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Abstract

The process of coalition formation, where distinct au-
tonomous agents come together to act as a coherent
group is an important form of interaction in multi-
agent systems. Previous work has focused on devel-
oping coalition formation algorithms which seek to
maximize some coalition structure valuation function
V (CS). However, for many real-world systems, eval-
uation ofV (CS) must be done empirically, which can
be time-consuming, and when evaluation ofV (CS) be-
comes too expensive, value-based coalition formation
algorithms can become unattractive. In this work we
present a algorithm for forming high value coalition
structures when direct evaluation ofV (CS) is not feasi-
ble. We present the IBCF (Information-Based Coalition
Formation) algorithm, which does not try to directly
maximizeV (CS), but instead seeks to form coalitions
which possess maximum amounts of information about
how environmental states and agent actions relate to ex-
ternal reward. Such information maximization strate-
gies have been found to work well in other areas of ar-
tificial intelligence, and we evaluate the performance of
the IBCF algorithm on two multi-agent control domains
(multi-agent pole balancing and the SysAdmin network
management problem) and compare the performance
of IBCF against relevant state-of-the-art algorithms in
each domain.

Introduction
Background
The process of coalition formation, where distinct au-
tonomous agents come together to act as a coherent group
is an important form of interaction in multi-agent systems.
Partitioning a collection of agents into judiciously chosen
coalitions can result in significant performance benefits to
the entire agent system such as reduced agent coordination
costs and training times, and increased access to pooled
resources. The use of coalitions has been advocated in
a wide variety of domains including electronic business
(Tsvetovat & Sycara 2000) (purchasing agents pooling their
requirements to obtain larger discounts), grid-computing
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(I. Foster & Tuecke 2001), and e-business (T. Norman 2004)
(where agents can come together to form organizations
to fill market niches). The coalition formation process
can be viewed as being composed of three main activities
(T. Sandholm & Tohme 1999):

1. Coalition Structure (CS) Generation: The creation of
coalitions such that agents in a given coalition coordi-
nate their actions while agents in different coalitions do
not. This involves partitioning the agents into disjoint
sets, and such a partition is called acoalition struc-
ture. For example, in a multi-agent system composed of
three agentsn1, n2, n3, there are seven possible coalitions:
{n1}, {n2}, {n3}, {n1, n2}, {n2, n3}, {n3, n1}, {n1, n2, n3}.
A valid coalition structure would beCS = {{n1}, {n2, n3}}

2. Coalition Value Maximization: In this step, the resources
of the individual coalition agents are pooled to maximize
the payoff to each coalition. In a market-based environment,
this might mean literally combining financial resources to
gain more bargaining sway, or in the context of a system of
agents trained with reinforcement learning for example, this
would involve training a reward-maximizing policy over a
coalition’s agents.

3. Payoff Distribution: Since coalition formation generally
occurs in the context of autonomous, self-interested agents,
at some point reward distributed to a coalition must be
parceled to its member agents, and there are various
common methods for doing this - equally among members,
proportional to the agent’s contribution, etc.

Recent work on coalition formation has concentrated on
the first of these steps (CS generation), and we will continue
this tradition here. Generally, CS generation takes place in
the context of some valuation functionV (CS) which mea-
sures the fitness of a given coalition structure. If the task
structure of the environment is known ahead of time, this
function may be directly evaluatable as in (Shehory & Kraus
1998), while in other contexts, one may use the sum of indi-
vidual agent reward payoffs (which would require perform-
ing all three steps of the coalition formation process).

In general, the goal of CS-generation is to construct a
coalition structure which maximizes this valuation func-
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tion. Many authors have proposed algorithms for coali-
tion formation in different situations, such as when opti-
mality bounds are required (T. Sandholm & Tohme 1999;
Dang & Jennings 2004), or when coalition size can be
bounded from above (Shehory & Kraus 1998). While much
of this work has centered on deterministic algorithms, the
field has seen some application of stochastic methods as well
(particularly genetic algorithms (Sen & Dutta 2000)).

Generally - certainly in the work cited above - CS-
generation requires access to the valuation functionV (CS)
(for example, in the Sen & Dutta work,V (CS) is needed to
perform fitness evaluation in the genetic algorithm). And in
fact, many accesses toV (CS) may be required before a CS
generation algorithm terminates. If the nature of the agent
system, its environment, the task structure, etc. are known
a priori, evaluating this function may be able to be done di-
rectly (as in (Shehory & Kraus 1998)). However, in other
cases, such as when dealing with coalition formation among
physical robotic systems, valuing a coalition structure may
need to be done empirically by retraining the system to re-
spect the CS and then letting the system interact with the
environment, which might be an expensive undertaking.

Our Contribution
In this present work we look at the problem of coalition
structure generation when repeated evaluation ofV (CS) is
not feasible. While this may seem a little backward - at-
tempting to maximize the value of a CS without having ac-
cess to the CS valuation function, similar problems in AI-
related fields have been successfully addressed by the ap-
plication of information-theory based methods(e.g. (Battiti
1994)). For example, in the classifier training community,
one faces similar difficulties with the problem of feature se-
lection. In classifier feature selection, one attempts to re-
duce the dimensionality of a training corpus by discarding
all but a few features. This training corpus is used to train
a classifier, and one would like to keep features which make
the error rate of the final trained classifier is as low as pos-
sible. The ’obvious’ solution of iteratively trying different
sets of features until minimum classifier error is achieved is
untenable because of the possibly significant time required
to retrain the classifier. The solution is to use information-
theory-based methods to construct a feature set which con-
veys the most information possible about class labels. While
this approach does not guarantee a high-performance classi-
fier, it tries to provide the classifier training algorithm with
most informative data set possible, which hopefully will re-
sult in a high-performance classifier post-training.

In our present coalition structure generation problem, we
will take a similar approach. Instead of directly attempting
to maximize the coalition valuation functionV (CS), we will
attempt to form coalitions such that, post-coalition forma-
tion, as much information as possible is retained about how
environmental states and agent actions relate to external re-
wards. Because we will need a training-corpus to calculate
coalition information content, we will here concentrate ex-
clusively on the use of coalition formation in a corpus-based
reinforcement learning context (such as Least-Squares Pol-
icy Iteration (Lagoudakis & Parr 2003), where experience

data is collected in one stage and training occurs afterward).
We will then present the IBCF (Information-Based Coali-
tion Formation) algorithm for generating these information-
maximizing coalitions, and finally demonstrate the applica-
tion of the IBCF algorithm on a multi-agent pole balancing
problem and a multi-agent network control problem.

Preliminaries
Reinforcement Learning Basics
We work in the typical (multi-agent) reinforcement learning
paradigm (Sutton & Barto 1998) in which a set of learn-
ing agents interact with a Markov decision process (MDP).
Specifically, let us have a set ofN agents{n1, n2, . . . , nN},
each of which possess a set of sensorsS(ni) = {sj , . . . , sk}
and a set of actionsA(ni) = {al, . . . , am}. Let us take the
total number of sensors for all agents in the system to beNS

and the total number of actions for all agents to beNA. We
will take each sensor as generating a scalar output in the real
numbers at any given point in time (si(t) ∈ R).

The state, agent actions and reward at each time-step
t ∈ {0, 1, 2, . . .} are denotedst ∈ S ≡ S(n1) ⊗ S(n2) ⊗
. . . ⊗ S(nN ) ∈ RNS , at ∈ A ≡ A(n1) ⊗ A(n2) ⊗ . . . ⊗
A(nN ) ∈ ZNA , andrt ∈ R respectively. The environment’s
dynamics are characterized by state transition probabilities,
P(s,a, s′) = Pr{st+1 = s′|st = s,at = a}, and expected
rewardsR(s,a) = E{rt+1|st = s,at = a}.

System agents decide what action to take at each time-step
by following a policyπ(at; st) such that the probability that
the system agents will (collectively) perform actionat when
the environment is in statest is π(at; st). There are several
measures of policy quality, though the one we will be most
interested in here is long-term rewardρ(π):

ρ(π) = E{
∞∑

t=1

γt−1rt|s0, π} (1)

for some scalardiscounting factor0 < γ < 1.

Coalition Formation Basics
A coalition of agentsC = {ni, . . . , nk} groups a set of
agents together such that they are able to act in a coor-
dinated fashion. Here, we will take acoalition structure
CS = {C1, . . . , C|CS|} to be a set of coalitions such that
the system agents{ni} are disjointly split up into|CS| coali-
tions, and such that every agent is assigned to some coalition
in the coalition structure. When needed, we will refer to the
ith coalition in a coalition structure asCS(i).

Reduced Environments and Policies
Imagine that we are interested only in the set of agents in
a single coalitionC = {nj , . . . , nk}. If we only consider
this set of agents, we only have access to the sensors pos-
sessed by the agentsni ∈ C. We will let stC refer to the
reduced system state obtained by taking the state vectorst
and deleting any components generated from sensors pos-
sessed by agents not inC. Likewise, we will letat

C refer to
the actions taken by only those agents inC. Finally, we will
say that a policyat

C = πC(stC) is a policy which controls
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agents in coalitionC by responding to the sensor readings
of the agents in coalitionC.

Coalition Structure Valuation
The value of a coalition structureCS = {Ci} will be deter-
mined by training and evaluating|CS| optimal policiesπCi ,
one policy to govern the agents in each coalitionCi ∈ CS.
Specifically, we will here say that the value of a coalition
structureV (CS) is:

V (CS) = ρ({πCi}) = E
[ ∞∑

t=1

γt−1rt|s0, {πCi}
]

(2)

Training Corpus
Although many variations of reinforcement learning occur
on-line, with the agent(s) under training interacting with the
environment in real-time, we assume here that we have col-
lected a set of agent experiences beforehand, and then per-
form reinforcement learning over thistraining corpus. That
is, imagine that we have collected a number ofexperience tu-
ples(collectively a training corpusT ) by allowing our agent
system to interact with the environment:

T = {〈st,at, s′t, rt〉} (3)

If we train a policy over the system as a whole, without
the consideration of coalitions, we would be able to useT
directly. However, with the introduction of coalitions, poli-
cies would be trained over each coalition separately since
inter-coalitional agents do not coordinate their actions. This
would have the effect that, for coalitionCi, the training cor-
pus would become:

T Ci = {〈stCi ,at
Ci , st′Ci , rt〉} (4)

such that the corpusT Ci used to train the agents inCi may
not consider any of the sensor outputs or actions of agents
nj /∈ Ci.

Our Approach
As promised in the introduction, we will view the coali-
tion formation process from an information theoretic per-
spective. Specifically, we will view the act of training our
agents via reinforcement learning as the following: a train-
ing corpusT which contains information relating the ac-
tions of system agents and the state of the environment to
the reward received by the agent system is transformed into
a reward-maximizing policy by the reinforcement learning
algorithm.

Now, because agents only coordinate intra-coalitionally,
agents only have access to the sensors and knowledge of
the actions of agents in their own coalition. In this context,
imagine the effect of coalition formation from the perspec-
tive of some agentni. If ni were not in a coalition,ni would
have access to the entire training corpusT , and all the infor-
mation contained therein about how to go about obtaining
reward. However, if we placeni in a coalitionCi along
with several other agents, suddenlyni only has access to
the sensor readings of the other agents in its own coalition.

Sinceni could not use the sensor output of extra-coalitional
agents for policy execution anyway, the contribution to the
training corpusT from extra-coalitional agents cannot affect
the final policy of agentni. Thus, as far as the reinforce-
ment learning process is concerned, placingni in a coali-
tion is equivalent to altering the training corpusT to remove
the contributions from extra-coalitional agents (effectively
transformingT V T Ci). SinceT is being altered, coali-
tion formation will necessarily have an impact on the in-
formation contained inT relating environmental states and
agent actions to reward. As did the work on feature selection
and classifier training, we will proceed with the assumption
that a CS which maximizes the amount of information coali-
tions’ possess about the relation between state/actions and
reward, will, if not guarantee us an optimally performing
CS, will at least result inbetter-performingcoalition struc-
tures than those with coalitions which provide less informa-
tion about reward. As such, we will be interested in methods
to attempt to maximize this state/action/reward information.

Information Theory
We can write down the mutual information in the training
corpus relating states and actions to reward as the following:

I(r; s,a, s′) =
∑
a

∫

r

∫

s

∫

s′
P (s,a, s′, r) log

P (s,a, s′, r)
P (s,a, s′)P (r)

(5)
We can also speak of the information available to agents in
a coalitionCi:

I(Ci) ≡ I(r; sCi ,aCi , s′Ci) (6)

=
∑

aCi

∫

r

∫

sCi

∫

s′Ci

P (sCi ,aCi , s′Ci , r) log
P (sCi ,aCi , s′Ci , r)

P (sCi ,aCi , s′Ci)P (r)
(7)

For a given coalition structureCS, each of the|CS| coali-
tions will have someI(Ci). We can also define theaverage
coalitional mutual information across the coalition structure:

I(CS) =
1
|CS|

∑

Ci∈CS
I(Ci) (8)

Since our goal is to maximize the amount of information
possessed by each coalition, we will attempt to maximize
this quantity. As pointed out in (Battiti 1994), it is gener-
ally not possible to optimize such an expression for mutual
information content with computational effort which scales
reasonably with number of information variables. However,
as we pointed out last section, even if we could find such
an information maximizing coalition structure, it would not
guarantee us that optimally-performingcoalition structures
would result. Thus, as (Battiti 1994) points out, it is reason-
able to use approximate algorithms for maximizing informa-
tion, and as such here we will use a simple greedy approach.

IBCF Coalition Formation Algorithm
We now present an algorithm to form a coalition structure
by greedy maximization of mean coalition information:
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IBCF Algorithm

Set CS = {{n1},{n2},...,{nN}}
Set DONE = FALSE, MAX_MEAN = -1

While DONE = FALSE

DONE = TRUE

For i,j = 1 to |CS|
Set CS’ = CS
Merge CS’(i) and CS’(j)

TEST_MEAN = I(CS’)
If TEST_MEAN > MAX_MEAN

CS’’ = CS’
MAX_MEAN = TEST_MEAN
DONE = FALSE

End
End

If DONE = FALSE
CS = CS’’

End
End

Computational Requirements

Since in each iteration of the main while loop two coalitions
are merged, the outer loop can execute at mostN (number
of system agents) times. The double inner For loops operate
over pairs of coalitions, such that the total number of evalu-
ations of evaluations ofI before termination is at worst:

N∑
x=1

x2 =
1
6
N(N + 1)(2N + 1) ∝ O(N3) (9)

There are several methods for practically evaluatingI:
one can simply construct a histogram of the various proba-
bility distributions and calculate information directly, or one
can use more advanced level-of-detail approaches such as
Fraser’s algorithm (Fraser & Swinney 1986). Regardless, in
the worst case, one can always use the brute force histogram
construction method. In this case, calculating mutual infor-
mation overn variables will requireO(Cn) bins, whereC
is the number of segments along any given dimension of the
histogram. Since our expression for mutual information in-
volves the reward variable, and 3 state/action variables (s, a,
s’) for each agent, we would requireO(C3N+1) bins for
information evaluation overN agents. This may seem a
steep requirement (though, the reader should note that this
requirement could be much less steep under a more sophisti-
cated estimation scheme such as Fraser’s algorithm), but one
must remember that we work in a reinforcement learning
context. In general, since the action space of a set of agents
scales exponentially in the number of agents, training anN -
agent system even with modern reinforcement learning al-
gorithms (e.g. Least-Squares Policy Iteration, (Lagoudakis
& Parr 2003)) involvesO(CN ) computationanyway.

Figure 1: The cart-pole balancing problem.

Experiment 1: Multi-Agent Cart-Pole
Balancing Problem

One of the classic problems in reinforcement learning is the
cart-pole balancing problem. In this problem we have a cart
of massM capable of frictionless, one-dimensional motion.
Attached to this cart via a hinge is a pole with a massm on
top. Gravity acts to pull the top mass down, but the pole
and mass can be kept in the upright position by judicious
movements of the cart.

Agents in this system are capable of applying some im-
pulse either to the left or to the right of the cart, and reward
is given out to the agents if the pole is within some angle tol-
erance of the upright position. System parameters are spec-
ified in two variables,θ, the angle of the pole away from the
upright position, andω = θ̇, the angular velocity of the pole.

We performed a multi-agent version of this simulation to
demonstrate our coalition formation algorithm. Specifically,
in our system, each agent was given a single sensor which
measured some linear combination ofθ andω (to enable di-
rect combination of these two variables, bothθ andω were
normalized to have zero mean and unit variance before use
in all cases). Specifically, each agent was given a single sen-
sorηi:

ηi = cos(φi)θ + sin(φi)ω (10)

And as usual, each agent was capable of imparting a force
from the left or right to the cart. This problem is interest-
ing, because individually, each agent has insufficient infor-
mation to solve the pole-balancing problem. That is, neither
θ or ω alone is enough to solve the pole balancing problem,
and neither is any linear combination of these two variables.
Agents must be in coalitions such that other agents supply
missing pieces of information to allow both agents to come
to a joint decision as to what force to apply to the cart.

Pre-training, we ran our IBCF algorithm as described
above on the cart-pole agents. Intuitively, one would ex-
pect that the maximum amount of reward-related informa-
tion would occur in two-agent coalitions{n1, n2} such that
{φ1 = x, φ2 = x + π/2}, with higher-agent coalitions of-
fering no informational advantage. That is, such a two-agent
coalition has all the information contained in the originalθ
andω variables - and in fact, the two variablesθ andω can
be recovered by a rotation of{η1, η2} by an angle−x.

We collected a training corpus by allowingN = 8 agents
to interact with a pole-cart system. All physical constants
and simulation methods were taken directly from the single-
agent pole-balancing example presented in (Lagoudakis &
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Figure 2: Relative information gain between the single-
agent coalitionsC1 = {n1}, C2 = {n2} with φ1 = 0, φ2 =
φ1 +φ, and the two-agent coalitionC3 = {n1, n2}. Specifi-
cally,∆I = I(C3)−(I(C1)+I(C2))/2

(I(C1)+I(C2))/2 . Notice that whenφ = 0
the sensors of the two agents are identical and no informa-
tion gain is achieved. The maximum is achieved atφ = π/2
when the two sensor outputs are ’orthogonal’.

Figure 3: Results of the cart-pole balancing experiment.

Parr 2003). During experience collection, agents followed
a random policy, applying force from the left or right with
equal probability. We initialized the sensor angles to be the
following φ1 = 0, φ2 = π/2, φ3 = π/8, φ4 = π/8 +
π/2, φ5 = π/4, φ6 = π/4 + π/2, φ7 = 3π/4, φ8 =
3π/4+π/2. After the training corpus was collected, we ran
IBCF over the corpus, which produced the following coali-
tion structure:

CSIBCF = {{n1, n2}, {n3, n4}, {n5, n6}, {n7, n8}}
(11)

As expected, the algorithm matched agents with comple-
mentary sensors such that intra-coalition mutual information
between states/actions and reward was maximized. After
coalition structure generation, we trained each coalition in
isolation to balance the pole using the reinforcement learn-
ing scheme described in (Lagoudakis & Parr 2003) (Least-
Squares Policy Iteration). After training was complete, we
measured the average time the system was able to keep the
pole balanced upright (with all agents in all coalitions able
to apply forces simultaneously, of course). For comparison,
we also measured the average ’upright time’ when randomly
generated coalition structures (made up of strictly two-agent

Figure 4: Two network topologies with the coalitions pro-
duced by IBCF drawn on the figure.

coalitions) were used, and the average upright time for a sin-
gle agent balancing the pole with access with bothθ andω
directly (essentially reproducing the single-angle case pre-
sented in (Lagoudakis & Parr 2003) ... in this domain,
the single-agent policy will perform optimally). For each
case, we allowed the system to try to balance the pole 500
times, and the average upright times are plotted in Figure 3.
The IBCF-coalition based results are nearly identical to the
single-agent results, as expected, since each coalition has as
much information about the system as does the single agent.
Note that we did not compare against a direct search for
an optimal coalition structure because the rather long train-
ing/evaluation times for this domain made this untenable.

Experiment 2: Multi-Agent Network Control
Problem (SysAdmin)

The SysAdmin problem, as presented in (D. Guestrin & Parr
2001) simulates the management of network by a system of
agents. The problem roughly goes as follows: there is a
network ofN machines (connected to each other through
some network topology), each of which is managed by an
agent. These machines are designed to run processes, and
when a machine completes a process, its agent is given
some reward. Specifically, machines are capable of being
in three ’stability’ states STATE ={HEALTHY, UNSTA-
BLE, DEAD} and three ’process’ states LOAD ={IDLE,
PROCSES RUNNING, PROCSS COMPLETE}. Healthy
machines turn into unstable machines with some probabil-
ity, and unstable machines turn into dead machines with
some probability. Unstable machines take longer to com-
plete processes (and hence generate less reward on average)
and dead machines cannot run processes at all. To make
matters more complicated, unstable and dead machines can
send bad packets to their neighbors, causing them to go un-
stable and eventually die as well. At each time-step, each
agent must decide whether or not to reboot its machine. Re-
booting returns the machine to the healthy state, but at the
cost of losing all running process (which effectively incurs
some reward penalty since all work done on processes up to
this point will be lost).

For our experiment here, we generatedN = 12 ma-
chine networks with randomly generated network topolo-
gies. Specifically, each potential connection in the network
(144 possible connections) had a probability (we used0.05)
of being turned on. For each network, we collected a train-
ing corpus by having each agent follow a random policy and
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Figure 5: The results of the SysAdmin simulation.

reboot its machine with a50% probability. All other simula-
tion parameters were as described in the (D. Guestrin & Parr
2001) work. After the corpus was collected, we ran IBCF
on the data. To speed up training (and because our networks
generally ended up relatively sparse - usually two connec-
tions per node), we capped our coalition sizes at three agents
(which we did by adjusting our algorithm such that when a
coalition reached three agents in size, it was no longer con-
sidered for mergers). After coalition generation, we trained
each coalition in isolation, using Least-Squares Policy Itera-
tion, as outlined in (Lagoudakis & Parr 2003). For compari-
son, we also trained our agents under randomly generated
coalition structures (with the same three-agent maximum
coalition size), and also trained our network agents using
Coordinated Reinforcement Learning (CRL) as described
in (D. Guestrin & Parr 2001). Coordinated Reinforcement
Learning is useful on domains where much is known about
interdependencies between agents pre-training, and has been
shown to produce policies which are near optimal on this
particular SysAdmin problem domain (D. Guestrin & Parr
2001). While direct comparison between CRL and our coali-
tion generation algorithm is really not reasonable since CRL
requires significant additional information about the domain
(besides the training corpus), the results provide a useful
idea of relative level of performance of policies on this do-
main. The results are plotted in Figure 5 for 500 generated
networks in each series. Note that once again we did not
compare against a direct search for an optimal CS because
of the computational costs.

It is interesting to observe the coalitions that our algorithm
generated for various network topologies. Notice in Fig-
ure 4a that for a system where nodes are strictly connected
to two neighbors (and an appropriate three-agent coalition
structure is obvious), our algorithm generates coalitions re-
flecting these dependencies. Other more complex topologies
resulted in different coalition structures, for example in Fig-
ure 4b, though the interdependencies of the network are still
somewhat represented.

Conclusions
We have examined the issue of coalition structure genera-
tion from an information theoretical viewpoint. Specifically,
we concentrated on reinforcement-learning-based domains
where one has pre-learning training-corpus of collected ex-

periences. We showed how one could extract statistical in-
formation from this corpus to determine coalition structures
which maximized the information that each coalition pos-
sesses about the nature of how environmental states and
agent actions relate to external reward, the assumption be-
ing that larger amounts of such information should result in
the generation of better, higher-valuation policies.

We applied our algorithm to two multi-agent reinforce-
ment domains: the multi-agent pole-balancing problem (as
in (Lagoudakis & Parr 2003)) and the SysAdmin, network
management problem (as in (D. Guestrin & Parr 2001)), and
the system performance resulting from training over coali-
tion structures generated with our IBCF algorithm compared
favorably to other, specialized peer training algorithms in
each domain.
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