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Abstract 
The huge volumes of unstructured texts available online drives the 
increasing need for automated techniques to analyze and extract 
knowledge from these repositories of information. Resolving the 
ambiguity in these texts is an important step for any following 
analysis tasks. In this paper, we present a new method for one type 
of ambiguity resolving -- term disambiguation. The method is 
based on machine learning and can be viewed as a context-based 
classification approach. In our experiments we apply it to gene and 
protein name disambiguation. We have extensively evaluated our 
method using around 600,000 Medline abstracts and three different 
classifiers. The results show that our technique is effective in 
achieving impressive accuracy, precision, and recall rates, and 
outperforms the recently published results on this problem. The 
paper includes the details of the method and the experimental 
design. We plan to apply our technique to the general domain of 
word sense disambiguation in the future. 
 
1. Introduction 
Users' knowledge of words in a language constitutes the 
Lexicon, which includes lots of “character string to real 
entity” mappings. Memorization of these mappings proves 
to be hard for human beings. This is why in many natural 
languages a word is often used to represent multiple entities 
or meanings, which relieves the task of memorization but 
makes language interpretation harder. Each meaning of a 
word is called a sense. In natural language processing (NLP) 
word sense disambiguation (WSD) is used to determine 
which sense of a word should be adopted for each instance 
of a word. WSD methods are usually evaluated manually, 
which is very labor-intensive and time-consuming. In this 
paper we focus on disambiguation of terms used in a 
specific domain. Term disambiguation is very important and 
can help readers greatly. On the other hand, a specific 
domain can serve as a small-scaled testbed and let us focus 
on essential issues of disambiguation. After we gain enough 
insights, we can expand to the general area of WSD.  
 
1.1 Selection of the biomedical domain 
The existing volumes of biomedical texts available 
electronically are gigantic and grow at very high and 
unprecedented rates [1][7][9][13]. Massive wealth of 
knowledge is embedded in these documents and needs to be 
discovered and extracted. Thus there is a great need for 
efficient and effective machine learning, text mining and 
NLP techniques to analyze these texts for the advancement 
of the science [17][23]. Moreover, considerable amounts of 
research have been put into the problem of named entity 
recognition (NER) and disambiguation in biomedical 

literature [2][8].  Such a task is very important for 
extracting and disambiguating biological entities, which is 
critical for the development of bioinformatics systems 
(e.g., discovering associations among the various 
biological entities, such as gene-disease associations).  
 
1.2 Selection of Gene/Protein for Term 
Disambiguation 
In the biomedical literature, resolving ambiguity between 
genes and proteins is very important due to their 
importance in biological and medical fields. On the other 
hand, their disambiguation is difficult since many proteins 
and genes have identical names. A common example of 
gene and protein name ambiguity (discussed in 
[7][8][14]) is: 
– “By UV cross-linking and immunoprecipitation, we 

show that SBP2 specifically binds selenoprotein 
mRNAs both in vitro and in vivo.” 

– “The SBP2 clone used in this study generates a 3173 nt 
transcript (2541 nt of coding sequence plus a 632 nt 3’ 
UTR truncated at the polyadenylation site).” 

 
The term SBP2 in the first sentence is a protein, whereas 
in the second sentence SBP2 is a gene. Gene and protein 
are often closely correlated and their disambiguation 
sometimes is difficult even for biomedical experts. So 
authors often have to explicitly put “protein” or “gene” 
before or after the protein or gene names. These explicitly 
disambiguated protein or gene names can be used for 
automatic evaluation of a disambiguation technique. 
 
In this paper we present a new context-based term 
disambiguation method. We applied our method to the 
gene and protein name disambiguation and conducted 
extensive experiments using over 600,000 PubMed 
abstracts published from 2001 to 2004 containing more 
than 200,000 instances of ambiguous gene and protein 
names. The rest of the paper is organized as follows. In 
the next section we discuss the recently published work 
on this problem. Section 3 explains our method. Section 4 
describes the experiments and results. Finally, Section 5 
provides conclusion and future work. 
 
2. Related Work 
The applications of text mining and machine learning 
techniques in the biomedical domain were successful and 
encouraging.  Large number of methods were proposed 
for various bioinformatics problems such as information 
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extraction, extracting gene and protein interactions, named 
entity recognition (NER), association rules discovery and 
extracting relationships among various biological entities 
[1][2][4][10][15][18][22][23]. However, the research work 
invested in biological term disambiguation [11] is not 
enough compared to the magnitude of this problem as 
biological entities are highly ambiguous and their 
disambiguation is often a prerequisite for any following text 
mining tasks [21].  
 
The gene-protein disambiguation can be processed as a 
classification problem. In [7][14] authors use SVMs to train 
the term classifiers, and assign different weights to 
contextual words (features).  The method in [8] is also based 
on classification where three learners, Naïve Bayes, Ripper 
and C4.5, were used for training and testing. Major 
contribution of our method is its unique way of selecting the 
features of the ambiguous terms and building feature 
vectors. Our method achieves better recall, precision and 
accuracy rates, and experiment results will be presented in 
Section 4. 
 
3. The Proposed Method 
Using a word’s context (surrounding words) for 
disambiguation is an effective technique [7][8][14]. In our 
method, instead of directly using all of a word’s surrounding 
words, we only select certain words with high 
“discriminating” capabilities as features. By this way we can 
discard those “noisy” surrounding words and improve the 
disambiguation quality. These features will be used to 
represent each instance of the terms in the training and 
testing phases. The proposed method is based on the 
common machine learning approaches to train classifiers 
with labeled examples. We use author-disambiguated terms 
as labeled training examples. The classifiers will then be 
used to disambiguate unseen and unlabeled examples in the 
testing phase. The next subsection explains the feature 
selection technique in our method. 
 
3.1 Feature Selection 
Feature selection is a key issue in machine learning, and 
quality of features will greatly impact the performance of a 
machine learning technique. Our experiments shown in 
table 3 and 4 illustrate that how important it is to select 
appropriate features and assign right weights to these 
features. A lot of research has been devoted to feature 
selection [5][6][24][25].  
 
Let us assume that we have two classes C1 and C2 of labeled 
examples extracted from biomedical texts for training. And 
C1 contains examples of gene names and their contexts, 
whereas C2 includes examples of protein names with their 
contexts. The name which represents a protein or a gene is 
the term to be disambiguated in this case, and the words 
preceding and following the term are its context words. So 
each example in the set C1 or C2 can be represented as 

follows (Note: “protein” and “gene” supplied by authors 
for disambiguation have been deleted before selecting a 
term’s context words): 

pn… p3  p2  p1 <term> f1  f2  f3….fn 
where the words p1 , p2 , p3 ,…. , pn  and  f1 , f2  , f3 ,….., fn 
are the preceding and following words (context) 
surrounding the term, and n is called the window size. We 
extract all the context words W = {w1 ,w2 ,    … ,wm} from 
the examples in the sets C1 and C2. (From now on we use 
wi to represent these surrounding words instead of pi and 
fi).  Now, each such context word wi (wi ∈ W) may occur 
in contexts of either or both of C1 and C2 with different 
frequency distributions. We want to determine that to 
what extent an occurrence of wi in an ambiguous example 
suggests that this example belongs to C1 or C2.  Thus, we 
only select those words wi from W which are highly 
associated with either C1 or C2 (the highly discriminating 
words) as features. We utilize feature selection techniques 
like mutual information (MI) and chi-square (X2) 
([6][24]) to select the highly discriminating context words 
from W. 
 
Let us first define the notions of a, b, c, and d:  from the 
training examples, we calculate four values a, b, c, and d 
for each context word wi ∈W as follows:  
 
a = number of occurrences of wi in C1  
b = number of occurrences of wi in C2  
c = number of examples of C1 that do not contain wi  
d = number of examples of C2 that do not contain wi  
 
Then, the mutual information (MI) is defined as: 
 

MI = 
)(*)(

*
caba

aN
++

  

 
where N is the total number of examples in both C1 and 
C2. And Chi-Square (X2) is computed as:  
 

X2 = 
2*( )

( )*( )*( )*( )
N ad cb

a c b d a b c d
−

+ + + +
 

 
When using the MI technique for feature selection, we 
calculate MI values for all wi ∈ W, then we choose the top 
k words with the highest MI values as features in this 
term’s feature vectors. In our experiments we tested on k 
values of 10, 20, and 30, 40, and 200. For example, if k = 
10, then each training example is represented by a vector 
of 10 entries such that the first entry represents the word 
with the highest MI value, and the second entry represents 
the word with the second highest MI value, and so on. 
Then for a given training example, the feature vector 
entry is set to a value V+ if the corresponding feature 
word occurs in that training example and set to a different 
value V- otherwise. Thus, if we want to utilize the 20 
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most discriminating words as features to represent each 
term, then feature vector size will be 20. 
 
Consider the following example, let W = {w1, w2, …, wm} 
be the set of all context words. We compute MI for each wi 
∈W and sort the words W according to their MI values in 
descending order as in Table 1. 
 

Context words wi  MI 
activate 
process 
sample 
deliver 
inhibit 
went 
generate 
smear 
diagnose 
clear 

… 

3.9 
3.6 
3.2 
2.6 
1.9 
1.9 
1.8 
1.8 
1.6 
1.4 
… 

Table 1     Words with the top MI values 
 
Table 1 shows the top 10 context words with the highest MI 
values. These 10 words will be used to compose the feature 
vectors for training or testing examples of the terms to be 
disambiguated. 
 
For example, the following feature vector: 
 

V- V+ V+ V- V- V- V+ V- V- V- 
 
represents an example containing the 2nd, 3rd and 7th feature 
words (i.e., process, sample, and generate) around the term 
within certain window size. Additionally, if the window size 
w=4, then that example will look like: 
 

—   generate —   — <the-term> —  sample  — process   
 
That is, three of the 10 feature words are occurring within 
the window of size 4 of the term. In this case, window size 
is 4 and the vector size is 10. Notice that, we do not encode 
positional information of the feature words in the feature 
vector. For example the word ‘generate’, occurred as third 
preceding word in the term context but it translates to a 
“V+” in the seventh entry of the feature vector. 
 
Selecting only features with high discriminating capabilities 
results in better disambiguation quality than existing 
methods as shown in our experiment 1. Choosing 
appropriate values for V- and V+ can improve the 
disambiguation quality further as shown by our experiment 
2. In experiment 1 we simply set V- as 0 and V+ as 1, we can 
achieve the accuracy rate of 0.8 - 0.9, which is already 
better than existing methods. In experiment 2, we set V- as -
MI and V+ as MI, and we achieved the accuracy rate of 
around 0.99. For example, if we use 0 and 1 for V- and V+, 

the feature vector, in the previous example, will be as 
follows if we use 0 and 1 for V- and V+:  

0- 1 1 0 0 0 1 0 0 0 
 
If we set V- = -MI and V+ = MI, the vector will be: 
 
-3.9 3.6 3.2 -2.6 -1.9 -1.9 1.8 -1.8 -1.6 -1.6 
 
Similarly we can build feature vectors with X2 values, 
which is equally effective as shown by our experiments. 
  
3.2 Learning and Classification  
After we generate feature vectors using the top words 
selected by MI or X2, we can use any classification 
method to classify instances and find out the classes they 
belong to. In our experiments we used Support Vector 
Machines (SVM) [3], Decision Table (a decision-rule 
based learning algorithm), and Naïve Bayes. All these 
three methods are widely applied and accepted  in the 
field of machine learning.  
To be more specific, we construct one feature vector for 
each instance of the term to be disambiguated. Then we 
divide these vectors into one class of positive vectors and 
one class of negative vectors. A classification method is 
trained on these two classes and produces a classifier 
(model). And we use this classifier to classify data 
samples in testing set and calculate accuracy, recall and 
precision rates. More formally, we describe our approach 
with the following algorithm: 

____________________________________ 
Algorithm 
Input: text document set D, ambiguous term t 
(Here we assume t has two senses, t1 and t2, a more 
general case is discussed later) 
1. Extract from set D all instances of t1 and t2 that have 

been disambiguated by authors and their contexts, 
and save them to S1 and S2 respectively. 

2. Construct the set W = {w1, w2 ,  … , wm} of neighborhood 
words from S1 and S2 after removing context words 
supplied by authors for disambiguation, i.e., “gene” 
or “protein”. 

W = S1 U S2 – author-inserted disambiguating features 
4. Compute MI and X2 values for each word wi in W. 
5. Sort the set W based on MI and X2 respectively in 

descending order. 
6. Construct feature vectors for all extracted gene/protein 

instances based on the top n words in W. n is the size 
of feature vector. 

7. Use these feature vectors as input to a classification 
method for creating classifiers. 

8. Use generated classifiers to classify testing samples for 
evaluation. 

 
So far we have discussed how to disambiguate terms with 
two senses, which is called two-way classification. For 
terms with more than two senses, our technique can be 
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used to disambiguate the class of sense 1 and the class of 
non-sense 1 first, then within the class of non-sense 1 
classify the class of sense 2 and the class of non-sense 2. By 
repeating this process, terms with more than two senses can 
be classified and disambiguated accordingly. 
 
4. Experiments 
 
4.1 Data Collection 
We retrieved our data from Medline using the E-Utilities in 
the PubMed interface [13].  Medline database is considered 
the main source of data for bioinformatics research as it 
contains huge collection of biomedical documents (about 
~14 millions research abstracts, dated back to 1950) and its 
wide coverage of medical fields [7][8][10][17][18][23]. We 
carried out some preprocessing steps on the downloaded 
Medline texts: 

1) Converting all words to lowercase. 
2) Removing stopwords: removing all common function 

words like “is”, “the”, “in”, etc.  
3) Performing word stemming (converting each word to 

its root, e.g., activated activate, activates activate) 
using Porter stemming algorithm [16].  

 
After the text is preprocessed, we extract the gene and 
protein name occurrences that are already disambiguated by 
the authors, that is, each gene/protein name occurrence 
should be preceded or followed by the word “gene” or 
“protein”. To recognize a gene or protein we have 
downloaded and compiled gene and protein name 
dictionaries from three databases SwissProt, Tremble, 
LocusLink [12][19][20].  Thus with a simple and efficient 
search algorithm we extracted all such unambiguous gene 
and protein name instances taking the formats: 

….gene gene-name… 
…gene-name gene…. 
…protein  protein-name…. 
…protein-name protein…. 
 

giving that the complete gene-name or protein-name is also 
found in the gene or protein dictionary. Moreover, we 
extract with each instance its context of 10 preceding and 10 
following words (i.e., window size is 10) which enables us 
to test on windows of any size up to 10.  
 
4.2 Experiments 
We conducted several experiments with different vector size 
and feature selection methods. In these experiments, we 
used 2-fold cross-validation when the data is divided into 
50%/50% for training/testing, whereas, 5-fold cross-
validation is used with 80%/20% for training/testing. To be 
more specific, in 5-fold cross-validation, we divided the 
data into 5 equal folds, then we use 4 folds (80% of the 
data) to train the classifier (learning phase) and the 
remaining fold (20%) will be used to test the classifier. This 

process is repeated 5 times; each time, one of the 5 folds 
is used for testing and the remaining 4 folds for training. 
2-fold cross-validation is performed similarly. 
 
For performance metrics, in each experiment, we record 
the accuracy, precision, and recall [11]. In our 
experiments, we use gene class as positive class and 
protein as negative class. 
 
For the purpose of comparison we summarized 
experiment results from [7] and [8] in Table 2.  
 

Method Accuracy 
range Comments 

New Method -
weighted [7] 

82.37– 
86.12 

with and without 
collocations, and different 
context sizes (n). 

New Method -
unweighted [7] 

81.21 – 
82.47 

with and without 
collocations, and different 
context sizes (n). 

Naïve Bayes [7] 77.38– 
84.44  

Different smoothing 
techniques. 

RIPPER [8] 74.59%  
C4.5 [8] 76.61%  
Naïve Bayes [8] 76.57%  

Table 2: Experiment results from [7] and [8]  
 
Experiment 1: In Table 3 we show our experiments 
using 20,000 Medline abstracts from year 2002. Within 
these abstracts we found 6106 occurrences of 
gene/protein names. We set V- = 0 and V+ = 1 in the 
feature vectors. We performed 5-fold cross validation 
with SVM, and get good accuracy, precision and recall 
rates. With different sizes of vectors, our technique shows 
a very good and stable performance supporting the 
effectiveness of the method.  We notice in this experiment 
that X2 gives better results than MI and the best results in 
this experiment are obtained with X2 and vectors of size 
40. 
 
Experiment 2:  In this experiment, we collected all 
medical abstracts available in Medline published from 
2001 to 2004. There are totally around 600,000 abstracts. 
From these abstracts we extracted about 200,000 
unambiguous gene and protein name instances. These 
instances were explicitly disambiguated by authors with 
“gene” or “protein” immediately before or after each 
instance. We set V- as -MI or -X2, and V+ as MI or X2 in 
the feature vectors. We performed 2-fold and 5-fold 
cross-validation and recorded the average of the testing 
cycles using three classification methods, SVM, Decision 
Table and Naïve Bayes. The vector size for both MI and 
X2 is fixed to 20, and the results are shown in Table 4. 
The accuracy, precision and recall rates are approaching 
or exceeding 99%, which indicate that our method is 
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highly effective. Also this experiment shows that quality of 
feature vectors is very important. 
 
5. Conclusion and Future Work 
We presented a new context-based technique for term 
disambiguation and applied it to gene/protein name 
disambiguation in biomedical documents. The experiments 
clearly show that our method is effective and the strength of 
the method comes from its unique way of selecting and 
encoding the features of the target terms into the feature 
vectors. The two most relevant techniques produced best 
accuracy in the range of ~0.80 – ~0.86, while our method 
constantly achieved the accuracy of ~0.99 with different 
document sets and experiment settings. 
In future, we would like to conduct experiments on all 
available Medline abstracts and apply our method to the 
general field of word sense disambiguation. 
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         Method 

Training set size
(80%) 

Testing set size
(20%) Accuracy Precision Recall incorrect 

instances 
20 fields  4885 1221 85.0% 86.3% 96.7% 183 
30 fields 4885 1221 85.5% 87.0% 96.2% 177 X2 
40 fields 4885 1221 86.4% 87.9% 96.3% 166 
20 fields  4885 1221 80.4% 81.1% 98.4% 239 
30 fields 4885 1221 80.2% 81.2% 98.0% 242 MI 
40 fields 4885 1221 80.2% 81.2% 97.9% 242 

 
TABLE 3: Result of 5-fold cross validation experiment using SVM and vectors of 20, 30 or 40 fields 
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TABLE 4: Results of 2-fold and 5-fold cross validation experiment using SVM, Decision Table and Naïve 
Bayes with vector of size 20 

 
Year Classifier     Method 

Training set 
size 

 

Testing set 
size 

 
Accuracy Precision Recall Incorrect 

instances 

2-fold  24654 24654 99.30% 98.45% 100% 173 X2 5-fold 39447 9861 99.30% 98.44% 100% 69 
2-fold 24654 24654 99.76% 100% 99.46% 59 

 
SVM MI 5-fold 39447 9861 99.93% 100% 99.83% 7 

2-fold  25593 25593 99.1% 99.1% 99.1% 220 X2 5-fold 40950 10236 99.0% 99.0% 99.0% 242 
2-fold 25593 25593 99.2% 99.3% 99.2% 187 

 
Naïve  
Bayes MI 5-fold 40950 10236 99.2% 99.3% 99.2% 186 

2-fold  27306 27306 100% 100% 100% 2 X2 5-fold 43690 10922 100% 100% 100% 0 
2-fold 27306 27306 100% 100% 100% 0 

 
2001 

 
 

 
Decision 

Table MI 5-fold 43690 10922 100% 100% 100% 0 
2-fold  29337 29337 99.54% 98.99% 100% 136 X2 5-fold 46939 11735 99.55% 98.99% 100% 54 
2-fold 29337 29337 99.55% 100% 99.00% 134 

 
SVM MI 5-fold 46939 11735 99.43% 100% 98.74% 67 

2-fold  24654 24654 99.3% 99.2% 99.3% 207 X2 5-fold 39447 9861 99.2% 99.1% 99.2% 226 
2-fold 24654 24654 99.0% 99.2% 99.0% 232 

 
Naïve  
Bayes MI 5-fold 39447 9861 99.0% 99.2% 99.0% 225 

2-fold  25593 25593 100% 100% 100% 0 X2 5-fold 40950 10236 100% 100% 100% 0 
2-fold 25593 25593 100% 100% 100% 0 

 
2002 

 
Decision 

Table MI 5-fold 40950 10236 100% 100% 100% 0 
2-fold  27306 27306 99.82% 99.59% 100% 50 X2 5-fold 43690 10922 99.82% 99.59% 100% 20 
2-fold 27306 27306 99.76% 100% 99.46% 66 

 
SVM MI 5-fold 43690 10922 99.90% 100% 99.77% 11 

2-fold  29337 29337 99.5% 99.5% 99.5% 146 X2 5-fold 46939 11735 99.5% 99.5% 99.5% 145 
2-fold 29337 29337 99.1% 99.1% 99.1% 261 

 
Naïve  
Bayes MI 5-fold 46939 11735 99.2% 99.2% 99.2% 238 

2-fold  24654 24654 100% 100% 100% 0 X2 5-fold 39447 9861 100% 100% 100% 0 
2-fold 24654 24654 100% 100% 100% 0 

 
2003 

 
 

 
Decision 

Table MI 5-fold 39447 9861 100% 100% 100% 0 
2-fold  25593 25593 98.55% 96.84% 100% 372 X2 5-fold 40950 10236 99.37% 98.61% 100% 64 
2-fold 25593 25593 99.76% 100% 99.45% 63 

 
SVM MI 5-fold 40950 10236 99.87% 100% 99.69% 13 

2-fold  27306 27306 99.0% 98.9% 99.0% 315 X2 5-fold 43690 10922 99.0% 98.9% 99.0% 318 
2-fold 27306 27306 99.0% 98.9% 99.0% 315 

 
Naïve  
Bayes MI 5-fold 43690 10922 99.4% 99.4% 99.4% 178 

2-fold  29337 29337 100% 100% 100% 0 X2 5-fold 46939 11735 100% 100% 100% 0 
2-fold 29337 29337 100% 100% 100% 0 

 
2004 

 
 
 

 
Decision 

Table MI 5-fold 46939 11735 100% 100% 100% 0 
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