
Constrained Lexical Attraction Models

Radu Ion and Verginica Barbu Mititelu

Romanian Academy Research Institute for Artificial Intelligence
13 Septembrie, 13, Bucharest 5, 050711, Romania

radu@racai.ro, vergi@racai.ro

Abstract

Lexical Attraction Models (LAMs) were first introduced by
Deniz Yuret in (Yuret 1998) to exemplify how an algorithm
can learn word dependencies from raw text. His general
thesis is that lexical attraction is the likelihood of a syntactic
relation. However, the lexical attraction acquisition
algorithm from (Yuret 1998) does not take into account the
morpho-syntactical information provided by a part-of-
speech (POS) tagger and, thus, is unable to impose certain
linguistically motivated restrictions on the creation of the
links. Furthermore, it does not behave well when
encountering unknown words. The present article presents a
new link discovery algorithm using the annotation provided
by a POS-tagger. The results show an F-measure of
approximately 70% when comparing the links produced by
this algorithm with those produced by a fully-fledged
parser.

Introduction
Lexical Attraction Models (LAMs) were first introduced
by Deniz Yuret in (Yuret 1998) to exemplify how an
algorithm can learn word dependencies from raw text. The
‘syntactic structure’ of a sentence is given by a dependency
structure which is an undirected, connected and planar
graph with no cycles. In what follows, we will refer to this
structure using the term ‘linkage’ (not a proper syntactic
structure as defined by (Meľčuk 1988) because the links
are not oriented and they have no names; what has been
retained from Meľčuk’s definition is the planarity
condition which states that two links are not allowed to
intersect except at a word position in a sentence).

Yuret’s general thesis is that lexical attraction is the
likelihood of a syntactic relation. Therefore, the highest
probability assigned by the model to a sentence is to be
obtained by the syntactically correct linkage. He proves the
result by formalizing the dependency structure of a
sentence as a Markov network (or Markov random field;
for a description see (Kindermann and Snell 1950)). A
node of the network is a word of the sentence and the
potential function is the pointwise mutual information (MI)
of a link.

There are other papers that describe linkages. The first to
be mentioned is the link grammar (LG) of (Sleator and
Temperley 1991) which produces a named linkage of a
sentence. LG makes use of POS information and of linkage
restrictions to ensure correct linking. Every word in the
parser’s dictionary has a set of restrictions telling the
parser in which kind of links the word may participate and
where to look for the pair: in the left-hand side context of
the word or in its right-hand side context. For instance the
transitive verb ‘chased’ requires a subject that is usually
located in front of it (restriction S-) and a direct object that
is placed after it (restriction O+). Thus, the dictionary-
based restrictions of ‘chased’ are as follows: S-&O+. The
parser generates the linkage of the sentence by resolving
the restrictions among the words of the sentence.

Another example of sentence linkage is provided by the
grammatical bigrams of (Paskin 2001). His model
introduces a linkage similar to that of Yuret but with a
significant difference: the links are oriented. The
probabilistic model of this oriented linkage assumes that
the dependent along with its position (left/right) relative to
its direct governor is probabilistically dependent only on its
direct governor. Consequently, the posterior probability of
a sentence given a parse for it can be decomposed in the
product of the link probabilities. (Paskin 2001) also gives
an estimation of the model’s ability to induce oriented
linkages. Model’s link precision is 39.7% which is below
the 61% of Yuret’s experiments. Yet, this model also takes
into account the link orientation, which may be an
important differentiating factor.

This article presents an algorithm that produces a
linkage with the same properties as that of (Yuret 1998). It
will be generated using the same basic idea: intermixing
learning with parsing. The novelty of our approach resides
in the use of with two additional devices:

1. linking rules that allow only for certain links,
while rejecting others;

2. use of POS information to increase the score of a
weak link.

Two experiments will be considered: the English setting in
which we will compare the output of our linker with the

297

output of a recognized dependency parser for English
(Tapanainen and Järvinen 1997), and the Romanian setting
for which the gold standard annotation was performed by
the authors, but on a much smaller test file.

Text Preprocessing
The link discovery algorithm proposed by (Yuret 1998)
does not require any preprocessing of the corpus. Yuret
used very large corpora (100 million words) in order to
train his linker and to be sure that pairs gain sufficient
statistical information. The algorithm proposed here does
not beneficiate of very large corpora to train on and
because of that, it requires the text to be lemmatized. In
order to obtain the lemmatization, one needs to also POS-
tag the input text.

We used the TnT POS-tagger developed by (Brants
2000). The Romanian tagger was trained on a 1 million
word corpus comprising the 1984 novel of George Orwell
and a collection of newspaper materials (we will refer to
this corpus by the name ROC). The POS annotation of this
corpus was manually checked to ensure correct trigram
sequences. The tagger’s dictionary was augmented with a
500 thousand Romanian word form lexicon that contains
for every word form its correct POS-tag. The English
tagger was trained on the English translation of ROC (we
call it ENC).

The lemmatization was performed with in-house
developed Romanian and English lemmatizers. They rely
on dictionary lookup for finding lemmas and if the word
form isn’t found there, they use automatically acquired
lemma finding rules to generate a list of candidate lemmas
and then fourgram Markov models (trained on lemmas
from dictionary) to rank the candidates. The best-ranked
candidate wins and becomes the sought lemma for the
word form.

The Link Discovery Algorithm
The algorithm’s general architecture is depicted in Figure 1
(taken from (Yuret 1998)):

Figure 1. The general architecture of the linker

The link unit (or processor in Yuret’s terminology) is
responsible for reading the tokens of the input sentence and
for assigning links to pairs of tokens. The memory stores
frequency information for words and pairs of words.

Yuret’s linker begins reading the tokens of the sentence
from left to right, updates memory with the frequency
information of the pairs that it sees (using different update
procedures) and on the basis of the frequency information
provided by the memory, it constructs links ensuring that
the planarity of the resulted graph is preserved. That is, if
two links cross, the weakest one (as given by the pointwise
mutual information of the pair) is removed.

The two controlling factors of the accuracy of the linker
are the order in which tokens are read and the memory
update procedure (which pairs are to be recorded in
memory). It was pointed out by (Yuret 1998) that a high
percentage of the syntactic relations are between adjacent
words. This statement leads naturally to the idea that the
parse tree should be constructed bottom-up: first find the
most probable links that are between adjacent words then
find the most probable links that are between adjacent
groups of linked words and so on until a full parse tree is
obtained. In what follows we will give a more precise
description of this algorithm along with the memory update
procedure.

Given a sentence S with n words (S is an array of n word
forms), we will understand by s(i), p(i) and l(i) the word
form at position i in the sentence, its POS-tag and its
lemma, respectively. At any given moment, the array G
holds the groups of adjacent words of S that are bound by
complete linkages (g(i) gives the group at index i in G).
The algorithm stops when G has the size equal to 1 (has the
complete linkage of S) or when its size does not decrease
anymore (because all new links are forbidden by the
linking rules; in this case, an incomplete parse tree is
obtained). The algorithm is:
1. G = S;

2. while (sizeof(G) > 1) {

3. Gnew = the empty array;

4. foreach consecutive a,b,c < sizeof(G) {

5. lnkab = best link between g(a),g(b);

6. lnkbc = best link between g(b),g(c);

7. if (lnkab > lnkbc) {

8. add(Gnew, makegroup(g(a), g(b)));

9. }

10. else {

11. add(Gnew, g(a));

12. add(Gnew, makegroup(g(b), g(c)));

13. }

14. }

15. exit loop if (sizeof(G) == sizeof(Gnew));

16. G = Gnew;

17.}

298

The function sizeof() gives the length of an array. At
line 5, lnkab is constructed between g(a) and g(b) with
the constraints that it does not cross any of the links in
g(a) and g(b) and that it is allowed by the rule filter. If
g(a) and g(b) can be linked by more than one link, the
best one (highest MI score) is chosen. The function
makegroup() constructs a new group from its arguments
given the winning link between them. At line 8 above, a
new group is constructed from g(a), g(b) and lnkab and
this group is guaranteed to have the properties of a linkage.
This group consists of a sequence of adjacent words from S
that are completely linked. The comparison at line 7 is
based on the MI score of the links. At line 15 if the newly
constructed array of groups Gnew is the same as the old
one G, the algorithm stops. Finally, at line 8 it should be
pointed out that the next three consecutive indices read
begin with the old c.

The memory updating happens at lines 5 and 6. The
memory is updated with every possible link {s(i), s(j)} that
can connect two groups (the link does not violate the
planarity restriction and it is not rejected by the rule filter).
What is actually recorded is frequency information for
{l(i), l(j)}, {p(i), p(j)}, l(i), l(j), p(i), p(j) and the score of
the link is computed as the sum

MI({l(i), l(j)}) + MI({p(i), p(j)})

This way, if {l(i), l(j)} has not been seen, {p(i), p(j)} has
certainly been seen and the link will not have a 0 score.
This is the way our algorithm generalizes and copes with
unknown words.

We called this class of LAMs constrained LAMs
because of the rule filter module that reduces significantly
the number of pairs recorded by the memory and increases
the likeliness that they can form syntactically correct links.
The rule filter is a module that reads a rule file and accepts
links if they pass all of rejection clauses, if an allow
clause is encountered or if that link is stipulated. A rule
may be of the following types:

deny from:POS to:POS [if condition]
enforce from:POS to:POS [if condition]
allow from:POS to:POS [if condition]
link from:POS to:POS [if condition]

The condition is optional and if it holds true the rule is
applied. If not, no decision is made except for enforce
which denies a link if its left side matches but its right side
does not. The default policy is to accept the link (that is if
no rule applied). For instance we may have the following
rule that enforces agreement between a determiner and its
noun:

deny from:det.sg to:noun.pl

which says that a link from a singular determiner cannot
end in a plural noun. That is, “this cats” is not
grammatically correct.

Let us exemplify the algorithm by running it step by step
on the following noun phrase: the/the/det big/big/adje
brown/brown/adje cat/cat/noun with the format
wordform/lemma/POS-tag. Also, let’s assume that the
correct links have the best MI score when read from
memory and that we have the following rules:

deny from:adje to:adje

deny from:det to:adje

At the beginning there is no link and the G array contains
four groups:

[the/det] [big/adje] [brown/adje] [cat/noun]

The algorithm tries to link the groups the/det, big/adje and
big/adje, brown/adje. Since the links det-adje and adje-
adje are forbidden by deny clauses, the algorithm shifts
and tries to link big/adje, brown/adje and brown/adje,
cat/noun. It will link the latter group since the former is
forbidden. It also updates the memory with the pair
brown/adje, cat/noun. We now have the following G array
consisting of three groups:

[the/det] [big/adje] [brown/adje cat/noun]

The only link that is allowed here is big/adje, cat/noun and
the memory is again updated. The G array becomes:

[the/det] [big/adje brown/adje cat/noun]

Finally, the link the/det, cat/noun is added as the only one
possible, the memory is updated with the new pair and the
algorithm finishes with the final parse for the input phrase:

Figure 2. The final parse tree for the input phrase

It is obvious that with a comprehensive collection of rules,
the linker has greater chances to detect the correct links
(only). In the following section we will give an analysis of
the linker performance for Romanian with suggestions
aimed at rule improving and addition.

Output Analysis for Rule Improving
Analyzing the results of the linker we found that mistakes
do occur, so there is a need for rule inspection and
evaluation. We considered that it would be useful to
identify the mistakes and create further rules whose

299

restrictions will improve the results of a parser in a further
version.

In this section we exemplify some of the errors
identified, when possible we give an explanation for their
occurrence, and we also suggest some rules aiming at
making the linker perform better. Such rules are created
through linguistic introspection of native speakers with
appropriate training (linguists).

Consider the following example illustrated in Figure 3:

Figure 3. Oblique nouns with adjective as heads

This entire string is separated by commas from the rest of
the sentence (E mură-n gură, cu toate aspectele comune
unui plan prost, dar care ia în calcul practici familiare
doar în poveştile cu spioni ale românilor.). This remark is
worth being done, as it explains why dependency relations
are to be searched for only within the limits of this string.
The noun phrase unui plan prost has an oblique case
(either genitive or dative), visible only in the form of the
indefinite article (TSO). The linker analyzes this (see the
dotted line) as being dependent on the definite N aspectele
(thus the NP being in the genitive case). However, such a
relation is not possible: Romanian genitive is licensed by a
definite noun only when it immediately follows it (pălăria
fetei “the girl’s hat”). If there is any intervening word
between the definite noun and the N in genitive, then a
possessive article (TP) is necessary to license the genitive
(pălăria neagră a fetei “the girl’s black hat”, where a is a
possessive article). As such an article is not present in the
structure, we can assume that the only possible governor of
the noun phrase unui plan prost is the adjective comune (it
is common knowledge that adjectives may have predicates,
so they may take arguments). So, the implementation of a
rule postulating that in case a structure as the following

N1+ A1+ TS+N2 (+A2)
is encountered (where parentheses are indicators of the
optionality of the element they contain), then link the latter
noun phrase (i.e. T+N2 (+A2)) to A1, instead of to N1. In
case the structure is

N1+ A1+ TP+N2 (+A2)

then link the latter noun phrase (i.e. T+N2 (+A2)) to N1.

Figure 4. Oblique nouns with nouns as heads

Another example that involves attachment of oblique
noun phrases is presented in Figure 4. A TP cannot be
attached to a previous noun in the sentence. TPs are
licensers of oblique nouns (more precisely of genitives), so
they are heads of the nouns immediately following them,
although the occurrence of some modifying adjectives
between the TP and the noun is also possible, although
more rarely and characteristic of stylistically marked
discourse1. However, this example is also suggestive of the
fact that attachment of TP phrases (as one can call them)
has to consider some morphological aspects as well: the TP
agrees in gender and number with the noun it refers to. Ale
is a feminine plural form, spioni is a masculine plural form,
and poveştile is a feminine plural form. So, the phrase ale
românilor should be attached to poveştile, not to spioni.
Gender information is, unfortunately, not present in the
tagset we are working with. So, a correct attachment of
such genitive phrases headed by a TP needs a tagset in
which such grammatical information (i.e. gender) is
present.

Regarding the attachment of adjectives let us consider
the example below (taken from the larger context
Aruncând inepţia spre Cotroceni, dar cu zgomot, prin
piaţa publică, Ion_Iliescu riscă să obţină exact contrariul):

Figure 5. Linking adjectives

In such cases, the adjective depends on the N it follows,
not on the N coming after it, especially that there is a
comma between the A and the N following it. This
problem is linked with the tagset problem. If the linker
could know the nouns’ gender, then agreement (gender,
number, case) may be helpful in establishing the right head
of adjectives. However, our claim is that considering
punctuation is also important. The commentary of example
in Figure 3 is also relevant in this respect. So, a further
study on the way punctuation is helpful for improving the
linker’s results is, in our opinion, worth being made.

Adjectives may also raise the following situation (the
larger context is the following: Vadim a afirmat vineri că
România ar fi instruit nişte terorişti palestinieni şi l-a
sfătuit pe preşedintele Ion_Iliescu să facă mai puţină
agitaţie cu presupusa luptă împotriva terorismului.):

1 The unmarked word order in Romanian is noun followed by
adjective. Only in some exceptional cases the unmarked order
prefers the adjective before the noun. These cases can be dealt
with via a lexical rule.

300

Figure 6. Definite adjectives

A definite adjective cannot attach to a noun preceding it.
When the noun and the adjective appear in unmarked word
order (see footnote 1), then the noun is the carrier of the
definite article (in case it exists). However, in marked word
order (i.e. the adjective precedes the noun it modifies) the
adjective bears the definiteness marker (in case it exists).
With that in mind, a correct linkage would be from the
adjective presupusa (with -a the definiteness marker) to the
noun luptă. In this case, we can also observe that after
making the wrong link between agitaţie and presupusa, the
linker is then forced to link (again, wrongly) the
preposition cu with the adjective in order to satisfy the
planarity constraint.

Another problem concerns the Romanian
demonstratives. Consider the example in Figure 7 (the
larger context is: Nu e şi acesta un fel de terorism la
adresa structurilor statului de drept…):

Figure 7. Demonstratives’ attachment

Romanian has two sets of demonstratives (i.e. they have
different forms): one set appears before nouns and the
other after the noun. The former set of forms function only
as (prenominal) determiners, while the latter may function
as either (postnominal) determiners or as pronouns. Once
this information available in the resources of a linker, the
form acesta from Figure 7 would not be linked to the
following noun, terorism, as it belongs to the second set of
Romanian demonstratives.

Attachment of the negative marker nu also seems to
raise problems. The literature devoted to the study of
negation distinguishes between sentential negation and
constituent negation2. Studies on sentential negation in
Romanian have shown that the negative marker has a fixed
position within the verbal complex (see Barbu 2004).
According to these studies, the negative marker never
follows the verb it negates. So, if a string as the following:

să/QS se/PXA poarte/V3 nu/QZ neapărat/R în/S
buna/ASRY tradiţie/NSRN a/TS mândriei/NSOY

2 Classification of negation can be done from many perspectives,
thus distinguishing between different types of negation. For the
purpose of our study we are only interested in the distinction
between constituent versus sentential negation (in respect to
Romanian, see (Barbu Mititelu and Maftei Ciolăneanu 2004)).

the negative marker (having the tag QZ here) should not be
linked to the verb poarte, but should be interpreted as
expressing constituent negation and, thus, be linked with
the phrase immediately following it.

A problem for all parsers, and for our linker as well, is
the attachment of prepositional phrases (PP attachment).
We consider that, besides some structures that can be dealt
with at a structural level, most of the times the PP
attachment has to consider semantic aspects of the sentence
to be processed. That is why, the size of the training corpus
should be very large to ensure that verbs or nouns can be
associated with the relevant dependents in a statistically
relevant way. Also, we may aim at solving those situations
in which PP attachment follows straightforwardly from
structural bases using specially handcrafted rules.

Experimental Results and Evaluation
We have trained the linker on the previously mentioned
Romanian and English corpora: ROC and ENC. The sizes
of the training corpora are very small compared with the
experiments presented in (Yuret 1998) and (Paskin 2001).
The set of rules was not improved by the observations in
the previous section. Comparison of the English output
was made against the 1984 novel of George Orwell parsed
with the non-projective FDG parser of (Tapanainen and
Järvinen 1997) where the link names and their orientation
were stripped off. On the Romanian side, the authors
manually annotated a set of 20 sentences with linkages and
the comparison was made against this gold standard
annotation. Of course, further evaluation on a larger corpus
is necessary both for English and Romanian with a special
emphasis on Romanian.

The next table gives the results of the evaluation using
the F-measure score. Every correct link found by the linker
adds to its precision and recall.

Romanian
P R F-m

MI 76.94% 72.26% 74.53%
DICE 76.94% 74.70% 75.80%

Table 1. Romanian results against 20 annotated sentences

English

P R F-m
MI 68.61% 71.23% 69.89%
DICE 68.25% 72.00% 70.07%

Table 2. English results against automatically parsed
George Orwell’s 1984

We have used both the pointwise mutual information (MI)
association score and the DICE coefficient. The coverage
is better in the case of the DICE coefficient perhaps

301

because the objection on pointwise MI given in (Manning
and Schütze 1999). We think that the coverage for English
is encouraging given the size of the training corpus. We
look forward to training the linker on corpora of at least 20
million words and check the coverage on the parsed text.

Conclusions and Further Work
We have presented in this paper an algorithm that aims at
discovering syntactic links between words in two pre-
processed (i.e. lemmatized and POS-tagged) corpora. In
our experiment we made use of the Lexical Attraction
Models introduced by (Yuret 1998), but we developed
morpho-syntactic constrains for obtaining better results.
The assumption behind the use of such constrains is that
words have preferences regarding the combinations they
enter. For instance, prepositions do not combine with
adjectives, but with nouns. So, if a string containing a
preposition followed by an adjective and then by a noun is
encountered, then the first established link will be between
the adjective and the noun and only afterwards the
preposition can be linked with the noun phrase created in
the previous step.

The partial results presented here are obtained by
working with small corpora. We are aware that testing our
algorithm on larger corpora is essential and that is the next
stage in our experiment. Using larger texts can be helpful
for solving problems commonly encountered by parsers,
such as PP attachment.

Among other uses of it3, the linker developed here will
help us in an experiment (see Barbu Mititelu and Ion 2005)
of automatically transferring syntactic relations from
English into Romanian using as input data a parallel corpus
aligned at the word level4 and whose English part is parsed
using the FDG parser presented in (Tapanainen and
Järvinen 1997). The aim is the bootstrapping of a
dependency grammar for a Romanian parser. Sometimes
there is a 1:2 correspondence between words in the two
languages. If one is able to identify the way words link
with each other in the two languages, then it makes the
transfer procedure easier provided that the aligned
Romanian words are already linked. The linkage acts as a
support tree which will be oriented and named properly by
the English parse tree.

3 Such as word alignment if appropriate rule files are written for
other languages.
4 Development of a parser grammar is a time- and money-
consuming task. Nowadays, when there are languages (such as
English) for which there have been created a lot of good
resources and when parallel corpora also exist, it may seem a
good alternative to transfer knowledge from the resource-rich
language into the resource-poor one via a parallel corpus aligned
at word level.

Acknowledgements
The authors would like to thank the anonymous reviewers
of this paper for their useful comments that were taken into
consideration for the final form of the paper.

References
Barbu, A.-M. 2004. The negation NU: Lexical or affixal item? In
E. Ionescu ed. Understanding Romanian negation: syntactic and
semantic approaches in a declarative perspective, Bucureşti,
Editura Universităţii din Bucureşti.

Barbu Mititelu, V. and Maftei Ciolăneanu, R. 2004. The Main
Aspects of the Grammar of Negation in Romanian. In E. Ionescu
ed. Understanding Romanian negation: syntactic and semantic
approaches in a declarative perspective, Bucureşti, Editura
Universităţii din Bucureşti.

Barbu Mititelu, V. and Ion, R. 2005. Automatic Import of Verbal
Syntactic Relations Using Parallel Corpora. In Proceedings of
Recent Advances in Natural Language Processing, Borovets,
Bulgaria.

Brants, T. 2000. TnT a statistical part-of-speech tagger. In
Proceedings of the 6th Applied NLP Conference, Seattle, WA.

Kindermann, R. and Snell, J. L. 1950. Markov Random Fields
and their Applications. American Mathematical Society,
Providence Rhode Island.

Manning, C. D. and Schütze, H. 1999. Foundations of Statistical
Natural Language Processing. The MIT Press, Cambridge, MA.

Meľčuk, I. 1988. Dependency Syntax: Theory and Practice, New
York , SUNY Press.

Paskin, M. A. 2001. Grammatical Bigrams. In T. Dietterich, S.
Becker, and Z. Gharahmani eds. Advances in Neural Information
Processing Systems 14 (NIPS-01). Cambridge, MA: MIT Press.

Sleator, D. and Temperley, D. 1991. Parsing English with a Link
Grammar, Technical report CMUCS-91-196, Department of
Computer Science, Carnegie Mellon University.

Tapanainen, P. and Järvinen, T. 1997. A non-projective
dependency parser. In Proceedings of the 5th Conference on
Applied Natural Language Processing (ANLP'97), ACL,
Washington, D.C.

Yuret, D. 1998. Discovery of linguistic relations using lexical
attraction. Ph.D. diss., Department of Computer Science and
Electrical Engineering, MIT.

302

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

