%
6hj 58 41 80 57 29%

r choice 59 42 82 57 30%
Barley 48 36 70 59 16%
Munin2 1003 868 1734 1190 31%
Munin3 1044 904 1806 1220 32%
Munin4 1041 876 1750 1163 34%

Table 2: Comparison of message counts on various networks

passed compared with the GP method. Since passing mes-
sages is the basic operation in the propagation algorithm for
computing clique marginals, our experimental results seem
to suggest that a more efficient method for inference can
possibly be designed based on the semantic meaning of the
messages revealed in this paper.
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