
Robot Navigation Using Integrated Retrieval of Behaviors and Routes

Susan Eileen Foxand Peter Anderson-Sprecher
Macalester College
1600 Grand Avenue

Saint Paul, MN 55105
fox@macalester.edu and pandersonspr@macalester.edu

Abstract

RUPART1 is a hybrid robot control system for navigating a
real-world, academic building. Hybrid robot control systems
provide robust low-level navigation together with strategic
planning abilities. While a hybrid system may produce better
overall performance, it is often a complex system that must
balance reactive with deliberative tasks, and where learning
and adaptation are more difficult to achieve. RUPART ad-
dresses the issues of complexity, balance, and learning by us-
ing a single case-based-reasoning (CBR) system to store and
retrieve cases for both its reactive and deliberative systems.
At this stage, the CBR system contains behavior cases, which
determine the reactive actions of the robot, and route cases,
which determine strategic plans for navigating to a goal lo-
cation. RUPART will be extended in the future to use CBR
to manage multiple goals and higher-level strategic decision-
making. This first-stage RUPART system retrieves and ap-
plies cases that are suitable to its needs: behavior cases to
control its reactive behaviors, route cases when planning to
reach a new goal. The resulting system can learn new route
and behaviors, without the complexity of multiple reasoning
and learning algorithms usually entailed by a hybrid control
system.

Introduction
Autonomous robots operating in the real world face mul-
tiple challenges at the same time. At one level, the robot
must move around in a world that changes rapidly, dealing
with inaccurate sensor data. At the same time, most robot
applications require strategic planning as well: determining
where to move and planning how to get there, and managing
multiple, possibly conflicting goals. Hybrid robot control
systems use separate modules to manage the robot’s reac-
tive tasks and to manage its strategic planning. Each module
may use a completely different AI technique.

Hybrid systems are complex, both in design and in opera-
tion. System designers must decide what tasks each module
will undertake, how the modules interact with each other,
and how to balance the needs each module has for comput-
ing time, sensor resources, and control of the robot. Such
decisions are often made ad hoc, and are typically fixed and

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1Robot Uniting Plan-Ahead and Reactive Tasks

unchangeable. Incorporating learning into a hybrid system
may require separate learning algorithms for each module.
The RUPART project suggests that we can simplify the de-
sign of a hybrid system by using a single reasoning and
learning system to serve both reactive and deliberative tasks.
RUPART can adjust between its tasks dynamically, as its
goals and the world around it change.

RUPART is a hybrid robot control system for a straight-
forward task: a delivery robot navigating an academic build-
ing, the Olin-Rice Hall of Science. This environment is
somewhat complex, as it contains offices, labs, classrooms,
and open spaces, as well as hallways of varying dimen-
sions. It is also a highly dynamic domain, used through-
out the day by a variety of people. Human obstacles are
common, as are carts and boxes blocking hallways. RU-
PART’s delivery task requires both good reactive behavior,
and good strategic planning. Currently in its first phase,
the system receives one goal at a time; it plans a route to
reach the goal, and executes the plan. Ultimately, RUPART
will be extended to manage multiple goals, enriching its task
and behavior. This extension does not significantly change
the system’s architecture, which is largely complete at this
point. Work on RUPART appeared in the past (Fox 2001;
2000); the project was set aside for several years and
restarted from scratch with the work appearing here

RUPART addresses the issue of hybrid system complex-
ity by using a single case-based reasoning system to index,
store, retrieve, and learn both behavior and route cases. The
retrieved cases feed into separate behavior-cased control and
route-planning systems. However, the kind of case retrieved
determines whether new behaviors or new strategic route-
planning is needed. A single case learning mechanism al-
lows both reactive and deliberative modules to adapt to the
environment they experience.

We first provide some background into robot control
methods, particular those using CBR. Next we describe the
integrated architecture and its underlying CBR system, and
report some systematic tests of the current phase. From
these tests we conclude that RUPART’s architecture does
support adaptive and responsive robot navigation. Exten-
sions to RUPART planned in the second phase are outlined.

346



Background

Reactive robot control and deliberative planning were once
approaches at odds with one another. Increasingly, they
are used in combination with one another to produce sys-
tems that can both respond to the world quickly and respond
strategically. Deliberative systems typically involve exten-
sive AI reasoning, complex internal models, and a high level
of abstraction. Reactive systems, on the other hand, focus
on quick decision-making and the emergence of intelligent
moment-to-moment behavior from collections of simple be-
haviors. In many ways deliberative and reactive systems
have complementary strengths and weaknesses. Hybrid sys-
tems combine separate modules for deliberative and reactive
tasks, intending to exhibit the best of both approaches. Such
systems have been applied to a variety of complex robotics
tasks, including office navigation and RoboCup (Simmons
et al. 1997; Ferrein, Fritz, & Lakemeyer 2005).

Hybrid robot control raises some new issues. Such sys-
tems are often more complex than a single-approach archi-
tecture, as they typically use different mechanisms for low-
level decision-making versus high-level decision-making.
Determining the right balance between reacting and deliber-
ating is often solved on a case-by-case basis. To incorporate
learning in a hybrid system may require separate learning
techniques for each module. The RUPART project will sim-
plify a hybrid system’s architecture by using a single under-
lying mechanism: case-based reasoning. RUPART’s case
memory contains both reactive cases and deliberative cases,
accessed using the same indices and retrieval. RUPART uses
case-based learning for both reactive and deliberative com-
ponents, and automatically finds a balance between reacting
and deliberating.

Case-based reasoning is an interesting approach for uni-
fying the levels of a hybrid robot system, because it has
been successfully applied to both deliberative and reactive
tasks. High-level planning has been a common applica-
tion domain for CBR systems for a long time. Route plan-
ning, specifically, can be done well using CBR (Fox 1995;
McGinty & Smyth 2001; Goelet al. 1991; Haigh &
Veloso 1995). Reactive robot control systems have also
be implemented using CBR to store and reuse behaviors
and the scenarios in which they apply (Ramet al. 1992;
Ram & Santamaria 1997; Chagas & Hallam 1998).

Supic and Ribaric (2001) suggest a hybrid system called
SCBR for autonomous navigation. SCBR uses CBR at both
deliberative and reactive levels. In SCBR, route cases con-
tain a sequence of “situations,” which may be viewed as lo-
cations along with how to behave in those locations. Thus,
behavior is intrinsically tied to specific locations. By con-
trast, in RUPART, behavior selection and route selection are
essentially independent of one another. Also, Supic and Rib-
aric also propose two separate CBR systems with separate
case memories and indexing/retrieval methods. RUPART
uses a single CBR system with a single indexing and re-
trieval method for all cases.

Figure 1: RUPART’s control system: RUPART runs in reac-
tive mode until a retrieval is triggered. It then retrieves and
applies a case, having effects that depend on the case type.
New cases may be generated and stored, enabling learning.

The RUPART System
Through RUPART we explore case-based-reasoning as a
mechanism for integrating and balancing reactive control
with more deliberative control. RUPART controls a robot
navigating the halls of the Olin-Rice science building at
Macalester College. Navigation in an office or classroom
setting is well-understood in the robotics community: RU-
PART investigates alternative methods of controlling a robot
in such an environment, and methods for incorporating
learning into such a robot. RUPART’s environment is one
with many challenges to a robot: it is dynamic, with many
mobile and stationary obstacles to manage, it is essentially
unmodified to suit the robot’s needs. Currently RUPART’s
localization method requires the placement of occasional
landmarks: in future phases we intend to phase these land-
marks out, using case-based localization in its place.

The current phase of RUPART’s development focuses on
strategic route-planning and reliable navigation to a chosen
point. Future phases will include goal management and rea-
soning about priorities.

RUPART Architecture

The RUPART system has two main levels, a basic operat-
ing level and a case-based retrieval level (illustrated in Fig-
ure 1). At its lowest level, it continually executes a reactive
update cycle that receives sensor data and selects actions in
response. Each update cycle takes a fraction of a second.
The action chosen is governed by the currently active set of
behaviors, and the route plan steps that guide those behav-
iors toward a goal.

During each update cycle, RUPART considers whether or
not to retrieve new “guidance” from its case memory. A vari-
ety of high level and low level factors go into that decision,
all reflect a sense of the world changing. Triggers include

347



unexpected landmarks, achieving a goal location, or merely
the passage of time.

The retrieval cycle forms RUPART’s second level. Dur-
ing the retrieval cycle, an index is created that captures the
robot’s current state and its current view of its world. The
index contains both low level and high level aspects of the
robot’s state: current sonar values, the average of the past
five sonar readings, the current forward and turn velocities,
the robot’s estimated location, its current short-term goal,
and its current long-term goal.

The case-based retriever finds the most similar case in the
case memory: similarity is a weighted sum of distance mea-
sures for each index feature. Distances between locations
are calculated by a straight-line metric. Some features may
be missing from an index: in particular, if there is no current
route plan in place, then there will be no short-term goal,
either.

The initial case memory we have tested contains twenty
different route plans, and nine different behavior cases; a
very small set. Ultimately, the case memory may con-
tain other kinds of cases, includingmeta-plansthat di-
rect RUPART to create new routes or new behaviors from
scratch. Upon retrieving a behavior case, RUPART updates
the behavior-based control system without disturbing the
current route or goals. A retrieved route plan is adapted to
fit the current situation, and then replaces the old route, and
the robot’s short and long-term goals.

Implementation Details
RUPART runs on a Pioneer 2 DX robot that has a PTZ
camera as well as front and rear sonar sensors. All com-
putation takes place through an on-board Linux computer.
Robot control is implemented using the Python Robotics
(Pyro) system (Blanket al. 2003). Pyro provides a interface
for control programs written in Python, as well as a num-
ber of useful libraries, including a behavior-based control
module that RUPART uses. RUPART uses Pyro’s behavior-
based control architecture, while providing the behaviors
through its CBR system. Pyro, in turn, controls the robot
through ARIA (ActivMedia Robotics Interface for Appli-
cations), ActivMedia’s native library for the Pioneer robots
(ActivMedia Robotics 2005). ACTS, also provided by Ac-
tivMedia, is a color-tracking system used by RUPART for
its landmark-based localization system.

Originally, we intended to use a Monte Carlo localiza-
tion module, SONARNL, provided by ActivMedia to work
with sonar-based sensor data. In early tests it proved highly
successful for the robot’s environment. However, we were
unable to integrate SONARNL with the Pyro system, and
developed a simplistic, vision-based localization algorithm
instead. Current work is underway on a Monte Carlo local-
ization module of our own.

Behavior-based control in RUPART
The Pyro behavior-based system used by RUPART allows
two levels of specification: behaviors and states. A behavior
is simply a piece of code for some specific purpose. Multiple
behaviors may be combined together in a state, and may be
weighted according to their priorities. If a state is currently

Figure 2: RUPART’s behavior-based control system, con-
sisting of states and associated behaviors.

active, then its behaviors each produce a recommended ac-
tion by the robot. These actions are combined together us-
ing fuzzy logic. At the higher level, states may be connected
like a finite-state machine, so that the robot can shift from
one state to another based on some environmental triggers.
Active states control the robot; multiple states may be active
at one time.

RUPART uses multiple states, and states with multiple
behaviors. Figure 2 illustrates RUPART’s behavior-based
system. TheTrack state and its behavior move the camera
to look for markers. This state is always active and oper-
ates in parallel with the motion control states. The primary
motion-control state isWander, which combines together
three different behaviors. Currently, behavior cases specify
the parameters of theWander state: different velocities and
weights for its behaviors. The other states manage unusual
circumstances that occur for only brief periods of time: hav-
ing no goal, having a brand-new goal, bumping some object
in the world, or localizing when a marker is detected.

The Wander state blends three behaviors:Avoid, Es-
cape, andToGoal. Avoid controls primary translation, as
well as basic obstacle avoidance. It moves forward and
straight when obstacles are absent, slows and turns when
they are present.Escape turns toward perceived gaps in
sonar; useful for entering doorways and other narrow spaces,
as well as escaping local minima generated by cluttered ar-
eas.ToGoal rotates robot to face the current short-term goal.
The strength of the rotation is inversely proportional to the
robot’s estimated distance from the goal.

A single state was chosen for basic behavior because it
allows flexibility in the behaviors activated by the CBR sys-
tem, while keeping the initial behavior cases very simple. In
the next phase, we will begin experimenting to broaden the
range of behavior cases, intending to reduce the non-CBR
portions of the system. We have begun work on case-based
learning of behavior cases.

Localization
RUPART uses a simple, landmark-based localization
scheme, integrated with the behavior-based system. Land-

348



marks are brightly colored pieces of paper posted on walls.
The exact position of each landmark is known to the system,
and each is placed near a known location the robot uses for
navigation.

Except when localization it triggered, the robot updates
its estimated location using dead reckoning. Localization
occurs whenever theTrack state of the behavior-based sys-
tem detects a nearby marker. At that time, theLoc1 and
Loc2 states take over to localize the robot, putting all other
actions, including goal-seeking, on hold.

During localization, the robot first moves close to the
marker, in order to get close enough to the wall for accu-
rate sonar readings. It then turns itself perpendicular to the
marker’s wall, while keeping its camera fixed on the detected
marker. The robot’s location is then calculated based on the
sonar-measured distance to the wall, and the angle of the
camera toward the marker.

Markers are not placed at every known location the robot
has. Instead, markers are placed near intersections of hall-
ways, where hallways empty into open spaces, and halfway
along the longer hallways the robot may traverse. The robot
determines from its estimated location which marker is clos-
est, and localizes based on that assumption.

If all goes well, the robot localizes only when a short-
term goal location is reached. If an unexpected marker is
detected, RUPART guesses that the marker is the next one it
expects to see, and erases its current route plan. This triggers
a case retrieval, which typically generates a new route plan,
starting at its newly localized position.

RUPART’s localization is its weakest point: too few land-
marks and RUPART gets lots between them; too many land-
marks and its progress is slowed and it risks misidentifying a
landmark. Improvements to localization are ongoing at the
present time, incorporating Monte Carlo localization with
the landmark-based system currently in place.

Deliberative planning in RUPART
The behavior-based control system provides robust short-
term action by the robot, including seeking a particular lo-
cation in the world, so long as it is within “view” (i.e., not
separated from the robot by a wall). The goal of the delib-
erative planner, then, is to set out a sequence of locations
that lead the behavior-based system toward the planner’s ul-
timate goal location. An appropriate analogy is setting out a
series of dog treats in order to entice a dog where you want
it to go. As the robot reaches each short-term goal, the next
goal in the sequence is automatically put into place.

A route is just a series of locations, where adjacent loca-
tions lie within sight of each other. We have fixed certain
“meaningful” locations in the world and have created an ad-
jacency graph to represent these locations. Figure 3 shows
RUPART’s map of the world, including the set of known
locations and the adjacency graph that uses them. The lo-
cations chosen for this graph are those that the robot might
reasonably expect to receive as goal locations: outside and
inside of important rooms, and key positions in hallways and
open spaces.

Locations in RUPART are described using either the name
of a known location (e.g.,AtriumSW , HomeLab, etc.) or

Figure 3: RUPART’s map of its world, including known,
named locations (squares) and the adjacency graph over
them. Localization markers are shown as dots.

an x-y coordinate pair. The origin of the coordinate sys-
tem is at the southeast corner of the building and, due to the
building’s shape, is actually outside the building itself. Lo-
cations are in meters from the origin; the x dimension runs
north-south and the y dimension runs east-west.

Routes combine both kinds of location descriptions to
form a sequence of locations on the map. Initially, the case
memory is seeded with routes that contain only known loca-
tions, but as the system learns new routes coordinate loca-
tions become integrated.

Route planning takes place whenever the case-based sys-
tem is triggered and a route case is retrieved. This occurs
when the robot has a new goal to reach, when it finds itself at
an unexpected location, or if it fails to reach a required short-
term goal location. Route cases are indexed by the robot’s
state, just as behavior cases are. Adaptation is based on the
difference between current start and goal, and retrieved start
and goal.

Adaptation of a route takes place at the front and/or the
end of the route. Since adaptation at the end of a route is
entirely symmetric to adaptation at the front, we will only
discuss front-end adaptation. Figure 4 illustrates the adap-
tation process at both ends. If the current starting location
does not match the retrieved starting location, then a sup-
porting graph-based path planner is used to generate a path
from the current start to the retrieved start. This route will
contain only known locations, except its endpoints, which
are the current and retrieved starting locations.

349



Figure 4: An example of route adaptation: new routes are
generated from current start to retrieved start and from re-
trieved goal to current goal. Then overlaps between retrieved
steps and new steps are eliminated.

The new route is then integrated with the front of the re-
trieved route. A simplistic integration would simply append
the steps from the new route to the front of the retrieved
route. This, however, can quickly lead to very poor routes.
If the start and retrieved locations are close to each other, as
they should be, then there is a very good chance that the new
route overlaps with the retrieved route in some way (see Fig-
ure 4 for an example). RUPART’s integration process finds
the point at which the two routes begin to overlap, and ap-
pends the first part of the new route to the remainder of the
retrieved route. The same process is repeated symmetrically
to adapt the end of the route.

The underlying path planner uses an “informed” variation
on Dijkstra’s algorithm to generate a path through the graph
of known locations. If the start or end locations provided to
it are coordinate locations, then it first determines the closest
known locations, and then plans from those points instead.

Determining the closest known location to a coordinate
is not done using a straight-line distance metric. The plan-
ner has a map that consists of the graph of known locations,
and their associated coordinates in the “real” map. It does
not have information about walls or other obstacles in the
world. Going by straight-line distance, it might select a clos-
est known location that lay on the far side of a wall. This
problem was avoided by associating “regions of influence”
with those known locations that were within a room or sur-
rounded by other sorts of obstacles. Any coordinate point
within a region of influence is automatically assumed to be
closer to the region’s known location than to any other loca-
tion in the graph.

The deliberative planner learns new routes by storing the
results of its adaptation. We analyzed the effect of this learn-
ing and report the results below.

Results

RUPART, in its current form, is able to navigate reliably
from a starting point to locations halfway across the length
of its domain. Given goals that are further away, limitations
of current localization often cause the robot to lose its way.
More importantly than its surface behavior, the underlying
integrated hybrid architecture performs at a high level, even
given the tiny initial case memory we have tested. As such,
RUPART demonstrates the feasibility of case-based reason-
ing for creating an adaptive robot controller of less complex-
ity than the typical hybrid controller.

We systematically analyzed two aspects of the RUPART
system: the quality of adapted route plans and the quality
and consistency of cases retrieved over a range of test runs.
The analysis indicates the importance of a larger case mem-
ory than RUPART has been tested with, but also demon-
strates great consistency among the cases retrieved during
multiple test runs.

Route plan quality

The initial case memory contains twenty route cases. These
cases were generated using the underlying graph-based path
planner, with randomly-chosen start and goal locations. We
knew the case memory was likely inadequate, but used it to
explore the limits of the case-based route planner.

The quality of cases produced by the case-based planner
was tested by retrieving and adapting routes from a single
starting point (the robot’s home lab, for simplicity) to 100
randomly generated goal locations. These routes were com-
pared against optimal routes we computed by hand. The
robot’s navigation component was disabled for this test, only
the routes were generated. This test was repeated with and
without case learning. From 100 random locations, 56 to
58 unique goals were created. Without exception, the re-
trieved case was judged to be the closest case in memory to
the given problem.

Without case learning, optimal or near-optimal results oc-
curred 88% of the time (51 of 58 tests). However, 12% of
the routes generated were highly inefficient, moving from
one hallway to another through one classroom, then back to
the first hallway through another. All but one of the seven
poor routes were based on a single case in memory that was
simply not a very close match to the problem for which it
was used.

With case learning enabled, 56 unique goal locations were
generated from 100 random tests. As might be expected, the
holes in the initial case memory were amplified when learn-
ing was included: poor quality cases were generated and
stored in the case memory. Still 86% of the routes generated
were optimal or nearly optimal.

We compared the work done during adaptation with and
without case learning, with unsurprising results. We exam-
ined the number of plan steps that were generated in or-
der to adapt a retrieved route, and found that 70% of the
adapted cases with learning required no more than 2 addi-
tional plan steps, while only 45% of the no-learning cases
could be adapted with 2 or fewer additional steps.

350



Case retrieval quality
To examine the quality of retrieval of both route and behav-
ior cases, we ran multiple test runs to three different, achiev-
able goal locations. These tests used the full system, includ-
ing real world navigation by the robot. In each case, we
generated five successful runs to each location. The anal-
ysis of retrieval quality is necessarily subjective: each case
retrieved was labeled as optimal, near-optimal, fair, or poor,
based on where the robot was when the case was retrieved.

Current and average sonar readings inject quite a bit of
variability into the retrieval indices in RUPART. We ex-
pected to see quite a bit of variability in the cases retrieved.
While some variability existed, the results were surprisingly
consistent across multiple runs. At each point in the naviga-
tion process to a particular goal, two or three behavior cases
predominate.

Across all fifteen runs, 58% of the behavior cases re-
trieved were judged to be “optimal,” 27% were “near-
optimal.” Even the “fair” choices had reasonable explana-
tions: for example, RUPART retrieved cases from cluttered
environments when the robot was too close to a wall. Be-
cause of this, no retrievals were judged to be poor. The per-
formance of the system under the merely fair cases remained
robust, as no case controlled the robot for more than a few
seconds without being re-evaluated.

Overall, the CBR system works well, given the limited
size of our initial case memory. No tweaking of similarity
measures was needed for RUPART to retrieve route cases
when most appropriate, and behavior cases when most ap-
propriate. The robot navigation is robust under the current
behavior case retrieval, and flaws in either route or behav-
ior cases can be addressed by starting from a more complete
case memory.

Conclusions and Future Work
RUPART is a robot control architecture that is both hybrid
and a single mechanism at the same time. Behavior-based
control and strategic route planning work together in the
current system, both controlled by a single underlying CBR
system. The resulting system is less complex, balances it-
self between reactive and deliberative tasks, and incorpo-
rates learning through a single basic mechanism.

At the current time, we are working to improve and ex-
tend RUPART’s case memory, both through more careful
initial creation and through route and behavior learning. Im-
proved localization will enable a broader range of tasks for
RUPART. In the near future we will be extending the range
of behaviors encoded in behavior cases, and reducing the
non-CBR elements of the system. We plan to extend the sys-
tem to include goal management and meta-plans for guiding
the creating of cases. This extension will provide opportu-
nities for additional kinds of cases, a richer set of indexing
features, and a more challenging task for the robot.

Acknowledgments
Peter Anderson-Sprecher’s participation in this project was
funded by the Keck Student-Faculty Collaborative Research
Program at Macalester College, during Summer, 2005.

References
ActivMedia Robotics, L. 2005. Robot software: Tools and
applications. Retrieved, Nov. 18, 2005.
Blank, D.; Kumar, D.; Meeden, L.; and Yanco, H. 2003.
Pyro: A python-based versatile programming environment
for teaching robotics.J. Educ. Resour. Comput.3(4):1–15.
Chagas, N. C., and Hallam, J. 1998. A learning mobile
robot: Theory, simulation and practice.Lecture Notes in
Computer Science1545:142–154.
Ferrein, A.; Fritz, C.; and Lakemeyer, G. 2005. Using
Golog for Deliberation and Team Coordination in Robotic
Soccer.KI Künstliche Intelligenz(1).
Fox, S. 1995. Introspective Reasoning for Case-Based
Planning. Ph.D. Dissertation, Indiana University, Com-
puter Science Department. IUCS: Technical Report 462.
Fox, S. E. 2000. A unified cbr architecture for robot nav-
igation. In Advances in Case-Based Reasoning, Lecture
Notes in Artificial Intelligence 1898. EWCBR 2000.
Fox, S. E. 2001. Behavior retrieval for robot control in
a unified cbr hybrid planner. InProceedings of the 14th
International FLAIRS Conference. Florida Artificial Intel-
ligence Research Society.
Goel, A.; Callantine, T.; Shankar, M.; and Chandrasekaran,
B. 1991. Representation, organization, and use of topo-
graphic models of physical spaces for route planning. In
Proceedings of the Seventh IEEE Conference on AI Appli-
cations, 308–314. IEEE Computer Society Press.
Haigh, K., and Veloso, M. 1995. Route planning by anal-
ogy. In Proceedings of the First International Conference
on Case-Based Reasoning. Sesimbra, Portugal: Springer
Verlag.
McGinty, L., and Smyth, B. 2001. Collaborative case-
based reasoning: Applications in personalised route plan-
ning. In Aha, D. W., and Watson, I., eds.,Case-Based
Reasoning Research and Development (ICCBR-01), vol-
ume 2080 ofLNAI, 362–376. Berlin: Springer.
Ram, A., and Santamaria, J. C. 1997. Continuous case-
based reasoning.Artificial Intelligence90(1-2):25–77.
Ram, A.; Arkin, R.; Moorman, K.; and Clark, R. 1992.
Case-based reactive navigation: A case-based method for
on-line selection and adaptation of reactive control param-
eters in autonomous robotic systems. Technical report,
Georgia Institute of Technology, Atlanta, GA.
Simmons, R. G.; Goodwin, R.; Haigh, K. Z.; Koenig, S.;
O’Sullivan, J.; and Veloso, M. M. 1997. Xavier: experi-
ence with a layered robot architecture.SIGART Bull.8(1-
4):22–33.

351


