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Abstract 
This article describes a discovery-based introduction to 
elementary genetic algorithms for students of introductory 
computer science via a series of programming laboratory 
exercises.  The exercises focus on sorting weighted scores, a 
problem that is both accessible to the novice programmer 
and seemingly feasible by means of standard sorting 
methods.  Students soon discover that standard, 
deterministic techniques prove insufficient and so must 
settle for approximation by genetic algorithm.   
Experimentation with this approach reveals the folly of 
sorting weighted scores. 

Introduction   

This paper describes a series of three introductory-level 
laboratory exercises designed to help introduce students to 
basic genetic algorithms.  Students consider the problem of 
arranging a finite sequence of ordered pairs, called 
weighted scores, in descending order.  The problem 
appears to be close enough to the sorting of numbers to 
admit a solution using a variation on one of the standard 
sorting algorithms.  Through the usual program-test-debug 
process students soon discover that most of the known 
sorts are fundamentally inappropriate for the task.  
Furthermore some of the students are able to verify that 
none of the popular algorithms fit the bill.  They are then 
led to consider the use of a genetic algorithm to 
approximate the correct order.  During the program-test-
debug process they prove that not all sequences of 
weighted scores can be sorted. 
 The likely pedagogical benefits of these exercises are 
many.  For starters, they collectively constitute yet another 
directed course project, which is a fairly popular learning 
device in computer science courses.  In fact, this has the 
potential for a very effective project, since the problem of 
weighted sorting is seemingly simple yet deceptively 
complex.  During failed attempts to find a solution the 
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serious student is likely to remain confident that a 
deterministic algorithm is well within her grasp, yet is 
unlikely to become bored by the process. 
 The exercises then motivate genetic algorithms, a 
popular area of contemporary computing research, at a 
most opportune moment.  Students are given the choice to 
either press on for a deterministic algorithm or resort to 
approximation.  Meanwhile, the notion of genetic 
algorithm is added to their toolbox during classroom 
lecture.  Those who choose this path soon unravel the 
impossibility of sorting weighted scores. 
 Intellectual journeys of this particular type are important 
to proper pedagogy within the mathematical sciences.  
Educational proponents of every field within this general 
domain, such as computer science, mathematics, and 
physics, have long trumpeted the virtues of abstraction 
within the curriculum.  Understanding through universal 
reasoning is unlikely when the number of concrete 
instances is severely limited.  Science education is then 
hardly distinguishable from training in more vocational 
programs.  For instance, computer science students often 
learn about stock topics, such as the sorting of numbers, 
without considering alternative scenarios, such as the 
sorting of weighted scores. 
 From this point of view, this study of weighted scores 
draws strong analogy to the learning of foreign language.  
For example, systematic study of French helps the native 
English speaker better understand the grammatical 
structure of her own tongue.  Similarly, attempts to 
properly order weighted scores will help one develop a 
firm grasp of the sorting of ordinary numbers. 
 However, the main motivation for this particular series 
of exercises is to inspire student-centered research at the 
earliest possible stage.  Academic computer science is 
especially equipped for such work.  Computer science 
students need not wait for several semesters of background 
material before embarking upon exploratory research.  This 
stands in stark contrast to the current state of most other 
mathematical disciplines.  Also, computer science 

209



 

 

instructors have much more freedom to dedicate sufficient 
time for deep exploration into individual topics than their 
counterparts in lab science disciplines, such as chemistry 
and biology, who are constrained by a standardized 
curriculum that requires the introductory course to serve as 
part of a broad survey of the field.  Hence teachers of first-
year computer science students have greater opportunity to 
acclimate their students to the culture of research through 
the assignment of research-grade project topics. 

Summary 
This next section proceeds with background definitions, 
notation, and a summary of previous results on weighted 
scores.  This is followed by a section describing a simple 
genetic algorithm that approximates an “optimal order.”  
Subsequently, the three lab exercises are presented in 
proper chronological order.  The concluding section 
includes some observations germane to the overall 
effectiveness of the series. 

Weighted Scores 

This section presents the mathematics of the issue central 
to this paper.  A related problem is the subject of  
(Eppstein and Hirschberg 1997) and so the material below 
strongly reflects the introductory section of that article.  
This section constitutes a summary of (McGrail and 
McGrail 2004).   The reader should consult that paper for a 
complete treatment of these ideas.  In fact, much of the 
language below is presented verbatim from (McGrail and 
McGrail 2004).  
 A certain course’s collection of assignments consists of 
n equally weighted exercises.  The grading policy for this 
course allows each student to play some game of chance 
that would allow her to generate some arbitrary 
nonnegative integer k.  She then keeps the best k of her n 
grades, thereby dropping the lowest n - k grades.    
 For example, assume that there were a total of ten 
equally-weighted assignments during the course of the 
semester (n = 10).  Moreover, suppose that Sue rolled a 
single die which produced k = 6, and that her grades were 
the following. 

87, 78, 100, 95, 65, 80, 82, 92, 95, and 88 
Her lowest four grades are dropped leaving her with 

87, 100, 95, 92, 95, and 88 
which correspond to a final grade of approximately 92.8. 
 Clearly the simplest way for the professor to assign final 
grades is to use any standard sorting algorithm to sort the 
list of grades in descending order and then keep only the 
first k grades. 
 A wrinkle appears in the system when the n grades are 
of non-uniform weight.  In this scenario each grade is 
composed of two values, one depicting the total number of 

possible points one can earn on that assignment and the 
other signifying the number of points awarded to the 
student on that assignment.  So a score is an ordered pair 
(s,w) where w is a positive integer and s is a nonnegative 
integer no greater than w.  For instance, (20,20) and (0,20) 
represent the best and worst possible scores of weight 20, 
respectively.  Consequently, the collection of grades for a 
particular student is a list of n scores.  In order to avoid 
confusion with the ordered pair syntax, a list of scores is 
presented using square brackets and semicolons in the 
format below. 

L=[(s1,w1);(s2,w2); …;(sn,wn)] 
Furthermore, define the average of this list to be the sum of 
all of the first coordinates divided by the sum of all of the 
second coordinates, or 

avg(L) =(s1+s2+…+sn)/(w1+w2+…+wn). 
For example, 

avg([(55,60);(0,10);(1,10);(100,100)]) = 156/180 
which rounds off to 86.7 percent.  
 The problem of sorting weighted scores can be stated as 
follows: 

Given a list L of n scores, reorder L to a new list L’ 
such that, for each integer k strictly between 0 and n, 
the first k scores in L’ have average as large as any 
other collection of k elements of L.    

 
For example, consider this list. 

[(55,60);(0,10);(1,10);(100,100)] 
The reader may verify that the properly ordered version 
follows below. 

[(100,100);(55,60);(1,10);(0,10)] 
Based on this example, the naïve approach is to sort the 
scores in order of decreasing proportion using one of the 
standard sorting algorithms, such as BUBBLESORT, 
INSERTIONSORT, MERGESORT, QUICKSORT, or 
SELECTIONSORT (Aho, et al. 1974, Cormen, et al. 2001).   
However, it is shown in (McGrail and McGrail 2004) that 
each of these algorithms fails to do so properly. For 
example, any sort that uses a “divide-and-conquer” 
approach relies on the notion that the relative order of any 
two elements in a subcollection must agree with their 
relative order in a sorted version of the list.   This is not the 
case with scores.  To illustrate this point, it is easy to verify 
that the following two lists of scores 

[(9,10);(80,100);(5,10)] 
and 

[(100,100);(5,10);(80,100)] 
are sorted.  Consequently, the relative order of the scores 
(80,100) and (5,10) in a particular list depends on the other 
elements in the list.   
 An algorithm loosely based on SELECTIONSORT is 
presented in (McGrail and McGrail 2004) that attempts to 
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sort lists of scores.  Testing revealed that the randomly 
generated list of scores 

[(2,4);(2,2);(4,7);(6,10)] 
was reordered by this algorithm to  

[(2,2);(2,4);(6,10);(4,7)]. 
However, the proper order is 

[(2,2);(4,7);(6,10);(2,4)]! 
 Another randomly generated list of scores 

[(2,4);(6,10);(3,3);(4,7)] 
encountered during testing has no correct order.  For a 
correct order to exist, the best two scores, which are 

(3,3) and (2,4), 
must be contained in the best three scores, which are 

(3,3), (6,10), and (4,7). 
This means that not all lists of scores are sortable, so that 
no sorting algorithm is possible! 
 These results naturally lead to the following series of 
questions:   Does there exist a reasonably quick algorithm 
that sorts all sortable lists?  Furthermore, is there a notion 
of “best” order for unsortable lists that coincides with 
sorted order for sortable lists?  If so, how does one 
efficiently realize this order?  This set of questions is 
answered in part in the next section. 

A Genetic Approach to Best Order 

In this section the notion of a best order for a list of 
weighted grades is proposed.  This best order is achieved 
by means of maximizing a certain fitness measure applied 
to orderings of a given list.  In the case of a sortable list, 
this fitness measure achieves a maximum for the sorted 
order.   This naturally leads to a genetic algorithm for 
approximating best order, which then also estimates sorting 
order for sortable lists. 
 To that end, consider the list of scores 

L=[(s1,w1);(s2,w2); …;(sn,wn)]. 
Define the truncated list Lk to be 

Lk =[(s1,w1);(s2,w2); …;(sk,wk)]. 
We let the fitness of L be the sum of the averages of the Lk 

for 1<=k<n or  
Fitness(L)=avg(L1)+avg(L2)+…+avg(Ln-1). 

 For example, consider the list of scores 
L=[(2,4);(6,10);(3,3);(4,7)] 

which was shown to be unsortable in the previous section. 
It is easy to check that the following reordering of L 
provides the maximum fitness score 

L’=[(3,3);(2,4);(6,10);(4,7)] 
with Fitness(L’) rounding off to 2.36134.    
 Notice that, by the definition of sorted order of the 
previous section, if L is already sorted, each quantity 
avg(Li) is maximum over all subcollections of L of size i.  
Hence for a sortable list, the sorted order achieves 
maximum fitness.    

 The original problem can be safely rephrased in terms of 
finding a best order as follows:    

Given a list L of n scores, reorder L to a new list L’ 
so that the sum over k of avg(L’k) achieves a 
maximum.    

 
 Now one need only apply an elementary template to 
construct an approximation via genetic algorithm (Mitchell 
1996).  The general algorithm is described below.  Here 
assume that the input list L is represented by a linear array.  
One proceeds as follows: 

1. Let A be an array of 10 lists of scores.  Initially A 
simply holds 10 copies of L. 

2. For 0<=i<5, replace A[i+5] with a new list 
generated by randomly switching two of the 
scores in A[i].  

3. Compute the fitness of each list A[i]. 
4. Reorder the array A in decreasing order of fitness. 
5. Repeat steps 2, 3 and 4 for some specified number 

of iterations. 
6. The output list is A[1]. 

Some Observations  
 More can be discovered about the problem of sorting 
weighted scores by studying the fitness landscape 
(Mitchell 1996).  For a list L of n scores, one considers the 
collection of orderings of L.  The distance between any 
two orderings of L could be defined as the number of 
positions in which they differ. So L and L’ are “close” if L’ 
can be realized from L by switching two scores. The 
fitness landscape can be viewed as an (n+1)-dimensional 
graph in which each ordering of L is a point in n 
dimensions and the associated fitness is plotted along the 
(n+1)st axis (Mitchell 1996).     
 From this point of view, an optimal order would occur 
where there is a peak in the landscape.  Once this peak in 
fitness is achieved, any change in the order will cause the 
fitness to decrease, thus stranding A[1] in this position.  
Experimentation with the previous GA has yet to produce a 
peak that is not a global maximum.  In other words, all 
runs of the algorithm have found a maximal order. On 
average, the GA produces correct results after 
approximately 50 generations for an input list of length 10. 

The Laboratories 

The following series of programming laboratories guides 
the student through the concepts mentioned previously. 
The first laboratory introduces the student to the general 
notion of sorting numbers.  However, it insists that 
students invent their own algorithm.  This is intended to 
place the student into a discovery-based mindset.  In the 

211



 

 

second laboratory, the student explores the applicability of 
the standard sorting algorithms to the problem.  Finally, in 
the third, the student is asked to provide a general solution 
to the problem. The presentation is abbreviated to avoid 
repetition of the first three sections of this article. 

Laboratory 1:  Sorting Blocks 
This laboratory introduces the student to the general notion 
of sorting numbers.  It asks the student to design an 
algorithm that sorts a collection of numbered blocks into 
descending order.  The caveat is that none of the standard 
sorting algorithms such as BUBBLESORT, INSERTIONSORT, 
MERGESORT, QUICKSORT, or SELECTIONSORT (or even 
slight variations of these) are considered acceptable. The 
written report should include  

• A description of the algorithm; 
• Examples of the algorithm in action illustrated via 

box-and-pointer diagrams; and 
• An implementation of the sort. 

Laboratory 2:  The Standard Approach   
In this laboratory, the student considers the applicability of 
the standard sorting algorithms to the problem of sorting 
weighted grades.  The student is given a brief description 
of the problem that does not include the results discussed 
in this article. She is asked to determine whether any of 
BUBBLESORT, INSERTIONSORT, MERGESORT, QUICKSORT, 
or SELECTIONSORT solve the problem of sorting weighted 
grades.  The written report should include the following for 
each of the aforementioned methods: 

• An explanation of why a direct application of the 
algorithm works if she believes so; 

• If she believes that a modification of the sort will 
work she must provide an implementation along 
with an argument supporting its correctness; 

• Specific examples of lists that should foil any 
version of the algorithm; or  

• Some intelligent comments about why the 
appropriateness of an algorithm is not as clear as 
some of the others if the student is unsure about 
the conclusion. 

Laboratory 3:  A New Beginning 
At this juncture, it is assumed that the student is already 
convinced that most standard sorting algorithms do not 
apply to the problem of sorting weighted scores.  In 
addition, genetic algorithms have been introduced to the 
student in the classroom as a means for sorting ordinary 
numbers.  
 In this exercise, the student is asked to use their full 
repertoire of algorithmic techniques to provide the best 
available insight to the problem. The written report should 
include one of the following: 

• An algorithm that successfully sorts all sequences 
of weighted scores very quickly; 

• An algorithm that successfully sorts all sequences 
of weighted scores, but does not do so very 
quickly; or 

• A reasonably paced algorithm that sorts most lists 
of weighted scores and nearly sorts all of the rest.    

The student’s claims must be supported by testing 
randomly-generated examples.  Moreover, if the student 
fails to achieve an algorithm satisfying either of the first 
two categories, she should provide some insight as to why 
she could not do so. 

Epilogue 

This series of exercises was first employed in a section of 
Computer Science I at Bard College during the spring 
semester of 2005.  Below are some observations pertaining 
to the effectiveness of each laboratory exercise as well as 
the overall impact of the project on that course.   
 Exercise 1 went much better than expected.  It was 
feared that many students would try to locate a solution on 
the Internet and submit a modified version as their own.  
The strange diversity of algorithms submitted suggested 
otherwise. 
 Of the three, Laboratory 2 appeared to have the most 
profound effect on the class.  Most were able to deduce the 
irrelevance of local comparisons between scores, and so 
correctly concluded that INSERTIONSORT, MERGESORT, 
and QUICKSORT are fundamentally inappropriate for this 
application as shown in (McGrail and McGrail 2004).  
Many also eliminated one of BUBBLESORT or 
SELECTIONSORT from contention, but usually for the 
wrong reason.  All of the students were convinced that at 
least one of BUBBLESORT and SELECTIONSORT would 
inspire a working solution.  In fact, a handful of students 
each submitted a sizable, untested candidate program 
accompanied by a bold, but insufficiently supported, claim 
of correctness.  However, there was universal acceptance 
that the sorting of weighted scores requires a fairly 
complex methodology. 
 In (Eppstein and Hirschberg 1997), it is revealed that no 
greedy algorithm exists for finding the best k scores in a 
collection.  This eliminates any version of SELECTIONSORT 
from contention.  On the other hand, the observed 
efficiency of the GA strongly suggests that some version of 
BUBBLESORT might work.  However, a precise formulation 
of such is unknown to the authors at the time of the writing 
of this paper. 
 On the other hand, there are versions of SELECTIONSORT 
that satisfy the last option of Laboratory 3.  The reader is 
referred to (McGrail and McGrail 2004) for such an 
example. A sizeable minority of the students took this path.  
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Most of their implementations were slow and buggy, and 
so did not facilitate extensive testing.  Just one of these 
students was able to unearth an unsortable list and so prove 
the unsortability of lists of weighted scores. 
 All of the proponents of BUBBLESORT from Laboratory 
2 chose to implement a GA for the third stage.  Many of 
these students were willing to settle for an approximation 
algorithm because the general GA approach reminded 
them of the general BUBBLESORT method.  Others were 
simply eager to implement their own GA. 
 The GA implementers enjoyed relatively remarkable 
success.  Each of them was able to develop the proper 
fitness measure and a correctly working program over a 
relatively short period of time.  Moreover, the GA 
implementation helped them to better understand the use of 
random number generators in programs.  This left them 
well equipped to develop effective testing routines.  All of 
them discovered counterexamples which led them to the 
correct conclusions. 

Variations on a Theme 
One can argue that the fitness measure from the GA 
section is not correct since it gives disproportional weight 
to the arrangement of the early part of a list.  For instance, 
suppose that the professor in question always assigns 
fifteen graded exercises per semester.  Also assume that the 
game of chance consists of simply rolling one die to get 
result i and then letting k be n - i.  Then k ranges from 9 to 
14.  In this case, the arrangement of the first nine scores 
should not matter to the fitness measure.   
 A solution for this general situation proceeds as follows.  
For each 1<=k<n, let P(k) be the probability that exactly k 
scores remain after the game of chance.  Replace each term 
of the form avg(Li) in the fitness measure with the new 
term avg(Li)P(i), yielding the new fitness measure 

avg(L1)P(1)+avg(L2)P(2)+…+avg(Ln-1)P(n-1). 
Then the reader can verify that sorted lists still achieve 
maximum fitness.  Moreover, for the case above, 
avg(Li)P(i) = 0 for i < 9, so the arrangement of the first 
nine scores has no bearing on the fitness. 

A Note Concerning the Benefits of Anonymity.  Many of 
the negative consequences of the internet age to the cause 
of education are likely familiar to the reader.  Rarely do 
interesting problems and exercises proliferate long before 
they are followed by easily downloadable solutions or 
before they become the topic of conversation on public 
forums accessible to students.  In the interest of keeping 
ready-made solutions out of the reach of novices, it is 
recommended that adopters of these exercises use 
alternative nomenclature for terms such as “score” and also 
vary the collection of sorting algorithms employed in 
Laboratory 2.  
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