MediaFlies
An Interactive Flocking Based Tool for the Remixing of Media

Daniel Bisig and Tatsuo Unemi

Artificial Intelligence Laboratory, University of Zurich, Switzerland
Daniel Bisig, University of Zurich, Andreasstr. 15, 8050 Zurich, Switzerland
Email: dbisig@ifi.unizh.ch

Department of Information Systems Science, Soka University, Tokyo, Japan
Tatsuo Unemi, Soka University, 1-236 Tangi-cho, Hachioji-city, Tokyo, 192-8577, Japan
Email: e-mail: unemi@iss.soka.ac.jp

Abstract

The project MediaFlies implements an interactive multi-
agent system that incorporates flocking and synchronization
in order to generate a constantly changing visual output. It
relies on prerecorded or life video material, which is
fragmented and recombined via the agents’ activities. Users
influence these visuals via video based tracking and thereby
affect the amount of disturbance of the original material.
The project draws its inspiration from the biological
phenomena of flocking and synchronization. Simulations of
these phenomena form the basis for the generative behavior
of MediaFlies. In its current implementation, MediaFlies
does not support audio. Future improvements will address
this shortcoming and will also implement feedback
mechanisms by which the agents’ behaviors are influenced
by qualitative properties of the media material itself.

Introduction

Research in the field of Artificial Life and Artificial
Intelligence forms an important conceptual and technical
background for people who produce algorithmic and
generative art. In these fields, art and science share a
common interest in issues such as emergence, self-
organization, complexity, autonomy, adaptivity and
diversity. Complex and self-organized systems have a great
appeal for art, since they possess the capability to
continuously change, adapt and evolve (Sommerer and
Mignonneau 2000). In addition, such systems tend to
respond to user input in surprising and non-trivial ways and
can therefore be very rewarding for users who engage in
exploratory forms of interaction.

A group of animals such as a school of fish or a flock of
birds constitutes a typical example of a self-organized
system. Flocking algorithms, which model these behaviors,
are based on the seminal work of Craig Reynolds
(Reynolds 1987). Such algorithms enjoy an increasing
degree of popularity among artists. Flocking algorithms
give raise to lifelike and dynamic behaviors that can easily
be adapted to control a variety of visual or acoustic

221

parameters. In addition, flocking algorithms lend
themselves to interaction. This doesn’t come as a surprise
when taking into account the joyfulness, which for instance
young children express when scaring away flocks of real
birds. For this reason, interaction with a flocking based
artwork often seems very intuitive and natural. Examples
of flocking based generative systems include robotic works
such as "ARTsBot” (Ramos et al. 2003), interactive
musicians (Blackwell 2003) or orchestras (Unemi and
Bisig. 2005), and interactive video installations such as
“SwarmArt” (Boyd et al. 2004) and “swarm” (Shiffman
2004). The project MediaFlies is similar to the works of
Blackwell and Shiffman, in that it employs a sample driven
approach to generative art. The system doesn’t create it’s
output entirely de novo but rather by combining human
generated visual input with the generative activity of the
flock. We are convinced that this approach yields a very
interesting potential for generative art, in that it tries to
combine human and machine creativity and thereby
escapes some of the pitfalls of aesthetical inaccessibility
that occasionally haunts generative art.

Concepts

As stated in the introduction, algorithmic and generative art
has been influenced by research in the field of Artificial
Life and Artificial Intelligence since quite some time. One
of the possible roles an artist can assume in this
relationship is to mix and match formerly fairly unrelated
scientific methods in order to explore novels forms of
interactivity and conduct aesthetic experiments. In this
spirit, the MediaFlies project attempts to combine flocking
and synchronization simulations.

It also tries to explore novel ways in which algorithmic
variety and human based aesthetic decisions could be
combined. One of the classical approaches to this issue is
interactive genetic algorithms, in which the user takes over
the part of a fitness function in an evolutionary system.
MediaFlies abandons this somewhat tedious and slow
approach in favor of a system that is dynamic and open to



more flexible forms of interaction. MediaFlies realizes an
automated and interactive copy & paste type of system,
which puts the computer into the role of a video jockey.
MediaFlies recombines fragments of existing video
material into a new artwork, which may or may not be
totally dissimilar from its origins.

In summary, the MediaFlies project tries to realize the
following two conceptual ideas:

* To combine flocking and synchronization algorithms in
order to mimic the behavior of a large aggregate of
individuals whose changing spatial relationship lead to
the formation and breakup of clusters of concerted
activity.

* To create a generative system, which produces a remix
of existing media material that, depending on user
interaction, constantly shifts in between a faithful
reproduction and a total defamiliarization of this
material.

Implementation

The software has been developed in C++ under Mac OS X
10.3 & 10.4. It relies on a variety of libraries (see table 1),
which are available for different operating systems. Porting
MediaFlies to different platforms should therefore be
relatively easy.

Library URL Comment

TrollTech www.trolltech.com GUI

Qt Development

Quicktime | developer.apple.com/ Video Capture
quicktime/ / Playback

OpenGL www.opengl.org 3D Graphics

OpenCV www.intel.com/technology/ | Computer
computing/opencv Vision

Table 1: Software Libraries. A list of all the libraries on which
MediaFlies relies.

The implementation of MediaFlies involves the following
aspects, which will be discussed in the next subsections:
agent system, flocking simulation, synchronization, visual
feedback, and interaction.

Agent system

In MediaFlies, agents populate a 3D world that is
continuous in time and space and which exhibits periodic
boundary conditions. The agents are organized within
agent groups. These groups comprise all agents that share
common properties. The agent groups update the agent
neighborhood relationships by employing a “Loose Octree”
space partitioning scheme (Thatcher, 1999). The behavior
repertoire of an agent is also managed by its encompassing
agent group. This repertoire consists of a list of basic
behaviors, each of which conducts a single activity (such as

222

evasion or velocity alignment) and whose output is a force
vector that is added to the agent’s overall force vector. At
the end of a simulation step, the agent’s theoretical
acceleration is calculated from this summed force. By
comparing the theoretical acceleration with the agent’s
current velocity, linear and angular acceleration
components are derived and subsequently clamped to
maximum values. Finally, the agent’s velocity and position
are updated by employing a simple explicit Euler
integration scheme.

For performance reasons, two agent groups are
implemented in the current system. The relatively few
agents (100 — 400, depending on computer power), which
are part of the so-called master agent group conduct true
flocking. The second group is named slave agent group and
contains a much larger number of agents (500 — 4000).
These slave agents possess a much more limited behavioral
repertoire and rely on the master agents to mimic flocking.
By this method, a larger number of agents can be simulated
than if all agents would conduct proper flocking. The
master agents are usually not visible to the user. It is the
slave agents, which control the simulation’s visual
feedback and engage in synchronization behavior.

Flocking simulation

The flocking algorithm is closely related to the original
Boids algorithm (Reynolds 1987). It consists of the
following three basic behaviors:

* Cohesion: agents move towards the perceived center of
their neighbors

* Evasion: agents move away from very close neighbors

* Alignment: agents adapt magnitude and direction of their
velocity to the average velocity of their neighbors

The master agent group possesses additional behaviors,
which determine how the agents respond to user
interaction. These behaviors are described in the interaction
subsection.

The movement of agents, which belong to the slave
agent group, results from only one basic behavior: master
following. At the beginning of a simulation run, each slave
agent is assigned a particular master agent. Since there are
a larger number of slave agents than there are master
agents, several slave agents share a common master agent.
The agent following behavior guarantees that the slave
agents possess a similar spatial distribution as the master
agents. In order to prevent slave agents from clustering
right on top of their respective master agents, each slave
agent follows the location of it’s master agent at a fixed but
initially randomized offset.



Synchronization

Slave agents synchronize by changing the texture
coordinates and correspondingly the video frame region,
which is displayed at the agent’s position (see figure 1).
The video frames are derived either from live or
prerecorded video. The video source material is
continuously fed into a ring buffer, which forms a 3D
movie space (see figure 1, top left). The content of the ring
buffer is transformed into a set of textures out of which
random texture coordinates are assigned to the slave agents
at the beginning of a simulation. In order to cope with the
fact that agents may be assigned not only different regions
within a texture but also different textures representing
different frames along the time axis of the movie space,
MediaFlies employs texture coordinates with three
components: X, y, and time. The x and y components
represent standard texture coordinates, whereas the time
component indexes a video frame within the ring buffer.

movie space synchronization
ey = T

£ |

=

[T

=

o

£

8

frame width S|

agent space

~ [¥) agents
& -
2 B
} s
width
Figure 1.

Top Left: Movie Space. Captured frames are stored in a ring
buffer according to their temporal order.

Bottom Left: Agent Space. Agents move within a 3d space
possessing periodic boundary conditions.

Right: Synchronizing Texture Fragments. Agents compare the
texture coordinates of their texture fragments with those of their
neighbors and attempt to recreate the original relative spatial
relationships of these texture coordinates.

While the slave agents move within their agent space (see
figure 1, bottom left), they continuously compare the
texture coordinates of their fragments with those of their
neighbors. Synchronization is based on the following
principle. Each agent possesses two sets of distance vectors
that represent the spatial relationship between the agent and
it’s neighbors: agent space vectors and movie space
vectors. Agent space vectors are calculated from the agent's
position within agent space whereas movie space vectors

223

are derived from the agent's texture fragment position in
movie space. By transforming the agent space vectors into
movie space, a set of target vectors is created for the movie
space vectors. Synchronization attempts to match the
movie space vectors and target vectors but shifting the
former towards the latter. The amount of shifting is
determined by a fixed synchronization rate. The effects of
synchronization strongly depend on the flocking behavior
of the master agents. As long as the agent space vectors
change very little (e.g. movement velocity and direction of
neighboring agents are coherent) and the group is fairly
dense, synchronization succeeds eventually in recreating
parts of the original video image. Since synchronization
acts on a local level only, these recognizable regions may
show up at different locations than in the original video and
they may represent multiple copies of a single original
feature (see figures 3 and 4, right). On the other hand, as
soon as the coherence in the flock’s movement diminishes,
the effects of synchronization vanish and a cloud of
unrelated texture fragments starts to form (see figures 3
and 4, left).

Interaction

Users are able to influence the flock’s movement and
thereby affect the amount of synchronization that takes
place. A camera-based system is employed in order to track
the positions and movements of one or several users.
Tracking is mostly based on standard image segmentation
techniques. The running average method (Picardi 2004) is
employed to discriminate foreground and background. In
order to detect movement, a motion history image is
created based on which a motion gradient is calculated.

attraction maotion following

Figure 2

Left: Attraction. Master agents move towards the author’s arm.
Agents are depicted as triangles. The line extending from the
agent’s body into a thombus shape represents the agent’s velocity.
The line, which ends into a triangular shape, represents the forces
acting on the agent.

Right: Motion Following: Master agents follow a vector field
that resulted from the author’s arm movement. Motion vectors are
represented as stylized compass needles whose darker sections
point into the direction of movement.



In order to derive not only motion direction but also motion
magnitude, a custom-processing step has been included,
which extends the motion vectors along regions of constant
brightness in the motion history image. The results of video
tracking lead to the formation of an attraction scalar field
and motion vector field (see figure 2). These 2D fields are
coplanar with the x and y axis of the agent world and their
scalar values and vectors have identical effects along the z-
axis of the agent world. Master agents react to these fields
via corresponding basic behaviors.

The “attraction” behavior allows agents to sense within
their perception range the scalar values that result from
object tracking. High values in this field correspond to the
current foreground and low values to the current
background. Intermediate values result from the
diminishing effect of previous for- and background data.
The force vectors produced by the “attraction” behavior
causes agents to move towards regions of high value as
well as towards the front region of the agent world (see
figure 2, left). The “motion following” behavior creates
force vectors that point into the averaged direction of the
movement vectors that result from motion tracking (see
figure 2, right). Once more, agents can only perceive
movement vectors within their perception range.

The effects of attraction caused by relatively stationary
users lead to an increased flock density and decreased flock
speed at the corresponding position. Consequently, the
effects in synchronization are no longer counteracted by
diverging agent movements and therefore lead to the
formation of dense regions that exhibit high similarity to
the original video material. User movement leads to the
opposing effect of disrupting highly synchronized agent
groups and causes shifts and disturbances in the video
feedback.

Visual feedback

The visual feedback of the MediaFlies software consists of
scattered fragments of imagery that continuously shift their
position and content according to the implemented flocking
and synchronization algorithms. Depending on the flock’s
density and movement, these fragments form a highly
transparent fog like amorphous mist or coalesce into
distinct and opaque clumps of original video content (see
figures 3 and 4). The fragments are associated with slave
agents, who control their position, texture coordinates, size
and opacity. Each fragment is implemented as a billboard
and therefore always faces the viewer regardless of the
agent’s orientation. The number and size of slave agents
has a large impact on the visual discrepancy between
unsynchronized and synchronized agent groups. The visual
appearance of the fragments can be further altered by
changing the image source of their texture masks. These
static masks are combined with video textures via multi-
texturing. High contrast masks cause flickering and
interference like effects when fragments shift across each
other (see figure 4). Low contrast and smooth masks lead
to “painterly” effects (see figure 3).

224

texture mask

original footage

|

unsynchronized flock

synchronized flock

Figure 3: Visual Feedback Based on Life Video Input

original footage

texture mask

unsynchronized flock synchronized flock

Figure 4: Visual Feedback Based on Prerecorded Video
Input.

Results and Discussion

The first implementation of the MediaFlies system has
been presented as an installation during the Tweakfest
festival in Zurich, Switzerland (www.tweakfest.ch), which
took place on November 9 and 10 in 2005. The visual
feedback was projected via a video beamer. The video
input to the system was provided by a miniDV camera,
which pointed to the reception and cafeteria area of the
festival space. The video input was periodically changed to
that of a series of movie files. An iSight webcam pointed to
a highly frequented corridor section and provided the
means of interaction. The software ran on a Dual 2.5 GHz




G5 Apple computer. Due to the fact that the webcam
wasn’t positioned right in front of the projection area but
somewhat offset and rotated, many visitors didn’t realize
that they could actually interact with the installation. On
the other hand, most visitors with whom I talked were
surprised by the way the visuals seemed to reflect the
situation and mood in the space. During bustling moments
shortly before talks, people rushed through the corridor,
thereby creating a fast paced shifting of conglomerates of
seemingly unrelated image fragments. These moments
contrasted with more tranquil situations during breaks in
the festival program, when people sat together in the
cafeteria. The MediaFlies installation responded to this
type of situation by creating slowly moving clusters of
image fragments that clearly depicted visual details of the
cafeteria situation.

The current version of the MediaFlies system suffers
from a few shortcomings, some of which will be further
addressed in the “conclusion and future work™ section. The
computational demands of the system are somewhat
daunting. In order to achieve a high degree of fracturing
and blending of the video input, a large number of slave
agents needs to be simulated. This of course conflicts with
the desire to display very fluid and smooth fragment
motions, which requires a high frame rate. The way
texturing is handled also puts a significant load on the
system. Textures are steadily updated based on new video
input and therefore need to be continuously transferred to
the video card. At the moment, the video tracking system
also needs improvement since it is not very robust and
requires a very long background calibration phase. Finally,
we consider the fact that MediaFlies can only deal with
video but not audio as highly unsatisfactory. The capability
of the system to grasp and reproduce moods in the
environment will be significantly improved by adding
audio capabilities.

Conclusion and Future Work

We would like to start the conclusion section by expressing
a few thoughts on interactive and self-organized
installations in general. Based on our experience with such
installations (Unemi and Bisig, 2005. Unemi and Bisig,
2004, Bisig, 2003) we come to the conclusion that these
installations possess very promising potentials but still
pose significant challenges with regard to appropriate
forms of interactivity. Most visitors are unfamiliar with
installations whose interactivity doesn’t possess a clear and
always reproducible input-output relationship (contrary to
purely reactive installations). Depending on the
presentation situation, visitors are hardly willing to take
their time in order to explore and learn new and more
adequate forms of interaction.

On the other hand, these types of installations are
capable of responding in a much more refined and
surprising way than reactive installations. The diversity of

225

reactions and their capability to sustain particular behaviors
even in the absence of the initial triggering inputs usually
baffles and impresses visitors. We believe that frequented
spaces outside of an exhibition context constitute the most
promising setting for interactive and self-organized
installations. In these settings, the variety of interaction
possibilities can match the diversity of the systems
behavior. Short and sustained forms of interaction can
coexist and interaction can be deliberated or simply
become a byproduct of people’s normal activities. In
addition, visitors are free to choose any attention level they
like, ranging from blissful ignorance to concentrated
observation.

Based on the feedback we received from visitors of the
Tweakfest festival, we believe, that the MediaFlies system
has succeeded in providing interesting and aesthetically
fascinating forms of visual feedback. This positive
feedback was mostly based on two aspects of the system:
it’s capability to continuously display and destroy
recognizable fragments of video material (in particular live
video material), and its way of responding to (mostly
unintentional) forms of interaction. In order to obtain
further feedback, we would like to test MediaFlies in a
somewhat different setup, which is hopefully more
encouraging for direct and intentional forms of interaction.

We believe that the concept and current realization of the
MediaFlies system has sufficient potential to justify further
development. First and foremost, we are currently working
on an audio extension of the system, which will possess
similar functionality as the video processing part. Live or
prerecorded audio material will be cut into fragments both
in the time and frequency domain. These fragments will be
rearranged into a new audio stream. The technique to
achieve these effects will be based on Fast Fourier
Transformation and Granular Synthesis.

A second and more fundamental extension of the system
deals with the relationship between agent behavior and
media material. Currently, the agents are entirely
unaffected by the quality of the media material they
represent. We would like to introduce a feedback
mechanism between the visual and acoustical output of the
system and the agent’s behavior. By allowing agents to
change their behaviors depending on the media fragments,
which they and their neighbors present, novel forms of
algorithmic media recomposition could be explored. One
possible way to achieve this could consist of letting the
media material affect some of the physical or behavioral
properties of the agents. This effect can be based on
structural (e.g. spatial and temporal color distribution) or
semantic properties (e.g. emotional quality) of the media
material. Using such a system, agents may for instance
learn structural and statistical properties present in one type
of input media and try to reconstruct these properties when
presenting a different type of media.



References

Bisig, D. 2003. BioSonics - Interactive Growth System. In
Proceedings of the Generative Art Conference.

Blackwell, T.M. 2003. Swarm music: improvised music
with multi-swarms. Artificial Intelligence and the
Simulation of Behaviour, University of Wales.

Boyd, J.E., Hushlak, G., and Jacob, C.J. 2004, SwarmArt:
interactive art from swarm intelligence. Proceedings of the
12" annual ACM international conference on Multimedia.
628-635. New York, NY, USA.

Picardi, M. 2004. Background subtraction techniques: a
review. University of Technology Sydney Workshop on
Computer Vision & Image Processing.

Ramos, V, Moura, L. and Pereira, H. G. 2003. ARTsBot —
Artistic Swarm Robots Project.
http://alfa.ist.utl.pt/~cvrm/staff/vramos/Artsbot.html

Reynolds, R. W. 1987. Flocks, herds, and schools: A
distributed behavioral model. Computer Graphics,
21(4):25-34.

Shiffman, D. 2004. swarm. Emerging Technologies
Exhibition. Siggraph, Los Angeles, LA, USA.

Sommerer, C., and Mignonneau, L. 2000. Modeling
Complex Systems for Interactive Art. In Applied
Complexity - From Neural Nets to Managed Landscapes,
25-38. Institute for Crop & Food Research, Christchurch,
New Zealand.

Thatcher, U. 1999. Notes on Spatial Partitioning.
http://tulrich.com/geekstuff/partitioning.html

Unemi, T. and Bisig, D. 2004. Playing music by
conducting BOID agents. In Proceedings of the Ninth
International Conference on Artificial Life IX, 546 - 550.
Boston, USA.

Unemi, T. and Bisig, D. 2005. Music by Interaction among
Two Flocking Species and Human. In Proceedings of the
Third International Conference on Generative Systems in
Electronic Arts, 171-179. Melbourne, Australia.

226



