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Abstract 
 

The use of ontologies based on knowledge representation 
architectures to support search and other decision-making 
problems in production environments has become a critical 
component of information systems.  The process of 
building such an ontology can now take advantage of tools 
such as Protégé (Gennari et al. 2002) to build an ontology 
for any given problem domain.  There has also been 
corresponding work done on the development of tools and 
utilities that measure the "quality" of an ontology and the 
metrics that can be used to measure different facets of the 
ontology.  In this paper we analyze an existing ontology 
that has been in use for fifteen years in the domain of 
process planning for automotive assembly.  This system, 
originally known as the Direct Labor Management System 
(DLMS), was developed and deployed at Ford Vehicle 
Operations in the early 1990s (Rychtyckyj 1999).  The 
requirement for maintaining the DLMS knowledge base 
over the last fifteen plus years has given us a unique 
perspective into the various maintenance problems and 
issues that need to be addressed. This paper will discuss 
those issues and try to frame the ontology quality issue in 
terms of our experience at Ford Motor Company. 
 

Introduction 
 
    The term "ontology" has passed from the computer 
science domain into the business world with the usual 
accompanying shifts in meaning.  In the traditional AI 
world, an ontology is a shared model or representation of a 
domain that describes the concepts and relationships that 
exist within that particular domain.  An ontology may be 
based on a taxonomy-like model, but that is not required.  
The goal of building an ontology is to enable knowledge 
sharing and reuse among the users of the ontology; these 
may be human and knowledge-based systems.  The work 
required to build ontologies that represent complex domain 
models is very substantial, and the return on investment for 
all of this effort must be justified.  For the last fifteen years 
we have been building and maintaining ontologies that 
model vehicle manufacturing at Ford Motor Company.   

      The use of KL-ONE (Brachman & Schmolze 1985) 
and associated knowledge representation systems for 
building large complex knowledge bases to support real-
world problems has been demonstrated in various 
application areas (Brachman et al. 1991).  One such system 
is Ford’s Direct Labor Management System (DLMS) that 
has been used since 1990 in the very dynamic domain of 
process planning for vehicle assembly (Rychtyckyj 1996, 
Rychtyckyj 1999).  The DLMS system has since been 
modified and integrated into the Global Study Process 
Allocation System (GSPAS).  The long-term maintenance 
of the DLMS knowledge base has demonstrated both the 
flexibility and reliability of semantic network-based 
knowledge bases in a rapidly changing industrial setting.  
The most critical issue in utilizing knowledge-based 
systems over a long period of time is the maintainability of 
the system.  Having maintained the GSPAS ontology over 
these intervening years, we have had to make changes to 
both the internal knowledge representation and to the 
system architecture.  All of these changes have introduced 
modifications to the system that can cause unforeseen 
problems with the system output.  Our experience over this 
time period has given us a unique perspective into the 
various problems and issues that need to be addressed.  
These issues focus on the processes and tools that are 
needed to validate and verify the ontology since it is 
updated frequently. This allows us to keep up with rapidly 
changing market conditions.  The modifications made to a 
semantic-network based knowledge base will also impact 
the structure and design of the network and may degrade 
the system performance over time if adjustments are not 
made. 
     One of our goals in writing this paper is to improve the 
communication between the KR research community and 
the business world where knowledge-based systems are 
deployed and maintained.  Our paper will focus on the 
maintainability of our ontology and discuss several 
approaches to improve maintenance.  One such approach is 
a method to automatically generate test cases to validate 
the correctness of the knowledge base as part of the 
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maintenance process.  Another approach is to use 
evolutionary computation to analyze the knowledge base 
as a tool to help us maintain and re-engineer as required.  
We will also give specific examples of knowledge base 
design decisions that had either a positive or negative 
effect on future maintenance.  A discussion on using 
ontology metrics will also be included.  With this paper, 
we hope to demonstrate what issues are important in 
maintaining an ontology base in a dynamic business 
environment over a long-term period.  
     In this paper we will discuss the design of the KL-ONE-
based DLMS/GSPAS manufacturing ontology and its use 
in the domain of automobile assembly planning.  A brief 
description of DLMS is contained in the next section.   The 
following section will focus on the evaluation and 
validation of the DLMS knowledge base and discuss the 
various techniques that were utilized for this task.  The 
subject of ontology metrics and their usefulness in 
evaluation ontology quality are then examined.  The paper 
concludes with a discussion of "lessons learned" from 
long-term experience with maintaining an ontology in a 
dynamic problem domain, such as automobile assembly.    
   

The Direct Labor Management System 
 
    The Direct Labor Management System (DLMS) is 
utilized by Ford Motor Company's Vehicle Operations 
division to manage the use of labor on the assembly lines 
throughout Ford's vehicle assembly plants.  DLMS was 
designed to improve the assembly process planning 
activity at Ford by achieving standardization within the 
vehicle process build description and to provide a tool for 
accurately estimating the labor time required to perform 
the actual vehicle assembly.  In addition, DLMS provides a 
framework for allocating the required work among various 
operators at the plant. It also builds a foundation for the 
automated machine translation of the process descriptions 
into foreign languages, a necessity in the current global 
business market.   
     The standard process-planning document, known as a 
process sheet, is the primary vehicle for conveying the 
assembly information from the initial process planning 
activity to the assembly plant.  A process sheet contains the 
detailed instructions needed to build a portion of a vehicle.  
A single vehicle may require thousands of process sheets 
to describe its assembly.  The process sheet is written by an 
engineer utilizing a restricted subset of English known as 
Standard Language.  Standard Language allows an 
engineer to write clear and concise assembly instructions 
that are machine-readable.  The process sheet is then sent 
to the DLMS system to be "validated" before it can be 
released to the assembly plants.  Validation includes the 
following: checking the process sheet for errors, generating 
the sequence of steps that a worker at the assembly plant 
must perform in order to accomplish this task and 
calculating the length of time that this task will require.  

The DLMS system interprets these instructions and 
generates a list of detailed actions that are required to 
implement these instructions at the assembly plant level.  
These work instructions, known as “allocatable elements,” 
are associated with MODAPTS (MODular Arrangement of 
Predetermined Time Standards) codes that are used to 
calculate the time required to perform these actions.  
MODAPTS codes are widely utilized within Industrial 
Engineering as a means of measuring the body movements 
that are required to perform a physical action and have 
been accepted as a valid work measurement system (Carey 
2001).  
     The allocatable elements generated by DLMS are used 
by engineering personnel at the assembly plant to allocate 
the required work among the available personnel.  DLMS 
is a powerful tool because it provides timely information 
about the amount of direct labor that is required to 
assemble each vehicle, as well as pointing out 
inefficiencies in the assembly process.    
     All of the associated knowledge about Standard 
Language, tools, parts, and everything else associated with 
the automobile assembly process, is contained in the 
DLMS knowledge base or ontology.  This knowledge base 
structure is derived from the KL-ONE family of semantic 
network structures and is an integral component in the 
success of DLMS.      
     The organization of the ontology is based on the KL-
ONE model.  The root of the semantic network is a concept 
known as THING that encompasses everything within the 
DLMS world.  The children of the root concept describe 
various major classes of knowledge and include such 
concepts as TOOLS, PARTS and OPERATIONS.  Each 
concept contains attributes or slots that describe that 
object.  The values of these attributes are inherited from 
the concept's parents.  Ranges of valid values can be given 
for any particular attribute.  Any attempt to put an invalid 
value in that attribute will trigger an error.  All of the 
information pertaining to the organization and structure of 
the ontology is also contained in the ontology itself.  There 
are four types of links that describe the relationship 
between any two concepts: subsumes, specializes, 
immediately-subsumes and immediately-specializes.  The 
subsumption relation describes a link between a parent 
concept and all of its children, including descendants of its 
children.  The "immediately-subsumes" relation describes 
only the concepts that are direct descendants of the parent 
concept.  The "specializes" and "immediately specializes" 
relations are inverses of the subsumption relation.  A 
concept "immediately specializes" its direct parent 
concepts and "specializes" all of the concepts that are 
ancestors of its parents.  These relationships are stored as 
attributes of any given concept. They can be utilized to 
trace any concept through the entire ontology.  
     The DLMS system utilizes a classification algorithm to 
create concepts and place them into their appropriate 
position in the ontology.  The classifier utilizes various 
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attributes of the concept in order to place it into its correct 
position.  These "classifiable" attributes are slot values that 
play a major role in determining where a concept belongs.  
For example, the attribute "size" is very important in 
classification, while the "output format" slot has little value 
in classification.  Classification is performed by finding the 
appropriate subsumers, linking the concept and then 
locating all the concepts that should be subsumed by the 
new concept.  The system narrows this search procedure 
considerably by selecting the appropriate node in the 
concept to begin the classification process.  The concept 
that is to be classified is placed at the starting node; the 
system then tries to push the new concept node as far down 
the tree as possible.  The classifiable attributes are used as 
objective measures to determine if the concept is in its 
proper place.  Within DLMS, this classification algorithm 
is applied to all of the instances of the input string that 
describe the process element.  In a simple element this may 
include a verb, an object and an associated tool.  When the 
classifier is complete, each of the above instances will 
inherit necessary values from the knowledge base in order 
to build the appropriate operation to describe the required 
actions.  Figure 1 displays the components of DLMS.  
These components include the following: parser, analyzer, 
simulator, error subsystem, knowledge base manager and 
the ontology.  DLMS interfaces with the GSPAS database 
and is integrated within the GSPAS process flow. 
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Figure 1: DLMS System Architecture 
    
     Currently the DLMS ontology contains over 10,000 
concepts and each concept may contain up to 69 different 
attributes or properties.   These concepts are divided into 
more than 800 classes and the number of links within the 
system exceeds 110,000.  The knowledge encoded into our 
knowledge base can be divided into Standard Language 
lexical terms (1/3 of the knowledge base) with the 
remainder being the tools, parts and operations that 

describe our manufacturing assembly process.   Each 
concept is described in terms of its properties and its links 
to parent and child nodes.  Figure 2 displays a portion of 
the DLMS manufacturing ontology.  This portion of the 
ontology contains information about ergonomics within 
manufacturing and is used to ensure that the work 
descriptions described conform to ergonomic standards.  
Each outlined term is a concept and contains a set of 
properties and values; the ontology is updated through this 
graphical interface.  Edits to the ontology are checked to 
ensure that they do not violate any constraints. 
 

Knowledge Base

 
     Figure 2: The DLMS manufacturing ontology 

 
 

Evaluation of the Manufacturing Ontology 
 
    As mentioned previously, the DLMS ontology or 
knowledge base contains all of the relevant information 
that describes the vehicle assembly process at Ford Motor 
Company.  This includes all of the lexical classes included 
in Standard Language such as verbs, nouns, prepositions, 
conjunctions and other parts of speech, various tools and 
parts utilized at the assembly plants, and descriptions of 
operations that are performed to build the vehicle.   
     The DLMS Knowledge Base is maintained through the 
use of the Knowledge Base Manager (KBM).  The 
Knowledge Base Manager is a graphical tool that is used 
by the system developers to make important changes to the 
knowledge base that will affect the actual output generated 
by the system.  Since this output will have a major impact 
on the assembly process, any such change must be 
approved by a committee representing all of the interested 
parties.  All changes made to the ontology are logged by 
the system in order to keep a record of the system's 
modification history. 
     The first order of business in knowledge base validation 
and verification is to develop a baseline of test results that 
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have been manually inspected and judged to be correct by 
the user community.  Any changes to the ontology are 
migrated into production only after the regression tests 
have been completed and accepted.  A utility is used to run 
the series of regression tests to test the system output for a 
variety of inputs, and the results are then compared to the 
previous baseline.  Any changes that have been introduced 
are manually examined, and the change is either accepted 
or rejected.  If the change is accepted, a new baseline will 
be created for this test. A rejected test forces the 
developers to correct the ontology until the regression test 
is deemed to be acceptable. 
     The suite of regression tests must be constantly updated 
to add and to remove tests as the situation warrants.  This 
updating of the regression tests is done in two different 
ways: manually and automatically.  Manual updates are 
performed when a developer recognizes that a certain 
script must be added in order to check a particular 
scenario.  These manual scripts are usually complex, and 
they include a series of tests that have caused problems for 
the users.  We have also developed a utility that generates 
test cases automatically against all of the operations in the 
ontology. An operation can be described as a unique 
combination of a verb, object and any associated modifiers 
that will create a distinct work instruction for the assembly 
plant.  This process is accomplished by reading through all 
of the operations in the ontology, generating a script that 
will test all of the properties of a particular node by 
analyzing the attributes of that node, and creating a test 
that will check those attributes.  This test ensures that all of 
the operations in the ontology execute successfully and 
return the correct results.  Each of these test cases is then 
executed; the results are then compared against the 
previous baseline.  As with the manually created text cases, 
the baseline is updated to reflect any changes that have 
been made to the knowledge base. 
     However, the use of automatic generation tools has not 
replaced all of the manually created test scripts due to the 
following reasons. First, the test creation utility cannot 
generate complex test scripts that may require a sequence 
of instructions to fully represent a particular scenario.  
Second, since the knowledge base is frequently changed, it 
is often necessary to modify the test utility to keep it 
current and complete.  Third, it is not possible to use the 
test utility to generate any scripts that model missing or 
invalid knowledge since that knowledge is not already 
contained in the ontology.  Nevertheless, we have found 
the use of automated test utilities to be a very useful and 
productive method to assist with ontology maintenance.    
    Another approach that was utilized was based on 
evolutionary computational techniques to analyze and re-
engineer the structure of the ontology (Rychtyckyj & 
Reynolds 2005).  The purpose of this effort was to increase 
the efficiency of the ontology queries by restructuring the 
knowledge base using a form of evolutionary computation, 
known as Cultural Algorithms (Reynolds 1994).  This 

approach was successful in terms of re-organizing the 
network to decrease the cost of subsumption in a typical 
query by a factor of five.  However, it must be noted that 
the evolutionary approach sometimes develops ontology 
classes that do not accurately reflect the real-world model 
and are difficult to understand and maintain. 
 

Ontology Metrics 
 
     The recent interest in ontology development has also 
led to methods for measuring ontology quality.  There have 
been tools developed that attempt to measure the 
correctness and completeness of an ontology.  There are 
also specific metrics that can be used to measure various 
facets of an existing ontology (Cross & Pal 2005).  The 
measures that can be used to evaluate the quality of an 
ontology include the conceptualization complexity, the 
expressiveness of the ontology language and ontology 
metrics.  The usefulness and completeness of an ontology 
is directly related to the context in which this ontology is 
used.  In our application, the expressiveness of ontology 
language is based on the relation of the Standard Language 
input to the ontology.  Since Standard Language is a 
controlled language, it is not difficult to ensure that all 
valid Standard Language sentences are correctly 
represented in the DLMS ontology.  Problems with 
ambiguity do appear on occasion, but can usually be 
addressed by creating a more specialized concept that can 
be correctly classified.  The main issues with the ontology 
occur when integrating information that is not in Standard 
Language.  In those cases, we need to be able to identify 
and match concepts that may be written using different 
terminology but represent the same entity.  Therefore, we 
use algorithms that utilize various techniques such as 
matching terms, synonym and abbreviation lookup, 
spellchecking and heuristics to determine if we are dealing 
with the same concept.  Obviously, these kinds of 
approaches are less accurate and lead to more errors.  This 
type of "ontology integration" for product life cycle 
management in the automobile industry has been described 
using both database structures and business logic (Maier 
2003.)  In our case, we have also found that terminology 
plays a critical role in trying to integrate information from 
different sources.  The same concept can be easily 
described using dissimilar terms and acronyms, 
abbreviations, misspellings and slang terminology will 
often cause problems.  We have spent considerable time 
and effort to develop synonym lookups, parsing algorithms 
and other text-processing techniques to help identify the 
same concept in different knowledge sources.   
    Another approach to measuring ontology quality has 
been to rank ontologies based on the analysis of concept 
structures (Alani & Brewster 2005).  This ontology ranking 
system, known as AKTiveRank, applies a number of 
analytic methods to rate each ontology on how well it 
represents a problem domain through the use of the given 
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search terms.  In our experience, ontology completeness 
does have significant dependence on finding the specific 
concepts that match up to a search term.  However, the 
deeper knowledge that is contained within an ontology 
requires much more information that is not easily identified 
through search terms or queries.  Another significant issue 
is to get agreement about the specific meaning or use of 
term that may mean different things to subject matter 
experts in Europe and the USA. 
    Since our ontology architecture predates most of the 
ontology metrics described here, we have had to develop 
our own internal metrics to evaluate our ontology quality.  
As we move to integrate our ontology with other 
knowledge sources we plan to upgrade our architecture and 
utilize some of the ontology metrics that have been 
described here.  In this paper we will focus on the ontology 
metrics that were developed for our application.  One 
important facet of ontology quality related to constraint 
checking.  We have developed a utility to scan our 
ontology for the following types of problems: domain 
violations, range violations, attribute inverse properties, 
node value restrictions and forced attribute restrictions.  
This report allows to identify and correct potential 
problems in the ontology and to track the ontology 
performance over time.   In terms of ontology metrics, we 
also utilize both size and structural metrics.  Size metrics 
are mostly used to determine the growth in size of the 
ontology and to measure various components of the 
ontology in terms of the number of attributes and 
properties that are being utilized.  Other facets of the 
ontology, such as number of links, breadth and depth of 
classes in the ontology, and structural components are also 
measured on a regular basis.  In practice, we have found 
that concepts that are added into the ontology will stay in 
the ontology even though they may not be needed 
anymore.   Tools, such as Ontoclean   (Guarino and Welty  
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2002), have been developed to evaluate the ontological 
decisions during the process of building an ontology.  
There has even been research to determine if the effort 
associated with cleaning up an ontology is worth the 
benefit of improved performance (Welty et al. 2004).  Of 
course, the real-world problem domain that was modeled 
when the ontology was first developed may have 
drastically changed in the intervening time period.  In our 
case, the automotive industry has gone through dramatic 
changes over the last fifteen years and our ontology has 
been changed to reflect this dynamic processes.  The 
numbers of changes to our ontology for the past fifteen 
years are shown in Figure 3.  This difference in the number 
of ontology changes over the years can be directly 
correlated to changes in the underlying manufacturing 
processes.  For example, the large numbers of updates in 
2005 were the result of major changes in the Standard 
Language work descriptions.  Other changes in the early 
1990s were required to introduce knowledge about 
manufacturing processes in Europe as they were integrated 
into our system.  
 

Conclusions 
 
    In this paper, we discussed some the issues relevant to 
long-term utilization of knowledge representation systems 
based on our experience at Ford with DLMS.  The recent 
growth in ontology development and work has given us an 
opportunity to look back at our experiences with 
maintaining a manufacturing ontology in the context of 
some of the recent work on ontology evaluation and 
metrics.  Ontologies are highly dependent on the problem 
domain that they are modeling, and their completeness 
must be evaluated in terms of that context.  Therefore, our 
experiences with the automotive manufacturing knowledge 
may not apply to other problem domains.  One important 
fact that we learned was that it's very difficult to take 
knowledge out of an ontology; once something gets 
included – it usually stays in.  This is due to several 
reasons: this information may be needed again in the 
future, removing information may lead to errors in the 
system and "ontology cleaning" is never a high priority.  
This type of inertia can make the ontology grow 
substantially over time.  It's also usually not a good idea to 
allow user updates to an ontology without very strict 
controls.  We tried this for several years, but discovered 
that the effort required to verify and fix these user updates 
was significantly higher than updating the ontology 
ourselves.  An exhaustive validation and verification 
process is essential; there is nothing that the user 
community dislikes more than getting unexpected and 
unexplained results when the input query did not change.  
Ontology metrics, including performance, are crucial to 
help detect issues before they affect the user community.  
However, the most important factor in maintaining any 
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type of ontology or knowledge base over a prolonged time 
period is to have a flexible framework that allows for all 
sorts of unexpected but required changes. 
   Our experience has shown that knowledge representation 
systems based on semantic networks provide an excellent 
framework for developing systems that can exist in a 
dynamic environment.  Long-term maintenance of such 
systems requires both the development of processes to 
support the system, as well as the corresponding software 
tools needed to implement these processes.  Flexibility is 
the key requirement of knowledge representation systems, 
as the business environment will certainly change in ways 
that could not be anticipated by the developers.  It is also 
important to utilize new approaches as they become 
available in order to assist the developers in maintaining 
and re-engineering the knowledge base over its life cycle.  
All of these factors contribute to the successful use of 
knowledge representation systems in very dynamic 
problem domains as evidenced here. 
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