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Abstract 
Because many real-world problems can be represented and 
solved as constraint satisfaction problems, the development 
of effective, efficient constraint solvers is important. A 
solver's success depends greatly upon the heuristics chosen 
to guide the process; some heuristics perform well on one 
class of problems, but are less successful on another. ACE is 
a constraint solver that learns to customize a mixture of heu-
ristics to solve a class of problems. The work described here 
accelerates that learning by setting higher performance 
standards. ACE now recognizes when its current learning 
attempt is not promising, abandons the responsible training 
problems, and restarts the entire learning process. This pa-
per describes how such full restart (of the learning process 
rather than of an individual problem) demands careful 
evaluation if it is to provide effective learning and robust 
testing performance.  

Introduction 

In the domain investigated here, an unsupervised learner 
searches for a solution to difficult combinatoric problems 
within a specified resource limit. If it fails on a problem, 
the learner tries to solve the next one. If it succeeds, the 
learner gleans training instances from its own (likely im-
perfect) trace, and uses them to refine its search algorithm 
before it continues to the next problem. Although a differ-
ent sequence of decisions might have led to the learner’s 
solution (or another, equally acceptable one) more quickly, 
the learner is restricted here to its own single search trace. 
The long-term goal of this work is to learn an effective, 
efficient combination of domain-specific heuristics that 
works well on a specific set of problems. Our thesis here is 
that full restart of the entire learning process can accelerate 
such convergence. Our principal result is the success of full 
restart on a given class of constraint satisfaction problems 
(CSPs), even though the learner is unsupervised and the 
quality of any individual solution must go unknown. 
 The program described here learns to solve CSPs. Dur-
ing search it uses a traditional CSP combination of heuris-
tic decision making, propagation, and backtracking. Its 
learning algorithm refines the weights assigned to a large 
set of heuristics, based on feedback from the solver after 
each problem. Search and learning are closely coupled; 
weights are updated based on search results, and decisions 
made during search are based on the current weights. The 
program learned correctly without full restart, but under a 
high resource limit. This paper shows how, under proper 

control, even repeated full restarts can accelerate this learn-
ing without compromising performance.  
 This work is novel for several reasons. Previously, re-
start has been used either to make a fresh start on global 
search for solution to a single problem, or to make local 
search more resilient to local minima. In both cases, restart 
was meant to find a solution to a problem more quickly. 
The goal of full restart, however, is to accelerate the con-
vergence of learning to a high-performance combination of 
heuristics, even though the optimal combination and the 
distance from it are unknown. Abandoning a learning proc-
ess only to begin it again can be costly; we propose here a 
strategy that is both economical and effective.  
 Traditional restart reuses its training problems; some 
randomness varies the search experience on each new at-
tempt. In contrast, full restart abandons a training problem 
entirely if no solution is found within a user-specified step 
limit (maximum number of search decisions), and substi-
tutes another. Full restart also begins the entire learning 
process again under the direction of a user-specified restart 
strategy that compares the frequency and distribution of 
abandoned problems to a full restart threshold.  
 The success of full restart depends upon critical interac-
tions among the step limit, the restart strategy, and the full 
restart threshold. The next section provides background on 
constraint satisfaction and describes the learning program. 
Subsequent sections motivate full restart, demonstrate its 
success, evaluate the influence of various parameters on 
learning performance, and discuss related work. 

Constraint satisfaction problems  

A constraint satisfaction problem (CSP) consists of a set of 
variables with associated domains and a set of constraints, 
expressed as relations over subsets of these variables. A 
partial instantiation of a CSP is an assignment of values to 
some proper subset of the variables. An instantiation is 
consistent if and only if all constraints over the variables in 
it are satisfied. Problems that may be expressed as CSPs 
include scheduling, satisfiability (SAT), graph-coloring, 
and Huffman-Clowes scene labeling. 
 A solution to a CSP is a consistent instantiation of all its 
variables. A binary CSP (all constraints are relations be-
tween two variables) can be represented as a constraint 
graph, where vertices correspond to the variables (labeled 
by their domains), and each edge indicates the existence of 
a constraint between its respective variables (labeled with 
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consistent pairs of values). A class is a set of CSPs with 
the same parameters. For example, one way to define a 
class is with parameters <n, m, d, t>, where n is the number 
of variables, m the maximum domain size, d the density 
(fraction of edges out of n(n-1)/2 possible edges) and t the 
tightness (fraction of possible value pairs that each con-
straint excludes) (Gomes, Fernandez, et al., 2004). Al-
though CSPs in the same class are ostensibly similar, there 
is evidence that their difficultly may vary substantially for 
a given solution method (Hulubei and O'Sullivan, 2005). 
Our experiments here are limited to classes of solvable 
binary CSPs, generated randomly using methods and code 
shared by the CSP community. 
 Determining whether a CSP has a solution is an NP-
complete problem; the worst-case cost is exponential in n 
for any known algorithm. Most instances of these problems 
can be solved with a cost much smaller than the worst-case 
cost, however.  
  The CSP search algorithm used here alternately selects 
a variable and then selects a value for it from its domain, 
incrementally extending a partial instantiation by a value 
assignment consistent with all previously-assigned values. 
When an inconsistency arises, search backtracks: the sub-
tree rooted at the inconsistent node is pruned and another 
value from the domain of the same variable is tried. If 
every value in that variable’s domain is inconsistent, the 
current partial instantiation cannot be extended to a solu-
tion, so the previously assigned variable in the instantiation 
is reassigned. Typically, extensive search occurs when 
many attempts lead to “near” solutions, and backtracking 
occurs deep in the search tree. Further pruning of the 
search tree is accomplished by some form of propagation 
to detect values that cannot be supported by the current 
instantiation. Here we use MAC-3 to maintain arc consis-
tency during search (Mackworth, 1977). MAC-3 temporar-
ily removes currently unsupportable values to maintain 
dynamic domains for the variables. The size of a search 
tree depends upon the order in which values and variables 
are selected. Different variable-ordering heuristics (rules 
to select the next variable for instantiation) and value-
ordering heuristics (rules to select the next value to be 
assigned to an already-selected variable) can support ex-
tensive early pruning and thereby speed search.  

ACE, the Adaptive Constraint Engine 

ACE (the Adaptive Constraint Engine) learns to customize 
a weighted mixture of heuristics for a given CSP class 
(Epstein, Freuder, et al., 2005). ACE is based on FORR, a 
problem-solving and learning architecture for the devel-
opment of expertise from multiple heuristics (Epstein, 
1994). ACE makes decisions by combining recommenda-
tions from procedures called Advisors, each of which im-
plements a heuristic for taking, or not taking, an action. By 
solving instances of problems from a given class, ACE 
learns an approach tailored to that class. Advisors are or-
ganized into three tiers. Tier-1 Advisors are always correct. 
If a tier-1 Advisor comments positively, the action is exe-

cuted; if it comments negatively, the action is eliminated 
from further consideration during that decision. The only 
tier-1 Advisor in use here is Victory, which recommends 
any value from the domain of the last unassigned variable. 
Tier-1 Advisors are consulted in a user-specified order. 
Tier-2 Advisors address subgoals; they are outside the 
scope of this paper. The decision making described here 
focuses on the heuristic Advisors in tier 3. 
 Each tier-3 Advisor can comment upon any number of 
actions; each comment has a strength which indicates the 
degree of support or opposition of the Advisor to the ac-
tion. Each Advisor’s heuristic view is based upon a de-
scriptive property. An example of a value Advisor is Max 
Product Domain Value, which recommends values that 
maximize the product of the sizes of the dynamic domains 
of its neighbors. An example of a variable selection Advi-
sor is Min Dom/Deg, which selects variables whose ratio of 
dynamic domain size to static degree in the constraint 
graph is a minimum. For each property, there are two Ad-
visors, one that favors smaller values for the property and 
one that favors larger ones. For example, domain size is 
referenced by Max Domain and Min Domain, which rec-
ommend variables with the largest and smallest domains, 
respectively. Typically, one from each pair is known by 
CSP researchers to be a good heuristic, but ACE imple-
ments both of them, and has occasionally demonstrated 
that the other heuristic is successful for some problem 
classes. There are also two benchmark Advisors, one for 
value selection and one for variable selection, which do not 
participate in decisions but model random tier-3 advice. 
During testing, only an Advisor that has a weight larger 
than the weight of its respective benchmark is permitted to 
comment. When a decision is passed to tier 3, all its Advi-
sors are consulted simultaneously, and a selection is made 
by voting: the action with the greatest sum of weighted 
strengths from all comments is executed.  
 During learning, after it solves a problem, ACE uses the 
DWL (Digression-based Weight Learning) algorithm to 
update its weight profile, the set of weights of its tier-3 
Advisors. DWL learns from both positive training in-
stances (decisions made along an error-free path extracted 
from a solution) and negative training instances (decisions 
leading to a digression, a failed subtree). DWL discards the 
decisions made within a digression. For each positive train-
ing instance, Advisors that supported it (included it among 
the Advisor’s highest-strength preferences) are rewarded 
with a weight increment. Advisors that supported a nega-
tive training instance are penalized in proportion to the 
number of search nodes in the resultant digression. DWL 
also penalizes variable-ordering Advisors that supported 
selection of the last variable at the time of digression. 
DWL gauges the learner’s developing skill across a se-
quence of learning problems. DWL weight increments de-
pend upon the size of the search tree, relative to the best 
search so far (the minimal size of the search tree in all pre-
vious problems). Short solutions indicate a good variable 
order, so correct variable-ordering Advisors in a short solu-
tion will be highly rewarded. For value-ordering Advisors, 
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short solutions are interpreted as an indication that that 
problem was relatively easy (i.e., any value selection 
would likely lead to a solution), and therefore result in only 
small weight increments for correct Advisors. A long 
search, in contrast, suggests that a problem was relatively 
difficult, so value-ordering Advisors that supported posi-
tive training instances there receive substantial weight in-
crements.  

The motivation for full restart 

The motivation for full restart is to speed learning without 
compromising performance. Of necessity, ACE learns to 
solve CSPs with incomplete information. An omniscient 
teacher would require full knowledge of the exponentially-
large search space for each problem to determine an opti-
mal variable ordering and value ordering. Instead, ACE 
learns from its own solutions, and learns only after an in-
stance is solved. This approach is problematic for several 
reasons. Recall that the number of decisions in a search 
tree measures ACE’s overall performance, and is the basis 
for rewards and penalties. A particular Advisor, however, 
may be incorrect on some decisions that resulted in a large 
digression, and still be correct on many other decisions in 
the same problem. Moreover, a problem is solved only 
once, and learning is based on that solution. There is no 
guarantee that some other solution could not be found 
much faster, if even a single decision were different. 
 ACE is an effective learner. Min Dom/Deg (mDD, de-
fined above), an “off-the-shelf,” often-used heuristic, aver-
aged 228.65 steps to find a first solution to a test set of 60 
problems in <30, 8, 0.31, 0.34>. In contrast, ACE averaged 
149.39 steps. This reduction is statistically significant at 
the 95% confidence level. ACE’s performance is an aver-
age across 10 runs. In each run, ACE first learned weights 
for 36 heuristics on a new set of 30 problems and then 

tested those weights on the original set of 60 problems. 
The next challenge was to accelerate its learning. 
 During search, a step selects either the next variable or a 
value for that variable, and the step limit is the maximum 
number of steps allowed to solve the problem. Although in 
most runs ACE was significantly better than mDD, limit-
ing resources by lowering the step limit during learning 
produced occasional runs where ACE did not learn how to 
solve these problems well. This difficulty is illustrated in 
Table 1, which shows ACE’s performance on 10 runs in 
two different classes. Inadequate runs appear in bold. 
 For difficult CSPs, the number of steps to solution with 
a given search algorithm may vary greatly from problem to 
problem in the same class, and can be modeled by a heavy-
tailed distribution whose tail decreases according to a 
power-law (Gomes, Selman, et al., 2000). This variation is 
not necessarily due to the difficulty of an individual prob-
lem — on another, somehow randomized attempt, or with a 
different algorithm or with a different heuristic, the same 
problem may be solved quickly.  
 The extremely high average number of steps of the in-
adequate runs in Table 1 are not the effect of an algorithm 
occasionally approaching a difficult problem. On the in-
adequate runs, ACE consistently failed to solve problems 
that were successfully solved in other runs. (The same test-
ing set was used in each run.) This indicates that DWL did 
not converge to an appropriate weight profile during learn-
ing. Figure 1 shows the weights of some selected Advisors 
after each of the first 5 runs for <30, 8, 0.31, 0.34>. ACE 
learns to discriminate between Advisors that minimize and 
maximize the same property; in all but runs 3 and 5, it as-
signed higher weights to the version corresponding to well-
known, good heuristics. In contrast, the most highly-
weighted heuristics from the inadequate runs never partici-
pated in testing during the other, successful runs (because 
of their worse-than-benchmark weights), and the highly-
weighted heuristics from the other runs did not survive to 
participate in the testing in runs 3 and 5.  

Table 1: Post-learning performance of ACE, measured by 
average steps to solution, with and without restart. With-
out restart, reduced learning resources (the learning step 
limit) produce occasional unsatisfactory runs. With an 
appropriate restart strategy, however, learning resources 
can be reduced by an order of magnitude without com-
promising performance. 

Class <30, 8, 0.31, 0.34> <30, 8, 0.18, 0.5> 

Restart 
strategy 

None None 
4 out of 7 

failed  
None None 

4 out of 7 
failed  

Learning 
step limit 

20000 2000 500 10000 1000 500 

Run 1 145.13 145.12 144.47 71.80 3324.42 73.00 

Run 2 149.17 150.10 147.85 71.07 71.38 72.37 

Run 3 163.28 6541.17 163.98 69.72 69.72 71.95 

Run 4 146.85 151.63 152.73 70.85 70.43 73.23 

Run 5 153.25 6373.50 156.27 71.53 71.92 71.97 

Run 6 144.30 144.02 154.63 71.43 72.43 75.82 

Run 7 154.90 157.73 158.10 72.37 71.42 71.50 

Run 8 150.27 154.55 153.25 69.75 73.87 72.43 

Run 9 135.93 157.68 162.58 71.25 3370.53 72.78 

Run 10 150.77 154.25 158.00 69.90 71.62 73.20 
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Figure 1: Weights learned for selected well-respected 
Advisors (solid shapes) and their opposites (hollow) in 
three adequate (runs 1, 2 and 4) and inadequate (runs 3 
and 5) on problems in <30, 8, 0.31, 0.34>. 
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Efficient full restart 

The incentive for decreasing the step limit is a extensive 
learning effort, measured here as total steps during learn-
ing. We show here that, on difficult problems, full restart 
with a lower step limit can eliminate occasional inadequate 
runs, and thereby maintain the high testing performance 
previously observed under a high step limit without full 
restart.  
 Recall that inadequate runs only arose when a higher 
standard (lower step limit) was set for the learner. Rather 
than extend training to more learning problems, with the 
hope that Advisor weights would eventually recover, we 
used full restart: abandon the learning process (and any 
weight profile) after some small number of unsolved in-
stances, and start learning afresh on new problems.  
 Our model assumes that the responsibility for lengthy 
search is shared both by the inherent characteristics of the 
problem and by an inadequate weight profile. Inability to 
solve problems within the step limit reflects inadequacy in 
the weight profile. Indeed, an inadequate weight profile 
will fail to solve many problems, regardless of how high 
we set the step limit. With a good weight profile, however, 
most problems will be solved, even within a reasonably 
low step limit. Without full restart, the step limit is usually 
set high, so that the learner solves most of the problems 
and can learn from them.   

Experimental design 
For ACE, a run is a learning phase (a sequence of prob-
lems that it attempts to solve and uses to learn Advisor 
weights), followed by a testing phase (a sequence of fresh 
problems that it solves with learning turned off). All prob-
lems are from a single <n, m, d, t> class. Because problem 
classes are inherently of uneven difficulty, ACE’s per-
formance is evaluated over a set of 10 runs with different 
learning problems but the same testing problems. In the 
work reported here, ACE referenced 36 tier-3 Advisors 
during learning; during testing ACE included only those 
tier-3 Advisors whose weights exceeded their correspond-
ing benchmarks. Experiments were performed on four 
classes of random, solvable, binary CSPs: 
<30, 8, 0.31, 0.34>, <30, 8, 0.315, 0.34> and the somewhat 
easier <30, 8, 0.16, 0.5> and <30, 8, 0.18, 0.5>.  
 Both problems and phases have termination conditions. 
The termination condition for testing was 10000 steps; for 
learning problems, the step limit was an experimental pa-
rameter that ranged from 200 to 1500. The termination 
condition for each testing phase in every run in all these 
experiments was the solution of the same 30 problems. We 
tried two termination strategies for the learning phase. In 
the fixed-length criterion, ACE was required to learn on 
specified number of problems before it began testing. Un-
der full restart occurred, this count was reset to 0, so that 
ACE learned on at least the specified number of problems. 
The expertise criterion terminated the learning phase after 
ACE solved a specified number of consecutive problems.  
 Under full restart, after each problem ACE evaluated its 

learning progress with respect to a restart strategy. If, ac-
cording to that strategy, learning was not progressing well, 
ACE performed a full restart: it discarded its learned 
weights and tackled a fresh set of learning problems. Dur-
ing learning, 20 full restarts were allowed; after 10 restarts, 
the step limit was increased by 50 on each full restart. This 
increment is intended to recover from an unreasonably 
demanding step limit. (A problem with n variables requires 
at least 2n steps.) 
 Our restart strategy was “full restart after k failed prob-
lems out of the last m problems.”  It allowed us to avoid 
full restart due to multiple but sporadic failures attributed 
to uneven problem difficulty rather than an inadequate 
weight profile. For the <30, 8, 0.31, 0.34> class, we tested 
values of m and k from 2 to 7; the best tested full restart 
strategy was “failure on 4 out of the last 7 problems.” For 
an easy to satisfy strategy (e.g., failure on 2 out of 7) and a 
low step limit, frequent full restarts prevented ACE from 
learning on all but the easiest problems, and did not elimi-
nate inadequate runs. A hard to satisfy strategy (e.g., fail-
ure on 7 out of 7), particularly with a high step limit, effec-
tively prevented full restart and therefore still produced 
inadequate runs. The easier <30, 8, 0.16, 0.5> did better 
with a smaller number of failures to trigger restart (“2 out 
of 7” and “3 out of 7”). 

Full restart and the step limit 
Full restart makes the step limit more important. Because 
ACE fails on a problem if it does not find a solution within 
the step limit, the step limit is the criterion for unsuccessful 
search. Because the full restart threshold directly depends 
upon the number of failures, the step limit becomes the 
performance standard for learning. Moreover, the step limit 
serves as a filter on problem difficulty: since ACE does not 
learn from unsolved problems, a lower step limit actually 
eliminates more difficult problems. An inadequate run, 
regardless of the step limit, has repeated failures from 
which the program cannot learn, and they consume consid-
erable resources. Full restart should help the learner re-
spond, early on, to learning that is not going well.  
 Figure 2 illustrates the relationship between search effort 
and the step limit. The circles there show the learning ef-
fort under a fixed-length criterion of 30. An extremely low 
step limit alone is insufficient to prevent inadequate runs. 
Frequent problem failures not only increase the number of 
full restarts (and hence the learning effort), but also leave 
the learner without training instances. Indeed, when pre-
sented with a 200-step limit, ACE required considerable 
resources and eventually began to increment the step limit 
(after 10 unsuccessful full restarts); only then could it 
learn.  
 With a relatively high step limit (e.g., 1000), many diffi-
cult problems are solved, and full restart triggers only on 
the rare occasions when a learning attempt is not promis-
ing. Nonetheless, every failure is expensive. With a low 
(but reasonable) step limit (e.g., 300), the learner fails on 
all the difficult problems, and even on some of medium 
difficulty, repeatedly triggering full restart until the weight 
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profile is good enough to solve (almost) all the problems. 
A low step limit results in many failures, but relatively 
inexpensive ones.  
 This might suggest that reducing the step limit to some 
intermediate value would reduce learning effort (avoid 
overly expensive failures), but that further reduction of the 
step limit would incur overly frequent failures and increase 
learning effort. Nevertheless, as Figure 2 illustrates, learn-
ing with an intermediate step limit is more costly because it 
simply delays full restart and thereby forces learning from 
all but the most difficult problems. The learned weight 
profile is good enough so that failures are less frequent, 
and full restart is postponed. When full restart eventually 
triggers, the work on more problems (requiring relatively 
extensive effort) is abandoned.  
 Figure 3 chronicles performance in three sample runs 
with full restart. With a relatively high (1000) step limit, 
there were a few failures at the beginning of a run; ACE 
recovered without resorting to full restart, and was exposed 
to exactly 30 problems. With an intermediate (500) step 
limit, there were some full restarts at the beginning, and, 
once an acceptably good weight profile was learned, there 
were only sporadic failures; exposure was to 42 problems 
in all. With a relatively low (250) step limit, there were 
many failures at the beginning of each attempt at learning, 
and many full restarts before a good weight profile was 
established. Subsequent failures occurred, but were not 
frequent enough to trigger full restart; learning required 58 
problems in all. 

Achieving expertise 
Under the fixed-length criterion and the step limits investi-
gated here, full restarts occurred only early in a run. Once a 
good weight profile is established, there may be an occa-
sional failure, but there are no full restarts. Consistent suc-
cess in solving problems during learning indicates a good 
weight profile. Under the expertise termination criterion 
(solution of a specified number of consecutive problems), 
the number of learning problems is significantly reduced. 
For example, solving problems from <30, 8, 0.31, 0.34> 
with a 1000-step limit takes only an average of 13.10 prob-
lems when 10 consecutive solutions are required, instead 

of 32.40 under the fixed-length criterion when learning 
was on at least 30 problems. The reduction in learning ef-
fort is somewhat less dramatic (4323.58 steps for the entire 
phase instead of 8237.01 steps) because the expertise crite-
rion excluded readily solved problems. With a lower step 
limit, failure is more frequent so that the expertise criterion 
is more demanding; only learning a good weight profile 
can provide consistent success under a low step limit. This 
increases the number of learning problems, but failure is 
inexpensive. With the step limit of 400, most problems 
provide training instances (i.e., are solved within the step 
limit), and, when full restart occurs, it is well warranted. 
With all step limits, testing performance was not compro-
mised; it ranges from 143.06 to 153.63 steps. Figure 2 
shows that with the expertise criterion, learning effort is 
consistently reduced compared to fixed-length criterion.  

Discussion and future work 

Restart on an individual problem is often effective. Ran-
domized restart has successfully been applied to Internet 
traffic, scheduling (Sadeh-Koniecpol, Nakakuki, et al., 
1997), theorem proving, circuit synthesis, planning, and 
hardware verification (Kautz, Horvitz, et al., 2002). On 
difficult CSPs, Rapid Randomized Restart effectively 
eliminates the heavy tail in the run time distribution of 
backtrack search on an individual problem (Gomes, et al., 
2000). Just as traditional restart relies on fortuitous as-
signments, full restart relies on a fortuitous training set. 
 There are many ways to determine the appropriate re-
start cutoff value for an individual problem. If the runtime 
distribution of a problem is known, it is possible to com-
pute an optimal fixed cutoff value; if the distribution is 
unknown, there is a universal strategy provably within a 
log factor of optimal (Luby, Sinclair, et al., 1993). Another 
successful strategy increases the cutoff value geometrically 
(Walsh, 1999). When even partial knowledge of the effort 
distribution is known, and data on the search process is 
available, an appropriate restart cutoff can be dynamically 
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determined (Kautz, et al., 2002). Still another approach 
dynamically identifies problem features that underlie run-
time distribution. It uses them to partition problem in-
stances into classes with smaller runtime variability, with a 
different cutoff for each subset (Ruan, Horvitz, et al., 
2003).    
 Further improvements with traditional restart have been 
achieved with different implementations of randomness. 
Other research has changed the return point in the search 
tree (Zhang, 2002), or changed the temperature in simu-
lated annealing (Sadeh-Koniecpol, et al., 1997). Probing 
(restart with a cutoff value of one backtrack) has been used 
to test the ability of a heuristic to remain on a solution path 
in very small problems (Beck, Prosser, et al., 2003). 
 Potentially, repeated full restarts could demand many 
problems from a single class. ACE has libraries with as 
many as 10000 problems in each class, but producing 
enough problems may be impractical in some cases. In-
stead, we intend to reuse unsolved problems by introducing 
randomness or perturbing them after full restart. Previous 
experience with problems and their difficulty should also 
allow us to implement boosting with little additional effort 
during learning (Schapire, 1990). 
 We plan further automation of the full restart mecha-
nism. Ultimately for a specific class of problems, ACE 
should learn the appropriate step limit and any expertise 
parameters on its own. Analysis will also be extended to 
other kinds of CSPs and to mixtures of solvable and un-
solvable problems. 

Conclusion 

Learning systems with limited feedback and limited re-
sources are prone to occasional unsatisfactory perform-
ance. We showed here that one such system responds well 
to full restart. ACE receives very limited feedback from its 
attempts to solve constraint problems. Because of the in-
trinsic nature of constraint solving, there is no supervisory 
commentary on individual decisions, and the delayed re-
wards cannot truly reflect success during training.  
 As reported here, full restart can speed learning and im-
prove robustness without sacrificing performance. Without 
full restart, curtailing resources may result in inadequate 
learning. With full restart, however, learning can be robust, 
even when resources are reduced by an order of magnitude. 
Full restart has proved most effective when it responds to 
the frequency of recent problem failure and when learning 
terminates after some number of consecutive problems has 
been solved.  
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