
__
Copyright @ 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Measuring Long-Term Ontology Quality: A Case Study from the

Automotive Industry

Nestor Rychtyckyj

Global Manufacturing Engineering Systems
Ford Motor Company
Dearborn, MI 48121
nrychtyc@ford.com

Abstract

The use of ontologies based on knowledge representation
architectures to support search and other decision-making
problems in production environments has become a critical
component of information systems. The process of
building such an ontology can now take advantage of tools
such as Protégé (Gennari et al. 2002) to build an ontology
for any given problem domain. There has also been
corresponding work done on the development of tools and
utilities that measure the "quality" of an ontology and the
metrics that can be used to measure different facets of the
ontology. In this paper we analyze an existing ontology
that has been in use for fifteen years in the domain of
process planning for automotive assembly. This system,
originally known as the Direct Labor Management System
(DLMS), was developed and deployed at Ford Vehicle
Operations in the early 1990s (Rychtyckyj 1999). The
requirement for maintaining the DLMS knowledge base
over the last fifteen plus years has given us a unique
perspective into the various maintenance problems and
issues that need to be addressed. This paper will discuss
those issues and try to frame the ontology quality issue in
terms of our experience at Ford Motor Company.

Introduction

 The term "ontology" has passed from the computer
science domain into the business world with the usual
accompanying shifts in meaning. In the traditional AI
world, an ontology is a shared model or representation of a
domain that describes the concepts and relationships that
exist within that particular domain. An ontology may be
based on a taxonomy-like model, but that is not required.
The goal of building an ontology is to enable knowledge
sharing and reuse among the users of the ontology; these
may be human and knowledge-based systems. The work
required to build ontologies that represent complex domain
models is very substantial, and the return on investment for
all of this effort must be justified. For the last fifteen years
we have been building and maintaining ontologies that
model vehicle manufacturing at Ford Motor Company.

 The use of KL-ONE (Brachman & Schmolze 1985)
and associated knowledge representation systems for
building large complex knowledge bases to support real-
world problems has been demonstrated in various
application areas (Brachman et al. 1991). One such system
is Ford’s Direct Labor Management System (DLMS) that
has been used since 1990 in the very dynamic domain of
process planning for vehicle assembly (Rychtyckyj 1996,
Rychtyckyj 1999). The DLMS system has since been
modified and integrated into the Global Study Process
Allocation System (GSPAS). The long-term maintenance
of the DLMS knowledge base has demonstrated both the
flexibility and reliability of semantic network-based
knowledge bases in a rapidly changing industrial setting.
The most critical issue in utilizing knowledge-based
systems over a long period of time is the maintainability of
the system. Having maintained the GSPAS ontology over
these intervening years, we have had to make changes to
both the internal knowledge representation and to the
system architecture. All of these changes have introduced
modifications to the system that can cause unforeseen
problems with the system output. Our experience over this
time period has given us a unique perspective into the
various problems and issues that need to be addressed.
These issues focus on the processes and tools that are
needed to validate and verify the ontology since it is
updated frequently. This allows us to keep up with rapidly
changing market conditions. The modifications made to a
semantic-network based knowledge base will also impact
the structure and design of the network and may degrade
the system performance over time if adjustments are not
made.
 One of our goals in writing this paper is to improve the
communication between the KR research community and
the business world where knowledge-based systems are
deployed and maintained. Our paper will focus on the
maintainability of our ontology and discuss several
approaches to improve maintenance. One such approach is
a method to automatically generate test cases to validate
the correctness of the knowledge base as part of the

147

maintenance process. Another approach is to use
evolutionary computation to analyze the knowledge base
as a tool to help us maintain and re-engineer as required.
We will also give specific examples of knowledge base
design decisions that had either a positive or negative
effect on future maintenance. A discussion on using
ontology metrics will also be included. With this paper,
we hope to demonstrate what issues are important in
maintaining an ontology base in a dynamic business
environment over a long-term period.
 In this paper we will discuss the design of the KL-ONE-
based DLMS/GSPAS manufacturing ontology and its use
in the domain of automobile assembly planning. A brief
description of DLMS is contained in the next section. The
following section will focus on the evaluation and
validation of the DLMS knowledge base and discuss the
various techniques that were utilized for this task. The
subject of ontology metrics and their usefulness in
evaluation ontology quality are then examined. The paper
concludes with a discussion of "lessons learned" from
long-term experience with maintaining an ontology in a
dynamic problem domain, such as automobile assembly.

The Direct Labor Management System

 The Direct Labor Management System (DLMS) is
utilized by Ford Motor Company's Vehicle Operations
division to manage the use of labor on the assembly lines
throughout Ford's vehicle assembly plants. DLMS was
designed to improve the assembly process planning
activity at Ford by achieving standardization within the
vehicle process build description and to provide a tool for
accurately estimating the labor time required to perform
the actual vehicle assembly. In addition, DLMS provides a
framework for allocating the required work among various
operators at the plant. It also builds a foundation for the
automated machine translation of the process descriptions
into foreign languages, a necessity in the current global
business market.
 The standard process-planning document, known as a
process sheet, is the primary vehicle for conveying the
assembly information from the initial process planning
activity to the assembly plant. A process sheet contains the
detailed instructions needed to build a portion of a vehicle.
A single vehicle may require thousands of process sheets
to describe its assembly. The process sheet is written by an
engineer utilizing a restricted subset of English known as
Standard Language. Standard Language allows an
engineer to write clear and concise assembly instructions
that are machine-readable. The process sheet is then sent
to the DLMS system to be "validated" before it can be
released to the assembly plants. Validation includes the
following: checking the process sheet for errors, generating
the sequence of steps that a worker at the assembly plant
must perform in order to accomplish this task and
calculating the length of time that this task will require.

The DLMS system interprets these instructions and
generates a list of detailed actions that are required to
implement these instructions at the assembly plant level.
These work instructions, known as “allocatable elements,”
are associated with MODAPTS (MODular Arrangement of
Predetermined Time Standards) codes that are used to
calculate the time required to perform these actions.
MODAPTS codes are widely utilized within Industrial
Engineering as a means of measuring the body movements
that are required to perform a physical action and have
been accepted as a valid work measurement system (Carey
2001).
 The allocatable elements generated by DLMS are used
by engineering personnel at the assembly plant to allocate
the required work among the available personnel. DLMS
is a powerful tool because it provides timely information
about the amount of direct labor that is required to
assemble each vehicle, as well as pointing out
inefficiencies in the assembly process.
 All of the associated knowledge about Standard
Language, tools, parts, and everything else associated with
the automobile assembly process, is contained in the
DLMS knowledge base or ontology. This knowledge base
structure is derived from the KL-ONE family of semantic
network structures and is an integral component in the
success of DLMS.
 The organization of the ontology is based on the KL-
ONE model. The root of the semantic network is a concept
known as THING that encompasses everything within the
DLMS world. The children of the root concept describe
various major classes of knowledge and include such
concepts as TOOLS, PARTS and OPERATIONS. Each
concept contains attributes or slots that describe that
object. The values of these attributes are inherited from
the concept's parents. Ranges of valid values can be given
for any particular attribute. Any attempt to put an invalid
value in that attribute will trigger an error. All of the
information pertaining to the organization and structure of
the ontology is also contained in the ontology itself. There
are four types of links that describe the relationship
between any two concepts: subsumes, specializes,
immediately-subsumes and immediately-specializes. The
subsumption relation describes a link between a parent
concept and all of its children, including descendants of its
children. The "immediately-subsumes" relation describes
only the concepts that are direct descendants of the parent
concept. The "specializes" and "immediately specializes"
relations are inverses of the subsumption relation. A
concept "immediately specializes" its direct parent
concepts and "specializes" all of the concepts that are
ancestors of its parents. These relationships are stored as
attributes of any given concept. They can be utilized to
trace any concept through the entire ontology.
 The DLMS system utilizes a classification algorithm to
create concepts and place them into their appropriate
position in the ontology. The classifier utilizes various

148

attributes of the concept in order to place it into its correct
position. These "classifiable" attributes are slot values that
play a major role in determining where a concept belongs.
For example, the attribute "size" is very important in
classification, while the "output format" slot has little value
in classification. Classification is performed by finding the
appropriate subsumers, linking the concept and then
locating all the concepts that should be subsumed by the
new concept. The system narrows this search procedure
considerably by selecting the appropriate node in the
concept to begin the classification process. The concept
that is to be classified is placed at the starting node; the
system then tries to push the new concept node as far down
the tree as possible. The classifiable attributes are used as
objective measures to determine if the concept is in its
proper place. Within DLMS, this classification algorithm
is applied to all of the instances of the input string that
describe the process element. In a simple element this may
include a verb, an object and an associated tool. When the
classifier is complete, each of the above instances will
inherit necessary values from the knowledge base in order
to build the appropriate operation to describe the required
actions. Figure 1 displays the components of DLMS.
These components include the following: parser, analyzer,
simulator, error subsystem, knowledge base manager and
the ontology. DLMS interfaces with the GSPAS database
and is integrated within the GSPAS process flow.

System Architecture

GSPAS
Database

SIMULATOR

PARSER

ANALYZERKnowledge
Base

E
R
R
O
R

S
U
B
S
Y
S
T
E
M

Knowledge
Base

Manager

Communications
Interface

Figure 1: DLMS System Architecture

 Currently the DLMS ontology contains over 10,000
concepts and each concept may contain up to 69 different
attributes or properties. These concepts are divided into
more than 800 classes and the number of links within the
system exceeds 110,000. The knowledge encoded into our
knowledge base can be divided into Standard Language
lexical terms (1/3 of the knowledge base) with the
remainder being the tools, parts and operations that

describe our manufacturing assembly process. Each
concept is described in terms of its properties and its links
to parent and child nodes. Figure 2 displays a portion of
the DLMS manufacturing ontology. This portion of the
ontology contains information about ergonomics within
manufacturing and is used to ensure that the work
descriptions described conform to ergonomic standards.
Each outlined term is a concept and contains a set of
properties and values; the ontology is updated through this
graphical interface. Edits to the ontology are checked to
ensure that they do not violate any constraints.

Knowledge Base

 Figure 2: The DLMS manufacturing ontology

Evaluation of the Manufacturing Ontology

 As mentioned previously, the DLMS ontology or
knowledge base contains all of the relevant information
that describes the vehicle assembly process at Ford Motor
Company. This includes all of the lexical classes included
in Standard Language such as verbs, nouns, prepositions,
conjunctions and other parts of speech, various tools and
parts utilized at the assembly plants, and descriptions of
operations that are performed to build the vehicle.
 The DLMS Knowledge Base is maintained through the
use of the Knowledge Base Manager (KBM). The
Knowledge Base Manager is a graphical tool that is used
by the system developers to make important changes to the
knowledge base that will affect the actual output generated
by the system. Since this output will have a major impact
on the assembly process, any such change must be
approved by a committee representing all of the interested
parties. All changes made to the ontology are logged by
the system in order to keep a record of the system's
modification history.
 The first order of business in knowledge base validation
and verification is to develop a baseline of test results that

149

have been manually inspected and judged to be correct by
the user community. Any changes to the ontology are
migrated into production only after the regression tests
have been completed and accepted. A utility is used to run
the series of regression tests to test the system output for a
variety of inputs, and the results are then compared to the
previous baseline. Any changes that have been introduced
are manually examined, and the change is either accepted
or rejected. If the change is accepted, a new baseline will
be created for this test. A rejected test forces the
developers to correct the ontology until the regression test
is deemed to be acceptable.
 The suite of regression tests must be constantly updated
to add and to remove tests as the situation warrants. This
updating of the regression tests is done in two different
ways: manually and automatically. Manual updates are
performed when a developer recognizes that a certain
script must be added in order to check a particular
scenario. These manual scripts are usually complex, and
they include a series of tests that have caused problems for
the users. We have also developed a utility that generates
test cases automatically against all of the operations in the
ontology. An operation can be described as a unique
combination of a verb, object and any associated modifiers
that will create a distinct work instruction for the assembly
plant. This process is accomplished by reading through all
of the operations in the ontology, generating a script that
will test all of the properties of a particular node by
analyzing the attributes of that node, and creating a test
that will check those attributes. This test ensures that all of
the operations in the ontology execute successfully and
return the correct results. Each of these test cases is then
executed; the results are then compared against the
previous baseline. As with the manually created text cases,
the baseline is updated to reflect any changes that have
been made to the knowledge base.
 However, the use of automatic generation tools has not
replaced all of the manually created test scripts due to the
following reasons. First, the test creation utility cannot
generate complex test scripts that may require a sequence
of instructions to fully represent a particular scenario.
Second, since the knowledge base is frequently changed, it
is often necessary to modify the test utility to keep it
current and complete. Third, it is not possible to use the
test utility to generate any scripts that model missing or
invalid knowledge since that knowledge is not already
contained in the ontology. Nevertheless, we have found
the use of automated test utilities to be a very useful and
productive method to assist with ontology maintenance.
 Another approach that was utilized was based on
evolutionary computational techniques to analyze and re-
engineer the structure of the ontology (Rychtyckyj &
Reynolds 2005). The purpose of this effort was to increase
the efficiency of the ontology queries by restructuring the
knowledge base using a form of evolutionary computation,
known as Cultural Algorithms (Reynolds 1994). This

approach was successful in terms of re-organizing the
network to decrease the cost of subsumption in a typical
query by a factor of five. However, it must be noted that
the evolutionary approach sometimes develops ontology
classes that do not accurately reflect the real-world model
and are difficult to understand and maintain.

Ontology Metrics

 The recent interest in ontology development has also
led to methods for measuring ontology quality. There have
been tools developed that attempt to measure the
correctness and completeness of an ontology. There are
also specific metrics that can be used to measure various
facets of an existing ontology (Cross & Pal 2005). The
measures that can be used to evaluate the quality of an
ontology include the conceptualization complexity, the
expressiveness of the ontology language and ontology
metrics. The usefulness and completeness of an ontology
is directly related to the context in which this ontology is
used. In our application, the expressiveness of ontology
language is based on the relation of the Standard Language
input to the ontology. Since Standard Language is a
controlled language, it is not difficult to ensure that all
valid Standard Language sentences are correctly
represented in the DLMS ontology. Problems with
ambiguity do appear on occasion, but can usually be
addressed by creating a more specialized concept that can
be correctly classified. The main issues with the ontology
occur when integrating information that is not in Standard
Language. In those cases, we need to be able to identify
and match concepts that may be written using different
terminology but represent the same entity. Therefore, we
use algorithms that utilize various techniques such as
matching terms, synonym and abbreviation lookup,
spellchecking and heuristics to determine if we are dealing
with the same concept. Obviously, these kinds of
approaches are less accurate and lead to more errors. This
type of "ontology integration" for product life cycle
management in the automobile industry has been described
using both database structures and business logic (Maier
2003.) In our case, we have also found that terminology
plays a critical role in trying to integrate information from
different sources. The same concept can be easily
described using dissimilar terms and acronyms,
abbreviations, misspellings and slang terminology will
often cause problems. We have spent considerable time
and effort to develop synonym lookups, parsing algorithms
and other text-processing techniques to help identify the
same concept in different knowledge sources.
 Another approach to measuring ontology quality has
been to rank ontologies based on the analysis of concept
structures (Alani & Brewster 2005). This ontology ranking
system, known as AKTiveRank, applies a number of
analytic methods to rate each ontology on how well it
represents a problem domain through the use of the given

150

search terms. In our experience, ontology completeness
does have significant dependence on finding the specific
concepts that match up to a search term. However, the
deeper knowledge that is contained within an ontology
requires much more information that is not easily identified
through search terms or queries. Another significant issue
is to get agreement about the specific meaning or use of
term that may mean different things to subject matter
experts in Europe and the USA.
 Since our ontology architecture predates most of the
ontology metrics described here, we have had to develop
our own internal metrics to evaluate our ontology quality.
As we move to integrate our ontology with other
knowledge sources we plan to upgrade our architecture and
utilize some of the ontology metrics that have been
described here. In this paper we will focus on the ontology
metrics that were developed for our application. One
important facet of ontology quality related to constraint
checking. We have developed a utility to scan our
ontology for the following types of problems: domain
violations, range violations, attribute inverse properties,
node value restrictions and forced attribute restrictions.
This report allows to identify and correct potential
problems in the ontology and to track the ontology
performance over time. In terms of ontology metrics, we
also utilize both size and structural metrics. Size metrics
are mostly used to determine the growth in size of the
ontology and to measure various components of the
ontology in terms of the number of attributes and
properties that are being utilized. Other facets of the
ontology, such as number of links, breadth and depth of
classes in the ontology, and structural components are also
measured on a regular basis. In practice, we have found
that concepts that are added into the ontology will stay in
the ontology even though they may not be needed
anymore. Tools, such as Ontoclean (Guarino and Welty

GSPAS Ontology Updates by Year

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Year

KB Changes

Figure 3: Number of KB updates per year 1990-2005.

2002), have been developed to evaluate the ontological
decisions during the process of building an ontology.
There has even been research to determine if the effort
associated with cleaning up an ontology is worth the
benefit of improved performance (Welty et al. 2004). Of
course, the real-world problem domain that was modeled
when the ontology was first developed may have
drastically changed in the intervening time period. In our
case, the automotive industry has gone through dramatic
changes over the last fifteen years and our ontology has
been changed to reflect this dynamic processes. The
numbers of changes to our ontology for the past fifteen
years are shown in Figure 3. This difference in the number
of ontology changes over the years can be directly
correlated to changes in the underlying manufacturing
processes. For example, the large numbers of updates in
2005 were the result of major changes in the Standard
Language work descriptions. Other changes in the early
1990s were required to introduce knowledge about
manufacturing processes in Europe as they were integrated
into our system.

Conclusions

 In this paper, we discussed some the issues relevant to
long-term utilization of knowledge representation systems
based on our experience at Ford with DLMS. The recent
growth in ontology development and work has given us an
opportunity to look back at our experiences with
maintaining a manufacturing ontology in the context of
some of the recent work on ontology evaluation and
metrics. Ontologies are highly dependent on the problem
domain that they are modeling, and their completeness
must be evaluated in terms of that context. Therefore, our
experiences with the automotive manufacturing knowledge
may not apply to other problem domains. One important
fact that we learned was that it's very difficult to take
knowledge out of an ontology; once something gets
included – it usually stays in. This is due to several
reasons: this information may be needed again in the
future, removing information may lead to errors in the
system and "ontology cleaning" is never a high priority.
This type of inertia can make the ontology grow
substantially over time. It's also usually not a good idea to
allow user updates to an ontology without very strict
controls. We tried this for several years, but discovered
that the effort required to verify and fix these user updates
was significantly higher than updating the ontology
ourselves. An exhaustive validation and verification
process is essential; there is nothing that the user
community dislikes more than getting unexpected and
unexplained results when the input query did not change.
Ontology metrics, including performance, are crucial to
help detect issues before they affect the user community.
However, the most important factor in maintaining any

151

type of ontology or knowledge base over a prolonged time
period is to have a flexible framework that allows for all
sorts of unexpected but required changes.
 Our experience has shown that knowledge representation
systems based on semantic networks provide an excellent
framework for developing systems that can exist in a
dynamic environment. Long-term maintenance of such
systems requires both the development of processes to
support the system, as well as the corresponding software
tools needed to implement these processes. Flexibility is
the key requirement of knowledge representation systems,
as the business environment will certainly change in ways
that could not be anticipated by the developers. It is also
important to utilize new approaches as they become
available in order to assist the developers in maintaining
and re-engineering the knowledge base over its life cycle.
All of these factors contribute to the successful use of
knowledge representation systems in very dynamic
problem domains as evidenced here.

Acknowledgements

The author thanks the AAAI reviewers for their insightful
comments; in addition I would like to thank Mike Rosen,
Alan Turski, Rick Keller and Tom Vitale for their work on
DLMS. I would also like to thank Erica Klampfl for her
assistance in the preparation of this paper.

References

Alani, H., Brewster, C., (2005), "Ontology Ranking based
on the Analysis of Concept Structures", Proceedings of
the Third International Conference on Knowledge
Capture (K-CAP'05), Banff, Alberta, Canada, ACM
Press, pp. 51-58.

Brachman, R., Schmolze, J., (1985), "An Overview of the
KL-ONE Knowledge Representation System," Cognitive
Science 9(2), pp. 171-216.

Brachman, R., McGuiness, D., Patel-Schneider, P.,
Resnick, L., Borgida, A., (1991) "Living With Classic:
When and How to Use a KL-ONE-Like Language" in
Principles of Semantic Networks, ed. J. Sowa, pp. 401-456,
Morgan Kaufmann Publishers.

Carey, Farrell, Hui, and Sullivan (2001), Heyde's Modapts:
A Language of Work. Heyde Dynamics PTY LTD.

Cross, V., Pal, A., (2005), "Metrics for Ontologies",
Proceedings of the North American Fuzzy Information
Processing Society (NAFIPS-2005), Ann Arbor, MI, June
22-25, 2005, pp. 448-453.

Gennari, J., Musen, M., Fergerson, R., Grosso, W.,
Crubezy, M., Eriksson, H., Noy, Tu, S., (2002), "The
Evolution of Protégé: An Environment for Knowledge-
Based System Development", Stanford Medical
Informatics Technical Report 2002-0943.

Guarino, N., Welty, C., (2002), "Evaluating Ontological
Decisions with Ontoclean", Communications of the ACM,
vol. 45, no. 2, pp. 61-65.

Maier, A., Schnurr, H., Sure, Y.,(2003), "Ontology-based
Information Integration in the Automotive Industry",
Proceedings of the 2nd International Semantic Web
Conference (ISWC-2003), Lecture Notes on Computer
Science, vol. 2870, Springer-Verlag, pp. 897-912.

Reynolds, Robert G., (1994), "An Introduction to Cultural
Algorithms", Proceedings of the 3rd annual Conference on
Evolution Programming", Sebalk, A.V. Fogel L.J., River
Edge, NJ. World Scientific Publishing, 1994, pp 131-136.

Rychtyckyj, N. (1996), “DLMS: An Evaluation of KL-
ONE in the Automobile Industry”. in Proceedings of the
Fifth International Conference on the Principles of
Knowledge Representation and Reasoning, pp. 588-596.
Morgan Kaufmann Publishers.

Rychtyckyj, N., Reynolds, R.G., (2005), “Using Cultural
Algorithms to Re-Engineer Large-Scale Semantic
Networks” in the International Journal of Software
Engineering and Knowledge Engineering, vol. 15, no. 4,
pp. 665-693.

Rychtyckyj, N., (1999), “DLMS: Ten Years of AI for
Vehicle Assembly Process Planning”, AAAI-99/IAAI-99
Proceedings, Orlando, FL, July 18-22, 1999, pp. 821-828,
AAAI Press.

Welty C., Mahindru R., Chu-Carroll J., (2004),
"Evaluating Ontology Cleanup", Proceedings of the
Nineteenth Conference on Artificial Intelligence, San Jose,
CA, pp. 311-316.

152

