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Abstract 

This paper describes the design and execution of a robotics-
themed AI elective at a small liberal arts institution. An 
important goal of the course is to spark and nurture 
students’ interest in pursuing related research while still 
undergraduates. To this end the curriculum turns the usual 
structure of a survey course on its head, pushing many 
fundamental topics later in the term so that students receive 
an early, thorough exposure to an important, recent 
algorithm known as Monte Carlo Localization (MCL). By 
starting with MCL, the de facto standard on cutting-edge 
mobile platforms, students have a touchstone from which to 
base novel projects and the time to do so. This work relates 
both the positive and negative experiences we have had with 
this approach.  

Overview   

AI-based survey courses are an important part of many 
undergraduate computer science departments’ curricula. As 
our course’s theme is robotics, it is the novelty of seeing 
one's data structures, algorithms, and software design 
physically embodied that attracts students to it. Yet this 
novelty also ensures that the students arrive entirely new to 
the material. In addition, as is typical of small, liberal arts 
colleges, this course is likely to be students’ only 
experience with artificial intelligence and its many 
subfields. These factors have challenged us in our efforts to 
provide both encouragement and sufficient background for 
productive undergraduate research in the field. 
 
Our approach exploits students' lack of experience to turn 
the syllabus "upside down," presenting some of the most 
recent and exciting advances in computational robotics at 
the start of the course, reinforced by lab assignments that 
ask groups of 2-3 students to implement these ideas. This 
schedule opens the latter half of the semester for student 
teams to pursue, if they wish, self-directed final projects. 
The most promising of these are then considered for 
summer support (as available), enabling the teams to refine 
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their projects for demonstration and publication within the 
broader community. 
 
Growing attention to the integration of undergraduate 
education and research has prompted both instructors and 
institutions to evaluate their curricula to this end (Gonzales 
2001). Often the demands of graduating broadly 
knowledgeable majors conflicts with a desire to provide 
opportunities for narrower and deeper small-group 
investigations. Maxwell and Meeden (2000) describe their 
Swarthmore robotics course that succeeds in this balancing 
act: it has led to many entries to AAAI robotics 
competitions, including several winning ones. Having 
evolved from exactly that model, our course retains many 
of its features. It differs primarily in curricular structure, 
replacing its breadth-based approach with an initial 
postholing technique seen more often in history and the 
social sciences than in technical fields (Kornblith and 
Lasser 2001). By detailing these curricular choices and 
their implementation, as well as the lessons learned over 
the past five years, we hope to provide grist useful to 
others who might be designing AI-based electives. 

Part 1: MCL as a Keystone Algorithm 

Figure 1 presents an overview of the topics covered in the 
first half of our AI robotics elective. In this part of the term 
lectures and labs dovetail into a single keystone algorithm, 
Monte Carlo Localization (MCL) (Fox et al. 1999).  
 
Briefly, MCL tracks a number of hypothesized locations 

for a mobile robot. As the robot moves, the inescapable 

inaccuracies of real-world motion increase the uncertainty 

of these hypotheses. When a robot senses its environment, 

either with a range sensor such as sonar or using a camera 

image, this invariably noisy sensor data culls poorly 

matching hypotheses. The robot uses its remaining, high-

likelihood location estimates to reason about what action to 

take next. 
 
 
Weeks 1-2: introduction to robotics and our hardware and 

software platforms; range sensing. Lab: open-loop motions and 

measuring the inevitable inaccuracies of actuation  
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Weeks 3-4: probabilistic models of uncertainty; basics of image 

processing. Lab: adding a sonar ranger to the robot, calibrating it, 

and obtaining simple probabilistic models of sensor error 

Weeks 5-6: Bayesian reasoning and its role underlying MCL. 

Lab: basic image processing routines (color-based region 

identification and shape statistics) to extract hallway landmarks 

Weeks 7-8: other probabilistic robotics algorithms: SLAM, 

evidence grids, and coastal navigation Lab: implementing MCL 

in a provided hallway map using their motion/sensing models  

Week 9: Spring break  

 

Figure 1  An overview of the initial topics covered in our 

Robotics elective. Details including lecture slides, written 

assignments, supporting software and lab projects are available 

online from www.cs.hmc.edu/~dodds/courses. 

 
While simple, MCL motivates the Bayesian reasoning that 

plays so central a role within current work in artificial 

intelligence of all stripes. Though its basic tenets go back 

centuries, MCL per se is less than a decade old; as a result, 

it continues to motivate cutting-edge variations and 

applications (Elinas and Little 2005, Wolf et al. 2005). 

 

The process of implementing MCL frames the labs and 

lectures of the first half of the semester. Building 

probabilistic error models of their robots' drive systems 

provides students a backdrop for learning how to use the 

hardware and software in the first two weeks. Creating 

complementary error models for their robots’ sensors 

similarly motivates a short introduction to image 

processing and the construction of a sonar ranging unit. 

The integration of these models into the MCL algorithm 

reinforces these early labs and results in a coherent system 

that student teams can demonstrate by midterm. 

 

Because MCL is a passive state-estimation algorithm, 

students can use simple wandering routines or even 

human-controlled motions to test their implementations. In 

contrast, many AI-based robotics courses present 

wandering or wall-following as early lab projects. Because 

these behaviors depend so intimately on the environment 

and sensor modalities being used, in our experience this 

approach focuses students’ energies on writing code 

tailored tightly to our buildings’ hallways. Although this 

provides realistic robot-programming experience and is 

justified by robotics’s history, we found that it did not hint 

at the rapidly maturing and environment-independent basis 

for current state-of-the-art systems. Probabilistic robotics 

(Thrun 2002), on the other hand, puts such site-specific 

effort into a context that can be applied to any special-

reasoning system based on noisy inputs. 

Integrating Labs and Lectures 

In order that students feel prepared for the lab projects, 

classroom lectures pace about two weeks ahead of these 

hands-on implementations. Small written assignments – 

both in-class and for homework – reinforce the material 

concurrent with its presentation. One advantage of this 

schedule is that students see more advanced mapping and 

navigation algorithms that build on MCL while they are 

implementing and testing that algorithm. Again following 

Maxwell and Meeden (2000), the lectures reinforce 

assigned papers on evidence-grid mapping (Martin and 

Moravec 1996), SLAM (simultaneous localization and 

mapping) (Montemerlo et al. 2002), and the entropy-based 

coastal navigation algorithm (Roy and Thrun 1999). These 

techniques further highlight the breadth and utility of 

probabilistic spatial reasoning. They also are intended to 

suggest directions for student-based final projects, which 

begin immediately after the break.  

Part 2: Acknowledging Robotics’s Breadth 

Because students’ lab projects diverge in the second half of 
the term, the lecture content less directly supports their out-
of-class efforts. We try to exploit this disconnect in two 
ways. First, the curriculum returns to some fundamental 
robotics topics appearing earlier in more traditionally 
structured syllabi, e.g., configuration space and the many 
approaches to path planning within it. Figure 2 outlines 
these topics. Second, student teams punctuate lecture time 
with updates and demonstrations of their particular 
projects’ progress. Written and programming assignments 
also become more important for reinforcing the lectures’ 
topics, since lab work is less likely to do so. For instance, 
students build a vision program that plays the game of Set 
(www.setgame.com). Students’ efforts culminate in 
public demonstrations of their projects on the final day of 
classes. The final online write-up is posted a week 
afterwards. 
 
Weeks 10-11: more sophisticated computer vision algorithms, 

e.g., condensation, identical in spirit to MCL  Lab: first 

deliverable in each student team’s final project. For the default 

(fire-extinguishing) project, students build their Lego platform 

and write programs to test its motor and sensor subsystems. 

Weeks 12-13:  optical flow and its use in estimating time-to-

collision. Lab: second final-project deliverable. For the default 

project, students write and test maze-wandering code.  

Weeks 14-15: robots’ configuration space and several path 

planning algorithms. Lab: final deliverable in each student 

team’s final project, in which students are testing and tuning full, 

integrated systems. 

Week 16: Dedicated to finishing the lab projects, including a 

term-end demonstration that can attract outsiders as well. 

 

Figure 2  A synopsis of the second half of the elective.  

 
Ultimately, the risks of overreaching have been the biggest 
drawback of student-selected capstone projects. We feel 
that the successful projects more than balance the need for 
additional instructor effort. Yet the projects that do not 
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succeed leave students with a sour taste for the course, if 
not the whole field. Such disappointments have been most 
acute when caused, in part, by limitations of the hardware 
or software we have provided to the students. As a result, 
we have recently offered a “default” second-half project: 
building and programming a “fire-fighting” robot. This has 
been demonstrated with a wide variety of controllers 
including the Lego RCX, the Handy Board, and several 
custom-built platforms. Inspired by the Trinity College 
robot contest (Verner and Ahlgren 2002), this project has 
been calibrated to provide a moderate, attainable challenge.  

Working Beyond the Semester 

Despite the availability of this default project, we continue 
to seek out ways of encouraging students to explore 
outside the safety of well-worn paths. To this end we use 
external venues - and their deadlines - to motivate students 
beyond the necessarily short-range schedule of a four-
month semester. We encourage student teams to point their 
work toward a particular poster, paper, or competition 
submission. The following experiences highlight the 
variety of venues that have provided concrete objectives 
toward which our students have aimed their efforts:  

Educational Venues 

In the spring semester of 2003, a pair of students wanted to 
investigate the then-new Evolution ER1 platform. 
Although difficulties with the software led to far less 
progress than they had hoped, the start they made and a 
continuation the following fall led to the development of a 
new graphical user interface and python-based support 
code for that robot. Although not robotics research per se, 
this effort was presented at the following spring’s 
education-themed AAAI Symposium. It also provided the 
following year’s students with a better starting point for 
their projects.  

Beyond Botball 

In the spring semester of 2004, a team of five students 
chose to build an entry to the Collegiate Botball 
competition (Miller and Winton 2004) as their final course 
project. Although we did not have summer support, three 
of the students could enter their platform (Figure 3) and 
attend AAAI, a collocated conference, because it was 
nearby. This competition runs each summer, now under the 
name Beyond Botball, under the aegis of the National 
Conference for Educational Robotics. 

Poster Presentations 

The experience at AAAI prompted one of the students to 
work during the fall of 2004 on an independent study to 
extend Monte Carlo Localization in order to take 
advantage of visually-mapped environments (Figure 3, 
top). The student submitted his work as a poster to both a 
regional site, SCCUR, and a national venue, SIGCSE, for 

undergraduate student research. In addition to benefiting 
the student presenter, this work was folded into the lectures 
of the 2005 offering of Robotics. Such feedback helped 
reinforce the idea that students’ course projects could be a 
jumping-off point, rather than a terminal experience in AI 
and, more generally, computer science research. Different 
events, such as CCSC’s and ACM-SE’s workshops, make 
such opportunities available throughout the country. 
 

 

Figure 3   (Top) The feature tracking and resulting visual map 

anchoring the student work submitted to SIGCSE’s 2004 

undergraduate student research competition (Bottom Left) A 

birds’-eye view of the students’ entry to the 2004 Collegiate 

Botball competition (Bottom Right) An Evolution ER1 platform 

retrieving the beach ball in the 2005 AAAI robot scavenger hunt. 

AAAI Robot Competition 

In 2005, one of the student teams worked toward entering 
the AAAI’s 14-year-old annual robot competition. These 
four students started with the course’s ordinary MCL labs 
through the first half of the course. In the second half, 
however, they integrated behaviors such as object 
identification and arrow-following (both extensions of the 
Set-playing assignment) into their map-based localization 
routines. In this case, summer support was available. Three 
of the students used May and June to add sensors and a 
second computer to their ER1 to create their competition 
entry, shown in Figure 3. In July they participated in the 
AAAI robot scavenger hunt and robot workshop, an 
experience all four consider a highlight of their 
undergraduate years.  

Traditional Research Venues 

The work presented at SIGCSE has led to the proposal and 
study of an algorithm coined Monte Carlo Correction, a 
vision-based MCL variant. Through the fall of 2005, a 
student has been investigating the effects of a pose-
correction step in which MCL’s particles are updated based 
on the alignment of image features and their hypothesized 
world locations. The result has been prepared into a 
submission to a pattern-recognition research conference, 
with its status still pending. Similarly, the AAAI scavenger 
hunt work motivated those students to write up both the 
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algorithmic (Davidson et al 2006) and engineering 
(Davidson et al. 2005) details of their platform. 
  
Regardless of the outcome for a particular paper or robot 
submission, however, each of these efforts contributes to 
our overall goal: integrating students’ coursework as much 
as possible with the ongoing flow of AI’s educational and 
research communities. 

Results and Lessons Learned 

As the above descriptions show, the results from our 
offerings of Robotics vary based on many forces not 
completely within our control: students’ interests, external 
venues for different kinds of projects, and the funding 
available for summer continuations of the semester’s work. 
 
As expected, the course’s design has not produced only 
success stories. For each of the undergraduate research 
projects described in the last section, there have been more 
that have foundered, e.g., a group of seniors learning that 
FastSLAM was too much to completely implement as a 
final project. The flexibility offered in project hardware 
and scope carries substantial risks. The Evolution ER1’s 
software stymied a dedicated pair of students in a full-
semester effort to get it working in 2003; similar 
frustrations arose for students working with the Palm Pilot 
Robot Kit (Resko et al. 2002). In 2005 both the hardware 
and the software of the XPort Robot Controller, which uses 
the Nintendo GameBoy Advance as its computational 
engine, proved too poorly documented to support our final 
fire-extinguishing task.  
 
More detail on the experiences and substantial efforts these 
student teams made toward their final projects’ goals are 
documented in an archive of online write-ups available at 
www.cs.hmc.edu/~dodds/projects. In all of 
these cases, we feel the difficulties arise fundamentally 
from the ambition of the course design. After all, the 
student teams were investigating algorithms and hardware 
with which the instructor was not familiar. In addition, the 
variety of student-chosen projects undertaken in a class of 
8-10 teams (20-24 students) yields limited instructor time 
available to master the details of each one. 
 
Our philosophy has been to take a longer-term view of 
these efforts. Frustrations with the ER1 software led a 
group of students to rewrite its drivers and support code 
from the ground up (Dodds et al. 2004). That platform was 
used with success by all of the course participants in 2005. 
We are also looking to the next version of the XPort, 
known as the XBC (LeGrand et al 2005), as a very 
promising future platform, and we believe that with 
adequate support code provided, implementing FastSLAM 
will move from a final project to a required extension of 
MCL. 
 

Indeed, students’ reflections on the course suggest a 
realization that such challenges are an often unavoidable 
part of hands-on work with robots. Reported satisfaction 
levels have not varied in its five offerings. Suggestions for 
improvements consistently run the gamut from “if this is a 
computational course, why are we dealing with hardware 
at all” to “there should be more time on the hardware – its 
design, the sensors, etc.”  
 
Despite the drawbacks of our course design, we believe 
that five years of tinkering with its structure has helped to 
create an offering that can seed and nurture undergraduate 
research projects. Across that timespan, the following 
choices have the most valuable in our efforts to encourage 
undergraduate research through a survey course:  
 
• ensuring younger students are in the class  

Sophomores and juniors are much more likely than 
seniors to seek summer research opportunities. The 
subsequent fall allows a natural buffer for writing 
and submitting results in time for graduate school 
application deadlines. Our early, all-senior offerings 
of the course left the next year with no experience 
on which to build. 

 
• starting with a keystone problem  As the previous 

sections describe, the careful treatment of a suitable 
problem, such as MCL, can help spark interest in a 
field’s current work while motivating motivate 
fundamentals at the same time. 

 
• seeking out scalable tools We are constantly 

considering how the software and hardware 
provided to students can best support both 
coursework and research. We have used the search 
for pedagogically scalable tools (Blank et al. 2004) 
both to improve students’ lab resources and as a 
means for students to contribute to the larger AI and 
robotics communities. 

 
In our search for hardware and software appropriate to our 
goals, we have gravitated toward the python-based Pyrobot 
software (Blank et al. 2005) and the laptop-carrying 
Evolution ER1. Both are low-cost and simple for 
beginners, and both scale easily to handle more 
sophisticated applications. Yet these resources are 
evolving: Pyrobot’s API and accompanying resources 
continue to mature; the ER1 has sold out and Evolution 
Robotics does not plan another run. By encouraging 
students to consider educational-resource development as 
one way to extend their efforts beyond the course, we 
invite them to participate in the ongoing search for the 
“right” tools. 
 
As we continue to mold this elective’s design, we have not 
come to a final conclusion on how flexible to make 
students’ laboratory projects. On one hand, projects like 
the Beyond Botball and AAAI contest entries show that 
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flexibility can harness considerable student energy and 
creativity. Yet it also seems important, especially at the 
undergraduate level, to mitigate the risks inherent in such 
flexibility. To be sure, we will continue to tune this 
course’s future offerings to better strike this balance 
between following a proven curriculum and encouraging 
experimentation beyond it. 
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