

Incremental Parsing for Real-Time Accompaniment Systems

Giordano Cabral
1
, Jean-Pierre Briot

1
, François Pachet

2

1Laboratoire d’Informatique de Paris 6 – Université Pierre et Marie Curie

8 Rue du Capitaine Scott 75018 Paris – France

2Sony Computer Science Lab Paris

6 Rue Amyot 75005 Paris – France

{Giordano.CABRAL,Jean-Pierre.BRIOT}@lip6.fr, pachet@csl.sony.fr

Abstract

The incremental parsing (IP) algorithm has been
successfully used in real-time applications, due to its
efficiency in modeling musical style. For example, musical
systems using IP are able to continue the musical phrases
played by a musician in a consistent way. This paper
proposes some modifications to the original IP algorithm in
order to allow its use in accompaniment systems.

1. Introduction

Statistical analysis techniques have been applied to musical

material with the aim of modeling musical style. Dubnov

(Dubnov et al. 1998) demonstrated how Markov chains can

be used to learn the dynamic behavior of melodies from a

database of examples. Lartillot (Lartillot et al. 2001) used

these probabilistic models to classify musical styles, while

Pachet (Pachet 2002) used them to create an interactive

system: The Continuator. We are interested in using

similar approaches in a real-time accompaniment system.

Our work is strongly inspired by the Continuator, and

intends to extend its methods to with the domain of

accompaniment. The Continuator is able to continue the

phrases played by a musician, coherently to their style, by

computing in real-time a variable-order Markov model of

the corpus. In order to efficiently compute the model, the

system uses an algorithm called Incremental Parsing (IP)

(Ziv and Lempel 1977), which was initially designed for

the LZ compression method. The Continuator explores

several interactive modes, from the simple question-answer

(in which the system merely responds to the musician’s

input) to the collaborative one (in which the system plays

continuously, restraining the generated sequence to

harmonically acceptable notes). Despite the unquestionable

capacity of the system to emulate the style of the musical

input (see some video excerpts in

http://www.csl.sony.fr/~pachet/continuator) in the question-

answer mode, the system demonstrated to be deficient in

performing accompaniments. In fact, the difficulty relies in

balancing the ability of generating stylistic coherent

musical phrases and adapting it to the musician’s input.

This work proposes some modifications to the IP algorithm

hoping to find a better way of dealing with the problem.

Next section exposes the core problem involved in

developing our accompaniment system, identifying

possible tradeoffs among adaptation, continuity, and

prediction. Section 3 describes the traditional Incremental

Parsing used, for instance, in the Continuator. Section 4

presents the consequent modifications in the original IP.

Finally, Section 5 draws some conclusions and presents our

future works.

2. Musical Accompaniment

The system we are developing must be capable of

accompanying a user who sings a melody via the computer

microphone, without any previous knowledge of the song.

The accompaniment style and the tempo are previously

defined. For the first prototype, Brazilian Bossa-Nova

style, at 90 bpm. These constraints simplify the problem:

the system must only be able to find the best chords for a

melody that is currently being sung. In this context, we can

consider the application as performing real-time

harmonization.

 The core problem involved in the development of

such a system is to establish a tradeoff between continuity

and adaptation, as we can see in Figure 1. On the one hand,

the chords chosen for the accompaniment must keep certain

continuity. It means that the choice of the chords to be used

depends on the previous ones. On the other hand, the

chosen chords must fit the melody being sung.

227

Mel

1
Mel

1

Acc
1

Acc
1

Acc
2

Acc
2

Mel
2

Mel
2

Mel
3

Mel
3

Acc
3

Acc
3

Acc
4

Acc
4

Mel
4

Mel
4

Figure 1 – dependency relation between accompaniment

and leading melody. Chords depend both on previous

chords and on concurrent melody.

Moreover, as we are in a real-time scenario, there is one

extra requirement: the capability of predicting notes, since

the melody that will be sung is unknown. In fact, we

observed 3 strategies employed by accompaniment

musicians, related to different combinations of adaptation,

continuity, and prediction.

1. Prediction/Retrieval – given a sequence of notes

(melody) sung by the singer, the musician imagines

(predicts) a continuation, and tries to find the good

chords to play along with. The adaptation relies on its

ability to combine both melody and harmony, and the

continuity is maintained while the singer follows a

melody sufficiently similar to the predicted one. At

each moment, the musician reviews the coupling

harmony/melody, updating or rebuilding the

predictions since conflicts are found, or the predicted

phrase ends.

2. Retrieval/Continuation – according to the sung melody,

the musician creates an appropriate accompaniment

and subsequently tries to find a continuation for it. The

continuity is naturally respected, but the musician

might constantly review the coupling harmony/melody,

and restart the process in case of conflict.

3. Joint – melody and harmony are seen as a whole. Since

chords are groups of notes, it is reasonable to consider

the ensemble note and chord also as a chord, thus

adaptation, continuity, and prediction are

simultaneously taken into account.

The IP algorithm can be extended in order to operate

according to these 3 behaviors. Next sections explain its

original and the modified versions.

3. Incremental Parsing

This algorithm is originated from the analysis phase of the

Lempel-Ziv (Ziv and Lempel 1977) compression method.

The technique can be applied to music, whether interpreted

as a sequence of notes. The parsing is divided into 2

phases. First, the input sequence is read, generating a

model that captures the redundancy. Second, a compressed

representation of this sequence is encoded. For interactive

systems, the model captures probabilities of transitions

between notes, and a stochastic simulation of that model,

for a given new sequence, substitutes the second part.

Normally, inverted suffix trees, (i.e. which sequences are

read from the leaves to the root) are used, and the indexes

of the continuations are stored in each node.

 Figures 2 and 3 illustrate how the algorithm works

for interactive systems. The IP incrementally reads the

input sequences, where each sequence is divided into an

occurrence and a continuation. Supposing the first

sequence is [C, A, F, E, the possible occurrences and

continuations might be [C, A, F] and [E], [C, A] and [F], or

[C] and [A] (considering we are interested in one-sized

continuations). At each cycle, the shortest pattern that does

not exist yet in the dictionary of sub patterns is chosen and

added to the model, as well as its continuation. The

subsequence [C, A, F] is read, having 4 as the continuation

index, which implies that each node has the continuation

index 4. Subsequently, the [C, A] subsequence is read,

resulting on a continuation index 3. Finally, [C]

subsequence is read, creating the last branch of the suffix

tree (the complete tree at this stage is presented in Figure

2).

Figure 2 – suffix tree generated by the original IP for

the sequence [C, A, F, E].

Later on, a second sequence ([C, C, F, G]) is observed. The

same process is applied. For example, the branch [C, C, F]

is attached to the branch [C, A, F], since they have the

same suffix ([F]). The final tree is shown in Figure 3. This

mechanism allows only new information to be added,

avoiding the storing of redundant data. In order to search a

continuation for a new sequence, one just needs to browse

the tree, looking for the longest suffix. For instance, for the

sequence [E, A, F], the answer is [E] (continuation index

4), related to the subsequence [A, F] (as demonstrated in

gray in Figure 3).

228

Figure 3 – suffix tree generated by IP for the sequences

[C, A, F, E] and [C, C, F, G], and possible query. In

gray, the answer for the query.

4. Modified Incremental Parsing

This section presents the necessary modifications for

allowing the IP to present the behaviors cited in Section 2.

In the first case (Prediction/Retrieval), we propose to

modify the structure of the suffix tree (Figure 4). Instead of

storing possible continuations, it would store the possible

accompaniment chords. In the second case

(Retrieval/Continuation), we propose to create 2 distinct

suffix trees, one for the lead melody, and the other for the

accompaniment (Figure 5). Each leaf in the melody tree

would point to a node in the accompaniment tree. In the

third case (Joint), we propose to mix the states. The

elements in the sequence would neither be a single note

(from the leading melody) nor a chord (from the

accompaniment), but rather a tuple <note, chord>, as

shown in Figure 6.

 We can examine how that would work by making

use of an exampleSupposing that the sequences used in the

previous example ([C, A, F, E] and [C, C, F, G]) are

accompanied respectively by the chords [Am, %, F, E7]

and [Am, F, E7, %], where “%” indicates that the chord

remains the same. After a while, a new sequence [E, A, F]

is observed.

 Case 1 is illustrated in Figure 4. The tree is very

similar to the original IP tree, but the indexes refer to the

chords of the accompaniment, and not to possible

continuations. The longest suffix of [E, A, F] found in the

tree is [A, F], resulting on the index 4. The retrieved chord

is, thus [E7].

Figure 4 – prediction/retrieval behavior.

Figure 5 illustrates the behavior of Case 2. On the top-left

corner, there is the suffix tree related to the

accompaniment. On the bottom-right corner, there is the

suffix tree related to the leading melody. As in the previous

case, the longest suffix of the new sequence [E, A, F] is [A,

F]. However, this suffix returns a subsequence of chords (in

the example, the chords between indexes 2 and 3, i.e. [Am,

F]). The accompaniment suffix tree is then used in order to

search a continuation. In this case, there would be 2

possibilities (to be randomly chosen): 4 or 7.

Figure 5 – retrieval/continuation behavior.

In case 3, each node is a tuple <note, chord>, thus the

chords are also considered in the query. Let’s assume the

system has played the chords [%, C7, F] along with the

melody [E, A, F]. The query becomes [<E, %>, <A, C7>,

<F, F>] (Figure 6). In such a case, the longest suffix found

229

is not of size 2 anymore (as the previous [A, F]), but of size

1 (<F, F>), demonstrating this strategy is less likely to find

solutions.

Figure 6 – behavior of joint solution.

5. Discussion and Future Work

We consider that the 3 suggested IP variations reflect the 3

behaviors mentioned in Section 2. In the first one, the

system predicts a continuation to the leading voice melody,

and then searches an appropriate accompaniment. When

the actually sung melody conflicts with the predicted one,

the system is restarted with a new query. In the second one,

the system searches an appropriate accompaniment for the

current leading melody, and then generates a continuation

for the sequence of chords. When the sung melody

conflicts with the chosen accompaniment, the system is

restarted with a new query. In the last one, the system

considers note and chord as a whole, and searches an

adequate continuation for both simultaneously. A situation

where the query does not get any answer would be

considered as a conflict between leading melody and

accompaniment.

Such algorithms are currently being implemented, and we

intend to run some experiments with musicians, in order to

evaluate the strengths and weaknesses of each one, and to

investigate whether the system really emulates musician’s

abilities. Obviously, it will be difficult to measure the

quality of the system, given its subjectivity. However, we

believe that by computing the time of use of each mode,

recording and analyzing users reactions, and asking for

their feedback, it will be possible to conceive a hybrid

optimized model, combining the strengths of all three

algorithms.

6. Conclusion

In this work, we proposed modifications in the Incremental

Parsing algorithm in order to make it work with concurrent

sequences. Thus, it would be suitable to musical

accompaniment systems. We suggested 3 variations,

emulating 3 different behaviors of musicians:

prediction/retrieval, retrieval/continuation, and joint. We

are currently analyzing possible criteria to evaluate these

algorithms, in order to provide comparative data.

Acknowledgements

We would like to thank the Sony Computer Science Lab in

Paris for their support.

This research is supported by CAPES/COFECUB,

Brazil/France.

References

Lartillot, O., Dubnov, S., Assayag, G., and Bejerano, G.

2001. Automatic Modeling of Musical Style. In

International Computer Music Conference, La Havana.

Dubnov, S., Assayag, G., and El-Yaniv, R. 1998.

“Universal Classification Applied to Musical Sequences”.

In Proceedings of International Computer Music

Conference, pp. 332-340.

Pachet. P. 2002. “The Continuator: Musical Interaction

with Style”. In ICMA, editor, Proceedings of ICMC, pp.

211-218.

Ziv, J., and Lempel, A. 1977. “A Universal Algorithm for

Sequential Data Compression”, IEEE Transactions on

Information Theory, Vol. 23, No. 3, pp. 337-343.

230

