Focusing Al Students’ Attention: A Framework-Based Approach
To Guiding Impasse-Driven Learning

Steven Bogaerts and David Leake
Computer Science Department
Lindley Hall, Indiana University
Bloomington, IN 47405, U.S.A.
{sbogaert, leake} @cs.indiana.edu

Abstract

Research indicates that impasse-driven learning can have im-
portant benefits for improving student mastery of material.
When students recognize gaps in their understanding of a
concept, attempt self-explanations to resolve the impasses,
and then receive further assistance from an instructor, the
concept is more likely to be learned than without the impasse
or self-explanation. This paper proposes that Al program-
ming assignments be designed to encourage useful impasses
and self-explanation, by (1) guiding student attention levels
to increase students’ scrutiny of areas important to pedagog-
ical goals and 2) prompting fruitful expectation failures. It
presents general guidelines for managing student attention
levels when designing programming assignments, and de-
scribes how this strategy can be operationalized through the
use of code frameworks. It illustrates the approach with con-
crete examples from sample Al assignments.

Introduction

Research on impasse-driven learning (Newell 1990; Van-
Lehn, Jones, & Chi 1992) suggests that student learning may
be greatly enhanced when the student must respond to an im-
passe. An impasse can be defined as any situation in which
the student is unsure how to proceed in applying a concept,
realizes a mistake has been made in applying a concept, or
applies the concept correctly but is unsure if the application
is correct (VanLehn, Siler, & Murray 2003). In contrast,
an impasse has not occurred if the student correctly applies
a concept (though perhaps only in a superficially or fortu-
itously correct way), never realizes a mistake has been made,
or is never required to actually apply the concept.

Upon reaching an impasse, student self-explanation (Chi
etal. 1989), even if the resulting explanations are potentially
inaccurate, helps students to think more carefully about their
knowledge and to form a more accurate model of the tar-
get concept (Chi et al. 1989; Pirolli & Bielaczyc 1989;
Ferguson-Hessler & deJong 1990). After self-explanation,
further instructor explanation does help (Renkl 2002), but
this benefit comes primarily if self-explanation has already
occurred (Anderson, Conrad, & Corbett 1989; McKendree
1990; VanLehn, Siler, & Murray 2003). The strong associ-
ation between learning and impasses has been documented

Copyright (© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

186

for many domains (Brown & VanLehn 1980; Carroll & Kay
1988; VanLehn 1987; 1990; 1999; VanLehn & Jones 1993;
VanLehn, Jones, & Chi 1992). Thus, given the demonstrated
advantages of impasse-driven learning, instructors should
design course materials which encourage fruitful impasses.
An important question for Al education is how best to do so
within the constraints faced by instructors of Al courses.

Instructors of Al courses have the difficult task of design-
ing short- and mid-length assignments that give students ex-
perience in the depth and power of often complex Al tech-
niques. In programming assignments, the end goal is of-
ten viewed as to be able to build a working system, without
necessarily focusing on guiding how students reach that end
product. When students receive little guidance on how to fo-
cus their attention within an assignment, impasses may arise
in a haphazard way, or may not occur at all, and the instruc-
tor has limited control over how and what the students learn
along the way. This paper discusses a technique for instruc-
tors to design programming assignments to encourage stu-
dents to focus on useful concepts and foster impasse-driven
learning. It argues for a strategy involving (1) managing the
attention levels of the students on various concepts in an as-
signment, and (2) using the attention levels to foster fruit-
ful impasses, by prompting students to form expectations
based on their current understanding of key concepts and
then leading them to confront surprising factors. In this way,
gaps in important knowledge can be exposed (i.e., impasses
can be reached), motivating students to search for an expla-
nation to resolve the impasses. In particular, the scope of
this paper is the use of frameworks (collections of reusable
code designed to be adapted to perform a given task in mul-
tiple domains) as a valuable resource for giving instructors
control over student attention in programming assignments.

The paper begins by defining three general attention levels
and discussing how frameworks can assist the instructor in
fostering appropriate levels of student attention to individual
topics. It then provides specific examples of how this can be
exploited in assignments designed to lead to useful impasses
and opportunities for self-explanation.

Attention Levels on Subconcepts

A large-scale concept in a course can be divided into a num-
ber of subconcepts. For example, the concept of version-
space learning (Mitchell 1997) can be divided into subcon-



cepts such as the basic algorithm (handling positive and neg-
ative examples), attribute representation schemes (e.g., flat
or hierarchical), using partially learned hypotheses, and in-
ductive bias. An instructor leading student learning of a
concept must choose the more crucial farget subconcepts on
which students should focus, and the non-target subconcepts
to be ignored or deemphasized, at least temporarily.

For each subconcept, the instructor may guide the stu-
dents’ attention level, with attention level falling into one
of three general categories:

1. None - Students are either 1) not explicitly made aware
that the subconcept is relevant, 2) presented with a sim-
plified model of the concept in which the subconcept is
truly not relevant, or 3) asked to simply take some sub-
concepts “on faith.”

2. Shallow - Students are instructed to examine the subcon-
cept’s basic application, but finer details are not covered.

3. Deep - Students are instructed to consider the subcon-
cept’s many applications and facets in great detail.

Motivations for Managing Attention Levels

By managing attention levels, the instructor can guide stu-
dent learning step by step, providing greater motivation
along the way than by simply presenting the assignment
as a whole. The instructor can begin with a None atten-
tion level to a subconcept, allowing students to get a broad
understanding of the relevant top-level issues. When this
broad understanding is reached, they may then be instructed
to consider subconcepts in more detail, at the level of Shal-
low. For example, a comparative study of different strate-
gies for a subconcept may suggest a new approach relevant
to that particular subconcept. Furthermore, at this point stu-
dents may feel they understand the subconcept, only to find
surprising results (an impasse), indicating a need for further
study. This impasse would result from the instructor not ini-
tially explaining every detail, but rather first letting students
discover subtle gaps in their understanding. Students can
be encouraged to try to explain the surprising results (self-
explanation). This also provides students with motivation
to advance to the Deep attention level, if the subconcept is
judged important enough for the course. The instructor time
commitment for this approach is similar to more typical in-
struction, except that it may take place as shorter discussions
over multiple class periods, allowing students to consider the
subconcepts on their own at each attention level.

In the version-space learning example above, the None at-
tention level may be appropriate for an overview, in which a
basic algorithm can be discussed and the importance of some
subconcepts can be recognized, without worrying about
finer details. The instructor might later choose the Shal-
low attention level for, for example, inductive bias—making
students aware of the issue and having them understand the
high-level details and tradeoffs of a few basic approaches.
Finally, the instructor can lead the students to focus more
deeply on a subconcept, perhaps to find surprising results—
that is, to encounter an impasse, leading to encouragement
to explain these results and focus attention more deeply.

187

The following sections discuss this in more detail and also
propose the use of frameworks for the management of at-
tention levels, showing how frameworks can assist the in-
structor in leading misunderstanding students to relevant im-
passes, providing opportunities for self-explanation.

Managing Attention Levels with Frameworks

In a programming assignment designed to focus on selected
target subconcepts, students who develop all code from
scratch will nevertheless need sufficient understanding of
even non-target subconcepts to program a complete func-
tional system. Furthermore, in our experience, students fac-
ing an assignment with limited time seldom focus on gener-
icity and independence of components, resulting in systems
in which components may have many entangling relation-
ships. In such a situation, attention level is not easily man-
aged by the instructor—the student’s attention must be broad
enough to cover most or all of the subconcepts all the time.
Frameworks can be a valuable tool for avoiding this diffi-
culty and enabling instructors to guide students’ focus.

Attention Levels and Frameworks

A framework is a collection of reusable code designed to be
extended and applied to a variety of domains (Johnson &
Foote 1988). The use of frameworks in Al classes has previ-
ously been advocated as a way to enable students to address
real large-scale problems, within the constraints of a course
(Bogaerts & Leake 2005a); this paper proposes that frame-
works can give the instructor the control over attention levels
necessary to guide misunderstanding students to impasses,
and allow them to self-explain and test their explanations.

A framework consists of several components, which cor-
respond to one view of the logical chunks of the overall con-
cept. An important advantage of using frameworks is the
ability of the user to either completely ignore or closely ex-
amine the intricacies of any particular component—that is,
to have any attention level. This is possible due to the frame-
work property of minimizing component dependencies: the
major components of a framework should have minimal as-
sumptions about implementation details of other compo-
nents. This not only makes component implementations
generic and swappable, but also allows the user to consider
one component in relative isolation from the details of the
others. Thus the minimal component dependencies property
of frameworks allows the attention level of any given com-
ponent to be freely managed according to interests.

Attention Levels for Components In mapping subcon-
cepts to components, the attention levels can be defined
more specifically as follows:

1. None - Students may not even be aware that the compo-
nent is in use, because it has been specified automatically
by another component or serves as a default when no over-
riding component is provided.

2. Shallow - Students consider the high-level behavior of a
component, but not its implementation details.

3. Deep - Students propose or implement a component ex-
tension with new functionality to address a given issue in



incomplete or insufficient code.

Decreased attention to some components allows the stu-
dent to focus on other components and how they pertain to
the specific academic question of interest.

Guiding Student Attention Levels with Components
Instructors can take explicit steps to influence students’
attention levels on various components, to satisfy course
goals. To prompt the None attention level, instructors might:

e Provide a basic system implementation which uses the in-
structor’s chosen component.

e Provide only in compiled format any components to
which the instructor does not wish the students to attend.

To prompt the Shallow attention level, the instructor might:

e Instruct students to examine the high-level differences be-
tween components.

e Instruct students to select a component for use in their
system and explain their choice.

e Instruct students to conduct a high-level analysis of sys-
tem performance for each of several provided component
implementations.

e Again, some components could optionally be provided
only in compiled format, but rather than ignoring them
as in None, students would be expected to make use of
them and analyze the results, at a high level.

To prompt the Deep attention level, the instructor might:

o Start with any of the actions of the Shallow attention level.
Instruct students to then hypothesize improvements and
optimizations and provide intuitive justification.

e Instruct students to construct new component implemen-
tations to compare performance of their hypotheses.

Issues In Mappings Between Components and Subcon-
cepts Ideally, a framework addressing a given concept will
have a one-to-one mapping between components and target
subconcepts. However, even in a well-designed framework,
this may not always be the case, depending on the instruc-
tor’s chosen breakdown of the concept into subconcepts. For
example, the instructor might break down a concept such
that each subconcept is a different algorithm, relevant to
only part of a component, or to multiple components.

If the breakdown leads to subconcepts corresponding to
only part of a component, then the irrelevant portion could
be given a different attention level. If the breakdown leads
to subconcepts spanning multiple components with newly-
introduced dependencies, then each of these components
must have a similar attention level in order to fully study
the subconcepts. Thus, conclusions made about guiding at-
tention levels given one-to-one component-subconcept map-
pings still apply, though they may be weakened depending
on the amount of deviation from a one-to-one mapping.

Example: Guiding Impasse-Driven Learning
About Case Base Maintenance

As discussed previously, instructor guidance of student at-
tention levels can encourage useful impasses and concomi-

188

tant self-explanation. To illustrate, two example assign-
ments are provided below, covering aspects of case base
maintenance in CBR, and version-space learning.

As a case study in the utility of frameworks to facili-
tate guidance of attention levels, we first focus on an ex-
ample for teaching case-based reasoning (CBR). CBR is an
Al problem-solving approach in which a system stores prior
problem-solving experiences (cases) so that they can be ap-
plied and adapted to suggest a solution for a new problem.
(Kolodner 1993) provides a textbook introduction. The CBR
processing cycle starts from a problem description entered
into the system. Similar past cases are retrieved and adapted
to propose a solution to the problem. It is evaluated by some
external process, with failures returned for additional adap-
tation, and successes stored as new cases to be used for fu-
ture problem solving. IUCBRF (Bogaerts & Leake 2005b),
a freely available open-source framework, written in Java,
was used for the assignment.

Shallow Examination of Maintenance Policies

This assignment was developed by the authors and given to
a graduate-level artificial intelligence class.

Assignment Description The initial assignment helps stu-
dents gain experience in case base maintenance—the revi-
sion of case base contents or organization to improve system
performance. As case base sizes increase and CBR systems
receive long-term use, maintenance becomes an important
concern. Consequently, maintenance has received consider-
able research attention (e.g., (Leake et al. 2001)).

The initial assignment involves a comparison of four
maintenance policies:

1. NullMaintenance - New cases are never added, and cases
are never deleted.

2. AlwaysAddMaintenance - New cases are always added,
and cases are never deleted.

3. UnusedRemovedMaintenance - New cases are always
added. Periodically, cases used “infrequently” according
to a given measure may be removed.

4. ThresholdBasedAdditionMaintenance - A new case is
added if its distance from the closest case in the case base
surpasses a fixed threshold. Cases are never deleted.

This assignment targets each student’s attention level for
the maintenance component to be Shallow, with all other
CBR components targeted to be None. This was facili-
tated by the IUCBRF framework’s provision of minimally-
dependent non-target components.

The instructor intentionally did not examine maintenance
policies in full detail in advance. Students were instructed
to first hypothesize performance tradeoffs between solution
quality (which generally increases with more cases) and
retrieval efficiency (which generally decreases with more
cases), using each of the four policies. They were instructed
to next run experiments using the experimentation facilities
of IUCBRF with the University of California-Irvine letter
dataset (Newman et al. 1998), and to analyze the results.



Initial Results and Explanations Most students formed
similar hypothesizes: that NullMaintenance would never
learn anything new, and thus over time solution qual-
ity would be inferior to the other two policies; that Al-
waysAddMaintenance would provide good solution qual-
ity, but adding all new cases to the case base would grad-
ually decrease overall efficiency due to retrieval costs (the
“swamping utility problem”); that UnusedRemovedMainte-
nance might have slightly lower solution quality than Al-
waysAddMaintenance, but over time would lead to much
better retrieval efficiency, as unused cases would not be
kept to slow the system down; and, finally, that Threshold-
BasedAdditionMaintenance would improve solution quality
as more cases are added, without the problems in retrieval
efficiency of AlwaysAddMaintenance.

Reaching an Impasse The students’ hypotheses are essen-
tially correct, save for one crucial flaw, making the actual
system performance quite different. Results for retrieval ef-
ficiency (that is, trends for retrieval times) were as expected.
However, students were surprised to find that their experi-
mental results showed no real improvement in solution qual-
ity for UnusedRemovedMaintenance, giving approximately
the same results as NullMaintenance. AlwaysAddMain-
tenance and ThresholdBasedAdditionMaintenance did im-
prove in solution quality to some degree, but again not as
much as expected. Students, having thought they understood
the material, reached an impasse upon finding that system
performance did not match their expectations.

Reacting to the Impasse One way to respond to the im-
passe would be for the instructor to explain what went
wrong. We would expect this to be somewhat effective, in
that having reached the impasse should tend to make stu-
dents more prepared to attend to an explanation than they
were without the impasse, as shown by research discussed
in the introduction. However—unless students attempted to
explain themselves rather than waiting for the instructor (as
might be expected from stronger students, but not weaker
ones)—this approach would fail to take advantage of the
benefits of self-explanation. Consequently, the assignment
itself required students to explain the results and offer some
kind of resolution for their surprises.

Most students hypothesized that the case space was al-
ready well-covered by the initial case base, i.e., that adding
more cases was not necessary, therefore explaining the lim-
ited or nonexistent improvement in solution quality.

Interestingly, this explanation is itself incorrect. When
this is revealed to students, they have a newfound motivat-
ing curiosity beyond what existed at the start of the assign-
ment, when their assumption was that the results would be
fairly obvious and fit hypotheses. This impasse and self-
explanation were necessary for the students to learn more
about case base maintenance. By focusing students’ atten-
tion level on a single component without the need to con-
sider other components (thanks to the use of a framework),
the instructor allowed students to zero in on key points.

Although the students’ explanations of the impasse were
inaccurate, by forming their self-explanations students were
forced to think more carefully about their understanding

189

to come up with a logical conclusion—a process that has
been shown to facilitate learning (VanLehn, Siler, & Mur-
ray 2003). At this point, the true issue was discussed in
class, because instructor explanation can be helpful after a
failed self-explanation (Renkl 2002). The following section
explains the points raised in this discussion.

An alternative to discussing the explanation would be to
guide additional individual student investigation in a fol-
lowup assignment. This assignment would have a different
attention level, revealing the true source of the results while
illustrating a fundamental but easy-to-overlook case-based
reasoning principle, as discussed below.

Deep Examination of Maintenance Policies

A possible followup assignment follows the same template
as the initial one, but at the Deep attention level, with in-
structions to look more carefully at the implementations of
the maintenance policies, hypothesize what is wrong, im-
plement revised policies, and test them. For students who
are still stuck after they determine experimentally that their
hypotheses do not hold, the following hint should be suf-
ficient: A new case is simply a problem description and a
conclusion formed from the case base. Could the conclusion
ever be wrong?

This question brings students to another impasse—their
expectations and understandings of what is and is not im-
portant are challenged. In attempting to answer that ques-
tion and implement a resolution, they learn that they must
change the partially inaccurate model of understanding they
have for case base maintenance.

The answer to the question is, yes, a conclusion formed
Jfrom the case base could be wrong, if the most similar prior
cases do not propose appropriate solutions. Here the prob-
lem is that CBR systems require feedback about the results
they generate, but the provided maintenance policies all vi-
olate a key principle of case addition, that cases only be
added after they have been verified to be correct. (Provid-
ing maintenance policies with this deficiency can be seen as
prompting a useful impasse by providing code with a care-
fully selected bug to study and diagnose, a strategy which
can apply even outside of the use of frameworks.) In a CBR
system, this verification typically takes place by either trying
things out in the “real world” or perhaps by running a veri-
fication algorithm (able to verify, but not find, correct solu-
tions). In these particular experiments, the data set used pro-
vides the “real world” answer for comparison. None of the
maintenance policies checked for the quality of the system’s
solution, so any new case that was added had a chance of
containing an incorrect solution. This erroneous case could
suggest erroneous solutions for additional problems. As a
result, the solution quality does not necessarily increase, and
in fact could decrease, given an increasing case base size—
as happened for the selected dataset.

These sample assignments show how an instructor can aid
students in forming these conclusions on their own, by man-
aging attention levels, as facilitated by using and extending
a code framework. What begins as an “obvious” analysis
of maintenance policies leads to an impasse, an incorrect
self-explanation, guidance by the instructor, and the oppor-



tunity to diagnose and correct deficiencies in maintenance
policies (while also correcting deficiencies in student under-
standing). Through the use of a framework with minimal
component dependencies, students were able to have a None
attention level to every component but maintenance, allow-
ing them to focus their work and target the key concept of
the assignment. When their Shallow attention level leads to
an impasse, they have greater motivation to determine what
is wrong, and attempt to provide a self-explanation to do
so. With the instructor’s guidance, further work can be en-
couraged to correct the self-explanation and lead them to the
Deep attention level on the maintenance component.

Example: Version-Space Learning

Consider another example of using a framework to guide
student attention levels to encourage useful impasses and
self-explanation. This time, the domain is version-space
learning, as discussed briefly above. The issues and example
domain discussed here are from (Mitchell 1997).

Initial Assignment Suppose a framework has been built
for version-space learning, such that students can quickly
build a basic system for a given domain. Students initially
have a Shallow attention level on the basic algorithm, and
None on the other subconcepts such as attribute representa-
tion, handling of partially learned hypotheses, and inductive
bias. That is, students are aware of the basic algorithm and
its behavior, but have not considered its implementation, nor
some of the finer points of version-space learning. This fo-
cus of attention is possible through the framework enabling
students not to focus on non-target subconcepts, via the min-
imal component dependencies property.

Consider the domain that asks the question, again from
(Mitchell 1997), “Is it a good day to do water sports?”, given
attributes such as temperature, humidity, and wind speed.
Students are presented with a set of targets for the system
to learn. This set contains only targets that are within the
defined hypothesis space—for example, conjunctions of at-
tributes (e.g., “warm and moderately windy days are the only
good water sports days). The assumption that the targets fall
within a limited hypothesis space, rather than one that makes
no assumptions on form, is the inductive bias, required for
version-space learning to make the “inductive leap” to gen-
eralize from examples. Through the use of a framework, stu-
dents are able to consider experimentally the issue of learn-
ability without having to worry about all the implementation
details of the system. Students run experiments with the sys-
tem and observe that, given enough examples, version-space
learning is able to learn all targets in this set.

Reaching and Reacting to an Impasse Students are then
given an additional set of targets, not conforming to the orig-
inal hypothesis space, (e.g., disjunctive targets such as “ei-
ther warm days or hot and not humid days are good wa-
ter sports days”) and asked to speculate and experimentally
check the learnability of these targets. If they answer that
they are learnable, then they will be at an impasse upon find-
ing otherwise. Many students, however, may recognize that
they are not learnable given the current inductive bias. The

190

instructor may then guide the students to pay closer attention
(increase their attention level) on the issue of inductive bias,
a topic on which they previously did not need to focus since
a default bias was provided by the framework in the sys-
tem implementation. Students might then suggest expand-
ing the hypothesis space to contain all possible hypotheses
(e.g., all arbitrary boolean functions over the attributes), i.e.,
to attempt to create an unbiased learner—and in so doing,
reaching the Deep attention level for inductive bias.

At this point, students reach an impasse. They find to
their surprise that a version-space learner is unable to gen-
eralize from the examples using this expanded hypothesis
space. They can attempt to provide a self-explanation for
this, followed by additional discussion by the instructor on
the inability of an unbiased learner to generalize beyond the
training examples. Students can then attempt a resolution,
such as changing rather than eliminating the inductive bias.

Thus the instructor has used a framework to allow stu-
dents to initially focus on the basic algorithm, without con-
cerns about inductive bias. Then, activities guided by the in-
structor allowed a change in attention level to address finer
points, bring about a useful impasse, and provide opportuni-
ties for self-explanation and class discussion.

Potential for Broader Use

There are several Al resources that can provide the kind of
code framework useful for applying the strategies of this pa-
per. The AIMA code repository (Russell & Norvig 2002)
presents discussion and code for various Al topics. WEKA
(Witten & Frank 2000) is a framework of machine learning
algorithms, commonly used by researchers, industrial scien-
tists, and educators, much in the same way as IUCBRF.

Some frameworks define domains, freeing the student
from having to attend to domain implementation details.
For example, (Hill & Alford 2004) describes a highly-
configurable agent-based war environment to which broad
categories of Al techniques can be applied. Other examples
include the “Wumpus” world of avoiding dangers and seek-
ing benefits ((Russell & Norvig 1995), credited to Michael
Genesereth) and the Eden microworld (Paine 2000).

Some collections of applets for demonstrations of Al top-
ics also exist, such as CISpace (Conati et al. 1999) and
Alxploratorium (Greiner & Schaeffer 2001). They may be
quite useful for the None and Shallow attention levels, but
are more limiting for assignments requiring a Deep atten-
tion level. This is because these allow exploration within the
confines of the applet functionality, but have limited possi-
bilities for deep examination in the implementation of new
components to be used in the applet.

Conclusion

Much research has demonstrated the benefits in learning that
come with impasses and student attempts at self-explanation
guided by an instructor, and some learning environments
have been developed with this in mind (e.g., (Burke & Kass
1996)). This paper has argued that managing attention lev-
els can assist instructors of artificial intelligence courses in
bringing about these impasses and self-explanations, and has



presented strategies for operationalizing this general princi-
ple. In particular, this paper has shown that code frame-
works can be a useful tool for instructors to manage student
attention levels, and has presented concrete examples and
guidelines for their use. The minimal component dependen-
cies property of frameworks makes it possible for students
to have widely varying attention levels on different compo-
nents of a system while still enabling them to work with a
complete system. It is this possibility that gives the instruc-
tor significant power to bring about useful impasses.

References

Anderson, J. R.; Conrad, F. G.; and Corbett, A. T. 1989.
Skill acquisition and the LISP tutor. Cognitive Science
14(4):467-505.

Bogaerts, S., and Leake, D. 2005a. Increasing Al project
effectiveness with reusable code frameworks: A case study
using IUCBREF. In Proceedings of the Eighteenth Interna-
tional Florida Artificial Intelligence Research Society Con-
ference. AAAI Press.

Bogaerts, S., and Leake, D. 2005b. [IUCBRF: A framework
for rapid and modular CBR system development. Techni-
cal Report TR 617, Computer Science Department, Indiana
University, Bloomington, IN.

Brown, J. S., and VanLehn, K. 1980. Repair theory: A
generative theory of bugs in procedural skills. Cognitive
Science 4:379-426.

Burke, R., and Kass, A. 1996. Retrieving stories for case-
based teaching. In Leake, D., ed., Case-Based Reasoning:
Experiences, Lessons, and Future Directions. Menlo Park,
CA: AAAI Press. 93-109.

Carroll, J. M., and Kay, D. S. 1988. Prompting, feedback,
and error correction in the design of a scenario machine.
International Journal of Man-Machine Studies 28:11-27.

Chi, M.; Bassok, M.; Lewis, M.; Reimann, P.; and Glaser,
R. 1989. Self-explanations: How students study and use
examples in learning to solve problems. Cognitive Science
13:145-182.

Conati, C.; Gorniak, P.; Hoos, H.; Mackworth, A.; and
Poole, D. 1999. ClISpace: Tools for learning com-
putational intelligence. Accessed October 22, 2004 at
http://www.cs.ubc.ca/labs/Ici/Clspace/.

Ferguson-Hessler, M. G. M., and deJong, T. 1990. Study-
ing physics texts: Differences in study processes between
good and poor solvers. Cognition and Instruction 7:41-54.

Greiner, R., and Schaeffer, J. 2001. The Alxploratorium:
A vision for Al and the web. In Proceedings of the Interna-
tional Joint Conference On Articial Intelligence Workshop
On Effective Interactive Al Resources.

Hill, J. M. D., and Alford, K. L. 2004. A distributed task
environment for teaching artificial intelligence with agents.
In SIGCSE '04: Proceedings of the 35th SIGCSE technical

symposium on Computer science education,224-228. New
York, NY, USA: ACM Press.

Johnson, R., and Foote, B. 1988. Designing reusable

191

classes. Journal of Object-Oriented Programming 1(5):22—
35.

Kolodner, J. 1993. Case-Based Reasoning. San Mateo,
CA: Morgan Kaufmann.

Leake, D.; Smyth, B.; Wilson, D.; and Yang, Q., eds. 2001.
Maintaining Case-Based Reasoning Systems. Blackwell.
Special issue of Computational Intelligence, 17(2), 2001.

McKendree, J. 1990. Effective feedback content for tutor-

ing complex skills. Human Computer Interaction 5:381—
413.

Mitchell, T. 1997. Machine Learning. New York: McGraw
Hill.

Newell, A. 1990. Unified Theories of Cognition. Cam-
bridge, MA: Harvard.

Newman, D.; Hettich, S.; Blake, C.; and Merz, C. 1998.
UCI repository of machine learning databases.

Paine, J. 2000. Using Java and the web as a front-
end to an agent-based artificial intelligence course. Avail-
able at http://www.j-paine.org/teaching with_agents.html,
accessed November 16, 2005.

Pirolli, P, and Bielaczyc, K. 1989. Empirical analyses
of self-explanation and transfer in learning to program. In
Proceedings of the eleventh annual conference of the Cog-
nitive Science Society, 450-475.

Renkl, A. 2002. Worked-out examples: Instructional ex-

planations support learning by self-explanations. Learning
and Instruction 12(5):529-556.

Russell, S., and Norvig, P. 1995. Artificial Intelligence: A
Modern Approach. Englewood Cliffs, NJ: Prentice Hall.

Russell, S., and Norvig, P. 2002. Artifical intelli-
gence: A modern approach. Accessed October 22, 2004
at http://aima.cs.berkeley.edu/.

VanLehn, K.; Jones, R.; and Chi, M. 1992. A model of
the self-explanation effect. The Journal of the Learning
Sciences 2(1):1-59.

VanLehn, K., and Jones, R. M. 1993. Learning by ex-
plaining examples to oneself: A computational model. In
Chipman, S., and Meyrowitz, A., eds., Cognitive Models of
Complex Learning. Boston, MA: Kluwer Academic. 25—
82.

VanLehn, K.; Siler, S.; and Murray, C. 2003. Why do
only some events cause learning during human tutoring?
Cognition and Instruction 21(3):209-249.

VanLehn, K. 1987. Learning one subprocedure per lesson.
In Artificial Intellgience, volume 31. 1-40.

VanLehn, K. 1990. Mind Bugs: The Origins of Procedural
Misconceptions. MIT Press.

VanLehn, K. 1999. Rule learning events in the acquisition
of a complex skill: An evaluation of cascade. Journal of
the Learning Sciences 8(2):179-221.

Witten, 1., and Frank, E. 2000. Data Mining: Practical
Machine Learning Tools and Techniques with Java Imple-
mentations. San Francisco: Morgan Kaufmann.



